4D Printing: Multiâ€Material Shape Change

Architectural Design 84, 116-121

DOI: 10.1002/ad.1710

Citation Report

#	Article	IF	CITATIONS
1	Coarse-grained, foldable, physical model of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13368-13373.	3.3	27
2	The Cash is in the Medium: On the Stage Management of 3-D Printing. SSRN Electronic Journal, 0, , .	0.4	1
3	Active Printed Materials for Complex Self-Evolving Deformations. Scientific Reports, 2014, 4, 7422.	1.6	407
4	Matter matters. , 2014, , .		2
5	Time for a change. Communications of the ACM, 2014, 57, 16-18.	3.3	22
6	Rigid Folding in Robotic Multi-agent Systems. Procedia Computer Science, 2014, 35, 1342-1351.	1.2	1
7	On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer, 2014, 55, 5969-5979.	1.8	192
8	Design and 3D Printing of Scaffolds and Tissues. Engineering, 2015, 1, 261-268.	3.2	344
9	Water-based Engineering & Description: Large-Scale Additive Manufacturing of Biomaterials. Materials Research Society Symposia Proceedings, 2015, 1800, 1.	0.1	13
10	Opening Pandora?s 3D Printed Box. IEEE Technology and Society Magazine, 2015, 34, 74-80.	0.6	14
11	4D Printing Technology: A Review. 3D Printing and Additive Manufacturing, 2015, 2, 159-167.	1.4	250
12	Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	1.7	72
13	Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Science Translational Medicine, 2015, 7, 285ra64.	5.8	372
14	The status, challenges, and future of additive manufacturing in engineering. CAD Computer Aided Design, 2015, 69, 65-89.	1.4	1,725
15	Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique. Scientific Reports, 2015, 5, 8936.	1.6	115
16	Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling. Principles and Application. Journal of Reconstructive Microsurgery, 2015, 31, 458-463.	1.0	36
17	Multimaterial magnetically assisted 3D printing of composite materials. Nature Communications, 2015, 6, 8643.	5.8	630
18	Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. , 2015, , .		29

#	Article	IF	CITATIONS
19	From 3D to 4D printing: approaches and typical applications. Journal of Mechanical Science and Technology, 2015, 29, 4281-4288.	0.7	164
20	3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10, 103-122.	5.3	660
21	Designer Matter: A perspective. Extreme Mechanics Letters, 2015, 5, 25-29.	2.0	84
22	3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4449-4454.	11.1	702
23	Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping, 2016, 11, 249-262.	5.3	144
24	Development of three-dimensional printing system for magnetic elastomer with control of magnetic anisotropy in the structure. Japanese Journal of Applied Physics, 2016, 55, 06GP18.	0.8	17
25	Three-dimensional circuit fabrication using four-dimensional printing and direct ink writing. , 2016, , .		11
26	4D Bioprinting for Biomedical Applications. Trends in Biotechnology, 2016, 34, 746-756.	4.9	529
27	Jammed architectural structures: towards large-scale reversible construction. Granular Matter, 2016, 18, 1.	1.1	46
28	Three-Dimensional Printing: An Enabling Technology for IR. Journal of Vascular and Interventional Radiology, 2016, 27, 859-865.	0.2	50
29	3D printing of fiber-reinforced soft composites: Process study and material characterization. Journal of Manufacturing Processes, 2016, 23, 296-305.	2.8	48
30	Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 2016, 72, 347-366.	4.8	377
31	Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 2016, 25, 105034.	1.8	147
32	4D Printing: An Emerging Technology in Manufacturing?. Lecture Notes in Information Systems and Organisation, 2016, , 171-178.	0.4	7
33	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	5.5	570
34	Droplet spreading characteristics observed during 3D printing of aligned fiber-reinforced soft composites. Additive Manufacturing, 2016, 12, 121-131.	1.7	12
35	Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research, 2016, 20, 27.	3.2	77
36	Integrating Image-Based Design and 3D Biomaterial Printing To Create Patient Specific Devices within a Design Control Framework for Clinical Translation. ACS Biomaterials Science and Engineering, 2016, 2, 1827-1836.	2.6	50

#	Article	IF	Citations
37	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	23.3	925
38	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	1.6	296
39	4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels. Smart Materials and Structures, 2016, 25, 10LT02.	1.8	29
40	A review of synthesis methods for additive manufacturing. Virtual and Physical Prototyping, 2016, 11, 305-317.	5.3	48
41	4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual and Physical Prototyping, 2016, 11, 263-270.	5.3	101
42	Shape-morphing composites with designed micro-architectures. Scientific Reports, 2016, 6, 27933.	1.6	84
43	Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2016, 22, 952-963.	1.1	128
44	Perversions with a twist. Scientific Reports, 2016, 6, 23413.	1.6	22
45	Ultra personalization and textile thinking in interaction design. , 2016, , .		0
46	Robotic folding of 2D and 3D structures from a ribbon. , 2016, , .		3
47	Biomimetic 4D printing. Nature Materials, 2016, 15, 413-418.	13.3	2,268
48	Shaped after print. Nature Materials, 2016, 15, 379-380.	13.3	19
49	Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 2016, 3, 53-62.	6.4	114
50	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
51	Lattice Materials with Reversible Foldability. Advanced Engineering Materials, 2017, 19, 1600646.	1.6	7
52	Microactuation and sensing using reversible deformations of laser-written polymeric structures. Nanotechnology, 2017, 28, 124001.	1.3	63
53	Printed Paper Robot Driven by Electrostatic Actuator. IEEE Robotics and Automation Letters, 2017, 2, 1001-1007.	3.3	44
54	A study of 4D printing and functionally graded additive manufacturing. Assembly Automation, 2017, 37, 147-153.	1.0	44

#	Article	IF	CITATIONS
55	Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37, 170-185.	1.0	94
56	Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing. Virtual and Physical Prototyping, 2017, 12, 69-76.	5.3	74
57	Direct ink writing of geopolymeric inks. Journal of the European Ceramic Society, 2017, 37, 2481-2489.	2.8	119
58	Sequential self-folding of polymer sheets. Science Advances, 2017, 3, e1602417.	4.7	254
59	A review of 4D printing. Materials and Design, 2017, 122, 42-79.	3.3	764
60	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	23.3	236
61	4D printing of high performance shape memory polymer using stereolithography. Materials and Design, 2017, 126, 219-225.	3.3	243
62	Origamiâ€Based Reconfigurable Metamaterials for Tunable Chirality. Advanced Materials, 2017, 29, 1700412.	11.1	193
63	Transformative Appetite. , 2017, , .		127
64	From 3D models to 3D prints: an overview of the processing pipeline. Computer Graphics Forum, 2017, 36, 537-564.	1.8	100
65	Liquid Resins-Based Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740004.	0.9	20
66	A brief review of extrusionâ€based tissue scaffold bioâ€printing. Biotechnology Journal, 2017, 12, 1600671.	1.8	172
67	Four-Dimensional Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	14
68	Pixelated Polymers: Directed Self Assembly of Liquid Crystalline Polymer Networks. ACS Macro Letters, 2017, 6, 436-441.	2.3	63
69	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	23.3	463
70	Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, 7, 120-133.	2.3	925
71	4D Printing of Shape Memoryâ€Based Personalized Endoluminal Medical Devices. Macromolecular Rapid Communications, 2017, 38, 1600628.	2.0	280
72	Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 876-883.	4.0	351

#	Article	IF	Citations
73	Hierarchically self-morphing structure through 4D printing. Virtual and Physical Prototyping, 2017, 12, 61-68.	5. 3	70
74	Curing characteristics of shape memory polymers in 3D projection and laser stereolithography. Virtual and Physical Prototyping, 2017, 12, 77-84.	5.3	64
75	Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Materials and Structures, 2017, 26, 125023.	1.8	82
76	Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Materials and Structures, 2017, 26, 125001.	1.8	53
77	3D-Printed Self-Folding Electronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32290-32298.	4.0	90
78	Bio nano ink for 4D printing membrane proteins. RSC Advances, 2017, 7, 41429-41434.	1.7	11
79	Four-Dimensional (4D) Printing: Applying Soft Adaptive Materials to Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740003.	0.9	13
80	Molecular dynamics study of thermodynamic properties of nanoclusters for additive manufacturing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 301-306.	2.7	29
81	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	3.7	121
82	Effective software solutions for 4D printing: A review and proposal. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 359-371.	2.7	31
83	From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 291-299.	2.7	62
84	A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 373-383.	2.7	149
85	Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 2017, 117, 10212-10290.	23.0	2,383
86	GDFE: Geometry-Driven Finite Element for Four-Dimensional Printing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	10
87	Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 349-357.	2.7	125
88	4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 267-272.	2.7	110
89	Geometry-Driven Finite Element for Four-Dimensional Printing. , 2017, , .		0
90	4D Origami by Smart Embroidery. Macromolecular Rapid Communications, 2017, 38, 1700213.	2.0	11

#	Article	IF	CITATIONS
91	Cardboard Machine Kit., 2017,,.		28
92	Materials science and architecture. Nature Reviews Materials, 2017, 2, .	23.3	71
93	Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 2017, 3, 663-674.	3.2	225
94	3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter, 2017, 13, 5558-5568.	1.2	223
95	Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual and Physical Prototyping, 2017, 12, 290-300.	5.3	112
96	From molecular design to 3D printed life-like materials with unprecedented properties. Current Opinion in Biomedical Engineering, 2017, 2, 43-48.	1.8	13
97	From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, 2017, 34, 604-613.	3.5	73
98	Single-Loop Foldable 8R Mechanisms with Multiple Modes. Mechanisms and Machine Science, 2017, , 503-510.	0.3	5
99	Designing Line-Based Shape-Changing Interfaces. IEEE Pervasive Computing, 2017, 16, 36-46.	1.1	12
100	Four dimensional printing in healthcare. , 2017, , 207-218.		5
101	Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials, 2017, 10, 970.	1.3	94
102	Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP). Materials, 2017, 10, 1368.	1.3	60
103	Software and Data Format. , 2017, , 75-94.		2
104	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
105	State of the Art on Stylized Fabrication. Computer Graphics Forum, 2018, 37, 325-342.	1.8	37
106	3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. Journal of Neurosurgery, 2018, 130, 248-255.	0.9	15
107	Enhanced multimaterial 4D printing with active hinges. Smart Materials and Structures, 2018, 27, 065027.	1.8	96
108	Additive manufacturing of multi-material structures. Materials Science and Engineering Reports, 2018, 129, 1-16.	14.8	577

#	ARTICLE	IF	CITATIONS
109	Recent advances in 3D bioprinting for the regeneration of functional cartilage. Regenerative Medicine, 2018, 13, 73-87.	0.8	30
110	Assembly and Selfâ€Assembly of Nanomembrane Materialsâ€"From 2D to 3D. Small, 2018, 14, e1703665.	5.2	56
111	Graphene-based bimorphs for micron-sized, autonomous origami machines. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 466-470.	3.3	144
112	3D printing of soft robotic systems. Nature Reviews Materials, 2018, 3, 84-100.	23.3	620
113	Towards Ultra Personalized 4D Printed Shoes. , 2018, , .		12
114	Advances in 3D Bioprinting for Neural Tissue Engineering. Advanced Biology, 2018, 2, 1700213.	3.0	69
115	Stochasticity in materials structure, properties, and processing—A review. Applied Physics Reviews, 2018, 5, .	5.5	15
116	Programming the shape-shifting of flat soft matter. Materials Today, 2018, 21, 144-163.	8.3	188
117	Thermomechanically Tunable Elastic Metamaterials With Compliant Porous Structures. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, 021004.	0.8	8
118	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
119	A Cohesive Zone Model for the Stamping Process Encountered During Three-Dimensional Printing of Fiber-Reinforced Soft Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	4
120	The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques. , 0, , .		4
121	Rolledâ€up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019, 4, 1800486.	3.0	42
122	Mechanics of biomimetic 4D printed structures. Soft Matter, 2018, 14, 8771-8779.	1.2	22
123	4D Printing Prospects for the Aerospace Industry: a critical review. Procedia Manufacturing, 2018, 18, 120-129.	1.9	48
124	Applications of Shape Memory Polymers in Kinetic Buildings. Advances in Materials Science and Engineering, 2018, 2018, 1-13.	1.0	33
125	Soft Robots Manufacturing: A Review. Frontiers in Robotics and Al, 2018, 5, 84.	2.0	201
127	Interplay of $\hat{l}\pm/\hat{l}^2$ -Relaxation Dynamics and the Shape of lonomer Building Blocks. Scientific Reports, 2018, 8, 13441.	1.6	5

#	Article	IF	Citations
128	Liquid crystal elastomers: an introduction and review of emerging technologies. Liquid Crystals Reviews, 2018, 6, 78-107.	1.1	190
129	Additive manufacturing â€" A review of 4D printing and future applications. Additive Manufacturing, 2018, 24, 606-626.	1.7	258
130	Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Materials and Structures, 2018, 27, 125011.	1.8	149
131	Kidney-on-a-chip: untapped opportunities. Kidney International, 2018, 94, 1073-1086.	2.6	104
132	Simultaneous Digital Design and Additive Manufacture of Structures and Materials. Scientific Reports, 2018, 8, 15560.	1.6	29
133	4DMesh. , 2018, , .		59
134	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	11.1	325
135	lonic liquids and poly(ionic liquid)s for 3D printing – A focused mini-review. European Polymer Journal, 2018, 108, 390-398.	2.6	73
136	Intense pulsed light sintering of thick conductive wires on elastomeric dark substrate for hybrid 3D printing applications. Smart Materials and Structures, 2018, 27, 115007.	1.8	17
137	Bioinspired Multiâ€Activities 4D Printing Objects: A New Approach Toward Complex Tissue Engineering. Biotechnology Journal, 2018, 13, e1800098.	1.8	49
138	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	1.8	168
139	High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. 3D Printing and Additive Manufacturing, 2018, 5, 185-193.	1.4	106
140	Responsive cellulose-hydrogel composite ink for 4D printing. Materials and Design, 2018, 160, 108-118.	3.3	162
141	Origami Biosystems: 3D Assembly Methods for Biomedical Applications. Advanced Biology, 2018, 2, 1800230.	3.0	57
142	Application of Inkjet 3D Printing in MEMS Technique. , 2018, , .		2
143	3D Printing System of Magnetic Anisotropy for Artificial Cilia. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 139-144.	0.1	31
144	Technological considerations for 4D printing: an overview. Progress in Additive Manufacturing, 2018, 3, 95-107.	2.5	113
145	Flexible Polymeric Substrates for Electronic Applications. Polymer Reviews, 2018, 58, 630-667.	5.3	73

#	Article	IF	CITATIONS
146	Rolling of 3D Printed Dual‣ayer Beam into a Cylinder by Ethanol Absorption. Macromolecular Materials and Engineering, 2018, 303, 1700675.	1.7	7
147	A review on additive manufacturing and its way into the oil and gas industry. RSC Advances, 2018, 8, 22460-22468.	1.7	66
148	Design, Representations, and Processing for Additive Manufacturing. Synthesis Lectures on Visual Computing, 2018, 10, 1-146.	0.7	11
149	3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Materials Research Express, 2018, 5, 065704.	0.8	40
150	Performance Evaluation of ICT-Based Teaching and Learning in Higher Education. Lecture Notes in Computer Science, 2018, , 378-390.	1.0	2
151	Photoactivated Polymeric Bilayer Actuators Fabricated via 3D Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27308-27315.	4.0	58
152	Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Composites Part B: Engineering, 2018, 153, 233-242.	5.9	86
153	3D printed medicines: A new branch of digital healthcare. International Journal of Pharmaceutics, 2018, 548, 586-596.	2.6	184
154	Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biology, 2018, 2, 1800101.	3.0	114
155	4D Printing of Actuating Cardiac Tissue. , 2018, , 153-162.		18
156	A model-based prediction of droplet shape evolution during additive manufacturing of aligned fiber-reinforced soft composites. Journal of Manufacturing Processes, 2018, 32, 816-827.	2.8	2
157	Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3, 101-112.	23.3	372
158	Grand Challenges in Shape-Changing Interface Research. , 2018, , .		139
159	Renewable Nanocomposites for Additive Manufacturing Using Fused Filament Fabrication. ACS Sustainable Chemistry and Engineering, 2018, 6, 12393-12402.	3.2	17
160	Inkjet Printable Actuators and Sensors for Soft-bodied Crawling Robots. , 2019, , .		4
161	Advances in biomimetic stimuli responsive soft grippers. Nano Convergence, 2019, 6, 20.	6.3	55
162	Bioinspired Electroâ€Thermoâ€Hygro Reversible Shapeâ€Changing Materials by 4D Printing. Advanced Functional Materials, 2019, 29, 1903280.	7.8	64
163	Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration. Current Pharmaceutical Biotechnology, 2019, 20, 32-46.	0.9	28

#	Article	IF	CITATIONS
164	Study on barium titanate and graphene reinforced PVDF matrix for 4D applications. Journal of Thermoplastic Composite Materials, 2021, 34, 1234-1253.	2.6	33
165	3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 164.	2.0	275
166	Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators. Physical Review Applied, 2019, 11, .	1.5	90
167	Indirect 3D and 4D Printing of Soft Robotic Microstructures. Advanced Materials Technologies, 2019, 4, 1900332.	3.0	78
168	3D Printed Actuators: Reversibility, Relaxation, and Ratcheting. Advanced Functional Materials, 2019, 29, 1905545.	7.8	12
169	Programming Multistage Shape Memory and Variable Recovery Force with 4D Printing Parameters. Advanced Materials Technologies, 2019, 4, 1900535.	3.0	27
170	4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS Applied Materials & Controllable Orientation Gradient. ACS Applied Materials & Controllable Orientation Gradient.	4.0	116
171	Bioprinting Technologies in Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 279-319.	0.6	21
172	Spontaneous Color Change of 3D Printed Healthy Food Product over Time after Printing as a Novel Application for 4D Food Printing. Food and Bioprocess Technology, 2019, 12, 1627-1645.	2.6	92
173	Digital Light Processing 3D Printing of Triple Shape Memory Polymer for Sequential Shape Shifting. , 2019, 1, 410-417.		53
174	Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opinion on Drug Delivery, 2019, 16, 1081-1094.	2.4	189
175	Auto-Inflatables., 2019, , .		8
176	Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 2019, 5, eaax1311.	4.7	29
177	Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: A review. European Polymer Journal, 2019, 121, 109287.	2.6	25
178	Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component. Engineering, 2019, 5, 1159-1170.	3.2	42
179	3D metamaterials. Nature Reviews Physics, 2019, 1, 198-210.	11.9	598
180	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
181	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120

#	Article	IF	CITATIONS
182	4D Printing of Recyclable Lightweight Architectures Using High Recovery Stress Shape Memory Polymer. Scientific Reports, 2019, 9, 7621.	1.6	59
183	Biomimetic Shape–Color Doubleâ€Responsive 4D Printing. Advanced Materials Technologies, 2019, 4, 1900293.	3.0	73
184	Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites. Acta Mechanica Solida Sinica, 2019, 32, 535-565.	1.0	73
185	4D Printing of Smart Stimuli-Responsive Polymers. Journal of the Electrochemical Society, 2019, 166, B3274-B3281.	1.3	39
186	Geodesy., 2019,,.		38
187	Light to Shape the Future: From Photolithography to 4D Printing. Advanced Optical Materials, 2019, 7, 1900598.	3.6	152
188	Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials, 2019, 218, 582-609.	3.2	107
189	Review of mechanisms and deformation behaviors in 4D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4633-4649.	1.5	48
190	Switchable Adhesives for Multifunctional Interfaces. Advanced Materials Technologies, 2019, 4, 1900193.	3.0	101
191	Manufacturing Mobility., 2019, , 153-178.		0
192	Distortion-controlled isotropic swelling: numerical study of free boundary swelling patterns. Soft Matter, 2019, 15, 4890-4897.	1.2	1
193	Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles. Journal of the Electrochemical Society, 2019, 166, B3235-B3239.	1.3	60
194	A-line., 2019,,.		64
195	Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Industrial & Description of the Engineering Chemistry Research, 2019, 58, 9709-9757.	1.8	63
196	Modelling the shape memory properties of 4D printed polylactic acid (PLA) for application of disk spacer in minimally invasive spinal fusion. AIP Conference Proceedings, 2019, , .	0.3	4
197	Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. Extreme Mechanics Letters, 2019, 29, 100461.	2.0	50
198	3D Print Technology for Cell Culturing. , 2019, , 83-114.		1
199	Design for 4D printing: A voxel-based modeling and simulation of smart materials. Materials and Design, 2019, 175, 107798.	3.3	63

#	Article	IF	CITATIONS
200	The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual and Physical Prototyping, 2019, 14, 316-332.	5.3	68
202	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	5.2	235
203	Dehydration-induced folding of poly(Îμ-caprolactone)-agarose hydrogel composites. European Polymer Journal, 2019, 117, 159-164.	2.6	2
204	3D Printed Sensors for Biomedical Applications: A Review. Sensors, 2019, 19, 1706.	2.1	150
205	Wave Propagation And Regulation In Periodic Structure Based On 4D-Printing., 2019,,.		0
206	Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 2019, 94, 57-116.	11.8	364
207	Multi-metal 4D printing with a desktop electrochemical 3D printer. Scientific Reports, 2019, 9, 3973.	1.6	32
208	Recent advances in threeâ€dimensional bioprinting of stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 908-924.	1.3	23
209	Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176-198.	6.2	60
210	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
211	A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Progress in Additive Manufacturing, 2019, 4, 167-184.	2.5	38
212	Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Applied Materials & Interfaces, 2019, 11, 10328-10336.	4.0	126
213	Injectable hierarchical micro/nanofibrous collagen-based scaffolds. Chemical Engineering Journal, 2019, 365, 220-230.	6.6	19
214	Additively Manufactured Reactive Material Architectures as a Programmable Heat Source. 3D Printing and Additive Manufacturing, 2019, 6, 210-216.	1.4	5
215	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
216	4D Bioprinting: Technological Advances in Biofabrication. Macromolecular Bioscience, 2019, 19, e1800441.	2.1	92
217	Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers, 2019, 11, 1864.	2.0	94
218	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94

#	Article	IF	CITATIONS
219	4D-printed hybrids with localized shape memory behaviour: Implementation in a functionally graded structure. Scientific Reports, 2019, 9, 18754.	1.6	37
220	Recent progress in shape memory polymer composites: methods, properties, applications and prospects. Nanotechnology Reviews, 2019, 8, 327-351.	2.6	76
221	Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3450-3458.	4.0	45
222	4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Materials and Design, 2019, 163, 107544.	3.3	93
223	Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies. Journal of Computing and Information Science in Engineering, 2019, 19, .	1.7	50
224	Toughness-based recovery efficiency of shape memory parts fabricated using material extrusion 3D printing technique. Rapid Prototyping Journal, 2019, 25, 30-37.	1.6	2
225	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	3.6	132
226	Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	40
227	4D Printing based piezoelectric composite for medical applications. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 109-115.	2.4	79
228	Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomaterials Science and Engineering, 2019, 5, 318-328.	2.6	38
229	Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800626.	3.0	221
230	Additive manufacturing of soft robots. , 2019, , 335-359.		18
231	Characterization of shape memory polymer parts fabricated using material extrusion 3D printing technique. Rapid Prototyping Journal, 2019, 25, 322-331.	1.6	18
232	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
233	Smart materials in additive manufacturing: state of the art and trends. Virtual and Physical Prototyping, 2019, 14, 1-18.	5.3	106
234	Investigations for Barium Titanate and Graphene Reinforced PVDF Matrix for 4D Applications. , 2020, , 366-375.		6
235	Four-dimensional direct laser writing of reconfigurable compound micromachines. Materials Today, 2020, 32, 19-25.	8.3	131
236	4D Printing: Future Insight in Additive Manufacturing. Metals and Materials International, 2020, 26, 564-585.	1.8	77

#	Article	IF	Citations
237	Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing., 2020, , 119-160.		16
238	Photoactive resin formulations and composites for optical 3D and 4D printing of functional materials and devices., 2020,, 387-425.		6
239	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465.		12
240	3D and 4D printed polymer composites for electronic applications. , 2020, , 505-525.		5
241	3D printing for membrane separation, desalination and water treatment. Applied Materials Today, 2020, 18, 100486.	2.3	122
242	3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554.	3.9	25
243	4D Printing. Materials Forming, Machining and Tribology, 2020, , 93-107.	0.7	0
244	Kidney-on-a-chip., 2020,, 233-253.		7
245	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	7.8	122
246	Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 2020, 101, 26-42.	4.1	216
247	Programming the time into 3D printing: current advances and future directions in 4D printing. Multifunctional Materials, 2020, 3, 012001.	2.4	31
248	Fabrication of 3D and 4D polymer micro- and nanostructures based on electrospinning. , 2020, , 191-229.		6
249	Folding deformation modeling and simulation of 4D printed bilayer structures considering the thickness ratio. Mathematics and Mechanics of Solids, 2020, 25, 348-361.	1.5	10
250	4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts. Materials and Design, 2020, 188, 108485.	3 . 3	57
251	Microfabrication Using Shapeâ€Transforming Soft Materials. Advanced Functional Materials, 2020, 30, 1908028.	7.8	43
252	Recent progress in 4D printing of stimuli-responsive polymeric materials. Science China Technological Sciences, 2020, 63, 532-544.	2.0	61
253	Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Reviews of Modern Plasma Physics, 2020, 4, 1.	2.2	16
254	3D Printing in Medicine for Preoperative Surgical Planning: A Review. Annals of Biomedical Engineering, 2020, 48, 536-555.	1.3	105

#	ARTICLE	IF	CITATIONS
255	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
256	Sequential Motion of 4D Printed Photopolymers with Broad Glass Transition. Macromolecular Materials and Engineering, 2020, 305, 1900370.	1.7	23
257	Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions. Smart Materials and Structures, 2020, 29, 023001.	1.8	23
258	Closed-loop 4D-printed soft robots. Materials and Design, 2020, 188, 108411.	3.3	127
259	Data by Proxy — Material Traces as Autographic Visualizations. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 98-108.	2.9	17
260	Flexural, pull-out, and fractured surface characterization for multi-material 3D printed functionally graded prototype. Journal of Composite Materials, 2020, 54, 2087-2099.	1.2	22
262	Review: Recent advancement and research possibilities in 4D printing technology. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1332-1340.	0.5	10
263	Contactless reversible 4D-printing for 3D-to-3D shape morphing. Virtual and Physical Prototyping, 2020, 15, 481-495.	5.3	36
264	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
265	Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials. Engineering, 2020, 6, 1232-1243.	3.2	41
266	3D and 4D Printing of Multistable Structures. Applied Sciences (Switzerland), 2020, 10, 7254.	1.3	14
267	Laws of 4D Printing. Engineering, 2020, 6, 1035-1055.	3.2	40
268	Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomedical Engineering Letters, 2020, 10, 453-479.	2.1	47
269	A review of 3D printing processes and materials for soft robotics. Rapid Prototyping Journal, 2020, 26, 1345-1361.	1.6	116
270	Controlled helical deformation of programmable bilayer structures: design and fabrication. Smart Materials and Structures, 2020, 29, 085042.	1.8	17
271	3D Printing for Hip Implant Applications: A Review. Polymers, 2020, 12, 2682.	2.0	45
272	Hexagon-Twist Frequency Reconfigurable Antennas via Multi-Material Printed Thermo-Responsive Origami Structures. Frontiers in Materials, 2020, 7, .	1.2	11
273	Anisotropy tailoring in geometrically isotropic multi-material lattices. Extreme Mechanics Letters, 2020, 40, 100934.	2.0	33

#	Article	IF	Citations
274	Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 2020, 136, 109919.	2.6	86
275	Development of Weather-Resistant 3D Printed Structures by Multi-Material Additive Manufacturing. Journal of Composites Science, 2020, 4, 94.	1.4	13
276	Direct ink writing advances in multi-material structures for a sustainable future. Journal of Materials Chemistry A, 2020, 8, 15646-15657.	5 . 2	167
277	Sustainable Materials and Chemical Processes for Additive Manufacturing. Chemistry of Materials, 2020, 32, 7105-7119.	3.2	101
278	3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control. Virtual and Physical Prototyping, 2020, 15, 373-402.	5. 3	103
279	Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. Journal of Materials Science: Materials in Medicine, 2020, 31, 64.	1.7	16
280	Fiber reinforced composite manufacturing for passive actuators. International Journal of Advanced Manufacturing Technology, 2020, 109, 1493-1509.	1.5	2
281	Tall Buildings with Dynamic Facade Under Winds. Engineering, 2020, 6, 1443-1453.	3.2	28
282	Hybrid 3D printed-paper microfluidics. Scientific Reports, 2020, 10, 18379.	1.6	21
283	Design and closed loop control of a 3D printed soft actuator. , 2020, , .		9
284	Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44195-44204.	4.0	77
285	4D printing soft robotics for biomedical applications. Additive Manufacturing, 2020, 36, 101567.	1.7	73
286	3D-printed programmable tensegrity for soft robotics. Science Robotics, 2020, 5, .	9.9	104
287	4D Printing: A Review on Recent Progresses. Micromachines, 2020, 11, 796.	1.4	115
288	Phosphorescent bio-based resin for digital light processing (DLP) 3D-printing. Green Chemistry, 2020, 22, 6212-6224.	4.6	29
289	Printing and Programming of In-Situ Actuators. , 2020, , .		1
290	4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field. Sustainability, 2020, 12, 10628.	1.6	50
291	Control-Based 4D Printing: Adaptive 4D-Printed Systems. Applied Sciences (Switzerland), 2020, 10, 3020.	1.3	66

#	Article	IF	CITATIONS
292	3D printing of multifunctional materials for sensing and actuation: Merging piezoelectricity with shape memory. European Polymer Journal, 2020, 132, 109738.	2.6	37
293	4D printing with spin-crossover polymer composites. Journal of Materials Chemistry C, 2020, 8, 6001-6005.	2.7	31
294	Nano/microstructures of shape memory polymers: from materials to applications. Nanoscale Horizons, 2020, 5, 1155-1173.	4.1	63
295	3D printing and growth induced bending based on PET-RAFT polymerization. Polymer Chemistry, 2020, 11, 4084-4093.	1.9	32
296	4D Printing of Hydrogels: A Review. Advanced Functional Materials, 2020, 30, 1910606.	7.8	224
297	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
298	4D printed auxetic structures with tunable mechanical properties. Additive Manufacturing, 2020, 35, 101364.	1.7	20
299	Surface Treatments with Dichloromethane to Eliminate Printing Lines on Polycarbonate Components Printed by Fused Deposition Modelling Technology. Materials, 2020, 13, 2724.	1.3	6
300	On 4D printing as a revolutionary fabrication technique for smart structures. Smart Materials and Structures, 2020, 29, 083001.	1.8	41
301	Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Date of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials via Parameter via P	4.0	70
302	Additive Manufacturing of Epoxy Resins: Materials, Methods, and Latest Trends. Industrial & Engineering Chemistry Research, 2020, 59, 6375-6390.	1.8	49
303	Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing. Polymers, 2020, 12, 519.	2.0	92
304	4D printed shape memory polymers and their structures for biomedical applications. Science China Technological Sciences, 2020, 63, 545-560.	2.0	85
305	Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose. Macromolecular Materials and Engineering, 2020, 305, 1900740.	1.7	9
306	Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2930-2950.	2.9	124
307	Laser Pouch Motors: Selective and Wireless Activation of Soft Actuators by Laser-Powered Liquid-to-Gas Phase Change. IEEE Robotics and Automation Letters, 2020, 5, 4180-4187.	3.3	19
308	Investigations on the Processing of Ceramic Filled Inks for 3D InkJet Printing. Materials, 2020, 13, 2587.	1.3	9
309	Direct Ink Writing Based 4D Printing of Materials and Their Applications. Advanced Science, 2020, 7, 2001000.	5.6	168

#	Article	IF	CITATIONS
310	Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020, 30, 2004145.	7.8	22
311	Smart polymers and nanocomposites for 3D and 4D printing. Materials Today, 2020, 40, 215-245.	8.3	144
312	Examining the effect of design for additive manufacturing rule presentation on part redesign quality. Journal of Engineering Design, 2020, 31, 427-460.	1.1	16
313	Indentation experiments and simulations of nonuniformly photocrosslinked polymers in 3D printed structures. Additive Manufacturing, 2020, 35, 101420.	1.7	8
314	Recent advances in multi-material additive manufacturing: methods and applications. Current Opinion in Chemical Engineering, 2020, 28, 158-166.	3.8	130
315	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17
316	3D and 4D printing for optics and metaphotonics. Nanophotonics, 2020, 9, 1139-1160.	2.9	48
317	Dual-method molding of 4D shape memory polyimide ink. Materials and Design, 2020, 191, 108606.	3.3	49
318	Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology. Advanced Functional Materials, 2020, 30, 1909874.	7.8	122
319	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
320	Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Current Opinion in Food Science, 2020, 35, 54-64.	4.1	116
321	Reviewâ€"Recent Progresses in 4D Printing of Gel Materials. Journal of the Electrochemical Society, 2020, 167, 037563.	1.3	45
322	Biomimetic Nonuniform, Dual-Stimuli Self-Morphing Enabled by Gradient Four-Dimensional Printing. ACS Applied Materials & Distriction (12), 6351-6361.	4.0	54
323	Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. CAD Computer Aided Design, 2020, 122, 102817.	1.4	44
324	Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers. Journal of Composites Science, 2020, 4, 1.	1.4	38
325	Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydrate Polymers, 2020, 234, 115898.	5.1	45
326	A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multiâ€5cale Design to Versatile Functional Properties. Advanced Materials Technologies, 2020, 5, 1900981.	3.0	230
327	Multiâ€Material 3D and 4D Printing: A Survey. Advanced Science, 2020, 7, 1902307.	5.6	323

#	ARTICLE	IF	Citations
328	Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. Journal of Polymers and the Environment, 2020, 28, 1345-1367.	2.4	110
329	4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry, 2020, 63, 8003-8024.	2.9	107
330	Contact/impact modeling and analysis of 4D printed shape memory polymer beams. Smart Materials and Structures, 2020, 29, 085016.	1.8	19
331	Current status and future directions of fused filament fabrication. Journal of Manufacturing Processes, 2020, 55, 288-306.	2.8	207
332	Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective. Procedia Computer Science, 2020, 167, 1210-1219.	1.2	85
333	Design-to-fabrication with thermo-responsive shape memory polymer applications for building skins. Architectural Science Review, 2021, 64, 72-86.	1.1	22
334	Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 2021, 403, 126162.	6.6	163
335	A review on spacers and membranes: Conventional or hybrid additive manufacturing?. Water Research, 2021, 188, 116497.	5.3	46
336	Color/aroma changes of 3D-Printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocolloids, 2021, 112, 106358.	5.6	101
337	4D deformation based on double-layer structure of the pumpkin/paper. Food Structure, 2021, 27, 100168.	2.3	33
338	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie, 2021, 133, 5596-5603.	1.6	18
339	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
340	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie - International Edition, 2021, 60, 5536-5543.	7.2	104
341	Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications. Materials Horizons, 2021, 8, 885-911.	6.4	35
342	Programming Stepwise Motility into a Sheet of Paper Using Inkjet Printing. Advanced Intelligent Systems, 2021, 3, 2000153.	3.3	4
343	Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12777-12788.	4.0	64
344	A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 2021, 33, e2000713.	11.1	558
345	Modeling and Visualization of Multi-material Volumes. Scientific Visualization, 2021, 13, .	0.2	0

#	Article	IF	CITATIONS
346	A Semi-skilled Fabrication Approach of Shape-Changing Interfaces through Fused Filament Fabrication. Lecture Notes in Networks and Systems, 2021, , 18-26.	0.5	0
347	Applications of Additive Manufacturing. Springer Series in Advanced Manufacturing, 2021, , 201-226.	0.2	4
348	Design and Manufacture of 3D-Printed Batteries. Joule, 2021, 5, 89-114.	11.7	137
349	Tissue-Engineered Approaches for Penile Reconstruction. Reference Series in Biomedical Engineering, 2021, , 315-351.	0.1	0
350	Electrothermal shape memory behavior and recovery force of four-dimensional printed continuous carbon fiber/polylactic acid composite. Smart Materials and Structures, 2021, 30, 025040.	1.8	29
351	Shape recovery analysis of the additive manufactured 3D smart surfaces through reverse engineering. Progress in Additive Manufacturing, 2021, 6, 281-295.	2.5	12
352	Extracellular scaffold design for ultra-soft microtissue engineering. Light Advanced Manufacturing, 2021, 2, 1-13.	2.2	3
353	Multimaterial Printing for Cephalopod-Inspired Light-Responsive Artificial Chromatophores. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 12735-12745.	4.0	19
354	Topology optimization of shape memory polymer structures with programmable morphology. Structural and Multidisciplinary Optimization, 2021, 63, 1863-1887.	1.7	8
355	A high-efficiency way to improve the shape memory property of 4D-printed polyurethane/polylactide composite by forming in situ microfibers during extrusion-based additive manufacturing. Additive Manufacturing, 2021, 38, 101718.	1.7	12
356	Redesigning the modern applied medical sciences and engineering with shape memory polymers. Advanced Composites and Hybrid Materials, 2021, 4, 223-234.	9.9	32
357	A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials, 2021, 14, 858.	1.3	93
358	Processing and mechanical behavior of rigid and flexible material composite systems formed via voxel digital design in polyjet additive manufacturing. Rapid Prototyping Journal, 2021, 27, 617-626.	1.6	5
359	Bioinks—materials used in printing cells in designed 3D forms. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1072-1106.	1.9	9
360	4D Printing: A Snapshot on an Evolving Field. Biosciences, Biotechnology Research Asia, 2021, 18, 1-4.	0.2	1
362	Irreversible and Repeatable Shape Transformation of Additively Manufactured Annular Composite Structures. Materials, 2021, 14, 1383.	1.3	6
363	3D-Extrusion Manufacturing of a Kaolinite Dough Taken in Its Pristine State. Frontiers in Materials, 2021, 8, .	1.2	0
364	Three dimensional printed nanogenerators. EcoMat, 2021, 3, e12098.	6.8	16

#	Article	IF	Citations
365	Morphogenesis and characterization of wheat xerogel structure and insights into its 4D transformation. Food Structure, 2021, 28, 100170.	2.3	10
366	Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Advanced Materials Technologies, 2021, 6, 2001218.	3.0	57
367	A Review of Used Methods and Developments in 3D Printer Technologies. DÃ $\frac{1}{4}$ zce Üniversitesi Bilim Ve Teknoloji Dergisi, 2021, 9, 1186-1213.	0.2	5
368	Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Research International, 2021, 142, 110215.	2.9	54
369	4D printing: Recent advances and proposals in the food sector. Trends in Food Science and Technology, 2021, 110, 349-363.	7.8	104
370	4D Printing Dual Stimuli-Responsive Bilayer Structure Toward Multiple Shape-Shifting. Frontiers in Materials, 2021, 8, .	1.2	20
371	Bioâ€Inspired Motion Mechanisms: Computational Design and Material Programming of Selfâ€Adjusting 4Dâ€Printed Wearable Systems. Advanced Science, 2021, 8, 2100411.	5.6	27
372	Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers, 2021, 13, 1499.	2.0	145
373	Unmaking: Enabling and Celebrating the Creative Material of Failure, Destruction, Decay, and Deformation. , 2021 , , .		34
374	Designing Metamaterial Cells to Enrich Thermoforming 3D Printed Object for Post-Print Modification. , 2021, , .		15
375	Recent Advancements in Biomimetic 3D Printing Materials With Enhanced Mechanical Properties. Frontiers in Materials, 2021, 8, .	1.2	22
376	4D Printing of Lead Zirconate Titanate Piezoelectric Composites Transducer Based on Direct Ink Writing. Frontiers in Materials, 2021, 8, .	1.2	10
377	Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Materials and Design, 2021, 203, 109605.	3.3	55
378	Engineering (Bio)Materials through Shrinkage and Expansion. Advanced Healthcare Materials, 2021, 10, e2100380.	3.9	15
380	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
381	A 4D printed active compliant hinge for potential space applications using shape memory alloys and polymers. Smart Materials and Structures, 2021, 30, 085004.	1.8	20
382	New modeling approach for 4D printing by using kinetic components. Journal of Computational Design and Engineering, 2021, 8, 1013-1022.	1.5	2
383	Quantifying the Shape Memory Performance of a Three-Dimensional-Printed Biobased Polyester/Cellulose Composite Material. 3D Printing and Additive Manufacturing, 2021, 8, 193-200.	1.4	9

#	Article	IF	CITATIONS
384	Development of Intertwined Infills to Improve Multi-Material Interfacial Bond Strength., 2021,,.		0
385	A Review on Filament Materials for Fused Filament Fabrication. Journal of Manufacturing and Materials Processing, 2021, 5, 69.	1.0	58
386	Additive manufacturing landscape and materials perspective in 4D printing. International Journal of Advanced Manufacturing Technology, 2021, 115, 2973-2988.	1.5	30
387	Multi-material stereolithography using curing-on-demand printheads. Rapid Prototyping Journal, 2021, 27, 861-871.	1.6	16
388	4D Printing of Shape Memory Vascular Stent Based on <i>i²</i> CDâ€ <i>g</i> êPolycaprolactone. Macromolecular Rapid Communications, 2021, 42, e2100176.	2.0	36
389	Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspiration and Biomimetics, 2021, 16, 055004.	1.5	11
390	Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration and Biomimetics, 2021, 16, 055002.	1.5	30
391	Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Advanced Drug Delivery Reviews, 2021, 174, 294-316.	6.6	84
392	Toward Stimuli-Responsive Soft Robots with 3D Printed Self-Healing Konjac Glucomannan Gels. 3D Printing and Additive Manufacturing, 2022, 9, 425-434.	1.4	6
393	4D Printing of Electroactive Materials. Advanced Intelligent Systems, 2021, 3, 2100019.	3.3	20
394	3D Printing of Physical Organ Models: Recent Developments and Challenges. Advanced Science, 2021, 8, e2101394.	5.6	61
395	Development of Intertwined Infills to Improve Multi-Material Interfacial Bond Strength. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	7
397	4D printing materials for vat photopolymerization. Additive Manufacturing, 2021, 44, 102024.	1.7	45
398	Functional applications of 4D printing: a review. Rapid Prototyping Journal, 2021, 27, 1501-1522.	1.6	20
399	Post-Processing of 3D-Printed Polymers. Technologies, 2021, 9, 61.	3.0	85
400	Geometric design of 4D printed bilayer structures for accurate folding deformation. Journal of Intelligent Material Systems and Structures, 2022, 33, 1046-1055.	1.4	2
401	Geoâ€inspired science, engineering, construction, art and design. Geology Today, 2021, 37, 184-193.	0.3	3
402	Experimental and numerical investigations on heat transfer in fused filament fabrication 3D-printed specimens. International Journal of Advanced Manufacturing Technology, 2022, 118, 1367-1381.	1.5	13

#	Article	IF	Citations
403	Pop-up cookie molds: self-folding elastomer sheets using thermal expansion of embedded air chambers. Smart Materials and Structures, 2021, 30, 115013.	1.8	0
404	DLP 4Dâ€Printing of Remotely, Modularly, and Selectively Controllable Shape Memory Polymer Nanocomposites Embedding Carbon Nanotubes. Advanced Functional Materials, 2021, 31, 2106774.	7.8	56
405	Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing. Journal of Alloys and Compounds, 2022, 892, 162193.	2.8	46
406	Evolution and applications of polymer brush hypersurface photolithography. Polymer Chemistry, 2021, 12, 5724-5746.	1.9	8
407	From Sketches and Installations to Bioinspired 5D Printing Models. Advances in Civil and Industrial Engineering Book Series, 2021, , 365-387.	0.2	2
408	Digital Technologies in Wholesaling and Retailing. Advances in Logistics, Operations, and Management Science Book Series, 2021, , 1297-1312.	0.3	0
409	Potential of Bio-Inspiration in 3- and 4-D Printing. Advances in Chemical and Materials Engineering Book Series, 2021, , 294-347.	0.2	0
410	Solid oral dosage forms., 2021,, 333-358.		15
411	4D Printing of a Bioinspired Microneedle Array with Backwardâ€Facing Barbs for Enhanced Tissue Adhesion. Advanced Functional Materials, 2020, 30, 1909197.	7.8	180
412	Additive Manufacturing: Future Challenges. , 2019, , 255-264.		3
414	The Ever-Changing Nature of Materiality and the Meaning of Materials in Architecture and Construction. , 2017, , 25-65.		3
415	A New Dimension: 4D Printing Opportunities in Pharmaceutics. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 153-162.	0.2	14
416	Medical Applications of 3D Printing. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 163-182.	0.2	2
417	Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. Journal of Materials Science, 2020, 55, 10975-11051.	1.7	53
418	Multi-Material Three-Dimensional Printing. , 2020, , .		1
419	4D-Printable Liquid Metal–Liquid Crystal Elastomer Composites. ACS Applied Materials & Description of the Composites of the Composite of	4.0	98
420	Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly(ethylene- <i>co</i> -methacrylic acid). ACS Applied Materials & Samp; Interfaces, 2017, 9, 27239-27249.	4.0	58
421	A machine learning workflow for 4D printing: understand and predict morphing behaviors of printed active structures. Smart Materials and Structures, 2021, 30, 015028.	1.8	17

#	Article	IF	CITATIONS
422	4D printing and collaborative design of highly flexible shape memory alloy structures: a case study for a metallic robot prototype. Smart Materials and Structures, 2021, 30, 015018.	1.8	24
423	Sequential shapeshifting 4D printing: programming the pathway of multi-shape transformation by 3D printing stimuli-responsive polymers. Multifunctional Materials, 2020, 3, 042002.	2.4	14
424	Computational Design of Self-Actuated Deformable Solids via Shape Memory Material. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 2577-2588.	2.9	4
425	Venous Materials: Towards Interactive Fluidic Mechanisms. , 2020, , .		37
426	Jubilee: An Extensible Machine for Multi-tool Fabrication. , 2020, , .		19
427	Investigating Underdetermination Through Interactive Computational Handweaving. , 2020, , .		20
428	Awareables., 2020,,.		2
429	Flying LEGO Bricks., 2020,,.		11
430	ExpandFab., 2020,,.		17
431	Self-shaping Curved Folding:., 2020, , .		17
432	Multifunctional Mesostructures: DesignÂandÂMaterialÂProgrammingÂforÂ4D-printing. , 2020, , .		12
433	Inverse Design Tool for Asymmetrical Self-Rising Surfaces with Color Texture. , 2020, , .		5
434	MorphingCircuit., 2020, 4, 1-26.		30
435	Bioprinting in otolaryngology and airway reconstruction. , 0, , 145-157.		1
437	Emergence of Bioprinting in Tissue Engineering: A Mini Review. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1 , .	0.1	2
438	A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016, 2, .	1.7	84
439	The Role of Wild Cards Analysis in Foresight Studies: The Case of Russia. SSRN Electronic Journal, 0, , .	0.4	1
440	Knowledge Reuse for Customization: Metamodels in an Open Design Community for 3D Printing. MIS Quarterly: Management Information Systems, 2017, 41, 315-332.	3.1	62

#	Article	IF	CITATIONS
441	4D printing technology, modern era: A short review. International Journal of Energy Technology, 0 , , 92-111.	0.3	2
442	Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 2020, 9, 10.	1.2	104
443	Retailing 4.0 and Technology-Driven Innovation. Advances in Marketing, Customer Relationship Management, and E-services Book Series, 2020, , 338-354.	0.7	1
445	Exploration of the potential of polymer 4D printing: Experiments on the printing quality and the impact of temperature and geometry on the shape-changing effect. Procedia CIRP, 2021, 103, 103-108.	1.0	3
446	4D Multimaterial Printing of Programmable and Selective Lightâ€Activated Shapeâ€Memory Structures with Embedded Gold Nanoparticles. Advanced Materials Technologies, 2022, 7, 2101058.	3.0	16
448	Mechanical properties enhancement in composite material structures of poly″actic acid/epoxy/milled glass fibers prepared by fused filament fabrication and solution casting. Polymer Composites, 2021, 42, 6847-6866.	2.3	14
449	Smart Materials for 4D Printing: A Review on Developments, Challenges and Applications. Lecture Notes in Mechanical Engineering, 2022, , 3-10.	0.3	6
450	4ì°¨ì,°ì—…ſ¨ë³…시대 ì¸ê³μ지능íĩ• 릜봇엕ì≆한 ë¶€ëቓ™ì,° ê±°ëž~패러ë‹ໝ,ĵ∙ 변화 -변화엕대한 ì€	ë¹,ĵ.™€ 함ê	» ̃i. Ilgam Bu
451	HIDROGEL PARA IMPRESSÃO 4D., 0,,.		0
452	Digital Technologies and 4D Customized Design. Advances in Human and Social Aspects of Technology Book Series, 2018, , 403-426.	0.3	2
453	Analysis about the Behavior and Modeling of pH-Sensitive Hydrogels with Different Ratios of Chitosan and Polyvinylpyrrolidone. Journal of Materials Science and Chemical Engineering, 2019, 07, 64-76.	0.2	3
455	Porous bone tissue scaffold based on shape memory polymer. , 2019, , .		1
456	Moving Forward to 3D/4D Printed Building Facades. Lecture Notes in Mechanical Engineering, 2020, , 277-282.	0.3	3
457	A Review on 4D Printingâ€"the Next Industrial Revolution. Lecture Notes in Mechanical Engineering, 2020, , 325-331.	0.3	1
458	Prototyping Interactive Fluidic Mechanisms. , 2020, , .		3
459	Application Perspective of Environmentally Responsive Materials in the Downhole Operation. Materials Science Forum, 0, 993, 799-805.	0.3	1
460	Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials, 2021, 14, 6442.	1.3	23
461	Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines, 2021, 9, 1537.	1.4	49

#	ARTICLE	IF	CITATIONS
462	The status, barriers, challenges, and future in design for 4D printing. Materials and Design, 2021, 212, 110193.	3.3	55
463	Tissue-Engineered Approaches for Penile Reconstruction. , 2020, , 1-37.		0
464	Relevance of Engineered Scaffolds for Cartilage Repair., 2020, , 411-425.		1
465	Selected Applications of Stimuli-Responsive Polymers: 4D Printing by the Fused Filament Fabrication Technology. Annals of Dunarea De Jos University of Galati, Fascicle Xii, Welding Equipment and Technology, 2020, 31, 13-22.	0.2	0
466	Choreographed Matter. , 0, , .		0
467	Digital Technologies and 4D Customized Design. , 2020, , 1-24.		0
468	Novel and Emerging Materials Used in 3D Printing for Oral Health Care. Materials Horizons, 2020, , 317-336.	0.3	0
469	On Wear of Multi Material 3D Printed PLA Composites. , 2022, , 413-425.		1
470	On Process Capability of Multi Stage Primary and Secondary Recycled PLA Composite Matrix for 3D Printing Applications. , 2020, , .		0
471	4D printing with smart materials and structures. Ceramist, 2020, 23, 27-37.	0.0	1
472	Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review. Advanced Intelligent Systems, 2022, 4, 2100065.	3.3	21
473	Four-Dimensional Printing for Hydrogel: Theoretical Concept, 4D Materials, Shape-Morphing Way, and Future Perspectives. Polymers, 2021, 13, 3858.	2.0	13
474	Pop-up Print. , 2020, , .		14
475	Mechanical Shells. , 2020, , .		4
476	3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics, 2021, 13, 1946.	2.0	31
477	Additive Manufacturing Materials. , 2022, , 667-700.		1
478	Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials. International Journal of Polymer Science, 2021, 2021, 1-16.	1.2	43
479	Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms. Gels, 2022, 8, 40.	2.1	28

#	Article	IF	CITATIONS
480	Robotic sheet metal folding: Tool vs. material programming. Automation in Construction, 2022, 134, 104090.	4.8	1
481	A Microscopic Approach for Generic Degradation Modeling. International Journal of Prognostics and Health Management, 2016, 7, .	0.6	0
482	Industrial digitalization with Fourth Dimensional (4D) printing - Novel technology: Brief review on Developments, Challenges and Applications. Gazi University Journal of Science, 0, , .	0.6	0
483	Jammed Microâ€Flake Hydrogel for Fourâ€Dimensional Living Cell Bioprinting. Advanced Materials, 2022, 34, e2109394.	11.1	49
484	Smart Bioinks for the Printing of Human Tissue Models. Biomolecules, 2022, 12, 141.	1.8	17
485	Two-way programming of secondary recycled poly(lactic)acid composite matrix using magnetic field as stimulus., 2022,, 35-50.		1
486	Advances and applications of biofiber-based polymer composites., 2022,, 575-602.		1
487	Multiparametric Material Functionality of Microtissueâ€Based InÂVitro Models as Alternatives to Animal Testing. Advanced Science, 2022, 9, e2105319.	5.6	6
488	On dual/multimaterial composite matrix for smart structures: a case study of ABS-PLA, HIPS-PLA-ABS. , 2022, , 89-101.		0
489	The Technological Revolution: The Rise of Machines. , 2022, , 17-52.		0
490	Hydrothermal stimulus for 4D capabilities of PA6-Al-Al2O3 composite. , 2022, , 121-145.		0
491	3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review. Polymers, 2022, 14, 180.	2.0	60
492	Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. Journal of Nanobiotechnology, 2022, 20, 26.	4.2	10
493	On 3D printed multiblended and hybrid-blended poly(lactic)acid composite matrix for self-assembly. , 2022, , 1-15.		O
494	Anti-curvature honeycomb lattices for mode-dependent enhancement of nonlinear elastic properties under large deformation. International Journal of Non-Linear Mechanics, 2022, 140, 103887.	1.4	12
496	Comprehensive study on shape shifting behaviors in FDM-based 4D printing of bilayer structures. International Journal of Advanced Manufacturing Technology, 2022, 120, 959-974.	1.5	12
497	3D-Printed Biomaterials in Biomedical Application. , 2022, , 319-339.		8
498	4D Printing: 3D Printing of Responsive and Programmable Materials. , 2022, , 213-237.		4

#	Article	IF	CITATIONS
499	Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Critical Reviews in Food Science and Nutrition, 2023, 63, 7399-7422.	5.4	41
500	Comprehensive Study on Smart Materials Used In 4D Printing Technology Applications Review. , 2022, 1,		1
501	Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends. Materials, 2022, 15 , 1439 .	1.3	30
502	Lightâ€Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Advanced Optical Materials, 2022, 10, .	3.6	16
503	Programmable droplets: Leveraging digitally-responsive flow fields to actively tune liquid morphologies. PLoS ONE, 2022, 17, e0264141.	1.1	2
505	Additive manufacturing of cellular ceramic structures: From structure to structure–function integration. Materials and Design, 2022, 215, 110470.	3.3	57
507	The Synergistic Role of Additive Manufacturing and Artificial Intelligence for the Design of New Advanced Intelligent Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	11
508	Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. Polymers for Advanced Technologies, 2022, 33, 1782-1808.	1.6	12
509	A Classification Approach in Exploring The Potential Of Additive Manufacturing in Architecture. Journal of Computational Design, 0 , , .	1.0	0
511	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16703-16717.	4.0	11
512	Design of interfaces to promote the bonding strength between dissimilar materials. Journal of Manufacturing Processes, 2022, 76, 786-795.	2.8	6
513	Investigation on simultaneous change of deformation, color and aroma of 4D printed starch-based pastes from fruit and vegetable as induced by microwave. Food Research International, 2022, 157, 111214.	2.9	29
515	A Conceptual Framework to Improve the Symbol Implementation of 4D Printing Communication between Designers and Engineers. Designs, 2022, 6, 3.	1.3	2
516	Physical Logic Bombs in 3D Printers via Emerging 4D Techniques. , 2021, , .		2
517	Biomimetic Engineering of Soft Motion of Live Creatures. Hikaku Seiri Seikagaku(Comparative) Tj ETQq0 0 0 rgB1	7/8.verlock	₹ 10 Tf 50 18
518	Advances in 4Dâ€printed physiological monitoring sensors. Exploration, 2021, 1, .	5.4	25
519	Onâ€Demand Editing of Surface Properties of Microstructures Made by 3D Direct Laser Writing via Photoâ€Mediated RAFT Polymerization. Advanced Functional Materials, 2022, 32, .	7.8	18
521	Multiâ€Color 3D Printing via Singleâ€Vat Grayscale Digital Light Processing. Advanced Functional Materials, 2022, 32, .	7.8	22

#	Article	IF	CITATIONS
523	Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons, 2022, 9, 1825-1849.	6.4	59
524	Advances in digital light processing of hydrogels. Biomedical Materials (Bristol), 2022, 17, 042002.	1.7	14
525	Infrared Heating for Rapid and Localized Shape Transformations of Additively Manufactured Polymer Parts. Frontiers in Materials, 2022, 9, .	1.2	0
526	A brief review on mechanical designs for 4D printing. , 2022, 01, .		1
527	A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Advanced Materials Technologies, 2022, 7, .	3.0	11
528	Selective Laser Sintering 4D Printing of Dynamic Cross-linked Polyurethane Containing Diels–Alder Bonds. ACS Applied Polymer Materials, 2022, 4, 4035-4046.	2.0	22
529	Towards Decomposable Interactive Systems: Design of a Backyard-Degradable Wireless Heating Interface., 2022,,.		18
530	Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines, 2022, 13, 735.	1.4	14
531	Application and Prospects of Hydrogel Additive Manufacturing. Gels, 2022, 8, 297.	2.1	9
532	4D Printing of a Fully Biobased Shape Memory Copolyester <i>via</i> a UV-Assisted FDM Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6304-6312.	3.2	14
533	Large-deformation mechanics of anti-curvature lattice materials for mode-dependent enhancement of non-linear shear modulus. Mechanics of Materials, 2022, 171, 104337.	1.7	11
534	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Frontiers in Robotics and AI, 2022, 9, .	2.0	12
535	Untethered selectively actuated microwave 4D printing through ferromagnetic PLA. Additive Manufacturing, 2022, 56, 102866.	1.7	8
536	Highly tunable actuation and mechanical properties of 4D-printed nematic liquid crystal elastomers. Mechanics of Materials, 2022, 170, 104329.	1.7	6
537	Procedure to determine deformed shape of laminates made by unsymmetric layup sequences – Basis for 4D printing of composites. Composite Structures, 2022, 292, 115704.	3.1	6
538	Interlacing Infills for Multi-Material Fused Filament Fabrication Using Layered Depth Material Images. Micromachines, 2022, 13, 773.	1.4	1
540	Emerging tissue engineering strategies for the corneal regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 683-706.	1.3	6
542	A Review of Additive Manufacturing (3D Printing) in Aerospace: Technology, Materials, Applications, and Challenges. EAI/Springer Innovations in Communication and Computing, 2022, , 73-98.	0.9	4

#	ARTICLE	IF	CITATIONS
545	Procedure to determine deformed shape of laminates made by unsymmetric layup sequences- basis for 4D printing of composites. Composite Structures, 2022, 295, 115748.	3.1	0
547	Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer. Advanced Materials Technologies, 2022, 7, .	3.0	12
548	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
549	Dumbbell-Shaped Block Copolymers for the Fabrication of Anisotropic Soft Actuators. ACS Applied Polymer Materials, 0, , .	2.0	0
550	4D printing: a new approach for food printing; effect of various stimuli on 4D printed food properties. A comprehensive review. Applied Food Research, 2022, 2, 100150.	1.4	20
551	4D-printed light-responsive structures. , 2022, , 55-105.		0
552	Reversible 4D printing., 2022,, 395-417.		0
553	4D-printed structures with tunable mechanical properties. , 2022, , 141-194.		0
554	4D-printed shape memory polymer: Modeling and fabrication. , 2022, , 195-228.		3
555	4D printing electro-induced shape memory polymers. , 2022, , 19-51.		2
556	4D printing of gels and soft materials. , 2022, , 265-295.		0
557	4D bioprinting: Fabrication approaches and biomedical applications. , 2022, , 193-229.		1
558	Roadmapping 4D printing through disruptive ideas. , 2022, , 419-455.		2
559	Manufacturing highly elastic skin integrated with twisted and coiled polymer muscles: Toward 4D printing., 2022,, 311-327.		0
560	Defects in 3D/4D food printing and their possible solutions: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3455-3479.	5.9	10
561	Experimental investigation and modeling of the temperature memory effect in a 4D-printed auxetic structure. Smart Materials and Structures, 2022, 31, 095021.	1.8	9
562	Drop-on-Demand Characterization and Shape Memory Performance of UV-Curable Shape Memory Polymers for Four-Dimensional Printing. Journal of Testing and Evaluation, 2022, 50, 2555-2570.	0.4	0
563	Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers, 2022, 14, 2794.	2.0	29

#	Article	IF	CITATIONS
564	Morphological and structural changes in thermally-induced soybean protein isolate xerogels modulated by soybean polysaccharide concentration. Food Hydrocolloids, 2022, 133, 107967.	5.6	12
565	Uzayda Beslenmede Süt Ürünleri ve 3D/4D Yazıcılarla Üretilecek Süt Ürünlerinin Uzay GıdasÄ Kullanım Olanakları. Akademik Gıda, 0, , 182-188.	±Olarak 0.5	0
566	Knowledge mapping of 4D printing technologies in computer engineering. Computer Applications in Engineering Education, 2022, 30, 1959-1978.	2.2	0
567	A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 108-146.	1.9	18
570	ASTRE: Prototyping Technique for Modular Soft Robots With Variable Stiffness. IEEE Access, 2022, 10, 80495-80504.	2.6	3
571	Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. Soft Matter, 2022, 18, 7699-7734.	1.2	25
572	Insight in thermomechanical constitutive modeling of shape memory polymers. Frontiers in Mechanical Engineering, 0, 8, .	0.8	2
573	Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers, 2022, 14, 3658.	2.0	18
574	4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 2022, 265, 111874.	1.1	15
575	4D PRINTING TECHNOLOGIES AND APPLICATION AREAS IN TEXTILES. Mühendislik Bilimleri Ve Tasarım Dergisi, 2022, 10, 1117-1127.	0.1	O
577	Discussion on the possibility of multi-layer intelligent technologies to achieve the best recover of musculoskeletal injuries: Smart materials, variable structures, and intelligent therapeutic planning. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
578	Development and characterisation of structurally reforming engineered flatâ€ice xerogel for hot water cooking. International Journal of Food Science and Technology, 2023, 58, 502-511.	1.3	3
579	Kreative Methoden., 2022,, 37-87.		0
580	4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals, 2022, 15, 1282.	1.7	19
581	ShrinkCells: Localized and Sequential Shape-Changing Actuation of 3D-Printed Objects via Selective Heating., 2022,,.		3
582	Thermoformable Shell for Repeatable Thermoforming. , 2022, , .		0
583	<scp>4D</scp> printing of mixed vegetable gel based on deformation and discoloration induced by acidification and dehydration. Journal of Food Process Engineering, 2022, 45, .	1.5	4
584	Overview of 3D and 4D Printing Techniques and their Emerging Applications in Medical Sectors. Current Materials Science, 2023, 16, 143-170.	0.2	1

#	Article	IF	CITATIONS
585	Fracture toughness characterization of 3D-printed advanced structured specimens by digital image correlation. International Journal of Fracture, 2023, 240, 17-28.	1.1	2
586	4D Printing of Stimuli-Responsive Materials. , 2023, , 85-112.		1
587	Effect-Engineering by Additive Manufacturing. , 2023, , 1-19.		10
588	On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers, 2022, 14, 4698.	2.0	23
589	Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	5
590	Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects. Progress in Additive Manufacturing, 2023, 8, 857-889.	2.5	4
591	4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application. Regenerative Engineering and Translational Medicine, 2023, 9, 339-365.	1.6	2
592	4D Printing—A Smart Way of 3D Printing: A Brief Review. Lecture Notes in Mechanical Engineering, 2023, , 25-34.	0.3	0
593	Perceived Affordances in Programmable Matter. , 2022, , .		0
595	Fiber-dominated Soft Actuators Inspired by Plant Cell Walls and Skeletal Muscles. Journal of Bionic Engineering, 0, , .	2.7	0
596	Crane: An Integrated Computational Design Platform for Functional, Foldable, and Fabricable Origami Products. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-29.	4.6	2
598	Customizable and Reconfigurable Surface Properties of Printed Microâ€objects by 3D Direct Laser Writing via Nitroxide Mediated Photopolymerization. Advanced Functional Materials, 2023, 33, .	7.8	10
599	Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials. Polymers, 2023, 15, 322.	2.0	4
600	Shape memory polymer-based prefabricated components: Design ideas and prospects. Frontiers in Materials, 0, 10 , .	1.2	2
601	4D Printing using Fused Deposited Shape Memory Polymer PLA: A state-of-art Review. , 2022, , .		0
603	Advances in Additive Manufacturing and Its Numerical Modelling. , 2023, , 1-21.		1
604	Open challenges and future opportunities in fused deposition modeling of composite materials., 2023, , 289-329.		0
605	Characterization and quality assurance in fused deposition modeling. , 2023, , 109-129.		0

#	Article	IF	CITATIONS
606	4D printing: definition, smart materials, and applications. , 2023, , 13-51.		O
607	The need for fused deposition modeling of composite materials. , 2023, , 39-89.		0
608	Chemistry in light-induced 3D printing. ChemTexts, 2023, 9, .	1.0	10
609	4D printing: An experimental case study on processing of shape memory polymer by FDM/FFF for nature inspired structures. , 2023, , 361-377.		5
610	Fused deposition modeling of composite materials at a glance – supplementary tables. , 2023, , 329-445.		1
611	Programmed Out-of-Plane Curvature to Enhance Multimodal Stiffness of Bending-Dominated Composite Lattices. AIAA Journal, 2023, 61, 1820-1838.	1.5	3
612	Biomimetic 4D printing of dome-shaped dynamic mechanical metamaterials. Journal of Materials Research and Technology, 2023, 24, 4047-4059.	2.6	5
613	4D Printing Materials for Soft Robots. Fashion & Textile Research Journal, 2022, 24, 667-685.	0.1	0
614	Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin, 2023, 48, 730-745.	1.7	11
615	Shape Memory Effect of Four-Dimensional Printed Polylactic Acid-Based Scaffold with Nature-Inspired Structure. 3D Printing and Additive Manufacturing, 2024, 11, 10-23.	1.4	3
616	4D printing of polyamide 1212 based shape memory thermoplastic polyamide elastomers by selective laser sintering. Journal of Manufacturing Processes, 2023, 92, 157-164.	2.8	7
617	Research on imminent enlargements of smart materials and structures towards novel 4D printing (4DP: SMs-SSs). International Journal of Advanced Manufacturing Technology, 2023, 126, 2803-2823.	1.5	3
618	Natural fiber biocomposites via 4D printing technologies: a review of possibilities for agricultural bio-mulching and related sustainable applications. Progress in Additive Manufacturing, 2024, 9, 37-67.	2.5	3
619	Future perspective of additive manufacturing of food for children. Trends in Food Science and Technology, 2023, 136, 120-134.	7.8	13
620	3D Printing of Green and Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Applied Polymer Materials, 2023, 5, 3201-3229.	2.0	9
621	From shape to function—bioprinting technologies for tissue engineered grafts to meet clinical needs. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 701-722.	1.8	0
629	A Methodical Approach to Product Development in 4D Printing Using Smart Materials. Springer Tracts in Additive Manufacturing, 2023, , 130-137.	0.2	0
641	Cartilage Tissue Engineering: Advances and Frontiers. , 2023, , 255-287.		1

#	Article	IF	Citations
658	Smart Materials Based Additive Manufacturing. Materials Horizons, 2024, , 153-175.	0.3	0
666	3D printing of composite material through blending of PLA and PETG using fused deposition modelling. AIP Conference Proceedings, 2023, , .	0.3	0
667	One-way/two-way programming of fabric thermoplastic substrate for sensor applications. , 2023, , .		0
674	Research Progress in Printing Formulation for 3D Printing of Healthy Future Foods. Food and Bioprocess Technology, 0 , , .	2.6	O
676	Applications of 4D Printing Technology. Advances in Logistics, Operations, and Management Science Book Series, 2024, , 54-66.	0.3	0
678	Recent advancements in the fabrication of multi-material structures by additive manufacturing. AIP Conference Proceedings, 2024, , .	0.3	O
680	Unleashing the Future Potential of 4D Printing. Advances in Business Information Systems and Analytics Book Series, 2024, , 131-153.	0.3	2
682	A review: polysaccharide-based hydrogels and their biomedical applications. Polymer Bulletin, 0, , .	1.7	1
690	Concluding overview: advancements in building materials technology. , 2024, , 227-240.		0
692	Creative Methods. , 2024, , 37-86.		O
694	Additive Manufacturing and 3D Printing Innovations. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2024, , 255-287.	0.5	0