Atomic mechanism of the semiconducting-to-metallic p MoS2

Nature Nanotechnology 9, 391-396 DOI: 10.1038/nnano.2014.64

Citation Report

#	Article	IF	CITATIONS
4	Electrical Switching in Thin Film Structures Based on Molybdenum Oxides. Journal of Experimental Physics, 2014, 2014, 1-6.	1.1	14
5	Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano, 2014, 8, 12185-12198.	7.3	288
6	Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. Journal of Power Sources, 2014, 268, 279-286.	4.0	377
7	Ternary Culn ₇ Se ₁₁ : Towards Ultraâ€Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	11.1	43
8	A phase transition glides into view. Nature Nanotechnology, 2014, 9, 333-334.	15.6	10
9	Origin of the Phase Transition in Lithiated Molybdenum Disulfide. ACS Nano, 2014, 8, 11447-11453.	7.3	111
10	Polytype and Stacking Faults in the Li ₂ CoSiO ₄ Liâ€ion Battery Cathode. Chemistry - A European Journal, 2014, 20, 16210-16215.	1.7	5
11	Atomic-Scale Clarification of Structural Transition of MoS ₂ upon Sodium Intercalation. ACS Nano, 2014, 8, 11394-11400.	7.3	355
12	Intimate contacts. Nature Materials, 2014, 13, 1076-1078.	13.3	107
13	Ultrafast Electronic and Structural Response of Monolayer MoS ₂ under Intense Photoexcitation Conditions. ACS Nano, 2014, 8, 10734-10742.	7.3	49
14	Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials, 2014, 13, 1096-1101.	13.3	872
15	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	11.1	516
16	Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures. Nanotechnology, 2014, 25, 295701.	1.3	42
17	Mechanical properties of MoS2/graphene heterostructures. Applied Physics Letters, 2014, 105, .	1.5	135
18	Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research. Journal of Materials Research, 2015, 30, 3153-3176.	1.2	10
19	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	1.7	71
20	Hydrogenation-induced atomic stripes on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><<mml:mi>Hmathvariant="normal">MoS</mml:mi><mml:mn>2</mml:mn>surface. Physical Review B. 2015, 92.</mml:mrow></mml:math 	i> 1.1	ırow> <mml:r 32</mml:r
21	Structural, mechanical and electronic properties of in-plane 1T/2H phase interface of MoS2	0.6	37

heterostructures. AIP Advances, 2015, 5,

#		IF	CITATIONS
" 22	Metallic High-Angle Grain Boundaries in Monolayer Polycrystalline WS ₂ . Small, 2015, 11, 4503-4507.	5.2	43
23	Stable Metallic 1Tâ€WS ₂ Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties. Advanced Materials, 2015, 27, 4837-4844.	11.1	207
24	Atomic Defects in Two Dimensional Materials. Advanced Materials, 2015, 27, 5771-5777.	11.1	88
25	Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS ₂ : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small, 2015, 11, 5556-5564.	5.2	508
26	Solidâ€state reaction as a mechanism of 1 <scp>T</scp> ↔ 2 <scp>H</scp> transformation in <scp>M</scp> o <scp>S</scp> ₂ monolayers. Journal of Computational Chemistry, 2015, 36, 2131-2134.	1.5	12
27	Chemical Imaging as an Analytical Methodology. Comprehensive Analytical Chemistry, 2015, 69, 385-433.	0.7	0
28	Electrical Switching in Thin Film Structures Based on Transition Metal Oxides. Advances in Condensed Matter Physics, 2015, 2015, 1-26.	0.4	20
29	Secondary electron imaging of monolayer materials inside a transmission electron microscope. Applied Physics Letters, 2015, 107, 063105.	1.5	3
30	Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 2015, 114, 107601.	2.9	79
31	Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. Journal of Physical Chemistry C, 2015, 119, 13124-13128.	1.5	295
32	Phase stability and Raman vibration of the molybdenum ditelluride (MoTe ₂) monolayer. Physical Chemistry Chemical Physics, 2015, 17, 14866-14871.	1.3	104
33	1H and 1T polymorphs, structural transitions and anomalous properties of (Mo,W)(S,Se) ₂ monolayers: first-principles analysis. 2D Materials, 2015, 2, 035013.	2.0	49
34	Origin of Hybrid 1T- and 2H-WS ₂ Ultrathin Layers by Pulsed Laser Deposition. Journal of Physical Chemistry C, 2015, 119, 27496-27504.	1.5	50
35	Phase transitions and optical properties of the semiconducting and metallic phases of single-layer MoS2. Nanotechnology, 2015, 26, 435705.	1.3	13
36	Prediction of structural and metal-to-semiconductor phase transitions in nanoscale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2and other transition metal dichalcogenide zigzag ribbons. Physical Review B, 2015, 91</mml:mn></mml:msub></mml:mn></mml:msub></mml:math 	:mn>nn> <td>nl:ŋşub>l:msub></td>	nl:ŋşub>l:msub>
37	Ridges and valleys on charged 1T-MoS ₂ sheets guiding the packing of organic cations. RSC Advances, 2015, 5, 19206-19212.	1.7	17
38	Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 2015, 6, 6298.	5.8	358
39	<i>ï€-</i> plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy. Physical Review B, 2015, 91, .	1.1	67

#	Article	IF	CITATIONS
40	Plasmonic hot electron enhanced MoS ₂ photocatalysis in hydrogen evolution. Nanoscale, 2015, 7, 4482-4488.	2.8	169
41	Graphene versus MoS2: A short review. Frontiers of Physics, 2015, 10, 287-302.	2.4	176
42	MoS2 Quantum Dot: Effects of Passivation, Additional Layer, and h-BN Substrate on Its Stability and Electronic Properties. Journal of Physical Chemistry C, 2015, 119, 1565-1574.	1.5	24
43	Vacancy-Induced Ferromagnetism of MoS ₂ Nanosheets. Journal of the American Chemical Society, 2015, 137, 2622-2627.	6.6	659
44	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 7495-7514.	1.7	288
45	Enhancement of magnetism by structural phase transition in MoS2. Applied Physics Letters, 2015, 106, .	1.5	102
46	Dynamic Inâ \in Situ Experimentation on Nanomaterials at the Atomic Scale. Small, 2015, 11, 3247-3262.	5.2	36
47	Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA. Brazilian Journal of Physics, 2015, 45, 258-263.	0.7	1
48	Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews, 2015, 44, 7715-7736.	18.7	353
49	Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015, 349, 628-632.	6.0	557
50	Phase patterning for ohmic homojunction contact in MoTe ₂ . Science, 2015, 349, 625-628.	6.0	918
51	A first-principles examination of conducting monolayer 1T′-MX ₂ (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Physical Chemistry Chemical Physics, 2015, 17, 21702-21708.	1.3	117
52	Stabilization of 1T-MoS2 Sheets by Imidazolium Molecules in Self-Assembling Hetero-layered Nanocrystals. Langmuir, 2015, 31, 8953-8960.	1.6	34
53	Electron-Based Imaging Techniques. Comprehensive Analytical Chemistry, 2015, 69, 269-313.	0.7	1
54	Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS ₂ Crystals. Nano Letters, 2015, 15, 5081-5088.	4.5	174
55	Stable ScS2 nanostructures with tunable electronic and magnetic properties. Solid State Communications, 2015, 220, 12-16.	0.9	12
56	Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific Reports, 2015, 5, 10440.	1.6	49
57	Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer. ACS Nano, 2015, 9, 5189-5197.	7.3	167

#	Article	IF	CITATIONS
58	Bandgap Widening of Phase Quilted, 2D MoS ₂ by Oxidative Intercalation. Advanced Materials, 2015, 27, 3152-3158.	11.1	76
59	The electronic properties tuned by the phase transition between the semiconducting and metallic phase of monolayer MoS ₂ /WS ₂ . Phase Transitions, 2015, 88, 726-734.	0.6	2
60	Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015, 44, 2702-2712.	18.7	915
61	New metallic quasi-two-dimensional structures of graphene and molybdenum disulfide layers with embedded rhenium atoms. JETP Letters, 2015, 101, 103-107.	0.4	2
62	New Strategy for the Growth of Complex Heterostructures Based on Different 2D Materials. Chemistry of Materials, 2015, 27, 4105-4113.	3.2	32
63	Fine tunable aqueous solution synthesis of textured flexible SnS2 thin films and nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 9282-9287.	1.3	9
64	Two-dimensional materials under electron irradiation. MRS Bulletin, 2015, 40, 29-37.	1.7	54
65	Bandgap opening in few-layered monoclinic MoTe2. Nature Physics, 2015, 11, 482-486.	6.5	800
66	Stabilization and Band-Gap Tuning of the 1T-MoS ₂ Monolayer by Covalent Functionalization. Chemistry of Materials, 2015, 27, 3743-3748.	3.2	297
67	Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nature Communications, 2015, 6, 6736.	5.8	179
68	Structural Transitions in Monolayer MoS ₂ by Lithium Adsorption. Journal of Physical Chemistry C, 2015, 119, 10602-10609.	1.5	109
69	Strain effects on thermoelectric properties of two-dimensional materials. Mechanics of Materials, 2015, 91, 382-398.	1.7	137
70	Two-Dimensional Metal Dichalcogenides and Oxides for Hydrogen Evolution: A Computational Screening Approach. Journal of Physical Chemistry Letters, 2015, 6, 1577-1585.	2.1	75
71	Single-Layer ReS ₂ : Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. ACS Nano, 2015, 9, 11249-11257.	7.3	353
72	Polar discontinuities and 1D interfaces in monolayered materials. Progress in Surface Science, 2015, 90, 444-463.	3.8	18
73	Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS ₂ . ACS Nano, 2015, 9, 11296-11301.	7.3	167
74	MoS2 decoration by Mo-atoms and the MoS2–Mo–graphene heterostructure: a theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 28770-28773.	1.3	12
75	Characterization of Graphene and Transition Metal Dichalcogenide at the Atomic Scale. Journal of the Physical Society of Japan, 2015, 84, 121005.	0.7	6

#	Article	IF	Citations
76	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	7.3	2,069
77	Optimal electron irradiation as a tool for functionalization of MoS2: Theoretical and experimental investigation. Journal of Applied Physics, 2015, 117, .	1.1	22
78	First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Physical Review B, 2015, 91, .	1.1	127
79	Tuning the opto-electronic properties of MoS ₂ layer using charge transfer interactions: effect of different donor molecules. Materials Research Express, 2015, 2, 085003.	0.8	3
80	Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1, e1500259.	4.7	427
81	Beneficial effect of Re doping on the electrochemical HER activity of MoS ₂ fullerenes. Dalton Transactions, 2015, 44, 16399-16404.	1.6	66
82	Atomic Visualization of the Phase Transition in Highly Strained BiFeO3 Thin Films with Excellent Pyroelectric Response. Nano Energy, 2015, 17, 72-81.	8.2	19
83	Metal–insulator crossover in multilayered MoS ₂ . Nanoscale, 2015, 7, 15127-15133.	2.8	17
84	Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Applied Surface Science, 2015, 359, 130-136.	3.1	120
85	Stacking-Dependent Interlayer Coupling in Trilayer MoS ₂ with Broken Inversion Symmetry. Nano Letters, 2015, 15, 8155-8161.	4.5	141
86	Electrical contacts to two-dimensional semiconductors. Nature Materials, 2015, 14, 1195-1205.	13.3	1,318
87	<i>In Situ</i> TEM Characterization of Shear-Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide. ACS Nano, 2015, 9, 1543-1551.	7.3	93
88	Low Voltage Transmission Electron Microscopy of Graphene. Small, 2015, 11, 515-542.	5.2	54
89	Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Accounts of Chemical Research, 2015, 48, 91-99.	7.6	149
90	Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015, 15, 410-415.	4.5	285
91	Modulating the phase transition between metallic and semiconducting single-layer MoS ₂ and WS ₂ through size effects. Physical Chemistry Chemical Physics, 2015, 17, 1099-1105.	1.3	38
92	Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015, 48, 56-64.	7.6	1,089
93	A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Research, 2015, 8, 1348-1356.	5.8	116

ION RE

#	Article	IF	CITATIONS
94	Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chemical Society Reviews, 2015, 44, 637-646.	18.7	302
95	Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research, 2015, 8, 175-183.	5.8	331
96	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1502161.	10.2	444
97	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> _x Mo <i>_x</i> S _{1â€} <i>_x</i> S ₂ Nanosheets with Highâ€Concentration Metallic 1T Phase. Small. 2016. 12, 1866-1874.	5.2	126
98	Dumbbell silicene: a strain-induced room temperature quantum spin Hall insulator. New Journal of Physics, 2016, 18, 043001.	1.2	24
99	Structural Phase Transition Effect on Resistive Switching Behavior of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites Films for Flexible Memory Devices. Small, 2016, 12, 2077-2084.	5.2	98
100	Metallic VS ₂ Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching. ACS Applied Materials & Interfaces, 2016, 8, 18754-18762.	4.0	155
101	Mechanically-induced reverse phase transformation of MoS ₂ from stable 2H to metastable 1T and its memristive behavior. RSC Advances, 2016, 6, 65691-65697.	1.7	63
102	Designing in-plane heterostructures of quantum spin Hall insulators from first principles: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1 </mml:mn> <mml:msup> <mml:m mathvariant="normal">T </mml:m </mml:msup></mml:mrow> <mml:mo>′ </mml:mo> <mml:mo>â^² with adsorbates. Physical Review B, 2016, 94, .</mml:mo></mml:math 	nrow> <mr >><mml:m< td=""><td>nl:mi suB><mml:m< td=""></mml:m<></td></mml:m<></mr 	nl:mi suB> <mml:m< td=""></mml:m<>
103	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	1.6	93
104	Electron beam-formed ferromagnetic defects on MoS2 surface along 1 T phase transition. Scientific Reports, 2016, 6, 38730.	1.6	29
105	Investigation of electron irradiation-induced magnetism in layered MoS2 single crystals. Applied Physics Letters, 2016, 109, .	1.5	23
106	Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Materials, 2016, 8, e321-e321.	3.8	109
107	Atomistic modeling of the metallic-to-semiconducting phase boundaries in monolayer MoS2. Applied Physics Letters, 2016, 108, .	1.5	36
108	Phase engineering of MoS ₂ through GaN/AlN substrate coupling and electron doping. Physical Chemistry Chemical Physics, 2016, 18, 33351-33356.	1.3	14
109	Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded. Journal of Applied Physics, 2016, 120, 064305.	1.1	10
110	Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains. Journal of Chemical Physics, 2016, 145, 084704.	1.2	13
111	Two-dimensional transistors based on MoS <inf>2</inf> lateral heterostructures. , 2016, , .		2

ARTICLE IF CITATIONS # Controlled Exfoliation of MoS₂ Crystals into Trilayer Nanosheets. Journal of the 112 207 6.6 American Chemical Society, 2016, 138, 5143-5149. Pressure evolution of the potential barriers of phase transition of MoS₂, MoSe₂ and MoTe₂. Physical Chemistry Chemical Physics, 2016, 18, 12080-12085. 1.3 38 Discrete Chromatic Aberrations Arising from Photoinduced Electron-Photon Interactions in 114 1.1 4 Ultrafast Electron Microscopy. Journal of Physical Chemistry A, 2016, 120, 3539-3546. Flexible, transparent and ultra-broadband photodetector based on large-area WSe₂film 254 for wearable devices. Nanotechnology, 2016, 27, 225501. Recent developments in the synthesis of nanostructured chalcopyrite materials and their 116 1.7 47 applications: a review. RSC Advances, 2016, 6, 60643-60656. Structural, optical and compositional stability of MoS ₂ multi-layer flakes under high dose electron beam irradiation. 2D Materials, 2016, 3, 025024. Low-dimensional ScO₂with tunable electronic and magnetic properties: first-principles 118 0.7 1 studies. Journal of Physics Condensed Matter, 2016, 28, 015004. Bandgap Transition of 2H Transition Metal Dichalcogenides: Predictive Tuning via Inherent Interface 1.5 Coupling and Strain. Journal of Physical Chemistry C, 2016, 120, 8927-8935. On the vertical stacking in semiconducting WSe₂ bilayers. Materials Science and 120 0.8 3 Technology, 2016, 32, 226-231. Gate-Tunable Atomically Thin Lateral MoS₂ Schottky Junction Patterned by Electron Beam. 4.5 99 Nano Letters, 2016, 16, 3788-3794. Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS₂. ACS Nano, 122 7.3161 2016, 10, 5419-5430. Coincidence Lattices of 2D Crystals: Heterostructure Predictions and Applications. Journal of Physical Chemistry C, 2016, 120, 10895-10908. 1.5 Tailoring photoluminescence of monolayer transition metal dichalcogenides. Current Applied 124 1.1 34 Physics, 2016, 16, 1159-1174. In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS₂ Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catalysis, 2016, 6, 5.5 6723-6729. The possible formation of a magnetic FeS2 phase in the two-dimensional MoS2 matrix. Physical 126 1.3 1 Chemistry Chemical Physics, 2016, 18, 26956-26959. Absorption dichroism of monolayer 1Tâ€²-MoTe ₂ in visible range. 2D Materials, 2016, 3, 031010. 127 Two-dimensional van der Waals nanosheet devices for future electronics and photonics. Nano Today, 128 6.2 71 2016, 11, 626-643. Electron-Beam-Induced Antiphase Boundary Reconstructions in a ZrO₂-LSMO Pillar-Matrix 129 System. ACS Applied Materials & amp; Interfaces, 2016, 8, 24177-24185.

#	Article	IF	CITATIONS
130	Electronic excitation-induced semiconductor-to-metal transition in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoTe</mml:mi><mml:mn>2Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	1ml:m1n> <td>nml#8sub></td>	nml #8 sub>
131	Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Roomâ€Temperature Lasing. Advanced Science, 2016, 3, 1600137.	5.6	121
132	Epitaxial growth of two-dimensional SnSe ₂ /MoS ₂ misfit heterostructures. Journal of Materials Chemistry C, 2016, 4, 10215-10222.	2.7	33
133	Controllable growth and characterizations of hybrid spiral-like atomically thin molybdenum disulfide. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 378-383.	1.3	6
134	Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS ₂ Transistors. ACS Nano, 2016, 10, 9730-9737.	7.3	26
135	Disulfide-Bridged (Mo ₃ S ₁₁) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery. Nano Letters, 2016, 16, 5829-5835.	4.5	57
136	Mechanical response of all-MoS ₂ single-layer heterostructures: a ReaxFF investigation. Physical Chemistry Chemical Physics, 2016, 18, 23695-23701.	1.3	67
137	Rational design and synthesis of 3D MoS2 hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage. Electrochimica Acta, 2016, 211, 1048-1055.	2.6	24
138	Reductive exfoliation of substoichiometric MoS ₂ bilayers using hydrazine salts. Nanoscale, 2016, 8, 15252-15261.	2.8	24
139	Structure and Physico-Chemical Properties of Single Layer and Few-Layer TMDCs. Springer Series in Materials Science, 2016, , 109-163.	0.4	Ο
140	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie, 2016, 128, 12653-12657.	1.6	233
141	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 12465-12469.	7.2	356
142	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS ₂ nanosheets. Nanoscale, 2016, 8, 16276-16283.	2.8	62
143	Direct Synthesis of Carbon–Molybdenum Carbide Nanosheet Composites via a Pseudotopotactic Solid-State Reaction. Chemistry of Materials, 2016, 28, 8899-8904.	3.2	7
144	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	1.6	101
145	Electronic Transport along Hybrid MoS ₂ Monolayers. Journal of Physical Chemistry C, 2016, 120, 23389-23396.	1.5	14
146	Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochimica Acta, 2016, 217, 1-8.	2.6	37
147	Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano,	7.3	216

#	Article	IF	CITATIONS
148	Peculiar half-metallic state in zigzag nanoribbons of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Spin filtering. Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	:m n.ı <td>າl:ເສຂub></td>	າ l:ເສຂ ub>
149	Spin- and valley-polarized transport across line defects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	:m a.ı <td>າl:ເສຣub><!--ເກເ</td--></td>	າ l:ເສຣ ub> ເກເ</td
150	Modulation of opto-electronic properties of InSe thin layers via phase transformation. RSC Advances, 2016, 6, 70452-70459.	1.7	17
151	Stability and magnetism of strongly correlated single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VS</mml:mi><mml:mn>2Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	ın xı s ‡mml:	ന ച്ചാ ര>
152	MoS ₂ Field-Effect Transistor with Sub-10 nm Channel Length. Nano Letters, 2016, 16, 7798-7806.	4.5	389
153	Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide. Scientific Reports, 2016, 6, 26666.	1.6	71
154	The electronic structure and spin states of 2D graphene/VX ₂ (X = S, Se) heterostructures. Physical Chemistry Chemical Physics, 2016, 18, 33047-33052.	1.3	49
155	Predicted low thermal conductivities in antimony films and the role of chemical functionalization. Physical Chemistry Chemical Physics, 2016, 18, 30061-30067.	1.3	25
156	Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Scientific Reports, 2016, 6, 20890.	1.6	64
157	Superconductivity in Weyl semimetal candidate MoTe2. Nature Communications, 2016, 7, 11038.	5.8	611
158	Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS ₂ Monolayers by Electron Diffraction. ACS Nano, 2016, 10, 10308-10316.	7.3	21
159	Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS ₂ . ACS Nano, 2016, 10, 10227-10236.	7.3	96
160	Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoS _{<i>x</i>}) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H ⁺ Reduction. ACS Catalysis, 2016, 6, 7790-7798.	5.5	210
161	Phase crossover in transition metal dichalcogenide nanoclusters. Nanoscale, 2016, 8, 19154-19160.	2.8	8
162	Two-dimensional hexagonal semiconductors beyond graphene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 043001.	0.7	19
163	Electron-Beam-Induced Antiphase Boundary Reconstructions in ZrO2- La2/3Sr1/3MnO3 Pillar- Matrix Structures. Microscopy and Microanalysis, 2016, 22, 1824-1825.	0.2	0
164	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	8.2	710
165	Emerging opportunities in the two-dimensional chalcogenide systems and architecture. Current Opinion in Solid State and Materials Science, 2016, 20, 374-387.	5.6	29

#	Article	IF	CITATIONS
166	Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. Nano Letters, 2016, 16, 4410-4416.	4.5	109
167	Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe. 2D Materials, 2016, 3, 025019.	2.0	56
168	Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Research, 2016, 9, 2662-2671.	5.8	26
169	Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus. Nano Letters, 2016, 16, 1317-1322.	4.5	37
170	Enhanced Catalytic Activities of Surfactant-Assisted Exfoliated WS ₂ Nanodots for Hydrogen Evolution. ACS Nano, 2016, 10, 2159-2166.	7.3	269
171	Intercalated 2D MoS ₂ Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016, 120, 2447-2455.	1.5	61
172	Defects Engineered Monolayer MoS ₂ for Improved Hydrogen Evolution Reaction. Nano Letters, 2016, 16, 1097-1103.	4.5	1,015
173	Controlling phase transition for single-layer MTe ₂ (M = Mo and W): modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 2016, 18, 4086-4094.	1.3	105
174	Biosensors Based on Two-Dimensional MoS ₂ . ACS Sensors, 2016, 1, 5-16.	4.0	310
175	Reversible 2D Phase Transition Driven By an Electric Field: Visualization and Control on the Atomic Scale. Nano Letters, 2016, 16, 528-533.	4.5	10
176	Structural Phase Transitions by Design in Monolayer Alloys. ACS Nano, 2016, 10, 289-297.	7.3	109
177	Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production. ACS Nano, 2016, 10, 624-632.	7.3	109
178	Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12.	1.4	12
179	Phase-driven magneto-electrical characteristics of single-layer MoS ₂ . Nanoscale, 2016, 8, 5627-5633.	2.8	26
180	Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nature Communications, 2016, 7, 10671.	5.8	318
181	Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nature Communications, 2016, 7, 10672.	5.8	721
182	Metallic 1T-Li _{<i>x</i>} MoS ₂ Cocatalyst Significantly Enhanced the Photocatalytic H ₂ Evolution over Cd _{0.5} Zn _{0.5} S Nanocrystals under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 4023-4030.	4.0	59
183	Phase Transition of MoS ₂ Bilayer Structures. Journal of Physical Chemistry C, 2016, 120, 3776-3780.	1.5	33

#	Article	IF	CITATIONS
184	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	15.6	532
185	One-Step Synthesis of MoS ₂ /WS ₂ Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. ACS Nano, 2016, 10, 2004-2009.	7.3	164
186	CO ₂ -Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS ₂ Nanosheets. ACS Nano, 2016, 10, 2903-2909.	7.3	243
187	Synthesis, doping and properties of two-dimensional materials. Proceedings of SPIE, 2016, , .	0.8	Ο
188	Periodic Modulation of the Doping Level in Striped MoS ₂ Superstructures. ACS Nano, 2016, 10, 3461-3468.	7.3	37
189	Dynamic Structural Evolution of Metal–Metal Bonding Network in Monolayer WS ₂ . Chemistry of Materials, 2016, 28, 2308-2314.	3.2	37
190	Room Temperature Semiconductor–Metal Transition of MoTe ₂ Thin Films Engineered by Strain. Nano Letters, 2016, 16, 188-193.	4.5	415
191	Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of Metastable Wurtzite-Type CoS and MnS. Journal of the American Chemical Society, 2016, 138, 471-474.	6.6	110
192	The capacity fading mechanism and improvement of cycling stability in MoS ₂ -based anode materials for lithium-ion batteries. Nanoscale, 2016, 8, 2918-2926.	2.8	168
193	Two-Dimensional Rectangular and Honeycomb Lattices of NbN: Emergence of Piezoelectric and Photocatalytic Properties at Nanoscale. Nano Letters, 2016, 16, 126-131.	4.5	56
194	Predicting a new phase (T′′) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale, 2016, 8, 4969-4975.	2.8	50
195	Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chemical Society Reviews, 2016, 45, 118-151.	18.7	423
196	Superconductivity in Potassium-Doped Metallic Polymorphs of MoS ₂ . Nano Letters, 2016, 16, 629-636.	4.5	129
197	MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon, 2016, 98, 84-89.	5.4	89
198	ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS ₂). Journal of Physical Chemistry Letters, 2017, 8, 631-640.	2.1	126
199	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	4.0	98
200	Two-dimensional Mo(SCN) ₂ : a novel MoS ₂ -variant. Journal of Physics Condensed Matter, 2017, 29, 085702.	0.7	4
201	Energetics and kinetics of phase transition between a 2H and a 1T MoS ₂ monolayer—a theoretical study. Nanoscale, 2017, 9, 2301-2309.	2.8	59

#	Article	IF	CITATIONS
202	Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017, 20, 116-130.	8.3	1,852
203	Molybdenum diselenide (MoSe 2) for energy storage, catalysis, and optoelectronics. Applied Materials Today, 2017, 8, 1-17.	2.3	316
204	Cracked monolayer 1T MoS ₂ with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 718-724.	2.1	83
205	Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide. Chemistry of Materials, 2017, 29, 1006-1013.	3.2	32
206	Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2. Scientific Reports, 2017, 7, 40559.	1.6	32
207	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
208	Chemical Stabilization of 1T′ Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. Journal of the American Chemical Society, 2017, 139, 2504-2511.	6.6	171
209	First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS ₂ . Journal of Physics Condensed Matter, 2017, 29, 095702.	0.7	14
210	A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters, 2017, 13, 42-77.	2.0	920
211	Supercritical CO ₂ â€Assisted Reverseâ€Micelleâ€Induced Solutionâ€Phase Fabrication of Twoâ€Dimensional Metallic 1Tâ€MoS ₂ and 1Tâ€WS ₂ . ChemNanoMat, 2017, 3, 466-47	71 ^{1.5}	43
212	Atomic Defects and Doping of Monolayer NbSe ₂ . ACS Nano, 2017, 11, 2894-2904.	7.3	63
213	Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 11053-11077.	3.8	613
214	Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers. Nano Letters, 2017, 17, 2473-2481.	4.5	41
215	Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys. Journal of Applied Physics, 2017, 121, 105101.	1.1	15
216	Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe ₂ . 2D Materials, 2017, 4, 024004.	2.0	32
217	Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials, 2017, 29, 2191-2201.	3.2	244
218	Electronic properties of 1Tâ€MoS ₂ nanoribbon and its homojunction nanoribbon. Physica Status Solidi (B): Basic Research, 2017, 254, 1600728.	0.7	3
219	Tellurization Velocity-Dependent Metallic–Semiconducting–Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe ₂ . ACS Nano, 2017, 11, 1964-1972.	7.3	96

#	Article	IF	CITATIONS
220	Multiscale modelling of heat conduction in all-MoS ₂ single-layer heterostructures. RSC Advances, 2017, 7, 11135-11141.	1.7	19
221	Two-Dimensional Topological Insulators: Progress and Prospects. Journal of Physical Chemistry Letters, 2017, 8, 1905-1919.	2.1	170
222	Photoresponse in gate-tunable atomically thin lateral MoS2 Schottky junction patterned by electron beam. Applied Physics Letters, 2017, 110, .	1.5	6
223	MoS ₂ edges and heterophase interfaces: energy, structure and phase engineering. 2D Materials, 2017, 4, 025080.	2.0	16
224	The modulation mechanism of growth atmosphere on composition and phase transition behavior in barium calcium titanate crystal. Crystal Research and Technology, 2017, 52, 1700009.	0.6	0
225	An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions. Journal Physics D: Applied Physics, 2017, 50, 215102.	1.3	8
226	Long-Range Lattice Engineering of MoTe ₂ by a 2D Electride. Nano Letters, 2017, 17, 3363-3368.	4.5	72
227	Electronic and transport properties of 2H 1â^'x 1T x MoS 2 hybrid structure: A first-principle study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 178-184.	1.3	7
228	Atomic structure and formation mechanism of sub-nanometer pores in 2D monolayer MoS ₂ . Nanoscale, 2017, 9, 6417-6426.	2.8	54
229	Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo ₂ C with sharp interface by electron beam irradiation. Nanoscale, 2017, 9, 7501-7507.	2.8	28
230	Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408.	1.7	31
231	Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS ₂ under an Electron Beam: Insights from First-Principles Calculations. Journal of Physical Chemistry Letters, 2017, 8, 3061-3067.	2.1	81
232	The Mechanistic Insights into the 2Hâ€IT Phase Transition of MoS ₂ upon Alkali Metal Intercalation: From the Study of Dynamic Sodiation Processes of MoS ₂ Nanosheets. Advanced Materials Interfaces, 2017, 4, 1700171.	1.9	65
233	Prediction of T―and Hâ€Phase Twoâ€Dimensional Transitionâ€Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem, 2017, 18, 1897-1902.	1.0	30
234	Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide. Nanoscale, 2017, 9, 10312-10320.	2.8	18
235	Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials. Small, 2017, 13, 1604298.	5.2	65
236	Phase-transformation engineering in MoS 2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. Journal of Alloys and Compounds, 2017, 716, 112-118.	2.8	66
237	Field-Effect Tuned Adsorption Dynamics of VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 2017, 17, 4109-4115.	4.5	134

#	Article	IF	CITATIONS
238	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
239	Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide. Nano Letters, 2017, 17, 3383-3390.	4.5	34
240	Exfoliated MoS ₂ and MoSe ₂ Nanosheets by a Supercritical Fluid Process for a Hybrid Mg–Li-Ion Battery. ACS Omega, 2017, 2, 2360-2367.	1.6	64
241	Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides. Nature Communications, 2017, 8, 15224.	5.8	130
242	MoS ₂ heterostructure with tunable phase stability: strain induced interlayer covalent bond formation. Nanoscale, 2017, 9, 8126-8132.	2.8	29
243	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	2.3	212
244	Electronic and optical properties of nanostructured MoS ₂ materials: influence of reduced spatial dimensions and edge effects. Physical Chemistry Chemical Physics, 2017, 19, 15891-15902.	1.3	25
245	Electronic and transport properties of heterophase compounds based on MoS2. JETP Letters, 2017, 105, 250-254.	0.4	9
246	Intrinsically patterned two-dimensional materials for selective adsorption of molecules andÂnanoclusters. Nature Materials, 2017, 16, 717-721.	13.3	150
247	Engineering the Electronic Properties of Twoâ€Đimensional Transition Metal Dichalcogenides by Introducing Mirror Twin Boundaries. Advanced Electronic Materials, 2017, 3, 1600468.	2.6	85
248	Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS ₂ in stable aqueous suspension. Nanoscale, 2017, 9, 5398-5403.	2.8	36
249	Anisotropic transport in 1T′ monolayer MoS ₂ and its metal interfaces. Physical Chemistry Chemical Physics, 2017, 19, 10453-10461.	1.3	18
250	Asymmetric Junctions in Metallic–Semiconducting–Metallic Heterophase MoS ₂ . IEEE Transactions on Electron Devices, 2017, 64, 2457-2460.	1.6	17
251	Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 4611-4626.	1.8	103
252	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
253	Highly thermal-stable paramagnetism by rolling up MoS ₂ nanosheets. Nanoscale, 2017, 9, 503-508.	2.8	32
254	Doping, Contact and Interface Engineering of Twoâ€Dimensional Layered Transition Metal Dichalcogenides Transistors. Advanced Functional Materials, 2017, 27, 1603484.	7.8	191
255	Electric field controlled CO ₂ capture and CO ₂ /N ₂ separation on MoS ₂ monolayers. Nanoscale, 2017, 9, 19-24.	2.8	78

• Amrice IF CREATION 200 Evaluation of a high local strain in rolling up MoS caub.24 sub.34berts decorated with Ag and Au anoparticles for surface enhanced Rama scattering. Nanotechnology, 2017, 28, 025603. 3.0 3.0 201 Extremic properties of layered phospherus heterostructures. Physical Chemistry Chemical Physics. 0.0 0 202 Extremic properties of layered phospherus heterostructures. Physical Chemistry Chemical Physics. 0.0 0 203 Extremic properties of layered phospherus heterostructures. Physical Chemistry Chemical Physics. 0.0 0 204 Decoration of superconductivity in 1562-MoS caub.24 (sub.) nanosheets. Journal of Materials. Chemistry 0.1 0.0 0 205 Observation of superconductivity in 1562-MoS caub.24 (sub.) nanosheets. Journal of Materials. Chemistry 0.1 0.0 0 204 Photorential Syste occupation in nanostation Chemistry of Materials. 2017, 29, 9007 9914. 0.0 0 205 Photorential Syste occupation in nanostatic photophory. 2017, 11, 1162-11188. 0 0 0 206 Redoction functional of Applied Physics. 2017, 21, 11662-11188. 0.1 0 0 0 0 205 Redoction functional of Applied Physics. 2017, 22, 1100075. 0.1 0 0				
226 Evolution of a high local strain in rolling up MSS csub 2 (sub sheets decorred with Ag and Au 1.3 34 227 Evolution of a high local strain in colling up MSS csub 2 (sub sheets decorred with Ag and Au 1.3 10 228 Evolution of a high local strain in colling up MSS csub 2 (sub sheets decorred with Ag and Au 1.3 10 228 Evolution of a high local strain in colling up MSS csub 2 (sub sheets decorred whater, 2017, 0, 0, 7 0, 7 0 229 NameVeloc: theory of Gaided Folding in Atomically Ihin Sheets with Regions of Complementary 1.3 8 200 Observation of superconductivity in 114C-MSS csub 2 (sub shandsheets, lournal of Materials Chemistry 2.7 7 201 Nanoscale Phase Engineering of Nobum Disclendic. Chemistry of Materials, 2017, 29, 9907-9914. 3.2 33 202 Netropositis and Vaconcy Clustering in the Structural and Optical Properties of rank amaz, 2017, 11, 1122-11168. 3.3 33 203 Research Express, 2017, 9, 1122-11168. 1.3 9.1 1.3 7 204 Research Express, 2017, 4, 1152-11168. Compressive strain induced dynamical stability of monolayer 114402 (MateRsa 6%-5%-5%-5%-6%-6%-6%-6%, 4%, 4%, 4%, 4%, 4%, 4%, 4%, 4%, 4%, 4	#	Article	IF	CITATIONS
227 Electronic properties of layered phosphorus hiererostructures. Physical Chemistry Chemical Physics. 1.3 10 238 Zyo, differential Ube and seleno cyanates of Mo and W. Journal of Physics Condensed Matter, 2017, do 0 0 239 NondWictor: Theory of Cataled Folding in Atomically Thin Sheets with Regions of Complementary 4.5 8 240 Observation of superconductivity in TracP-MoS scubb 2 (subb nanosheets. Journal of Materials Chemistry 2.7 77 241 Nanoscale Phase Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 99079914. 8.2 83 242 Weresulty Lyclus Theory 2017, 11, 1102-11105. 3.3 33 243 Research Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 99079914. 8.2 8.3 244 Research Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 99079914. 8.4 1.0 245 Research Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 99079914. 8.4 1.0 246 Research Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 99079914. 8.4 1.0 1.0 247 Research Engineering of Nobum Diselenide. Chemistry of Materials, 2017, 29, 1000754. 8.4 1.0 1.0 1.0 1.0 1.0 <	256	Evolution of a high local strain in rolling up MoS ₂ sheets decorated with Ag and Au nanoparticles for surface-enhanced Raman scattering. Nanotechnology, 2017, 28, 025603.	1.3	38
238 Zwo-dimensional thio- and seleno-cyanates of Mo and W. Journal of Physics Condensed Matter, 2017, 0, 0 0, 0 239 Mana Webra: Theory of Childed Endding in Atomically Thin Sheets with Regions of Complementary 4.5 8 240 Observation of superconductivity in 1362-MoS (sub> 2 (sub) nanosheets. Journal of Materials Chemistry 2.7 77 241 Nanoscale Phase Engineering of Nieblum Discleride. Chemistry of Materials, 2017, 29, 9907-9914. 3.2 3.3 242 Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of 7.3 3.3 243 Referential SiSe occupation in an anisotropic ReS (sub) 2(13"x) (sub) Sec (sub) 2x/sub). XACS Mano, 2017, 11, 11162-11168. 1.0 244 Compressive strain induced dynamical stability of monolayer 1T-MX2 (MacKwa@Kwa=BcKwa@CMacWwb, W; X&@Cwa@CWa=BcKwa@Kwa=BcKwa@Kwa=BcKwa@CWa=BcKwa@Kwa=BcK	257	Electronic properties of layered phosphorus heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 1229-1235.	1.3	10
259 NanoVelero: Theory of Guided Folding in Atomically Thin Sheets with Regions of Complementary 4.5 8 260 Observation of superconductivity in T3E ²⁻² MoS (sub> 2 (slub> nanosheets. Journal of Materials Chemistry 2.7 77 261 Nanoscale Phase Engineering of Nuobum Diselenide. Chemistry of Materials, 2017, 29, 9907-9914. 8.2 83 262 Interpley Detween Cr. Dopants and Vacancy Clustering in the Structural and Optical Properties of 7.3 83 263 Preferential SSe occupation in an anteotropic ReScub> 2(13 ⁺ x) (slub>Se (sub> 2x-(sub>monolayer alloy). 2.8 10 264 Research Express, 2017, 4, 115018. 10 10 10 265 Reb Doping in 2D Transition Metal Dichalogenides as a New Route to Tailor Structural Phases and 11.1 191 10 266 Reb Doping in 2D Transition Metal Dichalogenides as a New Route to Tailor Structural Phases and 11.1 191 10 267 Repressive strain induced dynamical stability of monolayer 11-MX2 (MaCWa3CWa4CWa4CWa4CWa4CWa4CWa4CWa4CWa4CWa4CWa4	258	Two-dimensional thio- and seleno-cyanates of Mo and W. Journal of Physics Condensed Matter, 2017, 29, 485703.	0.7	0
260 Observation of superconductivity in T14C-MoS < sub>2 (sub> nanosheets. Journal of Materials Chemistry 2,7 77 261 Nanoscale Phase Engineering of Niobium Diselenide. Chemistry of Materials, 2017, 29, 9907-9914. 3.2 33 262 Interplay Between Cr. Dopants and Vacancy. Clustering in the Structural and Optical Properties of 7.3 33 33 263 Preferential Syste occupation in an anisotropic Rescubs 2(1a ⁺ x) (sub> Secsub> 2x (sub> monolayer alloy. 2.8 10 264 Compressive strain induced dynamical stability of monolayer 1T-MX2 (Mat&sat&sat&sat, NW, Xat&sat&sat&sat, Secsub 2(3a ⁺ x), 15015. 10 11 101 266 Re Doping in 2D Transition Metal Dichologonides as a New Route to Tallor Structural Phases and 11.1 101 11 101 267 Question disulfide. Journal of Applied Physics, 2017, 122, . 1.1 7 1.1 7 268 Rouping in 2D Transition Metal Dichologonides as a New Route to Tallor Structural Phases and 11.1 101 11 101 269 Kructural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 55.5 13.7 548 269 Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 55.5 13.7 548 260 Structural	259	NanoVelcro: Theory of Guided Folding in Atomically Thin Sheets with Regions of Complementary Doping. Nano Letters, 2017, 17, 6708-6714.	4.5	8
251 Nanoscale Phase Engineering of Noblum Diselenide. Chemistry of Materials, 2017, 29, 9907-9914. 3.2 33 252 Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of Wsecsub>2 7.3 33 253 Preferential SISe occupation in an anisotropic ReS _{2(15'x) (sub>2x 2.8 10 254 Compressive strain induced dynamical stability of monolayer 11-MX2 (Ma&sa&&sa<twassessessessessessessessessessessessesse< td=""><td>260</td><td>Observation of superconductivity in 1T′-MoS₂nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.</td><td>2.7</td><td>77</td></twassessessessessessessessessessessessesse<>}	260	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	2.7	77
262Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of WSecsub>2c (sub>: ACS Nano, 2017, 11, 11162:11168.7.333263Preferential S/Se occupation in an anisotropic ReS _{2(1a"x) (/sub>Secsub>2x.(sub> monolayer alloy. Nanoscale, 2017, 9, 18275-18280.2.810264Compressive strain induced dynamical stability of monolayer 11-MX2 (Mac%aac%a=ac%aac%ac%a, W; Xac%aac%a=ac%aac%ac%ac%ac%ac%ac%ac%ac%ac%ac%ac%ac%}	261	Nanoscale Phase Engineering of Niobium Diselenide. Chemistry of Materials, 2017, 29, 9907-9914.	3.2	33
263 Preferential S/Se occupation in an anisotropic ReS (sub>2(1a"x) (/sub>Secsub>2x.(sub>monolayer alloy. 2.8 10 264 Compressive strain induced dynamical stability of monolayer IT-MX2 (MaC%a36%a=á6%a36%am, W; X36%a36%a=á5%a36%a5%a5%a5%a5%a5%a5%a5%a5%a5%a5%a5%a5%a5%	262	Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of WSe ₂ . ACS Nano, 2017, 11, 11162-11168.	7.3	33
264Compressive strain induced dynamical stability of monolayer 1T-MX2 (Mဉaê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰aê‰	263	Preferential S/Se occupation in an anisotropic ReS _{2(1â^'x)} Se _{2x} monolayer alloy. Nanoscale, 2017, 9, 18275-18280.	2.8	10
265Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism. Advanced Materials, 2017, 29, 1703754.1.1191266Crystal orientation-dependent mechanical property and structural phase transition of monolayer molybdenum disulfide. Journal of Applied Physics, 2017, 122, .1.17267Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate. Npi Computational Materials, 2017, 3, .3.510268Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.13.7548269Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.11.1107270Doping-controlled phase transitions in single-layer <mml:math </mml:math Mysical Review B, 2017, 96, .5.261271Hierarchical 1T-MoS ₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.2.034272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001. 	264	Compressive strain induced dynamical stability of monolayer 1T-MX2 (M  =  Mo, W; X â€ Research Express, 2017, 4, 115018.	‰= â 0.8	€‰Ş, Se). Ma
266Crystal orientation-dependent mechanical property and structural phase transition of monolayer molybdenum disulfide. Journal of Applied Physics, 2017, 122, .1.17267Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum dsulfide nanotemplate. Npj Computational Materials, 2017, 3, .3.510268Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.13.7548269Structurally Deformed MoS _{2 (sub> for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.11.1107270Doping-controlled phase transitions in single-layer <mml:math </mml:math xmlns:mml="mttp://www.w3.org/1998/Math/Math/L"< <mml:msub> <mml:mi>MoS</mml:mi>MoS 2 5.261271Hierarchical 1T-MoS₂ A2017, 56, 3704-23711.2.034272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.2.034273Long-Term Stable 2H-MoS₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Extoliated MoS sub>2 1.655</mml:msub>}	265	Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism. Advanced Materials, 2017, 29, 1703754.	11.1	191
267Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate. Npj Computational Materials, 2017, 3, .10268Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.13.7548269Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.11.1107270Doping-controlled phase transitions in single-layer <mml:math </mml:math xmlns:mnl="http://www.w3.org/1998/Math/Math/ML"> <mml:msub><mml:mi>MoS</mml:mi><mml:mn>25.261271Hierarchical 1T-MoS₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.2.034272Properties of in-plane graphene/MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS₂. ACS Omega, 2017, 2,1.655</br></mml:mn></mml:msub>	266	Crystal orientation-dependent mechanical property and structural phase transition of monolayer molybdenum disulfide. Journal of Applied Physics, 2017, 122, .	1.1	7
268Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.13.7548269Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.11.1107270Doping-controlled phase transitions in single-layer <mml:math </mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:msub><mml:mi>MoS</mml:mi><mml:ms>25.261271Hierarchical 1T-MoS₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.5.261272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.2.034273Kong-Term Stable 2H-MoS₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS₂. ACS Omega, 2017, 2, 4678-4687.1.655</mml:ms></mml:msub>	267	Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate. Npj Computational Materials, 2017, 3, .	3.5	10
269Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.11.1107270Doping-controlled phase transitions in single-layer <mml:math </mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>MoS </mml:mi><mml:mn>2 <td>268</td><td>Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.</td><td>13.7</td><td>548</td></mml:mn></mml:msub>	268	Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.	13.7	548
270Doping-controlled phase transitions in single-layer <mml:math </mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>MoS</mml:mi> <mml:mi>MoS</mml:mi> 271Hierarchical 1T-MoS ₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.5.261272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001. Restoration and Surface Functionalization of Liquid-Exfoliated MoS ₂ . ACS Omega, 2017, 2, 4678-4687.1.655	269	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	11.1	107
271Hierarchical 1T-MoS ₂ nanotubular structures for enhanced supercapacitive performance.5.261272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.2.034273Long-Term Stable 2H-MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase 4678-4687.1.655	270	Doping-controlled phase transitions in single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	:m m.ı <td>าl:เดิ<u>ร</u>ินb></td>	า l:เด ิ <u>ร</u> ินb>
272Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.2.034273Long-Term Stable 2H-MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS ₂ . ACS Omega, 2017, 2,1.655	271	Hierarchical 1T-MoS ₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.	5.2	61
Long-Term Stable 2H-MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase 273 Restoration and Surface Functionalization of Liquid-Exfoliated MoS ₂ . ACS Omega, 2017, 2, 1.6 55 4678-4687.	272	Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.	2.0	34
	273	Long-Term Stable 2H-MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS ₂ . ACS Omega, 2017, 2, 4678-4687.	1.6	55

#	Article	IF	CITATIONS
274	Mechanical bending induced catalytic activity enhancement of monolayer 1ÂT'-MoS2 for hydrogen evolution reaction. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	12
275	Dynamics of Symmetry-Breaking Stacking Boundaries in Bilayer MoS ₂ . Journal of Physical Chemistry C, 2017, 121, 22559-22566.	1.5	22
276	Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nature Nanotechnology, 2017, 12, 1064-1070.	15.6	210
277	Engineering and modifying two-dimensional materials by electron beams. MRS Bulletin, 2017, 42, 667-676.	1.7	62
278	Designing artificial 2D crystals with site and size controlled quantum dots. Scientific Reports, 2017, 7, 9965.	1.6	16
279	Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Industrial & Engineering Chemistry Research, 2017, 56, 10552-10581.	1.8	29
280	Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small Methods, 2017, 1, 1700156.	4.6	98
281	Observation of topological states residing at step edges of WTe2. Nature Communications, 2017, 8, 659.	5.8	129
282	Reducing the Schottky barrier between few-layer MoTe ₂ and gold. 2D Materials, 2017, 4, 045016.	2.0	35
283	Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Applied Materials Today, 2017, 9, 292-299.	2.3	43
284	Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons. Nano Letters, 2017, 17, 6241-6247.	4.5	64
285	Progress of Largeâ€5cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098.	5.2	54
286	Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS ₂ nano-scrolls. Physical Chemistry Chemical Physics, 2017, 19, 18356-18365.	1.3	48
287	Argon Plasma Induced Phase Transition in Monolayer MoS ₂ . Journal of the American Chemical Society, 2017, 139, 10216-10219.	6.6	332
288	Thickness dependent semiconductor-to-metal transition of two-dimensional polyaniline with unique work functions. Nanoscale, 2017, 9, 12025-12031.	2.8	24
289	Structural and quantum-state phase transitions in van der Waals layered materials. Nature Physics, 2017, 13, 931-937.	6.5	280
290	Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. ACS Nano, 2017, 11, 8619-8627.	7.3	42
291	In Situ Transmission Electron Microscopy Characterization and Manipulation of Twoâ€Dimensional Layered Materials beyond Graphene. Small, 2017, 13, 1604259.	5.2	75

		OKI	
#	Article	IF	CITATIONS
292	Rhenium doping induced structural transformation in mono-layered MoS ₂ with improved catalytic activity for hydrogen evolution reaction. Journal Physics D: Applied Physics, 2017, 50, 405303.	1.3	23
293	Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ€High Electrical Conductivity. Advanced Materials, 2017, 29, 1702359.	11.1	191
294	Defects in Two-Dimensional Materials. , 2017, , 359-378.		2
295	<i>In Situ</i> Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide. ACS Nano, 2017, 11, 9057-9067.	7.3	27
296	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
297	Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe2: A First-Principles Study. ACS Omega, 2017, 2, 8640-8648.	1.6	40
298	Chemically extollated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:m mathvariant="normal">S <mml:mn>2</mml:mn> </mml:m </mml:msub> </mml:mrow> layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase. Physical Review B, 2017, 96.</mml:math 	i 1.1	39
299	Catalytic Properties of Vanadium Diselenide: A Comprehensive Study on Its Electrocatalytic Performance in Alkaline, Neutral, and Acidic Media. ACS Omega, 2017, 2, 8319-8329.	1.6	40
300	Transistor Concepts Based on Lateral Heterostructures of Metallic and Semiconducting Phases of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mm Physical Review Applied, 2017, 8, .</mm </mml:mrow></mml:msub></mml:mrow></mml:math>	າໄ ້: mn>2<	/mml:mn> </td
301	Controlling the H to T′ structural phase transition <i>via</i> chalcogen substitution in MoTe ₂ monolayers. Physical Chemistry Chemical Physics, 2017, 19, 31874-31882.	1.3	19
302	Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, 46, 4572-4613.	18.7	275
303	Role of sulphur atoms on stress relaxation and crack propagation in monolayer MoS ₂ . Nanotechnology, 2017, 28, 365703.	1.3	17
304	Stability and Nature of Chemically Exfoliated MoS ₂ in Aqueous Suspensions. Inorganic Chemistry, 2017, 56, 7620-7623.	1.9	35
305	High-Content Metallic 1T Phase in MoS ₂ -Based Electrocatalyst for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 15071-15077.	1.5	85
306	Atomic-scale observation of pressure-dependent reduction dynamics of W ₁₈ O ₄₉ nanowires using environmental TEM. Physical Chemistry Chemical Physics, 2017, 19, 16307-16311.	1.3	5
307	Molecular beam epitaxy of thin HfTe ₂ semimetal films. 2D Materials, 2017, 4, 015001.	2.0	55
308	Phase conversion of chemically exfoliated molybdenum disulfide. Current Applied Physics, 2017, 17, 60-65.	1.1	12
309	Chain Vacancies in 2D Crystals. Small, 2017, 13, 1601930.	5.2	18

#	Article	IF	CITATIONS
310	Substrate induced anomalous electrostatic and photoluminescence propeties of monolayer MoS 2 edges. Solid State Communications, 2017, 249, 1-6.	0.9	9
311	Pseudocapacitive Charge Storage in Thick Composite MoS ₂ Nanocrystalâ€Based Electrodes. Advanced Energy Materials, 2017, 7, 1601283.	10.2	230
312	Efros-Shklovskii variable range hopping and nonlinear transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>TPhysical Review B, 2017, 96, .</mml:mi></mml:mrow></mml:math 	i≻∢umuml:mo	ɔ> ‡ ହ/mml:mc
313	PEEM and Micro-UPS Studies of Cleaved and Exfoliated Molybdenum Disulfide Surfaces. E-Journal of Surface Science and Nanotechnology, 2017, 15, 115-120.	0.1	7
314	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	1.5	44
315	Molybdenum Dichalcogenides for Environmental Chemical Sensing. Materials, 2017, 10, 1418.	1.3	25
316	Kinetics and Atomic Mechanisms of Structural Phase Transformations in Photoexcited Monolayer TMDCs. MRS Advances, 2018, 3, 345-350.	0.5	0
317	Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotechnology, 2018, 13, 183-191.	15.6	319
318	Structural stability of coplanar 1T-2H superlattice MoS2under high energy electron beam. Nanotechnology, 2018, 29, 205604.	1.3	19
319	Structural Phase Transformation in Strained Monolayer MoWSe ₂ Alloy. ACS Nano, 2018, 12, 3468-3476.	7.3	57
320	Magnetic field dependence of electronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2quantum dots with different edges. Physical Review B, 2018, 97, .</mml:mn></mml:msub></mml:math 	:m n.ı <td>ıl:msub></td>	ıl:msub>
321	Single-layer 1 <i>T</i> â€2-MoS ₂ under electron irradiation from <i>ab initio</i> molecular dynamics. 2D Materials, 2018, 5, 025022.	2.0	13
322	Engineering the Electronic Structure of Tin Sulfide Nanoribbons: A Computational Study. Journal of Physical Chemistry C, 2018, 122, 5731-5741.	1.5	18
323	The intrinsic interface properties of the top and edge 1T/2H <i>MoS</i> 2 contact: A first-principles study. Journal of Applied Physics, 2018, 123, .	1.1	19
324	Oxide-mediated recovery of field-effect mobility in plasma-treated MoS ₂ . Science Advances, 2018, 4, eaao5031.	4.7	82
325	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	18.7	303
326	Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes. Applied Surface Science, 2018, 448, 64-70.	3.1	50
327	Misorientationâ€Angleâ€Dependent Phase Transformation in van der Waals Multilayers via Electronâ€Beam Irradiation. Advanced Materials, 2018, 30. e1706864.	11.1	10

#	Article	IF	CITATIONS
328	Understanding the structural, electrical, and optical properties of monolayer h-phase RuO2 nanosheets: a combined experimental and computational study. NPG Asia Materials, 2018, 10, 266-276.	3.8	34
329	Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides. Journal of Physics Condensed Matter, 2018, 30, 215301.	0.7	74
330	Atomic structure and migration dynamics of MoS2/LixMoS2 interface. Nano Energy, 2018, 48, 560-568.	8.2	42
331	Post-Synthesis Modifications of Two-Dimensional MoSe ₂ or MoTe ₂ by Incorporation of Excess Metal Atoms into the Crystal Structure. ACS Nano, 2018, 12, 3975-3984.	7.3	67
332	Phaseâ€Engineered PtSe ₂ â€Layered Films by a Plasmaâ€Assisted Selenization Process toward All PtSe ₂ â€Based Field Effect Transistor to Highly Sensitive, Flexible, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1800032.	5.2	83
333	Electron beam interaction and its effect on crystalline 2H phase of MoS2. AIP Conference Proceedings, 2018, , .	0.3	0
334	Picosecond Electronic and Structural Dynamics in Photo-excited Monolayer MoSe2. MRS Advances, 2018, 3, 391-396.	0.5	0
335	Mechanical responses of two-dimensional MoTe2; pristine 2H, 1T and 1T′ and 1T′/2H heterostructure. Extreme Mechanics Letters, 2018, 20, 65-72.	2.0	34
336	Two-dimensional MoS ₂ electromechanical actuators. Journal Physics D: Applied Physics, 2018, 51, 075306.	1.3	71
337	Direct Observation of Semiconductor–Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization. ACS Nano, 2018, 12, 2070-2077.	7.3	44
338	Small stoichiometric (MoS ₂) _n clusters with the 1T phase. Physical Chemistry Chemical Physics, 2018, 20, 6365-6373.	1.3	29
339	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	23.0	1,000
340	Gate-Induced Interfacial Superconductivity in 1T-SnSe ₂ . Nano Letters, 2018, 18, 1410-1415.	4.5	81
341	Phase engineering of seamless heterophase homojunctions with co-existing 3R and 2H phases in WS ₂ monolayers. Nanoscale, 2018, 10, 3320-3330.	2.8	27
342	Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands. NPG Asia Materials, 2018, 10, e466-e466.	3.8	23
343	A Facile Space-Confined Solid-Phase Sulfurization Strategy for Growth of High-Quality Ultrathin Molybdenum Disulfide Single Crystals. Nano Letters, 2018, 18, 2021-2032.	4.5	42
344	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	7.3	62
345	Semiconductor–metal structural phase transformation in MoTe ₂ monolayers by electronic excitation. Nanoscale, 2018, 10, 2742-2747.	2.8	34

#	Article	IF	CITATIONS
346	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	2.4	238
347	Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS ₂ Nanosheets via Covalent Functionalization. Journal of the American Chemical Society, 2018, 140, 441-450.	6.6	241
348	Thermodynamic assessment of the Mo-S system and its application in thermal decomposition of MoS 2. Thermochimica Acta, 2018, 660, 44-55.	1.2	10
349	Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS ₂ for High Rate Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702779.	10.2	181
350	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
351	Controllable Phase Stabilities in Transition Metal Dichalcogenides through Curvature Engineering: First-Principles Calculations and Continuum Prediction. Advanced Theory and Simulations, 2018, 1, 1800003.	1.3	5
352	Atomâ€byâ€Atom Fabrication of Monolayer Molybdenum Membranes. Advanced Materials, 2018, 30, e1707281.	11.1	66
353	Atomic Insights into Phase Evolution in Ternary Transitionâ€Metal Dichalcogenides Nanostructures. Small, 2018, 14, e1800780.	5.2	13
354	Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion. CheM, 2018, 4, 1510-1537.	5.8	141
355	Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films. Scientific Reports, 2018, 8, 6724.	1.6	40
356	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	6.6	757
357	One-step synthesis of ultrathin α-Co(OH) ₂ nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. Chemical Communications, 2018, 54, 4045-4048.	2.2	71
358	Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Research, 2018, 11, 4368-4379.	5.8	52
359	A vacancy-driven phase transition in MoX ₂ (X: S, Se and Te) nanoscrolls. Nanoscale, 2018, 10, 7918-7926.	2.8	24
360	Effect of lithium doping on the optical properties of monolayer MoS2. Applied Physics Letters, 2018, 112, .	1.5	23
361	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
362	Nonadiabatic Molecular Dynamics Simulation of Charge Separation and Recombination at a WS ₂ /QD Heterojunction. Journal of Physical Chemistry C, 2018, 122, 7041-7050.	1.5	16
363	Computational study of phase engineered transition metal dichalcogenides heterostructures. Computational Materials Science, 2018, 142, 129-134.	1.4	11

ARTICLE IF CITATIONS Insight into the structural and electronic nature of chemically exfoliated molybdenum disulfide 364 1.6 16 nanosheets in aqueous dispersions. Dalton Transactions, 2018, 47, 3014-3021. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Research, 5.8 2018, 11, 3205-3212. Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts. Nano-Micro Letters, 366 14.4 257 2018, 10, 23. One-step synthesis of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic 54 hydrogen évolution. International Journal of Hydrogen Energy, 2018, 43, 1251-1260. Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection 368 4.0 57 of food pathogen. Sensors and Actuators B: Chemical, 2018, 259, 1090-1098. Acid-Assisted Exfoliation toward Metallic Sub-nanopore TaS₂ Monolayer with High Volumetric Capacitance. Journal of the American Chemical Society, 2018, 140, 493-498. 6.6 Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future 370 4.1 309 perspectives. Nanoscale Horizons, 2018, 3, 90-204. Electronic structure of the PLD grown mixed phase MoS 2 /GaN interface and its thermal annealing 371 1.1 effect. Current Applied Physics, 2018, 18, 170-177. MoB/g ₃N₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen 372 1.6 71 Evolution. Angewandte Chemie, 2018, 130, 505-509. MoB/g ₃N₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 496-500. Investigation of a self-lubricating coating for diesel engine pistons, as produced by combined 374 1.5 18 microarc oxidation and electrophoresis. Wear, 2018, 394-395, 109-112. New Directions in Science Technologyâ€"Atomically-Thin Metal Dichalcogenides. , 2018, , 181-250. 2D superconductivity and vortex dynamics in 1T-MoS2. Communications Physics, 2018, 1, . 376 2.0 28 Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS₂. Journal of 5.2 Materials Chemistry A, 2018, 6, 23932-23977. Controllable 2H-to-1Tâ€² phase transition in few-layer MoTe₂. Nanoscale, 2018, 10, 19964-19971. 378 2.8 99 Preparation of controllable-thickness 1T@2H-MoS₂ thin films by pulsed laser-induced 379 synthesis and the selective separation of the 1T phase. Journal of Materials Chemistry C, 2018, 6, 11651-11658. First principles study on 2Hâ€"1Tâ€² transition in MoS₂ with copper. Physical Chemistry 380 1.339 Chemical Physics, 2018, 20, 26986-26994. Metastable phase control of two-dimensional transition metal dichalcogenides on metal substrates. 381 Journal of Materials Chemistry C, 2018, 6, 12245-12251.

#	Article	IF	CITATIONS
382	2H → 1T′ phase transformation in Janus monolayer MoSSe and MoSTe: an efficient hole injection contact for 2H-MoS ₂ . Journal of Materials Chemistry C, 2018, 6, 13000-13005.	2.7	38
383	Charge-governed phase manipulation of few-layer tellurium. Nanoscale, 2018, 10, 22263-22269.	2.8	28
384	Scaling-up phase selection. Nature Materials, 2018, 17, 1058-1059.	13.3	2
385	Nonequilibrium solid-solid phase transition in a lattice of liquid jets. Physical Review E, 2018, 98, .	0.8	9
386	Electrical contacts to two-dimensional transition-metal dichalcogenides. Journal of Semiconductors, 2018, 39, 124001.	2.0	7
387	Metal-Insulator Transition in Monolayer M <inf>o</inf> S <inf>2</inf> for Tunable and Reconfigurable Devices. , 2018, , .		0
388	Electronic and optical properties of bilayer SnS with different stacking orders: A first principles study. Journal of Applied Physics, 2018, 124, .	1.1	7
389	Structure modulation induced enhancement of microwave absorption in WS2 nanosheets. Applied Physics Letters, 2018, 113, .	1.5	30
390	Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.	2.4	11
391	Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. ACS Nano, 2018, 12, 12080-12088.	7.3	74
392	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nature Communications, 2018, 9, 5115.	5.8	114
393	Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-dimensional MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2018, 122, 28215-28224.	1.5	65
394	An Insight into the Phase Transformation of WS ₂ upon Fluorination. Advanced Materials, 2018, 30, e1803366.	11.1	26
395	Inversion domain boundaries in MoSe ₂ layers. RSC Advances, 2018, 8, 33391-33397.	1.7	9
396	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	2.3	139
397	Two-Dimensional Metallic/Semiconducting MoS ₂ under Biaxial Strain. ACS Applied Nano Materials, 2018, 1, 5562-5570.	2.4	11
398	Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical Science, 2018, 9, 7727-7745.	3.7	70
399	Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochimica Acta, 2018, 185, 478.	2.5	48

		CITATION REPORT		
#	Article		IF	CITATIONS
400	2D Material Science: Defect Engineering by Particle Irradiation. Materials, 2018, 11, 18	85.	1.3	69
401	In situ Formation of Metal Nanoparticles through Electron Beam Irradiation: Modeling F from First-Principles Calculations. Journal of Material Science & Engineering, 2018, 07, .	Real Materials	0.2	8
402	Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water spli Materials Today Energy, 2018, 10, 352-367.	tting.	2.5	73
403	Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties ar applications. Materials Today Energy, 2018, 10, 264-279.	nd emerging	2.5	75
404	Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature 1108-1114.	Materials, 2018, 17,	13.3	348
405	Monolayer Transition-Metal Dichalcogenide Mo _{1–<i>x</i>} W <i>_x</i> S ₂ Alloys as Efficient Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 25837-25848.	Anode Materials for	1.5	28
406	Atomic scale study for the structural transformation of single layered MoS _{2CrystEngComm, 2018, 20, 6482-6489.})>.	1.3	9
407	Crystal phase control in two-dimensional materials. Science China Chemistry, 2018, 61	, 1227-1242.	4.2	42
408	Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water pu Nano Energy, 2018, 53, 949-957.	rification.	8.2	156
409	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Interfa 34392-34400.	Films with ces, 2018, 10,	4.0	22
410	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymo Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	rphic Transition	4.5	4
411	Metal free MoS ₂ 2D sheets as a peroxidase enzyme and visible-light-induc towards detection and reduction of Cr(<scp>vi</scp>) ions. New Journal of Chemistry, 16919-16929.	ed photocatalyst 2018, 42,	1.4	32
412	Contacting and Gating 2-D Nanomaterials. IEEE Transactions on Electron Devices, 2018	3, 65, 4073-4083.	1.6	30
413	Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically Thin 2D Crystals, 2018, 8, 316.	Semiconductor.	1.0	118
414	Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nature Reviews Materials, 2018, 3, 341-353.	1	23.3	58
415	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advance 2018, 30, e1802397.	d Materials,	11.1	75
416	Why Chemical Vapor Deposition Grown MoS ₂ Samples Outperform Physi Deposition Samples: Time-Domain ab Initio Analysis. Nano Letters, 2018, 18, 4008-401	cal Vapor 4.	4.5	94
417	Tunable phase stability and contact resistance of monolayer transition metal dichalcog contacts with metal. Npj 2D Materials and Applications, 2018, 2, .	enides	3.9	17

#	Article	IF	CITATIONS
418	Antimicrobial Properties of 2D MnO ₂ and MoS ₂ Nanomaterials Vertically Aligned on Graphene Materials and Ti ₃ C ₂ MXene. Langmuir, 2018, 34, 7192-7200.	1.6	111
419	Controllable solution-fabrication of triphasic 2H@1T-MoS2/graphene heterostructure with assistance of supercritical CO2. Surfaces and Interfaces, 2018, 12, 41-49.	1.5	9
420	Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science, 2018, 9, 5452-5460.	3.7	22
421	1T phase as an efficient hole injection layer to TMDs transistors: a universal approach to achieve p-type contacts. 2D Materials, 2018, 5, 031012.	2.0	27
422	Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS ₂ . ACS Nano, 2018, 12, 5626-5636.	7.3	27
423	Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6764-6794.	18.7	178
424	Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Applied Physics Letters, 2018, 113, .	1.5	45
425	Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery. Journal of Power Sources, 2018, 395, 318-327.	4.0	86
426	van der Waals Metallic Transition Metal Dichalcogenides. Chemical Reviews, 2018, 118, 6297-6336.	23.0	252
427	Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. Npj Computational Materials, 2018, 4, .	3.5	31
428	Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy, 2018, 51, 546-555.	8.2	98
429	Interaction of Native Defects with lons and Its Role in Inducing Phase Transitions in p-Type S-Excess MoS ₂ . ACS Applied Energy Materials, 2018, 1, 3093-3102.	2.5	3
430	High carrier mobility in monolayer CVD-grown MoS ₂ through phonon suppression. Nanoscale, 2018, 10, 15071-15077.	2.8	74
431	Ultraviolet Light-Induced Persistent and Degenerated Doping in MoS ₂ for Potential Photocontrollable Electronics Applications. ACS Applied Materials & Interfaces, 2018, 10, 27840-27849.	4.0	13
432	Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility. Journal of Physical Chemistry C, 2018, 122, 19153-19160.	1.5	55
433	Universal Scaling Laws in Schottky Heterostructures Based on Two-Dimensional Materials. Physical Review Letters, 2018, 121, 056802.	2.9	119
434	Observing phase transformation in CVD-grown MoS ₂ <i>via</i> atomic resolution TEM. Chemical Communications, 2018, 54, 9941-9944.	2.2	11
435	Modeling of Electron Devices Based on 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4167-4179.	1.6	32

#	Article	IF	CITATIONS
436	Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 2018, 30, e1801586.	11.1	134
437	CVD-Grown MoSe ₂ Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 27771-27779.	4.0	60
438	Defect- and phase-engineering of Mn-mediated MoS ₂ nanosheets for ultrahigh electrochemical sensing of heavy metal ions: chemical interaction-driven <i>in situ</i> catalytic redox reactions. Chemical Communications, 2018, 54, 9329-9332.	2.2	51
439	A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS ₂ nano-sheets. RSC Advances, 2018, 8, 26364-26370.	1.7	63
440	Defect Dynamics in 2-D MoS ₂ Probed by Using Machine Learning, Atomistic Simulations, and High-Resolution Microscopy. ACS Nano, 2018, 12, 8006-8016.	7.3	72
441	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	7.3	51
442	2H/1T Phase Transition of Multilayer MoS ₂ by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.	2.5	141
443	Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors. Energies, 2018, 11, 1573.	1.6	32
444	Phase Transition of Single-Layer Molybdenum Disulfide Nanosheets under Mechanical Loading Based on Molecular Dynamics Simulations. Materials, 2018, 11, 502.	1.3	13
445	Properties, Preparation and Applications of Low Dimensional Transition Metal Dichalcogenides. Nanomaterials, 2018, 8, 463.	1.9	38
446	Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. Npj 2D Materials and Applications, 2018, 2, .	3.9	117
447	Ultrastable Inâ€Plane 1T–2H MoS ₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801345.	10.2	409
448	Environment-dependent and anion-vacancy-controlled reversible phase transition of MoS ₂ synthesized by chemical vapor deposition. 2D Materials, 2018, 5, 041002.	2.0	1
449	Electronic Origin of Optically-Induced Sub-Picosecond Lattice Dynamics in MoSe ₂ Monolayer. Nano Letters, 2018, 18, 4653-4658.	4.5	16
450	In-situ TEM investigation of MoS2 upon alkali metal intercalation. Science China Chemistry, 2018, 61, 222-227.	4.2	26
451	Ultralong 1D Vacancy Channels for Rapid Atomic Migration during 2D Void Formation in Monolayer MoS ₂ . ACS Nano, 2018, 12, 7721-7730	7.3	54
452	Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. Journal of Materials Chemistry C, 2018, 6, 9561-9568.	2.7	52
453	Scalable faceted voids with luminescent enhanced edges in WS ₂ monolayers. Nanoscale, 2018, 10, 16321-16331.	2.8	11

#	Article	IF	CITATIONS
454	Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe ₂ monolayer. Nanotechnology, 2018, 29, 425706.	1.3	16
455	Disorder Enhanced Superconductivity toward TaS ₂ Monolayer. ACS Nano, 2018, 12, 9461-9466.	7.3	54
456	Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Scientific Reports, 2018, 8, 12463.	1.6	31
457	Size-Induced Phase Evolution of MoSe ₂ Nanoflakes Revealed by Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 20483-20488.	1.5	17
458	Enhanced thermoelectric performance of two dimensional MS2 (MÂ=ÂMo, W) through phase engineering. Journal of Materiomics, 2018, 4, 329-337.	2.8	21
459	Strategies on Phase Control in Transition Metal Dichalcogenides. Advanced Functional Materials, 2018, 28, 1802473.	7.8	90
460	Material Genome Explorations and New Phases of Two-Dimensional MoS2, WS2, and ReS2 Monolayers. Chemistry of Materials, 2018, 30, 6242-6248.	3.2	11
461	Metastable defects in monolayer and few-layer films of MoS2. AIP Conference Proceedings, 2018, , .	0.3	1
462	Computational Understanding of the Growth of 2D Materials. Advanced Theory and Simulations, 2018, 1, 1800085.	1.3	30
463	Possible charge-density-wave signatures in the anomalous resistivity of Li-intercalated multilayer MoS2. Applied Surface Science, 2018, 461, 269-275.	3.1	20
464	Elastic deformation behavior of freestanding MoS 2 films using a continuum approach. Solid State Communications, 2018, 280, 24-31.	0.9	3
465	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
466	Building Close Ties Between CO ₂ and Functional Twoâ€Dimensional Nanomaterials with Green Chemistry Strategy. Energy and Environmental Materials, 2018, 1, 46-60.	7.3	26
467	A machine perspective of atomic defects in scanning transmission electron microscopy. InformaÄnÃ- Materiály, 2019, 1, 359-375.	8.5	37
468	Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Applied Surface Science, 2019, 496, 143694.	3.1	13
469	Structural phase transitions in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">MoWSe<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow> monolayer: Molecular dynamics simulations and variational autoencoder analysis. Physical Review B,</mml:math 	1.1	10
470	Van der Waals 2D Transition Metal Tellurides. Advanced Materials Interfaces, 2019, 6, 1900741.	1.9	48
	Distinctive optoelectronic properties of nanostructured <mml:math< td=""><td></td><td>1</td></mml:math<>		1

471 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mm_a</mml:msub></m bilayers. Physical Review B, 2019, 100, .

ARTICLE IF CITATIONS Composition dependence of the charge-driven phase transition in group-VI transition metal 472 1.1 12 dichalcogenides. Physical Review B, 2019, 100, . Chemical doping induced zone-edge phonon renormalization in single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:mi 1.1 473 mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>. Physical Review B, 2019, 100, Phase-selective Hydrothermal Synthesis of Metallic MoS₂ at High Temperature. Chemistry 474 0.7 2 Letters, 2019, 48, 828-831. Structural and electronic phase transitions driven by electric field in metastable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:m@u</mml:mbub></in thin flakes. Physical Review B, 2019, 100, . Phonon-Suppressed Auger Scattering of Charge Carriers in Defective Two-Dimensional Transition 476 4.5 43 Metal Dichalcogenides. Nano Letters, 2019, 19, 6078-6086. Crystallization of Gd₂O₃ nanoparticles: evolution of the microstructure <i>via</i> electron-beam manipulation. Nanoscale, 2019, 11, 14952-14958. 2.8 Novel preparation of high activity 1T-phase MoS2 ultra-thin flakes by layered double hydroxide for 478 enhanced hydrogen evolution performance. International Journal of Hydrogen Energy, 2019, 44, 3.8 18 21229-21237. Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs). Advanced 479 0.3 Structured Materials, 2019, , 165-245. A facile alkali metal hydroxide-assisted controlled and targeted synthesis of 1T MoS₂ 480 2.8 30 single-crystal nanosheets for lithium ion battery anodes. Nanoscale, 2019, 11, 14857-14862. Electromagnetic Functions of Patterned 2D Materials for Micro–Nano Devices Covering GHz, THz, and 3.6 Optical Frequency. Advanced Optical Materials, 2019, 7, 1900689. Manipulating Topological Domain Boundaries in the Single-Layer Quantum Spin Hall Insulator 482 4.5 30 1Tâ€²–WŠe2. Nano Letters, 2019, 19, 5634-5639. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum 5.8 69 disulfide-based lithium-ion batteries. Nature Communications, 2019, 10, 3265. Unveiling highly ambient-stable multilayered 1T-MoS₂ towards all-solid-state flexible 484 5.2 71 supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19152-19160. Two-Dimensional Lateral Epitaxy of 2H (MoSe₂)–1Tâ€2 (ReSe₂) Phases. Nano 485 4.5 Letters, 2019, 19, 6338-6345. Transition Metal Dichalcogenides in Sensors., 2019, , 293-329. 486 3 Observation of Topological Edge States at the Step Edges on the Surface of Type-II Weyl Semimetal 487 TalrTe₄. ACS Nano, 2019, 13, 9571-9577 Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. 488 1.9 15 Nanomaterials, 2019, 9, 906. C₃N₄-digested 3D construction of hierarchical metallic phase 489 5.2 MoS₂ nanostructures. Journal of Materials Chemistry A, 2019, 7, 18388-18396.

#	Article	IF	CITATIONS
490	Structural Evolutions of Vertically Aligned Two-Dimensional MoS ₂ Layers Revealed by in Situ Heating Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 27843-27853.	1.5	13
491	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS ₂ Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16289-16296.	7.2	201
492	High Phaseâ€Purity 1Tâ€MoS ₂ Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie - International Edition, 2019, 58, 17621-17624.	7.2	109
493	The Stability of Metallic MoS2 Nanosheets and Their Property Change by Annealing. Nanomaterials, 2019, 9, 1366.	1.9	23
494	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	5.8	91
495	Near-infrared optical properties and proposed phase-change usefulness of transition metal disulfides. Applied Physics Letters, 2019, 115, .	1.5	19
496	Activating the MoS ₂ Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T′ Structural Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 42014-42020.	4.0	34
497	Local engineering of topological phase in monolayer MoS2. Science Bulletin, 2019, 64, 1750-1756.	4.3	16
498	Three-Dimensional Rock Microstructure Modeling Using Two-Dimensional SEM Micrographs. Microscopy and Microanalysis, 2019, 25, 2462-2463.	0.2	0
499	Contact Resistance at MoS ₂ -Based 2D Metal/Semiconductor Lateral Heterojunctions. ACS Applied Nano Materials, 2019, 2, 760-766.	2.4	19
500	A Compact Model for 2-D Poly-MoS ₂ FETs With Resistive Switching in Postsynaptic Simulation. IEEE Transactions on Electron Devices, 2019, 66, 4092-4100.	1.6	4
501	Anion Extraction-Induced Polymorph Control of Transition Metal Dichalcogenides. Nano Letters, 2019, 19, 8644-8652.	4.5	12
502	Carbon-Free, High-Capacity and Long Cycle Life 1D–2D NiMoO ₄ Nanowires/Metallic 1T MoS ₂ Composite Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 44593-44600.	4.0	14
503	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS 2 Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16435-16442.	1.6	16
504	High Phaseâ€Purity 1Tâ€MoS 2 Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie, 2019, 131, 17785-17788.	1.6	67
505	Surface Engineering of MoS ₂ via Laserâ€Induced Exfoliation in Protic Solvents. Small, 2019, 15, e1903791.	5.2	28
506	Wise Techniques for Excision of Severe Ureteric and Rectal Endometriosis. Journal of Minimally Invasive Gynecology, 2019, 26, S55-S56.	0.3	0
507	Phase Transition and Superconductivity Enhancement in Seâ€Substituted MoTe ₂ Thin Films. Advanced Materials, 2019, 31, e1904641.	11.1	34

		CITATION RE	PORT	
#	Article		IF	Citations
508	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28,	100764.	6.2	33
509	A fantastic two-dimensional MoS2 material based on the inert basal planes activation: structure, synthesis strategies, catalytic active sites, catalytic and electronics propertie Coordination Chemistry Reviews, 2019, 399, 213020.	Electronic s.	9.5	101
510	Polar and phase domain walls with conducting interfacial states in a Weyl semimetal N Communications, 2019, 10, 4211.	loTe2. Nature	5.8	50
511	Hierarchal growth of MoS2@CNT heterostructure for all solid state symmetric superca Insights into the surface science and storage mechanism. Electrochimica Acta, 2019, 3	pacitor: 24, 134767.	2.6	96
512	Laser-Beam-Patterned Topological Insulating States on Thin Semiconducting <mml:maxmlns:mml="http: 1998="" math="" mathml"<br="" www.w3.org="">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi>Physical Review Letters, 2019, 123, 146803.</mml:mrow></mml:msub></mml:mrow></mml:maxmlns:mml="http:>	th nl:mrow> < mml:mrow> < m	ıml:mn>2<	/mml:mn> </td
513	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storag 2019, 13, 11843-11852.	e. ACS Nano,	7.3	210
514	Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS _{ nanosheets. Nanoscale Horizons, 2019, 4, 619-624.}	2	4.1	46
515	In situ high temperature atomic level dynamics of large inversion domain formations in MoS2. Nanoscale, 2019, 11, 1901-1913.	monolayer	2.8	19
516	Electron-Driven <i>In Situ</i> Transmission Electron Microscopy of 2D Transition Meta Dichalcogenides and Their 2D Heterostructures. ACS Nano, 2019, 13, 978-995.	I	7.3	51
517	Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenid Substrates. Advanced Science, 2019, 6, 1802093.	es on Metallic	5.6	23
518	Effect of thermal conductivity of substrate on laserâ€induced phase transition of MoTe Journal of Raman Spectroscopy, 2019, 50, 755-761.	<pre>>₂.</pre>	1.2	17
519	Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Catalysis B: Environmental, 2019, 246, 296-302.	Applied	10.8	122
520	Engineering the magnetic properties of PtSe ₂ monolayer through transiti Journal of Physics Condensed Matter, 2019, 31, 145502.	on metal doping.	0.7	36
521	MoS ₂ -quantum dot triggered reactive oxygen species generation and dep responsible for enhanced chemiluminescence. Chemical Science, 2019, 10, 497-500.	letion:	3.7	89
522	MoS2ÂCoexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method Evolution Reaction. Nanomaterials, 2019, 9, 844.	l for Hydrogen	1.9	117
523	Superior Hydrogen Evolution Reaction Performance in 2Hâ€MoS ₂ to that 2019, 15, e1900964.	of 1T Phase. Small,	5.2	59
524	Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd _{2Monolayers. ACS Nano, 2019, 13, 8256-8264.}	>>Se ₃	7.3	38
525	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS <s Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.</s 	ub>2:	8.8	45

		CITATION REP	ORT	
#	Article		IF	CITATIONS
526	Atom-by-atom fabrication with electron beams. Nature Reviews Materials, 2019, 4, 497-507		23.3	73
527	Enhancing catalytic activity of tungsten disulfide through topology. Applied Catalysis B: Environmental, 2019, 256, 117802.		10.8	26
528	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum I From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	Disulfide:	5.2	69
529	Thermodynamically stable octahedral MoS ₂ in van der Waals hetero-bilayers. 2 Materials, 2019, 6, 041002.	2D	2.0	9
530	Expanding Interlayer Spacing in MoS ₂ for Realizing an Advanced Supercapacito Energy Letters, 2019, 4, 1602-1609.	or. ACS	8.8	195
531	Photochemically Induced Phase Change in Monolayer Molybdenum Disulfide. Frontiers in Ch 2019, 7, 442.	iemistry,	1.8	8
532	Crystallographic-orientation dependent Li ion migration and reactions in layered MoSe <sub 035027.<="" 2019,="" 2d="" 6,="" materials,="" td=""><td>>2</td></sub> .	>2	2.0	13
533	Hot-Electron-Mediated Ion Diffusion in Semiconductors for Ion-Beam Nanostructuring. Nanc 2019, 19, 3939-3947.) Letters,	4.5	15
534	Photoinduced Vacancy Ordering and Phase Transition in MoTe ₂ . Nano Letters, 3612-3617.	2019, 19,	4.5	43
535	Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery a Journal of Alloys and Compounds, 2019, 796, 25-32.	nodes.	2.8	22
536	Thermally driven homonuclear-stacking phase of MoS ₂ through desulfurization Nanoscale, 2019, 11, 11138-11144.	ı.	2.8	4
537	High Optical Response of Niobium-Doped WSe2-Layered Crystals. Materials, 2019, 12, 1161		1.3	5
538	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ Energy Storage. Small, 2019, 15, e1900131.	€Performance	5.2	53
539	Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through selection with optimized binding. Beilstein Journal of Nanotechnology, 2019, 10, 774-780.	phase	1.5	9
540	Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungste 46-58.	≥n, 2019, 1,	2.0	15
541	Defect Healing in Layered Materials: A Machine Learning-Assisted Characterization of MoS ₂ Crystal Phases. Journal of Physical Chemistry Letters, 2019, 10, 2739-27	44.	2.1	19
542	Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten, 2019, 1, 5	9-79.	2.0	45
543	Local Modulation of Electrical Transport in 2D Layered Materials Induced by Electron Beam Irradiation. ACS Applied Electronic Materials, 2019, 1, 684-691.		2.0	20

#	Article	IF	CITATIONS
544	Sensitivity and Stability Enhancement of Surface Plasmon Resonance Biosensors based on a Large-Area Ag/MoS2 Substrate. Sensors, 2019, 19, 1894.	2.1	30
545	Electron-Beam-Driven Structure Evolution of Single-Layer MoTe ₂ for Quantum Devices. ACS Applied Nano Materials, 2019, 2, 3262-3270.	2.4	39
546	Thermally driven reversible photoluminescence modulation in WS2/VO2 heterostructure. Applied Surface Science, 2019, 480, 680-688.	3.1	7
547	Effects Of Structural Phase Transition On Thermoelectric Performance in Lithium-Intercalated Molybdenum Disulfide (Li _{<i>x</i>} MoS ₂). ACS Applied Materials & Interfaces, 2019, 11, 12184-12189.	4.0	31
548	Discovery of Hidden Classes of Layered Electrides by Extensive High-Throughput Material Screening. Chemistry of Materials, 2019, 31, 1860-1868.	3.2	39
549	Electrical contacts of coplanar 2H/1T′ MoTe2 monolayer. Journal of Applied Physics, 2019, 125, 075104.	1.1	7
550	Electrochemical intercalation of MoO3-MoS2 composite electrodes: Charge storage mechanism of non-hydrated cations. Electrochimica Acta, 2019, 307, 176-187.	2.6	29
551	Electronic Structural and Optical Properties of Multilayer Blue Phosphorus: A First-Principle Study. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	8
552	Temperature controlled 1T/2H phase ratio modulation in mono- and a few layered MoS2 films. Applied Surface Science, 2019, 479, 1236-1245.	3.1	29
553	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2019, 11, 12777-12785.	4.0	70
554	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	4.5	98
555	Exploration of electronic structure and energy changes of cobalt–nickel on 1T-MoS2 surface. Surface Innovations, 2019, 7, 174-183.	1.4	7
556	Characterization Techniques of Two-Dimensional Nanomaterials. , 2019, , 27-41.		2
557	Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Materials, 2019, 6, 034005.	2.0	24
558	Strain effects on phase transitions in transition metal dichalcogenides. Current Applied Physics, 2019, 19, 690-696.	1.1	7
559	Unprecedented New Crystalline Forms of SnSe in Narrow to Medium Diameter Carbon Nanotubes. Nano Letters, 2019, 19, 2979-2984.	4.5	34
560	Achieving Highâ€Temperature Stability of Metastable αâ€MoC 1â€x by Suppressing Phase Transformation with Mounted Atoms for Lithium Storage Performance. Chemistry - an Asian Journal, 2019, 14, 1977-1984.	1.7	8
561	Flexible MoS2@electrospun PVDF hybrid membrane as advanced anode for lithium storage. Chemical Engineering Journal, 2019, 370, 547-555.	6.6	19

#	Article	IF	CITATIONS
562	Lithium Intercalated Molybdenum Disulfide-Coated Cotton Thread as a Viable Nerve Tissue Scaffold Candidate. ACS Applied Nano Materials, 2019, 2, 2044-2053.	2.4	9
563	Phonon-assisted carrier transport through a lattice-mismatched interface. NPG Asia Materials, 2019, 11, .	3.8	5
564	Lateral heterostructures and one-dimensional interfaces in 2D transition metal dichalcogenides. Journal of Physics Condensed Matter, 2019, 31, 213001.	0.7	32
565	Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. Applied Sciences (Switzerland), 2019, 9, 678.	1.3	46
566	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	11.1	998
567	Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .	3.5	39
568	A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 2019, 128, 274-297.	1.4	225
569	<i>In situ</i> synthesis of edge-enriched MoS ₂ hierarchical nanorods with 1T/2H hybrid phases for highly efficient electrocatalytic hydrogen evolution. CrystEngComm, 2019, 21, 1984-1991.	1.3	29
570	Phase engineering of two-dimensional transition metal dichalcogenides. Science China Materials, 2019, 62, 759-775.	3.5	106
571	Edge Segregated Polymorphism in 2D Molybdenum Carbide. Advanced Materials, 2019, 31, e1808343.	11.1	56
572	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371
573	Edge, size, and shape effects on WS ₂ , WSe ₂ , and WTe ₂ nanoflake stability: design principles from an <i>ab initio</i> investigation. Physical Chemistry Chemical Physics, 2019, 21, 23076-23084.	1.3	19
574	Enhanced catalytic activity of edge-exposed 1T phase WS ₂ grown directly on a WO ₃ nanohelical array for water splitting. Journal of Materials Chemistry A, 2019, 7, 26378-26384.	5.2	23
575	Rich diversity of crystallographic phase formation in 2D Re <i>x</i> Mo1 – <i>x</i> S2 (<i>x </i> < 0.5) alloy. Journal of Applied Physics, 2019, 126, .	1.1	3
576	Probing Multiphased Transition in Bulk MoS ₂ by Direct Electron Injection. ACS Nano, 2019, 13, 14437-14446.	7.3	29
577	Defect-Engineered MoS ₂ Nanostructures for Reactive Oxygen Species Generation in the Dark: Antipollutant and Antifungal Performances. ACS Applied Materials & Interfaces, 2019, 11, 48179-48191.	4.0	36
578	Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11, 20123-20132.	2.8	72
579	Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nature	13.3	426

#	Article	IF	CITATIONS
580	Suppression of Electrochemically Driven Phase Transitions in Nanostructured MoS ₂ Pseudocapacitors Probed Using <i>Operando</i> X-ray Diffraction. ACS Nano, 2019, 13, 1223-1231.	7.3	36
581	Hybrid single-layer/bulk tungsten diselenide transistors by lithographic encoding of material thickness in chemical vapor deposition. 2D Materials, 2019, 6, 015017.	2.0	2
582	Width-dependent phase crossover in transition metal dichalcogenide nanoribbons. Nanotechnology, 2019, 30, 075701.	1.3	11
583	Iridium-Triggered Phase Transition of MoS ₂ Nanosheets Boosts Overall Water Splitting in Alkaline Media. ACS Energy Letters, 2019, 4, 368-374.	8.8	105
584	Blocking of the 1T-to-2H phase transformation of chemically exfoliated transition metal disulfides by using a "lattice lock― Nano Energy, 2019, 56, 65-73.	8.2	23
585	Phosphorusâ€Mediated MoS ₂ Nanowires as a Highâ€Performance Electrode Material for Quasiâ€&olidâ€&tate Sodiumâ€Ion Intercalation Supercapacitors. Small, 2019, 15, e1803984.	5.2	81
586	Theoretical characterization of strain and interfacial electronic effects in donor-acceptor bilayers of 2D transition metal dichalcogenides. 2D Materials, 2019, 6, 015025.	2.0	11
587	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	7.3	131
588	Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy, 2019, 58, 202-210.	8.2	43
589	Interfacial molecular deformation mechanism for low friction of MoS2 determined using ReaxFF-MD simulation. Ceramics International, 2019, 45, 2258-2265.	2.3	10
590	Metallic 1T-MoS2 nanosheets in-situ entrenched on N,P,S-codoped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 614-620.	10.8	77
591	Structural phase transition barrier of N-doped MoS ₂ with charge injection. Materials Research Express, 2019, 6, 016308.	0.8	3
592	Phaseâ€Controlled Synthesis of 1Tâ€MoSe ₂ /NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution. Small Methods, 2019, 3, 1800317.	4.6	67
593	Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nature Materials, 2019, 18, 55-61.	13.3	300
594	Formation mechanism of twin domain boundary in 2D materials: The case for WTe2. Nano Research, 2019, 12, 569-573.	5.8	7
595	Solution Processing for Lateral Transition-Metal Dichalcogenides Homojunction from Polymorphic Crystal. Journal of the American Chemical Society, 2019, 141, 592-598.	6.6	24
596	Mechanical properties of two-dimensional materials and their applications. Journal Physics D: Applied Physics, 2019, 52, 083001.	1.3	97
597	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	5.8	44

#	Article	IF	CITATIONS
598	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
599	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
600	Trigonal (1T) and hexagonal (2H) mixed phases MoS2 thin films. Applied Surface Science, 2019, 474, 227-231.	3.1	22
601	Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Materials, 2019, 16, 37-45.	9.5	218
602	The electric-field and strain inducing electronic and optical properties of the blue phosphorene/ZnO heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113650.	1.3	6
603	Twoâ€Dimensional MoS ₂ for Liâ^'S Batteries: Structural Design and Electronic Modulation. ChemSusChem, 2020, 13, 1392-1408.	3.6	31
604	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767
605	Tunable Topological Energy Bands in 2D Dialkaliâ€Metal Monoxides. Advanced Science, 2020, 7, 1901939.	5.6	34
606	High throughput study on magnetic ground states with Hubbard <i>U</i> corrections in transition metal dihalide monolayers. Nanoscale Advances, 2020, 2, 495-501.	2.2	25
607	On the origin of metallicity and stability of the metastable phase in chemically exfoliated MoS2. Applied Materials Today, 2020, 19, 100544.	2.3	8
608	Unveiling the Microscopic Origins of Phase Transformations: An <i>in Situ</i> TEM Perspective. Chemistry of Materials, 2020, 32, 639-650.	3.2	12
609	Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 2020, 12, 1247-1268.	2.8	132
610	A phosphorene-like InP ₃ monolayer: structure, stability, and catalytic properties toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 1307-1314.	5.2	31
611	CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. Journal of Colloid and Interface Science, 2020, 564, 77-87.	5.0	44
612	Lateral MoS ₂ Heterostructure for Sensing Small Gas Molecules. ACS Applied Electronic Materials, 2020, 2, 74-83.	2.0	13
613	DFT calculation for stability and quantum capacitance of MoS2 monolayer-based electrode materials. Materials Today Communications, 2020, 22, 100772.	0.9	15
614	A method to predict energy barriers in stress modulated solid–solid phase transitions. Journal of the Mechanics and Physics of Solids, 2020, 137, 103857.	2.3	16
615	2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Materials, 2020, 7, 022003.	2.0	168

#	Article	IF	CITATIONS
616	Deep Phase Transition of MoS ₂ for Excellent Hydrogen Evolution Reaction by a Facile C-Doping Strategy. ACS Applied Materials & Interfaces, 2020, 12, 877-885.	4.0	38
617	Atomicâ€Scale Fabrication of Inâ€Plane Heterojunctions of Fewâ€Layer MoS ₂ via In Situ Scanning Transmission Electron Microscopy. Small, 2020, 16, e1905516.	5.2	29
618	Geometrical Frustration of B-H Bonds in Layered Hydrogen Borides Accessible by Soft Chemistry. CheM, 2020, 6, 406-418.	5.8	35
619	STM/STS and ARPES characterization—structure and electronic properties. , 2020, , 199-220.		1
620	Atomic structure of defects in transitional metal dichalcogenides using transmission electron microscopy. , 2020, , 167-197.		3
621	Thermomechanical Nanostraining of Two-Dimensional Materials. Nano Letters, 2020, 20, 8250-8257.	4.5	34
622	Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation. Nano Energy, 2020, 78, 105391.	8.2	21
623	Auxetic two-dimensional transition metal selenides and halides. Npj Computational Materials, 2020, 6, .	3.5	27
624	Atomistic mechanism of stress modulated phase transition in monolayer Mole <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e196" altimg="si10.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>. Extreme Mechanics</mml:math 	2.0	14
625	Craphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application. Crystals, 2020, 10, 902.	1.0	38
626	Phase Transition in a Memristive Suspended MoS ₂ Monolayer Probed by Opto- and Electro-Mechanics. ACS Nano, 2020, 14, 13611-13618.	7.3	13
627	Liquid-like Interfaces Mediate Structural Phase Transitions in Lead Halide Perovskites. Matter, 2020, 3, 534-545.	5.0	42
628	Band Edge Tailoring in Few-Layer Two-Dimensional Molybdenum Sulfide/Selenide Alloys. Journal of Physical Chemistry C, 2020, 124, 22893-22902.	1.5	9
629	Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten, 2020, 2, 147-161.	2.0	49
630	Stable and high-performance piezoelectric sensor via CVD grown WS ₂ . Nanotechnology, 2020, 31, 445203.	1.3	25
631	Charge density modulation and defect ordering in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:m magnetic semimetal. Physical Review B, 2020, 102, .</mml:m </mml:msub></mml:mrow></mml:math 	ni> x ∡/mml	:mi>
632	First principles characterization of defect-free and vacancy-defected monolayer PtSe2 gas sensors. Sensors and Actuators A: Physical, 2020, 313, 112209.	2.0	10
633	3D 1Tâ€MoS ₂ /CoS ₂ Heterostructure via Interface Engineering for Ultrafast Hydrogen Evolution Reaction. Small, 2020, 16, e2002850.	5.2	114

#	Article	IF	CITATIONS
634	Hierarchical Ultrathin Mo/MoS _{2(1â^'} <i>_x</i> _{â^'} <i>_y</i> ₎ P <i>_{x<!--<br-->Nanosheets Assembled on P, N Coâ€Doped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes. Small, 2020, 16, e2004973.}</i>	sub>	29
635	Pulse-Mediated Electronic Tuning of the MoS ₂ –Perovskite Ferroelectric Field Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 3843-3852.	2.0	2
636	First-Principles Study of the Hexagonal T-Phase PdSe ₂ Monolayer and Its Application in Solar Cells. Journal of Physical Chemistry C, 2020, 124, 26565-26571.	1.5	28
637	Direct Observation of Electron Beam-Induced Phase Transition in MgCrMnO ₄ . Chemistry of Materials, 2020, 32, 10456-10462.	3.2	18
638	Atomic-scale evidence for highly selective electrocatalytic Nâ^'N coupling on metallic MoS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31631-31638.	3.3	18
639	1T/2H Mixed Phase MoS ₂ Nanosheets Integrated by a 3D Nitrogen-Doped Graphene Derivative for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 55884-55893.	4.0	44
640	Growth of 2-D MoS2 thin film by facile electrochemical deposition. AIP Conference Proceedings, 2020, , .	0.3	0
641	Lithium adsorption on 2D transition metal dichalcogenides: towards a descriptor for machine learned materials design. Journal of Materials Chemistry A, 2020, 8, 23511-23518.	5.2	20
642	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
643	Multi-dimensional materials with layered structures for supercapacitors: Advanced synthesis, supercapacitor performance and functional mechanism. Nano Energy, 2020, 78, 105193.	8.2	58
644	Hydrogen Plasma Exposure of Monolayer MoS ₂ Field-Effect Transistors and Prevention of Desulfurization by Monolayer Graphene. ACS Applied Materials & Interfaces, 2020, 12, 37305-37312.	4.0	8
645	Single-atom electron microscopy for energy-related nanomaterials. Journal of Materials Chemistry A, 2020, 8, 16142-16165.	5.2	20
646	Phaseâ€Engineering of 1T/2H Molybdenum Disulfide by Using Ionic Liquid for Enhanced Electrocatalytic Hydrogen Evolution. ChemElectroChem, 2020, 7, 3347-3352.	1.7	15
647	Diodeâ€Like Selective Enhancement of Carrier Transport through Metal–Semiconductor Interface Decorated by Monolayer Boron Nitride. Advanced Materials, 2020, 32, e2002716.	11.1	19
648	Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Research, 2020, 13, 2917-2924.	5.8	11
649	Effect of Adventitious Carbon on Pit Formation of Monolayer MoS 2. Advanced Materials, 2020, 32, 2003020.	11.1	9
650	An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification. Journal of Environmental Chemical Engineering, 2020, 8, 104307.	3.3	38
651	Single atom is not alone: Metal–support interactions in single-atom catalysis. Materials Today, 2020, 40, 173-192.	8.3	174

#	Article	IF	CITATIONS
652	Interactions between Transition-Metal Surfaces and MoS ₂ Monolayers: Implications for Hydrogen Evolution and CO ₂ Reduction Reactions. Journal of Physical Chemistry C, 2020, 124, 20116-20124.	1.5	12
653	Contact resistance at 2D metal/semiconductor heterostructures. Frontiers of Nanoscience, 2020, 17, 127-140.	0.3	0
654	Induced spin polarization in graphene <i>via</i> interactions with halogen doped MoS ₂ and MoSe ₂ monolayers by DFT calculations. Nanoscale, 2020, 12, 23248-23258.	2.8	13
655	Atomic observation of phase transition in layered SnS2 driven by <i>in situ</i> heating and electron beam irradiation. Applied Physics Letters, 2020, 117, .	1.5	7
656	Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. Sensors, 2020, 20, 4811.	2.1	16
657	Semimetal 1Hâ€&nS ₂ Enables Highâ€Efficiency Electroreduction of CO ₂ to CO. Small Methods, 2020, 4, 2000567.	4.6	48
658	Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods, 2020, 4, 2000494.	4.6	146
659	Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges. Nano-Micro Letters, 2020, 12, 174.	14.4	50
660	Covalent doping of Ni and P on 1T-enriched MoS ₂ bifunctional 2D-nanostructures with active basal planes and expanded interlayers boosts electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 19654-19664.	5.2	41
661	Recent advances in green synthesis and modification of inorganic nanomaterials by ionizing and non-ionizing radiation. Journal of Materials Chemistry A, 2020, 8, 23029-23058.	5.2	17
662	Facile Resistâ€Free Nanopatterning of Monolayers of MoS ₂ by Focused Ionâ€Beam Milling. Advanced Materials Interfaces, 2020, 7, 2000858.	1.9	14
663	Strong band-filling-dependence of the scattering lifetime in gated MoS 2 nanolayers induced by the opening of intervalley scattering channels. Journal of Applied Physics, 2020, 128, 063907.	1.1	5
664	Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. Science Advances, 2020, 6, .	4.7	13
665	Composition-Gradient-Mediated Semiconductor–Metal Transition in Ternary Transition-Metal-Dichalcogenide Bilayers. ACS Applied Materials & Interfaces, 2020, 12, 45184-45191.	4.0	12
666	One-Dimensional Magnetic Order Stabilized in Edge-Reconstructed MoS ₂ Nanoribbon via Bias Voltage. Journal of Physical Chemistry Letters, 2020, 11, 7531-7535.	2.1	13
667	Modeling for Structural Engineering and Synthesis of Two-Dimensional WSe ₂ Using a Newly Developed ReaxFF Reactive Force Field. Journal of Physical Chemistry C, 2020, 124, 28285-28297.	1.5	20
668	Non-equilibrium Structural Phase Transformations in Atomically Thin Transition Metal Dichalcogenides. Microscopy and Microanalysis, 2020, 26, 632-633.	0.2	0
669	Refractive Uses of Layered and Two-Dimensional Materials for Integrated Photonics. ACS Photonics, 2020, 7, 3270-3285.	3.2	23

#	Article	IF	CITATIONS
670	The rational doping of P and W in multi-stage catalysts to trigger Pt-like electrocatalytic performance. Journal of Materials Chemistry A, 2020, 8, 25165-25172.	5.2	17
671	Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS ₂ Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 50610-50618.	4.0	64
672	Complexity of mixed allotropes of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub> unraveled by first-principles theory. Physical Review B, 2020, 102, .</mml:math 	1,1	5
673	Phase Engineering of <scp>Twoâ€Dimensional</scp> Transition Metal Dichalcogenides. Chinese Journal of Chemistry, 2020, 38, 753-760.	2.6	56
674	Initial stage of MBE growth of MoSe ₂ monolayer. Nanotechnology, 2020, 31, 315710.	1.3	10
675	Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles. Journal of Physical Chemistry B, 2020, 124, 4326-4337.	1.2	13
676	2D Tungsten Chalcogenides: Synthesis, Properties and Applications. Advanced Materials Interfaces, 2020, 7, 2000002.	1.9	39
677	Freestanding 1Tâ€Mn <i>_x</i> Mo _{1–} <i>_x</i> S _{2–} <i>_y</i> and MoFe ₂ S _{4–} <i>_z</i> Se <i>_zz<td>Se<i><sub 5.2</sub </i></td><td>>y43</td></i>	Se <i><sub 5.2</sub </i>	>y43
678	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	5.2	67
679	Two-Dimensional Nanomaterials with Unconventional Phases. CheM, 2020, 6, 1237-1253.	5.8	93
680	Theoretical characterization of the electronic properties of heterogeneous vertical stacks of 2D metal dichalcogenides containing one doped layer. Physical Chemistry Chemical Physics, 2020, 22, 14088-14098.	1.3	5
681	Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chemical Society Reviews, 2020, 49, 3952-3980.	18.7	142
682	Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Applied Surface Science, 2020, 510, 145368.	3.1	15
683	Layered materials with 2D connectivity for thermoelectric energy conversion. Journal of Materials Chemistry A, 2020, 8, 12226-12261.	5.2	74
684	MoS2 mediated nitrogen enriched composite material for high and fast Li-ion storage. Applied Surface Science, 2020, 525, 146437.	3.1	12
685	Structural Transition in Oxidized Ca2N Electrenes: CaO/CaN 2D Heterostructures. Journal of Physical Chemistry C, 2020, 124, 14706-14712.	1.5	4
686	Direct visualization of out-of-equilibrium structural transformations in atomically thin chalcogenides. Npj 2D Materials and Applications, 2020, 4, .	3.9	31
687	Metallic 1T Phase Tungsten Disulfide Microflowers for Trace Level Detection of Hg ²⁺ Ions. Advanced Sustainable Systems, 2020, 4, 2000068.	2.7	12

#	Article	IF	CITATIONS
688	Supercritical hydrothermal synthesis of MoS ₂ nanosheets with controllable layer number and phase structure. Dalton Transactions, 2020, 49, 9377-9384.	1.6	17
689	Design of MXene contacts for high-performance WS2 transistors. Applied Surface Science, 2020, 527, 146701.	3.1	22
690	Intrinsic limit of contact resistance in the lateral heterostructure of metallic and semiconducting PtSe2. Nanoscale, 2020, 12, 14636-14641.	2.8	8
691	STEM imaging artifacts with three-fold astigmatism in monolayer transition metal dichalcogenides. Applied Physics Letters, 2020, 116, .	1.5	5
692	Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications, 2020, 11, 2994.	5.8	63
693	Engineering Phase Transformation of MoS ₂ /RGO by N-doping as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 16831-16840.	4.0	57
694	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials, 2020, 19, 867-873.	13.3	96
695	Designed Growth of Largeâ€Size 2D Single Crystals. Advanced Materials, 2020, 32, e2000046.	11.1	71
696	Air‣table Monolayer Cu ₂ Se Exhibits a Purely Thermal Structural Phase Transition. Advanced Materials, 2020, 32, e1908314.	11.1	26
697	Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small, 2020, 16, e1905885.	5.2	52
698	Enhancement of WSe2 FET Performance Using Low-Temperature Annealing. Journal of Electronic Materials, 2020, 49, 3770-3779.	1.0	11
699	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	13.8	438
700	Construction of Active Orbital via Single-Atom Cobalt Anchoring on the Surface of 1T-MoS ₂ Basal Plane toward Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 2315-2322.	2.5	50
701	Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6362-6369.	3.3	33
702	Phase selective CVD growth and photoinduced 1T → 1H phase transition in a WS ₂ monolayer. Journal of Materials Chemistry C, 2020, 8, 10438-10447.	2.7	17
703	Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Moltenâ€Metalâ€Assisted Intercalation. Advanced Materials, 2020, 32, e2001889.	11.1	63
704	Synthesis of 2Hâ€1T′ WS ₂ â€ReS ₂ Heterophase Structures with Atomically Sharp Interface via Hydrogenâ€Triggered Oneâ€Pot Growth. Advanced Functional Materials, 2020, 30, 1910169.	7.8	42
705	Structure and Dynamics of the Electronic Heterointerfaces in MoS ₂ by First-Principles Simulations. Journal of Physical Chemistry Letters, 2020, 11, 1644-1649.	2.1	9

#	Article	IF	CITATIONS
706	Strain-Controllable Phase and Magnetism Transitions in Re-Doped MoTe ₂ Monolayer. Journal of Physical Chemistry C, 2020, 124, 4299-4307.	1.5	20
707	Grain-Boundary-Induced Strain and Distortion in Epitaxial Bilayer MoS ₂ Lattice. Journal of Physical Chemistry C, 2020, 124, 6472-6478.	1.5	12
708	Subâ€Millimeterâ€Scale Monolayer pâ€Type Hâ€Phase VS ₂ . Advanced Functional Materials, 2020, 3 2000240.	³⁰ ,7.8	64
709	Incorporation of active phase in porous MoS2 for enhanced hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 4121-4128.	1.1	3
710	Multifunctional Role of MoS ₂ in Preparation of Composite Hydrogels: Radical Initiation and Cross-Linking. ACS Applied Materials & Interfaces, 2020, 12, 8642-8649.	4.0	27
711	Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.	7.3	130
712	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	13.7	145
713	Variable voltage electron microscopy: Toward atom-by-atom fabrication in 2D materials. Ultramicroscopy, 2020, 211, 112949.	0.8	14
714	Achieving Durable and Fast Charge Storage of MoO2-Based Insertion-Type Pseudocapacitive Electrodes via N-Doped Carbon Coating . ACS Sustainable Chemistry and Engineering, 2020, 8, 2806-2813.	3.2	13
715	Enhanced lithium storage for MoS2-based composites via a vacancy-assisted method. Applied Surface Science, 2020, 515, 146103.	3.1	13
716	Multifunctional MoS ₂ Transistors with Electrolyte Gel Gating. Small, 2020, 16, e2000420.	5.2	23
717	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
718	Prediction of a novel robust superconducting state in TaS ₂ under high pressure. Physical Chemistry Chemical Physics, 2020, 22, 8827-8833.	1.3	7
719	Investigation of potassium-intercalated bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2transmission electron energy-loss spectroscopy. Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	m a. a <td>l:ເສsub><!--ຫ</td--></td>	l :ເສ sub> ຫ</td
720	First-Principles Study of the Contact Resistance at 2D Metal/2D Semiconductor Heterojunctions. Applied Sciences (Switzerland), 2020, 10, 2731.	1.3	7
721	Thermal History-Dependent Current Relaxation in hBN/MoS ₂ van der Waals Dimers. ACS Nano, 2020, 14, 5909-5916.	7.3	9
722	Nature and origin of unusual properties in chemically exfoliated 2D MoS2. APL Materials, 2020, 8, 040909.	2.2	9
723	topological semimetal in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Zr</mml:mi> <mml:msub> <mml:mi>X</mml:mi> (<mml:math) (xmlns:mml="http://www.w3.org/1998/Math/N</td><td>< mml:mn
MathML" 0.784314="" 1="" 10="" 50="" 52="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""></mml:math)></mml:msub></mml:math 	>2 <mml:mi>X</mml:mi>	

ARTICLE IF CITATIONS Polymorphic In-Plane Heterostructures of Monolayer WS₂ for Light-Triggered 724 2.4 5 Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 3750-3759. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. 11.1 284 Advanced Materials, 2021, 33, e1907818. Surface charge transfer doping for two-dimensional semiconductor-based electronic and 726 5.8 72 optoelectronic devices. Nano Research, 2021, 14, 1682-1697. Defects and grain boundary effects in MoS2: A molecular dynamics study. Journal of Physics and 727 Chemistry of Solids, 2021, 148, 109669. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. 728 5.8 19 Nano Research, 2021, 14, 1768-1783. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in 729 10.8 ampicillin wastewater. Applied Catalysis B: Environmental, 2021, 282, 119574. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen 730 6.6 91 evolution reaction. Chemical Engineering Journal, 2021, 405, 127013. All-2D architectures toward advanced electronic and optoelectronic devices. Nano Today, 2021, 36, 6.2 101026. Electrochemically Exfoliating MoS₂ into Atomically Thin Planarâ€Stacking Through a 732 7.8 23 Selective Lateral Reaction Pathway. Advanced Functional Materials, 2021, 31, 2007840. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and 6.4 monitoring. Materials Horizons, 2021, 8, 758-802. Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor 734 71 6.9 Heterostructures. Small Structures, 2021, 2, 2000093. Oxygen functionalization-induced crossover in the tensile properties of the thinnest 2D Ti2C MXene. Journal of Materials Chemistry C, 2021, 9, 2416-2425. Highâ€Performance Spin Filters and Spin Field Effect Transistors Based on Bilayer VSe₂. 736 1.3 16 Advanced Theory and Simulations, 2021, 4, 2000238. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Frontiers of 2.4 Physics, 2021, 16, 1. 738 Monolayer MoS2 epitaxy. Nano Research, 2021, 14, 1598-1608. 5.8 11 Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389. Atomic-scale insights into the formation of 2D crystals from in situ transmission electron 740 5.8 12 microscopy. Nano Research, 2021, 14, 1650-1658. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials 741 for hydrogen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 511-556.

#	Article	IF	CITATIONS
742	Families of asymmetrically functionalized germanene films as promising quantum spin Hall insulators. Physical Chemistry Chemical Physics, 2021, 23, 3595-3605.	1.3	3
743	Mixedâ€phase <scp> MoS ₂ </scp> decorated reduced graphene oxide hybrid composites for efficient symmetric supercapacitors. International Journal of Energy Research, 2021, 45, 9193-9209.	2.2	28
744	Ohmic Contact Engineering for Two-Dimensional Materials. Cell Reports Physical Science, 2021, 2, 100298.	2.8	81
745	Realization of Waferâ€Scale 1Tâ€MoS ₂ Film for Efficient Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 1344-1350.	3.6	21
746	Novel insights into the unique intrinsic sensing behaviors of 2D nanomaterials for volatile organic compounds: from graphene to MoS ₂ and black phosphorous. Journal of Materials Chemistry A, 2021, 9, 14411-14421.	5.2	22
747	In Situ Characterization of Transformations in Nanoscale Layered Metal Chalcogenide Materials: A Review. ChemNanoMat, 2021, 7, 208-222.	1.5	6
748	Gate-tunable superconductivity and charge-density wave in monolayer 1T′-MoTe ₂ and 1T′-WTe ₂ . Physical Chemistry Chemical Physics, 2021, 23, 17279-17286.	1.3	10
749	Facile phase transition engineering of MoS ₂ for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 8394-8400.	5.2	28
750	Fermi-level depinning of 2D transition metal dichalcogenide transistors. Journal of Materials Chemistry C, 2021, 9, 11407-11427.	2.7	49
751	The contact barrier of a 1T′/2H MoS2 heterophase bilayer and its modulation by adatom and strain: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 6791-6799.	1.3	2
752	Trends in the Development of Scanning Diagnostic Equipment for the Formation and the Development of Medical Visualization – Nucleic Acid Biosensors for Medical Diagnostics. , 2021, , .		0
753	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021, 15, 1282-1290.	7.3	48
754	Evolution of low-dimensional material-based field-effect transistors. Nanoscale, 2021, 13, 5162-5186.	2.8	39
755	In-depth first-principle study on novel MoS ₂ polymorphs. RSC Advances, 2021, 11, 3759-3769.	1.7	13
756	Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50, 10087-10115.	18.7	135
757	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
758	Atomic-scale dynamics of the phase transition in bilayer PtSe ₂ . Journal of Materials Chemistry C, 2021, 9, 5261-5266.	2.7	5
759	Semiconductor to topological insulator transition induced by stress propagation in metal dichalcogenide core–shell lateral heterostructures. Materials Horizons, 2021, 8, 1029-1036.	6.4	3

#	Article	IF	CITATIONS
760	MoS2, a new perspective beyond graphene. , 2021, , 499-541.		0
761	Engineering symmetry breaking in 2D layered materials. Nature Reviews Physics, 2021, 3, 193-206.	11.9	135
762	Theoretical investigation of quantum capacitance in the functionalized MoS ₂ -monolayer. Electronic Structure, 2021, 3, 025003.	1.0	4
763	In situ electron microscopy study of structural transformations in 2D CoSe2. Npj 2D Materials and Applications, 2021, 5, .	3.9	13
764	Properties, preparation, and application of tungsten disulfide: a review. Journal Physics D: Applied Physics, 2021, 54, 173002.	1.3	23
765	Two-Dimensional MoS2: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 240.	1.4	39
766	A reversible structural transition at 300 K to a low-symmetry polytype of hafnium disulfide atomic layers. Materials Today Communications, 2021, 26, 101722.	0.9	1
767	Recent Advances in Twoâ€Dimensional Heterostructures: From Band Alignment Engineering to Advanced Optoelectronic Applications. Advanced Electronic Materials, 2021, 7, 2001174.	2.6	34
768	Reinforcement learning in discrete action space applied to inverse defect design. Journal of Physics Communications, 2021, 5, 031001.	0.5	9
769	Photodriven Transient Picosecond Topâ€Layer Semiconductor to Metal Phaseâ€Transition in pâ€Doped Molybdenum Disulfide. Advanced Materials, 2021, 33, e2006957.	11.1	11
770	Directional charge delocalization dynamics in semiconducting 2H-MoS\$\$_{2}\$\$ and metallic 1T-Li\$\$_{mathrm{x}}\$\$MoS\$\$_{2}\$\$. Scientific Reports, 2021, 11, 6893.	1.6	3
771	Direct Optoelectronic Imaging of 2D Semiconductor–3D Metal Buried Interfaces. ACS Nano, 2021, 15, 5618-5630.	7.3	35
772	Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. Advanced Science, 2021, 8, 2002284.	5.6	47
773	A New Superconducting 3R-WS ₂ Phase at High Pressure. Journal of Physical Chemistry Letters, 2021, 12, 3321-3327.	2.1	10
774	Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Research, 2021, 14, 4182.	5.8	7
775	The properties and prospects of chemically exfoliated nanosheets for quantum materials in two dimensions. Applied Physics Reviews, 2021, 8, .	5.5	17
776	Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. Materials, 2021, 14, 1192.	1.3	48
777	Functionalized MoS ₂ -Based Nanomaterials for Cancer Phototherapy and Other Biomedical Applications. , 2021, 3, 462-496.		68

#	Article	IF	CITATIONS
778	One-Step Hydrothermal Synthesis of Phase-Engineered MoS ₂ /MoO ₃ Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 2642-2656.	2.4	78
779	Theory of nonvolatile resistive switching in monolayer molybdenum disulfide with passive electrodes. Npj 2D Materials and Applications, 2021, 5, .	3.9	15
780	Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. Small, 2021, 17, e2005573.	5.2	19
781	1D chain structure in 1T′-phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews, 2021, 8, .	5.5	9
782	Incorporation of incompatible trace elements into molybdenite: Layered PbS precipitates within molybdenite. American Mineralogist, 2022, 107, 54-64.	0.9	8
783	Direct growth of monolayer 1T–2H MoS ₂ heterostructures using KCl-assisted CVD process. 2D Materials, 2021, 8, 025033.	2.0	16
784	Advances in transition metal dichalcogenide-based two-dimensional nanomaterials. Materials Today Chemistry, 2021, 19, 100399.	1.7	50
785	Promises and prospects of two-dimensional transistors. Nature, 2021, 591, 43-53.	13.7	548
786	Phase-Reversed MoS ₂ Nanosheets Prepared through Femtosecond Laser Exfoliation and Chemical Doping. Journal of Physical Chemistry C, 2021, 125, 8304-8313.	1.5	10
787	Phase transitions in 2D materials. Nature Reviews Materials, 2021, 6, 829-846.	23.3	205
788	1D metallic states at 2D transition metal dichalcogenide semiconductor heterojunctions. Npj 2D Materials and Applications, 2021, 5, .	3.9	2
789	Preferential hole defect formation in monolayer WSe2 by electron-beam irradiation. Physical Review Materials, 2021, 5, .	0.9	4
790	Excited electron dynamics in the interface of 2H-1T hetero-phases of monolayer MoS2: time-dependent density functional theory study. Journal of the Korean Physical Society, 2021, 78, 1203-1207.	0.3	0
791	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	13.3	119
792	Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways. NPG Asia Materials, 2021, 13, .	3.8	10
793	Artificial Neuron and Synapse Devices Based on 2D Materials. Small, 2021, 17, e2100640.	5.2	75
794	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
795	Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*. Chinese Physics B, 2021, 30, 116401.	0.7	3

#	Article	IF	CITATIONS
796	High Stability of 1T-Phase MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Monolayers Under Ambient Conditions. Journal of Physical Chemistry C, 2021, 125, 8407-8417.	1.5	7
797	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
798	Self-Assembly of MoS2 Monolayer Sheets by Desulfurization. Langmuir, 2021, 37, 4971-4983.	1.6	6
799	Single Transition Metal Atom Bound to the Unconventional Phase of the MoS ₂ Monolayer for Catalytic Oxygen Reduction Reaction: A First-Principles Study. ACS Applied Materials & amp; Interfaces, 2021, 13, 17412-17419.	4.0	26
800	Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices. Npj Computational Materials, 2021, 7, .	3.5	35
802	Straintronics of 2D inorganic materials for electronic and optical applications. Physics-Uspekhi, 2022, 65, 567-596.	0.8	6
803	Visible light-induced antibacterial effect of MoS2: Effect of the synthesis methods. Chemical Engineering Journal, 2021, 411, 128517.	6.6	47
804	Functional Groupâ€induced pâ€Doping of MoS ₂ by Titanium(IV) Bis(ammonium lactato) Dihydroxide Physisorption. Chemistry - an Asian Journal, 2021, 16, 1756-1761.	1.7	4
805	Density Functional Theory Study of Edge-Induced Atomic-Scale Structural Phase Transitions of MoS2 Nanocrystals: Implications for a High-Performance Catalyst. ACS Applied Nano Materials, 2021, 4, 5496-5502.	2.4	2
806	Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS ₂ with Extraordinary Sodium Storage Performance. ACS Nano, 2021, 15, 8896-8906.	7.3	77
807	Synthesis of lateral heterostructure of 2D materials for optoelectronic devices: challenges and opportunities. Emergent Materials, 2021, 4, 923-949.	3.2	14
808	Toward Wafer‧cale Production of 2D Transition Metal Chalcogenides. Advanced Electronic Materials, 2021, 7, 2100278.	2.6	16
809	Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports, 2021, 76, 100523.	3.8	50
810	A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Naâ€ion Battery Anodes. ChemElectroChem, 2021, 8, 2358-2396.	1.7	25
811	γ-GeSe: A New Hexagonal Polymorph from Group IV–VI Monochalcogenides. Nano Letters, 2021, 21, 4305-4313.	4.5	52
812	Semiconductor-semimetal transition of MoTe2 monolayer modulated by charge-injection and strain engineering. Chemical Physics Letters, 2021, 770, 138473.	1.2	7
813	Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage*. Chinese Physics B, 2021, 30, 058504.	0.7	13
814	Metal chalcogenides: An emerging material for electrocatalysis. APL Materials, 2021, 9, .	2.2	26

#	Article	IF	CITATIONS
815	Manipulation of the Magnetic Properties of Janus WSSe Monolayer by the Adsorption of Transition Metal Atoms. Nanoscale Research Letters, 2021, 16, 104.	3.1	5
816	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
817	Deep Learningâ€Assisted Quantification of Atomic Dopants and Defects in 2D Materials. Advanced Science, 2021, 8, e2101099.	5.6	29
818	Phase-Changing in Graphite Assisted by Interface Charge Injection. Nano Letters, 2021, 21, 5648-5654.	4.5	12
819	Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy, 2021, 84, 105898.	8.2	80
820	Advances in Liquidâ€Phase and Intercalation Exfoliations of Transition Metal Dichalcogenides to Produce 2D Framework. Advanced Materials Interfaces, 2021, 8, 2002205.	1.9	43
821	Nearly hyperuniform, nonhyperuniform, and antihyperuniform density fluctuations in two-dimensional transition metal dichalcogenides with defects. Physical Review B, 2021, 103, .	1.1	12
822	An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nature Communications, 2021, 12, 3347.	5.8	46
823	Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene. Chinese Physics Letters, 2021, 38, 056301.	1.3	7
824	Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. Nanotechnology, 2021, 32, 372001.	1.3	16
825	A Review on MoS2 Energy Applications: Recent Developments and Challenges. Energies, 2021, 14, 4586.	1.6	37
826	Phaseâ€Selective Synthesis of Ultrathin FeTe Nanoplates by Controllable Fe/Te Atom Ratio in the Growth Atmosphere. Small, 2021, 17, 2101616.	5.2	13
827	Roadmap and Direction toward High-Performance MoS ₂ Hydrogen Evolution Catalysts. ACS Nano, 2021, 15, 11014-11039.	7.3	179
828	Electrospun nanofiber patch based on gum tragacanth/polyvinyl alcohol/molybdenum disulfide composite for tetracycline delivery and their inhibitory effect on Gram+ and Gram– bacteria. Journal of Molecular Liquids, 2021, 334, 115989.	2.3	21
829	Learning with Delayed Rewards—A Case Study on Inverse Defect Design in 2D Materials. ACS Applied Materials & Interfaces, 2021, 13, 36455-36464.	4.0	12
830	Theoretical evaluation and experimental investigation of layered 2H/1T-phase MoS2 and its reduced graphene-oxide hybrids for hydrogen evolution reactions. Journal of Alloys and Compounds, 2021, 868, 159272.	2.8	22
831	Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials. Npj Computational Materials, 2021, 7, .	3.5	9
832	Chemical Dopantâ€Free Doping by Annealing and Electron Beam Irradiation on 2D Materials. Advanced Electronic Materials, 2021, 7, 2100449.	2.6	14

#	Article	IF	CITATIONS
833	Electron energy loss spectroscopy of sub-10 nm 2D MoS2 crystals. Microscopy and Microanalysis, 2021, 27, 1210-1211.	0.2	0
834	High Electrocatalytic Activity of Defected MX ₂ /Graphene Heterostructures (M = Mo, W; X) Tj ETQq1	1,0,7843 1,5	14fgBT /Cve
835	Polymorphism of Segmented Grain Boundaries in Two-Dimensional Transition Metal Dichalcogenides. Nano Letters, 2021, 21, 6014-6021.	4.5	7
836	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	14.8	169
837	Reutilizing Methane Reforming Spent Catalysts as Efficient Overall Water-Splitting Electrocatalysts. ACS Omega, 2021, 6, 21316-21326.	1.6	16
838	Quantitative annular dark-field imaging in the scanning transmission electron microscope—a review. JPhys Materials, 2021, 4, 042006.	1.8	7
839	Potential energy surface and band gap landscape of molybdenum and titanium disulfides. International Journal of Quantum Chemistry, 2021, 121, e26803.	1.0	1
840	Phase Engineering of Transition Metal Dichalcogenides via a Thermodynamically Designed Gas–Solid Reaction. Journal of Physical Chemistry Letters, 2021, 12, 8430-8439.	2.1	0
841	2D Metallic Transitionâ€Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Advanced Functional Materials, 2021, 31, 2105132.	7.8	111
842	Periodic and non-periodic stacking in molybdenite (MoS2) revealed by STEM. American Mineralogist, 2022, 107, 997-1006.	0.9	6
843	Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications. Crystals, 2021, 11, 964.	1.0	9
844	Effect of electron-irradiation on layered quantum materials. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
845	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Advanced Materials, 2021, 33, e2008376.	11.1	114
846	Improving the capacity, redox activities of Li-ion batteries through Si3N4@MoS2 hetero-structure design. Journal of Materials Science, 2021, 56, 18592-18607.	1.7	0
847	Interlayer Coupling Dependent Discrete H → T′ Phase Transition in Lithium Intercalated Bilayer Molybdenum Disulfide. ACS Nano, 2021, 15, 15039-15046.	7.3	15
848	Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. Journal of Materiomics, 2022, 8, 327-334.	2.8	50
849	Anomalous Dimensionalityâ€Driven Phase Transition of MoTe ₂ in Van der Waals Heterostructure. Advanced Functional Materials, 2021, 31, 2107376.	7.8	14
850	Photocarrier Dynamics in MoTe ₂ Nanofilms with 2 <i>H</i> and Distorted 1 <i>T</i> Lattice Structures. ACS Applied Materials & amp; Interfaces, 2021, 13, 44703-44710.	4.0	6

#	Article	IF	CITATIONS
851	Ni-nanoclusters hybridized 1T–Mn–VTe2 mesoporous nanosheets for ultra-low potential water splitting. Applied Catalysis B: Environmental, 2022, 301, 120780.	10.8	32
852	MoS ₂ -Embedded, Interpenetrating Network Composite Hydrogels that Show Controlled Release of Dyes and Tunable Strength. ACS Omega, 2021, 6, 25623-25630.	1.6	2
853	Novel two-dimensional transition metal chalcogenides created by epitaxial growth. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	3
854	Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 32425-32434.	3.8	10
855	The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes. Surface Science Reports, 2021, 76, 100542.	3.8	13
856	Unconventional van der Waals heterostructures beyond stacking. IScience, 2021, 24, 103050.	1.9	4
857	Melting, Crystallization, and Alloying Dynamics in Nanoscale Bismuth Telluride. Nano Letters, 2021, 21, 8197-8204.	4.5	1
858	Graphene-like 2H/1T-MoSe2 with superior full spectrum absorption: Morphology and phase engineering. Journal of Alloys and Compounds, 2021, 877, 160317.	2.8	12
859	Defect engineering in lanthanide doped luminescent materials. Coordination Chemistry Reviews, 2021, 448, 214178.	9.5	26
860	Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS Nano, 2021, 15, 2165-2181.	7.3	217
861	Controlled 2H/1T phase transition in MoS ₂ monolayers by a strong interface with M ₂ C MXenes: a computational study. Physical Chemistry Chemical Physics, 2021, 23, 20107-20116.	1.3	13
862	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
864	Gas Sensing Using Monolayer MoS2. NATO Science for Peace and Security Series A: Chemistry and Biology, 2019, , 71-95.	0.5	1
865	Morphology-controllable formation of MOF-Derived C/ZrO2@1T-2H MoS2 heterostructure for improved electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 14831-14840.	3.8	8
866	Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 577, 38-47.	5.0	11
867	Tailoring optoelectronic properties of monolayer transition metal dichalcogenide through alloying. Materialia, 2020, 12, 100708.	1.3	11
868	Structural Phase Transformation in Amorphous Molybdenum Disulfide during Friction. Journal of Physical Chemistry C, 2021, 125, 836-844.	1.5	12
869	Electron-injection driven phase transition in two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2020, 8, 4432-4440.	2.7	31

#	ARTICLE	IF	CITATIONS
870	Electron beam triggered single-atom dynamics in two-dimensional materials. Journal of Physics Condensed Matter, 2021, 33, 063001.	0.7	6
871	Schottky barriers, emission regimes and contact resistances in 2H-1T' MoS2 lateral metal-semiconductor junctions from first-principles. 2D Materials, 2020, 7, 045030.	2.0	9
872	Domain morphology and mechanics of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="normal">H<mml:mo>/</mml:mo><mml:mi mathvariant="normal">T</mml:mi </mml:mi </mml:mrow><mml:mo>′</mml:mo></mml:msup> transition metal dichalcogenide monolayers. Physical Review Materials, 2018, 2, .</mml:math 	0.9	18
873	Noncontacting optostriction driven anisotropic and inhomogeneous strain in two-dimensional materials. Physical Review Research, 2020, 2, .	1.3	9
874	Near-infrared photonic phase-change properties of transition metal ditellurides. , 2019, , .		4
875	Lateral and vertical heterostructures in two-dimensional transition-metal dichalcogenides [Invited]. Optical Materials Express, 2019, 9, 1590.	1.6	40
877	Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research, 2019, 2019, 4641739.	2.8	101
878	Phase Transformation of Two-Dimensional Transition Metal Dichalcogenides. Applied Microscopy, 2018, 48, 43-48.	0.8	9
879	The occurrence of rhenium in the Zhanling porphyry molybdenum deposit, Jing County, Anhui Province. Acta Petrologica Sinica, 2021, 37, 2705-2722.	0.3	1
880	Construction of 1T@2H MoS ₂ heterostructures <i>in situ</i> from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2021, 11, 33481-33489.	1.7	8
881	Electronic Structure and Stacking Arrangement of Tungsten Disulfide at the Gold Contact. ACS Nano, 2021, 15, 18060-18070.	7.3	6
882	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	5.8	35
883	Elucidation of Novel Potassium-Mediated Oxidation and Etching of Two-Dimensional Transition Metal Dichalcogenides. ACS Applied Materials & amp; Interfaces, 2021, 13, 49163-49171.	4.0	1
884	MoTe2 Field-Effect Transistors with Low Contact Resistance through Phase Tuning by Laser Irradiation. Nanomaterials, 2021, 11, 2805.	1.9	7
885	Atomic Structure of Dislocations and Grain Boundaries in Two-Dimensional PtSe ₂ . ACS Nano, 2021, 15, 16748-16759.	7.3	12
886	Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nature Chemistry, 2021, 13, 1101-1109.	6.6	52
887	First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2. Journal of the Korean Magnetics Society, 2016, 26, 71-75.	0.0	0
888	Synthesis, Characterization, and Catalytic Application of 2D Mo(W) Dichalcogenides Nanosheets. Advances in Chemical and Materials Engineering Book Series, 2017, , 1-30.	0.2	0

ARTICLE IF CITATIONS Electrical Conduction in Curved Hexagonal Borophane. SSRN Electronic Journal, 0, , . 890 0.4 0 Cryogenic Micro-PL of Monolayer 1T/2H MoS2 Superlattice., 2019, , . Origin of dynamical instabilities in some simulated two-dimensional materials: GaSe as a case study. 892 0.9 8 Physical Review Materials, 2019, 3, . Initiating VBâ€Group Laminated NbS₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194. 147 Mechanical Properties of All MoS2 Monolayer Heterostructures: Crack Propagation and Existing 894 1.5 4 Notch Study. Computers, Materials and Continua, 2022, 70, 4635-4655. Earth-abundant electrocatalysts for sustainable energy conversion., 2022, 131-168. Phase engineering of Mo1-xWxS2 nanosheets for flexible supercapacitors. Scripta Materialia, 2022, 896 2.6 4 208, 114346. Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for 4.8 hydrogen evolution improvement. Chinese Chemical Letters, 2022, 33, 3745-3751. Design principle of MoS2/C heterostructure to enhance the quantum capacitance for supercapacitor 898 3.9 22 application. Journal of Energy Storage, 2021, 44, 103476. Near-infrared photonic phase-change properties of transition metal ditellurides. Proceedings of SPIE, 899 0.8 2019, 11085, . Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano 900 6.2 67 Today, 2022, 42, 101338. Optoelectronic Properties of Atomically Thin MoxW(1â⁻x)S2 Nanoflakes Probed by Spatially-Resolved Monochromated EELS. Nanomaterials, 2021, 11, 3218. Self-activating anti-infection implant. Nature Communications, 2021, 12, 6907. 902 5.8 77 Edgeâ€Mediated Annihilation of Vacancy Clusters in Monolayer Molybdenum Diselenide 5.2 (MoSe₂) under Electron Beam Irradiation. Small, 2022, 18, e2105194. Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future 904 5.526 outlook. Applied Physics Reviews, 2021, 8, . Effect of interfacial defects on the electronic properties of MoS₂ based lateral T–H heterophase junctions. RSC Advances, 2021, 11, 37995-38002. One-dimensional metallic grain boundary in transition metal dichalcogenides. Computational 906 1.4 2 Materials Science, 2022, 203, 111115. Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 6.2 2D-material-based devices. Nano Today, 2022, 42, 101372.

#	Article	IF	CITATIONS
908	Synthesis, properties, and applications of MoS2 semiconductor. , 2022, , 155-189.		2
909	Plasma-induced large-area N,Pt-doping and phase engineering of MoS ₂ nanosheets for alkaline hydrogen evolution. Energy and Environmental Science, 2022, 15, 1201-1210.	15.6	75
910	Optical Control of Multistage Phase Transition via Phonon Coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoTe</mml:mi></mml:mrow><mml:mrow><m Physical Review Letters, 2022, 128, 015702.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	1029 1011:mn>2	<
911	Iodide-substitution-induced phase transition of chemical-vapor-deposited MoS2. Journal of Materials Chemistry C, 2022, 10, 1638-1644.	2.7	1
912	Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Materials Advances, 2022, 3, 1874-1904.	2.6	24
913	Thickness-dependent phase transition kinetics in lithium-intercalated MoS ₂ . 2D Materials, 2022, 9, 025009.	2.0	8
914	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small, 2022, 18, e2105831.	5.2	31
915	Hole- and electron-injection driven phase transitions in transition metal dichalcogenides and beyond: A unified understanding. Physical Review B, 2022, 105, .	1.1	10
916	Thermal Rectifier and Thermal Transistor of 1T/2H MoS ₂ for Heat Flow Management. ACS Applied Materials & Interfaces, 2022, 14, 4434-4442.	4.0	7
917	A detailed comparative performance analysis of the Transition Metal Di-chalcogenides (TMDs) based strain sensors through experimental realisations and first principle calculations. FlatChem, 2022, 32, 100344.	2.8	19
918	First-principles insights into mechanical, optoelectronic, and thermo-physical properties of transition metal dichalcogenides ZrX2 (X = S, Se, and Te). AIP Advances, 2022, 12, .	0.6	16
919	Electron Irradiation Induces the Conversion from 2H-WSe ₂ to 1T-WSe ₂ and Promotes the Performance of Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2420-2428.	3.2	10
920	Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS ₂) Nanosheets. Small, 2022, 18, e2107557.	5.2	3
921	Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing. Nano-Micro Letters, 2022, 14, 58.	14.4	62
922	Plasmonic hot-electron assisted phase transformation in 2D-MoS ₂ for the hydrogen evolution reaction: current status and future prospects. Journal of Materials Chemistry A, 2022, 10, 8626-8655.	5.2	24
923	Emerging investigator series: hetero-phase junction 1T/2H-MoS ₂ nanosheets decorated by FeOOH nanoparticles for enhanced visible light photo-Fenton degradation of antibiotics. Environmental Science: Nano, 2022, 9, 2342-2350.	2.2	8
924	Tunning the Band Gap of 1T'-WTe ₂ by Uniaxial Strain. Journal of Applied Mathematics and Physics, 2022, 10, 772-778.	0.2	0
925	Materials engineering $\hat{a} \in $ defect healing & amp; passivation. , 2022, , 195-219.		0

#	Article	IF	CITATIONS
926	Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 066801.	0.2	3
927	Unusual phase transitions in two-dimensional telluride heterostructures. Materials Today, 2022, 54, 52-62.	8.3	9
928	Bifunctional P-Intercalated and Doped Metallic (1T)-Copper Molybdenum Sulfide Ultrathin 2D-Nanosheets with Enlarged Interlayers for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 14492-14503.	4.0	39
929	Enhanced thermoelectric properties of 2H–MoS2 thin film by tuning post sulfurization temperature. Ceramics International, 2022, 48, 18944-18948.	2.3	7
930	Computational Investigation of Orderly Doped Transition Metal Dichalcogenides: Implications for Nanoscale Optoelectronic Devices. ACS Applied Nano Materials, 2022, 5, 3824-3831.	2.4	5
931	General Bottom-Up Colloidal Synthesis of Nano-Monolayer Transition-Metal Dichalcogenides with High 1T′-Phase Purity. Journal of the American Chemical Society, 2022, 144, 4863-4873.	6.6	58
932	SLM-processed MoS2/Mo2S3 nanocomposite for energy conversion/storage applications. Scientific Reports, 2022, 12, 5030.	1.6	9
933	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
934	Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides. Advanced Materials, 2022, 34, e2200643.	11.1	6
935	Bridging the gap between atomically thin semiconductors and metal leads. Nature Communications, 2022, 13, 1777.	5.8	17
936	Phase transformation via atomic-scale periodic interfacial energy. Materials Today Physics, 2022, 24, 100668.	2.9	0
937	Investigating the optoelectronic and thermoelectric nature of IrSbX (X = S, Se, and Te) TMC's semiconductors: By employing the accurate modified Becke-Johnson exchange potential. Materials Science in Semiconductor Processing, 2022, 144, 106577.	1.9	5
938	Nitrogen-doped MoS2 as a catalytic sulfur host for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 439, 135568.	6.6	24
939	2D-Mo3S4 phase as promising contact for MoS2. Applied Surface Science, 2022, 589, 152971.	3.1	6
940	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	5.7	3
941	Monolayer WS ₂ Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence. ACS Nano, 2022, 16, 597-603.	7.3	7
942	Anomalous behavior induced by water insertion in molybdenum disulfide nanoflowers. Semiconductor Science and Technology, 2022, 37, 025012.	1.0	0
943	Atomistic Observation of the Local Phase Transition in MoTe ₂ for Application in Homojunction Photodetectors. Small, 2022, 18, e2200913.	5.2	12

#	Article	IF	CITATIONS
946	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
947	Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 697.	0.6	2
948	Tuning phase compositions of MoS ₂ nanomaterials for enhanced heavy metal removal: performance and mechanism. Physical Chemistry Chemical Physics, 2022, 24, 13305-13316.	1.3	6
949	Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews, 2022, 51, 4000-4022.	18.7	12
950	Electron-beam Induced Damage Process for Ca ₂ Na ₂ Nb ₅ O ₁₆ nanosheets. Nanotechnology, 2022, 33, .	1.3	0
951	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	8
952	Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. Journal of Materials Science and Technology, 2022, 127, 1-18.	5.6	18
953	Recent Progress in 1D Contacts for 2Dâ€Materialâ€Based Devices. Advanced Materials, 2022, 34, e2202408.	11.1	13
954	Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chemical Science, 2022, 13, 7707-7738.	3.7	28
955	Extrinsic Localized Excitons in Patterned 2D Semiconductors. Advanced Functional Materials, 0, , 2203060.	7.8	8
956	Tuning the optical properties of monolayer WS ₂ for near-infrared-II photothermal therapy: a first-principles study. Materials Advances, 2022, 3, 5845-5856.	2.6	6
957	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	5.5	27
958	Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors, 2022, 12, 386.	2.3	18
959	Finite deformation continuum model for mechanically induced phase transition in transition metal dichalcogenide monolayers. Journal of the Mechanics and Physics of Solids, 2022, 166, 104955.	2.3	1
961	Observation of a Yu-Shiba-Rusinov state originating from the magnetic moment in a curved monolayer island of 1T-phase NbSe ₂ . Nanoscale, 2022, 14, 9860-9868.	2.8	1
962	Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation. Journal of Energy Chemistry, 2022, 74, 45-71.	7.1	35
963	Subâ€Nanometer Electron Beam Phase Patterning in 2D Materials. Advanced Science, 2022, 9, .	5.6	11
964	STEM Image Analysis Based on Deep Learning: Identification of Vacancy Defects and Polymorphs of MoS ₂ . Nano Letters, 2022, 22, 4677-4685.	4.5	14

#	Article	IF	CITATIONS
965	Unravelling the phase transition of 2H-MoS2 to 1T-MoS2 induced by the chemical interaction of Pd with molybdenum disulfide–graphene hybrids. Applied Surface Science, 2022, 599, 153896.	3.1	9
966	Structural engineering brings new electronic properties to Janus ZrSSe and HfSSe monolayers. Physical Chemistry Chemical Physics, 2022, 24, 17824-17831.	1.3	1
967	Phase Engineering and Alkali Cation Stabilization for 1T Molybdenum Dichalcogenides Monolayers. Advanced Functional Materials, 2022, 32, .	7.8	19
968	Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nature Reviews Materials, 2022, 7, 814-832.	23.3	28
969	pH-Dependent Photophysical Properties of Metallic Phase MoSe2 Quantum Dots. Materials, 2022, 15, 4945.	1.3	2
970	Atomic‣evel Design of Active Site on Twoâ€Ðimensional MoS ₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 2022, 32, .	7.8	53
971	Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies. Progress in Crystal Growth and Characterization of Materials, 2022, 68, 100578.	1.8	4
972	Probing the charged defects in single-layer WS2 at atomic level. Materials Today Physics, 2022, 27, 100773.	2.9	1
973	Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 29255-29283.	3.8	68
974	Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition. ACS Nano, 2022, 16, 13069-13081.	7.3	11
975	Fabrication of asymmetric supercapacitors using molybdenum dichalcogenide nanoarray structures. International Journal of Energy Research, 2022, 46, 18410-18425.	2.2	11
976	Enhanced superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>CuH </mml:mi> <mml:mn>2 monolayers. Physical Review B, 2022, 106, .</mml:mn></mml:msub></mml:math 	m¤ıa <td>l:msub></td>	l:msub>
977	Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS ₂ . Small, 2022, 18, .	5.2	17
978	Transition Metal Dichalcogenides (TMDs) for Photo/Electro Chemical Energy Based Applications. Energy Technology, 0, , .	1.8	1
979	Piezoelectricity across 2D Phase Boundaries. Advanced Materials, 2022, 34, .	11.1	11
980	Soft-template-assisted synthesis of Petals-like MoS2 nanosheets covered with N-doped carbon for long cycle-life sodium-ion battery anode. Journal of Electroanalytical Chemistry, 2022, 922, 116715.	1.9	11
981	Two Birds with One Stone: Prelithiated Two-Dimensional Nanohybrids as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35673-35681.	4.0	6
982	S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 30371-30377.	3.8	11

#	Article	IF	CITATIONS
983	Transition metal decorated VSe2 as promising catechol sensor: Insights from DFT simulations. Journal of Applied Physics, 2022, 132, .	1.1	8
984	Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes. Membranes, 2022, 12, 818.	1.4	1
985	Electrocatalytic water splitting for efficient hydrogen evolution using molybdenum disulfide nanomaterials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115930.	1.7	2
986	Mechanically accessible band engineering via indentation-induced phase transition on two-dimensional layered β-InSe. Applied Surface Science, 2022, 604, 154573.	3.1	4
987	A core–shell 2D-MoS2@MOF heterostructure for rapid therapy of bacteria-infected wounds by enhanced photocatalysis. Chemical Engineering Journal, 2023, 451, 139127.	6.6	22
988	Research progress of neuromorphic devices based on two-dimensional layered materials. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 218504.	0.2	1
989	Recent advances in TMD interfaces with seamless contacts. Journal of Materials Chemistry C, 2022, 10, 14795-14811.	2.7	12
990	Molybdenum(<scp>iv</scp>) dithiocarboxylates as single-source precursors for AACVD of MoS ₂ thin films. Dalton Transactions, 2022, 51, 12540-12548.	1.6	4
991	Symmetric domain segmentation in WS ₂ flakes: correlating spatially resolved photoluminescence, conductance with valley polarization. Nanotechnology, 2022, 33, 495203.	1.3	1
992	Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nature Communications, 2022, 13, .	5.8	23
993	The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition. Crystals, 2022, 12, 1381.	1.0	6
994	New CrOX (XÂ=ÂCl, Br, I) monolayer with ultra-wide single spin states. Europhysics Letters, 2022, 140, 16002.	0.7	Ο
996	Modulation of MoSe2 & amp; MnFe2O4@MnO2 nano-architectures for microwave absorption properties via single- and bilayer method. Ceramics International, 2023, 49, 4713-4721.	2.3	13
997	Type-II quantum spin Hall effect in two-dimensional metals. Journal of Physics Condensed Matter, 0, , .	0.7	0
998	Dynamical Behavior of Two Interacting Double Quantum Dots in 2D Materials for Feasibility of Controlled-NOT Operation. Nanomaterials, 2022, 12, 3599.	1.9	1
999	Roadmap on chalcogenide photonics. JPhys Photonics, 2023, 5, 012501.	2.2	9
1000	Phase and polarization modulation in two-dimensional In ₂ Se ₃ via in situ transmission electron microscopy. Science Advances, 2022, 8, .	4.7	18
1001	Molybdenumâ€Based Nanomaterials for Photothermal Cancer Therapy. Advanced NanoBiomed Research, 2022, 2, .	1.7	26

#	Article	IF	Citations
1002	Study on Nickel-induced 1T/2H MoS2 nanostructures in realizing efficient electrocatalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 925, 116905.	1.9	8
1003	The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism. Electrochimica Acta, 2022, 435, 141389.	2.6	7
1004	Electrochemical exfoliation of MoS2 nanosheets with ultrahigh stability for lead adsorption. Journal of Water Process Engineering, 2022, 50, 103212.	2.6	5
1005	Joule heating induced non-melting phase transition and multi-level conductance in MoTe2 based phase change memory. Applied Physics Letters, 2022, 121, .	1.5	5
1006	Formation of In-Plane Semiconductor–Metal Contacts in 2D Platinum Telluride by Converting PtTe ₂ to Pt ₂ Te ₂ . Nano Letters, 2022, 22, 9571-9577.	4.5	6
1007	Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Research, 2023, 16, 3104-3124.	5.8	6
1008	Effect of isostructural phase transition on cycling stability of ZrCo-based alloys for hydrogen isotopes storage. Chemical Engineering Journal, 2023, 455, 140571.	6.6	7
1009	A Metal–Organic Frameworks Derived 1Tâ€MoS ₂ with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution. Small, 2023, 19, .	5.2	15
1011	Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS ₂ for enhancing photo-electrocatalytic hydrogen generation. Nanotechnology, 2023, 34, 145202.	1.3	4
1012	Effect of fluorine ion irradiation on the properties of monolayer molybdenum disulfide. Journal of Applied Physics, 2022, 132, 225107.	1.1	1
1013	Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS ₂ for the Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 342-354.	5.5	11
1014	Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chemical Society Reviews, 2023, 52, 1215-1272.	18.7	26
1015	Novel Janus 2D structures of XMoY (X, Y = O, S, Se, Te) composition for solar hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 14226-14237.	3.8	5
1016	Probing Defects and Spinâ€Phonon Coupling in CrSBr via Resonant Raman Scattering. Advanced Functional Materials, 2023, 33, .	7.8	10
1017	Synergetic pseudocapacitive sodium capture for efficient saline water desalination by iron oxide Hydroxide-Decorated palladium nanoparticle anchored 3D flowerlike molybdenum sulfide. Chemical Engineering Journal, 2023, 458, 141508.	6.6	3
1018	In Situ Imaging of an Anisotropic Layer-by-Layer Phase Transition in Few-Layer MoTe ₂ . Nano Letters, 2023, 23, 677-684.	4.5	8
1019	Electrical Contacts With 2D Materials: Current Developments and Future Prospects. Small, 2023, 19, .	5.2	9
1020	The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms. Beilstein Journal of Nanotechnology, 0, 14, 23-33.	1.5	Ο

ARTICLE IF CITATIONS Synthesis of 2D heterostructures., 2023, , 55-95. 0 1021 Electron Beam Irradiation Effects and In-Situ Irradiation of Nanomaterials., 2023, 17-51. Laserâ€Induced Phase Transition and Patterning of hBNâ€Encapsulated MoTe₂. Small, 2023, 19, . 5.2 1023 6 Solvothermal temperature-control of active 1T phase in carbon cloth-supported MoS2 and Pt-Ni cluster electrodeposition for hydrogen evolution reaction. Journal of Alloys and Compounds, 2023, 1024 942, 169035. Advances in the understanding of the structure–performance relationships of 2D material catalysts 1025 3.2 6 based on electron microscopy. Materials Chemistry Frontiers, 2023, 7, 2764-2778. Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters. Nanomaterials, 2023, 13, 739. Highly effective interlayer expanded MoS2 coupled with Bi2WO6 as p-n heterojunction photocatalyst 1027 for photodegradation of organic dye under LED white light. Journal of Alloys and Compounds, 2023, 2.8 9 953, 169834. Thermal Stability and Sublimation of Two-Dimensional Co₉Se₈ Nanosheets 1028 2.4 for Ultrathin and Flexible Nanoelectronic Devices. ACS Applied Nano Materials, 2023, 6, 2421-2428. Visible-Light-Enhanced NO₂ Sensing Based on the Hybrid 1029 Orthorhombic/Monoclinic-PdSe₂ Nanostructures. ACS Applied Nano Materials, 2023, 6, 2.4 2 2672-2681. Wrinkles, Ridges, Miura-Ori, and Moiré Patterns in MoSe₂ Using Neural Networks. Journal 2.1 of Physical Chemistry Letters, 2023, 14, 1732-1739. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. , 2023, 1031 42 2, 101-118. Electron induced construction of heterogeneous MoS2 for highly efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 932, 117267. Electron-Beam- and Thermal-Annealing-Induced Structural Transformations in Few-Layer 1033 7.3 4 MnPS₃. ACS Nano, 2023, 17, 4250-4260. Two-Dimensional Semiconductors with High Intrinsic Carrier Mobility at Room Temperature. Physical 1034 Review Letters, 2023, 130, . Towards the realisation of high permi-selective MoS2 membrane for water desalination. Npj Clean 1035 10 3.1Water, 2023, 6, . A Strain-Sensitive Flexible MoTe₂-Based Memristor for Gesture Recognition. IEEE Electron 2.2 Device Letters, 2023, 44, 622-625. Exploring and machine learning structural instabilities in 2D materials. Npj Computational Materials, 1037 3.58 2023, 9, .

CITATION REPORT

1038<i>Ex Situ</i>Characterization of 1T/2H MoS₂ and Their Carbon Composites for Energy7.39Applications, a Review. ACS Nano, 2023, 17, 5163-5186.

#	Article	IF	CITATIONS
1039	Order-disorder phase transition driven by interlayer sliding in lead iodides. Nature Communications, 2023, 14, .	5.8	2
1040	Metastable Polymorphic Phases in Monolayer TaTe ₂ . Small, 2023, 19, .	5.2	7
1041	Defectâ€Rich MoSe ₂ 2H/1T Hybrid Nanoparticles Prepared from Femtosecond Laser Ablation in Liquid and Their Enhanced Photothermal Conversion Efficiencies. Advanced Materials, 2023, 35, .	11.1	6
1042	Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides. Journal of Advanced Ceramics, 2023, , .	8.9	0
1043	Engineering polymorphs in colloidal metal dichalcogenides: precursor-mediated phase control, molecular insights into crystallisation kinetics and promising electrochemical activity. Journal of Materials Chemistry A, 2023, 11, 11341-11353.	5.2	5
1044	Single-atomic rhenium-assisted 2H-to-1T phase transformation of MoS ₂ nanosheets boosting electrocatalytic hydrogen evolution. , 2023, 1, 571-579.		5
1045	Enhanced Exciton-to-Trion Conversion by Proton Irradiation of Atomically Thin WS ₂ . Nano Letters, 2023, 23, 3754-3761.	4.5	2
1049	One-step synthesis of MoS ₂ /NiS heterostructures with a stable 1T phase for an efficient hydrogen evolution reaction. Dalton Transactions, 2023, 52, 8530-8535.	1.6	1
1059	Photocatalysis. , 2023, , 387-415.		0
1066	Thermodynamically Driven Tilt Grain Boundaries of Monolayer Crystals Using Catalytic Liquid Alloys. Nano Letters, 2023, 23, 4516-4523.	4.5	2
1086	The metal–support interaction effect in the carbon-free PEMFC cathode catalysts. Journal of Materials Chemistry A, 2023, 11, 23106-23132.	5.2	1
1093	Photocatalysis with atomically thin sheets. Chemical Society Reviews, 2023, 52, 7687-7706.	18.7	6
1127	Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. Nano-Micro Letters, 2024, 16, .	14.4	0
1133	Advanced 2D molybdenum disulfide for green hydrogen production: Recent progress and future perspectives. Frontiers in Energy, 0, , .	1.2	0
1138	Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Physical Chemistry Chemical Physics, 2024, 26, 7988-8012.	1.3	0