Abrupt increases in Amazonian tree mortality due to dr

Proceedings of the National Academy of Sciences of the Unite 111, 6347-6352

DOI: 10.1073/pnas.1305499111

Citation Report

#	Article	IF	CITATIONS
1	Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120427.	1.8	148
2	Ecosystem Services from Tropical Forests: Review of Current Science. SSRN Electronic Journal, 0, , .	0.4	41
3	Propuesta para la consolidación de una Red Chilena de Estudios Socio-Ecológicos de Largo Plazo. Bosque, 2014, 35, 467-474.	0.1	0
4	Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest. Journal of Insect Conservation, 2014, 18, 1097-1104.	0.8	26
5	Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proceedings of the United States of America, 2014, 111, 15591-15596.	3.3	176
6	Fire Damage in Seasonally Flooded and Upland Forests of the Central Amazon. Biotropica, 2014, 46, 643-646.	0.8	32
7	Tropical Forests in the Anthropocene. Annual Review of Environment and Resources, 2014, 39, 125-159.	5.6	322
8	Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 2014, 344, 1118-1123.	6.0	770
10	Tropical North Atlantic oceanâ€ e tmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	1.5	13
11	Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, 2015, 42, 7546-7553.	1.5	34
12	Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environmental Research Letters, 2015, 10, 104015.	2.2	113
13	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	4.2	97
14	Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010. PLoS ONE, 2015, 10, e0126754.	1.1	46
15	Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão) in the Cerrado-Amazon transition zone. Acta Botanica Brasilica, 2015, 29, 408-416.	0.8	16
16	Darcy's law predicts widespread forest mortality under climate warming. Nature Climate Change, 2015, 5, 669-672.	8.1	553
17	Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest. Ecological Complexity, 2015, 22, 65-75.	1.4	54
18	The role of leaf traits in determining litter flammability of south-eastern Amazon tree species. International Journal of Wildland Fire, 2015, 24, 1143.	1.0	12
19	Effects of Tree Harvest on the Stable-State Dynamics of Savanna and Forest. American Naturalist, 2015, 185, E153-E165.	1.0	18

ARTICLE IF CITATIONS # Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological 20 1.8 196 Applications, 2015, 25, 1493-1505. Urgent need for warming experiments in tropical forests. Global Change Biology, 2015, 21, 2111-2121. 4.2 168 Climatic information improves statistical individual-tree mortality models for three key species of 22 0.8 6 Sichuan Province, China. Annals of Forest Science, 2015, 72, 443-455. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82. 464 Early Paleogene wildfires in peat-forming environments at SchĶningen, Germany. Palaeogeography, 24 1.0 29 Palaeoclimatology, Palaeoecology, 2015, 437, 53-62. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the 1.2 Northern Brazilian Amazon. Environmental Management, 2015, 55, 1124-1138. Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology and Evolution, 26 4.2 46 2015, 30, 334-346. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern 2.3 94 Amazonia. Journal of Hydrology, 2015, 523, 822-829. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future 28 4.2 683 impacts. Global Change Biology, 2015, 21, 2861-2880. Remote-sensing constraints on South America fire traits by Bayesian fusion of atmospheric and 1.5 surface data. Geophysical Research Letters, 2015, 42, 1268-1274. Creating a safe operating space for iconic ecosystems. Science, 2015, 347, 1317-1319. 30 6.0 202 Time $\hat{\epsilon}$ ag effects of global vegetation responses to climate change. Global Change Biology, 2015, 21, 4.2 672 3520-3531. Microhabitat changes induced by edge effects impact velvet ant (Hymenoptera: Mutillidae) 32 0.8 9 communities in southeastern Amazonia, Brazil. Journal of Insect Conservation, 2015, 19, 849-861. Bark thickness and fire regime. Functional Ecology, 2015, 29, 315-327. 1.7 Forest resilience, tipping points and global change processes. Journal of Ecology, 2015, 103, 1-4. 34 1.9 70 Malaria vectors in South America: current and future scenarios. Parasites and Vectors, 2015, 8, 426. 1.0 Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean 36 5 management., 0, , 150820223553008. On underestimation of global vulnerability to tree mortality and forest dieâ€off from hotter drought 1,739 in the Anthropocene. Ecosphere, 2015, 6, 1-55.

# 38	ARTICLE Forest health and global change. Science, 2015, 349, 814-818.	IF 6.0	Citations 697
39	Increasing human dominance of tropical forests. Science, 2015, 349, 827-832.	6.0	551
40	Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 2015, 214-215, 369-379.	1.9	136
41	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	2.2	89
42	Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments. BioScience, 2015, 65, 882-892.	2.2	109
43	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122
44	Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global Change Biology, 2015, 21, 1271-1292.	4.2	72
45	Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology, 2015, 96, 1275-1285.	1.5	83
46	Spatioâ€ŧemporal variability of droughts in Bolivia: 1955–2012. International Journal of Climatology, 2015, 35, 3024-3040.	1.5	50
47	Anticipating future risk in social-ecological systems using fuzzy cognitive mapping: the case of wildfire in the Chiquitania, Bolivia. Ecology and Society, 2016, 21, .	1.0	23
48	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	1.3	29
49	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	1.3	8
50	Water Availability of São Francisco River Basin Based on a Space-Borne Geodetic Sensor. Water (Switzerland), 2016, 8, 213.	1.2	40
51	Adjusting to Global Change through Clonal Growth and Epigenetic Variation. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	71
52	Sounding the Alarm: Health in the Anthropocene. International Journal of Environmental Research and Public Health, 2016, 13, 665.	1.2	96
53	Assessing Mammal Exposure to Climate Change in the Brazilian Amazon. PLoS ONE, 2016, 11, e0165073.	1.1	45
54	<i>Eucalyptus</i> forest shows low structural resistance and resilience to climate changeâ€ŧype drought. Journal of Vegetation Science, 2016, 27, 493-503.	1.1	43
55	Nonâ€random correlation of species dynamics in tropical tree communities. Oikos, 2016, 125, 1733-1742.	1.2	15

#	Article	IF	CITATIONS
56	Shifts in functional traits elevate risk of fireâ€driven tree dieback in tropical savanna and forest biomes. Global Change Biology, 2016, 22, 1235-1243.	4.2	22
57	Largeâ€scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 2016, 22, 990-1007.	4.2	335
58	Extreme prescribed fire during drought reduces survival and density of woody resprouters. Journal of Applied Ecology, 2016, 53, 1585-1596.	1.9	61
59	Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. International Journal of Climatology, 2016, 36, 1033-1050.	1.5	479
60	On the extent of fire-induced forest degradation in Mato Grosso, Brazilian Amazon, in 2000, 2005 and 2010. International Journal of Wildland Fire, 2016, 25, 129.	1.0	3
61	Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955.	1.0	29
62	Sacred groves, sacrifice zones and soy production: globalization, intensification and neo-nature in South America. Journal of Peasant Studies, 2016, 43, 251-285.	3.0	151
63	Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. Journal of Ecology, 2016, 104, 497-506.	1.9	15
64	Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds. Oecologia, 2016, 182, 335-346.	0.9	26
65	High stocks of coarse woody debris in a tropical rainforest, East Kalimantan: Coupled impact of forest fires and selective logging. Forest Ecology and Management, 2016, 374, 93-101.	1.4	8
66	Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity. Current Climate Change Reports, 2016, 2, 1-14.	2.8	110
67	Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016, 224, 1-10.	1.9	63
68	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	1.9	947
69	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	8.1	157
70	Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles, 2016, 30, 1639-1660.	1.9	109
71	Changing Amazon biomass and the role of atmospheric CO ₂ concentration, climate, and land use. Global Biogeochemical Cycles, 2016, 30, 18-39.	1.9	32
72	Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover?. Global Ecology and Biogeography, 2016, 25, 16-25.	2.7	11
73	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	4.6	229

#	Article	IF	CITATIONS
74	Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10759-10768.	3.3	543
75	Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Global and Planetary Change, 2016, 144, 94-108.	1.6	148
76	Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. Ecological Studies, 2016, , 331-366.	0.4	3
77	Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, 2016, , .	0.4	11
78	Evolution of wetâ€day and dryâ€day frequency in the western <scp>A</scp> mazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resources Research, 2016, 52, 8546-8560.	1.7	52
79	Surrogate species protection in Bolivia under climate and land cover change scenarios. Journal for Nature Conservation, 2016, 34, 107-117.	0.8	7
80	Bistability, Spatial Interaction, and the Distribution of Tropical Forests and Savannas. Ecosystems, 2016, 19, 1080-1091.	1.6	63
81	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
82	Spatiotemporal modeling of fuelwood environmental impacts: Towards improved accounting for non-renewable biomass. Environmental Modelling and Software, 2016, 82, 241-254.	1.9	23
83	Fire regimes in Amazonia: The relative roles of policy and precipitation. Anthropocene, 2016, 14, 46-57.	1.6	25
84	Late-Holocene gallery forest retrogression in the Venezuelan Guayana: New data and implications for the conservation of a cultural landscape. Holocene, 2016, 26, 1049-1063.	0.9	8
85	Characterizing driver–response relationships in marine pelagic ecosystems for improved ocean management. Ecological Applications, 2016, 26, 651-663.	1.8	96
86	Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 2016, 22, 2516-2525.	4.2	35
87	Landâ€use change outweighs projected effects of changing rainfall on tree cover in sub‣aharan Africa. Global Change Biology, 2016, 22, 3013-3025.	4.2	45
88	Digital thermal monitoring of the Amazon forest: an intercomparison of satellite and reanalysis products. International Journal of Digital Earth, 2016, 9, 477-498.	1.6	15
89	The Impacts of Droughts in Tropical Forests. Trends in Plant Science, 2016, 21, 584-593.	4.3	161
90	Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nature Climate Change, 2016, 6, 520-525.	8.1	180
91	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	4.2	165

#	Article	IF	CITATIONS
92	Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon. International Journal of Applied Earth Observation and Geoinformation, 2016, 49, 163-174.	1.4	24
93	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
94	Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. Forest Ecology and Management, 2016, 360, 273-286.	1.4	23
95	The response of tropical rainforests to drought—lessons from recent research and future prospects. Annals of Forest Science, 2016, 73, 27-44.	0.8	123
96	Identifying drought-induced correlations in the satellite time series of hot pixels recorded in the Brazilian Amazon by means of the detrended fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 2016, 444, 660-666.	1.2	6
97	Climate change impacts in Latin America and the Caribbean and their implications for development. Regional Environmental Change, 2017, 17, 1601-1621.	1.4	97
98	Resilience to drought in a dry forest: Insights from demographic rates. Forest Ecology and Management, 2017, 389, 167-175.	1.4	29
99	The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs, 2017, 87, 198-218.	2.4	58
100	Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological Applications, 2017, 27, 1294-1304.	1.8	13
101	Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, 2017, 7, 200-204.	8.1	165
102	Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon. Regional Environmental Change, 2017, 17, 1687-1699.	1.4	36
103	Floodplains as an Achilles' heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4442-4446.	3.3	96
104	Policy instruments to control Amazon fires: A simulation approach. Ecological Economics, 2017, 138, 199-222.	2.9	18
105	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
106	Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. Forest Ecology and Management, 2017, 396, 217-233.	1.4	176
107	Decomposition rates of coarse woody debris in undisturbed Amazonian seasonally flooded and unflooded forests in the Rio Negro-Rio Branco Basin in Roraima, Brazil. Forest Ecology and Management, 2017, 397, 1-9.	1.4	17
108	Resistance to fire and the resilience of the woody vegetation of the "Cerradão―in the "Cerradoâ€â€"Amazon transition zone. Revista Brasileira De Botanica, 2017, 40, 193-201.	0.5	9
109	Impacts of logging roads on tropical forests. Biotropica, 2017, 49, 620-635.	0.8	83

#	Article	IF	CITATIONS
110	Deforestation effects on Amazon forest resilience. Geophysical Research Letters, 2017, 44, 6182-6190.	1.5	107
111	Amazonian forest-savanna bistability and human impact. Nature Communications, 2017, 8, 15519.	5.8	52
112	How does forest fragmentation affect tree communities? A critical case study in the biodiversity hotspot of New Caledonia. Landscape Ecology, 2017, 32, 1671-1687.	1.9	21
113	Scenarios in tropical forest degradation: carbon stock trajectories for REDD+. Carbon Balance and Management, 2017, 12, 6.	1.4	34
114	The root cambium ultrastructure during drought stress in Corylus avellana. IAWA Journal, 2017, 38, 67-80.	2.7	8
115	Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, 2017, 8, 14681.	5.8	244
116	The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest. Journal of Tropical Ecology, 2017, 33, 22-32.	0.5	25
117	Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation. Scientific Reports, 2017, 7, 9336.	1.6	19
118	Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 2017, 358, 230-234.	6.0	539
119	Climate Change in Remote Mountain Regions: A Throughfall-Exclusion Experiment to Simulate Monsoon Failure in the Himalayas. Mountain Research and Development, 2017, 37, 294.	0.4	7
120	Dependence of drivers affects risks associated with compound events. Science Advances, 2017, 3, e1700263.	4.7	453
121	Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environmental Research Letters, 2017, 12, 054002.	2.2	27
122	Hydrologic resilience and Amazon productivity. Nature Communications, 2017, 8, 387.	5.8	37
123	Fire-induced forest transition to derived savannas: Cascading effects on ant communities. Biological Conservation, 2017, 214, 295-302.	1.9	37
124	Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Forest Ecology and Management, 2017, 401, 135-146.	1.4	44
125	Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landscape Ecology, 2017, 32, 1849-1865.	1.9	25
126	Small fire refugia in the grassy matrix and the persistence of Afrotemperate forest in the Drakensberg mountains. Scientific Reports, 2017, 7, 6549.	1.6	27
127	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	0.7	5

#	Article	IF	Citations
128	Mechanistic Processes Controlling Persistent Changes of Forest Canopy Structure After 2005 Amazon Drought. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3378-3390.	1.3	2
129	The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future. Tropical Conservation Science, 2017, 10, 194008291772067.	0.6	49
130	Global and Brazilian Carbon Response to El Niño Modoki 2011–2010. Earth and Space Science, 2017, 4, 637-660.	1.1	49
131	Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters, 2017, 12, 095005.	2.2	53
132	Assessing drought-driven mortality trees with physiological process-based models. Agricultural and Forest Meteorology, 2017, 232, 279-290.	1.9	50
133	Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests?. Functional Ecology, 2017, 31, 542-552.	1.7	57
134	Modeling the marginal value of rainforest losses: A dynamic value function approach. Ecological Economics, 2017, 131, 322-329.	2.9	6
135	Predicted trajectories of tree community change in Amazonian rainforest fragments. Ecography, 2017, 40, 26-35.	2.1	33
136	Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, 2017, 37, 2013-2026.	1.5	120
137	Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17Âyears. Global Change Biology, 2017, 23, 1232-1239.	4.2	8
139	Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sensing, 2017, 9, 706.	1.8	30
140	Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE, 2017, 12, e0175379.	1.1	33
141	Predictores antropogénicos y biofÃsicos de deforestación en la Amazonia: hacia la integración de actividades REDD+. Bosque, 2017, 38, 433-446.	0.1	6
142	Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences, 2017, 14, 511-527.	1.3	22
143	Monitoring Rainfall Patterns in the Southern Amazon with PERSIANN-CDR Data: Long-Term Characteristics and Trends. Remote Sensing, 2017, 9, 889.	1.8	50
144	Soil and Forest: The Key Factors for Human Survival. Journal of Sustainable Development, 2017, 10, 105.	0.1	6
145	Synergy between land use and climate change increases future fire risk in Amazon forests. Earth System Dynamics, 2017, 8, 1237-1246.	2.7	71
146	Research frontiers for improving our understanding of droughtâ€induced tree and forest mortality. New Phytologist, 2018, 218, 15-28.	3.5	334

#	Article	IF	CITATIONS
147	Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Science of the Total Environment, 2018, 634, 1385-1397.	3.9	147
148	Spatial patterns in the global distributions of savanna and forest. Global Ecology and Biogeography, 2018, 27, 792-803.	2.7	33
149	El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 2018, 219, 959-971.	3.5	65
150	Strategies for mammal conservation under climate change in the Amazon. Biodiversity and Conservation, 2018, 27, 1943-1959.	1.2	33
151	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
152	Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60.	1.4	18
153	Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 2018, 24, 1919-1934.	4.2	145
154	Xylem dysfunction in fires: towards a hydraulic theory of plant responses to multiple disturbance stressors. New Phytologist, 2018, 217, 1391-1393.	3.5	21
155	Brazil's Amazonian protected areas as a bulwark against regional climate change. Regional Environmental Change, 2018, 18, 573-579.	1.4	23
156	On the relationship between fire regime and vegetation structure in the tropics. New Phytologist, 2018, 218, 153-166.	3.5	64
157	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	1.0	12
158	Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (<i>Bromus tectorum</i>) invasion within lower montane forests?. Diversity and Distributions, 2018, 24, 1308-1320.	1.9	20
159	Regional Hydroclimatic Variability Due To Contemporary Deforestation in Southern Amazonia and Associated Boundary Layer Characteristics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3993-4014.	1.2	7
160	How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome?. Forest Ecology and Management, 2018, 417, 281-290.	1.4	70
161	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	1.9	33
162	Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quaternary International, 2018, 488, 81-94.	0.7	26
163	Assessment of MODIS-derived indices (2001–2013) to drought across Taiwan's forests. International Journal of Biometeorology, 2018, 62, 809-822.	1.3	17
164	Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH. Biogeosciences, 2018, 15, 5969-5989.	1.3	10

#	Article	IF	CITATIONS
165	Deforestation and forest fires transforming the reality of the Chico Mendes Extractive Reserve. Desenvolvimento E Meio Ambiente, 0, 48, .	0.0	6
166	Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 2018, 6, .	0.8	259
167	The Threat of Multi‥ear Drought in Western Amazonia. Water Resources Research, 2018, 54, 5890-5904.	1.7	14
168	Extreme Drought Events over the Amazon Basin: The Perspective from the Reconstruction of South American Hydroclimate. Water (Switzerland), 2018, 10, 1594.	1.2	15
169	Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 2018, 13, 113004.	2.2	145
170	Spatially explicit valuation of the Brazilian Amazon Forest's Ecosystem Services. Nature Sustainability, 2018, 1, 657-664.	11.5	113
171	Science in support of Amazonian conservation in the 21st century: the case of Brazil. Biotropica, 2018, 50, 850-858.	0.8	6
172	Direct Impacts of Climate Change and Indirect Impacts of Non-Climate Change on Land Surface Phenology Variation across Northern China. ISPRS International Journal of Geo-Information, 2018, 7, 451.	1.4	8
173	Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170300.	1.8	24
174	Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170308.	1.8	29
175	Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170312.	1.8	64
176	Vulnerability of Amazonian forests to repeated droughts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170411.	1.8	80
177	Navigating Novelty and Risk in Resilience Management. Trends in Ecology and Evolution, 2018, 33, 863-873.	4.2	29
178	Fire spread and the issue of community-level selection in the evolution of flammability. Journal of the Royal Society Interface, 2018, 15, 20180444.	1.5	9
179	Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences, 2018, 15, 6087-6104.	1.3	29
180	Advances in Mechanistic Approaches to Quantifying Biophysical Fire Effects. Current Forestry Reports, 2018, 4, 161-177.	3.4	59
181	Tropical deforestation monitoring using NDVI from MODIS satellite: a case study in Pahang, Malaysia. IOP Conference Series: Earth and Environmental Science, 0, 169, 012047.	0.2	12
183	Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 2018, 13, 065013.	2.2	75

ARTICLE IF CITATIONS # Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme 184 3.5 64 droughts. New Phytologist, 2018, 219, 914-931. Climate reddening increases the chance of critical transitions. Nature Climate Change, 2018, 8, 478-484. 8.1 Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and 186 0.5 19 "Cerrado―biomes. Revista Brasileira De Botanica, 2018, 41, 611-619. The enigma of the Amazonian carbon balance. Environmental Research Letters, 2018, 13, 061002. 2.2 Future climate risk from compound events. Nature Climate Change, 2018, 8, 469-477. 188 8.1 1,074 Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests. Biogeosciences, 2018, 15, 233-243. 189 1.3 Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. 190 4.0 72 Earth-Science Reviews, 2018, 185, 544-571. How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants. Perspectives in Plant Ecology, Evolution and 1.1 59 Systematics, 2018, 34, 17-25. 192 The tropical forest carbon cycle and climate change. Nature, 2018, 559, 527-534. 13.7 425 An experimental assessment of the impact of drought and fire on western larch injury, mortality and 1.0 recovery. International Journal of Wildland Fire, 2018, 27, 490. Rapid regeneration offsets losses from warming-induced tree mortality in an aspen-dominated 194 1.1 8 broad-leaved forest in northern China. PLoS ONE, 2018, 13, e0195630. Assessing timber volume recovery after disturbance in tropical forests $\hat{a} \in$ A new modelling 1.2 24 framework. Ecological Modelling, 2018, 384, 353-369. Impacts of fire on sources of soil <scp>CO</scp>₂ efflux in a dry Amazon rain forest. 196 4.2 23 Global Change Biology, 2018, 24, 3629-3641. Tropical forest canopies and their relationships with climate and disturbance: results from a global 1.3 24 dataset of consistent field-based measurements. Forest Ecosystems, 2018, 5, . New Insights From Pre-Columbian Land Use and Fire Management in Amazonian Dark Earth Forests. 198 1.1 41 Frontiers in Ecology and Evolution, 2018, 6, . The Effects of Tropical Vegetation on Rainfall. Annual Review of Environment and Resources, 2018, 43, 199 193-218. 200 Fire forbids fifty-fifty forest. PLoS ONE, 2018, 13, e0191027. 1.1 42 Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9, 2226. 5.8

#	Article	IF	CITATIONS
202	Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS ONE, 2018, 13, e0194654.	1.1	39
203	Economic losses to sustainable timber production by fire in the Brazilian Amazon. Geographical Journal, 2019, 185, 55-67.	1.6	20
204	Impacts of tropical forest disturbance on species vital rates. Conservation Biology, 2019, 33, 66-75.	2.4	16
206	Land use drives change in amazonian tree species. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190186.	0.3	8
207	Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 2019, 450, 117497.	1.4	17
208	Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sensing of Environment, 2019, 232, 111340.	4.6	35
209	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	11.5	71
210	Tropical Andean glacier reveals colonial legacy in modern mountain ecosystems. Quaternary Science Reviews, 2019, 220, 1-13.	1.4	15
211	The 2005 Amazon Drought Legacy Effect Delayed the 2006 Wet Season Onset. Geophysical Research Letters, 2019, 46, 9082-9090.	1.5	10
212	Effects of climate and landâ€use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Change Biology, 2019, 25, 2931-2946.	4.2	87
213	Amazonian farmers' response to fire policies and climate change. Ecological Economics, 2019, 165, 106359.	2.9	12
214	Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics. Hydrology and Earth System Sciences, 2019, 23, 2841-2862.	1.9	48
215	The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrology and Earth System Sciences, 2019, 23, 3917-3931.	1.9	19
216	Impact of Urbanization and Climate on Vegetation Coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sensing, 2019, 11, 2452.	1.8	22
217	Vegetation response to climatic changes in western Amazonia over the last 7,600Âyears. Journal of Biogeography, 2019, 46, 2389-2406.	1.4	10
218	Stand dynamics and topographic setting influence changes in live tree biomass over a 34-year permanent plot record in a subalpine forest in the Colorado Front Range. Canadian Journal of Forest Research, 2019, 49, 1256-1264.	0.8	9
219	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	0.7	18
220	Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565, 476-479.	13.7	409

ARTICLE IF CITATIONS # Resilience of tropical, freshwater fish (Nematabramis everetti) populations to severe drought over a 221 2.2 11 land-use gradient in Borneo. Environmental Research Letters, 2019, 14, 045008. Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 2019, 8.1 9, 547-553. Synergistic abiotic and biotic stressors explain widespread decline of Pinus pinaster in a mixed forest. 223 3.9 39 Science of the Total Environment, 2019, 685, 963-975. Prolonged tropical forest degradation due to compounding disturbances: Implications for 224 CO₂ and H₂O fluxes. Global Change Biology, 2019, 25, 2855-2868. The effect of univariate bias adjustment on multivariate hazard estimates. Earth System Dynamics, 2019, 225 2.7 59 10, 31-43. Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 2019, 231, 111233. 4.6 Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and 227 4.6 131 Planetary Sciences, 2019, 47, 555-581. The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth 228 2.3 134 Sciences, 2019, 62, 1551-1563. The combined effects of an extreme heatwave and wildfire on tallgrass prairie vegetation. Journal of 229 1.1 15 Vegetation Science, 2019, 30, 687-697. Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 2019, 51, 245-252. 0.8 34 Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment 231 1.3 41 Simulator vn4.9 (JULES). Geoscientific Model Development, 2019, 12, 179-193. Spatiotemporal patterns of pre-Columbian people in Amazonia. Quaternary Research, 2019, 92, 53-69. 1.0 34 Forest degradation promotes fire during drought in moist tropical forests of Ghana. Forest Ecology 233 1.4 26 and Management, 2019, 440, 158-168. One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of 234 1.7 Climate-Induced Tree Mortality. Frontiers in Plant Science, 2019, 10, 307. Development of a REgionâ€Specific Ecosystem Feedback Fire (RESFire) Model in the Community Earth 235 1.3 20 System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 417-445. Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sensing, 2019, 11, 764. 1.8 The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in 237 1.9 199 Southwest China. Agricultural and Forest Meteorology, 2019, 269-270, 239-248. System complexity and policy integration challenges: The Brazilian Energy-Water-Food Nexus. 238 8.2 Renewable and Sustainable Energy Reviews, 2019, 105, 230-243.

# 239	ARTICLE Natural and anthropic forest fragments have distinct ecological behavior due to their different origin and landscape context. Turkish Journal of Botany, 2019, 43, 487-498.	IF 0.5	Citations 0
240	Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiology, 2019, 39, 1806-1820.	1.4	17
241	A â€`healthy' balance – The role of physical and chemical properties in maintaining forest soil function in a changing world. Developments in Soil Science, 2019, , 373-396.	0.5	17
242	Conflicting Discourses on Wildfire Risk and the Role of Local Media in the Amazonian and Temperate Forests. International Journal of Disaster Risk Science, 2019, 10, 529-543.	1.3	7
243	Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. Journal of Ecology, 2019, 107, 656-667.	1.9	74
244	Examining forest resilience to changing fire frequency in a fireâ€prone region of boreal forest. Global Change Biology, 2019, 25, 869-884.	4.2	79
245	Illegal Selective Logging and Forest Fires in the Northern Brazilian Amazon. Forests, 2019, 10, 61.	0.9	24
246	A fine-scale state-space model to understand drivers of forest fires in the Himalayan foothills. Forest Ecology and Management, 2019, 432, 902-911.	1.4	21
247	Generalized fire response strategies in plants and animals. Oikos, 2019, 128, 147-153.	1.2	66
248	Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Climate Dynamics, 2019, 52, 5413-5430.	1.7	119
249	Soil erosion as a resilience drain in disturbed tropical forests. Plant and Soil, 2020, 450, 11-25.	1.8	43
250	A review of environmental droughts: Increased risk under global warming?. Earth-Science Reviews, 2020, 201, 102953.	4.0	283
251	Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecological Applications, 2020, 30, e02001.	1.8	54
252	Spatiotemporal changes in forest loss and its linkage to burned areas in China. Journal of Forestry Research, 2020, 31, 2525-2536.	1.7	7
253	Global fire season severity analysis and forecasting. Computers and Geosciences, 2020, 134, 104339.	2.0	23
254	Biological Nitrogen Fixation Does Not Replace Nitrogen Losses After Forest Fires in the Southeastern Amazon. Ecosystems, 2020, 23, 1037-1055.	1.6	13
255	Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26, 300-318.	4.2	214
256	Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.	3.0	40

ARTICLE IF CITATIONS # Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 257 4.2 14 26, 1485-1498. The gathering firestorm in southern Amazonia. Science Advances, 2020, 6, eaay1632. Effects and behaviour of experimental fires in grasslands, savannas, and forests of the Brazilian 259 1.4 36 Cerrado. Forest Ecology and Management, 2020, 458, 117804. Increases in summertime concurrent drought and heatwave in Eastern China. Weather and Climate 260 79 Extremes, 2020, 28, 100242. Bamboo, climate change and forest use: A critical combination for southwestern Amazonian forests?. 261 2.8 16 Ambio, 2020, 49, 1353-1363. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecological Economics, 2020, 169, 106501. 263 The role of weather and climate conditions on extreme wildfires., 2020, , 55-72. 11 Climate and landâ€use change will lead to a faunal "savannization―on tropical rainforests. Global 4.2 264 68 Change Biology, 2020, 26, 7036-7044. Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth's 265 2.4 43 Future, 2020, 8, e2020EF001608. Understanding global spatio-temporal trends and the relationship between vegetation greenness and 1.0 climate factors by land cover during 1982–2014. Global Ecology and Conservation, 2020, 24, e01299. Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biology, 2020, 267 4.2 62 26, 5874-5885. High plant diversity and slow assembly of old-growth grasslands. Proceedings of the National 3.3 Academy of Sciences of the United States of America, 2020, 117, 18550-18556. Agricultural land-use change alters the structure and diversity of Amazon riparian forests. 269 1.9 11 Biological Conservation, 2020, 252, 108862. Impact of fires on an open bamboo forest in years of extreme drought in southwestern Amazonia. 270 1.4 Regional Environmental Change, 2020, 20, 1 Accuracy and spatiotemporal distribution of fire in the Brazilian biomes from the MODIS burned-area 271 1.0 10 products. International Journal of Wildland Fire, 2020, 29, 907. Effects of Fire Frequency on Seed Sources and Regeneration in Southeastern Amazonia. Frontiers in 14 Forests and Global Change, 2020, 3, . Savannas after afforestation: Assessment of herbaceous community responses to wildfire versus 273 0.8 6 native tree planting. Biotropica, 2020, 52, 1206-1216. Higher fire frequency impaired woody species regeneration in a south-eastern Amazonian forest. 274 Journal of Tropical Ecology, 2020, 36, 190-198.

#	Article	IF	CITATIONS
275	Local Human Impacts Disrupt Relationships Between Benthic Reef Assemblages and Environmental Predictors. Frontiers in Marine Science, 2020, 7, .	1.2	7
276	Fire foci dynamics and their relationship with socioenvironmental factors and meteorological systems in the state of Alagoas, Northeast Brazil. Environmental Monitoring and Assessment, 2020, 192, 654.	1.3	9
277	Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 295, 108190.	1.9	39
278	Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability. Scientific Reports, 2020, 10, 15098.	1.6	23
279	Drivers Of Burned Area Patterns In Cerrado: The Case Of Matopiba Region. , 2020, , .		5
280	Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surveys in Geophysics, 2020, 41, 1237-1284.	2.1	16
281	Wetland Fire Scar Monitoring and Its Response to Changes of the Pantanal Wetland. Sensors, 2020, 20, 4268.	2.1	12
282	The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Frontiers in Plant Science, 2020, 11, 601009.	1.7	93
283	Responses of Plant Biomass in the Brazilian Savanna to Frequent Fires. Frontiers in Forests and Global Change, 2020, 3, .	1.0	25
284	Drought Increases Vulnerability of Pinus ponderosa Saplings to Fire-Induced Mortality. Fire, 2020, 3, 56.	1.2	13
285	Advancing Fire Ecology in 21st Century Rangelands. Rangeland Ecology and Management, 2021, 78, 201-212.	1.1	20
286	Amazon wildfires: Scenes from a foreseeable disaster. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151609.	0.6	75
287	The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3015-3025.	3.3	160
288	The impact of long dry periods on the aboveground biomass in a tropical forest: 20Âyears of monitoring. Carbon Balance and Management, 2020, 15, 12.	1.4	11
289	What the past can say about the present and future of fire. Quaternary Research, 2020, 96, 66-87.	1.0	34
290	Floodâ€pulse disturbances as a threat for longâ€living Amazonian trees. New Phytologist, 2020, 227, 1790-1803.	3.5	28
291	Forest resilience to fire in eastern Amazon depends on the intensity of pre-fire disturbance. Forest Ecology and Management, 2020, 472, 118258.	1.4	15
292	Mortality in Forested Ecosystems: Suggested Conceptual Advances. Forests, 2020, 11, 572.	0.9	9

#	Article	IF	Citations
293	Extinction–immigration dynamics lag behind environmental filtering in shaping the composition of tropical dry forests within a changing landscape. Ecography, 2020, 43, 869-881.	2.1	16
294	Protecting environmental and socio-economic values of selectively logged tropical forests in the Anthropocene. Advances in Ecological Research, 2020, , 1-52.	1.4	11
295	Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005677.	1.3	44
296	The long and short of it: A review of the timescales of how fire affects soils using the pulse-press framework. Advances in Ecological Research, 2020, 62, 147-171.	1.4	14
297	The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban Forestry and Urban Greening, 2020, 54, 126764.	2.3	65
298	Trees in a Warming World. , 2020, , 160-199.		Ο
299	Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance and Management, 2020, 15, 1.	1.4	93
300	Feedback between drought and deforestation in the Amazon. Environmental Research Letters, 2020, 15, 044024.	2.2	102
301	El Niño impacts on humanâ€modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica, 2020, 52, 252-262.	0.8	21
302	A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 2020, 26, 3122-3133.	4.2	132
303	Socio-economic and Eco-biological Dimensions in Resource use and Conservation. Environmental Science and Engineering, 2020, , .	0.1	2
304	Climate change, ecosystems and abrupt change: science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190105.	1.8	169
305	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	1.8	69
307	Fire Effects on Understory Forest Regeneration in Southern Amazonia. Frontiers in Forests and Global Change, 2020, 3, .	1.0	23
308	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
309	Hanging by a thread? Forests and drought. Science, 2020, 368, 261-266.	6.0	431
310	Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals. , 2021, , .		10
311	A distinct ecotonal tree community exists at central African forest–savanna transitions. Journal of Ecology, 2021, 109, 1170-1183.	1.9	17

			_
#	ARTICLE	IF	CITATIONS
312	419-430.	1.9	20
313	Carbon loss and removal due to forest disturbance and regeneration in the Amazon. Science of the Total Environment, 2021, 764, 142839.	3.9	22
314	Examination of seasonal water and carbon dynamics in eastern Amazonia: a comparison of Noah-MP and MODIS. Theoretical and Applied Climatology, 2021, 143, 571-586.	1.3	9
315	Climate-Induced Global Forest Shifts due to Heatwave-Drought. Ecological Studies, 2021, , 155-186.	0.4	8
316	The role of forests in the carbon cycle and in climate change. , 2021, , 561-579.		3
317	Forest fires facilitate growth of herbaceous bamboos in central Amazonia. Biotropica, 2021, 53, 1021-1030.	0.8	6
318	Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Scientific Reports, 2021, 11, 4400.	1.6	36
319	Carbon fractions in the world's dead wood. Nature Communications, 2021, 12, 889.	5.8	52
320	Technical note: Low meteorological influence found in 2019 Amazonia fires. Biogeosciences, 2021, 18, 787-804.	1.3	15
321	Recent increasing frequency of compound summer drought and heatwaves in Southeast Brazil. Environmental Research Letters, 2021, 16, 034036.	2.2	88
322	Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests. PLoS ONE, 2021, 16, e0245991.	1.1	3
323	How fire interacts with habitat loss and fragmentation. Biological Reviews, 2021, 96, 976-998.	4.7	50
324	Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 2021, 230, 904-923.	3.5	123
325	Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16ÂYears. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033967.	1.2	10
326	White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosystems, 2021, 24, 1624-1637.	1.6	27
327	On the Hydroclimate-Vegetation Relationship in the Southwestern Amazon During the 2000–2019 Period. Frontiers in Water, 2021, 3, .	1.0	10
328	Vegetationâ€Climate Feedbacks Enhance Spatial Heterogeneity of Panâ€Amazonian Ecosystem States Under Climate Change. Geophysical Research Letters, 2021, 48, e2020GL092001.	1.5	7
329	Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest. Science of the Total Environment, 2021, 766, 144234.	3.9	9

#	Article	IF	CITATIONS
330	A Decade's Change in Vegetation Productivity and Its Response to Climate Change over Northeast China. Plants, 2021, 10, 821.	1.6	14
331	Mapping tree diversity in the tropical forest region of Chocó-Colombia. Environmental Research Letters, 2021, 16, 054024.	2.2	10
332	Indigenous Knowledge and Forest Succession Management in the Brazilian Amazon: Contributions to Reforestation of Degraded Areas. Frontiers in Forests and Global Change, 2021, 4, .	1.0	17
333	Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 2021, 256, 112313.	4.6	114
334	Climate change may affect the future of extractivism in the Brazilian Amazon. Biological Conservation, 2021, 257, 109093.	1.9	12
335	Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability, 2021, 13, 6039.	1.6	29
336	Quantifying the ecosystem vulnerability to drought based on data integration and processes coupling. Agricultural and Forest Meteorology, 2021, 301-302, 108354.	1.9	6
337	Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210094.	1.2	23
339	The Latent Dirichlet Allocation model with covariates (LDAcov): A case study on the effect of fire on species composition in Amazonian forests. Ecology and Evolution, 2021, 11, 7970-7979.	0.8	2
340	Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards. Natural Hazards and Earth System Sciences, 2021, 21, 1867-1885.	1.5	17
341	Costs and effectiveness of public and private fire management programs in the Brazilian Amazon and Cerrado. Forest Policy and Economics, 2021, 127, 102447.	1.5	18
342	Assessing the Spatiotemporal Variability of Leaf Functional Traits and Their Drivers Across Multiple Amazon Evergreen Forest Sites: A Stochastic Parameterization Approach With Land‧urface Modeling. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006228.	1.3	0
343	Natural forests in New Zealand – a large terrestrial carbon pool in a national state of equilibrium. Forest Ecosystems, 2021, 8, .	1.3	13
344	Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Systems and Environment, 2021, 5, 155-183.	3.0	103
345	Interacting tipping elements increase risk of climate domino effects under global warming. Earth System Dynamics, 2021, 12, 601-619.	2.7	227
346	Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. Forest Ecology and Management, 2021, 490, 119139.	1.4	6
347	Spatio-temporal patterns of extreme fires in Amazonian forests. European Physical Journal: Special Topics, 2021, 230, 3033-3044.	1.2	8
348	The impact of livestock grazing and canopy gaps on species pool and functional diversity of ground flora in the Caspian beech forests of Iran. Applied Vegetation Science, 2021, 24, e12592.	0.9	3

#	Article	IF	CITATIONS
349	Patterns of postâ€drought recovery are strongly influenced by drought duration, frequency, postâ€drought wetness, and bioclimatic setting. Global Change Biology, 2021, 27, 4630-4643.	4.2	37
350	Projected climatic changes lead to biome changes in areas of previously constant biome. Journal of Biogeography, 2021, 48, 2418-2428.	1.4	8
351	Asymmetrical Lightning Fire Season Expansion in the Boreal Forest of Northeast China. Forests, 2021, 12, 1023.	0.9	3
352	South American fires and their impacts on ecosystems increase with continued emissions. Climate Resilience and Sustainability, 2022, 1, e8.	0.9	15
353	Large Air Quality and Public Health Impacts due to Amazonian Deforestation Fires in 2019. GeoHealth, 2021, 5, e2021GH000429.	1.9	16
354	Climate change alters the ability of neotropical forests to provide timber and sequester carbon. Forest Ecology and Management, 2021, 492, 119166.	1.4	8
356	Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators, 2021, 127, 107773.	2.6	32
357	Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon. Remote Sensing Applications: Society and Environment, 2021, 23, 100531.	0.8	4
358	Recent changes in the atmospheric circulation patterns during the dry-to-wet transition season in south tropical South America (1979-2020): Impacts on precipitation and fire season. Journal of Climate, 2021, , 1-56.	1.2	16
359	Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. New Phytologist, 2021, 232, 1618-1631.	3.5	30
360	The Dynamic of Vegetation Growth with Regular Climate and Climatic Fluctuations in a Subtropical Mountainous Island, Taiwan. Remote Sensing, 2021, 13, 3298.	1.8	6
361	Air quality impacts of the 2019–2020 Black Summer wildfires on Australian schools. Atmospheric Environment, 2021, 261, 118450.	1.9	10
362	Diagnosing the impacts of climate extremes on the interannual variations of carbon fluxes of a subtropical evergreen mixed forest. Agricultural and Forest Meteorology, 2021, 307, 108507.	1.9	12
363	Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. Journal of Ecology, 2021, 109, 3473-3486.	1.9	13
364	Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 2021, 220, 103689.	4.0	104
365	Climate change and deforestation increase the vulnerability of Amazonian forests to postâ€fire grass invasion. Global Ecology and Biogeography, 2021, 30, 2368-2381.	2.7	5
366	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	13.7	65
367	Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde. Global Change Biology, 2022, 28, 1809-1822.	4.2	14

#	Article	IF	CITATIONS
368	Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons. Atmospheric Research, 2021, 260, 105692.	1.8	29
369	Drivers of tree community assembly during tropical forest post-fire succession in anthropogenic savannas. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 52, 125630.	1.1	5
370	Climate change forecasts suggest that the conservation area network in the Cerrado-Amazon transition zone needs to be expanded. Acta Oecologica, 2021, 112, 103764.	0.5	3
371	Benefits and costs of incentive-based forest conservation in the Peruvian Amazon. Forest Policy and Economics, 2021, 131, 102559.	1.5	5
372	Assessing vegetation stability to climate variability in Central Asia. Journal of Environmental Management, 2021, 298, 113330.	3.8	28
373	Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. Forest Ecology and Management, 2021, 500, 119652.	1.4	18
374	The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena, 2021, 207, 105649.	2.2	3
375	Forest Degradation and Inter-annual Tree Level Brazil Nut Production in the Peruvian Amazon. Frontiers in Forests and Global Change, 2021, 3, .	1.0	8
376	Vegetation modulates the impact of climate extremes on gross primary production. Biogeosciences, 2021, 18, 39-53.	1.3	33
377	Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by L\$ {m acute{e}} \$vy process with time-varying delay. Mathematical Biosciences and Engineering, 2021, 18, 8462-8498.	1.0	3
378	Role of Major Forest Biomes in Climate Change Mitigation: An Eco-Biological Perspective. Environmental Science and Engineering, 2020, , 483-526.	0.1	7
379	Close to a Tipping Point? The Amazon and the Challenge of Sustainable Development under Growing Climate Pressures. Journal of Latin American Studies, 2020, 52, 467-494.	0.1	9
380	Deforestation: Carving up the Amazon. Nature, 2014, 509, 418-419.	13.7	21
381	Collision Course: Development Pushes Amazonia Toward Its Tipping Point. Environment, 2021, 63, 15-25.	0.8	13
383	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	4.7	82
384	Achieving zero deforestation in the Brazilian Amazon: What is missing?. Elementa, 2016, 4, .	1.1	32
385	Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?. PLoS ONE, 2016, 11, e0149292.	1,1	14
386	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	1.1	34

#	Article	IF	CITATIONS
387	Drivers of floristic variation in biogeographic transitions: insights from the ecotone between the largest biogeographic domains of South America. Acta Botanica Brasilica, 2020, 34, 155-166.	0.8	6
388	Pathways to positive scenarios for the Amazon forest in ParÃi state, Brazil. Biota Neotropica, 2020, 20, .	0.2	7
389	DINÃ,MICA ESPAÇO-TEMPORAL DA TEMPERATURA DE SUPERFÃCIE, EXTRAÃDA DO TM/LANDSAT, NA BACIA DO CORUMBATAÃ; SP. Energia Na Agricultura, 2016, 31, 169.	0.1	1
390	Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos De Investigacion Geografica, 2016, 42, 145-166.	0.6	31
391	Simulated deforestation versus satellite data in Roraima, Northern Amazonia, Brazil. Sustentabilidade Em Debate, 2020, 11, 81-94.	0.4	3
392	O bambu é um desafio para a conservação e o manejo de florestas no sudoeste da Amazônia. Ciência E Cultura, 2014, 66, 46-51.	0.5	7
393	Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. Forests, 2021, 12, 8.	0.9	11
394	Forest Canopy Density and Fragmentation Analysis for Evaluating Spatio-Temporal Status of Forest in the Hazaribagh Wild Life Sanctuary, Jharkhand (India). Research Journal of Environmental Sciences, 2018, 12, 198-212.	0.5	5
395	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	1.3	45
396	Tipping the ENSO into a permanent ElÂNiño can trigger state transitions in global terrestrial ecosystems. Earth System Dynamics, 2019, 10, 631-650.	2.7	10
397	The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 2019, 11, 529-552.	3.7	227
398	Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geoscientific Model Development, 2020, 13, 4067-4089.	1.3	14
399	Chapter 10. Trees have Already been Invented: Carbon in Woodlands. Collabra, 2016, 2, .	1.3	1
401	Monitoring Drought Trends Induced Climate Variability over Egypt Using MODIS NDVI Satellite Data and Drought Indices. Bulletin De La Société De Géographie D'Égypte, 2016, 89, 91-121.	0.0	2
402	DESEMPENHO DO ÃNDICE DE PERIGO DE INCÊNDIOS FMA NO PARQUE NACIONAL DA CHAPADA DOS GUIMARÃES-MT. Nativa, 2018, 6, 153.	0.2	1
403	Estoque e perda de necromassa da vegetação lenhosa em um gradiente fitofisionômico na transição Amazônia-Cerrado. Rodriguesia, 0, 70, .	0.9	0
406	Plant dynamics in a tropical dry forest are strongly associated with climate and fire and weakly associated with stabilizing neighborhood effects. Oecologia, 2021, 197, 699-713.	0.9	4
407	A changing Amazon rainforest: Historical trends and future projections under post-Paris climate scenarios. Global and Planetary Change, 2020, 195, 103328.	1.6	11

#	Article	IF	CITATIONS
408	Brazilian biomes distribution: Past and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585, 110717.	1.0	15
409	Legal Amazon, sustainable use and environmental surveillance "systemsâ€i historical legacy and future prospects. Brazilian Journal of Environmental Sciences (Online), 2021, 56, 49-64.	0.1	0
410	Synergies Between Climate Change, Biodiversity, Ecosystem Function and Services, Indirect Drivers of Change and Human Well-Being in Forests. , 2021, , 263-320.		2
411	Mortality and Resprouting Responses in Forest Trees Driven More by Tree and Ecosystem Characteristics than Drought Severity and Fire Frequency. SSRN Electronic Journal, 0, , .	0.4	0
412	Verification of the differenced Normalised Burn Ratio (dNBR) as an index of fire severity in Afrotemperate Forest. South African Journal of Botany, 2022, 146, 348-353.	1.2	12
413	A regional view of the linkages between hydroâ€climatic changes and deforestation in the Southern Amazon. International Journal of Climatology, 2022, 42, 3757-3775.	1.5	8
414	Characterization of Dry-Season Phenology in Tropical Forests by Reconstructing Cloud-Free Landsat Time Series. Remote Sensing, 2021, 13, 4736.	1.8	11
415	The effect of adjacent vegetation on fire severity in Afrotemperate forest along the southern Cape coast of South Africa. Southern Forests, 2021, 83, 225-230.	0.2	4
416	Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Frontiers in Forests and Global Change, 2021, 4, .	1.0	16
417	Comparing statistical and mechanistic models to identify the drivers of mortality within a rear-edge beech population. , 0, 1, .		4
418	Amazon deforestation and urban expansion: Simulating future growth in the Manaus Metropolitan Region, Brazil. Journal of Environmental Management, 2022, 304, 114279.	3.8	13
419	Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 2022, 17, 034037.	2.2	22
420	Assessing climate risk to support urban forests in a changing climate. Plants People Planet, 2022, 4, 201-213.	1.6	13
421	Recent global warming as a proximate cause of deforestation and forest degradation in northern Pakistan. PLoS ONE, 2022, 17, e0260607.	1.1	8
422	Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sensing, 2022, 14, 338.	1.8	14
423	Changes in land use enhance the sensitivity of tropical ecosystems to fire-climate extremes. Scientific Reports, 2022, 12, 964.	1.6	22
424	Phenology-based seasonal terrestrial vegetation growth response to climate variability with consideration of cumulative effect and biological carryover. Science of the Total Environment, 2022, 817, 152805.	3.9	18
425	Historical trends of degradation, loss, and recovery in the tropical forest reserves of Ghana. International Journal of Digital Earth, 2022, 15, 30-51.	1.6	13

#	Article	IF	CITATIONS
426	Widespread decline in winds promoted the growth of vegetation. Science of the Total Environment, 2022, 825, 153682.	3.9	19
427	Pathways of savannization in a mesic African savanna–forest mosaic following an extreme fire. Journal of Ecology, 2022, 110, 902-915.	1.9	15
428	Global water availability and its distribution under the Coupled Model Intercomparison Project Phase Six scenarios. International Journal of Climatology, 2022, 42, 5748-5767.	1.5	9
429	Mortality and resprouting responses in forest trees driven more by tree and ecosystem characteristics than drought severity and fire frequency. Forest Ecology and Management, 2022, 509, 120070.	1.4	9
430	Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. Forest Ecology and Management, 2022, 509, 120083.	1.4	14
431	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
432	Preserving life on Earth. , 2022, , 503-602.		0
433	Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 2022, 110, 876-888.	1.9	12
434	Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Frontiers in Forests and Global Change, 2022, 5, .	1.0	8
435	How wildfires increase sensitivity of Amazon forests to droughts. Environmental Research Letters, 2022, 17, 044031.	2.2	6
436	The role of climate in past forest loss in an ecologically important region of South Asia. Global Change Biology, 2022, 28, 3883-3901.	4.2	10
437	Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annual Review of Plant Biology, 2022, 73, 673-702.	8.6	117
438	Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 2022, 13, 1250.	5.8	19
439	The Effects of Environmental Changes on Plant Species and Forest Dependent Communities in the Amazon Region. Forests, 2022, 13, 466.	0.9	12
440	Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sensing, 2022, 14, 1545.	1.8	10
441	Intensification of fire regimes and forest loss in the Território IndÃgena do Xingu. Environmental Research Letters, 2022, 17, 045012.	2.2	8
442	The Latent Dirichlet Allocation model applied to airborne <scp>LiDAR</scp> data: A case study on mapping forest degradation associated with fragmentation and fire in the Amazon region. Methods in Ecology and Evolution, 2022, 13, 1329-1342.	2.2	0
443	Legacies of Indigenous land use and cultural burning in the Bolivian Amazon rainforest ecotone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200499	1.8	12

#	Article	IF	CITATIONS
444	Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, 2022, 12, 271-278.	8.1	181
445	Influence of site conditions and land management on Quercus suber L. population dynamics in the southern Iberian Peninsula. IForest, 2022, 15, 77-84.	0.5	1
446	Dynamics of Anthropogenic Wildfire on Babeldaob Island (Palau) as Revealed by Fire History. Fire, 2022, 5, 45.	1.2	10
447	Growth enhancements of elevated atmospheric [CO ₂] are reduced under droughtâ€like conditions in temperate eucalypts. Functional Ecology, 0, , .	1.7	1
448	Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences, 2022, 19, 1891-1911.	1.3	3
449	Australian farm dams are becoming less reliable water sources under climate change. Science of the Total Environment, 2022, 829, 154360.	3.9	13
450	Response of macroinvertebrates to changes in stream flow and habitat conditions in Dinki watershed, central highlands of Ethiopia. Ecological Indicators, 2021, 133, 108448.	2.6	7
451	Developing Tree Mortality Models Using Bayesian Modeling Approach. Forests, 2022, 13, 604.	0.9	5
452	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	5.8	41
453	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
454	Fire severity and tree size affect post-fire survival of Afrotemperate forest trees. Fire Ecology, 2022, 18, .	1.1	7
474	Animal soundscapes reveal key markers of Amazon forest degradation from fire and logging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2102878119.	3.3	9
475	Forest Fire History in Amazonia Inferred From Intensive Soil Charcoal Sampling and Radiocarbon Dating. Frontiers in Forests and Global Change, 2022, 5, .	1.0	6
476	Spatiotemporal Variations of Evapotranspiration in Amazonia Using the Wavelet Phase Difference Analysis. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
477	Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nature Communications, 2022, 13, 2437.	5.8	9
478	Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon. Land Use Policy, 2022, 119, 106145.	2.5	20
479	Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nature Communications, 2022, 13, 2717.	5.8	30
480	Tropical tree mortality has increased with rising atmospheric water stress. Nature, 2022, 608, 528-533.	13.7	74

#	Article	IF	CITATIONS
481	Madagascar's fire regimes challenge global assumptions about landscape degradation. Global Change Biology, 2022, 28, 6944-6960.	4.2	16
482	A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters, 2022, 17, 065015.	2.2	14
483	Mapping Fire Susceptibility in the Brazilian Amazon Forests Using Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly Detection. Remote Sensing, 2022, 14, 2429.	1.8	6
484	END-PERMIAN BURNOUT: THE ROLE OF PERMIAN–TRIASSIC WILDFIRES IN EXTINCTION, CARBON CYCLING, AND ENVIRONMENTAL CHANGE IN EASTERN GONDWANA. Palaios, 2022, 37, 292-317.	0.6	18
485	Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. Journal of the Indian Society of Remote Sensing, 2022, 50, 1615-1640.	1.2	53
486	Projections of future forest degradation and CO ₂ emissions for the Brazilian Amazon. Science Advances, 2022, 8, .	4.7	7
487	Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
488	Changes in the resilience of resprouting juvenile tree populations in temperate forests due to coupled severe drought and fire. Plant Ecology, 2022, 223, 907-923.	0.7	6
489	Forest Fire Detection of FY-3D Using Genetic Algorithm and Brightness Temperature Change. Forests, 2022, 13, 963.	0.9	5
490	Fire probability mapping and prediction from environmental data: What a comprehensive savanna-forest transition can tell us. Forest Ecology and Management, 2022, 520, 120354.	1.4	3
491	Anthropogenic environmental pressures in urban conservation units: a case study in Belém, Brazilian eastern Amazon. International Journal of Hydrology, 2022, 6, 131-139.	0.2	1
492	Reduced predation by arthropods and higher herbivory in burned Amazonian forests. Biotropica, 2022, 54, 1052-1060.	0.8	5
493	Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019. Remote Sensing, 2022, 14, 3390.	1.8	12
494	Emerging signals of declining forest resilience under climate change. Nature, 2022, 608, 534-539.	13.7	132
495	Tracking and classifying Amazon fire events in near real time. Science Advances, 2022, 8, .	4.7	13
496	Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
497	Fire return intervals explain different vegetation cover responses to wildfire restoration in two Sierra Nevada basins. Forest Ecology and Management, 2022, 521, 120429.	1.4	2
498	Fundamentos da assistência de enfermagem na atenção primária Ãs gestantes ribeirinhas afetadas pelo despejo de mercúrio em corpos d'agua. Global Clinical Research Journal, 2022, 2,	0.0	0

#	Article	IF	CITATIONS
499	Integration of landscape-level remote sensing and tree-level ecophysiology reveals drought refugia for a rare endemic, bigcone Douglas-fir. Frontiers in Forests and Global Change, 0, 5, .	1.0	1
500	Sentinel-1 Shadows Used to Quantify Canopy Loss from Selective Logging in Gabon. Remote Sensing, 2022, 14, 4233.	1.8	3
501	Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China. Sustainability, 2022, 14, 12450.	1.6	4
502	Regime shifts of the wet and dry seasons in the tropics under global warming. Environmental Research Letters, 2022, 17, 104028.	2.2	1
503	Local hydrological conditions influence tree diversity and composition across the Amazon basin. Ecography, 2022, 2022, .	2.1	11
504	Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. Frontiers in Forests and Global Change, 0, 5, .	1.0	7
505	Land Use and Land Cover in Tropical Forest: Global Research. Forests, 2022, 13, 1709.	0.9	7
506	Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. New Phytologist, 2023, 237, 22-47.	3.5	21
507	How drought events during the last century have impacted biomass carbon in Amazonian rainforests. Global Change Biology, 2023, 29, 747-762.	4.2	4
508	Future spatial modeling of vegetation in the Central Atlantic Forest Corridor, Brazil. Frontiers in Conservation Science, 0, 3, .	0.9	1
509	Shift in precipitation-streamflow relationship induced by multi-year drought across global catchments. Science of the Total Environment, 2023, 857, 159560.	3.9	4
510	Fire propensity in Amazon savannas and rainforest and effects under future climate change. International Journal of Wildland Fire, 2022, , .	1.0	1
511	Can we avert an Amazon tipping point? The economic and environmental costs. Environmental Research Letters, 2022, 17, 125005.	2.2	4
512	Seasonal variations in vegetation water content retrieved from microwave remote sensing over Amazon intact forests. Remote Sensing of Environment, 2023, 285, 113409.	4.6	12
514	Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest. Biological Reviews, 2023, 98, 643-661.	4.7	3
515	Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
516	East Texas forests show strong resilience to exceptional drought. Forestry, 2023, 96, 326-339.	1.2	1
517	Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon. Nature Sustainability, 2023, 6, 295-305.	11.5	13

#	Article	IF	CITATIONS
518	Windthrow characteristics and their regional association with rainfall, soil, and surface elevation in the Amazon. Environmental Research Letters, 2023, 18, 014030.	2.2	4
519	Filling the gap to avoid extinction: Conservation status of Brazilian species of Epidendrum L. (Orchidaceae). Journal for Nature Conservation, 2023, 71, 126328.	0.8	1
520	Characterization of land cover-specific fire regimes in the Brazilian Amazon. Regional Environmental Change, 2023, 23, .	1.4	3
521	The ecohydrological function of the tropical forest rainfall interception: Observation and modeling. , 2023, , 77-103.		0
522	Wildfires Impact Assessment on PM Levels Using Generalized Additive Mixed Models. Atmosphere, 2023, 14, 231.	1.0	0
523	Land use and land cover dynamics: Implications for thermal stress and energy demands. Renewable and Sustainable Energy Reviews, 2023, 179, 113274.	8.2	6
524	Late-Holocene maize cultivation, fire, and forest change at Lake Ayauch ⁱ , Amazonian Ecuador. Holocene, 2023, 33, 550-561.	0.9	2
525	Diverse anthropogenic disturbances shift Amazon forests along a structural spectrum. Frontiers in Ecology and the Environment, 2023, 21, 24-32.	1.9	4
526	Asymmetric response of primary productivity to precipitation anomalies in Southwest China. Agricultural and Forest Meteorology, 2023, 331, 109350.	1.9	6
527	Habitat use patterns suggest that climateâ€driven vegetation changes will negatively impact mammal communities in the Amazon. Animal Conservation, 2023, 26, 663-674.	1.5	0
528	Ancient fires enhance Amazon forest drought resistance. Frontiers in Forests and Global Change, 0, 6,	1.0	1
529	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10
530	Anatomical functional traits and hydraulic vulnerability of trees in different water conditions in southern Amazonia. American Journal of Botany, 0, , .	0.8	0
532	The carbon sink of secondary and degraded humid tropical forests. Nature, 2023, 615, 436-442.	13.7	19
533	Multiscale predictors of small tree survival across a heterogeneous tropical landscape. PLoS ONE, 2023, 18, e0280322.	1.1	1
534	Forest microbiome and global change. Nature Reviews Microbiology, 2023, 21, 487-501.	13.6	33
535	Climate Variability and Change in Tropical South America. The Latin American Studies Book Series, 2023, , 15-44.	0.1	0
536	<scp>UAVâ€Lidar</scp> reveals that canopy structure mediates the influence of edge effects on forest diversity, function and microclimate. Journal of Ecology, 2023, 111, 1411-1427.	1.9	4

		CITATION REPORT		
#	Article		IF	CITATIONS
537	Differing localâ€scale responses of Bolivian Amazon forest ecotones to middle Holoce based upon multiproxy soil data. Journal of Quaternary Science, 2023, 38, 970-990.	ne drought	1.1	1
538	Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 2 1014-1032.	2023, 28,	4.3	5
545	South American Natural Ecosystems, Status of. , 2024, , 158-176.			1
549	Genetic Management Applied to Conservation of Reduced and Fragmented Wild Popu 227-249.	lations. , 2023, ,		0
558	Occurrence and hotspots of multivariate and temporally compounding events in China 2020. Npj Climate and Atmospheric Science, 2023, 6, .	a from 1961 to	2.6	1
559	A bibliometric review of climate change cascading effects: past focus and future prosp Environment, Development and Sustainability, 0, , .	ects.	2.7	1
573	Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Chang SDGs in Brazil. , 2024, , 1-30.	e, and Achieving		0