Gelatinous zooplankton biomass in the global oceans: g environmental drivers

Global Ecology and Biogeography 23, 701-714 DOI: 10.1111/geb.12169

Citation Report

#	Article	IF	CITATIONS
1	Distribution of planktonic cnidarian assemblages in the southern Gulf of Mexico, during autumn. Revista Chilena De Historia Natural, 2014, 87, .	0.5	8
2	Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142210.	1.2	76
3	Discovery, Prevalence, and Persistence of Novel Circular Single-Stranded DNA Viruses in the Ctenophores Mnemiopsis leidyi and Beroe ovata. Frontiers in Microbiology, 2015, 6, 1427.	1.5	18
4	Life Cycle Reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS ONE, 2015, 10, e0145314.	1.1	23
5	Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms. Journal of Plankton Research, 2015, 37, 989-1000.	0.8	17
6	Respiration of fragile planktonic zooplankton: Extending the possibilities with a single method. Journal of Experimental Marine Biology and Ecology, 2015, 471, 226-231.	0.7	6
7	Population drivers of a <i>Thalia democratica</i> swarm: insights from population modelling. Journal of Plankton Research, 2015, 37, 1074-1087.	0.8	28
8	Autumnal bottom-up and top-down impacts of <i>Cyanea capillata</i> : a mesocosm study. Journal of Plankton Research, 2015, 37, 1042-1055.	0.8	10
9	Box Jellyfish <i>Alatina alata</i> Has a Circumtropical Distribution. Biological Bulletin, 2016, 231, 152-169.	0.7	30
10	Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal. Marine Environmental Research, 2016, 120, 103-110.	1.1	14
11	Rethinking the Role of Salps in the Ocean. Trends in Ecology and Evolution, 2016, 31, 720-733.	4.2	150
12	The global susceptibility of coastal forage fish to competition by large jellyfish. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161931.	1.2	15
13	Decomposition of jellyfish carrion in situ: Short-term impacts on infauna, benthic nutrient fluxes and sediment redox conditions. Science of the Total Environment, 2016, 566-567, 929-937.	3.9	24
14	Stable isotopes reveal a potential kleptoparasitic relationship between an ophiuroid (<i>Ophiocnemis) Tj ETQq1 1 2017, 39, 138-146.</i>	0.78431 0.8	4 rgBT /Over 10
15	Occurrence of the siphonophoreMuggiaea atlanticain Scottish coastal waters: source or sink?. Journal of Plankton Research, 2017, 39, 122-137.	0.8	3
16	Evaluating the role of large jellyfish and forage fishes as energy pathways, and their interplay with fisheries, in the Northern Humboldt Current System. Progress in Oceanography, 2018, 164, 28-36.	1.5	23
17	Spatial patterns of large jellyfish Chrysaora plocamia blooms in the Northern Humboldt Upwelling System in relation to biological drivers and climate. ICES Journal of Marine Science, 2018, 75, 1405-1415.	1.2	11
18	New records of gelatinous zooplankton from an oceanic island in the Eastern Tropical Pacific. Journal of the Marine Biological Association of the United Kingdom, 2018, 98, 1219-1226.	0.4	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Long-term trends in the foraging ecology and habitat use of an endangered species: an isotopic perspective. Oecologia, 2018, 188, 1273-1285.	0.9	8
20	Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the Available Evidence: A Systematic Review. Frontiers in Marine Science, 2018, 5, .	1.2	49
21	Movements of leatherback turtles (Dermochelys coriacea) in the Gulf of Mexico. Marine Biology, 2018, 165, 1.	0.7	8
22	Medusa: A Review of an Ancient Cnidarian Body Form. Results and Problems in Cell Differentiation, 2018, 65, 105-136.	0.2	11
23	In situ Observations of the Meso-Bathypelagic Scyphozoan, <i>Deepstaria enigmatica</i> (Semaeostomeae: Ulmaridae). American Museum Novitates, 2018, 3900, 1-14.	0.2	3
24	The impact of giant jellyfish Nemopilema nomurai blooms on plankton communities in a temperate marginal sea. Marine Pollution Bulletin, 2019, 149, 110507.	2.3	17
25	Inclusion of jellyfish in 30+ years of Ecopath with Ecosim models. ICES Journal of Marine Science, 2019, 76, 1941-1950.	1.2	19
26	Ultragentle manipulation of delicate structures using a soft robotic gripper. Science Robotics, 2019, 4, .	9.9	186
27	Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE, 2019, 14, e0198056.	1.1	32
28	Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanologica Sinica, 2019, 38, 32-45.	0.4	13
29	Fitting methods and seasonality effects on the assessment of pelagic fish communities in Daya Bay, China. Ecological Indicators, 2019, 103, 346-354.	2.6	4
30	Jellyfishes in a changing ocean. , 2019, , 137-148.		2
31	Gelatinous Zooplankton in the Surface Layers of the Coastal Central Red Sea. Frontiers in Marine Science, 2019, 6, .	1.2	8
32	Sinking of Gelatinous Zooplankton Biomass Increases Deep Carbon Transfer Efficiency Globally. Global Biogeochemical Cycles, 2019, 33, 1764-1783.	1.9	43
33	Spatial distribution and seasonal patterns of the siphonophores Muggiaea atlantica and Muggiaea kochii in a temperate estuarine ecosystem. Estuarine, Coastal and Shelf Science, 2019, 218, 179-187.	0.9	3
34	Latitudinal variations in <i>Salpa thompsoni</i> reproductive fitness. Limnology and Oceanography, 2019, 64, 575-584.	1.6	17
35	New record of Stellamedusa ventana Raskoff & Matsumoto, 2004 in the Eastern Tropical Pacific. Marine Biodiversity, 2019, 49, 515-519.	0.3	1
36	Microbial Processing of Jellyfish Detritus in the Ocean. Frontiers in Microbiology, 2020, 11, 590995.	1.5	19

#	Article	IF	CITATIONS
37	Gelatinous Zooplanktonâ€Mediated Carbon Flows in the Global Oceans: A Dataâ€Driven Modeling Study. Global Biogeochemical Cycles, 2020, 34, e2020GB006704.	1.9	66
38	A combined analysis of transcriptomics and proteomics of a novel Antarctic Salpa sp. and its potential toxin screenings. International Journal of Biological Macromolecules, 2020, 160, 1101-1113.	3.6	4
39	Medusozoans reported in Portugal and its ecological and economical relevance. Regional Studies in Marine Science, 2020, 35, 101230.	0.4	5
40	Overview of the comb jellies (Ctenophora) from the South-western Atlantic and Sub Antarctic region (32–60°S; 34–70°W). New Zealand Journal of Marine and Freshwater Research, 0, , 1-25.	0.8	6
41	The Azores: A Mid-Atlantic Hotspot for Marine Megafauna Research and Conservation. Frontiers in Marine Science, 2020, 6, .	1.2	20
42	Biogeography and phenology of the jellyfish <i>Rhizostoma pulmo</i> (Cnidaria: Scyphozoa) in southern European seas. Global Ecology and Biogeography, 2021, 30, 622-639.	2.7	13
43	Scyphozoan jellyfish blooms and their relationship with environmental factors along the South-eastern Arabian Sea. Marine Biology Research, 2021, 17, 185-199.	0.3	6
44	Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model. Biogeosciences, 2021, 18, 1291-1320.	1.3	41
46	Long-term patterns of mass stranding of the colonial cnidarian Velella velella: influence of environmental forcing. Marine Ecology - Progress Series, 2021, 662, 69-83.	0.9	7
47	Community structure of gelatinous zooplankton in a temperate ecosystem: Spatial patterns and underlying drivers. Regional Studies in Marine Science, 2021, 43, 101673.	0.4	Ο
48	Impacts of jellyfish on marine cage aquaculture: an overview of existing knowledge and the challenges to finfish health. ICES Journal of Marine Science, 2021, 78, 1557-1573.	1.2	17
49	Selective feeding and linkages to the microbial food web by the doliolid <i>Dolioletta gegenbauri</i> . Limnology and Oceanography, 2021, 66, 1993-2010.	1.6	18
50	Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata,) Tj ETQq0 0 0	rgBT /Ove 1.6	erlock 10 Tf
51	The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean. Limnology and Oceanography, 2021, 66, 2011-2032.	1.6	20
52	Biogeography of the Southern Ocean: environmental factors driving mesoplankton distribution South of Africa. PeerJ, 2021, 9, e11411.	0.9	3
53	Variability of growth rates and thermohaline niches of Rhizostoma pulmo's pelagic stages (Cnidaria:) Tj ETQq1	10.7843 0.7	514 rgBT /○
54	Microbial response to the presence of invasive ctenophore Mnemiopsis leidyi in the coastal waters of the Northeastern Adriatic. Estuarine, Coastal and Shelf Science, 2021, 259, 107459.	0.9	4
55	Limited ingestion, rapid egestion and no detectable impacts of microbeads on the moon jellyfish, Aurelia aurita. Marine Pollution Bulletin, 2020, 156, 111208.	2.3	17

CITATION REPORT

#	Article	IF	CITATIONS
56	Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks. PLoS ONE, 2015, 10, e0141060.	1.1	25
57	Jellyfish biochemical composition: importance of standardised sample processing. Marine Ecology - Progress Series, 2014, 510, 275-288.	0.9	34
58	Jellyfish blooms and ecological interactions. Marine Ecology - Progress Series, 2014, 510, 109-110.	0.9	16
59	Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Marine Ecology - Progress Series, 2016, 549, 9-25.	0.9	40
60	Successes and challenges in jellyfish ecology: examples from Aequorea spp Marine Ecology - Progress Series, 2018, 591, 7-27.	0.9	12
61	Modeling population dynamics of scyphozoan jellyfish (Aurelia spp.) in the Gulf of Mexico. Marine Ecology - Progress Series, 2018, 591, 167-183.	0.9	24
62	Descriptive density models of scyphozoan jellyfish in the northern Gulf of Mexico. Marine Ecology - Progress Series, 2018, 591, 71-85.	0.9	11
63	Settlement and survival of Chrysaora chesapeakei polyps: implications for adult abundance. Marine Ecology - Progress Series, 2018, 601, 139-151.	0.9	5
64	Tracking jellyfish and leatherback sea turtle seasonality through citizen science observers. Marine Ecology - Progress Series, 2019, 620, 15-32.	0.9	16
65	Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean. Biogeosciences, 2020, 17, 6051-6080.	1.3	45
66	Zooplankton communities in the Drake Passage through environmental boundaries: a snapshot of 2010, early spring. PeerJ, 2019, 7, e7994.	0.9	9
68	New Distribution Record and Ecological Notes for Iasis Cylindrica (Tunicata: Salpidae) in the Bay of Bengal. Thalassas, 2022, 38, 87-92.	0.1	0
69	Pelagic tunicate grazing on marine microbes revealed by integrative approaches. Limnology and Oceanography, 2022, 67, 102-121.	1.6	19
70	Distribution and biomass of gelatinous zooplankton in relation to an oxygen minimum zone and a shallow seamount in the Eastern Tropical North Atlantic Ocean. Marine Environmental Research, 2022, 175, 105566.	1.1	2
73	Predictive Metabolic Suitability Maps for the Thermophilic Invasive Hydroid Pennaria disticha Under Future Warming Mediterranean Sea Scenarios. Frontiers in Marine Science, 2022, 9, .	1.2	4
74	Surface chlorophyll concentration as a mesoplankton biomass assessment tool in the Southern Ocean region. Global Ecology and Biogeography, 2022, 31, 405-424.	2.7	5
80	Global ecological and biogeochemical impacts of pelagic tunicates. Progress in Oceanography, 2022, 205, 102822.	1.5	24
81	Gelatinous Carbon Impacts Benthic Megafaunal Communities in a Continental Margin. Frontiers in Marine Science, 2022, 9, .	1.2	2

CITATION REPORT

#	Article	IF	CITATIONS
82	Ontogenetic dietary shifts of the medusa Rhizostoma pulmo (Cnidaria: Scyphozoa). Hydrobiologia, 2022, 849, 2933-2948.	1.0	6
83	Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning. Frontiers in Marine Science, 0, 9, .	1.2	15
84	Observing and modeling long-term persistence of P. noctiluca in coupled complementary marine systems (Southern Tyrrhenian Sea and Messina Strait). Scientific Reports, 2022, 12, .	1.6	3
85	Thaliacean community responses to distinct thermohaline and circulation patterns in the Western Tropical South Atlantic Ocean. Hydrobiologia, 2022, 849, 4679-4692.	1.0	3
86	Considering zooplankton as a black box in determining PAH concentrations could result in misjudging their bioaccumulation. Environmental Pollution, 2023, 316, 120672.	3.7	3
87	Predation effect on copepods by the giant jellyfish Nemopilema nomurai during the early occurrence stage in May in the northern East China Sea and southern Yellow Sea, China. Marine Pollution Bulletin, 2023, 186, 114462.	2.3	2
88	How Much Recurrent Outbreaks of the Moon Jellyfish May Impact the Dynamics of Bacterial Assemblages in Coastal Lagoons?. Water (Switzerland), 2022, 14, 3908.	1.2	0
90	Selective and differential feeding on marine prokaryotes by mucous mesh feeders. Environmental Microbiology, 2023, 25, 880-893.	1.8	6
92	Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle. Biogeosciences, 2023, 20, 869-895.	1.3	4
93	Model estimates of metazoans' contributions to the biological carbon pump. Biogeosciences, 2023, 20, 997-1009.	1.3	10
96	Marine Invertebrates. , 2023, , 249-269.		0
109	Jellyfish in Coastal Ecosystems: Advances in our Understanding of Population Drivers, Role in Biogeochemical Cycling, and Socio-Economic Impacts. , 2024, , 474-495.		1

110 Modelling role of jellyfish in plankton marine/coastal ecosystems. , 2024, , 411-444.