Mutations in the Matrin 3 gene cause familial amyotrop

Nature Neuroscience 17, 664-666 DOI: 10.1038/nn.3688

Citation Report

#	Article	IF	CITATIONS
1	Identifying HLA supertypes by learning distance functions. Bioinformatics, 2007, 23, e148-e155.	4.1	45
2	A serum microRNA signature for amyotrophic lateral sclersosis reveals convergent RNA processing defects and identifies presymptomatic mutation carriers. Brain, 2014, 137, 2875-2876.	7.6	0
3	THEME 9IN VITROEXPERIMENTAL MODELS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 161-178.	1.7	0
4	TDP-43—The key to understanding amyotrophic lateral sclerosis. Rare Diseases (Austin, Tex), 2014, 2, e944443.	1.8	18
5	SESSION 1 JOINT OPENING SESSION. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 1-56.	1.7	1
6	Phenotype of matrinâ€3–related distal myopathy in 16 <scp>G</scp> erman patients. Annals of Neurology, 2014, 76, 669-680.	5.3	74
7	Genetic analysis of matrin 3 gene in French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2014, 35, 2882.e13-2882.e15.	3.1	28
8	<scp>TDP</scp> â€1, the <i><scp>C</scp>aenorhabditis elegans</i> ortholog of <scp>TDP</scp> â€43, limits the accumulation of doubleâ€stranded <scp>RNA</scp> . EMBO Journal, 2014, 33, 2947-2966.	7.8	62
9	The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscular Disorders, 2014, 24, 1123-1153.	0.6	43
10	Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets?. Neurodegenerative Disease Management, 2014, 4, 417-437.	2.2	13
11	Excess of Rare Damaging TUBA4A Variants Suggests Cytoskeletal Defects in ALS. Neuron, 2014, 84, 241-243.	8.1	18
12	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
13	Genetic architecture of ALS in Sardinia. Neurobiology of Aging, 2014, 35, 2882.e7-2882.e12.	3.1	60
14	Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137, e311-e311.	7.6	112
15	C9ORF72 repeat expansion: a genetic mutation associated with Amyotrophic Lateral Sclerosis. Current Medicine Research and Practice, 2014, 4, 161-167.	0.1	0
16	Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2. Human Molecular Genetics, 2014, 23, 4758-4769.	2.9	43
17	Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Journal of Central Nervous System Disease, 2014, 6, JCNSD.S18103.	1.9	27
18	Isolated inclusion body myopathy caused by a multisystem proteinopathy–linked <i>hnRNPA1</i> mutation. Neurology: Genetics, 2015, 1, e23.	1.9	34

ATION REI

#	Article	IF	CITATIONS
19	Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions. Scientific Reports, 2015, 5, 13416.	3.3	109
20	RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules. Scientific Reports, 2015, 5, 14262.	3.3	24
21	A novel Arg147Trp MATR3 missense mutation in a slowly progressive ALS Italian patient. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 530-531.	1.7	27
22	Theme 10 Molecular Cell Biology. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 176-185.	1.7	0
23	Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy. Muscle and Nerve, 2015, 51, 918-921.	2.2	21
24	Integrative biomarker discovery in neurodegenerative diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 357-379.	6.6	4
25	Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology, 2015, 12, 57.	2.0	17
26	Rodent Models of Amyotrophic Lateral Sclerosis. Current Protocols in Pharmacology, 2015, 69, 5.67.1-5.67.21.	4.0	209
27	The genetic basis of amyotrophic lateral sclerosis: recent breakthroughs. Advances in Genomics and Genetics, 0, , 327.	0.8	11
28	Legal but lethal: functional protein aggregation at the verge of toxicity. Frontiers in Cellular Neuroscience, 2015, 9, 45.	3.7	21
29	Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Frontiers in Cellular Neuroscience, 2015, 9, 225.	3.7	68
30	Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Frontiers in Cellular Neuroscience, 2015, 9, 289.	3.7	51
31	A Comprehensive Library of Familial Human Amyotrophic Lateral Sclerosis Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0118266.	2.5	45
32	Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS ONE, 2015, 10, e0136362.	2.5	31
33	Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy. PLoS ONE, 2015, 10, e0142144.	2.5	43
34	Clinical and genetic basis of familial amyotrophic lateral sclerosis. Arquivos De Neuro-Psiquiatria, 2015, 73, 1026-1037.	0.8	23
35	Genetics of ALS. , 2015, , 385-409.		0
36	Linking RNA Dysfunction and Neurodegeneration in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2015, 12, 340-351.	4.4	33

#	Article	IF	CITATIONS
37	Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2015, 10, 20.	10.8	25
38	U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Research, 2015, 43, 3208-3218.	14.5	71
39	Biomarkers for ALS—in search of the Promised Land. Nature Reviews Neurology, 2015, 11, 72-74.	10.1	22
40	Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1600.e5-1600.e8.	3.1	32
41	Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nature Neuroscience, 2015, 18, 227-238.	14.8	85
42	TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics, 2015, 12, 352-363.	4.4	246
43	Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 197-211.	1.5	18
44	Obstetric risk in patients with myopathy due to MATR3 mutations. Molecular Genetics and Metabolism Reports, 2015, 2, 32-33.	1.1	0
45	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	12.6	823
46	Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with <scp>PTB</scp> . EMBO Journal, 2015, 34, 653-668.	7.8	124
47	A fruitful endeavor: Modeling ALS in the fruit fly. Brain Research, 2015, 1607, 47-74.	2.2	89
48	Impairment of respiratory function in late-onset distal myopathy due to <i>MATR3</i> Mutation. Muscle and Nerve, 2015, 51, 916-918.	2.2	12
49	Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nature Neuroscience, 2015, 18, 1175-1182.	14.8	330
50	MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Human Molecular Genetics, 2015, 24, 2375-2389.	2.9	90
51	Mutation analysis of MATR3 in Australian familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1602.e1-1602.e2.	3.1	13
52	Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Progress in Neurobiology, 2015, 130, 86-120.	5.7	157
53	Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nature Reviews Neurology, 2015, 11, 266-279.	10.1	186
54	A Brief History of ALS. Cell, 2015, 161, 181-183.	28.9	3

#	Article	IF	CITATIONS
55	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
56	Mutational analysis of MATR3 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 2005.e1-2005.e4.	3.1	64
57	Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscular Disorders, 2015, 25, 289-296.	0.6	56
59	RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends in Neurosciences, 2015, 38, 226-236.	8.6	97
60	The dual roles of immunity in ALS: Injury overrides protection. Neurobiology of Disease, 2015, 77, 1-12.	4.4	63
61	A network of RNA and protein interactions in Fronto Temporal Dementia. Frontiers in Molecular Neuroscience, 2015, 8, 9.	2.9	22
62	ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiology of Aging, 2015, 36, 2906.e1-2906.e5.	3.1	19
63	Multisystem proteinopathy. Neurology, 2015, 85, 658-660.	1.1	85
64	Clinicopathological features of the first Asian family having vocal cord and pharyngeal weakness with distal myopathy due to a <scp><i>MATR3</i></scp> mutation. Neuropathology and Applied Neurobiology, 2015, 41, 391-398.	3.2	20
65	Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Translational Neurodegeneration, 2015, 4, 13.	8.0	66
66	Familial Amyotrophic Lateral Sclerosis. Neurologic Clinics, 2015, 33, 807-830.	1.8	120
67	Disruption of the lamin A and matrin-3 interaction by myopathic <i>LMNA</i> mutations. Human Molecular Genetics, 2015, 24, 4284-4295.	2.9	27
68	Sessions 1 - 11. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 1-62.	1.7	4
69	Invited Review: Decoding the pathophysiological mechanisms that underlie <scp>RNA</scp> dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathology and Applied Neurobiology, 2015, 41, 109-134.	3.2	47
71	Genetic causes of amyotrophic lateral sclerosis: New genetic analysis methodologies entailing new opportunities and challenges. Brain Research, 2015, 1607, 75-93.	2.2	132
72	Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders. PLoS ONE, 2016, 11, e0151376.	2.5	28
73	The genetics of amyotrophic lateral sclerosis: current insights. Degenerative Neurological and Neuromuscular Disease, 2016, 6, 49.	1.3	65
74	Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. Journal of Comparative Neurology, 2016, 524, 2740-2752.	1.6	14

#	Article	IF	CITATIONS
75	Matrin3: connecting gene expression with the nuclear matrix. Wiley Interdisciplinary Reviews RNA, 2016, 7, 303-315.	6.4	18
76	New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathology, 2016, 26, 237-247.	4.1	56
77	Old <i>versus</i> New Mechanisms in the Pathogenesis of ALS. Brain Pathology, 2016, 26, 276-286.	4.1	45
78	FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription. Scientific Reports, 2016, 6, 35195.	3.3	54
79	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	7.8	187
80	Amyotrophic lateral sclerosis: recent genetic highlights. Current Opinion in Neurology, 2016, 29, 557-564.	3.6	37
81	Pearls & Oy-sters: The importance of atypical features and tracking progression in patients misdiagnosed with ALS. Neurology, 2016, 86, e136-9.	1.1	11
82	Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016, 263, 1241-1254.	3.6	67
83	ALS: A bucket of genes, environment, metabolism and unknown ingredients. Progress in Neurobiology, 2016, 142, 104-129.	5.7	158
84	Stress granules at the intersection of autophagy and ALS. Brain Research, 2016, 1649, 189-200.	2.2	93
85	Genotype-phenotype correlations of amyotrophic lateral sclerosis. Translational Neurodegeneration, 2016, 5, 3.	8.0	69
86	Protein folding alterations in amyotrophic lateral sclerosis. Brain Research, 2016, 1648, 633-649.	2.2	82
87	The neurogenetics of alternative splicing. Nature Reviews Neuroscience, 2016, 17, 265-281.	10.2	268
88	ALS: Recent Developments from Genetics Studies. Current Neurology and Neuroscience Reports, 2016, 16, 59.	4.2	55
89	Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.	7.7	113
90	Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Human Molecular Genetics, 2016, 25, ddw337.	2.9	68
91	ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathologica, 2016, 132, 563-576.	7.7	93
92	Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends in Molecular Medicine, 2016, 22, 769-783.	6.7	103

#	Article	IF	CITATIONS
93	Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2004-2014.	3.8	95
94	Physiological functions and pathobiology of <scp>TDP</scp> â€43 and <scp>FUS</scp> / <scp>TLS</scp> proteins. Journal of Neurochemistry, 2016, 138, 95-111.	3.9	278
95	Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochemical Society Transactions, 2016, 44, 659-661.	3.4	12
96	Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proceedings of the United States of America, 2016, 113, E4494-503.	7.1	34
97	Amyotrophic Lateral Sclerosis 1 andÂMany Diseases. , 2016, , 685-712.		3
98	Identification of novel nesprin-1 binding partners and cytoplasmic matrin-3 in processing bodies. Molecular Biology of the Cell, 2016, 27, 3894-3902.	2.1	13
99	Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome. Journal of Proteome Research, 2016, 15, 4731-4741.	3.7	22
100	Decoding ALS: from genes to mechanism. Nature, 2016, 539, 197-206.	27.8	1,533
101	Case-Control Studies Are Not Familial Studies. Neuron, 2016, 92, 339-341.	8.1	12
102	CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 2016, 7, 11253.	12.8	174
103	A loss of function variant in CASP7 protects against Alzheimer's disease in homozygous APOE ε4 allele carriers. BMC Genomics, 2016, 17, 445.	2.8	26
105	New ALSâ€Related Genes Expand the <i>Spectrum Paradigm</i> of Amyotrophic Lateral Sclerosis. Brain Pathology, 2016, 26, 266-275.	4.1	26
106	Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathologica, 2016, 132, 159-173.	7.7	109
107	Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clinica Chimica Acta, 2016, 455, 7-14.	1.1	29
108	Next-generation sequencing of 28 ALS-related genes in a Japanese ALS cohort. Neurobiology of Aging, 2016, 39, 219.e1-219.e8.	3.1	49
109	Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein–protein interaction network. Brain Research, 2016, 1647, 79-93.	2.2	43
110	Needle electromyography findings in patients with MATR3 mutation – A prospective study. Clinical Neurophysiology, 2016, 127, 2085-2086.	1.5	3
111	Re-evaluation of the phenotype caused by the common <i>MATR3</i> p.Ser85Cys mutation in a new family. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 448-450.	1.9	24

#	Article	IF	CITATIONS
112	MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain, 2016, 139, 86-100.	7.6	40
113	Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2016, 37, 209.e17-209.e21.	3.1	53
114	Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiology of Disease, 2016, 90, 35-42.	4.4	73
115	Linking amyotrophic lateral sclerosis and spinal muscular atrophy through <scp>RNA</scp> â€transcriptome homeostasis: a genomics perspective. Journal of Neurochemistry, 2017, 141, 12-30.	3.9	25
116	Biological Spectrum of Amyotrophic Lateral Sclerosis Prions. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024133.	6.2	24
117	Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3935-E3943.	7.1	91
118	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
119	The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death and Differentiation, 2017, 24, 1655-1671.	11.2	77
120	Amyotrophic lateral sclerosis. Lancet, The, 2017, 390, 2084-2098.	13.7	867
121	Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31. Neuron, 2017, 94, 108-124.e7.	8.1	114
122	RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis. Journal of Biological Chemistry, 2017, 292, 2054-2064.	3.4	16
123	Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Review of Neurotherapeutics, 2017, 17, 561-577.	2.8	24
124	Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 2017, 3, 17071.	30.5	885
125	Lost in Transportation: Nucleocytoplasmic Transport Defects in ALS and Other Neurodegenerative Diseases. Neuron, 2017, 96, 285-297.	8.1	208
126	Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Research, 2017, 45, 10706-10725.	14.5	60
127	Revisiting the concept of amyotrophic lateral sclerosis as a multisystems disorder of limited phenotypic expression. Current Opinion in Neurology, 2017, 30, 599-607.	3.6	25
128	Potential Therapeutic Use of Withania somnifera for Treatment of Amyotrophic Lateral Sclerosis. , 2017, , 389-415.		0
129	RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes and Development, 2017, 31, 1509-1528.	5.9	177

#	Article	IF	CITATIONS
130	Implications of white matter damage in amyotrophic lateral sclerosis. Molecular Medicine Reports, 2017, 16, 4379-4392.	2.4	34
131	Matrin3 binds directly to intronic pyrimidineâ€rich sequences and controls alternative splicing. Genes To Cells, 2017, 22, 785-798.	1.2	38
132	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
133	Protein Misfolding and Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. , 2017, , 163-184.		1
134	ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export. Scientific Reports, 2017, 7, 14529.	3.3	74
135	RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Science Translational Medicine, 2017, 9, .	12.4	72
136	Motoneuron Disease: Basic Science. Advances in Neurobiology, 2017, 15, 163-190.	1.8	5
137	Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opinion on Therapeutic Targets, 2017, 21, 37-49.	3.4	16
138	ALSâ€Associated Endoplasmic Reticulum Proteins in Denervated Skeletal Muscle: Implications for Motor Neuron Disease Pathology. Brain Pathology, 2017, 27, 781-794.	4.1	20
139	Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genetics in Medicine, 2017, 19, 267-274.	2.4	56
140	RNAâ€binding proteins implicated in neurodegenerative diseases. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1397.	6.4	45
141	Matrin 3 variants are frequent in Italian ALS patients. Neurobiology of Aging, 2017, 49, 218.e1-218.e7.	3.1	35
142	Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target?. Mechanisms of Ageing and Development, 2017, 161, 163-176.	4.6	27
143	Amyotrophic Lateral Sclerosis, a Multisystem Pathology: Insights into the Role of TNF <i>\hat{l}±</i> . Mediators of Inflammation, 2017, 2017, 1-16.	3.0	45
145	Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Scientific Reports, 2018, 8, 4049.	3.3	30
146	Emerging understanding of the genotype–phenotype relationship in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 603-623.	1.8	30
147	The epidemiology and genetics of Amyotrophic lateral sclerosis in China. Brain Research, 2018, 1693, 121-126.	2.2	36
148	Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Scientific Reports, 2018, 8, 6030.	3.3	54

#	Article	IF	CITATIONS
149	Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death and Differentiation, 2018, 25, 648-662.	11.2	55
150	Matrin 3 Is a Component of Neuronal Cytoplasmic Inclusions of Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis. American Journal of Pathology, 2018, 188, 507-514.	3.8	36
151	RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations. Modern Pathology, 2018, 31, 1346-1360.	5.5	71
152	The first French case of MATR3-related distal myopathy: Clinical, radiological and histopathological characterization. Revue Neurologique, 2018, 174, 752-755.	1.5	9
153	ALS Genes in the Genomic Era and their Implications for FTD. Trends in Genetics, 2018, 34, 404-423.	6.7	229
154	Mouse models of ALS: Past, present and future. Brain Research, 2018, 1693, 1-10.	2.2	89
155	TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience, 2018, 21, 552-563.	14.8	181
156	Integrated molecular landscape of amyotrophic lateral sclerosis provides insights into disease etiology. Brain Pathology, 2018, 28, 203-211.	4.1	12
157	MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2018, 55, 2617-2630.	4.0	51
158	Genetics of Amyotrophic Lateral Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024125.	6.2	151
159	Neurodegeneration of brain networks in the amyotrophic lateral sclerosis–frontotemporal lobar degeneration (ALS–FTLD) continuum: evidence from MRI and MEG studies. CNS Spectrums, 2018, 23, 378-387.	1.2	16
160	Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurology, The, 2018, 17, 94-102.	10.2	432
161	Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 227-247.	7.7	116
162	A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathologica, 2018, 135, 131-148.	7.7	58
163	Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 623-651.	5.2	12
164	Analysis of spinal and muscle pathology in transgenic mice overexpressing wild-type and ALS-linked mutant MATR3. Acta Neuropathologica Communications, 2018, 6, 137.	5.2	20
165	Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 2018, 18, 107.	4.2	40
166	NEAT1 and paraspeckles in neurodegenerative diseases: A missing Inc found?. Non-coding RNA Research, 2018, 3, 243-252.	4.6	85

#	Article	IF	CITATIONS
167	Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. MBio, 2018, 9, .	4.1	28
168	The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex. Nucleic Acids Research, 2018, 46, 11939-11951.	14.5	40
169	RNA-Binding Proteomics Reveals MATR3 Interacting with IncRNA SNHG1 To Enhance Neuroblastoma Progression. Journal of Proteome Research, 2019, 18, 406-416.	3.7	21
170	Linking hnRNP Function to ALS and FTD Pathology. Frontiers in Neuroscience, 2018, 12, 326.	2.8	92
171	Generation and characterization of a human iPSC line from an ALS patient carrying the Q66K-MATR3 mutation. Stem Cell Research, 2018, 33, 146-150.	0.7	3
172	Role of Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2018, 12, 574.	2.8	47
173	<i>Xrp1</i> genetically interacts with the ALS-associated <i>FUS</i> orthologue <i>caz</i> and mediates its toxicity. Journal of Cell Biology, 2018, 217, 3947-3964.	5.2	23
174	Matrin-3 is essential for fibroblast growth factor 2-dependent maintenance of neural stem cells. Scientific Reports, 2018, 8, 13412.	3.3	22
175	ALS-associated genes display CNS expression in the developing zebrafish. Gene Expression Patterns, 2018, 30, 14-31.	0.8	6
176	The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Experimental Neurology, 2018, 306, 222-231.	4.1	18
177	The NIH NeuroBioBank: creating opportunities for human brain research. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 41-48.	1.8	10
179	Amyotrophic lateral sclerosis: the complex path to precision medicine. Journal of Neurology, 2018, 265, 2454-2462.	3.6	36
180	Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma. Frontiers in Immunology, 2018, 9, 1017.	4.8	79
181	Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Medizinische Genetik, 2018, 30, 252-258.	0.2	85
182	Macro roles for microRNAs in neurodegenerative diseases. Non-coding RNA Research, 2018, 3, 154-159.	4.6	40
183	<i>ANXA11</i> mutations prevail in Chinese ALS patients with and without cognitive dementia. Neurology: Genetics, 2018, 4, e237.	1.9	40
184	Interactome analyses revealed that the U1 snRNP machinery overlaps extensively with the RNAP II machinery and contains multiple ALS/SMA-causative proteins. Scientific Reports, 2018, 8, 8755.	3.3	59
185	RNA Degradation in Neurodegenerative Disease. Advances in Neurobiology, 2018, 20, 103-142.	1.8	25

#	Article	IF	CITATIONS
186	Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. Advances in Neurobiology, 2018, 20, 213-238.	1.8	5
187	Motor Neuron Susceptibility in ALS/FTD. Frontiers in Neuroscience, 2019, 13, 532.	2.8	140
188	Phenotypic Suppression of ALS/FTD-Associated Neurodegeneration Highlights Mechanisms of Dysfunction. Journal of Neuroscience, 2019, 39, 8217-8224.	3.6	13
189	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
190	Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559.	2.0	13
191	<i>TFG</i> : At the crossroads of motor neuron disease and myopathy. Muscle and Nerve, 2019, 60, 645-647.	2.2	9
192	Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 262.	2.9	101
193	Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	65
194	Modulation of <i>PDCD1</i> exon 3 splicing. RNA Biology, 2019, 16, 1794-1805.	3.1	18
195	Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , .	1.6	18
196	Chromosome territories and the global regulation of the genome. Genes Chromosomes and Cancer, 2019, 58, 407-426.	2.8	63
197	Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 25.	2.9	459
198	A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Frontiers in Neurology, 2019, 10, 400.	2.4	54
199	Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathologica Communications, 2019, 7, 65.	5.2	20
200	An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Reports, 2019, 27, 1133-1150.e8.	6.4	68
201	N-terminal sequences in matrin 3 mediate phase separation into droplet-like structures that recruit TDP43 variants lacking RNA binding elements. Laboratory Investigation, 2019, 99, 1030-1040.	3.7	30
202	Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron, 2019, 102, 294-320.	8.1	176
203	A mutant <i>MATR3</i> mouse model to explain multisystem proteinopathy. Journal of Pathology, 2019, 249, 182-192.	4.5	16

#	Article	IF	CITATIONS
204	Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 272-286.	10.1	150
205	Genetic Convergence Brings Clarity to the Enigmatic Red Line in ALS. Neuron, 2019, 101, 1057-1069.	8.1	111
206	ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 207-215.	1.7	11
207	Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. Journal of Biological Chemistry, 2019, 294, 7360-7376.	3.4	8
208	The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight?. Brain, 2019, 142, 1176-1194.	7.6	128
209	A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Research, 2019, 29, 809-818.	5.5	21
210	The nuclear matrix protein Matr3 regulates processing of the synaptic microRNA-138-5p. Neurobiology of Learning and Memory, 2019, 159, 36-45.	1.9	11
211	Rare copy number variations affecting the synaptic gene DMXL2 in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2019, 11, 3.	3.1	6
212	Conserved functions of RNA-binding proteins in muscle. International Journal of Biochemistry and Cell Biology, 2019, 110, 29-49.	2.8	19
213	Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiology of Aging, 2019, 78, 98-110.	3.1	57
214	Theme 3 In vitro experimental models. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 135-159.	1.7	1
215	ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now?. Frontiers in Neuroscience, 2019, 13, 1310.	2.8	487
216	The unfolding spectrum of inherited distal myopathies. Muscle and Nerve, 2019, 59, 283-294.	2.2	27
217	New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis. Human Mutation, 2019, 40, 361-373.	2.5	15
218	RNA processing in skeletal muscle biology and disease. Transcription, 2019, 10, 1-20.	3.1	28
219	Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience, 2019, 396, A3-A20.	2.3	17
220	RNA: Nuclear Glue for Folding the Genome. Trends in Cell Biology, 2019, 29, 201-211.	7.9	63
221	CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. Journal of Biological Chemistry, 2019, 294, 3744-3759.	3.4	97

#	Article	IF	CITATIONS
222	Burden of rare variants in causative genes for amyotrophic lateral sclerosis (ALS) accelerates age at onset of ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 537-542.	1.9	28
223	The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocrine Reviews, 2020, 41, 273-319.	20.1	118
224	ALS and FTD: Where RNA metabolism meets protein quality control. Seminars in Cell and Developmental Biology, 2020, 99, 183-192.	5.0	39
225	Toxicity in ALS: TDP-43 modifiers and C9orf72. Neuroscience Letters, 2020, 716, 134621.	2.1	6
226	Invited Review: The role of prionâ€like mechanisms in neurodegenerative diseases. Neuropathology and Applied Neurobiology, 2020, 46, 522-545.	3.2	72
227	The prion-like nature of amyotrophic lateral sclerosis. Progress in Molecular Biology and Translational Science, 2020, 175, 261-296.	1.7	14
228	Tumor suppressive function of Matrin 3 in the basal-like breast cancer. Biological Research, 2020, 53, 42.	3.4	12
229	Identification of a pathogenic intronic KIF5A mutation in an ALS-FTD kindred. Neurology, 2020, 95, 1015-1018.	1.1	19
230	Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nature Communications, 2020, 11, 5304.	12.8	23
231	High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines. Genes, 2020, 11, 1123.	2.4	15
232	What Can Machine Learning Approaches in Genomics Tell Us about the Molecular Basis of Amyotrophic Lateral Sclerosis?. Journal of Personalized Medicine, 2020, 10, 247.	2.5	14
233	Is it accurate to classify ALS as a neuromuscular disorder?. Expert Review of Neurotherapeutics, 2020, 20, 895-906.	2.8	12
234	Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing. Cell Chemical Biology, 2020, 27, 1229-1240.e4.	5.2	19
235	The Impact of ALS-Associated Genes hnRNPA1, MATR3, VCP and UBQLN2 on the Severity of TDP-43 Aggregation. Cells, 2020, 9, 1791.	4.1	6
236	Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathologica Communications, 2020, 8, 116.	5.2	55
237	Aggresome formation and liquid–liquid phase separation independently induce cytoplasmic aggregation of TAR DNA-binding protein 43. Cell Death and Disease, 2020, 11, 909.	6.3	35
238	A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice. Scientific Reports, 2020, 10, 17894.	3.3	29
239	RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3. Acta Neuropathologica Communications, 2020, 8, 177.	5.2	17

#	Article	IF	CITATIONS
240	RNA-recognition motif in Matrin-3 mediates neurodegeneration through interaction with hnRNPM. Acta Neuropathologica Communications, 2020, 8, 138.	5.2	32
241	Molecular and Cellular Mechanisms Affected in ALS. Journal of Personalized Medicine, 2020, 10, 101.	2.5	79
242	Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Archives of Toxicology, 2020, 94, 3861-3875.	4.2	3
243	Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells, 2020, 9, 2687.	4.1	14
244	Case Report: Early-Onset Behavioral Variant Frontotemporal Dementia in Patient With Retrotransposed Full-Length Transcript of Matrin-3 Variant 5. Frontiers in Neurology, 2020, 11, 600468.	2.4	5
245	Matrin-3 plays an important role in cell cycle and apoptosis for survival in malignant melanoma. Journal of Dermatological Science, 2020, 100, 110-119.	1.9	9
246	Aggregates of RNA Binding Proteins and ER Chaperones Linked to Exosomes in Granulovacuolar Degeneration of the Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2020, 75, 139-156.	2.6	22
247	Differential diagnosis of vacuolar myopathies in the NGS era. Brain Pathology, 2020, 30, 877-896.	4.1	12
248	<p>Bioinformatics Analysis to Reveal Potential Differentially Expressed Long Non-Coding RNAs and Genes Associated with Tumour Metastasis in Lung Adenocarcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 3197-3207.	2.0	6
249	Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opinion on Emerging Drugs, 2020, 25, 145-164.	2.4	10
250	Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular diseaseâ€linked MATR3 mutations in <i>Drosophila</i> . FEBS Letters, 2020, 594, 2800-2818.	2.8	9
251	From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Molecular Neurodegeneration, 2020, 15, 31.	10.8	33
252	Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2020, 13, 78.	2.9	53
253	The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Progress in Molecular Biology and Translational Science, 2020, 174, 187-223.	1.7	16
254	Abnormal scaffold attachment factor 1 expression and localization in spinocerebellar ataxias and Huntington's chorea. Brain Pathology, 2020, 30, 1041-1055.	4.1	3
255	A Systematic Review of Genotype–Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. Journal of Personalized Medicine, 2020, 10, 58.	2.5	36
257	Structural Variants May Be a Source of Missing Heritability in sALS. Frontiers in Neuroscience, 2020, 14, 47.	2.8	43
258	Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology, 2020, 167, 107986.	4.1	75

#	Article	IF	CITATIONS
259	SOD1 p.D12Y variant is associated with amyotrophic lateral sclerosis/distal myopathy spectrum. European Journal of Neurology, 2020, 27, 1304-1309.	3.3	4
260	The NGS technology for the identification of genes associated with the ALS. A systematic review. European Journal of Clinical Investigation, 2020, 50, e13228.	3.4	16
261	Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle and Nerve, 2021, 63, 442-454.	2.2	33
262	Motor axonal neuropathy associated with <scp><i>GNE</i></scp> mutations. Muscle and Nerve, 2021, 63, 396-401.	2.2	12
263	An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. Journal of Biological Chemistry, 2021, 296, 100118.	3.4	4
264	Genetic screening of ANXA11 revealed novel mutations linked to amyotrophic lateral sclerosis. Neurobiology of Aging, 2021, 99, 102.e11-102.e20.	3.1	20
265	Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. Journal of Molecular Cell Biology, 2021, 13, 15-28.	3.3	23
266	Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCl Insight, 2021, 6, .	5.0	30
267	Generation of two induced pluripotent stem cell (iPSC) lines from an ALS patient with simultaneous mutations in KIF5A and MATR3 genes. Stem Cell Research, 2021, 50, 102141.	0.7	1
268	Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. Advances in Experimental Medicine and Biology, 2021, 1281, 243-267.	1.6	10
270	ALS/FTD-causing mutation in cyclin F causes the dysregulation of SFPQ. Human Molecular Genetics, 2021, 30, 971-984.	2.9	16
271	Impact of a frequent nearsplice <i>SOD1</i> variant in amyotrophic lateral sclerosis: optimising <i>SOD1</i> genetic screening for gene therapy opportunities. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 942-949.	1.9	7
272	Multilayer and MATR3-dependent regulation of mRNAs maintains pluripotency in human induced pluripotent stem cells. IScience, 2021, 24, 102197.	4.1	11
274	The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants, 2021, 10, 552.	5.1	14
275	RNA-Binding Proteins Hold Key Roles in Function, Dysfunction, and Disease. Biology, 2021, 10, 366.	2.8	36
276	Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 5292.	4.1	23
277	New advances in Amyotrophic Lateral Sclerosis genetics: Towards gene therapy opportunities for familial and young cases. Revue Neurologique, 2021, 177, 524-535.	1.5	3
279	<i>MATR3</i> haploinsufficiency and early-onset neurodegeneration. Brain, 2021, 144, e72-e72.	7.6	3

#	Article	IF	CITATIONS
280	DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cellular and Molecular Life Sciences, 2021, 78, 5707-5729.	5.4	44
281	A Novel Multisystem Proteinopathy Caused by a Missense <scp><i>ANXA11</i></scp> Variant. Annals of Neurology, 2021, 90, 239-252.	5.3	20
282	Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight, 2021, 6, .	5.0	38
287	Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells, 2021, 10, 2247.	4.1	17
288	NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radical Biology and Medicine, 2021, 173, 125-141.	2.9	21
289	Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. European Journal of Cell Biology, 2021, 100, 151179.	3.6	12
290	MATR3 F115C knock-in mice do not exhibit motor defects or neuropathological features of ALS. Biochemical and Biophysical Research Communications, 2021, 568, 48-54.	2.1	7
291	First Family of MATR3-Related Distal Myopathy From Italy: The Role of Muscle Biopsy in the Diagnosis and Characterization of a Still Poorly Understood Disease. Frontiers in Neurology, 2021, 12, 715386.	2.4	2
292	Matrin-3 dysfunction in myopathy and motor neuron degeneration. Neural Regeneration Research, 2022, 17, 575.	3.0	1
293	RNA Binding Proteins and the Genesis of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2015, 822, 11-15.	1.6	21
294	Bicuspid Aortic Valve. , 2016, , 295-308.		1
295	Astrocytes in Motor Neuron Diseases. Advances in Experimental Medicine and Biology, 2019, 1175, 227-272.	1.6	18
296	Intronic Determinants Coordinate Charme IncRNA Nuclear Activity through the Interaction with MATR3 and PTBP1. Cell Reports, 2020, 33, 108548.	6.4	24
298	TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. Journal of Clinical Investigation, 2018, 128, 1164-1177.	8.2	75
299	Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS ONE, 2017, 12, e0180337.	2.5	10
300	RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Molecules and Cells, 2018, 41, 818-829.	2.6	88
301	Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress, 2020, 4, 76-91.	3.2	35
302	Panorama of the distal myopathies. Acta Myologica, 2020, 39, 245-265.	1.5	22

#	Article	IF	CITATIONS
303	Toward precision medicine in amyotrophic lateral sclerosis. Annals of Translational Medicine, 2016, 4, 27.	1.7	10
304	Induced pluripotent stem cells for modeling neurological disorders. World Journal of Transplantation, 2015, 5, 209.	1.6	39
305	Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic localization. ELife, 2018, 7, .	6.0	73
306	m6A Modified Short RNA Fragments Inhibit Cytoplasmic TLS/FUS Aggregation Induced by Hyperosmotic Stress. International Journal of Molecular Sciences, 2021, 22, 11014.	4.1	6
307	Duplication of exons 15 and 16 in Matrin-3: a phenotype bridging amyotrophic lateral sclerosis and immune-mediated disorders. Neurological Sciences, 2021, , 1.	1.9	0
308	Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Molecular Neurobiology, 2022, 59, 191-233.	4.0	22
309	Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathologica, 2021, 142, 985-1001.	7.7	12
310	Stem Cell Therapy: In Treatment of Neurodegenerative Diseases. Journal of Stem Cell Research & Therapeutics, 2018, 4, .	0.1	0
312	Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precision and Future Medicine, 2018, 2, 53-65.	1.6	4
314	Bicuspid Aortic Valve. , 2020, , 345-360.		0
316	Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nature Communications, 2021, 12, 6241.	12.8	25
317	Myofibrillar Myopathies and Other Myopathies with Rimmed Vacuoles. , 2020, , 361-388.		Ο
318	Muscular Dystrophies and Allied Disorders IV. , 2020, , 286-299.		0
319	The distal myopathies. , 2020, , 463-477.		Ο
320	Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 12236.	4.1	40
321	Theme 04 - IN VIVO EXPERIMETAL MODELS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 73-89.	1.7	Ο
322	Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Frontiers in Neuroscience, 2021, 15, 786076.	2.8	15
323	Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neuroscience Reports, 2022, 12, 25-44.	1.6	8

#	Article	IF	CITATIONS
324	Genetic architecture of motor neuron diseases. Journal of the Neurological Sciences, 2022, 434, 120099.	0.6	7
325	Pathological phase transitions in ALS-FTD impair dynamic RNA–protein granules. Rna, 2022, 28, 97-113.	3.5	15
326	Matrin3: Disorder and ALS Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 794646.	3.5	10
327	Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants, 2022, 11, 303.	5.1	10
329	RNA-assisted sequestration of RNA-binding proteins by cytoplasmic inclusions of the C-terminal 35-kDa fragment of TDP-43. Journal of Cell Science, 2022, 135, .	2.0	8
330	Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. IScience, 2022, 25, 103900.	4.1	15
331	Selective Loss of MATR3 in Spinal Interneurons, Upper Motor Neurons and Hippocampal CA1 Neurons in a MATR3 S85C Knock-In Mouse Model of Amyotrophic Lateral Sclerosis. Biology, 2022, 11, 298.	2.8	5
332	Modelling amyotrophic lateral sclerosis in rodents. Nature Reviews Neuroscience, 2022, 23, 231-251.	10.2	17
333	TDP-43 is a ubiquitylation substrate of the SCFcyclin F complex. Neurobiology of Disease, 2022, 167, 105673.	4.4	11
334	Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach. Molecular Medicine, 2021, 27, 161.	4.4	9
335	DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication. Frontiers in Molecular Neuroscience, 2021, 14, 784361.	2.9	14
342	Brain Epitranscriptomic Analysis Revealed Altered A-to-I RNA Editing in Septic Patients. Frontiers in Genetics, 2022, 13, 887001.	2.3	2
343	Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathologica, 2022, 143, 613-640.	7.7	22
344	Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation. Journal of Biological Chemistry, 2022, 298, 102062.	3.4	30
345	Multisystem Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic Diagnosis. Genes, 2022, 13, 963.	2.4	28
346	Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Central Nervous System Agents in Medicinal Chemistry, 2022, 22, .	1.1	1
348	Proteostasis impairment and ALS. Progress in Biophysics and Molecular Biology, 2022, 174, 3-27.	2.9	7
349	Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Frontiers in Neuroscience, 0, 16, .	2.8	4

#	Article	IF	CITATIONS
350	Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Biology, 2022, 11, 1009.	2.8	4
351	Transcriptional targets of amyotrophic lateral sclerosis/frontotemporal dementia protein TDP-43 – meta-analysis and interactive graphical database. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	8
352	DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers, 2022, 14, 3820.	3.7	7
353	Basic Concepts and Emergent Disease Mechanisms of Amyotrophic Lateral Sclerosis. , 2023, , 644-665.		1
354	Identification of quantitative trait loci for survival in the mutant dynactin p150Glued mouse model of motor neuron disease. PLoS ONE, 2022, 17, e0274615.	2.5	1
357	Phase separation of low-complexity domains in cellular function and disease. Experimental and Molecular Medicine, 2022, 54, 1412-1422.	7.7	6
358	Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Research Bulletin, 2023, 192, 115-127.	3.0	4
359	Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with <i>ANXA11</i> variants. Brain Communications, 2022, 4, .	3.3	3
360	Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. Current Gene Therapy, 2023, 23, 148-162.	2.0	2
361	The nexus between RNA-binding proteins and their effectors. Nature Reviews Genetics, 2023, 24, 276-294.	16.3	16
363	Advances in sequencing technologies for amyotrophic lateral sclerosis research. Molecular Neurodegeneration, 2023, 18, .	10.8	4
364	MATR3 P154S knock-in mice do not exhibit motor, muscle or neuropathologic features of ALS. Biochemical and Biophysical Research Communications, 2023, 645, 164-172.	2.1	Ο
365	Sporadic Spinal-Onset Amyotrophic Lateral Sclerosis Associated with Myopathy in Three Unrelated Portuguese Patients. Brain Sciences, 2023, 13, 220.	2.3	2
366	Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain. IScience, 2023, 26, 106350.	4.1	1
367	Matrin3 regulates mitotic spindle dynamics by controlling alternative splicing of CDC14B. Cell Reports, 2023, 42, 112260.	6.4	2
368	TDPâ€43 pathology and functional deficits in wildâ€ŧype and ALS/FTD mutant cyclin F mouse models. Neuropathology and Applied Neurobiology, 2023, 49, .	3.2	0
369	Integrative identification of hub genes in development of atrial fibrillation related stroke. PLoS ONE, 2023, 18, e0283617.	2.5	0
371	Neuronal activity regulates Matrin 3 abundance and function in a calcium-dependent manner through calpain-mediated cleavage and calmodulin binding. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1

#	Article	IF	CITATIONS
372	Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nature Reviews Genetics, 2023, 24, 642-658.	16.3	30
373	Provisional practice recommendation for the management of myopathy in <scp>VCP</scp> â€associated multisystem proteinopathy. Annals of Clinical and Translational Neurology, 2023, 10, 686-695.	3.7	3
376	The paralogues MAGOH and MAGOHB are oncogenic factors in high-grade gliomas and safeguard the splicing of cell division and cell cycle genes. RNA Biology, 2023, 20, 311-322.	3.1	1
377	<scp>MATR3</scp> â€antisense <scp>LINE1 RNA</scp> meshwork scaffolds higherâ€order chromatin organization. EMBO Reports, 2023, 24, .	4.5	1
378	Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells, 2023, 12, 1948.	4.1	0
379	The positive impact on translational research of Fondazione italiana di ricerca per la Sclerosi Laterale Amiotrofica (AriSLA), a non-profit foundation focused on amyotrophic lateral sclerosis. Convergence of ex-ante evaluation and ex-post outcomes when goals are set upfront. Frontiers in Research Metrics and Analytics. 0. 8.	1.9	0
380	Distal myopathy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 497-519.	1.8	0
381	Pathogenesis underlying hexanucleotide repeat expansions in <i>C9orf72</i> gene in amyotrophic lateral sclerosis. Reviews in the Neurosciences, 2023, .	2.9	0
382	Proteomics elucidating physiological and pathological functions of TDPâ€43. Proteomics, 2023, 23, .	2.2	0
383	Novel therapeutic approaches for motor neuron disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 523-537.	1.8	0
384	Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Human Molecular Genetics, 2023, 32, 2966-2980.	2.9	1
386	Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Research Reviews, 2023, 92, 102126.	10.9	0
387	Theme 04 - In Vivo Experimetal Models. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 128-139.	1.7	0
389	Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules, 2023, 13, 1789.	4.0	0
390	A mutation in the low-complexity domain of splicing factor hnRNPA1 linked to amyotrophic lateral sclerosis disrupts distinct neuronal RNA splicing networks. Genes and Development, 2024, 38, 11-30.	5.9	1
391	Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes. Cell Cycle, 2024, 23, 15-35.	2.6	0
392	<scp>MATR3</scp> pathogenic variants differentially impair its cryptic splicing repression function. FEBS Letters, 2024, 598, 415-436.	2.8	0
393	ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. Nature Communications, 2024, 15, .	12.8	0

#	Article	IF	CITATIONS
394	Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nature Communications, 2024, 15, .	12.8	0
395	Distal Muscular Dystrophies. Current Clinical Neurology, 2023, , 131-146.	0.2	0
396	Physiological and pathological effects of phase separation in the central nervous system. Journal of Molecular Medicine, 2024, 102, 599-615.	3.9	0
397	In-Depth Profiling of 4-Hydroxy-2-nonenal Modification via Reversible Thiazolidine Chemistry. Analytical Chemistry, 2024, 96, 5125-5133.	6.5	0
398	Sporadic Amyotrophic Lateral Sclerosis Skeletal Muscle Transcriptome Analysis: A Comprehensive Examination of Differentially Expressed Genes. Biomolecules, 2024, 14, 377.	4.0	0