The inflammatory response in myocardial injury, repair

Nature Reviews Cardiology 11, 255-265

DOI: 10.1038/nrcardio.2014.28

Citation Report

#	Article	IF	CITATIONS
1	Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1233-H1242.	3.2	158
2	Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-8.	1.2	38
3	Regulating Repair. Circulation Research, 2014, 115, 7-9.	4.5	20
4	Coronary Microvascular Dysfunction. , 2014, , .		423
5	The Notch pathway: a novel target for myocardial remodelling therapy?. European Heart Journal, 2014, 35, 2140-2145.	2.2	46
6	Anti-CCL21 Antibody Attenuates Infarct Size and Improves Cardiac Remodeling After Myocardial Infarction. Cellular Physiology and Biochemistry, 2015, 37, 979-990.	1.6	22
7	<scp>BNP</scp> in heart failure: even leucocytes cannot escape its influence. European Journal of Heart Failure, 2015, 17, 536-538.	7.1	2
8	Direct Reprogramming of Fibroblasts into Cardiomyocytes for Cardiac Regenerative Medicine. Circulation Journal, 2015, 79, 245-254.	1.6	49
9	A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Scientific Reports, 2015, 5, 12361.	3.3	83
10	Toll-like receptor 5 deficiency exacerbates cardiac injury and inflammation induced by myocardial ischaemia-reperfusion in the mouse. Clinical Science, 2015, 129, 187-198.	4.3	25
11	The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 89, 223-231.	1.9	16
12	Pathophysiology of Myocardial Infarction. , 2015, 5, 1841-1875.		437
13	Cardiac Physiology of Aging: Extracellular Considerations. , 2015, 5, 1069-1121.		35
14	Identification of NFâ€ <i>κ</i> B inhibitors in Qishenyiqi dropping pills for myocardial infarction treatment based on bioactivityâ€integrated UPLCâ€Q/TOF MS. Biomedical Chromatography, 2015, 29, 1612-1618.	1.7	7
15	Physiological Implications of Myocardial Scar Structure. , 2015, 5, 1877-1909.		198
16	Cardiac Fibroblast Physiology and Pathology. , 2015, 5, 887-909.		39
17	Baicalin inhibits inflammation and attenuates myocardial ischaemic injury by aryl hydrocarbon receptor. Journal of Pharmacy and Pharmacology, 2015, 67, 1756-1764.	2.4	24
18	Inflammation in cardiac injury, repair and regeneration. Current Opinion in Cardiology, 2015, 30, 240-245.	1.8	148

#	ARTICLE	IF	CITATIONS
19	Using the laws of thermodynamics to understand how matrix metalloproteinases coordinate the myocardial response to injury. Metalloproteinases in Medicine, 2015, 2, 75.	1.0	5
20	Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. International Journal of Molecular Sciences, 2015, 16, 29583-29591.	4.1	49
21	Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction. PLoS ONE, 2015, 10, e0145094.	2.5	10
22	The Evaluation of Plasma and Leukocytic IL-37 Expression in Early Inflammation in Patients with Acute ST-Segment Elevation Myocardial Infarction after PCI. Mediators of Inflammation, 2015, 2015, 1-6.	3.0	20
23	Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	28
24	The Role of Inflammation in Myocardial Infarction. , 2015, , 39-65.		4
25	Transforming growth factor \hat{l}^2 -activated kinase 1 negatively regulates interleukin- $1\hat{l}$ ±-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2015, 463, 130-136.	2.1	9
26	Preventive effects of oleuropein against cardiac remodeling after myocardial infarction in Wistar rat through inhibiting angiotensin-converting enzyme activity. Toxicology Mechanisms and Methods, 2015, 25, 538-546.	2.7	20
27	The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Review of Clinical Immunology, 2015 , 11 , 5 - 13 .	3.0	28
28	Cutting Edge: IL- $1\hat{l}\pm$ Is a Crucial Danger Signal Triggering Acute Myocardial Inflammation during Myocardial Infarction. Journal of Immunology, 2015, 194, 499-503.	0.8	100
29	Inflammatory Biomarkers in Post-infarction Heart Failure and Cardiac Remodeling. , 2015, , 105-116.		0
30	Inflammation and the pathogenesis of atrial fibrillation. Nature Reviews Cardiology, 2015, 12, 230-243.	13.7	688
31	Bisphenol A Alters Autonomic Tone and Extracellular Matrix Structure and Induces Sex-Specific Effects on Cardiovascular Function in Male and Female CD-1 Mice. Endocrinology, 2015, 156, 882-895.	2.8	60
32	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92.		1
33	Cardiac Fibrosis and Heart Failure: Cause or Effect?., 2015,,.		4
34	Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacological Research, 2015, 101, 30-40.	7.1	62
35	The Role of Notch in the Cardiovascular System: Potential Adverse Effects of Investigational Notch Inhibitors. Frontiers in Oncology, 2015, 4, 384.	2.8	33
36	Development of target-specific liposomes for delivering small molecule drugs after reperfused myocardial infarction. Journal of Controlled Release, 2015, 220, 556-567.	9.9	50

3

#	ARTICLE	IF	Citations
37	Natriuretic peptide receptor 3 (NPR3) is regulated by microRNA-100. Journal of Molecular and Cellular Cardiology, 2015, 82, 13-21.	1.9	29
38	TIPE2 acts as a negative regulator linking NOD2 and inflammatory responses in myocardial ischemia/reperfusion injury. Journal of Molecular Medicine, 2015, 93, 1033-1043.	3.9	32
39	A sustained-release drug-delivery system of synthetic prostacyclin agonist, ONO-1301SR: a new reagent to enhance cardiac tissue salvage and/or regeneration in the damaged heart. Heart Failure Reviews, 2015, 20, 401-413.	3.9	14
40	Cardiac Autoimmunity as a Novel Biomarker, Mediator, and Therapeutic Target of Heart Disease in Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 30.	4.2	15
41	Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 2015, 128, 1865-1875.	2.0	108
42	MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Research in Cardiology, 2015, 110, 26.	5.9	33
43	TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction. Circulation Research, 2015, 116, 1772-1782.	4.5	102
44	Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Research in Cardiology, 2015, 110, 25.	5.9	54
45	Cardiovascular Biomarkers. , 2015, , 167-183.		4
46	Role of Mesenchymal Stem Cells, Macrophages, and Biomaterials During Myocardial Repair., 2015, , 1-15.		0
47	Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury. Stress, 2015, 18, 645-653.	1.8	19
48	The circular relationship between matrix metalloproteinaseâ€9 and inflammation following myocardial infarction. IUBMB Life, 2015, 67, 611-618.	3.4	38
49	Shedding of syndecan-4 promotes immune cell recruitment and mitigates cardiac dysfunction after lipopolysaccharide challenge in mice. Journal of Molecular and Cellular Cardiology, 2015, 88, 133-144.	1.9	58
50	Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors, 2015, 33, 250-258.	1.7	10
51	Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circulation Research, 2015, 117, 804-816.	4.5	53
52	Telomerase Is Essential for Zebrafish Heart Regeneration. Cell Reports, 2015, 12, 1691-1703.	6.4	67
53	Targeting Interleukin- $1\hat{l}^2$ Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation, 2015, 132, 1880-1890.	1.6	200
55	Acute coronary syndrome-associated depression: The salience of a sickness response analogy?. Brain, Behavior, and Immunity, 2015, 49, 18-24.	4.1	12

#	ARTICLE	IF	Citations
56	Targeting Interleukin-1 in Heart Failure and Inflammatory Heart Disease. Current Heart Failure Reports, 2015, 12, 33-41.	3.3	76
57	Lacidipine attenuates TNF-α-induced cardiomyocyte apoptosis. Cytokine, 2015, 71, 60-65.	3.2	6
58	Remodelling after an Infarct: Crosstalk between Life and Death. Cardiology, 2016, 135, 68-76.	1.4	9
59	Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. International Journal of Molecular Sciences, 2016, 17, 958.	4.1	27
60	Therapeutic hypothermia impacts leukocyte kinetics after cardiac arrest. Cardiovascular Diagnosis and Therapy, 2016, 6, 199-207.	1.7	8
61	LATITUDE-TIMI: is there still hope for anti-inflammatory therapy in acute myocardial infaction?. Journal of Thoracic Disease, 2016, 8, E1047-E1049.	1.4	0
62	Prospective Evaluation of ¹⁸ F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome. Circulation: Cardiovascular Imaging, 2016, 9, e004316.	2.6	107
63	Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Frontiers in Immunology, 2016, 7, 75.	4.8	90
64	Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats. Toxicology and Applied Pharmacology, 2016, 305, 153-160.	2.8	7
65	Extracardiac-Lodged Mesenchymal Stromal Cells Propel an Inflammatory Response against Myocardial Infarction via Paracrine Effects. Cell Transplantation, 2016, 25, 929-935.	2.5	21
66	Recombinant Human Alpha-1 Antitrypsin-Fc Fusion Protein Reduces Mouse Myocardial Inflammatory Injury After Ischemia–Reperfusion Independent of Elastase Inhibition. Journal of Cardiovascular Pharmacology, 2016, 68, 27-32.	1.9	20
67	"Rusty Hearts― Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	3
68	Mitogenâ€activated protein kinase p38 target regenerating isletâ€derived 3 <i>γ</i> expression is upregulated in cardiac inflammatory response in the rat heart. Physiological Reports, 2016, 4, e12996.	1.7	6
69	\hat{l}^2 2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15126-15131.	7.1	48
70	Innovative reporter gene imaging techniques making inroads to biology. Cardiovascular Research, 2016, 112, 617-618.	3.8	0
71	Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports, 2016, 6, 20203.	3.3	40
72	The Kinetics of Circulating Monocyte Subsets and Monocyte-Platelet Aggregates in the Acute Phase of ST-Elevation Myocardial Infarction. Medicine (United States), 2016, 95, e3466.	1.0	41
73	Increased complements and high-sensitivity C-reactive protein predict heart failure in acute myocardial infarction. Biomedical Reports, 2016, 5, 761-765.	2.0	11

#	ARTICLE	IF	CITATIONS
75	Extracellular mtDNA activates NF- \hat{P} B via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Research in Cardiology, 2016, 111, 42.	5.9	79
76	Targeted Ablation of Periostin-Expressing Activated Fibroblasts Prevents Adverse Cardiac Remodeling in Mice. Circulation Research, 2016, 118, 1906-1917.	4.5	196
77	Recent advancements in understanding endogenous heart regenerationâ€"insights from adult zebrafish and neonatal mice. Seminars in Cell and Developmental Biology, 2016, 58, 34-40.	5.0	30
78	Inflammation as a Driver of Adverse LeftÂVentricular Remodeling After Acute Myocardial Infarction. Journal of the American College of Cardiology, 2016, 67, 2050-2060.	2.8	340
79	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	21.8	442
80	Changes in interconnected pathways implicating microRNAs are associated with the activity of apocynin in attenuating myocardial fibrogenesis. European Journal of Pharmacology, 2016, 784, 22-32.	3.5	9
81	Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury. Circulation Research, 2016, 119, 1116-1127.	4. 5	81
82	Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Research in Cardiology, 2016, 111, 63.	5.9	95
83	Authors' Reply. American Journal of Pathology, 2016, 186, 2234-2235.	3.8	0
84	Complement C3a predicts outcome in cardiac resynchronization therapy of heart failure. Inflammation Research, 2016, 65, 933-940.	4.0	7
85	Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Scientific Reports, 2016, 6, 32660.	3.3	15
86	Deletion of CD28 Co-stimulatory Signals Exacerbates Left Ventricular Remodeling and Increases Cardiac Rupture After Myocardial Infarction. Circulation Journal, 2016, 80, 1971-1979.	1.6	10
87	Leukocyte-Expressed \hat{l}^2 ₂ -Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation, 2016, 134, 153-167.	1.6	53
88	GsMTx4-D is a cardioprotectant against myocardial infarction during ischemia and reperfusion. Journal of Molecular and Cellular Cardiology, 2016, 98, 83-94.	1.9	32
89	Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. Journal of Molecular and Cellular Cardiology, 2016, 98, 95-102.	1.9	56
90	Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction. Journal of Visualized Experiments, 2016, , .	0.3	12
91	Cardiac extracellular matrix proteomics: Challenges, techniques, and clinical implications. Proteomics - Clinical Applications, 2016, 10, 39-50.	1.6	60
92	The contributions of dipeptidyl peptidase IV to inflammation in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1760-H1772.	3.2	13

#	Article	IF	Citations
93	BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circulation Research, 2016, 119, 434-449.	4.5	40
94	The Biological Basis for Cardiac Repair After Myocardial Infarction. Circulation Research, 2016, 119, 91-112.	4.5	1,408
95	Cardiac fibrosis in myocardial infarctionâ€"from repair and remodeling to regeneration. Cell and Tissue Research, 2016, 365, 563-581.	2.9	617
96	Plasma-derived Extracellular Vesicles Contain Predictive Biomarkers and Potential Therapeutic Targets for Myocardial Ischemic (MI) Injury. Molecular and Cellular Proteomics, 2016, 15, 2628-2640.	3.8	97
97	Reduced acute myocardial ischemia–reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflammation Research, 2016, 65, 489-499.	4.0	52
98	A Multidisciplinary Assessment of Remote Myocardial Fibrosis After Reperfused Myocardial Infarction in Swine and Patients. Journal of Cardiovascular Translational Research, 2016, 9, 321-333.	2.4	9
99	Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?. Tissue Engineering - Part B: Reviews, 2016, 22, 438-458.	4.8	83
100	Plasma bilirubin values on admission and ventricular remodeling after a first anterior ST-segment elevation acute myocardial infarction. Annals of Medicine, 2016, 48, 1-9.	3.8	15
101	Myocardial fibrosis seen through the lenses of T-cell biology. Journal of Molecular and Cellular Cardiology, 2016, 92, 41-45.	1.9	36
102	Role of inflammatory cells in fibroblast activation. Journal of Molecular and Cellular Cardiology, 2016, 93, 143-148.	1.9	85
103	Translational failure of anti-inflammatory compounds for myocardial infarction: a meta-analysis of large animal models. Cardiovascular Research, 2016, 109, 240-248.	3.8	31
104	The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2016, 91, 114-122.	1.9	181
105	Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 2016, 90, 84-93.	1.9	343
106	From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circulation Research, 2016, 118, 145-156.	4.5	680
107	Transcriptional control of cardiac fibroblast plasticity. Journal of Molecular and Cellular Cardiology, 2016, 91, 52-60.	1.9	114
108	Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism: Clinical and Experimental, 2016, 65, 30-40.	3.4	99
109	Deficiency of IL-12p35 improves cardiac repair after myocardial infarction by promoting angiogenesis. Cardiovascular Research, 2016, 109, 249-259.	3.8	47
110	Targeting danger-associated molecular patterns after myocardial infarction. Expert Opinion on Therapeutic Targets, 2016, 20, 223-239.	3.4	48

#	Article	IF	CITATIONS
111	Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction?. European Heart Journal, 2016, 37, 868-872.	2.2	67
112	mTORC1 signaling is crucial for regulatory T cells to suppress macrophageâ€mediated inflammatory response after acute myocardial infarction. Immunology and Cell Biology, 2016, 94, 274-284.	2.3	7
113	PET/CT and CMR imaging in a patient with chest pain and unobstructed coronary vessels. Journal of Nuclear Cardiology, 2016, 23, 326-330.	2.1	0
114	Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research, 2016, 167, 152-166.	5.0	120
115	Relationship between residual viable myocardium and LV remodeling post-MI: Only part of the story. Journal of Nuclear Cardiology, 2017, 24, 668-671.	2.1	2
116	BMP protein-mediated crosstalk between inflammatory cells and human pluripotent stem cell-derived cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1466-1478.	2.7	23
117	Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. Journal of Biological Chemistry, 2017, 292, 2345-2358.	3.4	34
118	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.4	24
119	Prolonged intra-myocardial growth hormone administration ameliorates post-infarction electrophysiologic remodeling in rats. Growth Factors, 2017, 35, 1-11.	1.7	7
120	IL-37 increased in patients with acute coronary syndrome and associated with a worse clinical outcome after ST-segment elevation acute myocardial infarction. Clinica Chimica Acta, 2017, 468, 140-144.	1.1	27
121	Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and Cardiac Function After Myocardial Infarction by Modulating the Regulatory T Cell and Macrophage Polarization. Circulation, 2017, 135, 1444-1457.	1.6	137
122	Association of serum HMGB2 level with MACE at 1 mo of myocardial infarction: Aggravation of myocardial ischemic injury in rats by HMGB2 via ROS. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H422-H436.	3.2	28
123	Exosomal MicroRNA Transfer Into Macrophages Mediates Cellular Postconditioning. Circulation, 2017, 136, 200-214.	1.6	261
124	Harnessing the early post-injury inflammatory responses for cardiac regeneration. Journal of Biomedical Science, 2017, 24, 7.	7.0	41
125	Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides, 2017, 93, 1-12.	2.4	16
126	Macrophages. Results and Problems in Cell Differentiation, 2017, , .	0.7	8
127	Macrophages' Role in Tissue Disease and Regeneration. Results and Problems in Cell Differentiation, 2017, 62, 245-271.	0.7	26
128	Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochemical and Biophysical Research Communications, 2017, 490, 643-649.	2.1	27

#	Article	IF	CITATIONS
129	The long noncoding RNA $\langle i \rangle$ Wisper $\langle i \rangle$ controls cardiac fibrosis and remodeling. Science Translational Medicine, 2017, 9, .	12.4	232
130	Myocardial Reparative Properties of Cardiac Mesenchymal Cells IsolatedÂonÂtheÂBasis of Adherence. Journal of the American College of Cardiology, 2017, 69, 1824-1838.	2.8	45
131	Topiramate modulates post-infarction inflammation primarily by targeting monocytes or macrophages. Cardiovascular Research, 2017, 113, 475-487.	3.8	32
132	Therapeutic Hypothermia Reduces the Inflammatory Response Following Ischemia/Reperfusion Injury in Rat Hearts. Therapeutic Hypothermia and Temperature Management, 2017, 7, 162-170.	0.9	34
133	Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicology and Applied Pharmacology, 2017, 327, 52-58.	2.8	47
134	Intracoronary nitrite suppresses the inflammatory response following primary percutaneous coronary intervention. Heart, 2017, 103, 508.2-516.	2.9	14
135	Down-regulation of miR-15a/b accelerates fibrotic remodelling in the TypeÂ2 diabetic human and mouse heart. Clinical Science, 2017, 131, 847-863.	4.3	62
136	Sympathetic nervous activity in patients with acute coronary syndrome: a comparative study of inflammatory biomarkers. Clinical Science, 2017, 131, 883-895.	4.3	12
137	Lymphocyte Communication in Myocardial Ischemia/Reperfusion Injury. Antioxidants and Redox Signaling, 2017, 26, 660-675.	5.4	49
138	Signal transduction analysis of the NLRP3-inflammasome pathway after cellular damage and its paracrine regulation. Journal of Theoretical Biology, 2017, 415, 125-136.	1.7	16
139	Forming Magnetosome-Like Nanoparticles in Mammalian Cells for Molecular MRI., 2017, , 187-203.		5
140	ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1595-1605.	2.4	45
142	Pathogenesis, Clinical Features and Treatment of Diabetic Cardiomyopathy. Advances in Experimental Medicine and Biology, 2017, 1067, 197-217.	1.6	44
143	Synthetic/ECM-inspired hybrid platform for hollow microcarriers with ROS-triggered nanoporation hallmarks. Scientific Reports, 2017, 7, 13138.	3.3	18
144	High-sensitivity C-reactive protein and long term reperfusion success of primary percutaneous intervention in ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 248, 51-56.	1.7	17
145	Involvement of S100A8/A9-TLR4-NLRP3 Inflammasome Pathway in Contrast-Induced Acute Kidney Injury. Cellular Physiology and Biochemistry, 2017, 43, 209-222.	1.6	68
146	Anti-inflammatory treatment and risk of depression in 91,842 patients with acute coronary syndrome and 91,860 individuals without acute coronary syndrome in Denmark. International Journal of Cardiology, 2017, 246, 1-6.	1.7	9
147	Obesity and Cardiometabolic Defects in Heart Failure Pathology. , 2017, 7, 1463-1477.		41

#	Article	IF	CITATIONS
148	Galectin-3, a marker of cardiac remodeling, is inversely related to serum levels of marine omega-3 fatty acids. A cross-sectional study. JRSM Cardiovascular Disease, 2017, 6, 204800401772998.	0.7	4
149	Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Scientific Reports, 2017, 7, 9999.	3.3	56
150	Differences in Stem Cell Processing Lead to Distinct Secretomes Secretionâ€"Implications for Differential Results of Previous Clinical Trials of Stem Cell Therapy for Myocardial Infarction. Biotechnology Journal, 2017, 12, 1600732.	3.5	9
151	Prolonged Fever After STâ€Segment Elevation Myocardial Infarction and Longâ€Term Cardiac Outcomes. Journal of the American Heart Association, 2017, 6, .	3.7	10
152	From Inflammation to Fibrosis—Molecular and Cellular Mechanisms of Myocardial Tissue Remodelling and Perspectives on Differential Treatment Opportunities. Current Heart Failure Reports, 2017, 14, 235-250.	3.3	222
153	Evaluation of pharmacokinetic and pharmacodynamic profiles of liposomes for the cell type-specific delivery of small molecule drugs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2565-2574.	3.3	10
154	Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. Npj Regenerative Medicine, $2017, 2, \ldots$	5. 2	164
155	Focal right atrial tachycardia with three foci in a patient with polymyositis. Journal of Cardiology Cases, 2017, 16, 134-137.	0.5	2
156	The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction. Biomicrofluidics, 2017, 11, 044104.	2.4	34
157	GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. European Journal of Preventive Cardiology, 2017, 24, 1576-1583.	1.8	60
158	The cardiac microenvironment uses nonâ€canonical <scp>WNT</scp> signaling to activate monocytes after myocardial infarction. EMBO Molecular Medicine, 2017, 9, 1279-1293.	6.9	55
159	Role of cardiac inflammation in right ventricular failure. Cardiovascular Research, 2017, 113, 1441-1452.	3.8	58
160	IL-4 as a Repurposed Biological Drug for Myocardial Infarction through Augmentation of Reparative Cardiac Macrophages: Proof-of-Concept Data in Mice. Scientific Reports, 2017, 7, 6877.	3.3	74
161	BEX1 is an RNA-dependent mediator of cardiomyopathy. Nature Communications, 2017, 8, 1875.	12.8	33
162	Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in AcuteÂMyocardial Infarction. JACC Basic To Translational Science, 2017, 2, 561-574.	4.1	28
163	The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart. Journal of Biological Chemistry, 2017, 292, 20975-20988.	3.4	20
164	IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nature Medicine, 2017, 23, 1481-1487.	30.7	358
165	Is Cardioprotection Dead?. Circulation, 2017, 136, 98-109.	1.6	58

#	Article	IF	CITATIONS
166	Administration of the Mitochondrial Permeability Transition Pore Inhibitor, TRO40303, prior to Primary Percutaneous Coronary Intervention, Does Not Affect the Levels of Pro-Inflammatory Cytokines or Acute-Phase Proteins. Cardiology, 2017, 138, 122-132.	1.4	6
167	Hydrogel based approaches for cardiac tissue engineering. International Journal of Pharmaceutics, 2017, 523, 454-475.	5.2	112
168	Murine Double Minute-2 Inhibition Attenuates Cardiac Dysfunction and Fibrosis by Modulating NF-κB Pathway After Experimental Myocardial Infarction. Inflammation, 2017, 40, 232-239.	3.8	13
169	The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 298-309.	3.8	328
170	Immune cells in repair of the infarcted myocardium. Microcirculation, 2017, 24, e12305.	1.8	71
171	Basic Signaling in Cardiac Fibroblasts. Journal of Cellular Physiology, 2017, 232, 725-730.	4.1	24
172	Getting to the heart of intracellular glucocorticoid regeneration: $11\hat{l}^2$ -HSD1 in the myocardium. Journal of Molecular Endocrinology, 2017, 58, R1-R13.	2.5	28
173	Immunohistochemical detection of early myocardial infarction: a systematic review. International Journal of Legal Medicine, 2017, 131, 411-421.	2.2	34
174	A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy, 2017, 19, 131-140.	0.7	7
175	Biomechanics: Trends in Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , .	1.0	12
176	Biomechanics of Myocardial Ischemia and Infarction. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 233-269.	1.0	2
177	The Inflammatory Response in Tissue Repair. , 0, , 1517-1538.		6
178	Leukocyte-Associated Immunoglobulin-like Receptor-1 is regulated in human myocardial infarction but its absence does not affect infarct size in mice. Scientific Reports, 2017, 7, 18039.	3.3	8
179	Fatty Acids in Veterinary Medicine and Research. , 2017, , .		3
180	The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Frontiers in Physiology, 2017, 8, 777.	2.8	162
181	Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair <i>via </i>)via)via	10.0	37
182	Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats. International Journal of Nanomedicine, 2017, Volume 12, 3767-3784.	6.7	24
183	Prognostic Value of Eosinophil to Leukocyte Ratio in Patients with ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Journal of Atherosclerosis and Thrombosis, 2017, 24, 827-840.	2.0	21

#	Article	IF	CITATIONS
184	Activation of Inflammatory and Pro-Thrombotic Pathways in Acute Stress Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2017, 4, 49.	2.4	18
185	Sestrin2 Suppresses Classically Activated Macrophages-Mediated Inflammatory Response in Myocardial Infarction through Inhibition of mTORC1 Signaling. Frontiers in Immunology, 2017, 8, 728.	4.8	40
186	Relationships of growth factors, proinflammatory cytokines, and anti-inflammatory cytokines with long-term clinical results of autologous bone marrow mononuclear cell transplantation in STEMI. PLoS ONE, 2017, 12, e0176900.	2.5	3
187	Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells. PLoS ONE, 2017, 12, e0178779.	2.5	6
188	Can Statins Modify the Wound Healing Process After Myocardial Infarction?. International Heart Journal, 2017, 58, 472-474.	1.0	2
189	The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. Journal of Atherosclerosis and Thrombosis, 2017, 24, 884-894.	2.0	157
190	The proton-sensing G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) shows cardioprotective effects against myocardial infarction. Scientific Reports, 2017, 7, 7812.	3.3	23
191	THE UNEXPECTED CARDIOPROTECTION BY EPIGENETIC FOODS. Journal of the Siena Academy of Sciences, 2017, 8, .	0.0	1
192	The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 2017, 127, 1600-1612.	8.2	362
193	The Cardiokines. , 2017, , 87-114.		0
194	Monocytes and macrophages in cardiac injury and repair. Journal of Thoracic Disease, 2017, 9, S30-S35.	1.4	58
195	The role of transforming growth factor (TGF)- \hat{l}^2 in the infarcted myocardium. Journal of Thoracic Disease, 2017, 9, S52-S63.	1.4	108
196	Inflammatory Response During Myocardial Infarction. Advances in Clinical Chemistry, 2018, 84, 39-79.	3.7	26
197	Genetically engineered two-warhead evasins provide a method to achieve precision targeting of disease-relevant chemokine subsets. Scientific Reports, 2018, 8, 6333.	3.3	13
198	Epigenetics of Aberrant Cardiac Wound Healing. , 2018, 8, 451-491.		10
199	The pathophysiology of myocardial infarction-induced heart failure. Pathophysiology, 2018, 25, 277-284.	2.2	73
200	Cardiac (myo)fibroblasts modulate the migration of monocyte subsets. Scientific Reports, 2018, 8, 5575.	3.3	26
201	Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 2018, 6, 66.	11.1	185

#	Article	IF	CITATIONS
202	Evidence for cardiotoxicity associated with sertraline in rats. Toxicology Research, 2018, 7, 817-825.	2.1	10
203	Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation, 2018, 138, 1236-1252.	1.6	185
204	Danger Signals in the ICU. Critical Care Medicine, 2018, 46, 791-798.	0.9	17
205	The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clinica Chimica Acta, 2018, 479, 196-207.	1.1	36
206	Antiâ€inflammatory therapies in myocardial infarction: failures, hopes and challenges. British Journal of Pharmacology, 2018, 175, 1377-1400.	5.4	192
207	Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano, 2018, 12, 1959-1977.	14.6	184
208	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
209	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	7.1	118
210	Acute heart failure following myocardial infarction: complement activation correlates with the severity of heart failure in patients developing cardiogenic shock. ESC Heart Failure, 2018, 5, 292-301.	3.1	27
211	Noninvasive Immunometabolic Cardiac Inflammation Imaging Using Hyperpolarized Magnetic Resonance. Circulation Research, 2018, 122, 1084-1093.	4.5	64
212	Outcome of thrombus aspiration in STEMI patients: a propensity score-adjusted study. Journal of Thrombosis and Thrombolysis, 2018, 45, 240-249.	2.1	2
213	Trajectories of Circulating Monocyte Subsets After ST-Elevation Myocardial Infarction During Hospitalization: Latent Class Growth Modeling for High-Risk Patient Identification. Journal of Cardiovascular Translational Research, 2018, 11, 22-32.	2.4	11
214	Cell biological mechanisms in regulation of the post-infarction inflammatory response. Current Opinion in Physiology, 2018, 1, 7-13.	1.8	47
215	Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. Circulation Research, 2018, 122, 113-127.	4.5	181
216	Neutrophil to lymphocyte ratio as a predictor of myocardial damage and cardiac dysfunction in acute coronary syndrome patients. Integrative Medicine Research, 2018, 7, 192-199.	1.8	39
217	Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3436-E3445.	7.1	30
218	Regulator of G-protein signalling 5 deficiency impairs ventricular remodelling after myocardial infarction by promoting NF-κB and MAPK signalling in mice. Biochemical and Biophysical Research Communications, 2018, 499, 143-149.	2.1	6
219	Monocytes and macrophages in heart valves: Uninvited guests or critical performers?. Current Opinion in Biomedical Engineering, 2018, 5, 82-89.	3.4	14

#	Article	IF	Citations
220	Reg $3\hat{l}^2$ is associated with cardiac inflammation and provides prognostic information in patients with acute coronary syndrome. International Journal of Cardiology, 2018, 258, 7-13.	1.7	9
221	PET Assessment of Immune Cell Activity and Therapeutic Monitoring Following Myocardial Infarction. Current Cardiology Reports, 2018, 20, 13.	2.9	8
222	Microfluidic Coculture Device for Monitoring of Inflammation-Induced Myocardial Injury Dynamics. Analytical Chemistry, 2018, 90, 4485-4494.	6.5	20
223	Editor's Choice- Activation of the innate immune system in the pathogenesis of acute heart failure. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 358-361.	1.0	4
224	Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing. Journal of NeuroInterventional Surgery, 2018, 10, 301-305.	3.3	17
225	Labelâ€free imaging of healthy and infarcted fetal sheep hearts by twoâ€photon microscopy. Journal of Biophotonics, 2018, 11, e201600296.	2.3	6
226	Protective Role of N-Acetylcysteine on Isoprenaline-Induced Myocardial Injury: Histological, Immunohistochemical and Morphometric Study. Cardiovascular Toxicology, 2018, 18, 9-23.	2.7	13
227	Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction. Journal of Traditional and Complementary Medicine, 2018, 8, 150-163.	2.7	19
228	Photobiomodulation Therapy Alleviates Tissue Fibroses Associated with Chronic Graft-Versus-Host Disease: Two Case Reports and Putative Anti-Fibrotic Roles of TGF-β. Photomedicine and Laser Surgery, 2018, 36, 92-99.	2.0	18
229	Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Research in Cardiology, 2018, 113, 5.	5.9	202
230	Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction. Journal of Internal Medicine, 2018, 283, 334-345.	6.0	4
231	Immune Mechanisms in Cardiac Physiology. , 2018, , 55-67.		0
233	Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Tzu Chi Medical Journal, 2018, 30, 209.	1.1	56
234	OBSOLETE: Immune Mechanisms in Cardiac Physiology. , 2018, , .		0
235	The Role of Leukocytes in Diabetic Cardiomyopathy. Frontiers in Physiology, 2018, 9, 1547.	2.8	50
236	Strategies for Tissue Engineering Vascularized Cardiac Patches to Treat Myocardial Infarctions. Biological and Medical Physics Series, 2018, , 141-175.	0.4	1
237	Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics, 2018, 19, 812.	2.8	150
238	Post Infarction Regeneration of Ischemic Myocardium by Intramyocardial Injection of $\hat{l}\pm$ -Gal Nanoparticles. , 2018, , 257-268.		0

#	Article	IF	CITATIONS
239	Simultaneous Assessment of Cardiac Inflammation and Extracellular Matrix Remodeling After Myocardial Infarction. Circulation: Cardiovascular Imaging, 2018, 11, .	2.6	30
240	Stress Coping Strategies in the Heart: An Integrated View. Frontiers in Cardiovascular Medicine, 2018, 5, 168.	2.4	17
241	IL-6 Receptor Inhibition by Tocilizumab Attenuated Expression of C5a Receptor 1 and 2 in Non-ST-Elevation Myocardial Infarction. Frontiers in Immunology, 2018, 9, 2035.	4.8	21
242	Mouse Mast Cell Protease 4 Deletion Protects Heart Function and Survival After Permanent Myocardial Infarction. Frontiers in Pharmacology, 2018, 9, 868.	3.5	12
243	Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich–Containing Family, Pyrin) Tj ETQq0 0 0 rgBT /Overlov	ock 10 Tf 5 2.4	50 587 Td (D 48
244	Biomarker Profiling in Stage 5 Chronic Kidney Disease Identifies the Relationship between Angiopoietin-2 and Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 2018, 24, 269S-276S.	1.7	8
245	Immunopharmacology of Post-Myocardial Infarction and Heart Failure Medications. Journal of Clinical Medicine, 2018, 7, 403.	2.4	11
246	A New Era of Targeting Pathogenic Immune Mechanisms in Cardiovascular Disease. Korean Circulation Journal, 2018, 48, 944.	1.9	3
247	Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells. Circulation Research, 2018, 123, 686-699.	4. 5	23
248	Inflammation in Right Ventricular Failure: Does It Matter?. Frontiers in Physiology, 2018, 9, 1056.	2.8	37
249	Response and outcome from fluid resuscitation in acute pancreatitis: a prospective cohort study. Hpb, 2018, 20, 1082-1091.	0.3	12
250	Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8727-E8736.	7.1	25
252	Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia. JACC: Cardiovascular Imaging, 2018, 11, 1340-1355.	5.3	57
253	The interstitium in cardiac repair: role of the immune–stromal cell interplay. Nature Reviews Cardiology, 2018, 15, 601-616.	13.7	94
254	Hydrogen Sulfide Alleviates Acute Myocardial Ischemia Injury by Modulating Autophagy and Inflammation Response under Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-17.	4.0	31
255	Receptor for activated C kinase 1 in rats with ischemia-reperfusion injury: intravenous versus inhalation anaesthetic agents. International Journal of Medical Sciences, 2018, 15, 352-358.	2.5	6
256	Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1553-H1568.	3.2	235
257	MicroRNA-495 Ameliorates Cardiac Microvascular Endothelial Cell Injury and Inflammatory Reaction by Suppressing the NLRP3 Inflammasome Signaling Pathway. Cellular Physiology and Biochemistry, 2018, 49, 798-815.	1.6	53

#	Article	IF	CITATIONS
258	Cardiomyopathy, oxidative stress and impaired contractility in a rheumatoid arthritis mouse model. Heart, 2018, 104, 2026-2034.	2.9	28
259	Soluble IL-1 receptor 2 is associated with left ventricular remodelling in patients with ST-elevation myocardial infarction. International Journal of Cardiology, 2018, 268, 187-192.	1.7	15
260	Association of IL-8 With Infarct Size and Clinical Outcomes in Patients With STEMI. Journal of the American College of Cardiology, 2018, 72, 187-198.	2.8	40
261	Câ€reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at followâ€up. Clinical Cardiology, 2018, 41, 1201-1206.	1.8	34
262	Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox imbalance and injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3050-3059.	3.8	18
263	Dunye Guanxinning Improves Acute Myocardial Ischemia-Reperfusion Injury by Inhibiting Neutrophil Infiltration and Caspase-1 Activity. Mediators of Inflammation, 2018, 2018, 1-13.	3.0	7
264	Interleukin-6 receptor inhibition with tocilizumab induces a selective and substantial increase in plasma IP-10 and MIP- $1\hat{l}^2$ in non-ST-elevation myocardial infarction. International Journal of Cardiology, 2018, 271, 1-7.	1.7	22
265	IL (Interleukin)-10–STAT3–Galectin-3 Axis Is Essential for Osteopontin-Producing Reparative Macrophage Polarization After Myocardial Infarction. Circulation, 2018, 138, 2021-2035.	1.6	138
266	Cardiac Stem Cells: A Plethora of Potential Therapies for Myocardial Regeneration Within Reach. , 2018, , 135-171.		1
267	Critical role of inflammatory mast cell in fibrosis: Potential therapeutic effect of <scp>lL</scp> â€37. Cell Proliferation, 2018, 51, e12475.	5.3	36
268	Early Hyperbaric Oxygen Treatment Attenuates Burn-Induced Neuroinflammation by Inhibiting the Galectin-3-Dependent Toll-Like Receptor-4 Pathway in a Rat Model. International Journal of Molecular Sciences, 2018, 19, 2195.	4.1	21
269	Immunomodulation by adoptive regulatory Tâ€eell transfer improves Coxsackievirus B3â€induced myocarditis. FASEB Journal, 2018, 32, 6066-6078.	0.5	42
270	Selective increase of cardiomyocyte derived extracellular vesicles after experimental myocardial infarction and functional effects on the endothelium. Thrombosis Research, 2018, 170, 1-9.	1.7	12
271	Myocardial infarction is sufficient to increase GLP†secretion, leading to improved left ventricular contractility and mitochondrial respiratory capacity. Diabetes, Obesity and Metabolism, 2018, 20, 2911-2918.	4.4	19
272	Aucubin Protects against Myocardial Infarction-Induced Cardiac Remodeling via nNOS/NO-Regulated Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	26
273	Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1434-H1442.	3.2	18
274	Origin and Consequences of Necroinflammation. Physiological Reviews, 2018, 98, 727-780.	28.8	147
275	High-Sensitivity C-Reactive Protein Is a Predictor of Coronary Microvascular Dysfunction in Patients with Ischemic Heart Disease. Frontiers in Cardiovascular Medicine, 2017, 4, 81.	2.4	15

#	Article	IF	CITATIONS
276	MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death and Disease, 2018, 9, 769.	6.3	126
277	Coronary Microvascular Dysfunction. , 2018, , 55-68.		3
278	Enhancement Strategies for Cardiac Regenerative Cell Therapy. Circulation Research, 2018, 123, 177-187.	4.5	23
279	Azithromycin therapy reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction: Potential therapeutic targets in ischemic heart disease. PLoS ONE, 2018, 13, e0200474.	2.5	39
280	Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovascular Diabetology, 2018, 17, 68.	6.8	22
281	Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap. Frontiers in Cardiovascular Medicine, 2018, 5, 7.	2.4	13
282	Role of TGFâ€Î²1 expressed in bone marrowâ€derived mesenchymal stem cells in promoting bone formation in a rabbit femoral defect model. International Journal of Molecular Medicine, 2018, 42, 897-904.	4.0	7
283	Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nature Reviews Cardiology, 2018, 15, 471-479.	13.7	87
284	Bioactive Sphingolipids, Complement Cascade, and Free Hemoglobin Levels in Stable Coronary Artery Disease and Acute Myocardial Infarction. Mediators of Inflammation, 2018, 2018, 1-11.	3.0	6
285	Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following MyocardialÂInfarction or Pressure Overload Hypertrophy. Journal of the American College of Cardiology, 2018, 72, 885-904.	2.8	43
286	Reduced post-operative DPP4 activity associated with worse patient outcome after cardiac surgery. Scientific Reports, 2018, 8, 11820.	3.3	10
287	Hypoxic cardiac fibroblasts from failing human hearts decrease cardiomyocyte beating frequency in an ALOX15 dependent manner. PLoS ONE, 2018, 13, e0202693.	2.5	16
288	Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. International Journal of Molecular Sciences, 2018, 19, 2466.	4.1	41
289	Neuroimmune Communication in Health and Disease. Physiological Reviews, 2018, 98, 2287-2316.	28.8	74
290	Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Research in Cardiology, 2018, 113, 36.	5.9	88
291	Important roles of the Ca2+-sensing receptor in vascular health and disease. Life Sciences, 2018, 209, 217-227.	4.3	30
292	Tissue regeneration promotion effects of phenanthroimidazole derivatives through pro-inflammatory pathway activation. Fish and Shellfish Immunology, 2018, 80, 582-591.	3.6	2
293	Cyclin dependent kinase inhibitor $1\mathrm{C}$ is a female-specific marker of left ventricular function after acute myocardial infarction. International Journal of Cardiology, 2019, 274, 319-325.	1.7	10

#	Article	IF	CITATIONS
294	Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 2019, 65, 70-99.	6.4	538
295	T cell and monocyte/macrophage activation markers associate with adverse outcome, but give limited prognostic value in anemic patients with heart failure: results from RED-HF. Clinical Research in Cardiology, 2019, 108, 133-141.	3.3	6
296	Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovascular Toxicology, 2019, 19, 72-81.	2.7	18
297	Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Failure Reviews, 2019, 24, 1-15.	3.9	121
298	Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovascular Research, 2019, 115, 154-167.	3.8	38
299	Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacologica Sinica, 2019, 40, 9-12.	6.1	66
300	Monocyte to high-density lipoprotein cholesterol ratio predicts adverse cardiac events in patients with hypertrophic cardiomyopathy. Biomarkers in Medicine, 2019, 13, 1175-1186.	1.4	14
301	GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 2019, 178, 1231-1244.e11.	28.9	319
302	The protective role of NR4A3 in acute myocardial infarction by suppressing inflammatory responses via JAK2-STAT3/NF-ÎB pathway. Biochemical and Biophysical Research Communications, 2019, 517, 697-702.	2.1	24
303	Germacrane Sesquiterpenoids as a New Type of Anticardiac Fibrosis Agent Targeting Transforming Growth Factor Î ² Type I Receptor. Journal of Medicinal Chemistry, 2019, 62, 7961-7975.	6.4	5
304	Myocardial infarction and the immune response - Scarring or regeneration? A comparative look at mammals and popular regenerating animal models. Journal of Immunology and Regenerative Medicine, 2019, 4, 100016.	0.4	7
305	Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. British Journal of Pharmacology, 2019, 176, 4360-4372.	5.4	23
306	Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2082-2096.	2.4	49
307	Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. Journal of Cardiovascular Development and Disease, 2019, 6, 29.	1.6	48
308	Anti-inflammatory Action of Curcumin and Its Use in the Treatment of Lifestyle-related Diseases. European Cardiology Review, 2019, 14, 117-122.	2.2	67
309	Curcumin: footprints on cardiac tissue engineering. Expert Opinion on Biological Therapy, 2019, 19, 1199-1205.	3.1	13
310	The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. Journal of Biological Chemistry, 2019, 294, 13131-13144.	3.4	11
311	Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure. Circulation Research, 2019, 125, 265-281.	4.5	54

#	Article	IF	CITATIONS
312	The lymphocyte adapter protein: A negative regulator of myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 134, 107-118.	1.9	3
313	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
314	The Role of Non-coding RNAs in Ischemic Myocardial Reperfusion Injury. Cardiovascular Drugs and Therapy, 2019, 33, 489-498.	2.6	22
315	S100A8/A9 as a therapeutic target in myocardial infarction: cellular mechanisms, molecular interactions, and translational challenges. European Heart Journal, 2019, 40, 2724-2726.	2.2	20
316	Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within threeâ€dimensional collagen hydrogels: Integrating experiments and modelling. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1923-1937.	2.7	15
317	Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell receptor sequencing and phenotypic characterization. European Heart Journal, 2019, 40, 3924-3933.	2.2	38
318	Post-Infectious Myocardial Infarction: New Insights for Improved Screening. Journal of Clinical Medicine, 2019, 8, 827.	2.4	37
319	Platelet Contributions to Myocardial Ischemia/Reperfusion Injury. Frontiers in Immunology, 2019, 10, 1260.	4.8	69
321	Conserved <i>NPPB</i> + Border Zone Switches From MEF2- to AP-1â€"Driven Gene Program. Circulation, 2019, 140, 864-879.	1.6	70
322	Injectable Hydrogels to Treat Myocardial Infarction. , 2019, , 185-206.		3
323	Novel Molecular Targets Participating in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Cardiology Research and Practice, 2019, 2019, 1-16.	1.1	38
324	The Role of the TGF- \hat{l}^2 Superfamily in Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2019, 6, 140.	2.4	167
325	IL-10â€"producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21673-21684.	7.1	62
326	Osons la fraternité! Les écrivains aux côtés des migrants. Sous la direction de Patrick Chamoiseau et Michel Le Bris. French Studies, 2019, 73, 334-334.	0.0	0
327	The gut microbiome and heart failure: A better gut for a better heart. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 407-414.	5.7	38
328	Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Frontiers in Endocrinology, 2019, 10, 733.	3.5	33
329	Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-ΰB/TNF-α pathway in a rat model of myocardial infarction. International Immunopharmacology, 2019, 77, 105926.	3.8	33
330	Exosomes derived from proâ€inflammatory bone marrowâ€derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. Journal of Cellular and Molecular Medicine, 2019, 23, 7617-7631.	3.6	165

#	Article	IF	Citations
331	Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre―and endâ€stage heart failure. Journal of Cellular and Molecular Medicine, 2019, 23, 7505-7516.	3.6	26
332	IL- \hat{l}^2 and Statin Treatment in Patients with Myocardial Infarction and Diabetic Cardiomyopathy. Journal of Clinical Medicine, 2019, 8, 1764.	2.4	21
333	Murine Myocardial Infarction Model using Permanent Ligation of Left Anterior Descending Coronary Artery. Journal of Visualized Experiments, 2019, , .	0.3	10
334	Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification. Molecular Medicine Reports, 2019, 19, 3972-3988.	2.4	5
335	Cyclocreatine protects against ischemic injury and enhances cardiac recovery during early reperfusion. Expert Review of Cardiovascular Therapy, 2019, 17, 683-697.	1.5	14
336	Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. Journal of Proteomics, 2019, 208, 103486.	2.4	13
337	Recent Advances in Imaging Inflammation Post-Myocardial Infarction Using Positron Emission Tomography. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.6	0
338	Vildagliptin and G-CSF Improved Angiogenesis and Survival after Acute Myocardial Infarction. Archives of Medical Research, 2019, 50, 133-141.	3.3	12
339	Role of Inflammatory Cell Subtypes in Heart Failure. Journal of Immunology Research, 2019, 2019, 1-9.	2.2	67
340	Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. Journal of Immunology and Regenerative Medicine, 2019, 4, 100018.	0.4	4
341	Platelets modulate multiple markers of neutrophil function in response to in vitro Toll-like receptor stimulation. PLoS ONE, 2019, 14, e0223444.	2.5	15
342	A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomaterialia, 2019, 86, 223-234.	8.3	42
343	Role of interleukin-17 in acute myocardial infarction. Molecular Immunology, 2019, 107, 71-78.	2.2	34
344	Macrophage Migration Inhibitory Factor (MIF) Expression Increases during Myocardial Infarction and Supports Pro-Inflammatory Signaling in Cardiac Fibroblasts. Biomolecules, 2019, 9, 38.	4.0	20
345	An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11966-11971.	7.1	34
346	Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules, 2019, 9, 217.	4.0	22
347	TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death and Disease, 2019, 10, 480.	6.3	51
348	The Extracellular Matrix in Ischemic and Nonischemic Heart Failure. Circulation Research, 2019, 125, 117-146.	4.5	296

#	Article	lF	CITATIONS
349	Transplantation of CRISPRa system engineered IL10-overexpressing bone marrow-derived mesenchymal stem cells for the treatment of myocardial infarction in diabetic mice. Journal of Biological Engineering, 2019, 13, 49.	4.7	31
350	Molecular Imaging in Ischemic Heart Disease. Current Cardiovascular Imaging Reports, 2019, 12, 31.	0.6	2
351	Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. Journal of the American College of Cardiology, 2019, 73, 2990-3002.	2.8	117
352	Self-assisted membrane-penetrating helical polypeptides mediate anti-inflammatory RNAi against myocardial ischemic reperfusion (IR) injury. Biomaterials Science, 2019, 7, 3717-3728.	5.4	16
353	Prognostic Value of Initial LeftÂVentricular Remodeling in PatientsÂWith Reperfused STEMI. JACC: Cardiovascular Imaging, 2019, 12, 2445-2456.	5. 3	69
354	Associations of High-Sensitivity Cardiac Troponin and Natriuretic Peptide With Subsequent Risk of Infection in Persons Without Cardiovascular Disease: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 2019, 188, 2146-2155.	3.4	4
355	Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Frontiers in Cardiovascular Medicine, 2019, $6,51$.	2.4	49
356	Inflammatory and Molecular Pathways in Heart Failureâ€"Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. International Journal of Molecular Sciences, 2019, 20, 2322.	4.1	61
357	A Câ€ŧerminal <scp>CXCL</scp> 8 peptide based on chemokine–glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology, 2019, 157, 173-184.	4.4	19
358	Monocyte Modulation by Liposomal Alendronate Improves Cardiac Healing in a Rat Model of Myocardial Infarction. Regenerative Engineering and Translational Medicine, 2019, 5, 280-289.	2.9	2
359	Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Fibroblast-to-Myofibroblast Differentiation in Inflammatory Environments and Benefit Cardioprotective Effects. Stem Cells and Development, 2019, 28, 799-811.	2.1	35
360	Feline Hypertrophic Cardiomyopathy: The Consequence of Cardiomyocyte-Initiated and Macrophage-Driven Remodeling Processes?. Veterinary Pathology, 2019, 56, 565-575.	1.7	22
361	Fibrosis–Inflammation of the Cardiovascular System. , 2019, , 321-338.		0
362	MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1281-H1296.	3.2	9
363	Cardiac fibrosis: potential therapeutic targets. Translational Research, 2019, 209, 121-137.	5.0	118
364	Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases. Frontiers in Immunology, 2019, 10, 648.	4.8	97
365	Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovascular Research, 2019, 115, 1791-1803.	3.8	25
366	G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Frontiers in Pharmacology, 2019, 10, 112.	3 . 5	68

#	Article	IF	CITATIONS
367	Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction. Stem Cells, 2019, 37, 844-854.	3.2	16
368	Elevated expression of the metalloproteinase ADAM8 associates with vascular diseases in mice and humans. Atherosclerosis, 2019, 286, 163-171.	0.8	15
369	Identification of very early inflammatory markers in a porcine myocardial infarction model. BMC Veterinary Research, 2019, 15, 91.	1.9	9
370	Vitamin D3 supplementation ameliorates ovariectomy-induced cardiac apoptotic and structural changes in adult albino rats. Canadian Journal of Physiology and Pharmacology, 2019, 97, 647-654.	1.4	5
371	Molecular Positron Emission Tomography in Cardiac Ischemia/Reperfusion. Circulation Research, 2019, 124, 827-829.	4.5	2
372	Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32.	2.4	43
373	Hang on tight: reprogramming the cell with microstructural cues. Biomedical Microdevices, 2019, 21, 43.	2.8	13
374	Molecular Imaging to Monitor Left Ventricular Remodeling in Heart Failure. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.6	3
375	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
376	Therapeutic Potential of Pluripotent Stem Cells for Cardiac Repair after Myocardial Infarction. Biological and Pharmaceutical Bulletin, 2019, 42, 524-530.	1.4	11
377	BDNF increases associated with constant troponin T levels and may protect against poor cognitive interference control: The SABPA prospective study. European Journal of Clinical Investigation, 2019, 49, e13116.	3.4	3
378	Serum of patients with acute myocardial infarction prevents inflammation in iPSC-cardiomyocytes. Scientific Reports, 2019, 9, 5651.	3.3	6
379	The short-term prognostic value of C-reactive protein in elderly patients with acute heart failure. Revista Clínica Espanõla, 2019, 219, 10-17.	0.5	0
380	The role of dendritic cells regulated by HMGB1/TLR4 signalling pathway in myocardial ischaemia reperfusion injury. Journal of Cellular and Molecular Medicine, 2019, 23, 2849-2862.	3.6	26
381	Cardiorenal relationships in the focus of risks of atrial fibrillation in patients after acute ST-elevated myocardial infarction (observational program FAKEL). Rational Pharmacotherapy in Cardiology, 2019, 15, 159-165.	0.8	1
382	Interleukin-34 Levels Were Associated with Prognosis in Patients with Acute Myocardial Infarction. International Heart Journal, 2019, 60, 1259-1267.	1.0	9
383	Neutrophil Extracellular Trap Components Associate with Infarct Size, Ventricular Function, and Clinical Outcome in STEMI. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	33
384	An Injectable Conductive Three-Dimensional Elastic Network by Tangled Surgical-Suture Spring for Heart Repair. ACS Nano, 2019, 13, 14122-14137.	14.6	47

#	Article	IF	CITATIONS
385	Macrophages in cardiac repair: Environmental cues and therapeutic strategies. Experimental and Molecular Medicine, 2019, 51, 1-10.	7.7	37
386	NLRP3 Inflammasome in Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2019, 74, 175-187.	1.9	71
387	Impact of inflammation-mediated response on pan-coronary plaque vulnerability, myocardial viability and ventricular remodeling in the postinfarction period - the VIABILITY study. Medicine (United States), 2019, 98, e15194.	1.0	6
388	Immune responses in cardiac repair and regeneration: a comparative point of view. Cellular and Molecular Life Sciences, 2019, 76, 1365-1380.	5. 4	96
389	The role of CD27-CD70 signaling in myocardial infarction and cardiac remodeling. International Journal of Cardiology, 2019, 278, 210-216.	1.7	6
390	HMGB1 and repair: focus on the heart. , 2019, 196, 160-182.		63
391	Pretreatment of carprofen impaired initiation of inflammatory- and overlapping resolution response and promoted cardiorenal syndrome in heart failure. Life Sciences, 2019, 218, 224-232.	4.3	8
392	Valor pronÃ ³ stico a corto plazo de la proteÃna C reactiva en ancianos con insuficiencia cardÃaca aguda. Revista Clinica Espanola, 2019, 219, 10-17.	0.6	2
393	Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiological Reviews, 2019, 99, 893-948.	28.8	57
394	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154.	13.7	449
394 395	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426.	9.0	76
	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the		
395	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of	9.0	76
395 396	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblastâ€like synoviocytes. Cell Biochemistry and Function, 2019, 37, 31-41. Successful Inflammation Imaging of Non-Human Primate Hearts Using an Antibody Specific for	9.0	76 38
395 396 397	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblastâ€like synoviocytes. Cell Biochemistry and Function, 2019, 37, 31-41. Successful Inflammation Imaging of Non-Human Primate Hearts Using an Antibody Specific for Tenascin-C. International Heart Journal, 2019, 60, 151-158. Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. Journal of Molecular and Cellular Cardiology, 2019, 126,	9.0 2.9 1.0	76 38 12
395 396 397 398	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblastâ€kike synoviocytes. Cell Biochemistry and Function, 2019, 37, 31-41. Successful Inflammation Imaging of Non-Human Primate Hearts Using an Antibody Specific for Tenascin-C. International Heart Journal, 2019, 60, 151-158. Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. Journal of Molecular and Cellular Cardiology, 2019, 126, 105-117. Serum Vaspin as a Predictor of Adverse Cardiac Events in Acute Myocardial Infarction. Journal of the	9.0 2.9 1.0	76 38 12
395 396 397 398	ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 2019, 20, 414-426. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblastâ€ike synoviocytes. Cell Biochemistry and Function, 2019, 37, 31-41. Successful Inflammation Imaging of Non-Human Primate Hearts Using an Antibody Specific for Tenascin-C. International Heart Journal, 2019, 60, 151-158. Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. Journal of Molecular and Cellular Cardiology, 2019, 126, 105-117. Serum Vaspin as a Predictor of Adverse Cardiac Events in Acute Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e010934. Oxidized Low-Density Lipoprotein Receptor in Lymphocytes Prevents Atherosclerosis and Predicts	9.0 2.9 1.0 1.9	76 38 12 14

#	Article	IF	CITATIONS
403	Longitudinal changes of cardiac troponin and inflammation reflect progressive myocyte stretch and likelihood for hypertension in a Black male cohort: The SABPA study. Hypertension Research, 2019, 42, 708-716.	2.7	1
404	RhoE Fine-Tunes Inflammatory Response in Myocardial Infarction. Circulation, 2019, 139, 1185-1198.	1.6	43
405	Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clinical Research in Cardiology, 2019, 108, 612-621.	3.3	52
406	Immunomodulation by Exosomes in Myocardial Infarction. Journal of Cardiovascular Translational Research, 2019, 12, 28-36.	2.4	32
407	Cardiac lymphatics in health and disease. Nature Reviews Cardiology, 2019, 16, 56-68.	13.7	118
408	Release of Mitochondrial and Nuclear DNA During On-Pump Heart Surgery: Kinetics and Relation to Extracellular Vesicles. Journal of Cardiovascular Translational Research, 2019, 12, 184-192.	2.4	18
409	Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H435-H445.	3.2	26
410	Ischaemia alters the effects of cardiomyocyteâ€derived extracellular vesicles on macrophage activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1137-1151.	3.6	28
411	Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation, 2019, 139, 1530-1547.	1.6	48
412	Ambroxol attenuates cisplatin-induced hepatotoxicity and nephrotoxicity via inhibition of p-JNK/p-ERK. Canadian Journal of Physiology and Pharmacology, 2019, 97, 55-64.	1.4	28
413	No hearty reception: infusion of CXCL4 impedes tissue repair by macrophages after myocardial infarction. Cardiovascular Research, 2019, 115, 264-265.	3.8	1
414	The Janus face of HMGB1 in heart disease: a necessary update. Cellular and Molecular Life Sciences, 2019, 76, 211-229.	5.4	99
415	Role and mechanism of the nod-like receptor family pyrin domain-containing 3 inflammasome in oral disease. Archives of Oral Biology, 2019, 97, 1-11.	1.8	9
416	Injectable Supramolecular Hydrogel/Microgel Composites for Therapeutic Delivery. Macromolecular Bioscience, 2019, 19, e1800248.	4.1	65
417	Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198, 3-26.	11.4	149
418	FGL2 prothrombinase contributes to the early stage of coronary microvascular obstruction through a fibrin-dependent pathway. International Journal of Cardiology, 2019, 274, 27-34.	1.7	12
419	Serum levels of Growth Arrest-Specific 6 protein and soluble AXL in patients with ST-segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 708-716.	1.0	18
420	Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biology, 2019, 75-76, 286-299.	3.6	79

#	Article	IF	Citations
421	Stable IL-1-Activation in an Inflammasome Signalling Model Depends on Positive and Negative Feedbacks and Tight Regulation of Protein Production. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 627-637.	3.0	1
422	MicroRNAs as important regulators of the NLRP3 inflammasome. Progress in Biophysics and Molecular Biology, 2020, 150, 50-61.	2.9	46
423	Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. European Heart Journal, 2020, 41, 989-994.	2.2	26
424	Immunohistochemistry in the Detection of Early Myocardial Infarction: Systematic Review and Analysis of Limitations Because of Autolysis and Putrefaction. Applied Immunohistochemistry and Molecular Morphology, 2020, 28, 95-102.	1.2	11
425	Bioreactor-based 3D human myocardial ischemia/reperfusion in vitro model: a novel tool to unveil key paracrine factors upon acute myocardial infarction. Translational Research, 2020, 215, 57-74.	5.0	36
426	The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiologica, 2020, 228, e13396.	3.8	25
427	Late Versus Early Myocardial Remodeling After Acute Myocardial Infarction: A Comparative Review on Mechanistic Insights and Clinical Implications. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 15-26.	2.0	27
428	Delayed delivery of endothelial progenitor cell-derived extracellular vesicles via shear thinning gel improves postinfarct hemodynamics. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1825-1835.e2.	0.8	32
429	Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. European Journal of Preventive Cardiology, 2020, 27, 494-510.	1.8	142
430	Role of Innate Immunity in Heart Failure. , 2020, , 103-114.e2.		1
431	Effects of genetic transfection on calcium cycling pathways mediated by double-stranded adeno-associated virus in postinfarction remodeling. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1809-1819.e3.	0.8	12
432	The gut microbiota and diabetic cardiomyopathy in humans. Diabetes and Metabolism, 2020, 46, 197-202.	2.9	22
433	Aging Attenuates Cardiac Contractility and Affects Therapeutic Consequences for Myocardial Infarction., 2020, 11, 365.		12
434	An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. Journal of Materials Chemistry B, 2020, 8, 980-992.	5.8	54
435	Apigenin-7- $\langle i \rangle O \langle i \rangle - \hat{l}^2 - \langle scp \rangle d \langle scp \rangle - (6 \hat{a} \in 3 - \langle i \rangle p \langle i \rangle - coumaroyl)$ -glucopyranoside reduces myocardial ischaemia/reperfusion injury in an experimental model via regulating the inflammation response. Pharmaceutical Biology, 2020, 58, 80-88.	2.9	13
436	Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. Journal of Nuclear Cardiology, 2020, 27, 2083-2099.	2.1	16
437	Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111705.	3.8	29
438	Cellular cross-talks in the diseased and aging heart. Journal of Molecular and Cellular Cardiology, 2020, 138, 136-146.	1.9	55

#	Article	IF	CITATIONS
439	Association of lymphocyte-to-monocyte ratio with the long-term outcome after hospital discharge in patients with ST-elevation myocardial infarction: a retrospective cohort study. Coronary Artery Disease, 2020, 31, 248-254.	0.7	7
440	Circular RNA Involved in the Protective Effect of Malva sylvestris L. on Myocardial Ischemic/Re-Perfused Injury. Frontiers in Pharmacology, 2020, 11, 520486.	3.5	6
441	Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2020, 149, 95-114.	1.9	20
442	Therapeutic effects of interleukin-37 and induced cardiosphere on treating myocardial ischemia-reperfusion injury. International Immunopharmacology, 2020, 88, 106719.	3.8	4
443	Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics, 2020, 112, 5072-5085.	2.9	17
444	Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction. Cells, 2020, 9, 2179.	4.1	13
445	Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. Biomedicine and Pharmacotherapy, 2020, 132, 110773.	5.6	29
446	Design and rationale of FLAVOUR: A phase IIa efficacy study of the 5-lipoxygenase activating protein antagonist AZD5718 in patients with recent myocardial infarction. Contemporary Clinical Trials Communications, 2020, 19, 100629.	1.1	8
447	Total alkaloids from the rhizomes of <i>Ligusticum striatum:</i> a review of chemical analysis and pharmacological activities. Natural Product Research, 2020, , 1-18.	1.8	9
448	Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacological Research, 2020, 161, 105212.	7.1	30
449	α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice. Acta Pharmacologica Sinica, 2020, 41, 1416-1426.	6.1	2
450	Plumbagin protects the myocardial damage by modulating the cardiac biomarkers, antioxidants, and apoptosis signaling in the doxorubicinâ€induced cardiotoxicity in rats. Environmental Toxicology, 2020, 35, 1374-1385.	4.0	19
451	Effect of Ezetimibe + Pitavastatin on Cardiovascular Outcomes in Patients with ST-Segment Elevation Myocardial Infarction (from the HIJ-PROPER Study). American Journal of Cardiology, 2020, 132, 15-21.	1.6	0
452	Effect of Interleukin-17 in the Activation of Monocyte Subsets in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Immunology Research, 2020, 2020, 1-9.	2.2	9
453	Inflammatory Cytokines Alter Mesenchymal Stem Cell Mechanosensing and Adhesion on Stiffened Infarct Heart Tissue After Myocardial Infarction. Frontiers in Cell and Developmental Biology, 2020, 8, 583700.	3.7	3
454	Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1α/NF-ÎB/IL-6 pathway. Pharmaceutical Biology, 2020, 58, 1165-1175.	2.9	12
455	Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Frontiers in Pharmacology, 2020, 11, 583200.	3.5	42
456	Immediate Intracoronary Delivery of Human Umbilical Cord Mesenchymal Stem Cells Reduces Myocardial Injury by Regulating the Inflammatory Process Through Cell-Cell Contact with T Lymphocytes. Stem Cells and Development, 2020, 29, 1331-1345.	2.1	4

#	ARTICLE	IF	Citations
457	Combined preâ€conditioning with salidroside and hypoxia improves proliferation, migration and stress tolerance of adiposeâ€derived stem cells. Journal of Cellular and Molecular Medicine, 2020, 24, 9958-9971.	3.6	5
458	MicroRNA signatures of perioperative myocardial injury after elective noncardiac surgery: a prospective observational mechanistic cohort study. British Journal of Anaesthesia, 2020, 125, 661-671.	3.4	19
459	GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death and Disease, 2020, 11, 917.	6.3	38
460	Using proximity extension proteomics assay to identify biomarkers associated with infarct size and ejection fraction after ST-elevation myocardial infarction. Scientific Reports, 2020, 10, 18663.	3.3	10
461	Evidences of CTLA-4 and PD-1 Blocking Agents-Induced Cardiotoxicity in Cellular and Preclinical Models. Journal of Personalized Medicine, 2020, 10, 179.	2.5	41
462	Selectin-targeting glycosaminoglycan-peptide conjugate limits neutrophil-mediated cardiac reperfusion injury. Cardiovascular Research, 2022, 118, 267-281.	3.8	13
463	Crosstalk Between Cardiac Cells and Macrophages Postmyocardial Infarction: Insights from <i>In Vitro</i> Studies. Tissue Engineering - Part B: Reviews, 2021, 27, 475-485.	4.8	12
464	Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). European Heart Journal, 2020, 41, 4092-4099.	2.2	174
465	Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H948-H964.	3.2	21
466	Impaired therapeutic efficacy of bone marrow cells from post-myocardial infarction patients in the TIME and LateTIME clinical trials. PLoS ONE, 2020, 15, e0237401.	2.5	3
467	Human adaptation to hypoxia in critical illness. Journal of Applied Physiology, 2020, 129, 656-663.	2.5	15
468	SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxidants, 2020, 9, 858.	5.1	33
469	Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovascular Drugs and Therapy, 2020, 34, 849-863.	2.6	188
470	Potential Molecular Mechanism of the <i>NPPB</i> Gene in Postischemic Heart Failure with and without T2DM. BioMed Research International, 2020, 2020, 1-17.	1.9	2
471	Systematical Identification of the Protective Effect of Danhong Injection and BuChang NaoXinTong Capsules on Transcription Factors in Cerebral Ischemia Mice Brain. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	6
472	Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics, 2020, 12, 1195.	4.5	11
473	Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Frontiers in Immunology, 2020, 11, 599511.	4.8	60
474	Novel Applications of Mesenchymal Stem Cell-Derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules, 2020, 10, 707.	4.0	53

#	Article	IF	CITATIONS
475	Sestrin proteins in cardiovascular disease. Clinica Chimica Acta, 2020, 508, 43-46.	1.1	11
476	Mir-25 is a potential treatment target for myocardial ischemic-reperfusion injury. Journal of the Chinese Medical Association, 2020, 83, 419-420.	1.4	2
477	Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Failure, 2020, 7, 1488-1501.	3.1	48
478	Genetic Deletion of Galectin-3 Alters the Temporal Evolution of Macrophage Infiltration and Healing Affecting the Cardiac Remodeling and Function after Myocardial Infarction in Mice. American Journal of Pathology, 2020, 190, 1789-1800.	3 . 8	16
479	Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. Journal of Clinical Medicine, 2020, 9, 1402.	2.4	21
480	Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1722-1737.	2.4	65
481	S100 family proteins in inflammation and beyond. Advances in Clinical Chemistry, 2020, 98, 173-231.	3.7	57
482	Persistent Myocardial Production of Follistatin-like 1 Is Associated With Left Ventricular Adverse Remodeling in Patients With Myocardial Infarction. Journal of Cardiac Failure, 2020, 26, 733-738.	1.7	6
483	Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	4.0	90
484	Gelatin Methacryloyl Bioadhesive Improves Survival and Reduces Scar Burden in a Mouse Model of Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e014199.	3.7	16
485	Post-Infectious Myocardial Infarction: Does Percutaneous Coronary Intervention Improve Outcomes? A Propensity Score-Matched Analysis. Journal of Clinical Medicine, 2020, 9, 1608.	2.4	6
486	Collapsing the list of myocardial infarction-related differentially expressed genes into a diagnostic signature. Journal of Translational Medicine, 2020, 18, 231.	4.4	13
487	Protective mechanisms of hydrogen sulfide in myocardial ischemia. Journal of Cellular Physiology, 2020, 235, 9059-9070.	4.1	15
488	Bioreducible, branched poly(\hat{l}^2 -amino ester)s mediate anti-inflammatory ICAM-1 siRNA delivery against myocardial ischemia reperfusion (IR) injury. Biomaterials Science, 2020, 8, 3856-3870.	5.4	15
489	Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Network Open, 2020, 3, e207030.	5.9	12
490	Changes in the expression of interleukin-10 in myocardial infarction and its relationship with macrophage activation and cell apoptosis. Annals of Translational Medicine, 2020, 8, 643-643.	1.7	1
491	Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. Antioxidants and Redox Signaling, 2020, 33, 689-712.	5.4	22
492	Targeting cardiovascular inflammation: next steps in clinical translation. European Heart Journal, 2021, 42, 113-131.	2.2	186

#	Article	IF	CITATIONS
493	Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 2020, 1-13.	3.0	37
494	RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovascular Research, 2020, 116, 1410-1423.	3.8	43
495	CXCR7 suppression modulates macrophage phenotype and function to ameliorate post-myocardial infarction injury. Inflammation Research, 2020, 69, 523-532.	4.0	9
496	Pre-operative neutrophil–lymphocyte ratio predicts low cardiac output in children after cardiac surgery. Cardiology in the Young, 2020, 30, 521-525.	0.8	16
497	Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF- $\hat{\mathbb{P}}$ B activation. Theranostics, 2020, 10, 2773-2790.	10.0	39
498	Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 229.	4.1	31
499	Targeting the Main Anatomopathological Features in Animal Models of Myocardial Infarction. Journal of Comparative Pathology, 2020, 176, 33-38.	0.4	1
500	Isoliquiritin promote angiogenesis by recruiting macrophages to improve the healing of zebrafish wounds. Fish and Shellfish Immunology, 2020, 100, 238-245.	3.6	20
501	Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Human and Experimental Toxicology, 2020, 39, 1596-1606.	2.2	23
502	Lgr4 Governs a Pro-Inflammatory Program in Macrophages to Antagonize Post-Infarction Cardiac Repair. Circulation Research, 2020, 127, 953-973.	4.5	62
503	Heart and Lung Multimodality ImagingÂinÂCOVID-19. JACC: Cardiovascular Imaging, 2020, 13, 1792-1808.	5.3	67
504	Electrophysiologic Effects of Growth Hormone Post-Myocardial Infarction. International Journal of Molecular Sciences, 2020, 21, 918.	4.1	3
505	MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels To Promote Myocardial Repair. ACS Applied Bio Materials, 2020, 3, 1646-1655.	4.6	18
507	Histamine deficiency facilitates coronary microthrombosis after myocardial infarction by increasing neutrophilâ€platelet interactions. Journal of Cellular and Molecular Medicine, 2020, 24, 3504-3520.	3.6	8
508	Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. European Journal of Pharmacology, 2020, 871, 172916.	3.5	33
509	Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomaterials Science and Engineering, 2020, 6, 1217-1227.	5.2	28
510	IL-20 promotes hypoxia/reoxygenation-induced mitochondrial dysfunction and apoptosis in cardiomyocytes by upregulating oxidative stress by activating the PKC/NADPH oxidase pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165684.	3.8	13
511	Cardiac Nestin+ Mesenchymal Stromal Cells Enhance Healing of Ischemic Heart through Periostin-Mediated M2 Macrophage Polarization. Molecular Therapy, 2020, 28, 855-873.	8.2	27

#	Article	IF	CITATIONS
512	The gut microbiota and its interactions with cardiovascular disease. Microbial Biotechnology, 2020, 13, 637-656.	4.2	97
513	Protective effects of induced cardiosphere on myocardial ischemia-reperfusion injury through secreting interleukin 10. International Immunopharmacology, 2020, 80, 106207.	3.8	3
514	Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: an In Vivo Comparative Study. Stem Cell Reviews and Reports, 2020, 16, 413-423.	3.8	13
515	Deletion of Rap1 protects against myocardial ischemia/reperfusion injury through suppressing cell apoptosis via activation of STAT3 signaling. FASEB Journal, 2020, 34, 4482-4496.	0.5	20
516	Cardiovascular Impairment in COVID-19: Learning From Current Options for Cardiovascular Anti-Inflammatory Therapy. Frontiers in Cardiovascular Medicine, 2020, 7, 78.	2.4	21
517	Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sciences, 2020, 250, 117582.	4.3	10
518	MiR-101a loaded extracellular nanovesicles as bioactive carriers for cardiac repair. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 27, 102201.	3.3	34
519	Qi Dan Li Xin pill improves chronic heart failure by regulating mTOR/p70S6k-mediated autophagy and inhibiting apoptosis. Scientific Reports, 2020, 10, 6105.	3.3	13
520	Engineering Immunomodulatory Biomaterials for Regenerating the Infarcted Myocardium. Frontiers in Bioengineering and Biotechnology, 2020, 8, 292.	4.1	34
521	Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Frontiers in Immunology, 2020, 11, 639.	4.8	29
522	CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1447-H1460.	3.2	25
523	2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111012.	5.0	10
524	Extracellular Matrix in Ischemic Heart Disease, Part 4/4. Journal of the American College of Cardiology, 2020, 75, 2219-2235.	2.8	42
525	Increased Myocardial Retention of Mesenchymal Stem Cells Post-MI by Pre-Conditioning Exercise Training. Stem Cell Reviews and Reports, 2020, 16, 730-741.	3.8	4
526	Adhesive Stem Cell Coatings for Enhanced Retention in the Heart Tissue. ACS Applied Bio Materials, 2020, 3, 2930-2939.	4.6	10
527	Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circulation Research, 2020, 126, 1260-1280.	4.5	391
528	Exercise-based cardiac rehabilitation and parasympathetic function in patients with coronary artery disease: a systematic review and meta-analysis. Clinical Autonomic Research, 2021, 31, 187-203.	2.5	20
529	Chemokines in Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, 14, 35-52.	2.4	66

#	Article	IF	CITATIONS
530	Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1. Cardiovascular Research, 2021, 117, 162-177.	3.8	28
531	Autophagy participates in the protection role of 1,25â€dihydroxyvitamin D3 in acute myocardial infarction via Pl3K/AKT/mTOR pathway. Cell Biology International, 2021, 45, 394-403.	3.0	11
532	Interplay of pro-inflammatory cytokines, pro-inflammatory microparticles and oxidative stress and recurrent ventricular arrhythmias in elderly patients after coronary stent implantations. Cytokine, 2021, 137, 155345.	3.2	6
533	Interleukin-1α dependent survival of cardiac fibroblasts is associated with StAR/STARD1 expression and improved cardiac remodeling and function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2021, 155, 125-137.	1.9	6
534	The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 2021, 77, 109826.	3.6	57
535	The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics, 2021, 11, 1046-1058.	10.0	67
536	Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials, 2021, 269, 120356.	11.4	50
537	Angiogenesis after acute myocardial infarction. Cardiovascular Research, 2021, 117, 1257-1273.	3.8	146
538	MD1 Depletion Predisposes to Ventricular Arrhythmias in the Setting of Myocardial Infarction. Heart Lung and Circulation, 2021, 30, 869-881.	0.4	5
539	Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cellular Signalling, 2021, 78, 109876.	3.6	13
540	Impact of chronic intermittent hypoxia on the long nonâ€coding RNA and mRNA expression profiles in myocardial infarction. Journal of Cellular and Molecular Medicine, 2021, 25, 421-433.	3.6	11
541	Myeloid interleukin-4 receptor \hat{l}_{\pm} is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H323-H337.	3.2	10
542	The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. International Immunopharmacology, 2021, 90, 107133.	3.8	52
543	High sensitivity C-reactive protein is associated with worse infarct healing after revascularized ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 328, 191-196.	1.7	13
544	Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload. Journal of Molecular and Cellular Cardiology, 2021, 152, 1-16.	1.9	9
545	DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. Journal of Molecular and Cellular Cardiology, 2021, 151, 3-14.	1.9	34
546	Fibroblast contributions to ischemic cardiac remodeling. Cellular Signalling, 2021, 77, 109824.	3.6	31
547	Cardiac fibrosis. Cardiovascular Research, 2021, 117, 1450-1488.	3.8	419

#	Article	IF	CITATIONS
548	Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein and Cell, 2021, 12, 194-212.	11.0	26
549	TMAO: how gut microbiota contributes to heart failure. Translational Research, 2021, 228, 109-125.	5.0	113
550	Pericytes in Myocardial Diseases. Pancreatic Islet Biology, 2021, , 219-243.	0.3	0
551	Elevated plasma Sirtuin2 level predicts heart failure after acute myocardial infarction. Journal of Thoracic Disease, 2021, 13, 50-59.	1.4	3
552	A complete heart regeneration model with inflammation as a key component. Experimental Animals, 2021, 70, 479-487.	1.1	2
553	Regulatory RNAs in cardiovascular disease. , 2021, , 127-162.		0
554	Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, 14, 816-823.	2.4	6
555	Multifactorial expression of ILâ€'6 with update on COVIDâ€'19 and the therapeutic strategies of its blockade (Review). Experimental and Therapeutic Medicine, 2021, 21, 263.	1.8	36
556	Cardiovascular translational biomarkers: translational aspects of hypertension, atherosclerosis, and heart failure in drug development in the digital era., 2021, , 177-193.		1
557	Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Communications Biology, 2021, 4, 146.	4.4	41
558	Resveratrol protects against myocardial ischemic injury via the inhibition of NFâ€ÎºB‑dependent inflammation and the enhancement of antioxidant defenses. International Journal of Molecular Medicine, 2021, 47, .	4.0	11
559	SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway. Human Cell, 2021, 34, 325-334.	2.7	5
560	Retinoic Acid-Related Orphan Receptor (ROR) Inverse Agonists: Potential Therapeutic Strategies for Multiple Inflammatory Diseases?., 2021,, 349-377.		0
561	Network pharmacology-based analysis in determining the mechanisms of Huoxin pill in protecting against myocardial infarction. Pharmaceutical Biology, 2021, 59, 1189-1200.	2.9	7
562	Moxibustion Improves Chronic Heart Failure by Inhibiting Autophagy and Inflammation via Upregulation of mTOR Expression. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-12.	1.2	4
563	Novel Targets of Metformin in Cardioprotection: Beyond the Effects Mediated by AMPK. Current Pharmaceutical Design, 2021, 27, 80-90.	1.9	4
564	Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Science Translational Medicine, 2021, 13, .	12.4	56
565	C-X-C motif chemokine 16, modulated by microRNA-545, aggravates myocardial damage and affects the inflammatory responses in myocardial infarction. Human Genomics, 2021, 15, 15.	2.9	5

#	Article	IF	CITATIONS
566	Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. Journal of Cellular and Molecular Medicine, 2021, 25, 2764-2775.	3.6	42
567	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research, 2021, 2021, 4189516.	5.7	35
568	G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovascular Research, 2022, 118, 169-183.	3.8	27
569	Pretreatment with antiplatelet drugs improves the cardiac function after myocardial infarction without reperfusion in a mouse model. Cardiology Journal, 2021, 28, 118-128.	1.2	6
570	A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduction and Targeted Therapy, 2021, 6, 79.	17.1	95
571	BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. International Journal of Molecular Sciences, 2021, 22, 2010.	4.1	2
572	The common characteristics and mutual effects of heart failure and atrial fibrillation: initiation, progression, and outcome of the two aging-related heart diseases. Heart Failure Reviews, 2022, 27, 837-847.	3.9	5
573	Translational insights from single-cell technologies across the cardiovascular disease continuum. Trends in Cardiovascular Medicine, 2021, , .	4.9	4
574	Melatonin alleviates lipopolysaccharide-induced myocardial injury by inhibiting inflammation and pyroptosis in cardiomyocytes. Annals of Translational Medicine, 2021, 9, 413-413.	1.7	17
575	Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Cardiac Electrophysiology Clinics, 2021, 13, 25-35.	1.7	51
576	Exploring the Role of Epicardial Adipose Tissue in Coronary Artery Disease From the Difference of Gene Expression. Frontiers in Physiology, 2021, 12, 605811.	2.8	3
577	Interleukin $1\hat{l}\pm$: a comprehensive review on the role of IL- $1\hat{l}\pm$ in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmunity Reviews, 2021, 20, 102763.	5.8	140
578	Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nature Communications, 2021, 12, 1483.	12.8	73
579	MicroRNA-based therapy of postmyocardial infarction heart failure. Hellenic Journal of Cardiology, 2021, 62, 149-151.	1.0	2
580	ACE Inhibition Modulates Myeloid Hematopoiesis after Acute Myocardial Infarction and Reduces Cardiac and Vascular Inflammation in Ischemic Heart Failure. Antioxidants, 2021, 10, 396.	5.1	12
581	Injectable Myocardial Matrix Hydrogel Mitigates Negative Left Ventricular Remodeling in a Chronic Myocardial Infarction Model. JACC Basic To Translational Science, 2021, 6, 350-361.	4.1	22
582	Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in vitro by inhibiting NLRP3 Inflammasome activation. BMC Anesthesiology, 2021, 21, 104.	1.8	6
583	Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Frontiers in Immunology, 2021, 12, 664457.	4.8	106

#	Article	IF	CITATIONS
584	Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells, 2021, 10, 916.	4.1	23
585	Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense. Free Radical Biology and Medicine, 2021, 166, 18-32.	2.9	14
586	PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	30
587	New Insights and Novel Therapeutic Potentials for Macrophages in Myocardial Infarction. Inflammation, 2021, 44, 1696-1712.	3.8	37
588	Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Frontiers in Cardiovascular Medicine, 2021, 8, 647785.	2.4	28
589	Postconditioning attenuates myocardial ischemia‑reperfusion injury by inhibiting complement activation and upregulation of miR‑499. Experimental and Therapeutic Medicine, 2021, 22, 684.	1.8	5
590	Are the Current Cardiac Rehabilitation Programs Optimized to Improve Cardiorespiratory Fitness in Patients? A Meta-Analysis. Journal of Aging and Physical Activity, 2021, 29, 327-342.	1.0	5
591	C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. International Journal of Molecular Sciences, 2021, 22, 5800.	4.1	8
592	Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation. Free Radical Biology and Medicine, 2021, 167, 243-257.	2.9	16
593	Plasma exosomes induce inflammatory immune response in patients with acute myocardial infarction. Archives of Physiology and Biochemistry, 2023, 129, 1168-1176.	2.1	4
594	Time-Series Transcriptome Analysis Reveals the miR-27a-5p- <i>Ppm1l</i> Axis as a New Pathway Regulating Macrophage Alternative Polarization After Myocardial Infarction. Circulation Journal, 2021, 85, 929-938.	1.6	2
595	The effect of immune cellâ€derived exosomes in the cardiac tissue repair after myocardial infarction: Molecular mechanisms and preâ€clinical evidence. Journal of Cellular and Molecular Medicine, 2021, 25, 6500-6510.	3.6	15
596	Unraveling the thread of uncontrolled immune response in COVID-19 and STEMI: an emerging need for knowledge sharing. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2240-H2254.	3.2	5
597	A combined biomarker approach for characterising extracellular matrix profiles in acute myocardial infarction. Scientific Reports, 2021, 11, 12705.	3.3	7
598	Up-regulation of chemokine receptor type 4 expression in the ischemic reperfused heart by alcoholic extract of <i>Cichorium intybus</i> rescue the heart from ischemia injury in male rat. Journal of Pharmacy and Pharmacology, 2021, 73, 1351-1360.	2.4	2
600	Effects of Aster B-mediated intracellular accumulation of cholesterol on inflammatory process and myocardial cells in acute myocardial infarction. Hellenic Journal of Cardiology, 2021, , .	1.0	0
601	Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart?. Current Cardiology Reports, 2021, 23, 81.	2.9	1
602	Plateletâ€Like Fusogenic Liposomeâ€Mediated Targeting Delivery of miRâ€21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemiaâ€Reperfusion Injury. Advanced Science, 2021, 8, e2100787.	11.2	50

#	Article	IF	CITATIONS
603	The Immune and Inflammatory Basis of Acquired Pediatric Cardiac Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 701224.	2.4	4
604	Basophils balance healing after myocardial infarction via IL-4/IL-13. Journal of Clinical Investigation, 2021, 131, .	8.2	42
605	Intestinal Fibrosis and Gut Microbiota: Clues From Other Organs. Frontiers in Microbiology, 2021, 12, 694967.	3.5	17
606	Molecular Imaging Using Cardiac PET/CT: Opportunities to Harmonize Diagnosis and Therapy. Current Cardiology Reports, 2021, 23, 96.	2.9	3
607	Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Frontiers in Cardiovascular Medicine, 2021, 8, 709871.	2.4	11
608	Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 659666.	3.7	19
609	Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. Journal of Controlled Release, 2021, 335, 216-236.	9.9	49
610	Inactivation of Interleukinâ€4 Receptor α Signaling in Myeloid Cells Protects Mice From Angiotensin II/High Salt–Induced Cardiovascular Dysfunction Through Suppression of Fibrotic Remodeling. Journal of the American Heart Association, 2021, 10, e017329.	3.7	3
611	High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomedicine and Pharmacotherapy, 2021, 139, 111555.	5.6	23
612	PEG-based thermosensitive and biodegradable hydrogels. Acta Biomaterialia, 2021, 128, 42-59.	8.3	119
613	Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Research in Cardiology, 2021, 116, 46.	5.9	21
614	The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases – A Mini Review. Frontiers in Cardiovascular Medicine, 2021, 8, 715903.	2.4	15
615	Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. International Journal of Molecular Sciences, 2021, 22, 9393.	4.1	15
616	Prognostic value of neutrophilâ€lymphocyte ratio in cardiogenic shock complicating acute myocardial infarction: A cohort study. International Journal of Clinical Practice, 2021, 75, e14655.	1.7	8
617	Anti-inflammatory Therapies for Coronary Heart Disease: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2021, 8, 726341.	2.4	6
618	The Relationship Between Circulating Bone Morphogenetic Protein-4 and Inflammation Cytokines in Patients Undergoing Thoracic Surgery: A Prospective Randomized Study. Journal of Inflammation Research, 2021, Volume 14, 4069-4077.	3.5	5
619	Clec4e-Receptor Signaling in Myocardial Repair After Ischemia-Reperfusion Injury. JACC Basic To Translational Science, 2021, 6, 631-646.	4.1	16
620	Antioxidant and Anti-Inflammatory Effects of Bischofia javanica (Blume) Leaf Methanol Extracts through the Regulation of Nrf2 and TAK1. Antioxidants, 2021, 10, 1295.	5.1	3

#	Article	IF	Citations
621	Latent‑transforming growth factor β‑binding proteinÂ2 accelerates cardiac fibroblast apoptosis by regulating the expression and activity of caspase‑3. Experimental and Therapeutic Medicine, 2021, 22, 1146.	1.8	2
622	EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovascular Research, 2022, 118, 2179-2195.	3.8	29
623	Roles and Mechanisms of TGR5 in the Modulation of CD4+ T Cell Functions in Myocardial Infarction. Journal of Cardiovascular Translational Research, 2022, 15, 350-359.	2.4	6
624	An antioxidant system through conjugating superoxide dismutase onto metal-organic framework for cardiac repair. Bioactive Materials, 2022, 10, 56-67.	15.6	9
625	Chronic lowâ€grade inflammation in heart failure with preserved ejection fraction. Aging Cell, 2021, 20, e13453.	6.7	33
626	Resident Macrophages and Their Potential in Cardiac Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 579-591.	4.8	12
627	Characteristics and Outcomes of Early Recurrent Myocardial Infarction After Acute Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e019270.	3.7	16
628	Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics, 2021, 13, 1336.	4.5	1
629	Role of \hat{I}^2 -Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. International Journal of Molecular Sciences, 2021, 22, 8957.	4.1	13
630	5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. Journal of Molecular and Cellular Cardiology, 2021, 158, 101-114.	1.9	11
631	Association of cardiovascular biomarkers with myocardial and coronary imaging characteristics in patients having acute myocardial infarction and type 2 diabetes mellitus. Complex Issues of Cardiovascular Diseases, 2021, 10, 104-106.	0.5	1
632	Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Frontiers in Cardiovascular Medicine, 2021, 8, 750243.	2.4	17
633	Gut Lactobacillus Level Is a Predictive Marker for Coronary Atherosclerotic Lesions Progress and Prognosis in Patients With Acute Coronary Syndrome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687827.	3.9	8
634	Effect of Colchicine on Myocardial Injury in Acute Myocardial Infarction. Circulation, 2021, 144, 859-869.	1.6	74
635	Restoring perturbed oxylipins with Danqi Tongmai Tablet attenuates acute myocardial infarction. Phytomedicine, 2021, 90, 153616.	5.3	1
636	Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca2+ and increase of cardiac transient outward K+ currents. European Journal of Pharmacology, 2021, 906, 174194.	3.5	23
637	The Roles of Signaling Pathways in Cardiac Regeneration. Current Medicinal Chemistry, 2022, 29, 2142-2166.	2.4	5
638	Oral Supplementation With Butyrate Improves Myocardial Ischemia/Reperfusion Injury via a Gut-Brain Neural Circuit. Frontiers in Cardiovascular Medicine, 2021, 8, 718674.	2.4	17

#	Article	IF	CITATIONS
639	Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy, 2021, 23, 1074-1084.	0.7	16
640	The Roles of IncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 680713.	3.7	29
641	The mechanistic target of rapamycin complex 1 critically regulates the function of mononuclear phagocytes and promotes cardiac remodeling in acute ischemia. Journal of Molecular and Cellular Cardiology, 2021, 159, 62-79.	1.9	2
642	Platelet-derived growth factor (PDGF) therapy in myocardial infarction: Challenges and opportunities. International Journal of Cardiology, 2021, 341, 74-75.	1.7	2
643	Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioactive Materials, 2021, 6, 3314-3327.	15.6	40
644	Management of inflammation in cardiovascular diseases. Pharmacological Research, 2021, 173, 105912.	7.1	39
645	Dystrophin and metalloproteinase 9 in myocardial ischemia: A post-mortem immunohistochemical study. Legal Medicine, 2021, 53, 101948.	1.3	2
646	\hat{l}^2 -elemene blocks lipid-induced inflammatory pathways via PPAR \hat{l}^2 activation in heart failure. European Journal of Pharmacology, 2021, 910, 174450.	3.5	7
647	Encapsulation of lyophilized platelet-rich fibrin in alginate-hyaluronic acid hydrogel as a novel vascularized substitution for myocardial infarction. Bioactive Materials, 2022, 7, 401-411.	15.6	36
648	Neuregulinâ€1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspaseâ€1 in myocardial ischaemiaâ€reperfusion injury. Journal of Cellular and Molecular Medicine, 2021, 25, 1783-1795.	3.6	20
649	Application of curcumine and its derivatives in the treatment of cardiovascular diseases: a review. International Journal of Food Properties, 2021, 24, 1510-1528.	3.0	7
650	Comparative Effectiveness of Anti-Inflammatory Drug Treatments in Coronary Heart Disease Patients: A Systematic Review and Network Meta-Analysis. Mediators of Inflammation, 2021, 2021, 1-17.	3.0	10
651	Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. Advances in Experimental Medicine and Biology, 2019, 1161, 45-64.	1.6	16
652	Matrix Therapies for Cell Support and Cardiac Repair. , 2015, , 117-158.		2
653	Fibroblast Activation in the Infarcted Myocardium. , 2015, , 5-22.		1
654	Role of DAMPs in Tissue Regeneration and Repair. , 2018, , 845-868.		1
655	Cardiovascular implications of idiopathic pulmonary fibrosis: A way forward together?. American Heart Journal, 2020, 226, 69-74.	2.7	7
656	Absence of NLRP3 Inflammasome in Hematopoietic Cells Reduces Adverse Remodeling After Experimental Myocardial Infarction. JACC Basic To Translational Science, 2020, 5, 1210-1224.	4.1	19

#	Article	IF	CITATIONS
657	Molecular signature of progenitor cells isolated from young and adult human hearts. Scientific Reports, 2018, 8, 9266.	3.3	19
658	Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clinical Science, 2020, 134, 2243-2262.	4.3	28
661	Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight, 2019, 4, .	5.0	33
662	Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation, 2015, 125, 3147-3162.	8.2	197
663	Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Medical Science Monitor, 2020, 26, e922492.	1.1	18
664	TAK-242, a Toll-Like Receptor 4 Antagonist, Protects against Aldosterone-Induced Cardiac and Renal Injury. PLoS ONE, 2015, 10, e0142456.	2.5	42
665	Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment. PLoS ONE, 2016, 11 , e0165255.	2.5	32
666	Early kinetics of serum Interleukine-17A and infarct size in patients with reperfused acute ST-elevated myocardial infarction. PLoS ONE, 2017, 12, e0188202.	2.5	14
667	Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism. PLoS ONE, 2017, 12, e0189330.	2.5	63
668	Ezh2 is not required for cardiac regeneration in neonatal mice. PLoS ONE, 2018, 13, e0192238.	2.5	15
669	Pericytes in the infarcted heart. Vascular Biology (Bristol, England), 2019, 1, H23-H31.	3.2	25
670	MiR-324/SOCS3 Axis Protects Against Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury and Regulates Myocardial Ischemia via TNF/NF-κB Signaling Pathway. International Heart Journal, 2020, 61, 1258-1269.	1.0	11
671	Hidden in Heart Failure. European Cardiology Review, 2019, 14, 89-96.	2.2	3
673	Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit+ cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget, 2018, 9, 937-957.	1.8	9
674	Atrial Fibrillation and Acute Myocardial Infarction – An Inflammation-Mediated Association. Journal of Cardiovascular Emergencies, 2018, 4, 123-132.	0.2	6
675	PPARδ, a Potential Therapeutic Target for Heart Disease. Nuclear Receptor Research, 2018, 5, .	2.5	9
676	The Inflammatory Cytokine IL-3 Hampers Cardioprotection Mediated by Endothelial Cell-Derived Extracellular Vesicles Possibly via Their Protein Cargo. Cells, 2021, 10, 13.	4.1	19
677	The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. International Journal of Molecular Sciences, 2021, 22, 1693.	4.1	29

#	Article	IF	CITATIONS
678	The Interface Between Iron Metabolism and Gene-Based Iron Contrast for MRI. Magnetic Resonance Insights, 2015, 8, 9.	2.5	7
679	Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. ELife, 2017, 6, .	6.0	41
680	A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. ELife, $2019,8,.$	6.0	35
681	COVID-19 and features of cardiovascular involvement. Terapevticheskii Arkhiv, 2021, 93, 1091-1099.	0.8	5
682	Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip. Frontiers in Physiology, 2021, 12, 735915.	2.8	13
683	Role of NLRP3 Inflammasome in Myocardial Ischemia-Reperfusion Injury and Ventricular Remodeling. Medical Science Monitor, 2022, 27, e934255.	1.1	13
684	NLRP3 inflammasome as a novel therapeutic target for heart failure. , 2022, 26, 15-22.		3
685	Iguratimod Alleviates Myocardial Ischemia/Reperfusion Injury Through Inhibiting Inflammatory Response Induced by Cardiac Fibroblast Pyroptosis via COX2/NLRP3 Signaling Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 746317.	3.7	11
686	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	3.2	14
687	Early Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke After Successful Revascularization. World Neurosurgery, 2022, 157, e401-e409.	1.3	5
688	Emerging roles of circRNAs in the pathological process of myocardial infarction. Molecular Therapy - Nucleic Acids, 2021, 26, 828-848.	5.1	36
689	Discoveries Interview: Prof. Nikolaos G. Frangogiannis on the cardiac injury and repair processes. Discoveries, 2014, 2, e20.	2.3	0
690	Significance of survivin (BIRC5) as a biomarker for the assessmet of preoperative cardiovascular risk in non-cardiac surgeries: Survivin (BIRC5) as a novel cardiac biomarker. Serbian Journal of Anesthesia and Intensive Therapy, 2016, 38, 203-213.	0.2	0
691	Regenerative Mechanisms of the Adult Injured and Failing Heart. , 2017, , 377-400.		0
692	Epicardial Progenitors in the Embryonic and Adult Heart. Cardiac and Vascular Biology, 2017, , 41-65.	0.2	0
693	FEATURES OF CYTOKINE STATUS IN PATIENTS WITH CHRONIC EBV-INFECTIONS. Journal of V N Karazin Kharkiv National University: Series Medicine, 2018, , .	0.0	0
694	COMPARATIVE CHARACTERISTIC OF INDICATORS OF CHRONIC SYSTEM INFLAMMATION AND CENTRAL HEMODYNAMICS IN PATIENTS WITH STABLE ISHEMIC HEART DISEASE AND WITH ITS COMBINATIONS WITH AUTOIMMUNE TIREOIDITIS. Bulletin of Problems Biology and Medicine, 2018, 1, 113.	0.1	0
695	Endothelial function, systemic inflammation and cardiac hemodynamics in different age patients with post infarction chronic heart failure Medicni Perspektivi, 2018, 23, 15-22.	0.4	0

#	Article	IF	CITATIONS
696	C-reactive Protein, Trace Element and Lipid Profile in Cardiovascular Disease. Journal of Advances in Medical and Pharmaceutical Sciences, 2018, 16, 1-7.	0.2	0
697	Predictor value of the inflammation biomarkers regarding the post-infarction remodeling of myocardium. Cardiovascular Therapy and Prevention (Russian Federation), 2018, 17, 17-24.	1.4	0
698	The Scientific Basis of Heart Failure. Learning Materials in Biosciences, 2019, , 135-144.	0.4	0
702	Lidocaine protects H9c2 cells from hypoxia‑induced injury through regulation of the MAPK/ERK/NF‴κB signaling pathway. Experimental and Therapeutic Medicine, 2019, 18, 4125-4131.	1.8	7
703	DAMP-Controlled and Uncontrolled Responses to Trauma: Wound Healing and Polytrauma. , 2020, , 279-335.		0
704	Role of NLRP3 Inflammasomes in Obesity-Induced Cardiovascular Diseases. , 2020, , 97-109.		0
705	TRIF/EGFR signalling mediates angiotensin-II-induced cardiac remodelling in mice. Journal of Molecular Endocrinology, 2020, $65,11$ -20.	2.5	1
707	The Behaviour of Cardiac Macrophages in the Steady State, Injured, and Ageing Heart: A Systematic Review., 2021, 5, 1-8.		0
708	A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. Molecules, 2021, 26, 6600.	3.8	22
709	Injectable Nanocomposite Implants Reduce ROS Accumulation and Improve Heart Function after Infarction. Advanced Science, 2021, 8, e2102919.	11.2	30
710	The Role of Immune Cell Types in Ischemic Heart Disease Progression: A Systematic Review., 2021, 5, 1-9.		0
711	Association of plasma interleukin-6 with infarct size, reperfusion injury, and adverse remodelling after ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 113-123.	1.0	11
712	Research Perspectives of NLRP3 in the Pathogenesis of Cardiovascular Diseases. Advances in Clinical Medicine, 2020, 10, 1102-1107.	0.0	0
713	Cerebro-Cardiovascular Diseases. , 2020, , 535-623.		0
716	A Rat Model of Pressure Overload Induced Moderate Remodeling and Systolic Dysfunction as Opposed to Overt Systolic Heart Failure. Journal of Visualized Experiments, 2020, , .	0.3	2
717	Clinical imaging of cardiovascular inflammation. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 74-84.	0.7	1
718	The role of lymphangiogenesis in cardiovascular diseases and heart transplantation. Heart Failure Reviews, 2022, 27, 1837-1856.	3.9	8
719	L-arabinose alleviates diabetes-aggravated cerebral ischemic injury by repairing the blood-brain barrier via downregulating NF-κB signals. Journal of Functional Foods, 2021, 87, 104839.	3.4	2

#	Article	IF	Citations
720	Role of sialidase Neu3 and ganglioside GM3 in cardiac fibroblasts activation. Biochemical Journal, 2020, 477, 3401-3415.	3.7	9
721	Some pro- and anti-inflammatory cytokines, their genetic polymorphism and postinfarct cardiac remodeling. Russian Journal of Cardiology, 2020, 25, 4007.	1.4	2
722	Current status of cardiac regenerative medicine; An update on point of view to cell therapy application. Journal of Cardiovascular and Thoracic Research, 2020, 12, 256-268.	0.9	2
723	Profiling the Evolution of Inflammatory Response and Exploring Its Prognostic Significance in Acute Myocardial Infarction: The First Step to Establishing Anti-Inflammatory Strategy. Acta Cardiologica Sinica, 2017, 33, 486-488.	0.2	8
724	Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-ΰB and NLRP3 inflammasome. American Journal of Translational Research (discontinued), 2018, 10, 4235-4246.	0.0	21
725	Assessing inflammation in Chinese subjects with subtypes of heart failure: an observational study of the Chinese PLA Hospital Heart Failure Registry. Journal of Geriatric Cardiology, 2019, 16, 313-319.	0.2	5
726	Resveratrol improves cardiac function by promoting M2-like polarization of macrophages in mice with myocardial infarction. American Journal of Translational Research (discontinued), 2019, 11, 5212-5226.	0.0	7
727	Exogenous supplemental NAD+ protect myocardium against myocardial ischemic/reperfusion injury in swine model. American Journal of Translational Research (discontinued), 2019, 11, 6066-6074.	0.0	8
728	Cardioprotective Effect of Quercetin against Ischemia/Reperfusion Injury Is Mediated Through NO System and Mitochondrial K-ATP Channels. Cell Journal, 2021, 23, 184-190.	0.2	1
730	Identification of a novel native peptide derived from 60S ribosomal protein L23a that translationally regulates p53 to reduce myocardial ischemia-reperfusion. Pharmacological Research, 2022, 175, 105988.	7.1	4
731	Recent Advance on Drug Therapy Related to Myocardial Ischemia Reperfusion Injury. Journal of Biomaterials and Tissue Engineering, 2022, 12, 299-305.	0.1	0
732	Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats. Journal of Ethnopharmacology, 2022, 285, 114841.	4.1	14
733	Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. International Journal of Molecular Sciences, 2021, 22, 12552.	4.1	6
734	It takes time to heal a broken heart: ventricular plasticity improves heart performance after myocardial infarction in rainbow trout, <i>Oncorhynchus mykiss</i> Biology, 2021, 224, .	1.7	6
735	Association of blood pressure in the first-week of hospitalization and long-term mortality in patients with acute left ventricular myocardial infarction. International Journal of Cardiology, 2022, 349, 18-26.	1.7	7
736	Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells, 2021, 10, 3268.	4.1	1
737	Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Scientific Reports, 2021, 11, 23081.	3.3	22
738	Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. Journal of Clinical Investigation, 2022, 132, .	8.2	46

#	Article	IF	Citations
739	Circulating fibrocyte levels correlate with infarct size in patients with ST elevation myocardial infarction treated with primary percutaneous coronary intervention. American Heart Journal Plus, 2021, 12, 100071.	0.6	0
740	The Role of Chemokines in Cardiovascular Diseases and the Therapeutic Effect of Curcumin on CXCL8 and CCL2 as Pathological Chemokines in Atherosclerosis. Advances in Experimental Medicine and Biology, 2021, 1328, 155-170.	1.6	17
741	Relation of intestinal microbiota composition to extracellular matrix volume assessed by myocardial T1 mapping in patients with chronic heart failure and preserved left ventricular ejection fraction. Profilakticheskaya Meditsina, 2021, 24, 28.	0.6	1
742	CU06-1004 enhances vascular integrity and improves cardiac remodeling by suppressing edema and inflammation in myocardial ischemia–reperfusion injury. Experimental and Molecular Medicine, 2022, 54, 23-34.	7.7	13
743	S100A9 is a functional effector of infarct wall thinning after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H145-H155.	3.2	11
744	Secretome of Stressed Peripheral Blood Mononuclear Cells Alters Transcriptome Signature in Heart, Liver, and Spleen after an Experimental Acute Myocardial Infarction: An In Silico Analysis. Biology, 2022, 11, 116.	2.8	7
745	Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. International Journal of Molecular Sciences, 2022, 23, 1512.	4.1	22
746	ADAM15 is required for optimal collagen cross-linking and scar formation following myocardial infarction. Matrix Biology, 2022, 105, 127-143.	3.6	9
747	The Gut in Heart Failure: Current Knowledge and Novel Frontiers. Medical Principles and Practice, 2022, 31, 203-214.	2.4	12
748	Transforming growth factor- \hat{l}^2 in myocardial disease. Nature Reviews Cardiology, 2022, 19, 435-455.	13.7	87
749	EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis. Journal of Clinical Investigation, 2022, 132, .	8.2	17
750	If these myocytes could talk, they would speak the language of metabolites. Journal of Clinical Investigation, 2022, 132, .	8.2	0
751	Mechanistic Insights of Qingre Jiedu Recipe Based on Network Pharmacology Approach against Heart Failure. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	1.2	0
752	Effect of interleukin-1 blockade with anakinra on leukocyte count in patients with ST-segment elevation acute myocardial infarction. Scientific Reports, 2022, 12, 1254.	3.3	15
754	Examining variation and temporal dynamics of extracellular matrix biomarkers following acute myocardial infarction. Biomarkers in Medicine, 2022, 16, 147-161.	1.4	3
755	Loureirin B alleviates cardiac fibrosis by suppressing Pin1/TGF- \hat{l}^21 signaling. European Journal of Pharmacology, 2022, 918, 174791.	3.5	1
756	Sequential transplantation of exosomes and mesenchymal stem cells pretreated with a combination of hypoxia and Tongxinluo efficiently facilitates cardiac repair. Stem Cell Research and Therapy, 2022, 13, 63.	5.5	19
758	Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.	5.4	11

#	Article	IF	CITATIONS
759	The roles of macrophages in mediating the homeostatic process. , 2022, , 419-446.		0
760	Macrophages secrete murinoglobulin-1 and galectin-3 to regulate neutrophil degranulation after myocardial infarction. Molecular Omics, 2022, 18, 186-195.	2.8	9
761	Why animal model studies are lost in translation. , 2022, 2, .		4
762	Acute-Phase Inflammatory Reaction Predicts CMR Myocardial Scar Pattern and 2-Year Mortality in STEMI Patients Undergoing Primary PCI. Journal of Clinical Medicine, 2022, 11, 1222.	2.4	2
763	Pathobiology of Myocardial Ischemia and Reperfusion Injury: Models, Modes, Molecular Mechanisms, Modulation, and Clinical Applications. Cardiology in Review, 2023, 31, 252-264.	1.4	9
764	Deciphering Cell-Type-Specific Gene Expression Signatures of Cardiac Diseases Through Reconstruction of Bulk Transcriptomes. Frontiers in Cell and Developmental Biology, 2022, 10, 792774.	3.7	2
765	Calycosin as a Novel PI3K Activator Reduces Inflammation and Fibrosis in Heart Failure Through AKT–IKK/STAT3 Axis. Frontiers in Pharmacology, 2022, 13, 828061.	3. 5	17
766	Progress of Single-Cell RNA Sequencing Technology in Myocardial Infarction Research. Frontiers in Cardiovascular Medicine, 2022, 9, 768834.	2.4	2
767	Splenic Marginal Zone B Lymphocytes Regulate Cardiac Remodeling After Acute Myocardial Infarction in Mice. Journal of the American College of Cardiology, 2022, 79, 632-647.	2.8	22
768	Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis. BMC Cardiovascular Disorders, 2022, 22, 61.	1.7	15
769	Targeting CaMKII-Î'9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circulation Research, 2022, 130, 887-903.	4.5	38
770	P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Research in Cardiology, 2022, 117, 16.	5.9	5
771	Neutrophil–Lymphocyte Ratio in Congenital Heart Surgery: What Is Known and What Is New?. World Journal for Pediatric & Dougenital Heart Surgery, 2022, 13, 208-216.	0.8	1
773	Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 2022, 23, 3220.	4.1	7
774	Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78.	17.1	175
775	Common complement factor H polymorphisms are linked with periodontitis in elderly patients. Journal of Periodontology, 2022, 93, 1626-1634.	3.4	5
776	High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells, 2022, 11, 849.	4.1	21
777	Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia–Reperfusion Injury. International Journal of Molecular Sciences, 2022, 23, 2728.	4.1	23

#	Article	IF	CITATIONS
778	Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung and Circulation, 2022, , .	0.4	2
779	Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 818188.	2.4	9
780	Isolevuglandins Scavenger Ameliorates Myocardial Ischemic Injury by Suppressing Oxidative Stress, Apoptosis, and Inflammation. Frontiers in Cell and Developmental Biology, 2022, 10, 836035.	3.7	5
781	Construction and Bioinformatics Analysis of circRNA-miRNA-mRNA Network in Acute Myocardial Infarction. Frontiers in Genetics, 2022, 13, 854993.	2.3	4
782	Immunomodulatory Treatment Strategies Targeting B Cells for Heart Failure. Frontiers in Pharmacology, 2022, 13, 854592.	3.5	3
783	The Admission (Neutrophil+Monocyte)/Lymphocyte Ratio Is an Independent Predictor for In-Hospital Mortality in Patients With Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2022, 9, 870176.	2.4	8
784	GSK- $3\hat{l}^2$ -mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts. European Journal of Pharmacology, 2022, 920, 174830.	3.5	17
785	Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells, 2022, 11, 1226.	4.1	4
786	Brain–heart communication in health and diseases. Brain Research Bulletin, 2022, 183, 27-37.	3.0	11
788	Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules, 2022, 12, 11.	4.0	11
789	Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Frontiers in Cardiovascular Medicine, 2021, 8, 758050.	2.4	25
790	When More Means Less: The Prognosis of Recurrent Acute Myocardial Infarctions. Journal of Clinical Medicine, 2021, 10, 5889.	2.4	1
791	Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS ONE, 2021, 16, e0260835.	2.5	1
794	PM2.5 Exposure Lowers Mitochondrial Endurance During Cardiac Recovery in a Rat Model of Myocardial Infarction. Cardiovascular Toxicology, 2022, 22, 545-557.	2.7	6
795	A mathematical model of immunomodulatory treatment in myocardial infarction. Journal of Theoretical Biology, 2022, 544, 111122.	1.7	5
796	Systematic Bioinformatics Analysis Based on Public and Second-Generation Sequencing Transcriptome Data: A Study on the Diagnostic Value and Potential Mechanisms of Immune-Related Genes in Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2022, 9, 863248.	2.4	1
797	Farrerol Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting Macrophages and NLRP3. Frontiers in Pharmacology, 2022, 13, 879232.	3.5	6
798	Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 2022, 11, 1386.	4.1	60

#	Article	IF	CITATIONS
818	A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers. Scientific Reports, 2022, 12, 6545.	3.3	6
821	Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. Advances in Experimental Medicine and Biology, 2022, , 1-22.	1.6	4
822	Suppression of lysosomal-associated protein transmembrane 5 ameliorates cardiac function and inflammatory response by inhibiting the nuclear factor-kappa B (NF- \hat{I}° B) pathway after myocardial infarction in mice. Experimental Animals, 2022, 71, 415-425.	1.1	3
823	Signaling Pathways Involved in Myocardial Ischemia–Reperfusion Injury and Cardioprotection: A Systematic Review of Transcriptomic Studies in Sus scrofa. Journal of Cardiovascular Development and Disease, 2022, 9, 132.	1.6	2
824	Renal Denervation Attenuates Adverse Remodeling and Intramyocardial Inflammation in Acute Myocardial Infarction With Ischemia–Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2022, 9, 832014.	2.4	4
825	Acupuncture at Neiguan suppresses PVCs occurring post-myocardial infarction by alleviating inflammation and fibrosis. Chinese Medicine, 2022, 17, 52.	4.0	5
826	Environmental eustress improves postinfarction cardiac repair via enhancing cardiac macrophage survival. Science Advances, 2022, 8, eabm3436.	10.3	13
827	Precisely co-delivery of protein and ROS scavenger with platesomes for enhanced endothelial barrier preservation against myocardial ischemia reperfusion injury. Chemical Engineering Journal, 2022, 446, 136960.	12.7	10
828	Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. Journal of Nanobiotechnology, 2022, 20, 218.	9.1	17
829	Skimmin ameliorates cardiac function via the regulation of M2 macrophages in a myocardial infarction mouse model. Perfusion (United Kingdom), 2022, , 026765912211007.	1.0	1
830	Preservation of cardiac functions post myocardial infarction in vivo by a phenylboric acid-grafted hyaluronic hydrogel with anti-oxidation and accelerated degradation under oxidative microenvironment. Composites Part B: Engineering, 2022, 238, 109941.	12.0	10
831	Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Frontiers in Immunology, 2022, 13, .	4.8	8
832	Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	4.0	6
833	Extracellular Vesicle-Derived circITGB1 Regulates Dendritic Cell Maturation and Cardiac Inflammation via miR-342-3p/NFAM1. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	4.0	8
834	Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Frontiers in Pharmacology, 2022, 13, .	3.5	4
835	The Role of CXC Chemokines in Cardiovascular Diseases. Frontiers in Pharmacology, 0, 12, .	3.5	18
836	A ROS-Responsive Simvastatin Nano-Prodrug and its Fibronectin-Targeted Co-Delivery System for Atherosclerosis Treatment. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25080-25092.	8.0	11
837	Therapeutic Effect and Mechanism of Cinnamyl Alcohol on Myocardial Ischemia-Reperfusion Injury. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	1

#	Article	IF	CITATIONS
838	Identification of Immune-Related Genes in Patients with Acute Myocardial Infarction Using Machine Learning Methods. Journal of Inflammation Research, 0, Volume 15, 3305-3321.	3.5	9
839	Desmin deficiency affects the microenvironment of the cardiac side population and Sca1+ stem cell population of the adult heart and impairs their cardiomyogenic commitment. Cell and Tissue Research, 2022, 389, 309-326.	2.9	4
840	Mechanism of Action of Zhi Gan Cao Decoction for Atrial Fibrillation and Myocardial Fibrosis in a Mouse Model of Atrial Fibrillation: A Network Pharmacology-Based Study. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-22.	1.3	2
841	Rationale and design of interleukin-1 blockade in recently decompensated heart failure (REDHART2): a randomized, double blind, placebo controlled, single center, phase 2 study. Journal of Translational Medicine, 2022, 20, .	4.4	8
842	Inflammasome Signaling in AtrialÂFibrillation. Journal of the American College of Cardiology, 2022, 79, 2349-2366.	2.8	37
843	Identification of a circulating microRNAs biomarker panel for non-invasive diagnosis of coronary artery disease: case–control study. BMC Cardiovascular Disorders, 2022, 22, .	1.7	11
844	Enhanced Thrombin Generation Is Associated with Worse Left Ventricular Scarring after ST-Segment Elevation Myocardial Infarction: A Cohort Study. Pharmaceuticals, 2022, 15, 718.	3.8	2
845	Therapeutics That Promote Sympathetic Reinnervation Modulate the Inflammatory Response After Myocardial Infarction. JACC Basic To Translational Science, 2022, 7, 915-930.	4.1	4
846	Proteomic Investigation of Signature for Progression of Heart Failure Post Myocardial Infarction. SSRN Electronic Journal, 0, , .	0.4	0
847	Prognostic Value of the Leuko-Glycemic Index in Acute Myocardial Infarction Patients with or without Diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 1725-1736.	2.4	4
848	Targeting fibrosis: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	97
849	The prognostic value of admission lymphocyte-to-monocyte ratio in critically ill patients with acute myocardial infarction. BMC Cardiovascular Disorders, 2022, 22, .	1.7	2
850	MiR-208b/miR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-Î ² 1/Smad-3 Signaling Pathway: An in vitro and in vivo Study. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	8
851	The critically low levels of vitamin D predicts the resolution of the ST-segment elevation after the primary percutaneous coronary intervention. Acta Cardiologica, 2023, 78, 40-46.	0.9	1
852	Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-ÎB p65 pathway. Stem Cell Research and Therapy, 2022, 13, .	5.5	25
853	Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sensors and Actuators B: Chemical, 2022, 369, 132315.	7.8	48
854	Huoxin pill prevents excessive inflammation and cardiac dysfunction following myocardial infarction by inhibiting adverse Wnt/βâ€'catenin signaling activation. Phytomedicine, 2022, 104, 154293.	5.3	4
855	Anti-inflammatory therapy for acute coronary syndromes: is it time for a shift in the treatment paradigm?. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	1.9	1

#	Article	IF	CITATIONS
856	Uncovering the Effect and Mechanism of Rhizoma Corydalis on Myocardial Infarction Through an Integrated Network Pharmacology Approach and Experimental Verification. Frontiers in Pharmacology, 0, 13, .	3.5	3
857	Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair. Clinical Science, 2022, 136, 1281-1301.	4.3	10
858	Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflammation Research, 2022, 71, 1143-1158.	4.0	4
859	Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4
860	Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. Journal of Clinical Medicine, 2022, 11, 4464.	2.4	13
862	Fourier analysis of collagen bundle orientation in myocardial infarction scars. Histochemistry and Cell Biology, 0, , .	1.7	2
863	Identification of blood-based inflammatory biomarkers for the early-stage detection of acute myocardial infarction. Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11, .	2.1	7
864	Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomaterials Science and Engineering, 2022, 8, 3883-3898.	5.2	12
865	Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	4
866	Cardiac fibroblast heat shock protein 47 aggravates cardiac fibrosis post myocardial ischemia–reperfusion injury by encouraging ubiquitin specific peptidase 10 dependent Smad4 deubiquitination. Acta Pharmaceutica Sinica B, 2022, 12, 4138-4153.	12.0	10
867	Noninvasive Monitoring of Reparative Fibrosis after Myocardial Infarction in Rats Using ⁶⁸ Ga-FAPI-04 PET/CT. Molecular Pharmaceutics, 2022, 19, 4171-4178.	4.6	11
868	The protective effect of gamma aminobutyric acid B receptor activation on sympathetic nerve remodeling via the regulation of M2 macrophage polarization after myocardial infarction. Revista Portuguesa De Cardiologia, 2022, , .	0.5	3
869	First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	7
870	The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Frontiers in Immunology, 0, 13 , .	4.8	9
871	The relationship between Vaspin, Nesfatin-1 plasma levels and presence of fragmented QRS with the severity of coronary atherosclerosis. Advances in Medical Sciences, 2022, 67, 298-303.	2.1	1
872	Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy. Mechanisms of Ageing and Development, 2022, 207, 111714.	4.6	7
873	T2 and T2⎠mapping and weighted imaging in cardiac MRI. Magnetic Resonance Imaging, 2022, 93, 15-32.	1.8	3
874	Cardiac inducing colonies halt fibroblast activation and induce cardiac/endothelial cells to move and expand via paracrine signaling. Molecular Biology of the Cell, 2022, 33, .	2.1	3

#	Article	IF	CITATIONS
875	The progressive application of single-cell RNA sequencing technology in cardiovascular diseases. Biomedicine and Pharmacotherapy, 2022, 154, 113604.	5.6	5
876	Molecular and cellular pathophysiology of circulating cardiomyocyte-specific cell free DNA (cfDNA): Biomarkers of heart failure and potential therapeutic targets. Genes and Diseases, 2023, 10, 948-959.	3.4	1
877	Prolonged increased neutrophil-to-lymphocyte ratio is associated with mortality after successful revascularization for treatment of acute ischemic stroke. BMC Neurology, 2022, 22, .	1.8	1
878	Limb-Bud and Heart (LBH) Upregulation in Cardiomyocytes under Hypoxia Promotes the Activation of Cardiac Fibroblasts via Exosome Secretion. Mediators of Inflammation, 2022, 2022, 1-16.	3.0	4
879	Impact of various periods of perfusion-pause and reperfusion on the severity of myocardial injury in the langenodorff model. Perfusion (United Kingdom), 0, , 026765912211223.	1.0	0
880	Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	196
881	CCL24/CCR3 axis plays a central role in angiotensin Il–induced heart failure by stimulating M2 macrophage polarization and fibroblast activation. Cell Biology and Toxicology, 2023, 39, 1413-1431.	5.3	5
882	Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. Hearts, 2022, 3, 96-116.	0.9	1
883	Low-density lipoprotein cholesterol in oldest old with acute myocardial infarction: Is lower the better?. Age and Ageing, 2022, 51, .	1.6	4
884	Macrophages in myocardial infarction. American Journal of Physiology - Cell Physiology, 2022, 323, C1304-C1324.	4.6	22
885	Role of resveratrol in inhibiting pathological cardiac remodeling. Frontiers in Pharmacology, 0, 13, .	3.5	11
886	Electrospun Fibers Control Drug Delivery for Tissue Regeneration and Cancer Therapy. Advanced Fiber Materials, 2022, 4, 1375-1413.	16.1	44
887	Group 2 innate lymphoid cells protect mouse heart from myocardial infarction injury via interleukin 5, eosinophils, and dendritic cells. Cardiovascular Research, 2023, 119, 1046-1061.	3.8	4
888	Betaine, a Nutraceutical Ameliorated Myocardial Infarction by Attenuation of Pro-Inflammatory Cytokines and Matrix Metalloproteinase Production in Rats., 2022,, 186-200.		0
889	Integrated Analysis and Validation of Autophagy-Related Genes and Immune Infiltration in Acute Myocardial Infarction. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	1.3	1
890	Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. International Journal of Nanomedicine, 0, Volume 17, 4699-4719.	6.7	18
891	Ectonucleoside triphosphate diphosphohydrolase-1 (CD39) impacts TGF- $\hat{1}^21$ responses: Insights into cardiac fibrosis and function following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 0, , .	3.2	2
892	The cardiac wound healing response to myocardial infarction. WIREs Mechanisms of Disease, 2023, $15, \ldots$	3.3	11

#	Article	IF	CITATIONS
893	Berberine plays a cardioprotective role by inhibiting macrophage Wnt5a/ \hat{l}^2 â \in catenin pathway in the myocardium of mice after myocardial infarction. Phytotherapy Research, 2023, 37, 50-61.	5.8	5
894	Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS Applied Bio Materials, 2022, 5, 5218-5230.	4.6	1
895	Immunosenescence in Aging-Related Vascular Dysfunction. International Journal of Molecular Sciences, 2022, 23, 13269.	4.1	3
896	Blockade of Wnt Secretion Attenuates Myocardial Ischemia–Reperfusion Injury by Modulating the Inflammatory Response. International Journal of Molecular Sciences, 2022, 23, 12252.	4.1	5
897	Construction of a Bandâ€Aid Like Cardiac Patch for Myocardial Infarction with Controllable H ₂ S Release. Advanced Science, 2022, 9, .	11.2	2
898	Intramyocardial hemorrhage drives fatty degeneration of infarcted myocardium. Nature Communications, 2022, 13 , .	12.8	11
899	Untargeted metabolomics identified kynurenine as a predictive prognostic biomarker in acute myocardial infarction. Frontiers in Immunology, 0, 13 , .	4.8	4
900	Chick early amniotic fluid component improves heart function and protects against inflammation after myocardial infarction in mice. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	0
901	Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Discovery, 2022, 8, .	4.7	9
902	Deviceâ€Based Approaches Targeting Cardioprotection in Myocardial Infarction: The Expanding Armamentarium of Innovative Strategies. Journal of the American Heart Association, 2022, 11, .	3.7	1
903	Stress hyperglycemia ratio and neutrophil to lymphocyte ratio are reliable predictors of new-onset atrial fibrillation in patients with acute myocardial infarction. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	5
904	High Impact Opportunities to Address Ischemia: A Focus on Heart and Circulatory Research. American Journal of Physiology - Heart and Circulatory Physiology, 0, , .	3.2	0
905	Protein Alterations in Cardiac Ischemia/Reperfusion Revealed by Spatial-Omics. International Journal of Molecular Sciences, 2022, 23, 13847.	4.1	5
906	Effect of the ethanolic extract of green tea and green coffee on cardiac fibrosis attenuation by suppressing activin-a and collagen-1 gene expression. AIP Conference Proceedings, 2022, , .	0.4	0
907	Subthreshold splenic nerve stimulation prevents myocardial Ischemia-Reperfusion injury via neuroimmunomodulation of proinflammatory factor levels. International Immunopharmacology, 2023, 114, 109522.	3.8	0
908	Application Potential of Probiotics in Acute Myocardial Infarction. Cardiovascular Innovations and Applications, 2022, 7, .	0.3	1
909	NLRP3-Inflammasome Inhibition with IZD334 Does Not Reduce Cardiac Damage in a Pig Model of Myocardial Infarction. Biomedicines, 2022, 10, 3056.	3.2	3
910	Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Frontiers in Immunology, 0, 13, .	4.8	5

#	Article	IF	Citations
911	G Protein-Coupled Receptor 15 Expression Is Associated with Myocardial Infarction. International Journal of Molecular Sciences, 2023, 24, 180.	4.1	5
912	Novel Cardiokine GDF3 Predicts Adverse Fibrotic Remodeling After Myocardial Infarction. Circulation, 2023, 147, 498-511.	1.6	6
913	Modulation of inflammation by treatment with tocilizumab after out-of-hospital cardiac arrest and associations with clinical status, myocardial- and brain injury. Resuscitation, 2023, 184, 109676.	3.0	3
914	Phenotyping for percutaneous coronary intervention and long-term recurrent weighted outcomes. International Journal of Cardiology, 2022, , .	1.7	0
915	A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	6
916	Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. Journal of Clinical Investigation, 2023, 133, .	8.2	35
917	A Selfâ€Sustaining Antioxidant Strategy for Effective Treatment of Myocardial Infarction. Advanced Science, 2023, 10, .	11.2	9
919	Inappropriate Activation of TLR4/NF-κB is a Cause of Heart Failure. Cardiovascular Innovations and Applications, 2022, 7, .	0.3	1
920	Macrophages in cardiac remodelling after myocardial infarction. Nature Reviews Cardiology, 2023, 20, 373-385.	13.7	28
921	Mitochondriaâ€derived damageâ€associated molecular patterns and inflammation in the ischemicâ€reperfused heart. Acta Physiologica, 2023, 237, .	3.8	5
922	Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	3
923	Proposed cardio-pulmonary model to investigate the effects of COVID-19 on the cardiovascular system. Heliyon, 2023, 9, e12908.	3.2	0
924	<scp>GRK5</scp> â€mediated inflammation and fibrosis exert cardioprotective effects during the acute phase of myocardial infarction. FEBS Open Bio, 0, , .	2.3	1
925	Single-cell transcriptome sequencing of macrophages in common cardiovascular diseases. Journal of Leukocyte Biology, 2023, 113, 139-148.	3.3	3
926	Functional Potassium Channels in Macrophages. Journal of Membrane Biology, 0, , .	2.1	1
927	Beneficial effect of TLR4 blockade by a specific aptamer antagonist after acute myocardial infarction. Biomedicine and Pharmacotherapy, 2023, 158, 114214.	5.6	4
928	Toll-like receptor 9 signaling after myocardial infarction: Role of p66ShcA adaptor protein. Biochemical and Biophysical Research Communications, 2023, 644, 70-78.	2.1	1
929	The characteristic of resident macrophages and their therapeutic potential for myocardial infarction. Current Problems in Cardiology, 2022, , 101570.	2.4	0

#	Article	IF	CITATIONS
930	Pathophysiology of cardiopulmonary bypass. , 2023, , 135-154.		0
931	Long-Term Trajectories of High-Sensitivity C-Reactive Protein Level Among Patients with Acute Heart Failure. Journal of Inflammation Research, 0, Volume 16, 359-371.	3.5	1
932	Aircraft noise exposure induces pro-inflammatory vascular conditioning and amplifies vascular dysfunction and impairment of cardiac function after myocardial infarction. Cardiovascular Research, 2023, 119, 1416-1426.	3.8	6
933	Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. Journal of Nanobiotechnology, 2023, 21, .	9.1	4
934	Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Frontiers in Pharmacology, 0, 14, .	3.5	5
935	Integrating Network Pharmacology and an Experimental Model to Investigate the Effect of Zhenwu Decoction on Doxorubicin-Induced Heart Failure. Combinatorial Chemistry and High Throughput Screening, 2023, 26, .	1.1	1
936	Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sciences, 2023, 321, 121575.	4.3	2
937	Curcumin analogue C66 ameliorates mouse cardiac dysfunction and structural disorders after acute myocardial infarction via suppressing JNK activation. European Journal of Pharmacology, 2023, 946, 175629.	3.5	1
938	Metabolic reprogramming by immune-responsive gene 1 up-regulation improves donor heart preservation and function. Science Translational Medicine, 2023, 15, .	12.4	9
939	Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Delivery and Translational Research, 2023, 13, 1983-2014.	5.8	3
940	Meta-analysis of the effect of colchicine on C-reactive protein in patients with acute and chronic coronary syndromes. Coronary Artery Disease, 2023, 34, 210-215.	0.7	3
941	Monocyte MRI Relaxation Rates Are Regulated by Extracellular Iron and Hepcidin. International Journal of Molecular Sciences, 2023, 24, 4036.	4.1	O
942	Lack of STAT1 co-operative DNA binding protects against adverse cardiac remodelling in acute myocardial infarction. Frontiers in Cardiovascular Medicine, 0, 10 , .	2.4	0
943	Naples Prognostic Score and Prediction of Left Ventricular Ejection Fraction in STEMI Patients. Angiology, 2024, 75, 36-43.	1.8	3
944	Risk factors for fluoropyrimidine-induced cardiotoxicity in colorectal cancer: A retrospective cohort study and establishment of a prediction nomogram for 5-FU induced cardiotoxicity. Frontiers in Oncology, $0,13,.$	2.8	3
945	Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy, 2023, 25, 640-652.	0.7	3
946	Circulating tumor necrosis factorâ€Î±, interleukinâ€1β, and interleukinâ€17A estimates increased major adverse cardiac event risk in acute myocardial infarction patients. Journal of Clinical Laboratory Analysis, 2023, 37, .	2.1	3
947	CXCL16 Promotes Ly6Chigh Monocyte Infiltration and Impairs Heart Function after Acute Myocardial Infarction. Journal of Immunology, 2023, 210, 820-831.	0.8	3

#	Article	IF	CITATIONS
948	Recurrent Myocardial Injury Leads to Disease Tolerance in a Murine Model of Stress-Induced Cardiomyopathy. JACC Basic To Translational Science, 2023, 8, 783-797.	4.1	1
950	The systemic deletion of interleukin- $\hat{\Pi}$ ± reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction. Scientific Reports, 2023, 13, .	3.3	1
951	The Role of ncRNAs in Cardiac Infarction and Regeneration. Journal of Cardiovascular Development and Disease, 2023, 10, 123.	1.6	4
953	Clinical profile and prognosis of young patients with ST-elevation myocardial infarction managed by the emergency-intervention Codi IAM network. Revista Espanola De Cardiologia (English Ed), 2023, , .	0.6	0
954	Immunity and inflammation in cardiovascular disorders. BMC Cardiovascular Disorders, 2023, 23, .	1.7	5
955	Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. International Journal of Molecular Sciences, 2023, 24, 6119.	4.1	13
956	Activating $\hat{l}\pm 7$ nAChR helps post-myocardial infarction healing by regulating macrophage polarization via the STAT3 signaling pathway. Inflammation Research, 2023, 72, 879-892.	4.0	4
958	Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Frontiers in Pharmacology, 0, 14, .	3.5	6
959	Dual delivery of an NF-κB inhibitor and IL-10 through supramolecular hydrogels polarizes macrophages and promotes cardiac repair after myocardial infarction. Acta Biomaterialia, 2023, 164, 111-123.	8.3	2
960	Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease. International Journal of Molecular Sciences, 2023, 24, 6497.	4.1	3
961	Necrotic cardiac myocytes skew macrophage polarization towards a classically activated phenotype. PLoS ONE, 2023, 18, e0282921.	2.5	0
962	Editorial: The role of circulating immune mediators in the crosstalk between cells of the immune system and cardiovascular system in CVDs. Frontiers in Immunology, $0,14,.$	4.8	0
964	The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. Cardiac and Vascular Biology, 2023, , 61-100.	0.2	0
965	Mechanobiology of Cardiac Fibroblasts in Cardiac Remodeling. Cardiac and Vascular Biology, 2023, , 101-120.	0.2	0
967	Natriuretic-like Peptide Lebetin 2 Mediates M2 Macrophage Polarization in LPS-Activated RAW264.7 Cells in an IL-10-Dependent Manner. Toxins, 2023, 15, 298.	3.4	3
968	Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Frontiers in Cardiovascular Medicine, $0,10,10$	2.4	0
969	Basophils beyond allergic and parasitic diseases. Frontiers in Immunology, 0, 14, .	4.8	2
970	KALP BAĞIRSAK EKSENİ. , 2023, 14, 49-58.		0

#	ARTICLE	IF	CITATIONS
971	Assessing the relationship between monocyte-to-HDL cholesterol ratio and mortality in patients with hypertrophic cardiomyopathy. Hellenic Journal of Cardiology, 2024, 76, 58-67.	1.0	0
972	Salt and Gut Microbiota in Heart Failure. Current Hypertension Reports, 2023, 25, 173-184.	3.5	2
973	Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiology and Therapy, 0, , .	2.6	0
974	The Role of Innate Immune Cells in Cardiac Injury and Repair: A Metabolic Perspective. Current Cardiology Reports, 2023, 25, 631-640.	2.9	2
975	Cardiac Fibroblast Activation Induced by Oxygen–Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway. Journal of Cardiovascular Translational Research, 2023, 16, 778-792.	2.4	2
976	Insights into the roles of IL-10-producing regulatory B cells in cardiovascular disorders: Recent advances and future perspectives. Journal of Leukocyte Biology, 0, , .	3.3	0
977	Phospholipid Encapsulation of an Anti-Fibrotic Endopeptide to Enhance Cellular Uptake and Myocardial Retention. Cells, 2023, 12, 1589.	4.1	1
979	Cardiovascular Remodeling Post-Ischemia: Herbs, Diet, and Drug Interventions. Biomedicines, 2023, 11, 1697.	3.2	1
980	Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice. PLoS ONE, 2023, 18, e0286907.	2.5	0
981	The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 0, 10 , .	2.4	3
982	IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction. Heliyon, 2023, 9, e17099.	3.2	0
983	Role of inflammation and immune response in atherosclerosis: Mechanisms, modulations, and therapeutic targets. Human Immunology, 2023, 84, 439-449.	2.4	1
984	Macrophages of the Cardiorenal Axis and Myocardial Infarction. Biomedicines, 2023, 11, 1843.	3.2	1
985	BUN/albumin ratio predicts short-term mortality better than SYNTAX score in ST-elevation myocardial infarction patients. Journal of Cardiovascular Medicine, 2023, 24, 326-333.	1.5	2
986	[68Ga]Ga-NODAGA-E[(cRGDyK)]2 angiogenesis PET following myocardial infarction in an experimental rat model predicts cardiac functional parameters and development of heart failure. Journal of Nuclear Cardiology, 2023, 30, 2073-2084.	2.1	1
987	Heterogeneity of Repolarization and Cell-Cell Variability of Cardiomyocyte Remodeling Within the Myocardial Infarction Border Zone Contribute to Arrhythmia Susceptibility. Circulation: Arrhythmia and Electrophysiology, 2023, 16 , .	4.8	2
988	The phagocytic role of macrophage following myocardial infarction. Heart Failure Reviews, 2023, 28, 993-1007.	3.9	1
989	The Intriguing Role of Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A Comprehensive Review. Journal of Cardiovascular Development and Disease, 2023, 10, 215.	1.6	2

#	Article	IF	CITATIONS
990	Regulatory T Cells in Pathological Cardiac Hypertrophy: Mechanisms and Therapeutic Potential. Cardiovascular Drugs and Therapy, 0 , , .	2.6	1
992	Effects of Antioxidants in Fermented Beverages in Tissue Transcriptomics: Effect of Beer Intake on Myocardial Tissue after Oxidative Injury. Antioxidants, 2023, 12, 1096.	5.1	1
993	<scp>FTO</scp> represses <scp>NLRP3</scp> â€mediated pyroptosis and alleviates myocardial ischemia–reperfusion injury via inhibiting <scp>CBL</scp> â€mediated ubiquitination and degradation of βâ€catenin. FASEB Journal, 2023, 37, .	0.5	3
994	Suppression of myeloid YAP antagonizes adverse cardiac remodeling during pressure overload stress. Journal of Molecular and Cellular Cardiology, 2023, 181, 1-14.	1.9	6
995	Paroxetine induced larva zebrafish cardiotoxicity through inflammation response. Ecotoxicology and Environmental Safety, 2023, 260, 115096.	6.0	0
996	The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovascular Drugs and Therapy, 0, , .	2.6	1
997	The Effect of Time of Cell Delivery on Post-MI Cardiac Regeneration: A Review of Preclinical and Clinical Studies., 2023,, 349-401.		2
998	Editorial: The cardiac stroma in homeostasis and disease. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
999	Identifying Immune Cell Infiltration and Hub Genes During the Myocardial Remodeling Process After Myocardial Infarction. Journal of Inflammation Research, 0, Volume 16, 2893-2906.	3.5	0
1000	NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. European Journal of Pharmacology, 2023, 955, 175901.	3.5	0
1001	Subclinical myocardial injury increases the risk of heart failure in patients with and without type 2 diabetes post-acute coronary syndrome. International Journal of Cardiology, 2023, 390, 131195.	1.7	1
1002	Cardioprotective effects of Amygdalin, a promising antioxidant, on acute myocardial infarction and underlying mechanisms. Journal of Functional Foods, 2023, 107, 105684.	3.4	O
1003	Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Frontiers in Pharmacology, 0, 14 , .	3.5	3
1004	Triage body temperature and its influence on patients with acute myocardial infarction. BMC Cardiovascular Disorders, 2023, 23, .	1.7	0
1005	Divergent Actions of Renal Tubular and Endothelial Type 1 IL-1 Receptor Signaling in Toxin-Induced AKI. Journal of the American Society of Nephrology: JASN, 2023, 34, 1629-1646.	6.1	4
1006	The role of Vav3 expression for inflammation and cell death during experimental myocardial infarction. Clinics, 2023, 78, 100273.	1.5	0
1007	Xinshubao tablet ameliorates myocardial injury against heart failure via the DCN/PPARα/PGC-1α/P300 pathway. Biomedicine and Pharmacotherapy, 2023, 166, 115285.	5.6	2
1008	Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiological Reviews, 2024, 104, 659-725.	28.8	3

#	ARTICLE	IF	CITATIONS
1009	Cellular Membraneâ€Engineered Nanovesicles as Threeâ€Stage Booster to Target Lesion Core. Advanced Materials, 0, , .	21.0	0
1010	The Role of METTL3 in the Progression of Cardiac Fibrosis. Current Topics in Medicinal Chemistry, 2023, 23, 2427-2435.	2.1	1
1012	The association of hemodynamic markers of right ventricular dysfunction with SII index and clinical outcomes in reduced ejection fraction heart failure. Medicine (United States), 2023, 102, e34809.	1.0	1
1013	Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. Journal of Cardiovascular Development and Disease, 2023, 10, 376.	1.6	0
1014	Prognostic Implications of Clinical, Laboratory and Echocardiographic Biomarkers in Patients with Acute Myocardial Infarction—Rationale and Design of the ††CLEAR-AMI Study''. Journal of Clinical Medicine, 2023, 12, 5726.	2.4	0
1015	Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart—Part II: Molecular Mechanisms of Cardiac Regeneration. Journal of Cardiovascular Development and Disease, 2023, 10, 357.	1.6	1
1016	Pathophysiological mechanisms of post-myocardial infarction depression: a narrative review. Frontiers in Psychiatry, $0,14,.$	2.6	0
1017	Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish. Chinese Journal of Integrative Medicine, 0, , .	1.6	O
1018	Inhaled toxicants and pulmonary lipid metabolism: biological consequences and therapeutic interventions. Toxicological Sciences, 2023, 196, 141-151.	3.1	2
1019	Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Research in Cardiology, 2023, 118, .	5.9	1
1020	The role of miR1 and miR133a in new-onset atrial fibrillation after acute myocardial infarction. BMC Cardiovascular Disorders, 2023, 23, .	1.7	0
1021	Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Research in Cardiology, 2023, 118, .	5.9	0
1022	Macrophage CARD9 mediates cardiac injury following myocardial infarction through regulation of lipocalin 2 expression. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	0
1023	P2Y12 Inhibitor Monotherapy CombinedÂWith Colchicine FollowingÂPCIÂin ACS Patients. JACC: Cardiovascular Interventions, 2023, 16, 1845-1855.	2.9	11
1024	Identification of molecular signatures in acute myocardial infarction based on integrative analysis of proteomics and transcriptomics. Genomics, 2023, 115, 110701.	2.9	1
1025	Myocardial Injury in Rats Exposed to High-Intensity Exercise Evaluated by 2-D Speckle Tracking Imaging. Ultrasound in Medicine and Biology, 2023, 49, 2446-2450.	1.5	0
1028	Colchicine added to standard therapy further reduces fibrosis in pigs with myocardial infarction. Journal of Cardiovascular Medicine, 2023, 24, 840-846.	1.5	2
1029	Longâ€Term Cumulative Highâ€5ensitivity Câ€Reactive Protein and Mortality Among Patients With Acute Heart Failure. Journal of the American Heart Association, 2023, 12, .	3.7	1

#	Article	IF	CITATIONS
1030	RESVERATROL MORE SIGNIFICANTLY THAN QUERCETIN IMPROVES CENTRAL HEMODYNAMICS IN PATIENTS WITH ISCHEMIC HEART DISEASE. Bulletin of Problems Biology and Medicine, 2023, 1, 304.	0.1	0
1031	Personalizing anti―nflammatory therapy in heart failure: A new way. European Journal of Heart Failure, 2023, 25, 1933-1935.	7.1	1
1032	Serological short-chain fatty acid and trimethylamine N-oxide microbial metabolite imbalances in young adults with acute myocardial infarction. Heliyon, 2023, 9, e20854.	3.2	0
1033	No evidence of a causal relationship between ankylosing spondylitis and cardiovascular disease: a two-sample Mendelian randomization study. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
1034	Myocardial glucose suppression may interfere with the detection of inflammatory cells with FDG-PET as suggested in a canine model of myocardial infarction. EJNMMI Research, 2023, 13, .	2.5	0
1035	Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model. Parasites and Vectors, 2023, 16, .	2.5	0
1036	Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. Journal of Cardiovascular Translational Research, 0, , .	2.4	0
1037	Evaluation of Density-Based Spatial Clustering for Identifying Genomic Loci Associated with Ischemic Stroke in Genome-Wide Data. International Journal of Molecular Sciences, 2023, 24, 15355.	4.1	0
1038	Initial Evaluation and Management of Patients Presenting with Acute Chest Pain in the Emergency Department. Current Cardiology Reports, 0, , .	2.9	0
1039	An injectable carrier for spatiotemporal and sequential release of therapeutic substances to treat myocardial infarction. Journal of Controlled Release, 2024, 365, 29-42.	9.9	0
1040	USP38 regulates inflammatory cardiac remodeling after myocardial infarction. Clinical Science, 2023, 137, 1665-1681.	4.3	1
1041	Inflammatory Bowel Disease Increases the Severity of Myocardial Infarction after Acute Ischemia–Reperfusion Injury in Mice. Biomedicines, 2023, 11, 2945.	3.2	0
1042	Left ventricular remodeling in perimenopausal women. Science and Innovations in Medicine, 2023, 8, 259-265.	0.1	0
1043	Human Bone Marrow Mesenchymal Stem Cells Promote the M2 Phenotype in Macrophages Derived from STEMI Patients. International Journal of Molecular Sciences, 2023, 24, 16257.	4.1	1
1044	A Cardiacâ€Targeted Nanozyme Interrupts the Inflammationâ€Free Radical Cycle in Myocardial Infarction. Advanced Materials, 2024, 36, .	21.0	0
1046	Unraveling the role of galectin-3 in cardiac pathology and physiology. Frontiers in Physiology, 0, 14, .	2.8	1
1047	Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. European Journal of Pharmacology, 2024, 963, 176277.	3.5	0
1048	Increased expression of protein tyrosine phosphatase nonreceptor type 22 alters early Tâ€cell receptor signaling and differentiation of CD4 ⁺ T cells in chronic heart failure. FASEB Journal, 2024, 38, .	0.5	1

#	Article	IF	CITATIONS
1049	A Predictive Model of New-Onset Atrial Fibrillation After Percutaneous Coronary Intervention in Acute Myocardial Infarction Based on the Lymphocyte to C-Reactive Protein Ratio. Journal of Inflammation Research, 0, Volume 16, 6123-6137.	3.5	0
1050	Recovering intestinal redox homeostasis to resolve systemic inflammation for preventing remote myocardial injury by oral fullerenes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
1051	Multiplexed optofluidic laser immunosensor for sensitive and rapid detection of biomarkers. Sensors and Actuators B: Chemical, 2024, 403, 135198.	7.8	0
1052	Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis. Biomedicine and Pharmacotherapy, 2024, 170, 116079.	5.6	0
1053	Myocardial Tissue Repair and Regeneration. , 2023, , 497-534.		0
1054	Neuroimmune modulation mediated by IL-6: A potential target for the treatment of ischemia-induced ventricular arrhythmias. Heart Rhythm, 2023, , .	0.7	2
1055	Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Research in Cardiology, 2024, 119, 1-33.	5.9	0
1056	Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS ONE, 2024, 19, e0289894.	2.5	O
1057	Tolerogenic dendritic cells in radiation-induced lung injury. Frontiers in Immunology, 0, 14, .	4.8	0
1058	Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
1059	2,5-Dimethyl-celecoxib induces early termination of inflammatory responses by transient macrophage accumulation and inhibits the progression of cardiac remodeling in a mouse model of cryoinjury-induced myocardial infarction. Journal of Pharmacological Sciences, 2024, 154, 97-107.	2.5	0
1060	Enhancing bone scaffold interfacial reinforcement through in situ growth of metal–organic frameworks (MOFs) on strontium carbonate: Achieving high strength and osteoimmunomodulation. Journal of Colloid and Interface Science, 2024, 655, 43-57.	9.4	5
1061	Patterns of left ventricular remodeling post-myocardial infarction, determinants, and outcome. Clinical Research in Cardiology, 0, , .	3.3	1
1062	Triple Hybrid Cellular Nanovesicles Promote Cardiac Repair after Ischemic Reperfusion. ACS Nano, 2024, 18, 4443-4455.	14.6	0
1063	A polyphenol-derived redox-active and conductive nanoparticle-reinforced hydrogel with wet adhesiveness for myocardial infarction repair by simultaneously stimulating anti-inflammation and calcium homeostasis pathways. Nano Today, 2024, 55, 102157.	11.9	0
1064	Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med, 2024, 5, 10-31.	4.4	6
1065	Macrophages promote the transition from myocardial ischemia reperfusion injury to cardiac fibrosis in mice through GMCSF/CCL2/CCR2 and phenotype switching. Acta Pharmacologica Sinica, 2024, 45, 959-974.	6.1	0
1066	Colchicine in acute myocardial infarction: cardiovascular events at 1-year follow up. Open Heart, 2024, 11, e002474.	2.3	O

#	Article	IF	CITATIONS
1067	Design of a Zn-based nanozyme injectable multifunctional hydrogel with ROS scavenging activity for myocardial infarction therapy. Acta Biomaterialia, 2024, 177, 62-76.	8.3	0
1068	CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. International Journal of Molecular Sciences, 2024, 25, 1683.	4.1	0
1069	Isopropyl 3-(3,4-dihydroxyphenyl) 2-hydroxypropanoate protects septic myocardial injury via regulating GAS6/AxI-AMPK signaling pathway. Biochemical Pharmacology, 2024, 221, 116035.	4.4	0
1070	Decrypting the role of angiogenesis, inflammation, and oxidative stress in pathogenesis of congestive heart failure: Nanotechnology as a boon for the management of congestive heart failure. , 2024, , 151-190.		0
1071	Microglia maintain structural integrity during fetal brain morphogenesis. Cell, 2024, 187, 962-980.e19.	28.9	0
1072	Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2024, 172, 116248.	5.6	1
1073	UPLC-QTOF-MS based metabolomics unravels the modulatory effect of ginseng water extracts on rats with Qi-deficiency. Journal of Pharmaceutical and Biomedical Analysis, 2024, 242, 116019.	2.8	0
1075	TGF- \hat{l}^2 as a therapeutic target in the infarcted and failing heart: cellular mechanisms, challenges, and opportunities. Expert Opinion on Therapeutic Targets, 2024, 28, 45-56.	3.4	O
1076	Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Materials Today Bio, 2024, 25, 100978.	5.5	0
1077	Antioxidant Nanozymeâ€Engineered Mesenchymal Stem Cells for In Vivo MRI Tracking and Synergistic Therapy of Myocardial Infarction. Advanced Functional Materials, 0, , .	14.9	O
1078	Kinin-kallikrein system: New perspectives in heart failure. Heart Failure Reviews, 2024, 29, 729-737.	3.9	0
1079	Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Frontiers in Cardiovascular Medicine, $0,11,1$	2.4	0
1080	Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. International Journal of Molecular Sciences, 2024, 25, 2667.	4.1	0
1082	Review of the Association Between Long-Term and Current Systemic Steroid Use With Electromechanical Complications and Inpatient Mortality After ST-Elevation Myocardial Infarction. Cureus, 2024, , .	0.5	0
1083	Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure. , 2024, 3, .		0
1084	Bone-marrow mononuclear cells and acellular human amniotic membrane improve global cardiac function without inhibition of the NLRP3 Inflammasome in a rat model of heart failure. Anais Da Academia Brasileira De Ciencias, 2024, 96, .	0.8	0
1085	Exercise Improves Heart Function after Myocardial Infarction: The Merits of AMPK. Cardiovascular Drugs and Therapy, 0, , .	2.6	0
1086	Local delivery of stem cell spheroids with protein/polyphenol self-assembling armor to improve myocardial infarction treatment via immunoprotection and immunoregulation. Biomaterials, 2024, 307, 122526.	11.4	O

#	Article	IF	CITATIONS
1087	Prophylactic Supplementation with <i>Lactobacillus Reuteri</i> or Its Metabolite GABA Protects Against Acute Ischemic Cardiac Injury. Advanced Science, 0, , .	11.2	0
1088	Imaging of Cardiac Fibrosis: How Far Have We Moved From Extracellular to Cellular?. Seminars in Nuclear Medicine, 2024, , .	4.6	O
1089	The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Human Cell, 2024, 37, 607-624.	2.7	0
1090	Relationship between heart failure and intestinal inflammation in infants with congenital heart disease. BMC Microbiology, 2024, 24, .	3.3	O
1091	Japanese Traditional Herbal Medicine, Rikkunshito, Partially Suppresses Inflammatory Responses in Myocardial Ischemia/Reperfusion Injury. Cureus, 2024, , .	0.5	0
1092	Neutrophil Percentage as a Potential Biomarker of Acute Kidney Injury Risk and Short-Term Prognosis in Patients with Acute Myocardial Infarction in the Elderly. Clinical Interventions in Aging, 0, Volume 19, 503-515.	2.9	O
1093	Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Pharmacology, 0, 15, .	3.5	0
1094	Myricetin alleviates diabetic cardiomyopathy by regulating gut microbiota and their metabolites. Nutrition and Diabetes, 2024, 14, .	3.2	O