Neural Mechanisms of Object-Based Attention

Science 344, 424-427 DOI: 10.1126/science.1247003

Citation Report

#	Article	IF	CITATIONS
1	Transcranial Magnetic Stimulation Dissociates Prefrontal and Parietal Contributions to Task Preparation. Journal of Neuroscience, 2014, 34, 12481-12489.	1.7	39
2	Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex. PLoS Biology, 2014, 12, e1001965.	2.6	175
3	Inferior frontal junction biases perception through neural synchrony. Trends in Cognitive Sciences, 2014, 18, 447-448.	4.0	4
4	Object-based attentional selection modulates anticipatory alpha oscillations. Frontiers in Human Neuroscience, 2015, 8, 1048.	1.0	7
5	The Effect of Disruption of Prefrontal Cortical Function with Transcranial Magnetic Stimulation on Visual Working Memory. Frontiers in Systems Neuroscience, 2015, 9, 169.	1.2	22
6	The steady-state visual evoked potential in vision research: A review. Journal of Vision, 2015, 15, 4.	0.1	817
7	The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron, 2015, 86, 864-882.	3.8	78
8	Reinforcement Learning in Multidimensional Environments Relies on Attention Mechanisms. Journal of Neuroscience, 2015, 35, 8145-8157.	1.7	284
9	Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 2015, 18, 470-475.	7.1	254
10	Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proceedings of the United States of America, 2015, 112, 2545-2550.	3.3	39
11	Paradoxical Neurobehavioral Rescue by Memories of Early-Life Abuse: The Safety Signal Value of Odors Learned during Abusive Attachment. Neuropsychopharmacology, 2015, 40, 906-914.	2.8	59
12	Attention Drives Synchronization of Alpha and Beta Rhythms between Right Inferior Frontal and Primary Sensory Neocortex. Journal of Neuroscience, 2015, 35, 2074-2082.	1.7	79
13	Spatiotemporal Neural Pattern Similarity Supports Episodic Memory. Current Biology, 2015, 25, 780-785.	1.8	76
14	Oscillatory synchrony as a mechanism of attentional processing. Brain Research, 2015, 1626, 165-182.	1.1	39
15	Inferior-frontal cortex phase synchronizes with the temporal–parietal junction prior to successful change detection. Neurolmage, 2015, 119, 417-431.	2.1	19
16	Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory, 2015, 120, 28-40.	1.0	85
17	Spatial attention enhances object coding in local and distributed representations of the lateral occipital complex. Neurolmage, 2015, 116, 149-157.	2.1	13
18	Selecting category specific visual information: Top-down and bottom-up control of object based attention. Consciousness and Cognition, 2015, 35, 330-341.	0.8	13

\sim			-		
CI	TAT	ION	I R	FΡ	ORT

#	Article	IF	CITATIONS
19	The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature Communications, 2015, 6, 8090.	5.8	114
20	Cortical Low-Frequency Power and Progressive Phase Synchrony Precede Successful Memory Encoding. Journal of Neuroscience, 2015, 35, 13577-13586.	1.7	29
21	A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 2015, 88, 832-844.	3.8	258
22	Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 2015, 31, 173-180.	2.0	203
23	Past Makes Future: Role of pFC in Prediction. Journal of Cognitive Neuroscience, 2015, 27, 639-654.	1.1	50
24	Interareal oscillatory synchronization in top-down neocortical processing. Current Opinion in Neurobiology, 2015, 31, 62-66.	2.0	140
25	Cortical Neural Computation by Discrete Results Hypothesis. Frontiers in Neural Circuits, 2016, 10, 81.	1.4	7
26	Toward an Integration of Deep Learning and Neuroscience. Frontiers in Computational Neuroscience, 2016, 10, 94.	1.2	400
27	Memory colours affect colour appearance. Behavioral and Brain Sciences, 2016, 39, e262.	0.4	8
28	Perception, as you make it. Behavioral and Brain Sciences, 2016, 39, e260.	0.4	8
28 29	Perception, as you make it. Behavioral and Brain Sciences, 2016, 39, e260. On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246.	0.4	8
	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves		
29	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246.	0.4	6
29 30	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246. Tweaking the concepts of perception and cognition. Behavioral and Brain Sciences, 2016, 39, e232. The distinction between perception and judgment, if there is one, is not clear and intuitive. Behavioral	0.4	6 33
29 30 31	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246. Tweaking the concepts of perception and cognition. Behavioral and Brain Sciences, 2016, 39, e232. The distinction between perception and judgment, if there is one, is not clear and intuitive. Behavioral and Brain Sciences, 2016, 39, e249.	0.4 0.4 0.4	6 33 3
29 30 31 32	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246. Tweaking the concepts of perception and cognition. Behavioral and Brain Sciences, 2016, 39, e232. The distinction between perception and judgment, if there is one, is not clear and intuitive. Behavioral and Brain Sciences, 2016, 39, e249. Representation of affect in sensory cortex. Behavioral and Brain Sciences, 2016, 39, e252. Seeing and thinking: Foundational issues and empirical horizons. Behavioral and Brain Sciences, 2016,	0.4 0.4 0.4 0.4	6 33 3 3
29 30 31 32 33	On the neural implausibility of the modular mind: Evidence for distributed construction dissolves boundaries between perception, cognition, and emotion. Behavioral and Brain Sciences, 2016, 39, e246. Tweaking the concepts of perception and cognition. Behavioral and Brain Sciences, 2016, 39, e232. The distinction between perception and judgment, if there is one, is not clear and intuitive. Behavioral and Brain Sciences, 2016, 39, e249. Representation of affect in sensory cortex. Behavioral and Brain Sciences, 2016, 39, e252. Seeing and thinking: Foundational issues and empirical horizons. Behavioral and Brain Sciences, 2016, 39, e264.	0.4 0.4 0.4 0.4 0.4	6 33 3 3 13

#	Article	IF	CITATIONS
37	Gaining knowledge mediates changes in perception (without differences in attention): A case for perceptual learning. Behavioral and Brain Sciences, 2016, 39, e240.	0.4	2
38	An action-specific effect on perception that avoids all pitfalls. Behavioral and Brain Sciences, 2016, 39, e261.	0.4	14
39	Attention and memory-driven effects in action studies. Behavioral and Brain Sciences, 2016, 39, e259.	0.4	0
40	How cognition affects perception: Brain activity modelling to unravel top-down dynamics. Behavioral and Brain Sciences, 2016, 39, e238.	0.4	1
41	Beyond perceptual judgment: Categorization and emotion shape what we see. Behavioral and Brain Sciences, 2016, 39, e253.	0.4	0
42	Cognition can affect perception: Restating the evidence of a top-down effect. Behavioral and Brain Sciences, 2016, 39, e250.	0.4	2
43	Crossmodal processing and sensory substitution: Is "seeing―with sound and touch a form of perception or cognition?. Behavioral and Brain Sciences, 2016, 39, e241.	0.4	3
44	The Role of Top–Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture. Journal of Cognitive Neuroscience, 2016, 28, 1152-1165.	1.1	10
45	Oscillatory Dynamics of Prefrontal Cognitive Control. Trends in Cognitive Sciences, 2016, 20, 916-930.	4.0	216
46	The Neural Dynamics of Attentional Selection in Natural Scenes. Journal of Neuroscience, 2016, 36, 10522-10528.	1.7	93
47	Steadyâ€ s tate visual evoked potentials as a research tool in social affective neuroscience. Psychophysiology, 2016, 53, 1763-1775.	1.2	71
48	Feature-Selective Attentional Modulations in Human Frontoparietal Cortex. Journal of Neuroscience, 2016, 36, 8188-8199.	1.7	77
49	Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Science Advances, 2016, 2, e1601335.	4.7	158
50	Local expectation violations result in global activity gain in primary visual cortex. Scientific Reports, 2016, 6, 37706.	1.6	19
51	Spectral fingerprints of largeâ€scale cortical dynamics during ambiguous motion perception. Human Brain Mapping, 2016, 37, 4099-4111.	1.9	25
52	Face or House Image Perception: Beta and Gamma Bands of Oscillations in Brain Networks Carry Out Decision-Making. Brain Connectivity, 2016, 6, 621-631.	0.8	15
53	High-frequency neural activity predicts word parsing in ambiguous speech streams. Journal of Neurophysiology, 2016, 116, 2497-2512.	0.9	51
54	The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 2016, 6, 32138.	1.6	61

#	Article	IF	CITATIONS
55	Action valence and affective perception. Behavioral and Brain Sciences, 2016, 39, e243.	0.4	4
56	Carving nature at its joints or cutting its effective loops? On the dangers of trying to disentangle intertwined mental processes. Behavioral and Brain Sciences, 2016, 39, e244.	0.4	1
57	The myth of pure perception. Behavioral and Brain Sciences, 2016, 39, e235.	0.4	5
58	Firestone & Scholl conflate two distinct issues. Behavioral and Brain Sciences, 2016, 39, e255.	0.4	Ο
59	Task demand not so damning: Improved techniques that mitigate demand in studies that support top-down effects. Behavioral and Brain Sciences, 2016, 39, e230.	0.4	0
60	The anatomical and physiological properties of the visual cortex argue against cognitive penetration. Behavioral and Brain Sciences, 2016, 39, e245.	0.4	3
61	Anxiously elaborating the social percept: Anxiety and age differences in functional connectivity of the fusiform face area in a peer evaluation paradigm. Australian Journal of Psychology, 2016, 68, 154-165.	1.4	4
62	Studies on cognitively driven attention suggest that late vision is cognitively penetrated, whereas early vision is not. Behavioral and Brain Sciences, 2016, 39, e256.	0.4	2
63	Bottoms up! How top-down pitfalls ensnare speech perception researchers, too. Behavioral and Brain Sciences, 2016, 39, e236.	0.4	3
64	Perceptual grouping of objects occupied by target and flankers affects target-flanker interference. Attention, Perception, and Psychophysics, 2016, 78, 251-263.	0.7	12
65	Anatomical Connections of the Functionally Defined "Face Patches―in the Macaque Monkey. Neuron, 2016, 90, 1325-1342.	3.8	114
66	Task-specific preparatory neural activations in low-interference contexts. Brain Structure and Function, 2016, 221, 3997-4006.	1.2	18
67	Cingulo-opercular network activity maintains alertness. NeuroImage, 2016, 128, 264-272.	2.1	131
68	Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. Neuron, 2016, 89, 384-397.	3.8	582
69	Look at me and pay attention! A study on the relation between visibility and attention in weblectures. Computers and Education, 2016, 94, 151-161.	5.1	21
70	Does Correlated Firing Underlie Attention Deployment in Frontal Cortex?. Journal of Neuroscience, 2016, 36, 1791-1793.	1.7	4
71	Neural representation of object-specific attentional priority. NeuroImage, 2016, 129, 15-24.	2.1	20
72	Neural Coding for Instruction-Based Task Sets in Human Frontoparietal and Visual Cortex. Cerebral Cortex, 2017, 27, bhw032.	1.6	57

	CHATON		
#	ARTICLE Pitch-Responsive Cortical Regions in Congenital Amusia. Journal of Neuroscience, 2016, 36, 2986-2994.	IF 1.7	CITATIONS
74	Large-scale network-level processes during entrainment. Brain Research, 2016, 1635, 143-152.	1.1	24
75	Information Processing in the Mental Workspace Is Fundamentally Distributed. Journal of Cognitive Neuroscience, 2016, 28, 295-307.	1.1	6
76	Diverse Phase Relations among Neuronal Rhythms and Their Potential Function. Trends in Neurosciences, 2016, 39, 86-99.	4.2	108
77	Pulvinar-Cortex Interactions in Vision and Attention. Neuron, 2016, 89, 209-220.	3.8	257
78	There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cerebral Cortex, 2016, 26, 3064-3082.	1.6	13
79	Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults. NeuroImage, 2016, 124, 997-1008.	2.1	42
80	Co-Activation-Based Parcellation of the Lateral Prefrontal Cortex Delineates the Inferior Frontal Junction Area. Cerebral Cortex, 2016, 26, 2225-2241.	1.6	48
81	Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience, 2017, 20, 327-339.	7.1	580
82	Encoding, preparation and implementation of novel complex verbal instructions. NeuroImage, 2017, 148, 264-273.	2.1	31
83	Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nature Communications, 2017, 8, 14412.	5.8	82
84	Preparatory attention in visual cortex. Annals of the New York Academy of Sciences, 2017, 1396, 92-107.	1.8	57
85	Binding by Random Bursts: A Computational Model of Cognitive Control. Journal of Cognitive Neuroscience, 2017, 29, 1103-1118.	1.1	56
86	Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex. Journal of Neuroscience, 2017, 37, 4942-4953.	1.7	19
87	Neurobiology of REM Sleep, NREM Sleep Homeostasis, and Gamma Band Oscillations. , 2017, , 55-77.		7
88	Deficit in feature-based attention following a left thalamic lesion. Neuropsychologia, 2017, 102, 1-10.	0.7	3
89	Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications, 2017, 8, 15471.	5.8	66
90	Task alters category representations in prefrontal but not high-level visual cortex. NeuroImage, 2017, 155, 437-449.	2.1	55

TION P

		CITATION REPORT	
#	Article	IF	CITATIONS
91	Neural Mechanisms of Selective Visual Attention. Annual Review of Psychology, 2017, 68, 47-7	72. 9.9	306
92	Bindings in working memory: The role of object-based attention. Attention, Perception, and Psychophysics, 2017, 79, 533-552.	0.7	23
93	Attentional selection of multiple objects in the human visual system. NeuroImage, 2017, 163,	231-243. 2.1	14
94	Cooperative cortical network for categorical processing of Chinese lexical tone. Proceedings o National Academy of Sciences of the United States of America, 2017, 114, 12303-12308.	f the 3.3	50
95	How thoughts arise from sights: inferotemporal and prefrontal contributions to vision. Current Opinion in Neurobiology, 2017, 46, 208-218.	t 2.0	17
96	Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention. Human Brain Mapping, 2017, 38, 5128-5140.	1.9	44
97	Category-selective top-down modulation in the fusiform face area of the human brain during v search. , 2017, , .	isual	0
98	Failure in Cognitive Suppression of Negative Affect in Adolescents with Generalized Anxiety Di Scientific Reports, 2017, 7, 6583.	sorder. 1.6	7
99	Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations. Journal of Neuroscience, 2017, 37, 8767-8782.	1.7	89
100	Neural correlates underlying the attentional spotlight in human parietal cortex independent of difficulty. Human Brain Mapping, 2017, 38, 4996-5018.	task 1.9	9
101	A machine learning approach for automated wide-range frequency tagging analysis in embedd neuromonitoring systems. Methods, 2017, 129, 96-107.	ed 1.9	8
102	Attention Selectively Reshapes the Geometry of Distributed Semantic Representation. Cerebra 2017, 27, 4277-4291.	al Cortex, 1.6	85
103	Electrical stimulation of macaque lateral prefrontal cortex modulates oculomotor behavior indicative of a disruption of top-down attention. Scientific Reports, 2017, 7, 17715.	1.6	13
104	Linking ADHD to the Neural Circuitry of Attention. Trends in Cognitive Sciences, 2017, 21, 474	4-488. 4.0	113
105	Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non- Brain Stimulation. Journal of the Indian Institute of Science, 2017, 97, 451-475.	invasive 0.9	6
106	The Effects of Spatial Endogenous Pre-cueing across Eccentricities. Frontiers in Psychology, 20 888.)17, 8, 1.1	6
107	Prefrontal Executive Functions Predict and Preadapt. , 2017, , 3-19.		4
108	Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest. Fro in Human Neuroscience, 2017, 11, 358.	ntiers 1.0	20

#	Article	IF	CITATIONS
109	Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions. Frontiers in Neuroscience, 2017, 11, 545.	1.4	105
110	The pairwise phase consistency in cortical network and its relationship with neuronal activation. BIO Web of Conferences, 2017, 8, 02006.	0.1	0
112	The Caveats of observing Inter-Trial Phase-Coherence in Cognitive Neuroscience. Scientific Reports, 2018, 8, 2990.	1.6	86
113	Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1598-E1607.	3.3	363
114	Multiscale energy reallocation during lowâ€frequency steadyâ€state brain response. Human Brain Mapping, 2018, 39, 2121-2132.	1.9	13
115	Selective Attention to Faces in a Rapid Visual Stream: Hemispheric Differences in Enhancement and Suppression of Category-selective Neural Activity. Journal of Cognitive Neuroscience, 2018, 30, 393-410.	1.1	22
116	The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Scientific Reports, 2018, 8, 349.	1.6	47
117	Endogenously generated gammaâ€band oscillations in early visual cortex: A neurofeedback study. Human Brain Mapping, 2018, 39, 3487-3502.	1.9	5
118	Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging. Cerebral Cortex, 2018, 28, 2283-2296.	1.6	64
119	Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis. Brain Structure and Function, 2018, 223, 131-144.	1.2	33
120	Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annual Review of Psychology, 2018, 69, 77-103.	9.9	109
121	Subliminal and supraliminal processing of reward-related stimuli in anorexia nervosa. Psychological Medicine, 2018, 48, 790-800.	2.7	29
122	Prioritization to visual objects: Roles of sensory uncertainty. Attention, Perception, and Psychophysics, 2018, 80, 512-526.	0.7	4
123	Causal Evidence for Learning-Dependent Frontal Lobe Contributions to Cognitive Control. Journal of Neuroscience, 2018, 38, 962-973.	1.7	34
124	Using EEG Signal to Analyze IS Decision Making Cognitive Processes. Lecture Notes in Information Systems and Organisation, 2018, , 211-218.	0.4	2
126	Modeling Oscillatory Phase and Phase Synchronization With Neuronal Excitation and Input Strength in Cortical Network. IEEE Access, 2018, 6, 36441-36458.	2.6	2
127	Deep-BCN: Deep Networks Meet Biased Competition to Create a Brain-Inspired Model of Attention Control. , 2018, , .		10
128	Dynamics of neural representations when searching for exemplars and categories of human and non-human faces. Scientific Reports, 2018, 8, 13277.	1.6	13

#	Article	IF	CITATIONS
129	Polarity-dependent modulation of multi-spectral neuronal activity by transcranial direct current stimulation. Cortex, 2018, 108, 222-233.	1.1	26
130	What are reaction time indices of automatic imitation measuring?. Consciousness and Cognition, 2018, 65, 240-254.	0.8	31
131	Desirability, availability, credit assignment, category learning, and attention: Cognitive-emotional and working memory dynamics of orbitofrontal, ventrolateral, and dorsolateral prefrontal cortices. Brain and Neuroscience Advances, 2018, 2, 239821281877217.	1.8	26
132	Response of the multiple-demand network during simple stimulus discriminations. NeuroImage, 2018, 177, 79-87.	2.1	19
133	Endogenous testosterone and exogenous oxytocin influence the response to baby schema in the female brain. Scientific Reports, 2018, 8, 7672.	1.6	14
134	Attention improves memory by suppressing spiking-neuron activity in the human anterior temporal lobe. Nature Neuroscience, 2018, 21, 808-810.	7.1	19
135	Attending to What and Where: Background Connectivity Integrates Categorical and Spatial Attention. Journal of Cognitive Neuroscience, 2018, 30, 1281-1297.	1.1	24
136	The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas. PLoS Biology, 2018, 16, e2005399.	2.6	31
137	The neural system of metacognition accompanying decision-making in the prefrontal cortex. PLoS Biology, 2018, 16, e2004037.	2.6	73
138	Visual Selection of the Future Reach Path in Obstacle Avoidance. Journal of Cognitive Neuroscience, 2018, 30, 1846-1857.	1.1	6
139	Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks. Frontiers in Human Neuroscience, 2018, 12, 89.	1.0	16
140	Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biology, 2018, 18, 279-294.	3.9	60
141	Neural Integration in Body Perception. Journal of Cognitive Neuroscience, 2018, 30, 1442-1451.	1.1	22
142	The Cortical Maps of Hierarchical Linguistic Structures during Speech Perception. Cerebral Cortex, 2019, 29, 3232-3240.	1.6	35
143	The emergence of objectâ€based visual attention in infancy: A role for family socioeconomic status and competing visual features. Infancy, 2019, 24, 752-767.	0.9	10
144	Separate lanes for adding and reading in the white matter highways of the human brain. Nature Communications, 2019, 10, 3675.	5.8	25
145	A flexible readout mechanism of human sensory representations. Nature Communications, 2019, 10, 3500.	5.8	18
146	Cognitive neurophysiology: Event-related potentials. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 160, 543-558.	1.0	70

#	Article	IF	CITATIONS
147	Representational Organization of Novel Task Sets during Proactive Encoding. Journal of Neuroscience, 2019, 39, 8386-8397.	1.7	17
148	Analysis of Electrodermal Activity Signal Collected During Visual Attention Oriented Tasks. IEEE Access, 2019, 7, 88186-88195.	2.6	2
149	Brain connectivity evaluation during selective attention using EEG-based brain-computer interface. Brain-Computer Interfaces, 2019, 6, 25-35.	0.9	12
150	A dual role of prestimulus spontaneous neural activity in visual object recognition. Nature Communications, 2019, 10, 3910.	5.8	52
151	Cognitive neurophysiology of the prefrontal cortex. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 35-59.	1.0	16
152	Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex, 2019, 29, 4551-4567.	1.6	3
153	What's in Your Gamma? Activation of the Ventral Fronto-Parietal Attentional Network in Response to Distracting Sounds. Cerebral Cortex, 2020, 30, 696-707.	1.6	14
154	The resonant brain: How attentive conscious seeing regulates action sequences that interact with attentive cognitive learning, recognition, and prediction. Attention, Perception, and Psychophysics, 2019, 81, 2237-2264.	0.7	15
155	Beyond consensus: Embracing heterogeneity in curated neuroimaging meta-analysis. NeuroImage, 2019, 200, 142-158.	2.1	19
156	Prism adaptation enhances decoupling between the default mode network and the attentional networks. NeuroImage, 2019, 200, 210-220.	2.1	15
157	From intermodulation components to visual perception and cognition-a review. NeuroImage, 2019, 199, 480-494.	2.1	33
158	The Embodied Brain of SOVEREIGN2: From Space-Variant Conscious Percepts During Visual Search and Navigation to Learning Invariant Object Categories and Cognitive-Emotional Plans for Acquiring Valued Goals. Frontiers in Computational Neuroscience, 2019, 13, 36.	1.2	9
159	Extended categorization of conjunction object stimuli decreases the latency of attentional feature selection and recruits orthography-linked ERPs. Cortex, 2019, 120, 49-65.	1.1	3
160	Neural Dedifferentiation in the Aging Brain. Trends in Cognitive Sciences, 2019, 23, 547-559.	4.0	203
161	Attentional Weighting in the Face Processing Network: A Magnetic Response Image-guided Magnetoencephalography Study Using Multiple Cyclic Entrainments. Journal of Cognitive Neuroscience, 2019, 31, 1573-1588.	1.1	12
162	Scaling up visual attention and visual working memory to the real world. Psychology of Learning and Motivation - Advances in Research and Theory, 2019, 70, 29-69.	0.5	10
163	Effect of face-related task on rapid individual face discrimination. Neuropsychologia, 2019, 129, 236-245.	0.7	13
164	The inhibition of automatic imitation: A meta-analysis and synthesis of fMRI studies. NeuroImage, 2019, 197, 320-329.	2.1	28

#	Article	IF	CITATIONS
165	Decoding the status of working memory representations in preparation of visual selection. NeuroImage, 2019, 191, 549-559.	2.1	34
166	Object-based attention in complex, naturalistic auditory streams. Scientific Reports, 2019, 9, 2854.	1.6	20
167	Tuning Attention to Object Categories: Spatially Global Effects of Attention to Faces in Visual Processing. Journal of Cognitive Neuroscience, 2019, 31, 937-947.	1.1	12
168	FEF Excitability in Attentional Bias: A TMS-EEG Study. Frontiers in Behavioral Neuroscience, 2018, 12, 333.	1.0	8
169	Feature-based attention: effects and control. Current Opinion in Psychology, 2019, 29, 187-192.	2.5	28
170	Probing cortical excitability using rapid frequency tagging. NeuroImage, 2019, 195, 59-66.	2.1	49
171	Neural markers of category-based selective working memory in aging. NeuroImage, 2019, 194, 163-173.	2.1	4
172	Goal-Directed Processing of Naturalistic Stimuli Modulates Large-Scale Functional Connectivity. Frontiers in Neuroscience, 2019, 12, 1003.	1.4	7
173	Controllable Attention for Structured Layered Video Decomposition. , 2019, , .		8
174	Left-Hemispheric Asymmetry for Object-Based Attention: an ERP Study. Brain Sciences, 2019, 9, 315.	1.1	10
175	Using subjective expectations to model the neural underpinnings of proactive inhibition. European Journal of Neuroscience, 2019, 49, 1575-1586.	1.2	6
176	Hemispheric lateralization of attention processes in the human brain. Current Opinion in Psychology, 2019, 29, 90-96.	2.5	98
177	Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 2019, 29, 119-125.	2.5	49
178	tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Human Brain Mapping, 2019, 40, 729-740.	1.9	37
179	Phase shifts in high-beta- and low-gamma-band local field potentials predict the focus of visual spatial attention. Journal of Neurophysiology, 2019, 121, 799-822.	0.9	4
180	Frontoparietal Activity Interacts With Task-Evoked Changes in Functional Connectivity. Cerebral Cortex, 2019, 29, 802-813.	1.6	17
181	Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury. Brain Imaging and Behavior, 2020, 14, 1638-1650.	1.1	7
182	Continuous and discrete representations of feature-based attentional priority in human frontoparietal network. Cognitive Neuroscience, 2020, 11, 47-59.	0.6	2

#	Article	IF	CITATIONS
183	Under the Mind's Hood: What We Have Learned by Watching the Brain at Work. Journal of Neuroscience, 2020, 40, 89-100.	1.7	10
184	Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach. Neuropsychologia, 2020, 136, 107253.	0.7	9
185	Spectral Encoding of Seen and Attended Object Categories in the Human Brain. Journal of Neuroscience, 2020, 40, 327-342.	1.7	2
186	The Scene Perception & Event Comprehension Theory (SPECT) Applied to Visual Narratives. Topics in Cognitive Science, 2020, 12, 311-351.	1.1	60
187	Phasic alerting facilitates endogenous orienting of spatial attention: Evidence from event-related lateralizations of the EEG. Attention, Perception, and Psychophysics, 2020, 82, 1644-1653.	0.7	6
188	Phase-synchrony evaluation of EEG signals for Multiple Sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task. Computers in Biology and Medicine, 2020, 117, 103596.	3.9	16
189	Spatial attention enhances cortical tracking of quasi-rhythmic visual stimuli. NeuroImage, 2020, 208, 116444.	2.1	7
190	Oscillatory Control over Representational States in Working Memory. Trends in Cognitive Sciences, 2020, 24, 150-162.	4.0	105
191	Lateralization, functional specialization, and dysfunction of attentional networks. Cortex, 2020, 132, 206-222.	1.1	37
192	Infant Physical Growth. , 2020, , 40-69.		0
193	Dynamic Epigenetic Impact of the Environment on the Developing Brain. , 2020, , 70-93.		0
194	Brain Development in Infants. , 2020, , 94-127.		5
195	Visual Development. , 2020, , 157-185.		0
196	Infants' Perception of Auditory Patterns. , 2020, , 214-237.		1
197	Action in Development. , 2020, , 469-494.		5
198	The Mirror Neuron System and Social Cognition. , 2020, , 495-519.		1
199	Infant Word Learning and Emerging Syntax. , 2020, , 632-660.		0
200	Dual Language Exposure and Early Learning. , 2020, , 661-684.		0

#	Article	IF	CITATIONS
201	Understanding and Evaluating the Moral World in Infancy. , 2020, , 777-804.		3
202	Embodied Brain Model for Understanding Functional Neural Development of Fetuses and Infants. , 2020, , 3-39.		0
203	Complementary Brain Signals for Categorical Decisions. Journal of Neuroscience, 2020, 40, 5706-5708.	1.7	0
204	Contextual and Spatial Associations Between Objects Interactively Modulate Visual Processing. Cerebral Cortex, 2020, 30, 6391-6404.	1.6	18
205	Task-Irrelevant Visual Forms Facilitate Covert and Overt Spatial Selection. Journal of Neuroscience, 2020, 40, 9496-9506.	1.7	13
206	Towards Robust Image Classification Using Sequential Attention Models. , 2020, , .		32
207	Nested oscillations and brain connectivity during sequential stages of feature-based attention. NeuroImage, 2020, 223, 117354.	2.1	10
208	Behavioural and cognitive mechanisms of Developmental Topographical Disorientation. Scientific Reports, 2020, 10, 20932.	1.6	18
209	The Development of Touch Perception and Body Representation. , 2020, , 238-262.		0
210	Infant Physical Knowledge. , 2020, , 363-380.		0
211	Infant Categorization. , 2020, , 381-409.		0
212	The Infant's Visual World. , 2020, , 549-576.		0
213	Infant Speech Perception. , 2020, , 579-601.		0
214	Infant Vocal Learning and Speech Production. , 2020, , 602-631.		2
215	Infant Emotion Development and Temperament. , 2020, , 715-741.		3
217	Infant Memory. , 2020, , 341-362.		0
218	Infant Attachment (to Mother and Father) and Its Place in Human Development. , 2020, , 687-714.		5
219	Infant Emotional Development. , 2020, , 742-776.		3

#	Article	IF	CITATIONS
220	Cross-Cultural Perspectives on Parent–Infant Interactions. , 2020, , 805-832.		3
221	Infant Object Manipulation and Play. , 2020, , 520-548.		3
222	Infant Visual Attention. , 2020, , 186-213.		0
223	The Development of Infant Feeding. , 2020, , 263-302.		2
224	The Development of Multisensory Attention Skills. , 2020, , 303-338.		5
225	Early Knowledge About Space and Quantity. , 2020, , 410-434.		о
226	Development During Infancy in Children Later Diagnosed with Autism Spectrum Disorder. , 2020, , 128-154.		0
228	Network topology of symbolic and nonsymbolic number comparison. Network Neuroscience, 2020, 4, 714-745.	1.4	7
229	A neurodynamic model of the interaction between color perception and color memory. Neural Networks, 2020, 129, 222-248.	3.3	4
230	ERP indices of an orientation-dependent recognition of the human body schema. Neuropsychologia, 2020, 146, 107535.	0.7	8
231	Spike Phase Shift Relative to Beta Oscillations Mediates Modality Selection. Cerebral Cortex, 2020, 30, 5431-5448.	1.6	3
232	The Ventral Part of Dorsolateral Frontal Area 8A Regulates Visual Attentional Selection and the Dorsal Part Auditory Attentional Selection. Neuroscience, 2020, 441, 209-216.	1.1	10
233	Putting the Nonsocial Into Social Neuroscience: A Role for Domain-General Priority Maps During Social Interactions. Perspectives on Psychological Science, 2020, 15, 1076-1094.	5.2	30
234	Object Recognition at Higher Regions of the Ventral Visual Stream via Dynamic Inference. Frontiers in Computational Neuroscience, 2020, 14, 46.	1.2	3
235	Combined Neural Tuning in Human Ventral Temporal Cortex Resolves the Perceptual Ambiguity of Morphed 2D Images. Cerebral Cortex, 2020, 30, 4882-4898.	1.6	2
236	The influence of threat and aversive motivation on conflict processing in the Stroop task. Attention, Perception, and Psychophysics, 2020, 82, 2802-2813.	0.7	10
237	Measurement of ultraâ€fast signal progression related to face processing by 7T fMRI. Human Brain Mapping, 2020, 41, 1754-1764.	1.9	1
238	Frequency-Tagging Electroencephalography of Superimposed Social and Non-Social Visual Stimulation Streams Reveals Reduced Saliency of Faces in Autism Spectrum Disorder. Frontiers in Psychiatry, 2020, 11, 332.	1.3	7

#	Article	IF	CITATIONS
239	A Group Analysis of Oscillatory Phase and Phase Synchronization in Cortical Networks. IEEE Access, 2020, 8, 59182-59199.	2.6	2
240	Cortical source localization of sleep-stage specific oscillatory activity. Scientific Reports, 2020, 10, 6976.	1.6	28
241	Gamma coherence mediates interhemispheric integration during multiple object tracking. Journal of Neurophysiology, 2020, 123, 1630-1644.	0.9	12
242	A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research. Multimedia Tools and Applications, 2021, 80, 17335-17363.	2.6	9
243	A Gradient of Sharpening Effects by Perceptual Prior across the Human Cortical Hierarchy. Journal of Neuroscience, 2021, 41, 167-178.	1.7	14
244	Clarifying the role of higher-level cortices in resolving perceptual ambiguity using ultra high field fMRI. NeuroImage, 2021, 227, 117654.	2.1	9
245	Statistically defined visual chunks engage object-based attention. Nature Communications, 2021, 12, 272.	5.8	15
246	The modulation of object-based attentional selection by facial expressions. Quarterly Journal of Experimental Psychology, 2021, 74, 1244-1256.	0.6	5
248	Response of multiple demand network to visual search demands. NeuroImage, 2021, 229, 117755.	2.1	7
249	The Causal Role of Three Frontal Cortical Areas in Grasping. Cerebral Cortex, 2021, 31, 4274-4288.	1.6	3
250	Attention Biases Competition for Visual Representation via Dissociable Influences from Frontal and Parietal Cortex. Journal of Cognitive Neuroscience, 2021, 33, 739-755.	1.1	5
251	A neural correlate of visual feature binding in primate lateral prefrontal cortex. NeuroImage, 2021, 229, 117757.	2.1	9
252	The Microstructure of Attentional Control in the Dorsal Attention Network. Journal of Cognitive Neuroscience, 2021, 33, 965-983.	1.1	16
253	The Role of Unimodal Feedback Pathways in Gender Perception During Activation of Voice and Face Areas. Frontiers in Systems Neuroscience, 2021, 15, 669256.	1.2	5
254	Concurrent neuroimaging and neurostimulation reveals a causal role for dIPFC in coding of task-relevant information. Communications Biology, 2021, 4, 588.	2.0	17
255	Cortical and subcortical signatures of conscious object recognition. Nature Communications, 2021, 12, 2930.	5.8	27
257	Frequency-Specific Effects in Infant Electroencephalograms Do Not Require Entrained Neural Oscillations: A Commentary on Köster et al. (2019). Psychological Science, 2021, 32, 966-971.	1.8	14
258	Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting. Frontiers in Human Neuroscience, 2021, 15, 673955.	1.0	15

#	Article	IF	CITATIONS
259	Greater Neural Differentiation in the Ventral Visual Cortex Is Associated with Youthful Memory in Superaging. Cerebral Cortex, 2021, 31, 5275-5287.	1.6	19
260	Effective connectivity underlying rewardâ€based executive control. Human Brain Mapping, 2021, 42, 4555-4567.	1.9	3
261	An active role of inferior frontal cortex in conscious experience. Current Biology, 2021, 31, 2868-2880.e8.	1.8	37
262	Dissociating the Neural Correlates of Consciousness and Task Relevance in Face Perception Using Simultaneous EEG-fMRI. Journal of Neuroscience, 2021, 41, 7864-7875.	1.7	28
263	Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 2022, 47, 163-179.	2.8	28
264	Role of Inferior Frontal Junction (IFJ) in the Control of Feature versus Spatial Attention. Journal of Neuroscience, 2021, 41, 8065-8074.	1.7	18
265	Decoding Object-Based Auditory Attention from Source-Reconstructed MEG Alpha Oscillations. Journal of Neuroscience, 2021, 41, 8603-8617.	1.7	16
266	Feature-based attention processes in primate prefrontal cortex do not rely on feature similarity. Cell Reports, 2021, 36, 109470.	2.9	5
267	Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. European Journal of Neuroscience, 2021, 54, 5462-5506.	1.2	20
268	Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Reports, 2021, 36, 109585.	2.9	7
269	Attention along the cortical hierarchy: Development matters. Wiley Interdisciplinary Reviews: Cognitive Science, 2023, 14, e1575.	1.4	2
270	Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Neurolmage, 2021, 238, 118246.	2.1	7
271	Face-selective responses in combined EEG/MEG recordings with fast periodic visual stimulation (FPVS). NeuroImage, 2021, 242, 118460.	2.1	5
272	Internal manipulation of perceptual representations in human flexible cognition: A computational model. Neural Networks, 2021, 143, 572-594.	3.3	3
273	Using transcranial direct current stimulation (tDCS) on the dorsolateral prefrontal cortex to promote long-term foreign language vocabulary learning. Brain and Cognition, 2021, 154, 105789.	0.8	2
274	The Apparently Blind Infant. , 2016, , 1-74.		3
275	Infant Learning in the Digital Age. , 2020, , 435-466.		1
277	Types of Memory and Brain Regions of Interest. , 2017, , 1-23.		2

#	Article	IF	CITATIONS
278	Occipitotemporal representations reflect individual differences in conceptual knowledge Journal of Experimental Psychology: General, 2019, 148, 1192-1203.	1.5	23
285	Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing Visual Targets. ENeuro, 2020, 7, ENEURO.0102-20.2020.	0.9	13
286	Neural Differentiation is Moderated by Age in Scene-Selective, But Not Face-Selective, Cortical Regions. ENeuro, 2020, 7, ENEURO.0142-20.2020.	0.9	22
287	Sensorimotor Representation of Speech Perception. Cross-Decoding of Place of Articulation Features during Selective Attention to Syllables in 7T fMRI. ENeuro, 2018, 5, ENEURO.0252-17.2018.	0.9	26
288	Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex. ENeuro, 2018, 5, ENEURO.0375-17.2018.	0.9	15
289	冲çªè§£å†³è;‡ç¨‹ä¸è® <mark>ড়</mark> Ÿ¥æŽ§å^¶çš"注æ"è°fèŠ,机å^¶ <sup>*</sup>. Advances	ir oP zycho	ological Scien
290	Bottom-up and top-down computations in word- and face-selective cortex. ELife, 2017, 6, .	2.8	118
291	Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. ELife, 2018, 7, .	2.8	24
292	The bottom-up and top-down processing of faces in the human occipitotemporal cortex. ELife, 2020, 9, .	2.8	27
293	Social aversive generalization learning sharpens the tuning of visuocortical neurons to facial identity cues. ELife, 2020, 9, .	2.8	21
294	Rhythmic sampling revisited: Experimental paradigms and neural mechanisms. European Journal of Neuroscience, 2022, 55, 3010-3024.	1.2	24
295	Attention: The grounds of selfâ€regulated cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2023, 14, e1582.	1.4	8
299	Brain Timing Associated with Long-Term Memory. , 2017, , 71-87.		0
300	Long-Term Memory in Animals. , 2017, , 196-218.		0
301	Long-Term Memory Failure. , 2017, , 88-107.		0
302	Brain Regions Associated with Long-Term Memory. , 2017, , 46-70.		0
303	The Future of Memory Research. , 2017, , 219-237.		0
304	The Tools of Cognitive Neuroscience. , 2017, , 24-45.		0

#	Article	IF	CITATIONS
305	Implicit Memory. , 2017, , 129-149.		1
306	Working Memory. , 2017, , 108-128.		0
308	Explicit Memory and Disease. , 2017, , 171-195.		0
310	Memory and Other Cognitive Processes. , 2017, , 150-170.		0
318	Top-down attention in the face-processing network: an MRI-guided MEG study using multiple simultaneous frequency tags. Journal of Vision, 2018, 18, 1237.	0.1	0
331	Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamics. ELife, 2021, 10, .	2.8	9
336	Flexibility in Attentional Control: Multiple Sources and Suppression. Yale Journal of Biology and Medicine, 2019, 92, 103-113.	0.2	11
337	Frontal, Parietal, and Temporal Brain Areas Are Differentially Activated When Disambiguating Potential Objects of Joint Attention. ENeuro, 2020, 7, .	0.9	0
339	Attention enhances category representations across the brain with strengthened residual correlations to ventral temporal cortex. NeuroImage, 2022, 249, 118900.	2.1	7
340	Are all realâ€world objects created equal? Estimating the "setâ€size―of the search target in visual working memory. Psychophysiology, 2022, 59, e13998.	1.2	1
341	Selective attention involves a feature-specific sequential release from inhibitory gating. NeuroImage, 2022, 246, 118782.	2.1	7
342	Frontal, Parietal, and Temporal Brain Areas Are Differentially Activated When Disambiguating Potential Objects of Joint Attention. ENeuro, 2020, 7, ENEURO.0437-19.2020.	0.9	6
343	Neural correlates of integration processes during dynamic face perception. Scientific Reports, 2022, 12, 118.	1.6	6
345	Multivariate prediction of pain perception based on pre-stimulus activity. Scientific Reports, 2022, 12, 3199.	1.6	1
347	Neural Coding of Visual Objects Rapidly Reconfigures to Reflect Subtrial Shifts in Attentional Focus. Journal of Cognitive Neuroscience, 2022, 34, 806-822.	1.1	0
349	Evoked responses to rhythmic visual stimulation vary across sources of intrinsic alpha activity in humans. Scientific Reports, 2022, 12, 5986.	1.6	6
350	Connectivity Patterns Evoked by Fearful Faces Demonstrate Reduced Flexibility Across a Shared Dimension of Adolescent Anxiety and Depression. Clinical Psychological Science, 2023, 11, 3-22.	2.4	1
351	Can faces affect object-based attention? Evidence from online experiments. Attention, Perception, and Psychophysics, 2022, 84, 1220-1233.	0.7	1

#	Article	IF	CITATIONS
354	Multiple-instance CNN Improved by S3TA for Colon Cancer Classification with Unannotated Histopathological Images. , 2021, , .		0
355	The role of temporal cortex in the control of attention. Current Research in Neurobiology, 2022, 3, 100038.	1.1	18
356	Task demands modulate pre-stimulus alpha frequency and sensory template during bistable apparent motion perception. Cerebral Cortex, 2023, 33, 1679-1692.	1.6	6
357	Higher-dimensional neural representations predict better episodic memory. Science Advances, 2022, 8, eabm3829.	4.7	5
366	Activity in the Fronto-Parietal and Visual Cortex Is Modulated by Feature-Based Attentional Weighting. Frontiers in Neuroscience, 2022, 16, 838683.	1.4	2
367	The impact and mechanism of gaze cues on object-based attention. Acta Psychologica Sinica, 2022, 54, 748-760.	0.4	1
368	Visual Distraction Disrupts Category-tuned Attentional Filters in Ventral Visual Cortex. Journal of Cognitive Neuroscience, 2022, 34, 1521-1533.	1.1	2
371	Neural Underpinnings of Proactive and Preemptive Adjustments of Action Control. Journal of Cognitive Neuroscience, 2022, 34, 1590-1615.	1.1	8
372	Attention control in the primate brain. Current Opinion in Neurobiology, 2022, 76, 102605.	2.0	10
373	Theta-Phase Connectivity between Medial Prefrontal and Posterior Areas Underlies Novel Instructions Implementation. ENeuro, 2022, 9, ENEURO.0225-22.2022.	0.9	4
374	Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study. , 2022, , .		1
375	Measuring the response to visually presented faces in the human lateral prefrontal cortex. Cerebral Cortex Communications, 2022, 3, .	0.7	5
376	The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist, 2024, 30, 132-147.	2.6	4
377	Dynamic neural reconfiguration for distinct strategies during competitive social interactions. Neurolmage, 2022, 263, 119585.	2.1	0
379	Top-down modulation of visual cortical processing after transient congenital blindness. Neuropsychologia, 2022, 174, 108338.	0.7	3
380	A study on brain neuronal activation based on the load in upper limb exercise (STROBE). Medicine (United States), 2022, 101, e30761.	0.4	1
381	An Open-Source Cognitive Test Battery to Assess Human Attention and Memory. Frontiers in Psychology, 0, 13, .	1.1	2
382	Frequency-Tagging EEG of Superimposed Social and Non-Social Visual Stimulation Streams Provides No Support for Social Salience Enhancement after Intranasal Oxytocin Administration. Brain Sciences, 2022, 12, 1224.	1.1	1

#	Article	IF	CITATIONS
383	Optimal flickering light stimulation for entraining gamma rhythms in older adults. Scientific Reports, 2022, 12, .	1.6	7
386	A novel and smarter model to authenticate and identify people intelligently for security purposes. Telecommunication Systems, 2023, 82, 27-43.	1.6	1
387	Virtual reality-based sensorimotor adaptation shapes subsequent spontaneous and naturalistic stimulus-driven brain activity. Cerebral Cortex, 2023, 33, 5163-5180.	1.6	2
388	Dialogue intervention for youth amidst intractable conflict attenuates neural prejudice response and promotes adults' peacemaking. , 2022, 1, .		4
389	Awareness-independent gradual spread of object-based attention. Current Psychology, 0, , .	1.7	1
390	Micro-scale functional modules in the human temporal lobe. Nature Communications, 2022, 13, .	5.8	1
391	Impact of cognition-related single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Neural Regeneration Research, 2023, 18, 1154.	1.6	2
393	Functional changes in prefrontal cortex following frequency-specific training. Scientific Reports, 2022, 12, .	1.6	1
395	Frequency modulation of cortical rhythmicity governs behavioral variability, excitability and synchrony of neurons in the visual cortex. Scientific Reports, 2022, 12, .	1.6	0
396	Emergency Braking Evoked Brain Activities during Distracted Driving. Sensors, 2022, 22, 9564.	2.1	0
397	Preparatory attention to visual features primarily relies on non-sensory representation. Scientific Reports, 2022, 12, .	1.6	2
398	Efficient coding theory of dynamic attentional modulation. PLoS Biology, 2022, 20, e3001889.	2.6	2
400	Top-down specific preparatory activations for selective attention and perceptual expectations. NeuroImage, 2023, 271, 119960.	2.1	1
401	Revealing robust neural correlates of conscious and unconscious visual processing: Activation likelihood estimation meta-analyses. NeuroImage, 2023, 273, 120088.	2.1	1
402	Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. European Journal of Neuroscience, 2023, 57, 1114-1140.	1.2	3
403	Composite Measures of Brain Activation Predict Individual Differences in Behavioral Stroop Interference. Journal of Cognitive Neuroscience, 2023, 35, 781-801.	1.1	0
404	Good-enough attentional guidance. Trends in Cognitive Sciences, 2023, 27, 391-403.	4.0	13
405	Disorders of human spatial navigation: Developmental Topographical Disorientation. , 2024, , .		Ο

#	Article	IF	CITATIONS
406	Collective Behavior in Neuronal Networks with Electrical and Hybrid Synapses: Frequency Responses of Oscillations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2023, 33, .	0.7	2
410	Extra-hippocampal contributions to pattern separation. ELife, 0, 12, .	2.8	11
411	Modest Neural Truths: Dispositions and Foraging for Coherence. Journal of Speculative Philosophy, 2023, 37, 137-164.	0.2	0
412	The Architecture of Object-Based Attention. Psychonomic Bulletin and Review, 2023, 30, 1643-1667.	1.4	5
440	Neural Oscillations and Multisensory Processing. Advances in Experimental Medicine and Biology, 2024, , 121-137.	0.8	0
441	Lateral prefrontal cortex and rule-based control. , 2024, , .		0