Enhanced Immunogenicity of an HIV-1 DNA Vaccine De Combined Intramuscular and Intradermal Routes

Journal of Virology 88, 6959-6969

DOI: 10.1128/jvi.00183-14

Citation Report

#	Article	IF	Citations
1	The influence of delivery vectors on HIV vaccine efficacy. Frontiers in Microbiology, 2014, 5, 439.	3.5	25
2	Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine, 2015, 33, 2347-2353.	3.8	34
3	Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21. Vaccine, 2015, 33, 5578-5587.	3.8	60
4	Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system. Vaccine, 2015, 33, 4827-4836.	3.8	2
5	Boosting with Subtype C CN54rgp140 Protein Adjuvanted with Glucopyranosyl Lipid Adjuvant after Priming with HIV-DNA and HIV-MVA Is Safe and Enhances Immune Responses: A Phase I Trial. PLoS ONE, 2016, 11, e0155702.	2.5	22
6	Transient CD4 ⁺ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses. Journal of Virology, 2016, 90, 4278-4288.	3.4	13
7	Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Scientific Reports, 2016, 6, 33564.	3.3	1
8	Cutting Edge: A Dual TLR2 and TLR7 Ligand Induces Highly Potent Humoral and Cell-Mediated Immune Responses. Journal of Immunology, 2017, 198, 4205-4209.	0.8	34
9	In vivo electroporation in DNA-VLP prime-boost preferentially enhances HIV-1 envelope-specific IgG2a, neutralizing antibody and CD8 T cell responses. Vaccine, 2017, 35, 2042-2051.	3.8	9
10	Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial. Scientific Reports, 2017, 7, 13011.	3.3	25
11	Formulation of chitosan with the polyepitope HIV-1 protein candidate vaccine efficiently boosts cellular immune responses in mice. Pathogens and Disease, 2017, 75, .	2.0	7
12	In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8+ T cells. Vaccine, 2017, 35, 7240-7249.	3.8	18
13	Modulation of Vaccine-Induced CD4 T Cell Functional Profiles by Changes in Components of HIV Vaccine Regimens in Humans. Journal of Virology, 2018, 92, .	3.4	7
14	Technologies to Improve Immunization. , 2018, , 1320-1353.e17.		15
15	A Review of DNA Vaccines Against Influenza. Frontiers in Immunology, 2018, 9, 1568.	4.8	80
16	Combined Skin and Muscle DNA Priming Provides Enhanced Humoral Responses to a Human Immunodeficency Virus Type 1 Clade C Envelope Vaccine. Human Gene Therapy, 2018, 29, 1011-1028.	2.7	7
17	Human Immunodeficiency Virus Vaccines. , 2018, , 400-429.e25.		O
18	The use of a needle-free injector for DNA vaccination in BALB/c mice. AIP Conference Proceedings, 2019,	0.4	O

#	Article	IF	CITATIONS
19	NS1-based DNA vaccination confers mouse protective immunity against ZIKV challenge. Infection, Genetics and Evolution, 2020, 85, 104521.	2.3	7
20	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	2.5	29
21	Intramuscular and Intradermal Electroporation of HIV-1 PENNVAX-GP® DNA Vaccine and IL-12 Is Safe, Tolerable, Acceptable in Healthy Adults. Vaccines, 2020, 8, 741.	4.4	11
22	Precisely targeted gene delivery in human skin using supramolecular cationic glycopolymers. Polymer Chemistry, 2020, 11, 3768-3774.	3.9	8
23	Innovations in HIV-1 Vaccine Design. Clinical Therapeutics, 2020, 42, 499-514.	2.5	20
24	Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice. PLoS ONE, 2015, 10, e0141557.	2.5	6
25	Poly(Lactic Acid) Nanoparticles Targeting $\hat{l}\pm5\hat{l}^21$ Integrin as Vaccine Delivery Vehicle, a Prospective Study. PLoS ONE, 2016, 11, e0167663.	2.5	14
26	Blocking Tâ€cell egress with FTY720 extends DNA vaccine expression but reduces immunogenicity. Immunology, 2022, 165, 301-311.	4.4	2
27	DLin-MC3-Containing mRNA Lipid Nanoparticles Induce an Antibody Th2-Biased Immune Response Polarization in a Delivery Route-Dependent Manner in Mice. Pharmaceutics, 2023, 15, 1009.	4.5	2
28	What We Learned about the Feasibility of Gene Electrotransfer for Vaccination on a Model of COVID-19 Vaccine. Pharmaceutics, 2023, 15, 1981.	4.5	0
29	Technologies to Improve Immunization. , 2023, , 1397-1431.e18.		0
30	Human Immunodeficiency Virus Vaccines. , 2023, , 458-483.e15.		0
31	Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses, 2023, 15, 1694.	3.3	2
32	A self-amplifying RNA vaccine provides protection in a murine model of bubonic plague. Frontiers in Microbiology, 0, 14, .	3.5	O