Predictive Control for Low-Voltage Ride-Through Enha NPC-Converter-Based PMSG Wind Turbine

IEEE Transactions on Industrial Electronics

61, 6832-6843

DOI: 10.1109/tie.2014.2314060

Citation Report

#	Article	IF	CITATIONS
2	High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proceedings of the IEEE, 2015, 103, 740-788.	21.3	714
3	Reduced switching frequency operation of power converters using virtual model based MPC. , 2015, , .		3
4	Model Predictive Control: MPC's Role in the Evolution of Power Electronics. IEEE Industrial Electronics Magazine, 2015, 9, 8-21.	2.6	383
5	Model predictive control of interleaved boost converters for synchronous generator wind energy conversion systems. , 2015, , .		15
6	Performance of Three-Phase Asymmetric Cascaded Bridge (16 : 4 : 1) Multilevel Inverter. IEEE 1 on Industrial Electronics, 2015, 62, 5983-5992.	ransaction	¹⁵ 50

7	Malfunction operation of LVRT capability of Wind Turbines under islanding conditions. , 2015, , .		4
8	Optimal Power Control Strategy of Maximizing Wind Energy Tracking and Different Operating Conditions for Permanent Magnet Synchronous Generator Wind Farm. Energy Procedia, 2015, 74, 477-490.	1.8	37
9	Challenges of integrating renewable energy sources to smart grids: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 770-780.	16.4	119
10	A new fast peak current controller for transient voltage faults for power converters. , 2015, , .		0
11	Voltage sag compensation of point of common coupling for low voltage ride-through enhancment of inverter interfaced DG using bridge type FCL. , 2015, , .		2
12	A New Fast Peak Current Controller for Transient Voltage Faults for Power Converters. Energies, 2016, 9, 1.	3.1	775
13	Enhanced Predictive Current Control of Three-Phase Grid-Tied Reversible Converters with Improved Switching Patterns. Energies, 2016, 9, 41.	3.1	4
14	Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines. Energies, 2016, 9, 1066.	3.1	33
15	Finite control set model predictive controller for grid connected inverter design. , 2016, , .		15
16	Noval topology for reliable PMSG based wind Energy Conversion system. , 2016, , .		1
17	Flexible Lyapunov function based model predictive direct current control of permanent magnet synchronous generator. , 2016, , .		0
18	A method to reduce DC-link overvoltage of PMSG based WECS during LVRT. , 2016, , .		7
19	Comparison of synchronous and stationary frame pi based flux weakening controls for DC-link		4

#	Article	IF	CITATIONS
20	A low voltage ride through control strategy for energy storage systems. , 2016, , .		3
21	Comparisons of PI and PR current controllers based flux weakening to limit DC-link capacitor overvoltage in PMSG based wind energy system. , 2016, , .		3
24	Model predictive control of five-level H-bridge neutral-point-clamped qZS inverter. , 2016, , .		13
25	Multiobjective optimization in combinatorial wind farms system integration and resistive SFCL using analytical hierarchy process. Renewable Energy, 2016, 94, 366-382.	8.9	15
26	Fault ride-through of renewable energy conversion systems during voltage recovery. Journal of Modern Power Systems and Clean Energy, 2016, 4, 28-39.	5.4	16
27	A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters. , 2016, , .		13
28	Grid fault ride through of a medium-voltage three-level full power wind power converter. , 2016, , .		4
29	Fault tolerantâ€ŧopology and controls for a threeâ€level hybrid neutral point clampedâ€flying capacitor converter. IET Power Electronics, 2016, 9, 2350-2359.	2.1	9
30	Model predictive power control approach for three-phase single-stage grid-tied PV module-integrated converter. , 2016, , .		8
31	Sliding Mode Control of PMSG Wind Turbine Based on Enhanced Exponential Reaching Law. IEEE Transactions on Industrial Electronics, 2016, 63, 6148-6159.	7.9	204
32	Offset-Free One-Step Ahead State Predictor for Power Electronic Applications Using Robust Proportional–Integral Observer. IEEE Transactions on Industrial Electronics, 2016, 63, 1763-1770.	7.9	12
33	A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. Renewable and Sustainable Energy Reviews, 2016, 55, 823-839.	16.4	62
34	Predictive Control of a Back-to-Back NPC Converter-Based Wind Power System. IEEE Transactions on Industrial Electronics, 2016, 63, 4615-4627.	7.9	79
35	Assessment and Enhancement of a Full-Scale PMSC-Based Wind Power Generator Performance Under Faults. IEEE Transactions on Energy Conversion, 2016, 31, 728-739.	5.2	90
36	Model Predictive Control of Quasi-Z-Source Four-Leg Inverter. IEEE Transactions on Industrial Electronics, 2016, 63, 4506-4516.	7.9	96
37	Experimental Validation of a Robust Continuous Nonlinear Model Predictive Control Based Grid-Interlinked Photovoltaic Inverter. IEEE Transactions on Industrial Electronics, 2016, 63, 4495-4505.	7.9	70
38	Load Mitigation for a Floating Wind Turbine via Generalized Structural Control. IEEE Transactions on Industrial Electronics, 2016, 63, 332-342.	7.9	55
39	Dynamic Loads of Variable-Speed Wind Energy Conversion System. IEEE Transactions on Industrial Electronics, 2016, 63, 178-188.	7.9	28

#	Article	IF	CITATIONS
40	An Adaptive Protection Scheme for Distribution Systems With DGs Based on Optimized Thevenin Equivalent Parameters Estimation. IEEE Transactions on Power Delivery, 2017, 32, 411-419.	4.3	88
41	DSP-based implementation of a self-tuning fuzzy controller for three-level boost converter. Electric Power Systems Research, 2017, 146, 286-297.	3.6	22
42	Modeling, control and stability analysis of grid connected PMSG based wind turbine assisted with diode rectifier and boost converter. International Journal of Electrical Power and Energy Systems, 2017, 93, 84-96.	5.5	69
43	Predictive Control of Vienna Rectifiers for PMSG Systems. IEEE Transactions on Industrial Electronics, 2017, 64, 2580-2591.	7.9	77
44	Modified predictive control for both normal and LVRT operations of a Quasi-Z-Source Matrix Converter based WECS. Control Engineering Practice, 2017, 68, 1-14.	5.5	10
45	A coordinated control of grid connected PMSG based wind energy conversion system under grid faults. , 2017, , .		9
46	Mathematical modeling, dynamic response analysis, and control of PMSGâ€based wind turbines operating with an alternative control structure in power control mode. International Transactions on Electrical Energy Systems, 2017, 27, e2423.	1.9	14
47	New voltage vector generation method for a MPC algorithm with constant switching frequency operation. , 2017, , .		4
48	MPPT based on torque control of wind generation. , 2017, , .		1
49	Model predictive control for parallel threeâ€level Tâ€type gridâ€connected inverters in renewable power generations. IET Renewable Power Generation, 2017, 11, 1353-1363.	3.1	35
50	PMSCâ€based wind energy conversion systems: survey on power converters and controls. IET Electric Power Applications, 2017, 11, 956-968.	1.8	172
51	Model predictive control scheme with active damping function for current source rectifiers. IET Power Electronics, 2017, 10, 717-725.	2.1	12
52	An internal model control for enhanced grid-connection of direct-driven PMSG-based wind generators. Electric Power Systems Research, 2017, 151, 440-450.	3.6	46
53	Design and Implementation of a Nonlinear PI Predictive Controller for a Grid-Tied Photovoltaic Inverter. IEEE Transactions on Industrial Electronics, 2017, 64, 1241-1250.	7.9	52
54	Analysis and Damping of Mechanical Resonance of Wind Power Generators Contributing to Frequency Regulation. IEEE Transactions on Power Systems, 2017, 32, 3195-3204.	6.5	24
55	Mitigating the impact of voltage sags and swells on type IV wind generator systems. , 2017, , .		4
56	Modeling and analysis of stator interturn faults in permanent magnet synchronous machine. , 2017, , .		3
57	Research on multi-parameter identification of PMSM based on model predictive control. , 2017, , .		4

#	Article	IF	CITATIONS
58	A novel coupled inductor Z-source three-level inverter. IEICE Electronics Express, 2017, 14, 20170647-20170647.	0.8	4
59	Guidelines for dSPACE-based real-time implementation of predictive current control for grid-connected converters. , 2017, , .		3
60	Model Predictive Direct Current Control of a Permanent Magnet Synchronous Generator Based on Flexible Lyapunov Function Considering Converter Dead Time. IEEE Transactions on Industry Applications, 2018, 54, 2899-2912.	4.9	24
61	A Novel PI-Type Sliding Surface for PMSG-Based Wind Turbine With Improved Transient Performance. IEEE Transactions on Energy Conversion, 2018, 33, 834-844.	5.2	39
62	A Model Predictive Power Control Approach for a Three-Phase Single-Stage Grid-Tied PV Module-Integrated Converter. IEEE Transactions on Industry Applications, 2018, 54, 1823-1831.	4.9	16
63	Quasi-Z-source matrix converters to be used in PMSG-based WECS: Modeling, control, and comparison. International Transactions on Electrical Energy Systems, 2018, 28, e2544.	1.9	5
64	An Optimal Frequency Control Method Through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm. IEEE Systems Journal, 2018, 12, 392-401.	4.6	113
65	A New Nonisolated High-Voltage-Gain Boost Converter With Inherent Output Voltage Balancing. IEEE Transactions on Industrial Electronics, 2018, 65, 2189-2198.	7.9	45
66	Control of Mixed Energy Storage System Based Micro-grid Using Modulator-Less Model Predictive Control. , 2018, , .		5
67	Nonlinear Partial Feedback Linearizing Controller Design for PMSG-Based Wind Farms to Enhance LVRT Capabilities. , 2018, , .		8
68	Comparison of the traditional converters with Z-Source converters for PMSG based small scale wind turbines. , 2018, , .		0
69	Single-phase three-level grid-connected inverter based on direct adaptive fuzzy control. IEICE Electronics Express, 2018, 15, 20180838-20180838.	0.8	1
70	Solar PV Energy System Based on Series Interleaved Three-Level Boost Converter and Five-Level MLC ² Inverter. , 2018, , .		1
71	Design and experimental validation of enhanced adaptive second-order SMC for PMSG-based wind energy conversion system. International Journal of Electrical Power and Energy Systems, 2018, 103, 21-30.	5.5	39
72	An optimal Fuzzy-logic based frequency control strategy in a high wind penetrated power system. Journal of the Franklin Institute, 2018, 355, 6262-6285.	3.4	34
73	Low-Voltage Ride-Through Control Strategy for a Grid-Connected Energy Storage System. Applied Sciences (Switzerland), 2018, 8, 57.	2.5	27
74	Model Predictive Current Control for PMSM Drives With Parameter Robustness Improvement. IEEE Transactions on Power Electronics, 2019, 34, 1645-1657.	7.9	366
75	Fuzzy grey wolf optimization for controlled low-voltage ride-through conditions in grid-connected wind turbine with doubly fed induction generator. Simulation, 2019, 95, 327-338.	1.8	12

#	Article	IF	CITATIONS
76	Comprehensive Overview of Low Voltage Ride Through Methods of Grid Integrated Wind Generator. IEEE Access, 2019, 7, 99299-99326.	4.2	142
77	Lowâ€voltage rideâ€through enhancement with the <i>ï‰</i> and <i>T</i> controls of PMSG in a gridâ€integrated wind generation system. IET Generation, Transmission and Distribution, 2019, 13, 1979-1988.	2.5	21
78	An improved model predictive control of low voltage ride through in a permanent magnet synchronous generator in wind turbine systems. Asian Journal of Control, 2019, 21, 1991-2003.	3.0	12
79	Optimal tracking control for a Permanent Magnet Synchronous Generator. , 2019, , .		2
80	A Model Predictive Voltage Control using Virtual Space Vectors for Grid-Forming Energy Storage Converters. , 2019, , .		5
81	Full operational regimes for SPMSC-based WECS using generation of active current references. International Journal of Electrical Power and Energy Systems, 2019, 112, 428-441.	5.5	11
82	Power Conversion and Predictive Control of Wind Energy Conversion Systems. Power Systems, 2019, , 113-139.	0.5	4
83	DC-Link Voltage Regulation for Wind Power System by Complementary Sliding Mode Control. IEEE Access, 2019, 7, 22773-22780.	4.2	12
84	Model Predictive Control of Modular Multilevel Grid Simulator. , 2019, , .		1
85	A general analytical approach to reach maximum grid support by PMSG-based wind turbines under various grid faults. Journal of Central South University, 2019, 26, 2833-2844.	3.0	3
86	An efficient variable-step P&O maximum power point tracking technique for grid-connected wind energy conversion system. SN Applied Sciences, 2019, 1, 1.	2.9	22
87	A Fault Detection Method of Microgrids With Grid-Connected Inverter Interfaced Distributed Generators Based on the PQ Control Strategy. IEEE Transactions on Smart Grid, 2019, 10, 4816-4826.	9.0	71
88	Model Predictive Voltage Control Based on Finite Control Set With Computation Time Delay Compensation for PV Systems. IEEE Transactions on Energy Conversion, 2019, 34, 330-338.	5.2	54
89	An Amorphous Alloy Magnetic-Bus-Based SiC NPC Converter With Inherent Voltage Balancing for Grid-Connected Renewable Energy Systems. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-8.	1.7	8
90	Switching Fault Ride-Through of GSCs Via Observer-Based Bang–Bang Funnel Control. IEEE Transactions on Industrial Electronics, 2019, 66, 7442-7446.	7.9	5
91	Reducing Cost and Size in Photovoltaic Systems Using Three-Level Boost Converter Based on Fuzzy Logic Controller. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2019, 43, 313-323.	2.3	7
92	Three-Switch Three-Phase Inverter With Improved DC Voltage Utilization. IEEE Transactions on Industrial Electronics, 2019, 66, 14-24.	7.9	20
93	A Hybrid Passivity-Based Control Strategy for Three-Level T-Type Inverter in LVRT Operation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4009-4024.	5.4	19

	CITATION R	EPORT	
# 94	ARTICLE A Modified Finite Control Set Model Predictive Control for 3Lâ^'NPC Gridâ^'Connected Inverters Using Virtual Voltage Vectors. Journal of Electrical Engineering and Technology, 2020, 15, 121-133.	IF 2.0	CITATIONS
95	Learning Algorithm-Based Offset-Free One-Step Time-Delay Compensation for Power Converter and Motor Drive System Applications. IEEE Transactions on Industrial Informatics, 2020, 16, 3789-3796.	11.3	7
96	Coordinative Low-Voltage-Ride-Through Control for the Wind-Photovoltaic Hybrid Generation System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1503-1514.	5.4	32
97	An Optimized Model Predictive Control for Three-Phase Four-Level Hybrid-Clamped Converters. IEEE Transactions on Power Electronics, 2020, 35, 6470-6481.	7.9	32
98	Improved Generic Model of Variable Speed Wind Turbines for Dynamic Studies. IEEE Transactions on Sustainable Energy, 2020, 11, 2162-2173.	8.8	3
99	Robust Predictive Torque Control of Permanent Magnet Synchronous Machine Using Discrete Hybrid Prediction Model. IEEE Transactions on Energy Conversion, 2020, 35, 2240-2248.	5.2	19
100	Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells. Energies, 2020, 13, 5990.	3.1	4
101	Enhancement of low voltage ride-through ability of the photovoltaic array aided by the MPPT algorithm connected with wind turbine. Data Technologies and Applications, 2020, 54, 503-527.	1.4	3
102	Analysis, Modeling and Control of a Hybrid Drive Wind Turbine With Hydrogen Energy Storage System. IEEE Access, 2020, 8, 114795-114806.	4.2	16
103	An Advanced Voltage Support Scheme Considering the Impact of Zero-Sequence Voltage Under Microgrid Faults Using Model Predictive Control. IEEE Transactions on Industrial Electronics, 2020, 67, 8957-8968.	7.9	15
104	Advanced Control Methods for Power Converters in DG Systems and Microgrids. IEEE Transactions on Industrial Electronics, 2021, 68, 5847-5862.	7.9	62
105	Mechanical Stress Comparison of PMSG Wind Turbine LVRT Methods. IEEE Transactions on Energy Conversion, 2021, 36, 682-692.	5.2	10
106	A P-Q Coordination Based Model Predictive Control for DFIG High-Voltage Ride Through. IEEE Transactions on Energy Conversion, 2022, 37, 254-263.	5.2	16
107	Multifunctional Control of Wind-Turbine Based Nano-Grid Connected to Distorted Utility-Grid. IEEE Transactions on Power Systems, 2022, 37, 576-589.	6.5	4
108	Improved Model Predictive Current Control for Three-Phase Three-Level Converters With Neutral-Point Voltage Ripple and Common Mode Voltage Reduction. IEEE Transactions on Energy Conversion, 2021, 36, 3053-3062.	5.2	16
109	An Efficient Model Predictive Control Using Virtual Voltage Vectors for Three-Phase Three-Level Converters With Constant Switching Frequency. IEEE Transactions on Industrial Electronics, 2022, 69, 3998-4009.	7.9	13
110	Improvement of Low-Voltage Ride-Through Capability for Wave Energy Conversion System. IEEE Transactions on Industrial Electronics, 2022, 69, 8123-8133.	7.9	11
111	Adaptive Linear Active Disturbance Rejection Control With Deviation Differential in DC Bus Voltage of Wind Power System. IEEE Access, 2021, 9, 57808-57818.	4.2	4

#	Article	IF	Citations
112	Optimal switching sequence model predictive control for threeâ€level NPC gridâ€connected inverters. IET Power Electronics, 2021, 14, 626-639.	2.1	4
113	Novel Switching Frequency FCS-MPC of PMSG for Grid-Connected Wind Energy Conversion System with Coordinated Low Voltage Ride Through. Electronics (Switzerland), 2021, 10, 492.	3.1	10
114	Design and implementation of model predictive control for microgrid energy system with power quality improvement features. International Journal of Electronics, 2021, 108, 1977-1998.	1.4	10
115	Simple Model Predictive Control of High Power Direct-Driven PMSG Wind Energy Systems. , 2021, , .		2
116	Secondâ€order sliding mode control of wind turbines to enhance the faultâ€ride through capability under unbalanced grid faults. International Journal of Circuit Theory and Applications, 2021, 49, 1959-1986.	2.0	12
118	Nonlinear Optimal Control for PMSG-Based Wind Energy Conversion Systems. IEEE Latin America Transactions, 2021, 19, 1191-1198.	1.6	8
119	A review of multiphase energy conversion in wind power generation. Renewable and Sustainable Energy Reviews, 2021, 147, 111172.	16.4	130
120	Bipolar DC Micro-Grid Based Wind Energy Systems. Springer Proceedings in Energy, 2021, , 1403-1413.	0.3	4
121	Augmentation of fault ride-through capability of PMSG in a wind power plant using resistive SFCL and a new reactive current injection controller. , 2019, , .		3
122	Performance and dynamic response enhancement of PMSG based wind turbines employing boost converter-diode rectifier as the machine-side converter. Scientia Iranica, 2020, .	0.4	0
123	A New Approach for Low Voltage Ride Through Enhancement in Grid-Connected Wind Farms. , 2020, , .		1
124	Vector Control Scheme for the PMSG-Based WPS Under Various Grid Disturbances. Lecture Notes in Electrical Engineering, 2021, , 303-319.	0.4	0
125	Common-Mode Voltage Reduction and Neutral-Point Voltage Control Using Space Vector Modulation for Coupled Ten-Switch Three-Phase Three-Level Inverter. IEEE Transactions on Power Electronics, 2022, 37, 6397-6411.	7.9	7
126	Supercapacitor Energy Storage System based Coordinative Low-Voltage-Ride-Through Control for Wind Energy Conversion System. , 2021, , .		2
127	A PMSG Wind Energy System Featuring Low-Voltage Ride-through via Mode-Shift Control. Applied Sciences (Switzerland), 2022, 12, 964.	2.5	17
128	Exact Feedback Linearization Control of Three-Level Boost Converters. IEEE Transactions on Industrial Electronics, 2023, 70, 1916-1926.	7.9	7
129	Study on a smallâ€signal analysis method for PMSG considering LVRT control and frequency regulation. IET Generation, Transmission and Distribution, 2022, 16, 2154-2165.	2.5	2
130	High-voltage ride-through strategy for wind turbine with fully-rated converter based on current operating range. International Journal of Electrical Power and Energy Systems, 2022, 141, 108101.	5.5	7

#	Article	IF	CITATIONS
131	Common-Mode Voltage and Neutral-Point Voltage Fluctuation Suppression in Ten-Switch Three-Phase Three-Level Inverter Using Space-Vector Modulation. , 2021, , .		0
132	Monopolar Fault Reconfiguration of Bipolar Half Bridge Converter for Reliable Load Supply in DC Distribution System. IEEE Transactions on Power Electronics, 2022, 37, 11305-11318.	7.9	10
133	Low Voltage Ride Through Improvement of Machine Side and Grid Side Converters of PMSG-Wind Turbine Based on SMC. , 2022, , .		3
134	Fault Identification Method Based on Unified Inverse-Time Characteristic Equation for Distribution Network. SSRN Electronic Journal, 0, , .	0.4	0
135	Review of Model Predictive Control of Distributed Energy Resources in Microgrids. Symmetry, 2022, 14, 1735.	2.2	7
136	A Simple and Robust Model Predictive Current Control of PMSM Using Stator Current Predictor and Target-Oriented Cost Function. IEEE Access, 2022, 10, 100024-100032.	4.2	1
137	MPCâ€based DC microgrid integrated series active power filter for voltage quality improvement in distribution system. International Journal of Circuit Theory and Applications, 2023, 51, 1349-1371.	2.0	3
138	Fault identification method based on unified inverse-time characteristic equation for distribution network. International Journal of Electrical Power and Energy Systems, 2023, 146, 108734.	5.5	4
139	Performance Enhancement Using Robust Sliding Mode Approach-Based Current Control for PMVG-WECS. IEEE Transactions on Industrial Electronics, 2023, 70, 10156-10166.	7.9	5
140	Power Control Strategy for Hybrid System Using Three-Level Converters for an Insulated Micro-Grid System Application. Processes, 2022, 10, 2539.	2.8	2
141	Interturn Short Fault Detection and Location of Permanent Magnet Wind Generator Based on Negative Sequence Current Residuals. Energies, 2022, 15, 9441.	3.1	0
142	A Novel Continuous Control Set Model Predictive Control for <i>LC</i> -Filtered Three-Phase Four-Wire Three-Level Voltage-Source Inverter. IEEE Transactions on Power Electronics, 2023, 38, 4572-4584.	7.9	7
143	A Comprehensive Overview of Power Converter Applied in High-Power Wind Turbine: Key Challenges and Potential Solutions. IEEE Transactions on Power Electronics, 2023, 38, 6169-6195.	7.9	27
144	A Unidirectional Cascaded High-Power Wind Converter With Reduced Number of Active Devices. IEEE Access, 2023, 11, 10902-10911.	4.2	2
145	Model Predictive Control of Transformerless Series Custom Power Device for Voltage Quality Improvement. IETE Journal of Research, 0, , 1-12.	2.6	0
146	Comprehensive Predictive Control Model for a Three-Phase Four-Legged Inverter. Energies, 2023, 16, 2650.	3.1	3
147	Optimal allocation and energy management of a wind–hydrogen generation system equipped with the speed regulating differential mechanism. Journal of Renewable and Sustainable Energy, 2023, 15, .	2.0	1
148	Modulated FCS-MPC Based on Zero-Sequence Component Injection Algorithm and Vector Synthesis Algorithm With NPP Deviation Suppression. IEEE Transactions on Industrial Electronics, 2023, , 1-12.	7.9	0

#	Article	IF	CITATIONS
149	Implementation of Induction Motor Speed and Torque Control System with Reduced Order Model in ANSYS Twin Builder. Lecture Notes in Networks and Systems, 2023, , 514-531.	0.7	2
150	Journal of Control and Decision, 0, , 1-38.	1.6	0
151	Highly sensitive multifunction protection coordination scheme for improved reliability of power systems with distributed generation (PVs). IET Renewable Power Generation, 0, , .	3.1	2
152	Impact of Power Factors on Reliability of NPC inverter-Based PV Systems. , 2023, , .		0
154	Modeling of DC Traction Motor In Ansys RMXPRT. , 2023, , .		0
155	Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi, 0, , .	0.8	Ο
156	Performing Wind System with Rectifier with Near Sinusoidal Input Current. WSEAS Transactions on Power Systems, 2023, 18, 186-194.	0.4	2
157	Permanent Magnet Synchronous Generator Stabilization System with Induction Motor in ANSYS Twin Builder. Lecture Notes in Networks and Systems, 2023, , 258-270.	0.7	Ο
158	Wind Turbine Permanent Magnet Generator Speed Stabilization System in ANSYS Twin Builder. Lecture Notes in Networks and Systems, 2023, , 233-245.	0.7	0
159	High Voltage Ride Through Strategy for Full DC Wind Power Generation System Through DC Transmission. , 2023, , .		0