Human embryonic-stem-cell-derived cardiomyocytes r

Nature 510, 273-277 DOI: 10.1038/nature13233

Citation Report

#	Article	IF	CITATIONS
1	Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods in Molecular Biology, 2014, 1353, 163-180.	0.4	48
2	Scalable Units for Building Cardiac Tissue. Advanced Materials, 2014, 26, 7202-7208.	11.1	31
3	Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects. Frontiers in Physiology, 2014, 5, 419.	1.3	20
4	Micron-scale voltage and [Ca2+]i imaging in the intact heart. Frontiers in Physiology, 2014, 5, 451.	1.3	3
5	Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology, 2014, 30, 1335-1349.	0.8	27
6	Optogenetic sensors and effectors: CHROMusââ,¬â€the Cornell Heart Lung Blood Institute Resource for Optogenetic Mouse Signaling. Frontiers in Physiology, 2014, 5, 428.	1.3	22
7	CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Research, 2014, 13, 413-421.	0.3	15
8	Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Research, 2014, 13, 693-704.	0.3	26
9	Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Research, 2014, 13, 542-555.	0.3	48
10	Cardiac regeneration in vivo: Mending the heart from within?. Stem Cell Research, 2014, 13, 523-531.	0.3	33
11	Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Research, 2014, 13, 654-665.	0.3	87
12	Oxygen. Circulation Research, 2014, 115, 824-825.	2.0	5
13	Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Research, 2014, 13, 532-541.	0.3	114
14	An emerging consensus on cardiac regeneration. Nature Medicine, 2014, 20, 1386-1393.	15.2	222
15	Derivation of Human Embryonic Stem Cell Lines from Vitrified Human Blastocysts. Methods in Molecular Biology, 2014, 1307, 1-23.	0.4	6
16	Targeting survival pathways to create infarct-spanning bridges of human embryonic stem cell–derived cardiomyocytes. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 3180-3188.e1.	0.4	9
17	Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. International Journal of Biochemistry and Cell Biology, 2014, 56, 38-46.	1.2	30
18	Patching Up Broken Hearts: Cardiac Cell Therapy Gets a Bioengineered Boost. Cell Stem Cell, 2014, 15, 671-673.	5.2	19

#	Article	IF	CITATIONS
19	Cardiac Repair in a Porcine Model of Acute Myocardial Infarction with Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells. Cell Stem Cell, 2014, 15, 750-761.	5.2	407
20	Recent Developments in Cardiovascular Stem Cells. Circulation Research, 2014, 115, e71-8.	2.0	29
21	Toward microendoscopy-inspired cardiac optogeneticsin vivo: technical overview and perspective. Journal of Biomedical Optics, 2014, 19, 080701.	1.4	39
22	Strategies for Cardiac Regeneration and Repair. Science Translational Medicine, 2014, 6, 239rv1.	5.8	100
23	Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Review of Cardiovascular Therapy, 2014, 12, 1275-1288.	0.6	20
24	Regenerative Rehabilitation. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S73-S78.	0.7	21
25	Cardiac Cell Therapy in Nonhuman Primates: A Significant Step Toward Clinical Translation. Circulation: Cardiovascular Genetics, 2014, 7, 565-566.	5.1	0
26	Reprogramming for cardiac regeneration. Global Cardiology Science & Practice, 2014, 2014, 44.	0.3	4
27	Letter by Murry et al Regarding Article, "Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials― Circulation Research, 2014, 115, e28-9.	2.0	9
28	Cardiac Anisotropy, Regeneration, and Rhythm. Circulation Research, 2014, 115, e6-7.	2.0	3
29	Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 319.	0.4	33
30	A Massive Suspension Culture System With Metabolic Purification for Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Translational Medicine, 2014, 3, 1473-1483.	1.6	62
31	How to make a cardiomyocyte. Development (Cambridge), 2014, 141, 4418-4431.	1.2	126
32	Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions. Cardiovascular Engineering and Technology, 2014, 5, 281-307.	0.7	12
33	Cell Replacement Therapies: Is It Time to Reprogram?. Human Gene Therapy, 2014, 25, 866-874.	1.4	5
34	Microscale Generation of Cardiospheres Promotes Robust Enrichment of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 260-268.	2.3	73
35	Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-818.	9.4	207
36	An Update on Stem Cell Therapies for Acute Coronary Syndrome. Current Cardiology Reports, 2014, 16, 526.	1.3	4

ARTICLE IF CITATIONS # Large Stem Cell–Derived Cardiomyocyte Grafts: Cellular Ventricular Assist Devices?. Molecular 37 3.7 1 Therapy, 2014, 22, 1240-1242. Translational strategies and challenges in regenerative medicine. Nature Medicine, 2014, 20, 814-821. 15.2 Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 39 6.0 243 345, 1247391. Stem cell therapy for cardiac dysfunction. SpringerPlus, 2014, 3, 440. Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials. Circulation Research, 41 2.0 47 2014, 115, 335-338. The Role of Tissue Engineering and Biomaterials in Cardiac Regenerative Medicine. Canadian Journal of Cardiology, 2014, 30, 1307-1322. 0.8 Cardiomyocyte maturation: It takes a village to raise a kid. Journal of Molecular and Cellular 43 0.9 2 Cardiology, 2014, 74, 193-195. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue 44 1.6 entirely from pluripotent stem cells. Scientific Réports, 2015, 5, 16842. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: 45 3.3 38 where do we stand?. EMBO Molecular Medicine, 2015, 7, 1090-1103. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized 1.6 engagement of 3D extracellular matrices. Scientific Reports, 2015, 5, 18705. Modeling Kidney Disease with iPS Cells. Biomarker Insights, 2015, 10s1, BMI.S20054. 47 41 1.0 å;fç<ã®æ²»ç™'ã,'ä;fã™ã,;ãf³ãf⁶ã,⁻è³Fstl1. Nature Digest, 2015, 12, 30-31. 48 Pathophysiology of Myocardial Infarction., 2015, 5, 1841-1875. 49 437 Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded 2.3 Calcium and Voltage Fluorescent Reporters. Stem Cell Reports, 2015, 5, 582-596. Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart. Stem 51 1.4 53 Cells, 2015, 33, 3100-3113. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation. Proteomics, 2015, 15, 2560-2567. Functional Characterization and Comparison of Intercellular Communication in Stem Cell-Derived 53 1.4 21 Cardiomyocytes. Stem Cells, 2015, 33, 2208-2218. Lack of viral control and development of combination antiretroviral therapy escape mutations in 54 macaques after bone marrow transplantation. Aids, 2015, 29, 1597-1606.

#	Article	IF	CITATIONS
55	Gelatine Microspheres Support Direct Intramyocardial Delivery of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Journal of Stem Cell Research & Therapy, 2015, 05, .	0.3	0
56	Recent Patents and Advances in Regenerative Medicine and Stem Cell Therapies for Diabetes, Cardiovascular and Neurodegenerative Diseases. Recent Patents on Regenerative Medicine, 2015, 5, 36-54.	0.4	0
57	Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction. Stem Cells and Cloning: Advances and Applications, 2015, 8, 135.	2.3	5
58	Stem Cell Therapies for Ischemic Cardiovascular Diseases. Recent Patents on Regenerative Medicine, 2015, 4, 149-167.	0.4	0
59	Stimulating endogenous cardiac repair. Frontiers in Cell and Developmental Biology, 2015, 3, 57.	1.8	22
60	Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes. Frontiers in Cell and Developmental Biology, 2015, 3, 58.	1.8	8
61	Bioengineering and Stem Cell Technology in the Treatment of Congenital Heart Disease. Journal of Clinical Medicine, 2015, 4, 768-781.	1.0	3
62	Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. ELife, 2015, 4, .	2.8	244
63	Theranostic Mesoporous Silica Nanoparticles Biodegrade after Pro-Survival Drug Delivery and Ultrasound/Magnetic Resonance Imaging of Stem Cells. Theranostics, 2015, 5, 631-642.	4.6	172
64	Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2015, 10, e0121927.	1.1	38
65	Treatment with hESC-Derived Myocardial Precursors Improves Cardiac Function after a Myocardial Infarction. PLoS ONE, 2015, 10, e0131123.	1.1	13
66	Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts. PLoS ONE, 2015, 10, e0131446.	1.1	97
67	Cardiac Engraftment of Genetically-Selected Parthenogenetic Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2015, 10, e0131511.	1.1	4
68	Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial. PLoS ONE, 2015, 10, e0143953.	1.1	17
69	Strategies for Heart Regeneration. International Heart Journal, 2015, 56, 1-5.	0.5	26
70	Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomedical Materials (Bristol), 2015, 10, 034005.	1.7	24
71	Arrhythmia in Stem Cell Transplantation. Cardiac Electrophysiology Clinics, 2015, 7, 357-370.	0.7	40
72	Inhibition of an NAD+ Salvage Pathway Provides Efficient and Selective Toxicity to Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 483-493.	1.6	24

	CITATION REF	ORT	
# 73	ARTICLE Translational Animal Models for Regenerative Medicine Research. , 2015, , 243-256.	IF	Citations 0
74	Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine, 2015, 10, 1371-1374.	1.7	32
75	Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2015, 5, 1226-1238.	2.3	54
76	Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annual Review of Genetics, 2015, 49, 461-484.	3.2	63
77	Scaling human pluripotent stem cell expansion and differentiation: are cell factories becoming a reality?. Regenerative Medicine, 2015, 10, 925-930.	0.8	6
78	Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biology, 2015, 16, 126.	3.8	507
80	Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. Stem Cell Reports, 2015, 5, 753-762.	2.3	98
81	The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine, 2015, 2, 1871-1879.	2.7	24
82	Cell Transplantation for Ischemic Heart Disease. , 2015, , 733-749.		0
83	Optogenetic cardiac pacemakers: Science or fiction?. Trends in Cardiovascular Medicine, 2015, 25, 82-83.	2.3	8
84	Small RNAs Make Big Impact in Cardiac Repair. Circulation Research, 2015, 116, 393-395.	2.0	2
85	SHOX2 Overexpression Favors Differentiation of Embryonic Stem Cells into Cardiac Pacemaker Cells, Improving Biological Pacing Ability. Stem Cell Reports, 2015, 4, 129-142.	2.3	107
86	Molecular beacon-based detection and isolation of working-type cardiomyocytes derived from human pluripotent stem cells. Biomaterials, 2015, 50, 176-185.	5.7	30
87	Sol–Gel Synthesis and Electrospraying of Biodegradable (P ₂ O ₅) ₅₅ –(CaO) ₃₀ –(Na ₂ O) _{15Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging. ACS Nano, 2015, 9, 1868-1877.}	7.3	55
88	Perspectives of induced pluripotent stem cells for cardiovascular system regeneration. Experimental Biology and Medicine, 2015, 240, 549-556.	1.1	11
89	Myocardial regeneration for chronic heart failure: Not as easy as itÂsounds. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 715-717.	0.4	0
90	Tissue Engineering and Regenerative Medicine in Basic Research: A Year in Review of 2014. Tissue Engineering - Part B: Reviews, 2015, 21, 167-176.	2.5	12
91	Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem?. Stem Cells and Development, 2015, 24, 1035-1052.	1.1	229

#	ARTICLE	IF	CITATIONS
92	Tissue Engineering and Regenerative Medicine in Applied Research: A Year in Review of 2014. Tissue Engineering - Part B: Reviews, 2015, 21, 177-186.	2.5	17
93	Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Archives of Toxicology, 2015, 89, 1401-1438.	1.9	492
94	Programming and reprogramming a human heartÂcell. EMBO Journal, 2015, 34, 710-738.	3.5	96
95	Right ventricular failure secondary to chronic overload in congenital heart diseases: Benefits of cell therapy using human embryonic stem cell–derived cardiac progenitors. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 708-715.e1.	0.4	23
96	Characterization of inÂvivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rγnull mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products. Regenerative Therapy, 2015, 1, 30-37.	1.4	34
97	Dedifferentiation, Transdifferentiation, and Proliferation: Mechanisms Underlying Cardiac Muscle Regeneration in Zebrafish. Current Pathobiology Reports, 2015, 3, 81-88.	1.6	36
98	How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration. Drug Discovery Today, 2015, 20, 667-685.	3.2	6
99	Dual Optical Recordings for Action Potentials and Calcium Handling in Induced Pluripotent Stem Cell Models of Cardiac Arrhythmias Using Genetically Encoded Fluorescent Indicators. Stem Cells Translational Medicine, 2015, 4, 468-475.	1.6	36
100	Uterine cells—an immunoprivileged cell source for therapy—but are they for everyone?. Journal of Molecular and Cellular Cardiology, 2015, 85, 127-130.	0.9	0
101	Stem Cells for Temporomandibular Joint Repair and Regeneration. Stem Cell Reviews and Reports, 2015, 11, 728-742.	5.6	34
102	Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Materials Science and Engineering C, 2015, 56, 348-355.	3.8	39
103	From One-Cell to Tissue: Reprogramming, Cell Differentiation and Tissue Engineering. BioScience, 2015, 65, 468-475.	2.2	10
104	Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell, 2015, 17, 89-100.	5.2	170
105	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2015, 117, 80-88.	2.0	372
106	"The state of the heart― Recent advances in engineering human cardiac tissue from pluripotent stem cells. Experimental Biology and Medicine, 2015, 240, 1008-1018.	1.1	8
107	Use of adeno-associated virus to enrich cardiomyocytes derived from human stem cells. Human Gene Therapy Clinical Development, 2015, , 150715074418003.	3.2	Ο
108	Isolation and characterization of cardiogenic, stem-like cardiac precursors from heart samples of patients with congenital heart disease. Life Sciences, 2015, 137, 105-115.	2.0	9
109	Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opinion on Biological Therapy, 2015, 15, 163-174.	1.4	27

#	Article	IF	CITATIONS
110	The role of tissue engineering in cellular therapies for myocardial infarction: a review. Journal of Materials Chemistry B, 2015, 3, 6401-6410.	2.9	13
111	Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials, 2015, 65, 103-114.	5.7	27
112	Generating patient-specific induced pluripotent stem cells-derived cardiomyocytes for the treatment of cardiac diseases. Expert Opinion on Biological Therapy, 2015, 15, 1399-1409.	1.4	18
113	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	6.0	132
114	The winding road to regenerating the human heart. Cardiovascular Pathology, 2015, 24, 133-140.	0.7	95
115	Stem Cell Therapy for Heart Failure. Heart Failure Clinics, 2015, 11, 275-286.	1.0	18
116	Advances in Reprogramming-Based Study of Neurologic Disorders. Stem Cells and Development, 2015, 24, 1265-1283.	1.1	20
117	Embryonic Stem Cell–Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 2015, 117, 52-64.	2.0	598
118	Engineering Cardiovascular Regeneration. Current Stem Cell Reports, 2015, 1, 67-78.	0.7	0
119	Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Research and Therapy, 2015, 6, 26.	2.4	85
120	Biomaterial based cardiac tissue engineering and its applications. Biomedical Materials (Bristol), 2015, 10, 034004.	1.7	79
122	iPSCs as a major opportunity to understand and cure age-related diseases. Biogerontology, 2015, 16, 399-410.	2.0	6
123	Silicon Nanowire-Induced Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Nano Letters, 2015, 15, 2765-2772.	4.5	75
124	New Muscle for Old Hearts: Engineering Tissue from Pluripotent Stem Cells. Human Gene Therapy, 2015, 26, 305-311.	1.4	5
125	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	2.0	118
126	Cell Therapy. Circulation Research, 2015, 117, 659-661.	2.0	10
127	Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015, 14, 681-692.	21.5	226
128	The advancement of human pluripotent stem cell-derived therapies into the clinic. Development (Cambridge), 2015, 142, 3077-3084.	1.2	18

ARTICLE IF CITATIONS # Neutrons with a twist. Nature, 2015, 525, 462-463. 129 13.7 4 Hope for regenerative treatments: toward safe transplantation of human pluripotent stem-cell-based 0.8 therapies. Regenerative Medicine, 2015, 10, 99-102. Use of Adeno-Associated Virus to Enrich Cardiomyocytes Derived from Human Stem Cells. Human Gene 131 3.2 8 Therapy Clinical Development, 2015, 26, 194-201. Cardiac Regeneration and Stem Cells. Physiological Reviews, 2015, 95, 1189-1204. 13.1 Stem cell therapy for cardiac regeneration: hits and misses. Canadian Journal of Physiology and 133 0.7 10 Pharmacology, 2015, 93, 835-841. Translational aspects of cardiac cell therapy. Journal of Cellular and Molecular Medicine, 2015, 19, 1.6 24 1757-1772. Forced fusion of human ventricular scar cells with cardiomyocytes suppresses arrhythmogenicity in 135 1.8 3 a co-culture model. Cardiovascular Research, 2015, 107, 601-612. Cardiac Stem Cell Hybrids Enhance Myocardial Repair. Circulation Research, 2015, 117, 695-706. 136 Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction 137 2.0 197 Model. Circulation Research, 2015, 117, 720-730. Medicinal Chemistry Approaches to Heart Regeneration. Journal of Medicinal Chemistry, 2015, 58, 9451-9479. Development of a scalable suspension culture for cardiac differentiation from human pluripotent 139 0.3 140 stem cells. Stem Cell Research, 2015, 15, 365-375. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and 5.6 34 Congenital Heart Disease. Stem Cell Reviews and Reports, 2015, 11, 710-727. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature 141 5.5 125 Protocols, 2015, 10, 1345-1361. A protein for healing infarcted hearts. Nature, 2015, 525, 461-462. 142 13.7 Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Current 143 0.4 16 Treatment Options in Cardiovascular Medicine, 2015, 17, 404. Top Advances in Functional Genomics and Translational Biology for 2014. Circulation: Cardiovascular 144 5.1 Genetics, 2015, 8, 207-210. Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and 145 1.8 8 Neuropsychiatric Disorders. NeuroMolecular Medicine, 2015, 17, 404-422. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regenerative Medicine, 146 38 2015, 10, 1025-1043.

# 148	ARTICLE Functional Effects of a Tissue-Engineered Cardiac Patch From Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Rat Infarct Model. Stem Cells Translational Medicine, 2015, 4, 1324-1332.	IF 1.6	Citations 90
149	Cardiac stem cells: translation to human studies. Biophysical Reviews, 2015, 7, 127-139.	1.5	13
150	Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells, 2015, 33, 1021-1035.	1.4	26
151	An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy. Frontiers in Biology, 2015, 10, 11-27.	0.7	6
152	"Beauty is a light in the heartâ€! The transformative potential of optogenetics for clinical applications in cardiovascular medicine1. Trends in Cardiovascular Medicine, 2015, 25, 73-81.	2.3	32
153	Microenvironmental Control of Stem Cell Fate. , 2015, , 93-115.		0
154	Human cardiac tissue engineering: from pluripotent stem cells to heart repair. Current Opinion in Chemical Engineering, 2015, 7, 57-64.	3.8	46
155	Blockade of EMAP II protects cardiac function after chronic myocardial infarction by inducing angiogenesis. Journal of Molecular and Cellular Cardiology, 2015, 79, 224-231.	0.9	20
156	The war against heart failure: the Lancet lecture. Lancet, The, 2015, 385, 812-824.	6.3	646
157	Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening. Journal of the Association for Laboratory Automation, 2015, 20, 201-215.	2.8	129
158	Biomaterials for Cardiac Regeneration. , 2015, , .		5
159	Cell Sheet Technology using Human Umbilical Cord Mesenchymal Stem Cells for Myocardial Tissue Engineering. Journal of Tissue Science & Engineering, 2016, 7, .	0.2	1
160	Nature or Nurture. , 2016, , 227-240.		0
161	Current status of stem cell therapy: opportunities and limitations. Turkish Journal of Biology, 2016, 40, 955-967.	2.1	10
163	ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction. JCI Insight, 2016, 1,	2.3	22
164	Organogenesis. , 2016, , 349-373.		1
165	Comment on: Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Stem Cell Investigation, 2016, 3, 89-89.	1.3	1
166	Expansion of cardiac progenitors from reprogrammed fibroblasts as potential novel cardiovascular therapy. Stem Cell Investigation, 2016, 3, 34-34.	1.3	2

	CITATION	CITATION REPORT	
#	ARTICLE Hypoxia-preconditioned allogeneic mesenchymal stem cells can be used for myocardial repair in	IF	CITATIONS
167	non-human primates. Journal of Thoracic Disease, 2016, 8, E593-E595.	0.6	2
168	The Interaction between Adult Cardiac Fibroblasts and Embryonic Stem Cell-Derived Cardiomyocytes Leads to Proarrhythmic Changes in <i>In Vitro</i> Cocultures. Stem Cells International, 2016, 2016, 1-12.	1.2	20
169	Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide?. Stem Cells International, 2016, 2016, 1-18.	1.2	15
170	Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration. Stem Cells International, 2016, 2016, 1-16.	1.2	22
171	Cellular Therapy for Heart Failure. Current Cardiology Reviews, 2016, 12, 195-215.	0.6	23
172	iPS Cells—The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	0.9	8
173	Large Mammalian Animal Models of Heart Disease. Journal of Cardiovascular Development and Disease, 2016, 3, 30.	0.8	92
174	ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells, 2016, 34, 2461-2470.	1.4	11
175	Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Engineering - Part A, 2016, 22, 1016-1025.	1.6	109
176	Multiâ€Material Tissue Engineering Scaffold with Hierarchical Pore Architecture. Advanced Functional Materials, 2016, 26, 5873-5883.	7.8	33
177	Nanoâ€Enabled Approaches for Stem Cellâ€Based Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1533-1553.	3.9	50
178	Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1622-H1648.	1.5	23
179	Direct cellular reprogramming for cardiac repair and regeneration. European Journal of Heart Failure, 2016, 18, 145-156.	2.9	21
180	Recent Developments in Stem and Progenitor Cell Therapy for Cardiac Repair. Circulation Research, 2016, 119, e152-e159.	2.0	10
181	Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nature Communications, 2016, 7, 13787.	5.8	67
182	Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells. Scientific Reports, 2016, 6, 18544.	1.6	50
183	Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration. Journal of Molecular and Engineering Materials, 2016, 04, 1640002.	0.9	0
184	Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Translational Medicine, 2016, 5, 410-416.	1.6	35

#	Article	IF	CITATIONS
185	Can heart function lost to disease be regenerated by therapeutic targeting of cardiac scar tissue?. Seminars in Cell and Developmental Biology, 2016, 58, 41-54.	2.3	21
186	Festschrift in Honour of David Leslie Ross: A Man for Whom no Electrogram is Goliath. Heart Lung and Circulation, 2016, 25, 421-424.	0.2	1
187	Scalable vascularized implants. Nature Materials, 2016, 15, 597-599.	13.3	14
188	Signals from within. Nature Materials, 2016, 15, 596-597.	13.3	4
189	Cardiomyocytes Derived from MHC-Homozygous Induced Pluripotent Stem Cells Exhibit Reduced Allogeneic Immunogenicity in MHC-Matched Non-human Primates. Stem Cell Reports, 2016, 6, 312-320.	2.3	115
190	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
191	Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies. Methods in Molecular Biology, 2016, 1502, 169-179.	0.4	3
192	Muscle-on-chip: An in vitro model for donor–host cardiomyocyte coupling. Journal of Cell Biology, 2016, 212, 371-373.	2.3	3
193	Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development (Cambridge), 2016, 143, 1242-1258.	1.2	65
194	Cell Programming for Future Regenerative Medicine. , 2016, , 389-424.		0
195	Translation of Human-Induced PluripotentÂStem Cells. Journal of the American College of Cardiology, 2016, 67, 2161-2176.	1.2	209
196	Stem cell-based therapy: Improving myocardial cell delivery. Advanced Drug Delivery Reviews, 2016, 106, 104-115.	6.6	36
197	ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy. European Heart Journal, 2016, 37, 2586-2590.	1.0	49
198	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
199	Arrhythmogenesis: a Roadblock to Cardiac Stem Cell Therapy. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 61.	0.4	2
200	Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomaterialia, 2016, 45, 110-120.	4.1	45
201	Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation, 2016, 134, 1557-1567.	1.6	356
202	Stem Cell Proteomics. , 2016, , 123-153.		0

#	Article	IF	CITATIONS
203	Human Cardiomyocytes Prior to Birth by Integration-Free Reprogramming of Amniotic Fluid Cells. Stem Cells Translational Medicine, 2016, 5, 1595-1606.	1.6	18
204	Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 2016, 538, 388-391.	13.7	634
205	Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports, 2016, 7, 370-382.	2.3	13
207	Navigating the labyrinth of cardiac regeneration. Developmental Dynamics, 2016, 245, 751-761.	0.8	14
208	Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?. Stem Cells, 2016, 34, 34-43.	1.4	27
210	Design of Injectable Materials to Improve Stem Cell Transplantation. Current Stem Cell Reports, 2016, 2, 207-220.	0.7	134
211	Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells, 2016, 34, 13-26.	1.4	21
212	Genetic Engineering in Stem Cell Biomanufacturing. , 2016, , 1-25.		Ο
213	Electrical effects of stem cell transplantation for ischaemic cardiomyopathy: friend or foe?. Journal of Physiology, 2016, 594, 2511-2524.	1.3	8
214	Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiology, 2016, 1, 953.	3.0	97
215	Cell transplantation in heart failure: where do we stand in 2016?. European Journal of Cardio-thoracic Surgery, 2016, 50, 396-399.	0.6	6
216	Probing early heart development to instruct stem cell differentiation strategies. Developmental Dynamics, 2016, 245, 1130-1144.	0.8	11
217	Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet?. Journal of Cardiovascular Translational Research, 2016, 9, 405-418.	1.1	24
218	Inject Me Once and Inject Me Twice. Then Inject Me Once Again. Circulation Research, 2016, 119, 580-581.	2.0	0
220	The Role of Nonhuman Primate Animal Models in the Clinical Development of Pluripotent Stem Cell Therapies. Molecular Therapy, 2016, 24, 1165-1169.	3.7	11
222	Mechanobiological Control of Cell Fate for Applications in Cardiovascular Regenerative Medicine. , 2016, , 219-253.		0
223	A series of robust genetic indicators for definitive identification of cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 278-285.	0.9	12
224	Magnetic Resonance Imaging of Cardiac Strain Pattern Following Transplantation of Human Tissue Engineered Heart Muscles. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	16

#	Article	IF	CITATIONS
225	Manual of Cardiovascular Proteomics. , 2016, , .		4
226	Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation. Stem Cells Translational Medicine, 2016, 5, 946-959.	1.6	26
227	New strategies for improving stem cell therapy in ischemic heart disease. Heart Failure Reviews, 2016, 21, 737-752.	1.7	34
228	Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, 2016, 166, 451-467.	13.5	367
229	Biology of the cardiac myocyte in heart disease. Molecular Biology of the Cell, 2016, 27, 2149-2160.	0.9	78
230	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	5.8	138
231	Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition. Tissue Engineering - Part C: Methods, 2016, 22, 1085-1094.	1.1	24
233	Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions. Advances in Experimental Medicine and Biology, 2016, 951, 123-135.	0.8	9
234	Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine. Advances in Experimental Medicine and Biology, 2016, 951, 163-178.	0.8	3
235	Engineering prokaryotic channels for control of mammalian tissue excitability. Nature Communications, 2016, 7, 13132.	5.8	20
236	Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports, 2016, 6, 19111.	1.6	150
237	Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Science Translational Medicine, 2016, 8, 363ra148.	5.8	215
238	Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue. Advanced Healthcare Materials, 2016, 5, 900-906.	3.9	19
239	Striated muscle function, regeneration, and repair. Cellular and Molecular Life Sciences, 2016, 73, 4175-4202.	2.4	71
240	Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids. Nano Letters, 2016, 16, 4670-4678.	4.5	70
241	Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway. Journal of Molecular and Cellular Cardiology, 2016, 98, 138-145.	0.9	9
242	The Future of Cardiovascular Regenerative Medicine. Circulation, 2016, 133, 2618-2625.	1.6	34
243	Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiological Reviews, 2016, 96, 1127-1168.	13.1	251

#	Article	IF	CITATIONS
244	A technical review of optical mapping of intracellular calcium within myocardial tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1388-H1401.	1.5	67
245	Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods, 2016, 101, 73-84.	1.9	60
246	Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation "Memories― EBioMedicine, 2016, 4, 74-85.	2.7	42
247	Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas. Stem Cell Reports, 2016, 6, 176-187.	2.3	27
248	Application of Biomaterials in Cardiac Repair and Regeneration. Engineering, 2016, 2, 141-148.	3.2	74
249	CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 95-108.	2.3	30
250	Stem cells for the treatment of heart failure. Current Research in Translational Medicine, 2016, 64, 97-106.	1.2	36
251	Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. Journal of Animal Science and Biotechnology, 2016, 7, 10.	2.1	57
252	Fortune Favors the Prepared. Circulation Research, 2016, 118, 908-910.	2.0	0
254	Stretchable and Transparent Biointerface Using Cellâ€Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016, 26, 3207-3217.	7.8	123
255	Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 2016, 96, 183-194.	6.6	116
256	Reprogramming the conduction system: Onward toward a biological pacemaker. Trends in Cardiovascular Medicine, 2016, 26, 14-20.	2.3	13
257	Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Advanced Drug Delivery Reviews, 2016, 96, 3-17.	6.6	112
258	Human engineered heart tissue as a model system for drug testing. Advanced Drug Delivery Reviews, 2016, 96, 214-224.	6.6	146
259	Extracellular Matrix and Regenerative Therapies from the Cardiac Perspective. Stem Cell Reviews and Reports, 2016, 12, 202-213.	5.6	16
260	Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacologica Sinica, 2016, 37, 82-97.	2.8	30
261	Spontaneous Formation of Extensive Vessel-Like Structures in Murine Engineered Heart Tissue. Tissue Engineering - Part A, 2016, 22, 326-335.	1.6	19
262	Mending a Faltering Heart. Circulation Research, 2016, 118, 344-351.	2.0	21

#	Article	IF	CITATIONS
263	Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases. Stem Cell Reviews and Reports, 2016, 12, 171-178.	5.6	22
264	Myocardial tissue engineering for cardiac repair. Journal of Heart and Lung Transplantation, 2016, 35, 294-298.	0.3	15
265	Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nature Communications, 2016, 7, 10312.	5.8	140
266	Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials, 2016, 80, 157-168.	5.7	65
267	Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1829-1838.	1.9	113
268	Large-scale production of human pluripotent stem cell derived cardiomyocytes. Advanced Drug Delivery Reviews, 2016, 96, 18-30.	6.6	101
269	Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors. Stem Cells Translational Medicine, 2016, 5, 67-74.	1.6	23
270	Polymer microarray technology for stem cell engineering. Acta Biomaterialia, 2016, 34, 60-72.	4.1	21
271	iPSCâ€derived human cardiac progenitor cells improve ventricular remodelling <i>via</i> angiogenesis and interstitial networking of infarcted myocardium. Journal of Cellular and Molecular Medicine, 2016, 20, 323-332.	1.6	32
272	Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods, 2016, 101, 21-26.	1.9	58
273	A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates. Circulation Research, 2016, 118, 970-983.	2.0	154
274	The developmental origins and lineage contributions of endocardial endothelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1937-1947.	1.9	29
275	Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H455-H465.	1.5	90
276	Pluripotent stem cells progressing to the clinic. Nature Reviews Molecular Cell Biology, 2016, 17, 194-200.	16.1	335
277	Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 2016, 27, 19-23.	1.7	63
278	View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development (Cambridge), 2016, 143, 387-397.	1.2	117
279	Editorial: Tissue engineering of the heart. Advanced Drug Delivery Reviews, 2016, 96, 1-2.	6.6	0
280	Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochemical Pharmacology, 2016, 113, 1-11.	2.0	28

#	Article	IF	CITATIONS
281	Mechanisms of Cardiac Regeneration. Developmental Cell, 2016, 36, 362-374.	3.1	233
282	Making better scar: Emerging approaches for modifying mechanical and electrical properties following infarction and ablation. Progress in Biophysics and Molecular Biology, 2016, 120, 134-148.	1.4	28
283	Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue. Tissue Engineering - Part A, 2016, 22, 633-644.	1.6	39
284	Regenerative Medicine Approaches to Degenerative Muscle Diseases. Pancreatic Islet Biology, 2016, , 1-20.	0.1	0
285	Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials, 2016, 83, 383-395.	5.7	76
286	Strip and Dress the Human Heart. Circulation Research, 2016, 118, 12-13.	2.0	4
287	Heart regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1749-1759.	1.9	25
288	Cardiac Regeneration Therapies – Targeting Neuregulin 1 Signalling. Heart Lung and Circulation, 2016, 25, 4-7.	0.2	8
289	Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1728-1748.	1.9	235
290	Bioengineering Human Myocardium on Native Extracellular Matrix. Circulation Research, 2016, 118, 56-72.	2.0	280
292	Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Advanced Drug Delivery Reviews, 2016, 96, 234-244.	6.6	136
293	Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 58-68.	1.4	21
294	Bioengineering methods for myocardial regeneration. Advanced Drug Delivery Reviews, 2016, 96, 195-202.	6.6	55
295	The Elusive Progenitor Cell in Cardiac Regeneration. Circulation Research, 2017, 120, 400-406.	2.0	73
296	Exosomes Generated From iPSC-Derivatives. Circulation Research, 2017, 120, 407-417.	2.0	140
297	Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Reviews and Reports, 2017, 13, 170-191.	5.6	30
298	From Microscale Devices to 3D Printing. Circulation Research, 2017, 120, 150-165.	2.0	71
299	Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomaterialia, 2017, 51, 495-504.	4.1	35

#	Article	IF	CITATIONS
300	InÂVivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts. Stem Cell Reports, 2017, 8, 278-289.	2.3	138
301	Cardiomyocyte Differentiation Promotes Cell Survival During Nicotinamide Phosphoribosyltransferase Inhibition Through Increased Maintenance of Cellular Energy Stores. Stem Cells Translational Medicine, 2017, 6, 1191-1201.	1.6	3
302	Generation of PDGFRα+ Cardioblasts from Pluripotent Stem Cells. Scientific Reports, 2017, 7, 41840.	1.6	12
303	Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine, 2017, 16, 30-40.	2.7	81
304	Mammalian Heart Regeneration. Circulation Research, 2017, 120, 630-632.	2.0	29
305	Reprogrammingâ€derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Molecular Medicine, 2017, 9, 251-264.	3.3	33
306	Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells. Stem Cell Research, 2017, 20, 21-29.	0.3	17
307	Translating Myocardial Remuscularization. Circulation Research, 2017, 120, 278-281.	2.0	6
308	Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Research, 2017, 19, 94-103.	0.3	62
309	Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 2017, 125, 13-22.	5.7	264
310	Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease. Stem Cells Translational Medicine, 2017, 6, 1452-1457.	1.6	3
311	Contemporary Approaches to Patients with Heart Failure. Cardiology Clinics, 2017, 35, 261-271.	0.9	19
312	Restoring heart function and electrical integrity: closing the circuit. Npj Regenerative Medicine, 2017, 2, 9.	2.5	44
313	Safe and Effective Cardiac Regenerative Therapy With Human-Induced Pluripotent Stem Cells. Circulation Research, 2017, 120, 1558-1560.	2.0	21
314	Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Research and Therapy, 2017, 8, 109.	2.4	10
315	In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions. Journal of Molecular and Cellular Cardiology, 2017, 108, 61-72.	0.9	23
316	Engineering Cardiac Muscle Tissue. Circulation Research, 2017, 120, 1487-1500.	2.0	202
317	Exosomes in Cardiovascular Medicine. Cardiology and Therapy, 2017, 6, 225-237.	1.1	21

		ATION REPORT	
#	Article	IF	CITATIONS
318	Programming cells for cardiac repair. Current Opinion in Biotechnology, 2017, 47, 43-50.	3.3	5
319	Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo. Seminars in Cell and Developmental Biology, 2017, 71, 84-98.	2.3	61
320	Cardiac regeneration strategies: Staying young at heart. Science, 2017, 356, 1035-1039.	6.0	303
321	Induced Pluripotent Stem Cells 10 Years Later. Circulation Research, 2017, 120, 1958-1968.	2.0	218
322	Cardiac Cell Therapies for the Treatment of Acute Myocardial Infarction: A Meta-Analysis from Mouse Studies. Cellular Physiology and Biochemistry, 2017, 42, 254-268.	1.1	29
323	Cardiac repair with pluripotent stem cell–derived cardiomyocytes: Proof of concept but new challenges. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 945-948.	0.4	4
324	New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Current Stem Cell Reports, 2017, 3, 83-97.	0.7	5
325	Stem cell therapy for ischemic heart diseases. British Medical Bulletin, 2017, 121, 135-154.	2.7	111
326	Three-Dimensional Bioprinting. Circulation, 2017, 135, 1281-1283.	1.6	8
327	Multimodality molecular imaging in cardiac regenerative therapy. Journal of Nuclear Cardiology, 2017, 24, 1803-1809.	1.4	2
328	Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue. Scientific Reports, 2017, 7, 45641.	1.6	61
331	Pancreatic islet surface bioengineering with a heparin-incorporated starPEG nanofilm. Materials Science and Engineering C, 2017, 78, 24-31.	3.8	28
332	Into the hearts of babes: Stem cell therapy for pediatric heart failure. Journal of Heart and Lung Transplantation, 2017, 36, 830-832.	0.3	0
333	Remuscularization of the failing heart. Journal of Physiology, 2017, 595, 3685-3690.	1.3	13
334	Cardiac Regeneration. Circulation Research, 2017, 120, 941-959.	2.0	117
335	New Developments in Cardiac Regeneration. Heart Lung and Circulation, 2017, 26, 316-322.	0.2	14
338	Stem Cell Therapy for Ischemic Heart Disease. Stem Cells in Clinical Applications, 2017, , 165-195.	0.4	1
339	Myocardial Tissue Engineering: A 5 Year—Update. Stem Cells in Clinical Applications, 2017, , 197-209	. 0.4	1

#	Article	IF	CITATIONS
340	Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes. Journal of Molecular Recognition, 2017, 30, e2602.	1.1	15
341	Road to Heart Regeneration with Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2017, , 137-152.	0.4	0
342	Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Acta Biomaterialia, 2017, 52, 92-104.	4.1	57
343	Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 39-69.	0.6	20
344	Application of the Suspension Culture System for Scale-Up Manufacture of hPSCs and hPSC-Derived Cardiomyocytes. Cardiac and Vascular Biology, 2017, , 145-161.	0.2	1
345	Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports, 2017, 9, 1546-1559.	2.3	107
346	Dynamic Organization of IncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans. EBioMedicine, 2017, 24, 137-146.	2.7	73
347	Imaging Cardiac Stem Cell Therapy. Cardiac and Vascular Biology, 2017, , 241-258.	0.2	1
349	Past and Future of Cell-Based Heart Repair. Cardiac and Vascular Biology, 2017, , 1-17.	0.2	0
350	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123.	6.3	139
350 351	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422.	6.3 2.3	139 103
350 351 352	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527.	6.3 2.3 1.6	139 103 0
350 351 352 353	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527. Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24.	6.32.31.66.6	139 103 0 29
350 351 352 353	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527. Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24. Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling. Molecular and Translational Medicine, 2017, 173-196.	 6.3 2.3 1.6 6.6 0.4 	139 103 0 29 0
350 351 352 353 354	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527. Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24. Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling. Molecular and Translational Medicine, 2017, 173-196. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Scientific Reports, 2017, 7, 8630.	 6.3 2.3 1.6 0.4 1.6 	 139 103 0 29 0 32
350 351 352 353 354 355	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527. Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24. Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling. Molecular and Translational Medicine, 2017, 173-196. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Scientific Reports, 2017, 7, 8630. (Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Reviews, 2017, 120, 142-167.	 6.3 2.3 1.6 0.4 1.6 6.6 	 139 103 0 29 0 32 13
 350 351 352 353 355 356 357 	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422. FunSel. Circulation, 2017, 136, 1525-1527. Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24. Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling. Molecular and Translational Medicine, 2017, 173-196. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Scientific Reports, 2017, 7, 8630. (Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Reviews, 2017, 120, 142-167. Intramyocardially Transplanted Neonatal Cardiomyocytes (NCMs) Show Structural and Electrophysiological Maturation and Integration and Dose-Dependently Stabilize Function of Infarcted Rat Hearts. Cell Transplantation, 2017, 26, 157-170.	 6.3 2.3 1.6 6.6 0.4 1.6 6.6 1.2 	 139 103 0 29 0 32 13 7

#	Article	IF	CITATIONS
359	Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy. Advances in Experimental Medicine and Biology, 2017, 998, 285-307.	0.8	14
360	Enhanced Therapeutic Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model. Scientific Reports, 2017, 7, 8824.	1.6	90
361	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
362	Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 25929-25940.	4.0	48
363	Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 2017, 16, 699-717.	21.5	245
364	Cardiomyocyte renewal in the human heart: insights from the fall-out. European Heart Journal, 2017, 38, 2333-2342.	1.0	109
365	Pluripotent Stem Cell Derived Cardiac Cells for Myocardial Repair. Journal of Visualized Experiments, 2017, , .	0.2	9
366	Cell Therapy for Ischemic Heart Disease. , 2017, , 81-98.		0
367	Comparison of Non-Coding RNAs in Exosomes and Functional Efficacy of Human Embryonic Stem Cell- versus Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells, 2017, 35, 2138-2149.	1.4	54
368	The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Research, 2017, 2, 100-110.	2.4	15
369	Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circulation Research, 2017, 121, e22-e36.	2.0	124
370	Myocardial Tissue Engineering for Regenerative Applications. Current Cardiology Reports, 2017, 19, 78.	1.3	29
371	Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. Journal of the American College of Cardiology, 2017, 70, 766-775.	1.2	82
372	Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. Npj Regenerative Medicine, 2017, 2, 17.	2.5	113
373	In vivo imaging to monitor differentiation and therapeutic effects of transplanted mesenchymal stem cells in myocardial infarction. Scientific Reports, 2017, 7, 6296.	1.6	25
374	Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations. Cell Stem Cell, 2017, 21, 179-194.e4.	5.2	329
375	Upstairs, Downstairs: Atrial and Ventricular Cardiac Myocytes from Human Pluripotent Stem Cells. Cell Stem Cell, 2017, 21, 151-152.	5.2	8
376	Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today, 2017, 22, 1730-1739.	3.2	7

#	Article	IF	Citations
377	A Hyper-Crosslinked Carbohydrate Polymer Scaffold Facilitates Lineage Commitment and Maintains a Reserve Pool of Proliferating Cardiovascular Progenitors. Transplantation Direct, 2017, 3, e153.	0.8	8
378	Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials, 2017, 16, 1038-1046.	13.3	295
379	Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 117-146.	0.6	1
380	Stem Cell Therapy for Congenital Heart Disease. Circulation, 2017, 136, 2373-2385.	1.6	50
381	Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nature Communications, 2017, 8, 1902.	5.8	51
382	Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nature Communications, 2017, 8, 1825.	5.8	325
383	Myogenic progenitor specification from pluripotent stem cells. Seminars in Cell and Developmental Biology, 2017, 72, 87-98.	2.3	28
384	Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Research, 2017, 25, 107-114.	0.3	24
386	Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opinion on Biological Therapy, 2017, 17, 1127-1143.	1.4	30
387	Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography. Photoacoustics, 2017, 6, 37-47.	4.4	17
388	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
389	EZ Switch From EZH2 to EZH1. Circulation Research, 2017, 121, 91-94.	2.0	9
390	The Uniformity Principle vs. the Disuniformity Principle. Acta Analytica, 2017, 32, 213-222.	0.4	10
391	Metformin promotes the survival of transplanted cardiosphere-derived cells thereby enhancing their therapeutic effect against myocardial infarction. Stem Cell Research and Therapy, 2017, 8, 17.	2.4	14
392	Organ Chips: Quality Assurance Systems in Regenerative Medicine. Clinical Pharmacology and Therapeutics, 2017, 101, 31-34.	2.3	5
394	Hypertrophy Changes 3D Shape of hiPSC-Cardiomyocytes: Implications for Cellular Maturation in Regenerative Medicine. Cellular and Molecular Bioengineering, 2017, 10, 54-62.	1.0	16
395	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	5.2	215
396	Genome editing in cardiovascular diseases. Nature Reviews Cardiology, 2017, 14, 11-20.	6.1	76

#	Article	IF	CITATIONS
397	Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 593-595.	0.4	11
399	Differential Mechanisms of Myocardial Conduction Slowing by Adipose Tissue-Derived Stromal Cells Derived from Different Species. Stem Cells Translational Medicine, 2017, 6, 22-30.	1.6	9
400	Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation. Acta Biomaterialia, 2017, 49, 204-217.	4.1	87
401	Chitosan for cardiac tissue engineering and regeneration. , 2017, , 115-143.		3
402	Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development (Cambridge), 2018, 145, .	1.2	10
403	Cell therapy for cardiac diseases. Continuing Cardiology Education, 2017, 3, 170-175.	0.4	Ο
404	Recent Progress Using Pluripotent Stem Cells for Cardiac Regenerative Therapy. Circulation Journal, 2017, 81, 929-935.	0.7	13
405	Elastin-like polypeptide-based hydrogel actuator for cardiac tissue engineering. , 2017, , .		0
406	Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics, 2017, 7, 3539-3558.	4.6	17
407	Human Cardiomyocyte Progenitor Cells in Co-culture with Rat Cardiomyocytes Form a Pro-arrhythmic Substrate: Evidence for Two Different Arrhythmogenic Mechanisms. Frontiers in Physiology, 2017, 8, 797.	1.3	3
408	Platelet-derived Extracellular Vesicles: An Emerging Therapeutic Approach. International Journal of Biological Sciences, 2017, 13, 828-834.	2.6	131
409	CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics, 2017, 7, 4445-4469.	4.6	22
410	<i>De Novo</i> Human Cardiac Myocytes for Medical Research: Promises and Challenges. Stem Cells International, 2017, 2017, 1-7.	1.2	10
411	Platelet-Targeted Delivery of Peripheral Blood Mononuclear Cells to the Ischemic Heart Restores Cardiac Function after Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 3192-3206.	4.6	36
412	Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2017, 5, 19.	1.8	31
413	3D Bioprinting and In Vitro Cardiovascular Tissue Modeling. Bioengineering, 2017, 4, 71.	1.6	57
414	Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Frontiers in Medicine, 2017, 4, 229.	1.2	64
415	The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells International, 2017, 2017, 1-13.	1.2	36

#	Article	IF	CITATIONS
416	Myocardial Regeneration via Progenitor Cell-Derived Exosomes. Stem Cells International, 2017, 2017, 1-10.	1.2	15
417	Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed. Stem Cells International, 2017, 2017, 1-12.	1.2	22
418	Is biological repair of Heart on the Horizon?. Pakistan Journal of Medical Sciences, 2017, 33, 1042-1046.	0.3	3
419	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
420	Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 229.	2.4	46
421	Progress of Stem Cell Transplantation for Treating Myocardial Infarction. Current Stem Cell Research and Therapy, 2017, 12, 624-636.	0.6	8
422	Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle, 2018, 17, 00-00.	1.3	13
423	Mechanical and Chemical Predifferentiation of Mesenchymal Stem Cells Into Cardiomyocytes and Their Effectiveness on Acute Myocardial Infarction. Artificial Organs, 2018, 42, E114-E126.	1.0	11
424	Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock, 2018, 50, 627-639.	1.0	15
425	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	0
426	Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2018, 2, 293-303.	11.6	249
427	Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Scientific Reports, 2018, 8, 5907.	1.6	21
428	Percutaneous Contrast Echocardiography-guided Intramyocardial Injection and Cell Delivery in a Large Preclinical Model. Journal of Visualized Experiments, 2018, , .	0.2	1
429	Cardiotrophic Growth Factor–Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype. Cell Transplantation, 2018, 27, 285-298.	1.2	20
430	Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product. Molecular Therapy, 2018, 26, 1669-1684.	3.7	48
431	Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Science Translational Medicine, 2018, 10, .	5.8	53
432	Nature Biotechnology's academic spinouts of 2017. Nature Biotechnology, 2018, 36, 297-306.	9.4	2
433	Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies. Nature Protocols, 2018, 13, 927-945.	5.5	11

#	Article	IF	CITATIONS
434	Transplantation of Human Embryonic StemÂCell–Derived Cardiovascular Progenitors for SevereÂlschemic LeftÂVentricular Dysfunction. Journal of the American College of Cardiology, 2018, 71, 429-438.	1.2	336
435	Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction. Stem Cell Reports, 2018, 10, 422-435.	2.3	49
436	Current status of stem cells in cardiac repair. Future Cardiology, 2018, 14, 181-192.	0.5	10
437	Lack of Remuscularization Following Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitor Cells in Infarcted Nonhuman Primates. Circulation Research, 2018, 122, 958-969.	2.0	120
438	Induced Pluripotent Stem Cells Derived Extracellular Vesicles. Circulation Research, 2018, 122, 197-198.	2.0	8
439	High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. Scientific Reports, 2018, 8, 1258.	1.6	23
440	Cell Therapy Manufacturing: All Signs Point to Commercialization. Genetic Engineering and Biotechnology News, 2018, 38, 1, 22-23.	0.1	0
442	Preservation of conductive propagation after surgical repair of cardiac defects with a bio-engineered conductive patch. Journal of Heart and Lung Transplantation, 2018, 37, 912-924.	0.3	27
443	Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Reports, 2018, 22, 546-556.	2.9	26
445	ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nature Cell Biology, 2018, 20, 46-57.	4.6	151
446	Regenerative Medicine/Cardiac Cell Therapy: Pluripotent Stem Cells. Thoracic and Cardiovascular Surgeon, 2018, 66, 053-062.	0.4	13
447	Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives. Methods in Molecular Biology, 2018, 1722, 57-78.	0.4	10
448	Scalable and physiologically relevant microenvironments for human pluripotent stem cell expansion and differentiation. Biofabrication, 2018, 10, 025006.	3.7	28
449	Concise Review: Optimized Strategies for Stem Cell-Based Therapy in Myocardial Repair: Clinical Translatability and Potential Limitation. Stem Cells, 2018, 36, 482-500.	1.4	63
450	Heart Regeneration with Stem Cell Therapies. , 2018, , 469-483.		0
451	Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Developmental Cell, 2018, 44, 87-96.e5.	3.1	120
452	Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials, 2018, 159, 48-58.	5.7	107
453	3D bioprinting and decellularized ECM-based biomaterials for <i>in vitro</i> ÂCV tissue engineering. Journal of 3D Printing in Medicine, 2018, 2, 69-87.	1.0	22

#	Article	IF	Citations
454	Body builder: from synthetic cells to engineered tissues. Current Opinion in Cell Biology, 2018, 54, 37-42.	2.6	15
455	Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications, 2018, 499, 611-617.	1.0	35
456	Preclinical Studies of Stem Cell Therapy for Heart Disease. Circulation Research, 2018, 122, 1006-1020.	2.0	104
457	Combining Stem Cell Therapy for Advanced Heart Failure and Ventricular Assist Devices: A Review. ASAIO Journal, 2018, 64, e80-e87.	0.9	5
458	Applications of genetically engineered human pluripotent stem cell reporters in cardiac stem cell biology. Current Opinion in Biotechnology, 2018, 52, 66-73.	3.3	6
459	Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Molecular Therapy, 2018, 26, 1624-1634.	3.7	63
460	Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. European Heart Journal, 2018, 39, 1848-1850.	1.0	11
461	Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Research and Therapy, 2018, 9, 56.	2.4	61
462	Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. Journal of Cardiovascular Translational Research, 2018, 11, 375-392.	1.1	41
463	Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 153-163.	1.3	8
464	Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxidants and Redox Signaling, 2018, 28, 371-384.	2.5	52
465	Potential Synergistic Effects of Stem Cells and Extracellular Matrix Scaffolds. ACS Biomaterials Science and Engineering, 2018, 4, 1208-1222.	2.6	18
466	Genetically encoded ironâ€associated proteins as <scp>MRI</scp> reporters for molecular and cellular imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1482.	3.3	8
467	Emerging Therapies for Congestive Heart Failure. Clinical Pharmacology and Therapeutics, 2018, 103, 77-87.	2.3	8
468	Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells, 2018, 36, 265-277.	1.4	111
469	Heart regeneration: The endothelial cell comes first. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1128-1129.	0.4	11
470	Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annual Review of Pharmacology and Toxicology, 2018, 58, 83-103.	4.2	89
471	Cardiac Repair With Human Pluripotent Stem Cell–Derived Cardiovascular Cells and Arrhythmia Risk. , 2018, , 552-558.		0

#	Article	IF	CITATIONS
472	Heart regeneration and the cardiomyocyte cell cycle. Pflugers Archiv European Journal of Physiology, 2018, 470, 241-248.	1.3	39
473	Cardiac Cell Culture Technologies. , 2018, , .		2
474	Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
475	Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell–Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation, 2018, 137, 1712-1730.	1.6	332
476	Photoacoustic Imaging of Embryonic Stem Cellâ€Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles. Advanced Functional Materials, 2018, 28, 1704939.	7.8	58
477	Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials, 2018, 155, 176-190.	5.7	45
478	Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques. Immunogenetics, 2018, 70, 381-399.	1.2	9
479	Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues. Advanced Functional Materials, 2018, 28, 1803951.	7.8	135
481	Myocardial Repair. , 2018, , 425-439.		0
482	OBSOLETE: Myocardial Repair. , 2018, , .		0
483	OBSOLETE: Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Advancing Cardiovascular Medicine. , 2018, , .		0
484	2. Preclinical large-animal models of cardiovascular regeneration. , 2018, , 20-33.		0
485	Big bottlenecks in cardiovascular tissue engineering. Communications Biology, 2018, 1, 199.	2.0	66
486	Improving pregnancy outcomes in humans through studies in sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1123-R1153.	0.9	111
487	Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature, 2018, 563, 701-704.	13.7	101
488	Is Human-induced Pluripotent Stem Cell the Best Optimal?. Chinese Medical Journal, 2018, 131, 852-856.	0.9	7
489	A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Advanced Healthcare Materials, 2019, 8, e1801011.	3.9	61
490	Therapeutic Cardiac Patches for Repairing the Myocardium. Advances in Experimental Medicine and Biology, 2018, 1144, 1-24.	0.8	19

#	Article	IF	CITATIONS
491	Changing Metabolism in Differentiating Cardiac Progenitor Cells—Can Stem Cells Become Metabolically Flexible Cardiomyocytes?. Frontiers in Cardiovascular Medicine, 2018, 5, 119.	1.1	34
493	Role of Extracellular Matrix in Cardiac Cellular Therapies. Advances in Experimental Medicine and Biology, 2018, 1098, 173-188.	0.8	5
494	Mesoporous Silica Nanoparticles Rescue H ₂ O ₂ -induced Inhibition of Cardiac Differentiation. Cell Structure and Function, 2018, 43, 109-117.	0.5	2
495	Extracellular Vesicles: Potential Participants in Circadian Rhythm Synchronization. International Journal of Biological Sciences, 2018, 14, 1610-1620.	2.6	32
496	Non-sarcomeric causes of heart failure. Biophysical Reviews, 2018, 10, 943-947.	1.5	2
497	Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World Journal of Stem Cells, 2018, 10, 106-115.	1.3	56
498	Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. International Journal of Molecular Sciences, 2018, 19, 3194.	1.8	44
499	Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circulation Journal, 2018, 48, 974.	0.7	21
500	Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts using a genetic-probe APEX2. Biochemical and Biophysical Research Communications, 2018, 505, 1251-1256.	1.0	5
501	Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Frontiers in Cardiovascular Medicine, 2018, 5, 109.	1.1	7
502	Moving iPSC-Derived Cardiomyocytes Forward to Treat Myocardial Infarction. Cell Stem Cell, 2018, 23, 322-323.	5.2	12
503	Cardiomyocyte—Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Frontiers in Cardiovascular Medicine, 2018, 5, 101.	1.1	113
504	Single-cell genomics to guide human stem cell and tissue engineering. Nature Methods, 2018, 15, 661-667.	9.0	52
505	Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development (Cambridge), 2018, 145, .	1.2	46
506	OBSOLETE: Heart Regeneration with Stem Cell Therapies. , 2018, , .		0
507	1. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs): novel diagnostic platform. , 2018, , 1-19.		1
508	Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Molecular Therapy, 2018, 26, 1610-1623.	3.7	241
509	Exercising engineered heart muscle to maturity. Nature Reviews Cardiology, 2018, 15, 383-384.	6.1	11

#	Article	IF	CITATIONS
510	Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. Journal of Molecular and Cellular Cardiology, 2018, 120, 31-41.	0.9	23
511	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Cell Transplantation, 2018, 27, 379-392.	1.2	30
512	Stem-Cell-Derived Cardiomyocytes Grow Up: Start Young and Train Harder. Cell Stem Cell, 2018, 22, 790-791.	5.2	4
513	Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS Applied Materials & Interfaces, 2018, 10, 24459-24468.	4.0	63
514	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	1.2	8
515	Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology, 2018, 36, 597-605.	9.4	466
516	Effect of interleukin-6 on myocardial regeneration in mice after cardiac injury. Biomedicine and Pharmacotherapy, 2018, 106, 303-308.	2.5	19
517	Cardiac Progenitor Cells in Basic Biology and Regenerative Medicine. Stem Cells International, 2018, 2018, 1-9.	1.2	24
518	Development, Proliferation, and Growth of the Mammalian Heart. Molecular Therapy, 2018, 26, 1599-1609.	3.7	76
519	Induced pluripotent stem cell derived cardiac models: effects of Thymosin β4. Expert Opinion on Biological Therapy, 2018, 18, 111-120.	1.4	1
520	Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles. Frontiers in Pharmacology, 2018, 9, 547.	1.6	72
521	The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Theranostics, 2018, 8, 2799-2813.	4.6	12
522	Human iPS cell-derived cardiac tissue sheets for functional restoration of infarcted porcine hearts. PLoS ONE, 2018, 13, e0201650.	1.1	63
523	Implications of Cellular Aging in Cardiac Reprogramming. Frontiers in Cardiovascular Medicine, 2018, 5, 43.	1.1	14
524	Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2018, 5, 52.	1.1	16
525	Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Frontiers in Medicine, 2018, 5, 110.	1.2	34
526	3D functional scaffolds for cardiovascular tissue engineering. , 2018, , 305-343.		1
527	Fluorescent, Bioluminescent, and Optogenetic Approaches to Study Excitable Physiology in the Single Cardiomyocyte. Cells, 2018, 7, 51.	1.8	35

# 528	ARTICLE A new route to synthetic DNA. Nature Biotechnology, 2018, 36, 593-595.	IF 9.4	Citations 0
529	Can We Engineer a Human Cardiac Patch for Therapy?. Circulation Research, 2018, 123, 244-265.	2.0	121
530	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.	2.0	53
531	Cardiomyocytes remuscularize the heart. Nature Biotechnology, 2018, 36, 592-593.	9.4	1
532	Optical Electrophysiology in the Developing Heart. Journal of Cardiovascular Development and Disease, 2018, 5, 28.	0.8	5
533	Therapeutic Use of Stem Cells for Myocardial Infarction. Bioengineering, 2018, 5, 28.	1.6	57
534	Cardiomyocyte Differentiation from Human Embryonic Stem Cells. Methods in Molecular Biology, 2018, 1816, 67-78.	0.4	5
537	HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia. International Heart Journal, 2018, 59, 601-606.	0.5	9
538	Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Scientific Reports, 2018, 8, 7145.	1.6	31
539	Cell therapy trials for heart regeneration — lessons learned and future directions. Nature Reviews Cardiology, 2018, 15, 659-671.	6.1	200
540	Stem Cell Therapy in Heart Diseases – Cell Types, Mechanisms and Improvement Strategies. Cellular Physiology and Biochemistry, 2018, 48, 2607-2655.	1.1	159
541	Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes. Theranostics, 2018, 8, 124-140.	4.6	67
542	Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Frontiers in Physiology, 2018, 9, 1159.	1.3	41
543	Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells, 2018, 7, 114.	1.8	24
544	Melt Electrowriting Allows Tailored Microstructural and Mechanical Design of Scaffolds to Advance Functional Human Myocardial Tissue Formation. Advanced Functional Materials, 2018, 28, 1803151.	7.8	125
545	Mesenchymal Stem/Stromal Cell-Based Therapy for Heart Failure ― What Is the Best Source? ―. Circulation Journal, 2018, 82, 2222-2232.	0.7	25
546	The Challenges of Stem Cell Therapy in Myocardial Infarction and Heart Failure and the Potential Strategies to Improve the Outcomes. Nano LIFE, 2018, 08, 1841008.	0.6	3
547	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	6.1	268

ARTICLE IF CITATIONS Synchronized electromechanical integration recording of cardiomyocytes. Biosensors and 5.3 38 548 Bioelectronics, 2018, 117, 354-365. A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature Biomedical 549 11.6 Engineering, 2018, 2, 353-361. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nature Biomedical 550 11.6 16 Engineering, 2018, 2, 392-398. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells 1.1 using feeder-free expansion and differentiation in suspension culture. PLoS ONE, 2018, 13, e0192652. Generation of First Heart Field-like Cardiac Progenitors and Ventricular-like Cardiomyocytes from 552 0.2 13 Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , . Induced Pluripotent Stem Cells., 2019, , 169-180. Cardiac Stem Cells. , 2019, , 247-272. 554 2 Cardiac Tissue., 2019, , 1073-1099. Primate stem cells: bridge the translation from basic research to clinic application. Science China Life 556 2.3 10 Sciences, 2019, 62, 12-21. Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development., 2019, , 89-128. Introduction to Biotech Entrepreneurship: From Idea to Business., 2019, , . 558 0 Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metabolism, 2019, 511 30, 656-673. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart 561 9.4 139 regeneration. Nature Biotechnology, 2019, 37, 895-906. Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 2019, 40, 1367-1387. 0.6 Dual stem cell therapy synergistically improves cardiac function and vascular regeneration 563 160 5.8 following myocardial infarction. Nature Communications, 2019, 10, 3123. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac 564 83 tissue engineering. Biomaterials Science, 2019, 7, 3906-3917. Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig 565 1.6 28 cryo-injury model. Scientific Reports, 2019, 9, 9831. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac 1.4 reprogramming. Regenerative Therapy, 2019, 11, 95-100.

#	Article	IF	CITATIONS
567	Native cardiac environment and its impact on engineering cardiac tissue. Biomaterials Science, 2019, 7, 3566-3580.	2.6	51
568	Progenitor Cells Derived from Drain Waste Product of Open-Heart Surgery in Children. Journal of Clinical Medicine, 2019, 8, 1028.	1.0	2
570	Cardiac tissue engineering: state-of-the-art methods and outlook. Journal of Biological Engineering, 2019, 13, 57.	2.0	89
571	MicroRNAs (miRs) in Muscle Gene Therapy. , 2019, , 99-119.		0
572	Tissue-Engineered Stem Cell Models of Cardiovascular Diseases. , 2019, , 1-18.		0
573	Cardiac Patch-Based Therapies of Ischemic Heart Injuries. , 2019, , 141-171.		1
574	Multi-objective optimization of building's life cycle performance in early design stages. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012116.	0.2	2
575	Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics, 2019, 9, 7222-7238.	4.6	52
576	Paracrine Heart Repair Comes of Age. Canadian Journal of Cardiology, 2019, 35, 1278-1280.	0.8	0
577	An effective detachment system for human induced pluripotent stem cells cultured on multilayered cultivation substrates using resonance vibrations. Scientific Reports, 2019, 9, 15655.	1.6	11
578	Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell, 2019, 25, 594-606.	5.2	53
579	Wnt Signaling: The double-edged sword diminishing the potential of stem cell therapy in congenital heart disease. Life Sciences, 2019, 239, 116937.	2.0	10
580	Cardiomyocytes from CCND2-overexpressing human induced-pluripotent stem cells repopulate the myocardial scar in mice: A 6-month study. Journal of Molecular and Cellular Cardiology, 2019, 137, 25-33.	0.9	19
581	Gene Editing to Generate Versatile Human Pluripotent Stem Cell Reporter Lines for Analysis of Differentiation and Lineage Tracing. Stem Cells, 2019, 37, 1556-1566.	1.4	13
582	Zebrafish as a Smart Model to Understand Regeneration After Heart Injury: How Fish Could Help Humans. Frontiers in Cardiovascular Medicine, 2019, 6, 107.	1.1	43
583	Constructing biomimetic cardiac tissues: a review of scaffold materials for engineering cardiac patches. Emergent Materials, 2019, 2, 181-191.	3.2	33
584	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	23.0	46
585	Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Scientific Reports, 2019, 9, 13188.	1.6	24

#	Article	IF	CITATIONS
586	Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell, 2019, 25, 311-327.	5.2	106
587	Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. Journal of Immunology and Regenerative Medicine, 2019, 4, 100018.	0.2	4
589	Are These Cardiomyocytes? Protocol Development Reveals Impact of Sample Preparation on the Accuracy of Identifying Cardiomyocytes by Flow Cytometry. Stem Cell Reports, 2019, 12, 395-410.	2.3	14
590	Cell Therapy for Heart Disease: Ready for Prime Time or Lost in Translation?. , 2019, , 355-376.		Ο
591	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
592	Stimulating Cardiogenesis as a Treatment for Heart Failure. Circulation Research, 2019, 124, 1647-1657.	2.0	59
593	Human embryonic stem cell-derived cardiomyocyte therapy in mouse permanent ischemia and ischemia reperfusion models. Stem Cell Research and Therapy, 2019, 10, 167.	2.4	23
594	Pluripotent Stem Cell-Derived Cardiomyocyte Transplantation for Heart Disease Treatment. Current Cardiology Reports, 2019, 21, 73.	1.3	26
595	A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell therapy in the whole post-myocardial infarcted heart. Scientific Reports, 2019, 9, 9238.	1.6	21
596	Bispecific antibodies: a mechanistic review of the pipeline. Nature Reviews Drug Discovery, 2019, 18, 585-608.	21.5	755
597	An <i>in Vivo</i> miRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano, 2019, 13, 9880-9894.	7.3	101
598	Long-Term Results of Intracardiac Mesenchymal Stem Cell Transplantation in Patients With Cardiomyopathy. Circulation Journal, 2019, 83, 1590-1599.	0.7	11
599	Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 2019, 229, 233-250.	2.0	29
600	Regenerative Medicine and Biomarkers for Dilated Cardiomyopathy. , 2019, , 173-185.		2
601	Hydrogel Microchambers Integrated with Organic Electrodes for Efficient Electrical Stimulation of Human iPSCâ€Đerived Cardiomyocytes. Macromolecular Bioscience, 2019, 19, 1900060.	2.1	19
602	Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro. Nature Communications, 2019, 10, 2168.	5.8	68
604	Pancreatic islet surface engineering with a starPEC-chondroitin sulfate nanocoating. Biomaterials Science, 2019, 7, 2308-2316.	2.6	21
605	Human Embryonic Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 124, 1157-1159.	2.0	5

ARTICLE IF CITATIONS Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce 606 2.3 207 Ventricular Tachyarrhythmias. Stem Cell Reports, 2019, 12, 967-981. Molecular imaging of cardiac regenerative medicine. Current Opinion in Biomedical Engineering, 2019, 1.8 9,66-73. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. World 608 1.3 92 Journal of Stem Cells, 2019, 11, 33-43. Cardiac fibrosis: potential therapeutic targets. Translational Research, 2019, 209, 121-137. 609 118 InÂVivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular 610 2.9 36 Progenitors. Cell Reports, 2019, 26, 3231-3245.e9. Beyond pharmacological treatment: an insight into therapies that target specific aspects of heart failure pathophysiology. Lancet, The, 2019, 393, 1045-1055. 6.3 <p>3D printing approaches for cardiac tissue engineering and role of immune modulation in 612 3.3 76 tissue regeneration</p>. International Journal of Nanomedicine, 2019, Volume 14, 1311-1333. Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based 1.4 16 Therapy for Myocardial Infarction. Stem Cells, 2019, 37, 844-854. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat 614 0.4 157 cardiovascular disease. Atherosclerosis, 2019, 285, 1-9. Implantation of hiPSC-derived Cardiac-muscle Patches after Myocardial Injury in a Guinea Pig Model. 0.2 Journal of Visualized Experiments, 2019, , . Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes 616 derived from pluripotent stem cells for treatment of heart failure. Stem Cell Research and Therapy, 2.4 51 2019, 10, 78. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages <i>via</i> Activation of Signal Transducer and Activator of Transcription 6. Antioxidants and Redox Signaling, 2019, 31, 369-386. 2.5 The biochemical and electrophysiological profiles of amniotic fluid-derived stem cells following Wht 618 2.0 9 signaling modulation cardiac differentiation. Cell Death Discovery, 2019, 5, 59. Adult Stem Cells. Circulation Research, 2019, 124, 837-839. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to 620 43 1.1 Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32. Coculture of Endothelial Cells with Human Pluripotent Stem Cellâ€Derived Cardiac Progenitors Reveals a Differentiation Stageâ€Specific Enhancement of Cardiomyocyte Maturation. Biotechnology 1.8 Journal, 2019, 14, e1800725. CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and 622 1.4 11 Differentiation of Cardiac Progenitors. Stem Cells, 2019, 37, 958-972. Therapeutic Potential of Pluripotent Stem Cells for Cardiac Repair after Myocardial Infarction. Biological and Pharmaceutical Bulletin, 2019, 42, 524-530.

#	Article	IF	CITATIONS
625	Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 272-284.	0.7	14
626	Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nature Communications, 2019, 10, 584.	5.8	100
627	Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery. Pharmaceutics, 2019, 11, 77.	2.0	66
628	Proteomic-based approaches to cardiac development and disease. Current Opinion in Chemical Biology, 2019, 48, 150-157.	2.8	10
629	Substrate Stiffness, Cell Anisotropy, and Cell–Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomaterials Science and Engineering, 2019, 5, 3876-3888.	2.6	26
630	Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomaterialia, 2019, 88, 540-553.	4.1	16
631	Proteomic Analysis Reveals Temporal Changes in Protein Expression in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes In Vitro. Stem Cells and Development, 2019, 28, 565-578.	1.1	11
632	Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biology, 2019, 17, 89.	1.7	31
633	Function Follows Form ― A Review of Cardiac Cell Therapy ―. Circulation Journal, 2019, 83, 2399-2412.	0.7	40
634	Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Scientific Reports, 2019, 9, 19389.	1.6	49
635	Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. International Journal of Molecular Sciences, 2019, 20, 5760.	1.8	20
636	Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells, 2019, 8, 1530.	1.8	32
637	miRNAs in Extracellular Vesicles from iPS-Derived Cardiac Progenitor Cells Effectively Reduce Fibrosis and Promote Angiogenesis in Infarcted Heart. Stem Cells International, 2019, 2019, 1-14.	1.2	22
638	Mesenchymal stem cell and bone marrow mononuclear cell therapy for cardiomyopathy: From bench to bedside. Journal of Cellular Biochemistry, 2019, 120, 45-55.	1.2	16
639	Engineering hiPSC cardiomyocyte inÂvitro model systems for functional and structural assessment. Progress in Biophysics and Molecular Biology, 2019, 144, 3-15.	1.4	19
640	Promoting vascularization for tissue engineering constructs: current strategies focusing on HIF-regulating scaffolds. Expert Opinion on Biological Therapy, 2019, 19, 105-118.	1.4	29
641	Induced pluripotent stem cellâ€derived extracellular vesicles: A novel approach for cellâ€free regenerative medicine. Journal of Cellular Physiology, 2019, 234, 8455-8464.	2.0	38
642	Cardiac Tissue Engineering. , 2019, , 3-33.		4

#	Article	IF	CITATIONS
643	Regionâ€resolved proteomics profiling of monkey heart. Journal of Cellular Physiology, 2019, 234, 13720-13734.	2.0	7
644	BIN1 Induces the Formation of T-Tubules and Adult-Like Ca2+ Release Units in Developing Cardiomyocytes. Stem Cells, 2019, 37, 54-64.	1.4	43
645	Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. Journal of Neuroimmunology, 2019, 328, 20-34.	1.1	23
646	Organoids for Advanced Therapeutics and Disease Models. Advanced Therapeutics, 2019, 2, 1800087.	1.6	22
647	Regulation of cardiomyocyte maturation during critical perinatal window. Journal of Physiology, 2020, 598, 2941-2956.	1.3	48
648	Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 2020, 42, 107353.	6.0	66
649	Molecular mechanisms of heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 20-28.	2.3	28
650	Shaping the heart: Structural and functional maturation of iPSC-cardiomyocytes in 3D-micro-scaffolds. Biomaterials, 2020, 227, 119551.	5.7	54
651	Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Advanced Healthcare Materials, 2020, 9, e1900775.	3.9	24
652	Cellular Basis for Myocardial Regeneration and Repair. , 2020, , 43-61.e3.		1
653	Stem Cell-Based and Gene Therapies in Heart Failure. , 2020, , 599-607.e3.		0
654	Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction. Cardiovascular Research, 2020, 116, 545-553.	1.8	10
655	Turning regenerative technologies into treatment to repair myocardial injuries. Journal of Cellular and Molecular Medicine, 2020, 24, 2704-2716.	1.6	29
656	Human induced pluripotent stem cell line with genetically encoded fluorescent voltage indicator generated via CRISPR for action potential assessment post-cardiogenesis. Stem Cells, 2020, 38, 90-101.	1.4	20
657	Heart regeneration in mouse and human: a bioengineering perspective. Current Opinion in Physiology, 2020, 14, 56-63.	0.9	1
658	Toward the Goal of Human Heart Regeneration. Cell Stem Cell, 2020, 26, 7-16.	5.2	114
659	Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nature Communications, 2020, 11, 75.	5.8	148
660	βâ€Adrenergic stimuli and rotating suspension culture enhance conversion of human adipogenic mesenchymal stem cells into highly conductive cardiac progenitors. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 306-318.	1.3	11

#	Article	IF	CITATIONS
661	Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 29-51.	2.3	38
662	Inductive factors for generation of pluripotent stem cell-derived cardiomyocytes. , 2020, , 177-242.		1
663	Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Materials Science and Engineering C, 2020, 109, 110521.	3.8	70
664	Future potential of engineered heart tissue patches for repairing the damage caused by heart attacks. Expert Review of Medical Devices, 2020, 17, 1-3.	1.4	10
665	A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. European Heart Journal, 2020, 41, 2397-2404.	1.0	28
666	Organoids for cell therapy and drug discovery. , 2020, , 461-471.		3
667	Recapitulating human tissue damage, repair, and fibrosis with human pluripotent stem cell-derived organoids. Stem Cells, 2020, 38, 318-329.	1.4	7
668	Optical mapping of human embryonic stem cell-derived cardiomyocyte graft electrical activity in injured hearts. Stem Cell Research and Therapy, 2020, 11, 417.	2.4	14
669	Mesenchymal Stem Cells in Cardiac Repair: Effects on Myocytes, Vasculature, and Fibroblasts. Clinical Therapeutics, 2020, 42, 1880-1891.	1.1	16
670	Gene and Cell Therapy for Cardiac Arrhythmias. Clinical Therapeutics, 2020, 42, 1911-1922.	1.1	8
671	Machine learning identifies abnormal Ca2+ transients in human induced pluripotent stem cell-derived cardiomyocytes. Scientific Reports, 2020, 10, 16977.	1.6	20
672	Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 7701.	1.8	18
673	Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clinical Therapeutics, 2020, 42, 1857-1879.	1.1	7
674	Transplanted microvessels improve pluripotent stem cell–derived cardiomyocyte engraftment and cardiac function after infarction in rats. Science Translational Medicine, 2020, 12, .	5.8	56
675	Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. International Journal of Molecular Sciences, 2020, 21, 7662.	1.8	4
676	Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. Antioxidants and Redox Signaling, 2021, 35, 143-162.	2.5	12
677	Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation. Circulation, 2020, 142, 275-291.	1.6	88
678	Heart regeneration using pluripotent stem cells. Journal of Cardiology, 2020, 76, 459-463.	0.8	17

		15	6
#	ARTICLE	IF	CITATIONS
679	Heart Function Post-Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 986-998.	1.8	11
680	Increased predominance of the matured ventricular subtype in embryonic stem cell-derived cardiomyocytes in vivo. Scientific Reports, 2020, 10, 11883.	1.6	26
681	Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2020, 11, 297.	2.4	20
682	Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Frontiers in Bioengineering and Biotechnology, 2020, 8, 601560.	2.0	9
683	Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 2020, 7, 554597.	1.1	74
684	Cardiomyocyte Transplantation after Myocardial Infarction Alters the Immune Response in the Heart. Cells, 2020, 9, 1825.	1.8	11
685	Cardiac Regeneration After Myocardial Infarction: an Approachable Goal. Current Cardiology Reports, 2020, 22, 122.	1.3	28
686	CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Translational Medicine, 2020, 9, 1203-1217.	1.6	10
687	Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cells Translational Medicine, 2020, 9, 1121-1128.	1.6	17
688	Prediction of Human Induced Pluripotent Stem Cell Cardiac Differentiation Outcome by Multifactorial Process Modeling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 851.	2.0	15
689	Three-dimensional scaffold-free microtissues engineered for cardiac repair. Journal of Materials Chemistry B, 2020, 8, 7571-7590.	2.9	14
690	Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium. Stem Cells International, 2020, 2020, 1-16.	1.2	18
691	Hydrogel-based sealed microchamber arrays for rapid medium exchange and drug testing of cell spheroids. Biomedical Microdevices, 2020, 22, 49.	1.4	2
692	Transfection of hPSC-Cardiomyocytes Using Viafectâ,,¢ Transfection Reagent. Methods and Protocols, 2020, 3, 57.	0.9	9
693	Pigs as Models of Preclinical Studies and In Vivo Bioreactors for Generation of Human Organs. , 2020, , .		1
694	Hyaluronate supports hESCâ€cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Proliferation, 2020, 53, e12942.	2.4	11
695	Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxidants and Redox Signaling, 2021, 35, 163-181.	2.5	4
696	Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 594226.	1.8	50

#	Article	IF	CITATIONS
697	Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Scientific Reports, 2020, 10, 16787.	1.6	4
698	Current situation and future of stem cells in cardiovascular medicine. Biomedicine and Pharmacotherapy, 2020, 132, 110813.	2.5	8
699	Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. Journal of Bioactive and Compatible Polymers, 2020, 35, 363-377.	0.8	22
700	Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives. Bioelectricity, 2020, 2, 279-292.	0.6	31
701	Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals, 2020, 10, 1561.	1.0	8
702	Endosialin defines human stem Leydig cells with regenerative potential. Human Reproduction, 2020, 35, 2197-2212.	0.4	18
703	Effect of Intramyocardial Grafting Collagen Scaffold With Mesenchymal Stromal Cells in Patients With Chronic Ischemic Heart Disease. JAMA Network Open, 2020, 3, e2016236.	2.8	51
704	Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Science Translational Medicine, 2020, 12, .	5.8	112
705	Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. International Journal of Molecular Sciences, 2020, 21, 9686.	1.8	5
706	A Tissue Engineering Chamber for Continuous Pulsatile Electrical Stimulation of Vascularized Cardiac Tissues <i>In Vivo</i> . Bioelectricity, 2020, 2, 391-398.	0.6	2
708	Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovascular Research, 2021, 117, 2125-2136.	1.8	12
709	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	4.7	28
710	Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. International Journal of Molecular Sciences, 2020, 21, 3725.	1.8	26
711	Establishing a Swine Model of Post-myocardial Infarction Heart Failure for Stem Cell Treatment. Journal of Visualized Experiments, 2020, , .	0.2	6
712	Human MuStem Cell Grafting into Infarcted Rat Heart Attenuates Adverse Tissue Remodeling and Preserves Cardiac Function. Molecular Therapy - Methods and Clinical Development, 2020, 18, 446-463.	1.8	3
713	Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells, 2020, 9, 1349.	1.8	22
714	Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation, 2020, 142, 868-881.	1.6	49
715	Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 455.	2.0	49

#	Article	IF	CITATIONS
716	Intensive care for human hearts in pluripotent stem cell models. Npj Regenerative Medicine, 2020, 5, 4.	2.5	6
717	Biodegradable Nanofibrous Temperatureâ€Responsive Gelling Microspheres for Heart Regeneration. Advanced Functional Materials, 2020, 30, 2000776.	7.8	34
718	A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 178.	1.8	134
719	Efficient Cardiac Differentiation of Human Amniotic Fluid-Derived Stem Cells into Induced Pluripotent Stem Cells and Their Potential Immune Privilege. International Journal of Molecular Sciences, 2020, 21, 2359.	1.8	13
720	Subtype-specific cardiomyocytes for precision medicine: Where are we now?. Stem Cells, 2020, 38, 822-833.	1.4	24
721	Stem cells to help the heart. Science, 2020, 367, 1206-1206.	6.0	2
722	Inducing Endogenous Cardiac Regeneration: Can Biomaterials Connect the Dots?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 126.	2.0	30
723	Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell, 2020, 26, 309-329.	5.2	174
724	Biomatrices for Heart Regeneration and Cardiac Tissue Modelling In Vitro. Advances in Experimental Medicine and Biology, 2020, 1298, 43-77.	0.8	1
725	Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Advanced Healthcare Materials, 2020, 9, e2000336.	3.9	37
726	Metabolic Regulation of Human Pluripotent Stem Cell-Derived Cardiomyocyte Maturation. Current Cardiology Reports, 2020, 22, 73.	1.3	13
727	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
728	Therapy with Cardiomyocytes Derived from Pluripotent Cells in Chronic Chagasic Cardiomyopathy. Cells, 2020, 9, 1629.	1.8	3
729	Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. International Journal of Molecular Sciences, 2020, 21, 4354.	1.8	46
731	Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. Learning Materials in Biosciences, 2020, , 187-211.	0.2	3
732	Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 687.	2.0	48
733	From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 2020, 13, 1253-1267.	5.8	25
734	Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Research and Therapy, 2020, 11, 73.	2.4	51

#	Article	IF	CITATIONS
735	Tissue engineered heart repair from preclinical models to first-in-patient studies. Current Opinion in Physiology, 2020, 14, 70-77.	0.9	13
736	Selfâ€healing injectable gelatin hydrogels for localized therapeutic cell delivery. Journal of Biomedical Materials Research - Part A, 2020, 108, 1112-1121.	2.1	55
737	Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflammation and Regeneration, 2020, 40, 1.	1.5	62
738	Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Research, 2020, 43, 101698.	0.3	30
739	Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts. PLoS ONE, 2020, 15, e0227780.	1.1	4
740	Arrhythmogenic risks of stem cell replacement therapy for cardiovascular diseases. Journal of Cellular Physiology, 2020, 235, 6257-6267.	2.0	12
741	Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology, 2020, 17, 341-359.	6.1	417
742	Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Research, 2020, 45, 101831.	0.3	6
743	Applications for stem cells. , 2020, , 445-455.		0
744	Cardiac progenitor cells, tissue homeostasis, and regeneration. , 2020, , 579-591.		0
745	Cardiac tissue engineering. , 2020, , 593-616.		2
746	Cardiac cell therapy: Current status, challenges and perspectives. Archives of Cardiovascular Diseases, 2020, 113, 285-292.	0.7	18
747	Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Research and Therapy, 2020, 11, 138.	2.4	49
748	A nonhuman primate model of liver fibrosis towards cell therapy for liver cirrhosis. Biochemical and Biophysical Research Communications, 2020, 526, 661-669.	1.0	6
749	Cardiomyocyte Maturation. Circulation Research, 2020, 126, 1086-1106.	2.0	355
750	Editorial commentary: Challenges to heart repair with pluripotent stem cell-derived cardiomyocytes. Trends in Cardiovascular Medicine, 2021, 31, 91-92.	2.3	1
751	Requirements for Proper Immunosuppressive Regimens to Limit Translational Failure of Cardiac Cell Therapy in Preclinical Large Animal Models. Journal of Cardiovascular Translational Research, 2021, 14, 88-99.	1.1	5
		1.0	10

#	Article	IF	CITATIONS
753	Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions. Trends in Cardiovascular Medicine, 2021, 31, 85-90.	2.3	7
754	Highly specific, quantitative polymerase chain reaction probe for the quantification of human cells in cynomolgus monkeys. Drug Metabolism and Pharmacokinetics, 2021, 36, 100359.	1.1	3
755	Cardiac Regeneration: New Hope for an Old Dream. Annual Review of Physiology, 2021, 83, 59-81.	5.6	28
756	Transferrin improved the generation of cardiomyocyte from human pluripotent stem cells for myocardial infarction repair. Journal of Molecular Histology, 2021, 52, 87-99.	1.0	9
757	CRISPR/Cas9-edited triple-fusion reporter gene imaging of dynamics and function of transplanted human urinary-induced pluripotent stem cell-derived cardiomyocytes. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 708-720.	3.3	8
758	Targeting HIFâ€Î± for robust prevascularization of human cardiac organoids. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 189-202.	1.3	6
759	Regenerating the heart: The past, present, & future. , 2021, , 121-131.		0
760	Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1. Angiogenesis, 2021, 24, 327-344.	3.7	10
761	Cell Sources of Cardiomyocytes for Heart Repair. , 2021, , 279-292.		0
762	Thymosin β4 increases cardiac cell proliferation, cell engraftment, and the reparative potency of human induced-pluripotent stem cell-derived cardiomyocytes in a porcine model of acute myocardial infarction. Theranostics, 2021, 11, 7879-7895.	4.6	28
763	The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells, 2021, 10, 240.	1.8	56
764	A Method for Cardiac , , and Cardiac Spheroid Production of Human Induced Pluripotent Stem. Methods in Molecular Biology, 2021, 2320, 11-21.	0.4	1
765	Stem Cell-Based Products in the Market. Pancreatic Islet Biology, 2021, , 269-298.	0.1	0
766	Progress in human embryonic stem cell research and aging. , 2021, , 9-52.		0
767	Three-dimensional printed scaffolds for tissue engineering. , 2021, , 731-754.		0
768	Molecular Imaging of Stem Cell Therapy in Ischemic Cardiomyopathy. , 2021, , 1245-1259.		0
769	Aging and stability of cardiomyocytes. , 2021, , 147-156.		0
770	Targeted delivery of therapeutic agents to the heart. Nature Reviews Cardiology, 2021, 18, 389-399.	6.1	51

#	Article	IF	CITATIONS
771	Generation and Breeding of EGFP-Transgenic Marmoset Monkeys: Cell Chimerism and Implications for Disease Modeling. Cells, 2021, 10, 505.	1.8	12
772	Role of prostaglandin E2 in allogeneic mesenchymal stem cell therapy for cardiac repair. Canadian Journal of Physiology and Pharmacology, 2021, 99, 140-150.	0.7	Ο
773	MgFe‣DH Nanoparticles: A Promising Leukemia Inhibitory Factor Replacement for Selfâ€Renewal and Pluripotency Maintenance in Cultured Mouse Embryonic Stem Cells. Advanced Science, 2021, 8, 2003535.	5.6	53
774	Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Frontiers in Cardiovascular Medicine, 2021, 8, 621781.	1.1	19
775	Cardiac cell type-specific responses to injury and contributions to heart regeneration. Cell Regeneration, 2021, 10, 4.	1.1	11
776	Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 1000-1021.	2.6	11
778	Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia. International Journal of Molecular Sciences, 2021, 22, 1729.	1.8	20
779	Whole Heart Engineering: Advances and Challenges. Cells Tissues Organs, 2021, , 1-11.	1.3	4
780	Cryopreservation and CO2-independent culture of 3D cardiac progenitors for spaceflight experiments. Biomaterials, 2021, 269, 120673.	5.7	5
781	Cardiac Tissues From Stem Cells. Circulation Research, 2021, 128, 775-801.	2.0	42
783	Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Translational Medicine, 2021, 10, 855-866.	1.6	3
784	Intramyocardial Transplantation of Human iPS Cell–Derived Cardiac Spheroids Improves Cardiac Function in HeartÂFailure Animals. JACC Basic To Translational Science, 2021, 6, 239-254.	1.9	48
785	Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out?. Cells, 2021, 10, 641.	1.8	20
786	Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	87
787	Current Challenges and Solutions to Tissue Engineering of Large-scale Cardiac Constructs. Current Cardiology Reports, 2021, 23, 47.	1.3	7
788	Isolation and characterization of human embryonic stem cell-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles. Cardiovascular Research, 2022, 118, 828-843.	1.8	14
789	Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells, 2021, 10, 600.	1.8	7
790	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	23.0	89

#	Article	IF	CITATIONS
791	Dexmedetomidine exhibits antiarrhythmic effects on human-induced pluripotent stem cell-derived cardiomyocytes through a Na/Ca channel-mediated mechanism. Annals of Translational Medicine, 2021, 9, 399-399.	0.7	8
792	Continuous measurement of surface electrical potentials from transplanted cardiomyocyte tissue derived from human-induced pluripotent stem cells under physiological conditions in vivo. Heart and Vessels, 2021, 36, 899-909.	0.5	1
793	Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2021, 12, 177.	2.4	60
795	Human Pluripotent Stem Cell-Derived Cardiac Cells: Application in Disease Modeling, Cell Therapy, and Drug Discovery. Frontiers in Cell and Developmental Biology, 2021, 9, 655161.	1.8	9
796	Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2021, 473, 1023-1039.	1.3	6
797	Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673683.	2.0	23
799	Applications of nanotechnology in 3D printed tissue engineering scaffolds. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 161, 15-28.	2.0	40
800	Stem cell therapy for heart failure: Medical breakthrough, or dead end?. World Journal of Stem Cells, 2021, 13, 236-259.	1.3	14
801	Cell-Based Therapies for Heart Failure. Frontiers in Pharmacology, 2021, 12, 641116.	1.6	2
802	Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Archiv European Journal of Physiology, 2021, 473, 1041-1059.	1.3	8
803	Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovascular Research, 2022, 118, 951-976.	1.8	52
804	Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovascular Research, 2022, 118, 1247-1261.	1.8	11
805	OptoGap is an optogenetics-enabled assay for quantification of cell–cell coupling in multicellular cardiac tissue. Scientific Reports, 2021, 11, 9310.	1.6	11
806	Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 674180.	1.8	4
807	Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Advanced Biology, 2021, 5, 2000190.	1.4	4
808	High-resolution 3D fluorescent imaging of intact tissues. , 2021, 1, 1-14.		0
809	Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits inÂvivo cell engraftment. Cell Reports, 2021, 35, 109088.	2.9	11
810	Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Frontiers in Cell and Developmental Biology, 2021, 9, 658088.	1.8	15

		CITATION REPORT		
#	Article		IF	Citations
811	Comparison of cine and real-time cardiac MRI in rhesus macaques. Scientific Reports, 2	2021, 11, 10713.	1.6	4
813	Programmed cell death in stem cell-based therapy: Mechanisms and clinical application Journal of Stem Cells, 2021, 13, 386-415.	ns. World	1.3	20
814	The role of metabolism in directed differentiation versus trans-differentiation of cardio Seminars in Cell and Developmental Biology, 2022, 122, 56-65.	myocytes.	2.3	7
815	Human Engineered Heart Tissue Patches Remuscularize the Injured Heart in a Dose-De Circulation, 2021, 143, 1991-2006.	pendent Manner.	1.6	73
816	In Situ Maturated Early-Stage Human-Induced Pluripotent Stem Cell-Derived Cardiomy Cardiac Function by Enhancing Segmental Contraction in Infarcted Rats. Journal of Per Medicine, 2021, 11, 374.	ocytes Improve sonalized	1.1	6
817	Generation of mature compact ventricular cardiomyocytes from human pluripotent sto Nature Communications, 2021, 12, 3155.	em cells.	5.8	93
818	miR-199a Overexpression Enhances the Potency of Human Induced-Pluripotent Stem-C Cardiomyocytes for Myocardial Repair. Frontiers in Pharmacology, 2021, 12, 673621.	Cell–Derived	1.6	12
819	Stem cell-based approaches in cardiac tissue engineering: controlling the microenviron autologous cells. Biomedicine and Pharmacotherapy, 2021, 138, 111425.	iment for	2.5	33
820	Bioengineering Technologies for Cardiac Regenerative Medicine. Frontiers in Bioengine Biotechnology, 2021, 9, 681705.	ering and	2.0	15
821	miRNA in cardiac development and regeneration. Cell Regeneration, 2021, 10, 14.		1.1	34
822	Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis. Np Medicine, 2021, 6, 36.	j Regenerative	2.5	15
823	Translational perspectives on cardiac reprogramming. Seminars in Cell and Developme 2021, 122, 14-14.	ntal Biology,	2.3	3
825	Combining stem cells in myocardial infarction: The road to superior repair?. Medicinal F Reviews, 2022, 42, 343-373.	Research	5.0	23
826	iPSCs and Exosomes: Partners in Crime Fighting Cardiovascular Diseases. Journal of Pe Medicine, 2021, 11, 529.	rsonalized	1.1	8
827	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 99	93-1015.	5.2	36
828	Bioreactor Suspension Culture: Differentiation and Production of Cardiomyocyte Sphe Human Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology	roids From , 2021, 9, 674260.	2.0	7
829	Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. N 203, 364-377.	1ethods, 2022,	1.9	9
830	Proteomic and Glyco(proteo)mic tools in the profiling of cardiac progenitors and plurip cell derived cardiomyocytes: Accelerating translation into therapy. Biotechnology Adva 107755.	potent stem ances, 2021, 49,	6.0	6

#	Article	IF	CITATIONS
832	Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 28-36.	2.3	4
833	Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas. Cellular and Molecular Bioengineering, 2021, 14, 555-567.	1.0	2
834	Label-free imaging for quality control of cardiomyocyte differentiation. Nature Communications, 2021, 12, 4580.	5.8	27
835	Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. Biology, 2021, 10, 730.	1.3	2
836	Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials, 2021, 274, 120818.	5.7	24
837	Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. International Journal of Molecular Sciences, 2021, 22, 7447.	1.8	19
838	Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation, 2021, 144, 210-228.	1.6	61
839	Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nature Reviews Cardiology, 2022, 19, 83-99.	6.1	36
840	Strategies for constructing pluripotent stem cell―and progenitor cellâ€derived threeâ€dimensional cardiac microâ€ŧissues. Journal of Biomedical Materials Research - Part A, 2022, 110, 488-503.	2.1	1
841	Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Physiology, 2021, 12, 710619.	1.3	14
842	Electroconductive biomaterials for cardiac tissue engineering. Acta Biomaterialia, 2022, 139, 118-140.	4.1	61
843	In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight, 2021, 6, .	2.3	23
844	A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Scientific Reports, 2021, 11, 15845.	1.6	28
845	Current status and future directions of clinical applications using iPS cells—focus on Japan. FEBS Journal, 2022, 289, 7274-7291.	2.2	13
846	Current status and future prospects of patient-derived induced pluripotent stem cells. Human Cell, 2021, 34, 1601-1616.	1.2	6
847	Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering, 2021, 5, 880-896.	11.6	18
848	Therapeutic efficacy of large aligned cardiac tissue derived from induced pluripotent stem cell in a porcine ischemic cardiomyopathy model. Journal of Heart and Lung Transplantation, 2021, 40, 767-777.	0.3	17
849	The conserved long non-coding RNA <i>CARMA</i> regulates cardiomyocyte differentiation. Cardiovascular Research, 2022, 118, 2339-2353.	1.8	7

#	Article	IF	CITATIONS
852	Editorial: Cardiomyocyte Maturation: Novel Insights for Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 730622.	1.8	0
853	Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nature Communications, 2021, 12, 4997.	5.8	21
854	Current status, challenges and perspectives of mesenchymal stem cell-based therapy for cardiac regeneration. Complex Issues of Cardiovascular Diseases, 2021, 10, 72-78.	0.3	1
855	Connecting different heart diseases through intercellular communication. Biology Open, 2021, 10, .	0.6	9
856	Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 2021, 13, 1231-1247.	1.3	12
857	3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair. APL Bioengineering, 2021, 5, 031508.	3.3	17
858	Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy, 2021, 23, 1074-1084.	0.3	16
859	Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports, 2021, 16, 2473-2487.	2.3	42
860	Recent Insight on the Non-coding RNAs in Mesenchymal Stem Cell-Derived Exosomes: Regulatory and Therapeutic Role in Regenerative Medicine and Tissue Engineering. Frontiers in Cardiovascular Medicine, 2021, 8, 737512.	1.1	12
861	Maturation of human pluripotent stem cell derived cardiomyocytes in vitro and in vivo. Seminars in Cell and Developmental Biology, 2021, 118, 163-171.	2.3	20
862	Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Seminars in Cell and Developmental Biology, 2021, 118, 94-106.	2.3	19
863	Computational modeling of aberrant electrical activity following remuscularization with intramyocardially injected pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2022, 162, 97-109.	0.9	12
864	Signaling pathways regulate cardiovascular lineage commitment of hPSCs. , 2022, , 195-218.		0
865	Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduction and Targeted Therapy, 2021, 6, 31.	7.1	33
866	Transplantation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Mouse Myocardial Infarction Model. Methods in Molecular Biology, 2021, 2320, 285-293.	0.4	1
867	Engineering Extracellular Matrix Proteins to Enhance Cardiac Regeneration After Myocardial Infarction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611936.	2.0	6
868	Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Advanced Healthcare Materials, 2020, 9, e2001175.	3.9	21
869	Direct Myocardial Injection of Vectors. Methods in Molecular Biology, 2017, 1521, 237-248.	0.4	5

#	Article	IF	Citations
870	Safety, Regulatory, and Ethical Issues of Human Studies. , 2015, , 309-323.		1
871	Human Pluripotent-Derived Lineages for Repairing Hypopituitarism. Research and Perspectives in Endocrine Interactions, 2016, , 25-34.	0.2	1
872	Cell Therapy and Heart Failure. , 2017, , 401-413.		1
873	Purification of Pluripotent Stem Cell-Derived Cardiomyocytes for Safe Cardiac Regeneration. Cardiac and Vascular Biology, 2017, , 163-176.	0.2	1
874	Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioactive Materials, 2020, 5, 74-81.	8.6	24
875	Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nature Communications, 2020, 11, 2585.	5.8	71
878	Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway. Journal of Geriatric Cardiology, 2015, 12, 591-9.	0.2	8
879	Pluripotent Stem Cells for Cardiac Regeneration ― Current Status, Challenges, and Future Perspectives ―. Circulation Journal, 2020, 84, 2129-2135.	0.7	5
880	From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications. International Journal of Stem Cells, 2017, 10, 1-11.	0.8	6
881	Human pluripotent stem cells in regenerative medicine: where do we stand?. Reproduction, 2018, 156, R143-R153.	1.1	5
882	Tissue Engineering Approaches to Heart Repair. Critical Reviews in Biomedical Engineering, 2014, 42, 213-227.	0.5	2
883	Involment of RAS/ERK1/2 signaling and MEF2C in miR-155-3p inhibition-triggered cardiomyocyte differentiation of embryonic stem cell. Oncotarget, 2017, 8, 84403-84416.	0.8	14
884	Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. Journal of Stem Cell and Transplantation Biology, 2015, 01, .	0.2	17
885	Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece. Annals of Translational Medicine, 2017, 5, 143-143.	0.7	8
886	Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge. Global Cardiology Science & Practice, 2016, 2016, e201606.	0.3	5
887	Progress and Challenges of Amniotic Fluid Derived Stem Cells in Therapy of Ischemic Heart Disease. International Journal of Molecular Sciences, 2021, 22, 102.	1.8	5
888	Single-cell data-driven mathematical model reveals possible molecular mechanisms of embryonic stem-cell differentiation. Mathematical Biosciences and Engineering, 2019, 16, 5877-5896.	1.0	3
889	Nonhuman primate model in clinical modeling of diseases for stem cell therapy. Brain Circulation, 2016, 2, 141.	0.7	2

		CITATION REPORT		
#	Article		IF	CITATIONS
890	Pluripotent Stem Cells and Repair of Myocardial Infarction. Tropical Medicine & Surgery,	2015, 03, .	0.1	1
891	Current methods for the maturation of induced pluripotent stem cell-derived cardiomyo Journal of Stem Cells, 2019, 11, 34-44.	cytes. World	1.3	1
892	Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentia applications. World Journal of Stem Cells, 2019, 11, 729-747.	tion and	1.3	19
893	New Trends in Heart Regeneration: A Review. Journal of Stem Cells and Regenerative Me 61-68.	dicine, 2016, 12,	2.2	16
894	Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector A Journal of Stem Cells and Regenerative Medicine, 2018, 14, 10-26.	pproach.	2.2	9
895	Clinical-based Cell Therapies for Heart Disease—Current and Future State. Rambam Ma Medical Journal, 2020, 11, e0015.	aimonides	0.4	17
896	Immunogenicity in Stem Cell Therapy for Cardiac Regeneration. Acta Cardiologica Sinica 588-594.	ı, 2020, 36,	0.1	4
897	We heart cultured hearts. A comparative review of methodologies for targeted different maintenance of cardiomyocytes derived from pluripotent and multipotent stem cells. Bi 14, e8962.	iation and oDiscovery, 0,	0.1	4
898	Cardiac Tissue Engineering: Stem Cell Sources, Synthetic Biomaterials, and Scaffold Fab Methods. , 2021, , 251-280.	rication		0
899	Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery Advances, 2021, 11, 34572-34588.	y. RSC	1.7	7
900	A Prevascularized Polyurethaneâ€Reinforced Fibrin Patch Improves Regenerative Remod Right Ventricle Replacement Model. Advanced Healthcare Materials, 2021, 10, e210101	eling in a Rat .8.	3.9	4
901	Mechanism-Based Cardiac Regeneration Strategies in Mammals. Frontiers in Cell and De Biology, 2021, 9, 747842.	evelopmental	1.8	4
902	Toward allogenizing a xenograft: Xenogeneic cardiac scaffolds recellularized with humar pluripotent stem cells do not activate human naÃ ⁻ ve neutrophils. Journal of Biomedical N Research - Part B Applied Biomaterials, 2022, 110, 691-701.	nâ€induced Materials	1.6	6
903	Recent progress of iPSC technology in cardiac diseases. Archives of Toxicology, 2021, 9	5, 3633-3650.	1.9	18
904	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physic and Circulatory Physiology, 2021, 321, H1056-H1073.	ology - Heart	1.5	53
905	Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes und electrical synchronization. Biomaterials, 2021, 278, 121175.	der	5.7	24
906	Identification and characterization of distinct cell cycle stages in cardiomyocytes using t transgenic system. Experimental Cell Research, 2021, 408, 112880.	:he FUCCI	1.2	7
907	Global RNA editing identification and characterization during human pluripotent-to-card differentiation. Molecular Therapy - Nucleic Acids, 2021, 26, 879-891.	iomyocyte	2.3	6

#	Article	IF	CITATIONS
908	Stem Cell Therapy to Treat Heart Failureâ~†. , 2014, , .		0
909	Novel Approaches to Vasculopathies: The Role of Stem Cells and Regenerative Medicine. Journal of Cardiovascular Diseases & Diagnosis, 2014, 02, .	0.0	0
910	In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues. , 2015, , 15-39.		2
911	Myocardial Infarction: Cell Therapy for Cardiac Regeneration. Journal of Heart Health, 2015, 1, .	0.4	0
912	iPS Cells and Cardiomyopathies. Pancreatic Islet Biology, 2015, , 83-110.	0.1	0
913	Stem Cells and Drug Metabolism. RSC Drug Discovery Series, 2015, , 177-201.	0.2	0
914	Cell Based Regenerative Therapy of Heart Failure: Where Do We Stand?. Cell, Stem Cells and Regenerative Medicine, 2015, 1, .	0.1	0
915	Recent Advances in Image-Based Stem-Cell Labeling and Tracking, and Scaffold-Based Organ Development in Cardiovascular Disease. Recent Patents on Medical Imaging, 2015, 4, 110-126.	0.1	1
916	Evolving Concepts for Use of Stem Cells and Tissue Engineering for Cardiac Regeneration. Advances in Medical Technologies and Clinical Practice Book Series, 2016, , 279-313.	0.3	0
917	Preventive-prophylactic and therapeutic rehabilitation activities in post-MI patients monitoring: the reality of today and tomorrow's out of sight. Kardiologiya I Serdechno-Sosudistaya Khirurgiya, 2016, 9, 4.	0.1	0
918	Cellular Approaches to Adult Mammalian Heart Regeneration. Pancreatic Islet Biology, 2016, , 101-119.	0.1	0
919	Large Animal Models for Cardiac Cell Therapy. , 2016, , 25-36.		1
920	Current Perspectives on Methods for Administering Human Pluripotent Stem Cell-Derived Cells for Myocardial Repair. , 2016, , 297-308.		0
921	Stem Cells in Diseases of Aging. Pancreatic Islet Biology, 2017, , 61-75.	0.1	0
922	Regenerative Mechanisms of the Adult Injured and Failing Heart. , 2017, , 377-400.		0
923	Noncoding RNAs in Ischemic Cardiovascular Disease and Repair Mechanisms. Cardiac and Vascular Biology, 2017, , 61-82.	0.2	1
924	State-of-the-Art in Tissue-Engineered Heart Repair. Cardiac and Vascular Biology, 2017, , 219-239.	0.2	0
925	Generation and Application of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiac and Vascular Biology, 2017, , 67-106.	0.2	0

#	Article	IF	CITATIONS
926	State of the Art in Cardiomyocyte Transplantation. Cardiac and Vascular Biology, 2017, , 177-218.	0.2	2
927	Direct Cardiac Reprogramming. Cardiac and Vascular Biology, 2017, , 123-143.	0.2	67
928	Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Global Cardiology Science & Practice, 2017, 2016, e201628.	0.3	1
929	Stem Cells in Regenerative Medicine: Prospects and Pitfalls. National Journal of Health Sciences, 2017, 2, 116-122.	0.1	0
930	A Clonal Population of Allogeneic Bone Marrow Fibroblasts Indirectly Mitigates Damage in Myocardial Infarction. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 3, .	0.1	0
931	Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Advancing Cardiovascular Medicine. , 2018, , 87-93.		0
932	Stem Cells and Myocardial Repair. , 2018, , 91-91.		0
933	Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment. , 2018, , 365-380.		0
934	Cardiac Remodeling and Regeneration. , 2018, , 284-292.		0
936	Prediction of therapeutic effects of human cardiomyocytes in myocardial infarction using non-human primates model. Annals of Translational Medicine, 2018, 6, S64-S64.	0.7	0
938	Survival and functional activity examination of cardiomyocytes differentiated from human iPSCs, when transplanting in SCID mice. Genes and Cells, 2018, 13, 51-60.	0.2	1
939	Bioluminescent monitoring of rat cardiosphere-derived cells in platelet gel engraftment in ischemic heart. Genes and Cells, 2017, 12, 69-75.	0.2	1
940	Regenerative potential of mouse embryonic stem cell-derived PDGFRα ⁺ cardiac lineage committed cells in infarcted myocardium. World Journal of Stem Cells, 2019, 11, 45-55.	1.3	0
941	Stem Cell Therapy to Treat Heart Failure. , 2019, , 286-303.		0
942	Research Progress of Exosomes in Cardiovascular Diseases. Advances in Clinical Medicine, 2019, 09, 42-50.	0.0	0
943	Regenerative potential of mouse embryonic stem cell-derived PDGFRα ⁺ cardiac lineage committed cells in infarcted myocardium. World Journal of Stem Cells, 2019, 11, 44-54.	1.3	3
944	Use of Human Cells and Heart Muscle Tissue Patches as Therapeutics for Heart Diseases. , 2019, , .		0
945	In Vitro Differentiation of T Cells: From Nonhuman Primate-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2048, 93-106.	0.4	0

#	Article	IF	CITATIONS
946	Cell-Based Cardiovascular Regenerative Therapies. , 2019, , 173-184.		0
947	Evolving Concepts for Use of Stem Cells and Tissue Engineering for Cardiac Regeneration. , 2019, , 509-543.		0
951	Stem Cells and the Future of Heart Transplantation. Organ and Tissue Transplantation, 2020, , 483-500.	0.0	1
952	Herzreparatur mit Herzmuskelpflaster aus Stammzellen– Umsetzung eines prĂklinischen Konzeptes in die klinische Prüfung. Veröffentlichungen Des Instituts Für Deutsches, Europäches Und Internationales Medizinrecht, Gesundheitsrecht Und Bioethik Der UniversitÄten Heidelberg Und Mannheim. 2020 131-140.	0.2	2
954	Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with the therapeutic perspective for heart regeneration. Cardiovascular Research, 2022, 118, 3071-3084.	1.8	9
955	How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2022, 163, 106-117.	0.9	14
956	Stem Cells and the Future of Heart Transplantation. Organ and Tissue Transplantation, 2020, , 1-19.	0.0	0
957	Stem cells and regenerative medicine. , 2020, , 281-295.		0
958	Human pluripotent stem cells for cardiac regeneration. , 2020, , 245-257.		0
959	Heart regeneration using somatic cells. , 2020, , 259-283.		0
960	Tissue engineered heart repair. , 2020, , 285-290.		0
961	Development of Cardiac Regenerative Medicine Using Human iPS Cell-derived Cardiomyocytes. Keio Journal of Medicine, 2020, 70, 53-59.	0.5	3
963	Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy. Frontiers in Cardiovascular Medicine, 2021, 8, 707890.	1.1	14
964	Direct Conversion of Cell Fate and Induced Endothelial Cells. Circulation Journal, 2021, , .	0.7	0
966	Effect of Cell Labeling on the Function of Human Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Stem Cells, 2020, 13, 287-294.	0.8	2
967	Cell Therapy Strategies With No Safety Concerns and Demonstrated Benefits Warrant Study ― Reply ―. Circulation Journal, 2020, 84, 2122.	0.7	0
968	Chimerism as the basis for organ repair. Annals of the New York Academy of Sciences, 2021, 1487, 12-20.	1.8	4
969	Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling. , 2021, , 299-329.		0

#	Article	IF	CITATIONS
970	Stem cell therapy: a look at current research, regulations, and remaining hurdles. P and T, 2014, 39, 846-57.	1.0	19
971	Ventricular Parasystole in a Neonatal Rhesus Macaque (). Comparative Medicine, 2016, 66, 489-493.	0.4	0
972	Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice. American Journal of Translational Research (discontinued), 2017, 9, 1530-1542.	0.0	14
974	Gene surgery: Potential applications for human diseases. EXCLI Journal, 2019, 18, 908-930.	0.5	4
975	Engineering the niche to differentiate and deploy cardiovascular cells. Current Opinion in Biotechnology, 2022, 74, 122-128.	3.3	2
976	Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. Journal of Molecular and Cellular Cardiology, 2022, 164, 83-91.	0.9	15
977	Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. International Journal of Molecular Sciences, 2021, 22, 12563.	1.8	8
978	Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research—What We Have Learnt and Not Learnt until Now. Cells, 2021, 10, 3112.	1.8	4
979	Regenerating Damaged Myocardium: A Review of Stem-Cell Therapies for Heart Failure. Cells, 2021, 10, 3125.	1.8	4
982	Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach. Toxicology, 2022, 465, 153060.	2.0	4
984	Layer-By-Layer Fabrication of Thicker and Larger Human Cardiac Muscle Patches for Cardiac Repair in Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 800667.	1.1	6
985	Transport viable heart tissue at physiological temperature yielded higher human cardiomyocytes compared to the conventional temperature. Cell and Tissue Banking, 2022, , 1.	0.5	0
986	In Vitro Matured Human Pluripotent Stem Cell–Derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts. Circulation, 2022, 145, 1412-1426.	1.6	42
987	Head-Mounted Display-Based Augmented Reality for Image-Guided Media Delivery to the Heart: A Preliminary Investigation of Perceptual Accuracy. Journal of Imaging, 2022, 8, 33.	1.7	10
988	From genome editing to blastocyst complementation: AÂnew horizon in heart transplantation?. JTCVS Techniques, 2022, 12, 177-184.	0.2	1
989	Co-transplantation of Mesenchymal Stromal Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Cardiac Function After Myocardial Damage. Frontiers in Cardiovascular Medicine, 2021, 8, 794690.	1.1	6
991	Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells, 2022, 11, 460.	1.8	0
992	Amino acid primed mTOR activity is essential for heart regeneration. IScience, 2022, 25, 103574.	1.9	15

#	Article	IF	CITATIONS
993	Soft bioelectronics for cardiac interfaces. Biophysics Reviews, 2022, 3, .	1.0	8
999	Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochemical Society Transactions, 2022, , .	1.6	8
1000	The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Frontiers in Cardiovascular Medicine, 2021, 8, 774389.	1.1	9
1002	Dare to dream? Cell-based therapies for heart failure after DREAM-HF: Review and roadmap for future clinical study. American Heart Journal Plus, 2022, 13, 100118.	0.3	0
1003	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439.	3.1	28
1004	Probing single ventricle heart defects with <scp>patientâ€derived</scp> induced pluripotent stem cells and emerging technologies. Birth Defects Research, 2022, , .	0.8	3
1005	In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Computational Biology, 2022, 18, e1009918.	1.5	19
1006	Transcription Factors – the Essence of Heart Regeneration: A Potential Novel Therapeutic Strategy. Current Molecular Medicine, 2023, 23, 232-238.	0.6	4
1007	Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do?. Current Cardiology Reports, 2022, 24, 445-461.	1.3	10
1008	Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 255-278.	3.3	3
1009	Optogenetic Control of Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Live Mice: A Proof-of-Concept Study. Cells, 2022, 11, 951.	1.8	2
1012	FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes. Biofabrication, 2022, 14, 024106.	3.7	20
1013	Cardiovascular Tissue Engineering and Regeneration: A Plead for Further Knowledge Convergence. Tissue Engineering - Part A, 2022, 28, 525-541.	1.6	6
1014	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	1.5	21
1015	A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell, 2022, 29, 545-558.e13.	5.2	32
1016	Decellularization of Full Heart—Optimizing the Classical Sodium-Dodecyl-Sulfate-Based Decellularization Protocol. Bioengineering, 2022, 9, 147.	1.6	3
1017	A Bibliometric and Visualized Analysis of Cardiac Regeneration Over a 20-Year Period. Frontiers in Cardiovascular Medicine, 2021, 8, 789503.	1.1	8
1018	Therapeutic applications of exosomes in various diseases: A review. Materials Science and Engineering C, 2022, 134, 112579.	3.8	11

#	Article	IF	CITATIONS
1019	Progress in Bioengineering Strategies for Heart Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 3482.	1.8	14
1020	Porcine Models of Heart Regeneration. Journal of Cardiovascular Development and Disease, 2022, 9, 93.	0.8	3
1021	The Structural and the Functional Aspects of Intercellular Communication in iPSC-Cardiomyocytes. International Journal of Molecular Sciences, 2022, 23, 4460.	1.8	3
1022	Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 261, 110747.	0.7	2
1029	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	7.1	18
1031	Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 2022, 6, 327-338.	11.6	25
1032	Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors. Nature Cell Biology, 2022, 24, 659-671.	4.6	21
1033	Pre-Conditioning Methods and Novel Approaches with Mesenchymal Stem Cells Therapy in Cardiovascular Disease. Cells, 2022, 11, 1620.	1.8	17
1034	Defining the pathways of heart regeneration. Nature Cell Biology, 2022, 24, 606-607.	4.6	2
1035	Flexing Their Muscles: Maturation of Stem Cell–Derived Cardiomyocytes on Elastomeric Substrates to Enhance Cardiac Repair. Circulation, 2022, 145, 1427-1430.	1.6	0
1037	Stimulation of Cardiomyocyte Proliferation Is Dependent on Species and Level of Maturation. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	1
1038	Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair. Journal of Molecular and Cellular Cardiology, 2022, 170, 15-21.	0.9	4
1039	Diagnostics and Prevention: Landscape for Technology Innovation in Precision Cardiovascular Medicine. , 2022, , 603-624.		0
1041	PLK inhibitors identified by high content phenotypic screening promote maturation of human PSC-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 2022, 620, 113-120.	1.0	1
1042	Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports, 2022, 17, 1772-1785.	2.3	9
1043	Basic pathobiology of cell-based therapies and cardiac regenerative medicine. , 2022, , 889-910.		0
1046	Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine, 2022, 50, 101530.	3.2	17
1047	Engineering stem cell therapeutics for cardiac repair. Journal of Molecular and Cellular Cardiology, 2022, 171, 56-68.	0.9	12

#	Article	IF	CITATIONS
1048	The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Engineering and Regenerative Medicine, 2022, 19, 969-986.	1.6	5
1049	Don't Turn Off the Tap! The Importance of Discovery Science to the Australian Cardiovascular Sector and Improving Clinical Outcomes Into the Future. Heart Lung and Circulation, 2022, , .	0.2	0
1050	Three-Dimensional Poly-(ε-Caprolactone) Nanofibrous Scaffolds Promote the Maturation of Human Pluripotent Stem Cells-Induced Cardiomyocytes. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
1051	The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clinical Science, 2022, 136, 1179-1203.	1.8	7
1052	Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	209
1053	Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Molecular Therapy, 2023, 31, 211-229.	3.7	15
1054	Fabrication of human myocardium using multidimensional modelling of engineered tissues. Biofabrication, 2022, 14, 045017.	3.7	2
1055	Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options?. International Journal of Molecular Sciences, 2022, 23, 10314.	1.8	9
1056	Mending a broken heart—targeting cardiomyocyte regeneration: a literature review. Annals of Translational Medicine, 2022, .	0.7	0
1057	Pluripotent Stem Cell-Derived Cardiovascular Progenitors Regenerate and Improve Function of Infarcted Pig Hearts. SSRN Electronic Journal, 0, , .	0.4	0
1058	Myocardial matrix hydrogel acts as a reactive oxygen species scavenger and supports a proliferative microenvironment for cardiomyocytes. Acta Biomaterialia, 2022, 152, 47-59.	4.1	11
1059	Recent Advances in Cardiac Patches: Materials, Preparations, and Properties. ACS Biomaterials Science and Engineering, 2022, 8, 3659-3675.	2.6	15
1060	Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. Hearts, 2022, 3, 96-116.	0.4	1
1061	Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Reports, 2022, 17, 2272-2285.	2.3	9
1063	Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. Biophysics Reviews, 2022, 3, .	1.0	5
1064	Flexible Electroâ€Optical Arrays for Simultaneous Multiâ€6ite Colocalized Spatiotemporal Cardiac Mapping and Modulation. Advanced Optical Materials, 2022, 10, .	3.6	7
1065	Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life, 0, , .	1.5	1
1066	Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering, 2022, 9, 605.	1.6	4

#	Article	IF	CITATIONS
1067	Contractile Force of Transplanted Cardiomyocytes Actively Supports Heart Function After Injury. Circulation, 2022, 146, 1159-1169.	1.6	17
1068	Animal Models and Methods of Myocardial Infarction Induction and the Role of Tissue Engineering in the Regeneration of Damaged Myocardium. Current Stem Cell Research and Therapy, 2023, 18, 676-689.	0.6	0
1069	Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating. Frontiers in Chemical Engineering, 0, 4, .	1.3	0
1070	Therapeutic Uses of Stem Cells for Heart Failure: Hype or Hope. , 2022, , 511-544.		0
1071	Pentraxin 3 regulates tyrosine kinase inhibitor-associated cardiomyocyte contraction and mitochondrial dysfunction via ERK/JNK signalling pathways. Biomedicine and Pharmacotherapy, 2023, 157, 113962.	2.5	3
1072	Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	12
1074	Mettl3-mediated m6A modification of Fgf16 restricts cardiomyocyte proliferation during heart regeneration. ELife, 0, 11, .	2.8	6
1075	Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: Inefficient procedure for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2023, 174, 77-87.	0.9	7
1076	Three-Dimensional Bio-Printed Cardiac Patch for Sustained Delivery of Extracellular Vesicles from the Interface. Gels, 2022, 8, 769.	2.1	2
1077	Single-cell transcriptomic profiling reveals specific maturation signatures in human cardiomyocytes derived from LMNB2-inactivated induced pluripotent stem cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1078	Opportunities and Challenges of Human IPSC Technology in Kidney Disease Research. Biomedicines, 2022, 10, 3232.	1.4	0
1079	Genome Editing and Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2023, , 37-52.	0.8	0
1080	Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. Journal of Cardiovascular Development and Disease, 2022, 9, 429.	0.8	4
1081	Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics, 2023, 13, 685-703.	4.6	26
1082	Cardiac regeneration: Options for repairing the injured heart. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5
1083	Injectable Decellularized Extracellular Matrix Hydrogel Containing Stromal Cell-Derived Factor 1 Promotes Transplanted Cardiomyocyte Engraftment and Functional Regeneration after Myocardial Infarction. ACS Applied Materials & Interfaces, 2023, 15, 2578-2589.	4.0	15
1084	Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models. Computers in Biology and Medicine, 2023, 154, 106550.	3.9	5
1085	Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2

# 1086	ARTICLE Stem Cells and Therapies in Cardiac Regeneration. , 2023, , 127-141.	IF	CITATIONS 0
1088	Optimized Conditions for the Long-Term Maintenance of Precision-Cut Murine Myocardium in Biomimetic Tissue Culture. Bioengineering, 2023, 10, 171.	1.6	0
1090	Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung and Circulation, 2023, , .	0.2	1
1091	Remote-refocusing light-sheet fluorescence microscopy enables 3D imaging of electromechanical coupling of hiPSC-derived and adult cardiomyocytes in co-culture. Scientific Reports, 2023, 13, .	1.6	Ο
1092	Tissue-embedded stretchable nanoelectronics reveal endothelial cell–mediated electrical maturation of human 3D cardiac microtissues. Science Advances, 2023, 9, .	4.7	8
1093	Advances in 3D Organoid Models for Stem Cell-Based Cardiac Regeneration. International Journal of Molecular Sciences, 2023, 24, 5188.	1.8	3
1094	Ultrathin and Flexible Bioelectronic Arrays for Functional Measurement of iPSC-Cardiomyocytes under Cardiotropic Drug Administration and Controlled Microenvironments. Nano Letters, 2023, 23, 2321-2331.	4.5	3
1095	Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Seminars in Perinatology, 2023, 47, 151725.	1.1	0
1096	Large animal models for cardiac remuscularization studies: A methodological review. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
1097	Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines, 2023, 11, 915.	1.4	5
1098	Temperature Dependence of the Beating Frequency of hiPSC-CMs Using a MEMS Force Sensor. Sensors, 2023, 23, 3370.	2.1	0
1099	Cellular reprogramming of fibroblasts in heart regeneration. Journal of Molecular and Cellular Cardiology, 2023, 180, 84-93.	0.9	3
1100	Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes and Diseases, 2024, 11, 747-759.	1.5	1
1101	Collagen Hydrogel Containing Polyethylenimineâ€Gold Nanoparticles for Drug Release and Enhanced Beating Properties of Engineered Cardiac Tissues. Advanced Healthcare Materials, 2023, 12, .	3.9	14
1102	Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. Stem Cell Reports, 2023, 18, 936-951.	2.3	3
1103	Graft–host coupling changes can lead to engraftment arrhythmia: a computational study. Journal of Physiology, 2023, 601, 2733-2749.	1.3	4
1104	Cardiac Regeneration Using Pluripotent Stem Cells and Controlling Immune Responses. Heart Lung and Circulation, 2023, , .	0.2	3
1105	When gene editing turns a nasty goddess into a friendly MEDUSA. Cell Stem Cell, 2023, 30, 340-342.	5.2	0

#	Article	IF	CITATIONS
1106	Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes. Cells, 2023, 12, 1090.	1.8	3
1107	Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. Journal of Cardiac Failure, 2023, 29, 503-513.	0.7	0
1108	Effect of CDM3 on co-culture of human-induced pluripotent stem cells with Matrigel-covered polycaprolactone to prepare cardiac patches. In Vitro Cellular and Developmental Biology - Animal, 0, , .	0.7	0
1109	Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells, 2023, 12, 1166.	1.8	2
1110	The Role of Large Animal Models in Cardiac Regeneration Research Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Current Cardiology Reports, 2023, 25, 325-331.	1.3	1
1133	Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 2023, 11, 7280-7299.	2.9	5
1134	Cardiovascular Stem Cell Applications in Experimental Animal Models. , 2023, , 465-490.		0
1135	"Heart Cells―Derived from Pluripotent Stem Cells and Therapeutic Applications. , 2023, , 97-117.		0
1136	Recent Advances in In Vitro Generation of Mature Cardiomyocytes. , 2023, , 1-22.		0
1142	Decellularized Tissue-Derived Materials as Scaffolds for Tissue Engineering. , 2023, , 1-19.		0
1148	Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
1154	Entwicklung von Stammzellen in der kardio-regenerativen Therapie. , 2023, , 103-130.		0
1163	Multifaceted Role of Induced Pluripotent Stem Cells in Preclinical Cardiac Regeneration Research. , 2023, , 1-61.		0
1182	Silk for cardiac tissue engineering. , 2024, , 567-600.		0
1186	Cell-Based Therapies in Myocardial Infarction and Tissue Regeneration. Synthesis Lectures on Biomedical Engineering, 2024, , 61-78.	0.1	0