Scalable production of large quantities of defect-free fer exfoliation in liquids

Nature Materials 13, 624-630

DOI: 10.1038/nmat3944

Citation Report

#	Article	IF	CITATIONS
8	Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Research Letters, 2014, 9, 643.	3.1	37
9	What Is Unique About Mechanochemical Reactions?. Acta Physica Polonica A, 2014, 126, 1040-1043.	0.2	32
10	Concluding remarks: summary and some pointers for the future. Faraday Discussions, 2014, 173, 445-451.	1.6	1
11	Interplay Between Mechanochemistry and Sonochemistry. Topics in Current Chemistry, 2014, 369, 239-284.	4.0	31
12	Nanomaterials for biosensing applications: a review. Frontiers in Chemistry, 2014, 2, 63.	1.8	794
13	Exfoliation of graphene with an industrial dye: teaching an old dog new tricks. 2D Materials, 2014, 1, 035006.	2.0	11
14	Scaling up exfoliation. Nature Materials, 2014, 13, 545-546.	13.3	36
15	Tuning the grade of graphene: Gamma ray irradiation of free-standing graphene oxide films in gaseous phase. Applied Surface Science, 2014, 322, 126-135.	3.1	46
16	Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nature Communications, 2014, 5, 5478.	5.8	126
17	Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chemical Communications, 2014, 50, 13338-13341.	2.2	667
18	Things you could do with graphene. Nature Nanotechnology, 2014, 9, 737-737.	15.6	10
19	Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Advances, 2014, 4, 46340-46350.	1.7	29
20	Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Advances, 2014, 4, 41543-41550.	1.7	26
21	A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Advances, 2014, 4, 36464-36470.	1.7	111
22	Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation. ACS Nano, 2014, 8, 11567-11575.	7.3	47
23	Platinumâ€Decorated Nitrogenâ€Doped Graphene Foam Electrocatalysts. Fuel Cells, 2014, 14, 728-734.	1.5	19
24	2D or not 2D?. Nature Chemistry, 2014, 6, 747-747.	6.6	3
25	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	7.3	708

#	Article	IF	CITATIONS
26	Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 2014, 436, 41-46.	5.0	89
27	Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 2014, 78, 243-249.	5.4	136
28	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	5.8	432
29	Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale, 2014, 6, 11810-11819.	2.8	241
30	Kitchen blender for producing high-quality few-layer graphene. Carbon, 2014, 78, 622-626.	5.4	157
31	The global growth of graphene. Nature Nanotechnology, 2014, 9, 726-730.	15.6	391
32	Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes. ACS Nano, 2014, 8, 9567-9579.	7.3	89
33	Challenges and opportunities in graphene commercialization. Nature Nanotechnology, 2014, 9, 730-734.	15.6	305
34	Electrifying inks with 2D materials. Nature Nanotechnology, 2014, 9, 738-739.	15.6	116
35	Charging graphene for energy. Nature Nanotechnology, 2014, 9, 739-741.	15.6	100
36	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.		402
	Nano Letters, 2014, 14, 4901-4900.	4.5	
37	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014, 118, 15455-15459.	4.5 1.5	139
37 38	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014,		
	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014, 118, 15455-15459.	1.5	139
38	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014, 118, 15455-15459. In the footsteps of the sea stars. Nature Materials, 2014, 13, 546-546. A Raman study to obtain crystallite size of carbon materials: A better alternative to the	1.5 13.3	139 O
38 39	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014, 118, 15455-15459. In the footsteps of the sea stars. Nature Materials, 2014, 13, 546-546. A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law. Carbon, 2014, 80, 629-639. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications	1.5 13.3 5.4	139 0 186
38 39 40	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C, 2014, 118, 15455-15459. In the footsteps of the sea stars. Nature Materials, 2014, 13, 546-546. A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law. Carbon, 2014, 80, 629-639. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Advances, 2014, 4, 29393-29428. Advances in Electrochemical Energy Materials and Technologies. Electrochemical Energy Storage and	1.5 13.3 5.4 1.7	139 0 186 100

#	Article	IF	CITATIONS
45	Economical and eco-friendly recycling of used dry batteries for synthesis of graphene oxide by sheer exfoliation in presence of SDS. AIP Conference Proceedings, 2015, , .	0.3	0
46	Polymer coating of graphene oxide via reversible addition–fragmentation chain transfer mediated emulsion polymerization. Journal of Polymer Science Part A, 2015, 53, 1413-1421.	2.5	49
47	Brownian dynamics simulation of twoâ€dimensional nanosheets under biaxial extensional flow. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1247-1253.	2.4	8
48	Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice. Advanced Functional Materials, 2015, 25, 4768-4777.	7.8	27
49	Kitchen Chemistry 101: Multigram Production of High Quality Biographene in a Blender with Edible Proteins. Advanced Functional Materials, 2015, 25, 7088-7098.	7.8	88
50	Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Advanced Materials, 2015, 27, 6683-6688.	11.1	258
51	Programmable Nanocarbonâ€Based Architectures for Flexible Supercapacitors. Advanced Energy Materials, 2015, 5, 1500677.	10.2	87
52	"Chemical Weathering―Exfoliation of Atomâ€Thick Transition Metal Dichalcogenides and Their Ultrafast Saturable Absorption Properties. Advanced Functional Materials, 2015, 25, 5292-5299.	7.8	69
55	Edgeâ€Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels. Advanced Materials, 2015, 27, 7196-7203.	11.1	227
56	Graphene ontaining Nanomaterials for Lithiumâ€ŀon Batteries. Advanced Energy Materials, 2015, 5, 1500400.	10.2	184
57	Direct Synthesis of Few‣ayer Graphene on NaCl Crystals. Small, 2015, 11, 6302-6308.	5.2	57
58	Bifunctional Electrocatalytic Activity of Boronâ€Đoped Graphene Derived from Boron Carbide. Advanced Energy Materials, 2015, 5, 1500658.	10.2	141
59	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
60	The Covalent Functionalization of Graphene on Substrates. Angewandte Chemie - International Edition, 2015, 54, 10734-10750.	7.2	221
61	A Kinetic Model for Exfoliation Kinetics of Layered Materials. Angewandte Chemie - International Edition, 2015, 54, 10258-10262.	7.2	22
62	Review of Graphene Technology and Its Applications for Electronic Devices. , 0, , .		21
63	Yielding and flow of highly concentrated, few-layer graphene suspensions. Soft Matter, 2015, 11, 3159-3164.	1.2	17
64	Graphene-based nanomaterials for versatile imaging studies. Chemical Society Reviews, 2015, 44, 4835-4852.	18.7	176

#	Article	IF	CITATIONS
65	A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 2015, 3, 11700-11715.	5.2	1,207
66	One-pot synthesis of graphene oxide sheets and graphene oxide quantum dots from graphite nanofibers. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
67	Graphene Nanocomposites in Optoelectronics. , 2015, , 131-156.		2
68	Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015, 44, 6230-6257.	18.7	389
69	Switchable optical transmittance of TiO2 submicron-diameter wire suspension-based "smart window― device. Optical Materials, 2015, 46, 418-422.	1.7	12
70	2D nanocomposite photoconductive sensors fully dry drawn on regular paper. Nanotechnology, 2015, 26, 255501.	1.3	13
71	Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 2015, 3, 18753-18808.	5.2	563
72	2D materials via liquid exfoliation: a review on fabrication and applications. Science Bulletin, 2015, 60, 1994-2008.	4.3	270
73	Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel. Smart Materials and Structures, 2015, 24, 125018.	1.8	10
74	A manufacturing perspective on graphene dispersions. Current Opinion in Colloid and Interface Science, 2015, 20, 367-382.	3.4	329
75	Studies of structure and properties of graphene oxide prepared by ball milling. Materials Research Innovations, 2015, 19, S1-277-S1-280.	1.0	13
76	Effect of N ₂ H ₄ on Electrodeposition of Ni-Graphene Composite Coatings and their Corrosion Resistance Property. Materials Science Forum, 2015, 816, 192-199.	0.3	1
77	Synergistic production of graphene microsheets by simultaneous anodic and cathodic electro-exfoliation of graphitic electrodes in aprotic ionic liquids. Carbon, 2015, 84, 449-459.	5.4	46
78	Aqueous based synthesis of antimicrobial-decorated graphene. Journal of Colloid and Interface Science, 2015, 443, 88-96.	5.0	20
79	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
80	Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis. Journal of Power Sources, 2015, 281, 318-325.	4.0	55
81	Graphite sulphate – a precursor to graphene. Chemical Communications, 2015, 51, 3162-3165.	2.2	80
82	A green route to fabricate MoS ₂ nanosheets in water–ethanol–CO ₂ . Chemical Communications, 2015, 51, 6726-6729.	2.2	70

#	Article	IF	CITATIONS
83	Urea-assisted aqueous exfoliation of graphite for obtaining high-quality graphene. Chemical Communications, 2015, 51, 4651-4654.	2.2	61
84	Boron nitride nanosheets as barrier enhancing fillers in melt processed composites. Nanoscale, 2015, 7, 4443-4450.	2.8	56
85	A simple and flexible route to large-area conductive transparent graphene thin-films. Synthetic Metals, 2015, 201, 67-75.	2.1	14
86	Adsorption and removal of graphene dispersants. Journal of Colloid and Interface Science, 2015, 446, 282-289.	5.0	29
87	Self-heating effects in large arrangements of randomly oriented carbon nanofibers: Application to gas sensors. Sensors and Actuators B: Chemical, 2015, 211, 489-497.	4.0	41
88	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie - International Edition, 2015, 54, 2638-2642.	7.2	219
89	Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation. RSC Advances, 2015, 5, 19321-19328.	1.7	20
90	4–10ÂV capacitors with graphene-based electrodes and ionic liquid electrolyte. Journal of Power Sources, 2015, 280, 606-611.	4.0	31
91	Olivine LiFePO ₄ : the remaining challenges for future energy storage. Energy and Environmental Science, 2015, 8, 1110-1138.	15.6	412
92	Reversible Thermal Switching of Aqueous Dispersibility of Multiwalled Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 3891-3894.	1.7	13
93	Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods. Jom, 2015, 67, 34-43.	0.9	34
94	Thermal treatment and chemical doping of semi-transparent graphene films. Organic Electronics, 2015, 18, 53-60.	1.4	11
95	An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications, 2015, 6, 5716.	5.8	377
96	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie, 2015, 127, 2676-2680.	1.6	35
97	Large-Scale Production of Size-Controlled MoS ₂ Nanosheets by Shear Exfoliation. Chemistry of Materials, 2015, 27, 1129-1139.	3.2	389
98	Moisture Barrier Composites Made of Nonâ€Oxidized Graphene Flakes. Small, 2015, 11, 3124-3129.	5.2	41
99	Graphene oxide overprints for flexible and transparent electronics. Applied Physics Letters, 2015, 106, .	1.5	42
100	High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances, 2015, 5, 51193-51200.	1.7	52

#	Article	IF	CITATIONS
101	High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 2015, 94, 729-739.	5.4	83
102	Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale, 2015, 7, 15362-15373.	2.8	112
103	A green and facile method toward synthesis of waste paper-derived 3D functional porous graphene via in situ activation of cobalt(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 16072-16078.	5.2	28
104	Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. , 2015, , 167-198.		5
105	A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon, 2015, 94, 405-411.	5.4	31
106	Delamination of graphite in a high pressure homogenizer. RSC Advances, 2015, 5, 57328-57338.	1.7	70
107	Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chemical Reviews, 2015, 115, 7046-7117.	23.0	448
108	Multifunctionality of Giant and Long-Lasting Persistent Photoconductivity: Semiconductor–Conductor Transition in Graphene Nanosheets and Amorphous InGaZnO Hybrids. ACS Photonics, 2015, 2, 1057-1064.	3.2	41
109	Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings. ACS Applied Materials & Interfaces, 2015, 7, 17641-17648.	4.0	215
110	Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015, 15, 5449-5454.	4.5	436
111	Stability of graphene-based heterojunction solar cells. RSC Advances, 2015, 5, 73575-73600.	1.7	75
112	Hydrogen Generation of Cu ₂ O Nanoparticles/MnO–MnO ₂ Nanorods Heterojunction Supported on Sonochemical-Assisted Synthesized Few-Layer Graphene in Water-Splitting Photocathode. ACS Sustainable Chemistry and Engineering, 2015, 3, 1965-1973.	3.2	22
113	A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochimica Acta, 2015, 174, 696-705.	2.6	47
114	Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite. ACS Applied Materials & Interfaces, 2015, 7, 14870-14877.	4.0	25
115	Sonication-Free Exfoliation of Graphite Oxide via Rapid Phase Change of Water. Topics in Catalysis, 2015, 58, 522-528.	1.3	9
116	Reverse-Micelle-Induced Exfoliation of Graphite into Graphene Nanosheets with Assistance of Supercritical CO ₂ . Chemistry of Materials, 2015, 27, 3262-3272.	3.2	78
117	One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale, 2015, 7, 10527-10534.	2.8	59
118	Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale, 2015, 7, 11310-11320.	2.8	115

#	Article	IF	CITATIONS
119	Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes. Electrochimica Acta, 2015, 173, 82-90.	2.6	43
120	Fast and fully-scalable synthesis of reduced graphene oxide. Scientific Reports, 2015, 5, 10160.	1.6	486
121	Recent developments in carbon nanomaterial sensors. Chemical Society Reviews, 2015, 44, 4433-4453.	18.7	444
122	Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano, 2015, 9, 3596-3604.	7.3	655
123	Multichromophores Onto Graphene: Supramolecular Non-Covalent Approaches for Efficient Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 8046-8053.	1.5	17
124	Liquid phase exfoliation and crumpling of inorganic nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 9383-9393.	1.3	71
125	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Interfaces, 2015, 7, 10293-10307.	4.0	101
126	From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction. RSC Advances, 2015, 5, 5946-5950.	1.7	15
127	Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 2015, 91, 321-329.	5.4	99
128	In Situ Production of Biofunctionalized Few‣ayer Defectâ€Free Microsheets of Graphene. Advanced Functional Materials, 2015, 25, 2771-2779.	7.8	63
129	Commercialization of graphene-based technologies: a critical insight. Chemical Communications, 2015, 51, 7090-7095.	2.2	74
130	Preparation of 2D MoS ₂ /Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation. Advanced Optical Materials, 2015, 3, 937-942.	3.6	62
131	Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process. Small, 2015, 11, 3017-3027.	5.2	11
132	How do graphite nanoplates affect the fracture toughness of polypropylene composites?. Composites Science and Technology, 2015, 111, 9-16.	3.8	27
133	Characterization of Graphene-Nanoplatelets Structure via Thermogravimetry. Analytical Chemistry, 2015, 87, 4076-4080.	3.2	61
134	Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon, 2015, 89, 260-271.	5.4	122
135	Determination of quantitative structure-property and structure-process relationships for graphene production in water. Nano Research, 2015, 8, 1865-1881.	5.8	16
136	Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon, 2015, 90, 16-24.	5.4	60

#	ARTICLE	IF	Citations
137	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015, 27, 3483-3493.	3.2	195
138	Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon, 2015, 89, 217-224.	5.4	34
139	Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate). RSC Advances, 2015, 5, 79947-79955.	1.7	38
140	Biobased Janus molecule for the facile preparation of water solutions of few layer graphene sheets. RSC Advances, 2015, 5, 81142-81152.	1.7	27
141	High-rate production of few-layer graphene by high-power probe sonication. Carbon, 2015, 95, 802-808.	5.4	68
142	Graphene based anticorrosive coatings for Cr(<scp>vi</scp>) replacement. Nanoscale, 2015, 7, 17879-17888.	2.8	140
143	Tuning the Electronic Properties of Robust Bio-Bond Graphene Papers by Spontaneous Electrochemical Reduction: From Insulators to Flexible Semi-Metals. Chemistry of Materials, 2015, 27, 6717-6729.	3.2	24
144	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	7.3	1,726
145	Efficient exfoliation of molybdenum disulphide nanosheets by a highâ€pressure homogeniser. Micro and Nano Letters, 2015, 10, 589-591.	0.6	10
146	Well-dispersed graphene-polydopamine-Pd hybrid with enhanced catalytic performance. RSC Advances, 2015, 5, 97520-97527.	1.7	58
147	Sensor properties of electron beam irradiated fluorinated graphite. Journal of Nanophotonics, 2015, 10, 012512.	0.4	10
148	Probing individual point defects in graphene via near-field Raman scattering. Nanoscale, 2015, 7, 19413-19418.	2.8	35
149	Ultrahigh-throughput exfoliation of graphite into pristine â€~single-layer' graphene using microwaves and molecularly engineered ionic liquids. Nature Chemistry, 2015, 7, 730-736.	6.6	291
150	Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano, 2015, 9, 8869-8884.	7.3	428
151	Polymer Mechanochemistry. Topics in Current Chemistry, 2015, , .	4.0	27
152	An introduction to polymer nanocomposites. European Journal of Physics, 2015, 36, 063001.	0.3	53
153	Graphene synthesis: a Review. Materials Science-Poland, 2015, 33, 566-578.	0.4	105
154	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	5.8	921

#	Article	IF	CITATIONS
155	Synthesis and sensor applications of MoS ₂ -based nanocomposites. Nanoscale, 2015, 7, 18364-18378.	2.8	202
156	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Journal of the American Chemical Society, 2015, 137, 13927-13932.	6.6	288
157	Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2, 20.	6.3	128
158	Enhancement of Electrode Performance by a Simple Casting Method Using Sonochemically Exfoliated Graphene. Analytical Chemistry, 2015, 87, 9273-9279.	3.2	12
159	Scanning probe microscopy study of chemical vapor deposition grown graphene transferred to Au(111). Carbon, 2015, 95, 318-322.	5.4	10
160	Epoxy/graphene nanocomposites – processing and properties: a review. RSC Advances, 2015, 5, 73510-73524.	1.7	188
161	Fast and Efficient Preparation of Exfoliated 2H MoS ₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15, 5956-5960.	4.5	603
162	Exfoliation of graphene via wet chemical routes. Synthetic Metals, 2015, 210, 123-132.	2.1	135
163	Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. Nano Letters, 2015, 15, 5846-5854.	4.5	176
164	Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals. Journal of the American Chemical Society, 2015, 137, 12689-12696.	6.6	220
165	Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proceedings of SPIE, 2015, , .	0.8	27
166	High quality graphitized graphene as an anode material for lithium ion batteries. Chemical Communications, 2015, 51, 15979-15981.	2.2	18
167	The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chemical Communications, 2015, 51, 15811-15814.	2.2	32
168	Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nature Communications, 2015, 6, 8294.	5.8	277
169	Fast Production of High-Quality Graphene via Sequential Liquid Exfoliation. ACS Applied Materials & Interfaces, 2015, 7, 27027-27030.	4.0	29
170	Electrostatic Stabilization of Graphene in Organic Dispersions. Langmuir, 2015, 31, 13068-13076.	1.6	32
171	Printable and flexible electronics: from TFTs to bioelectronic devices. Journal of Materials Chemistry C, 2015, 3, 12347-12363.	2.7	66
172	Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 311-321.	3.4	101

#	Article	IF	CITATIONS
173	A simple visible light photo-assisted method for assembling andÂcuring multilayer GO thin films. Materials Chemistry and Physics, 2015, 165, 125-133.	2.0	4
174	Beyond graphene: materials chemistry toward high performance inorganic functional materials. Journal of Materials Chemistry A, 2015, 3, 2441-2453.	5.2	69
175	<i>In Situ</i> TEM Characterization of Shear-Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide. ACS Nano, 2015, 9, 1543-1551.	7.3	93
176	Three dimensional metal oxides–graphene composites and their applications in lithium ion batteries. RSC Advances, 2015, 5, 8814-8834.	1.7	56
177	Towards the understanding of the graphene oxide structure: How to control the formation of humic- and fulvic-like oxidized debris. Carbon, 2015, 84, 299-309.	5.4	59
178	Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage. Journal of Materials Chemistry A, 2015, 3, 3144-3150.	5.2	51
179	The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14, 271-279.	13.3	2,237
180	Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots. Chemistry of Materials, 2015, 27, 218-226.	3.2	144
181	Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015, 48, 56-64.	7.6	1,089
182	Electrochemical generation of hydrogenated graphene flakes. Carbon, 2015, 83, 128-135.	5.4	49
183	Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 2015, 27, 669-675.	11.1	251
184	Structure of a new rotationally faulted multi-layer graphene–carbon nanoflower composite. Carbon, 2015, 84, 214-224.	5.4	7
185	Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy and Environmental Science, 2015, 8, 922-931.	15.6	541
186	Synergy of oxygen and a piranha solution for eco-friendly production of highly conductive graphene dispersions. Green Chemistry, 2015, 17, 869-881.	4.6	27
187	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews, 2015, 44, 4672-4698.	18.7	220
188	Quantitative evaluation of delamination of graphite by wet media milling. Carbon, 2015, 81, 284-294.	5.4	71
		J.4	
189	Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS ₂ to WTe ₂ . Nanoscale, 2015, 7, 198-208.	2.8	76

ARTICLE IF CITATIONS # Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. 191 2.8 2,452 Nanoscale, 2015, 7, 4598-4810. Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach. ChemistrySelect, 2016, 1, . 193 Defect Engineered 2D Materials for Energy Applications., 2016,,. 1 Exfoliated MoS2 in Water without Additives. PLoS ONE, 2016, 11, e0154522. 194 1.1 98 Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. 195 1.5 20 Journal of Nanomaterials, 2016, 2016, 1-8. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties. PLoS ONE, 2016, 11, e0152699. 1.1 39 Twoâ€Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion 197 2 Applications., 0,,. Graphene-spiked Silly Putty picks up human pulse. Nature, 2016, , . 13.7 Mechanochemical Exfoliation of 2D Crystals in Deep Eutectic Solvents. ACS Sustainable Chemistry and 199 3.2 52 Engineering, 2016, 4, 4465-4472. Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane 6.6 adsorption. Chemical Engineering Journal, 2016, 304, 784-792. Synthesis of Twoâ€Dimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 201 11.1 548 6104-6135. 2Dâ€Crystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166. 11.1 371 Supramolecular Approaches to Graphene: From Selfâ€Assembly to Moleculeâ€Assisted Liquidâ€Phase 203 11.1 154 Exfoliation. Advanced Materials, 2016, 28, 6030-6051. The fast fabrication of flexible electronic devices of graphene composites. Nanotechnology, 2016, 27, 204 1.3 31LT01. Conductive Screen Printing Inks by Gelation of Graphene Dispersions. Advanced Functional Materials, 205 7.8 139 2016, 26, 586-593. Photoluminescence from Liquidâ€Exfoliated WS₂ Monomers in Poly(Vinyl Alcohol) Polymer Composites. Advanced Functional Materials, 2016, 26, 1028-1039. Highly Conductive Optical Quality Solutionâ€Processed Films of 2D Titanium Carbide. Advanced 208 7.8 680 Functional Materials, 2016, 26, 4162-4168. 209 Graphene Films Using a Thermally Curable Surfactant. Advanced Materials Interfaces, 2016, 3, 1600182.

#	Article	IF	CITATIONS
210	Silicone-modified graphene oxide fillers via the Piers-Rubinsztajn reaction. Journal of Polymer Science Part A, 2016, 54, 2379-2385.	2.5	16
211	Surfactantâ€aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edgeâ€state saturable absorption. Physica Status Solidi (B): Basic Research, 2016, 253, 911-917.	0.7	29
212	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small, 2016, 12, 2741-2749.	5.2	128
213	Polymer/Graphene Hybrids for Advanced Energyâ€Conversion and â€Storage Materials. Chemistry - an Asian Journal, 2016, 11, 1151-1168.	1.7	31
214	Direct Conversion of Greenhouse Gas CO ₂ into Graphene via Molten Salts Electrolysis. ChemSusChem, 2016, 9, 588-594.	3.6	80
215	Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays. Advanced Functional Materials, 2016, 26, 5061-5067.	7.8	87
216	Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective. Advanced Materials, 2016, 28, 6232-6238.	11.1	137
217	Raman Signatures of Single Layer Graphene Dispersed in Degassed Water, "â€~Eau de Grapheneâ€â€™. Journa of Physical Chemistry C, 2016, 120, 28204-28214.	al 1.5	25
218	One-Minute Room-Temperature Transfer-Free Production of Mono- and Few-Layer Polycrystalline Graphene on Various Substrates. Scientific Reports, 2016, 6, 19313.	1.6	18
219	The closed-environment CVD method for preparing three-dimensional defect controllable graphene foam with a conductive interconnected network for lithium-ion battery applications. RSC Advances, 2016, 6, 75414-75419.	1.7	9
220	Electrical and structural mapping of friction induced defects in graphene layers. , 2016, , .		2
221	â€Eau de graphene―from a KC ₈ graphite intercalation compound prepared by a simple mixing of graphite and molten potassium. Physica Status Solidi - Rapid Research Letters, 2016, 10, 895-899.	1.2	17
222	Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts. Electrochimica Acta, 2016, 222, 1191-1199.	2.6	15
223	Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment. Applied Physics Letters, 2016, 108, .	1.5	9
224	Controlled Exfoliation of MoS ₂ Crystals into Trilayer Nanosheets. Journal of the American Chemical Society, 2016, 138, 5143-5149.	6.6	207
225	Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European Journal, 2016, 22, 153-159.	1.7	235
226	Removal of methyl mercaptan with highly-mobile silver on graphitic carbon-nitride (g-C 3 N 4) photocatalyst. Applied Catalysis B: Environmental, 2016, 198, 133-141.	10.8	52
227	Preparation of high quality graphene using high gravity technology. Chemical Engineering and Processing: Process Intensification, 2016, 106, 59-66.	1.8	13

# 228	ARTICLE Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon, 2016, 105, 593-599.	IF 5.4	CITATIONS 165
229	Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS ₂ /Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano, 2016, 10, 5980-5990.	7.3	159
230	Chemically Modulated Carbon Nitride Nanosheets for Highly Selective Electrochemiluminescent Detection of Multiple Metal-ions. Analytical Chemistry, 2016, 88, 6004-6010.	3.2	137
231	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chemical Society Reviews, 2016, 45, 4042-4073.	18.7	194
232	Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow. Carbon, 2016, 102, 330-338.	5.4	70
233	Shear Assisted Electrochemical Exfoliation of Graphite to Graphene. Langmuir, 2016, 32, 3552-3559.	1.6	59
234	Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chemical Engineering Journal, 2016, 298, 198-205.	6.6	53
235	Preparation of TiO2-Graphene Composite by a Two-Step Solvothermal Method and its Adsorption-Photocatalysis Property. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	30
236	Thiol click chemistry on gold-decorated MoS ₂ : elastomer composites and structural phase transitions. Nanoscale, 2016, 8, 10016-10020.	2.8	3
237	Near-Infrared Responsive MoS ₂ /Poly(<i>N</i> -isopropylacrylamide) Hydrogels for Remote Light-Controlled Microvalves. Industrial & Engineering Chemistry Research, 2016, 55, 4526-4531.	1.8	24
238	GRAPHENE: FROM SYNTHESIS TO APPLICATIONS IN FLEXIBLE ELECTRONICS. , 2016, , 87-115.		0
239	Examining the impact of multi-layer graphene using cellular and amphibian models. 2D Materials, 2016, 3, 025009.	2.0	18
240	Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Research, 2016, 9, 1543-1560.	5.8	186
241	Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48, 1.	1.5	21
242	On the stability of surfactant-stabilised few-layer black phosphorus in aqueous media. RSC Advances, 2016, 6, 86955-86958.	1.7	35
243	Studies on Synthesis of Electrochemically Exfoliated Functionalized Graphene and Polylactic Acid/Ferric Phytate Functionalized Graphene Nanocomposites as New Fire Hazard Suppression Materials. ACS Applied Materials & Interfaces, 2016, 8, 25552-25562.	4.0	119
244	Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal–Organic Oligomers. ACS Applied Materials & Interfaces, 2016, 8, 25469-25475.	4.0	1
245	BioGraphene. Methods in Enzymology, 2016, 571, 225-244.	0.4	5

#	Article	IF	CITATIONS
246	High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. European Polymer Journal, 2016, 84, 300-312.	2.6	57
247	Graphene Glass from Direct CVD Routes: Production and Applications. Advanced Materials, 2016, 28, 10333-10339.	11.1	52
248	Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension. Macromolecular Rapid Communications, 2016, 37, 1790-1794.	2.0	6
249	2D Boron Nitride. Semiconductors and Semimetals, 2016, 95, 101-147.	0.4	74
250	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chemical Society Reviews, 2016, 45, 6742-6765.	18.7	363
251	Facile and Green Production of Impurityâ€Free Aqueous Solutions of WS ₂ Nanosheets by Direct Exfoliation in Water. Small, 2016, 12, 6703-6713.	5.2	44
252	Electrochemical sensing platform for tetrabromobisphenol A at pM level based on the synergetic enhancement effects of graphene and dioctadecyldimethylammonium bromide. Analytica Chimica Acta, 2016, 935, 90-96.	2.6	7
253	Layer-by-Layer Sorting of Rhenium Disulfide via High-Density Isopycnic Density Gradient Ultracentrifugation. Nano Letters, 2016, 16, 7216-7223.	4.5	54
254	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
255	Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Advances, 2016, 6, 93119-93124.	1.7	42
256	Synthesis and radiation response of BCON: a graphene oxide and hexagonal boron nitride hybrid. 2D Materials, 2016, 3, 025028.	2.0	18
257	Differentiating Defect and Basal Plane Contributions to the Surface Energy of Graphite Using Inverse Gas Chromatography. Chemistry of Materials, 2016, 28, 6355-6366.	3.2	27
258	Using Few-Layer Graphene Sheets as Ultimate Reference of Quantitative Transmission Electron Microscopy. , 2016, , 359-374.		0
259	Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. ChemNanoMat, 2016, 2, 9-18.	1.5	46
260	Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale, 2016, 8, 15389-15413.	2.8	122
261	Few‣ayer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie, 2016, 128, 14557-14561.	1.6	74
262	Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene. Nanoscale Research Letters, 2016, 11, 377.	3.1	32
263	High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353, 1413-1416.	6.0	670

#	Article	IF	CITATIONS
264	Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine. Tribology International, 2016, 103, 504-515.	3.0	97
265	Liquid Phase Exfoliated MoS ₂ Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano, 2016, 10, 8821-8828.	7.3	258
266	Challenges in Liquidâ€Phase Exfoliation, Processing, and Assembly of Pristine Graphene. Advanced Materials, 2016, 28, 8796-8818.	11.1	123
267	In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24112-24122.	4.0	52
268	2D materials for renewable energy storage devices: Outlook and challenges. Chemical Communications, 2016, 52, 13528-13542.	2.2	96
269	High efficiency shear exfoliation for producing high-quality, few-layered MoS ₂ nanosheets in a green ethanol/water system. RSC Advances, 2016, 6, 82763-82773.	1.7	35
270	Few‣ayer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie - International Edition, 2016, 55, 14345-14349.	7.2	346
271	Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon, 2016, 109, 373-383.	5.4	96
272	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
273	Anisotropic Nonlinear Mechanical Behavior in Carbon Nanotubes/Poly(1,4-cis-isoprene) Nanocomposites. Macromolecules, 2016, 49, 8686-8696.	2.2	12
274	Two-Dimensional Materials Beyond Graphene: Emerging Opportunities for Biomedicine. Nano LIFE, 2016, 06, 1642008.	0.6	4
275	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	14.8	104
276	Graphene reflux: improving the yield of liquid-exfoliated nanosheets through repeated separation techniques. Nanotechnology, 2016, 27, 505601.	1.3	4
277	Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligandâ€Assisted Exfoliation. Advanced Materials, 2016, 28, 9478-9485.	11.1	276
278	Inkjet printing of electrochemically-exfoliated graphene nano-platelets. Synthetic Metals, 2016, 220, 318-322.	2.1	30
279	Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis. International Journal of Hydrogen Energy, 2016, 41, 14692-14703.	3.8	38
280	Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. Carbon, 2016, 107, 733-738.	5.4	35
281	Fluid dynamics: an emerging route for the scalable production of graphene in the last five years. RSC Advances, 2016, 6, 72525-72536.	1.7	39

	CITATION R	EPORT	
# 282	ARTICLE Graphene Chemiresistors as pH Sensors: Fabrication and Characterization. , 2016, , 327-336.	IF	CITATIONS 0
283	Rapid synthesis of transition metal dichalcogenide few-layer thin crystals by the microwave-induced-plasma assisted method. Journal of Crystal Growth, 2016, 450, 140-147.	0.7	29
284	Graphene Synthesis. , 2016, , 19-61.		2
285	Two-Dimensional Colloidal Nanocrystals. Chemical Reviews, 2016, 116, 10934-10982.	23.0	412
286	High yield synthesis of amine functionalized graphene oxide and its surface properties. RSC Advances, 2016, 6, 67916-67924.	1.7	69
287	Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Scientific Reports, 2016, 6, 25684.	1.6	68
288	Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia. ACS Applied Materials & Interfaces, 2016, 8, 30964-30971.	4.0	41
289	Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today, 2016, 11, 793-816.	6.2	168
290	Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry - A European Journal, 2016, 22, 17351-17358.	1.7	37
291	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
292	Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nature Communications, 2016, 7, 12543.	5.8	78
293	Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nature Communications, 2016, 7, 11796.	5.8	157
294	Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants. ACS Applied Materials & Interfaces, 2016, 8, 32440-32449.	4.0	88
295	Magnetic assembly of transparent and conducting graphene-based functional composites. Nature Communications, 2016, 7, 12078.	5.8	97
296	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93
297	Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles. Scientific Reports, 2016, 6, 30320.	1.6	31
298	Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene. Scientific Reports, 2016, 6, 34127.	1.6	22
299	Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 18306-18313.	5.2	47

#	Article	IF	CITATIONS
300	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
301	Gradient Films of Pristine Graphene/Pyrene-Functional Copolymers with Janus Electrical Properties. ACS Applied Materials & Interfaces, 2016, 8, 31813-31821.	4.0	12
302	Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. Journal of Visualized Experiments, 2016, , .	0.2	23
303	Optimization of Three-Roll Mill Parameters for In-Situ Exfoliation of Graphene. MRS Advances, 2016, 1, 1389-1394.	0.5	6
304	Production of Twoâ€Dimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	5.2	407
305	Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 2016, 12, 3480-3502.	5.2	337
306	Edge Functionalization of Graphene and Twoâ€Dimensional Covalent Organic Polymers for Energy Conversion and Storage. Advanced Materials, 2016, 28, 6253-6261.	11.1	148
307	Reversible Functionalization: A Scalable Way to Deliver the Structure and Interface of Graphene for Different Macro Applications. Advanced Materials Interfaces, 2016, 3, 1500842.	1.9	4
308	Ultrafast Preparation of Black Phosphorus Quantum Dots for Efficient Humidity Sensing. Chemistry - A European Journal, 2016, 22, 7357-7362.	1.7	114
309	Highâ€Performance Multifunctional Grapheneâ€PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds. Advanced Functional Materials, 2016, 26, 3105-3117.	7.8	43
310	Prospects of Supercritical Fluids in Realizing Grapheneâ€Based Functional Materials. Advanced Materials, 2016, 28, 2663-2691.	11.1	66
311	Modulation of Immune Responses by Particulate Materials. Advanced Materials, 2016, 28, 5525-5541.	11.1	66
312	Novel Three-Dimensional Carbon Nanotube–Graphene Architecture with Abundant Chambers and Its Application in Lithium–Silicon Batteries. Journal of Physical Chemistry C, 2016, 120, 13807-13814.	1.5	24
313	The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 2016, 6, 56705-56710.	1.7	82
314	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. ACS Nano, 2016, 10, 6923-6932.	7.3	231
315	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
316	A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. RSC Advances, 2016, 6, 65299-65310.	1.7	13
317	Preparation of few layers hexagonal boron nitride nanosheets via high-pressure homogenization. Materials Letters, 2016, 181, 144-147.	1.3	38

#	Article	IF	CITATIONS
318	Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon, 2016, 106, 195-201.	5.4	28
319	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	5.5	80
320	Controlled functionalization of graphene with carboxyl moieties toward multiple applications. RSC Advances, 2016, 6, 58561-58565.	1.7	6
321	Newâ€Generation Graphene from Electrochemical Approaches: Production and Applications. Advanced Materials, 2016, 28, 6213-6221.	11.1	256
322	Rapid Growth of Large Singleâ€Crystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	11.1	69
323	Emerging trends in graphene carbon based polymer nanocomposites and applications. Reviews in Chemical Engineering, 2016, 32, .	2.3	71
324	Probability-Based Design of Experiments for Batch Process Optimization with End-Point Specifications. Industrial & Engineering Chemistry Research, 2016, 55, 1254-1265.	1.8	4
325	Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale, 2016, 8, 10511-10527.	2.8	97
326	Materials science of graphene: a flagship perspective. 2D Materials, 2016, 3, 010401.	2.0	19
327	Structural characterization of individual graphene sheets formed by arc discharge and their growth mechanisms. RSC Advances, 2016, 6, 19797-19806.	1.7	23
328	Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Advances, 2016, 6, 12657-12668.	1.7	109
329	Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chemistry, 2016, 18, 1952-1964.	4.6	74
330	High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon, 2016, 99, 280-288.	5.4	40
331	Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 124-130.	2.6	145
332	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
333	Quantitative investigation of the fragmentation process and defect density evolution of oxo-functionalized graphene due to ultrasonication and milling. Carbon, 2016, 96, 897-903.	5.4	31
334	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS ₂ Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano, 2016, 10, 672-683.	7.3	116
335	Conversion of Levulinic Acid to Î ³ -Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS Catalysis, 2016, 6, 593-599.	5.5	145

#	Article	IF	CITATIONS
336	Molecular Modeling Combined with Advanced Chemistry for the Rational Design of Efficient Graphene Dispersing Agents. ACS Macro Letters, 2016, 5, 24-29.	2.3	21
337	Optimization and Doping of Reduced Graphene Oxide–Silicon Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15648-15656.	1.5	29
338	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
339	One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide. Chemical Communications, 2016, 52, 5714-5717.	2.2	64
340	Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science, 2016, 82, 83-117.	16.0	210
341	Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries. 2D Materials, 2016, 3, 025005.	2.0	66
342	Photodegradation of dispersants in colloidal suspensions of pristine graphene. Journal of Colloid and Interface Science, 2016, 466, 425-431.	5.0	8
343	Wide-range work-function tuning of active graphene transparent electrodes via hole doping. RSC Advances, 2016, 6, 32746-32756.	1.7	29
344	Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102, 51-57.	5.4	120
345	Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon, 2016, 102, 357-366.	5.4	34
346	Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. Journal of Power Sources, 2016, 310, 41-46.	4.0	111
347	Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces. ACS Photonics, 2016, 3, 315-323.	3.2	67
348	Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. Chemistry of Materials, 2016, 28, 2641-2651.	3.2	95
349	Fabrication and morphology tuning of graphene oxide nanoscrolls. Nanoscale, 2016, 8, 6783-6791.	2.8	62
350	Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale, 2016, 8, 5407-5411.	2.8	52
351	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
352	Liquid-phase exfoliation of flaky graphite. Journal of Nanophotonics, 2016, 10, 012525.	0.4	19
353	Facile synthesis of graphene using a biological method. RSC Advances, 2016, 6, 17158-17162.	1.7	27

		CITATION REPORT		
#	Article		IF	CITATIONS
354	Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8, 5368-	5378.	2.8	132
355	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-e few-layer graphene nanosheets. Nanoscale, 2016, 8, 4311-4323.	xfoliated	2.8	194
356	A study of the charge storage properties of a MoSe2 nanoplatelets/SWCNTs electrode electrolyte. Electrochimica Acta, 2016, 192, 1-7.	n a Li-ion based	2.6	44
357	Sb2MoO6, Bi2MoO6, Sb2WO6, and Bi2WO6 flake-like crystals: Generalized hydrother the applications of Bi2WO6 and Bi2MoO6 as red phosphors doped with Eu3+ ions. Mar and Engineering B: Solid-State Materials for Advanced Technology, 2016, 209, 10-16.		1.7	31
358	High shear-induced exfoliation of graphite into high quality graphene by Taylor–Coue Advances, 2016, 6, 12003-12008.	tte flow. RSC	1.7	83
359	Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C ₃ N ₄ Composite for Hydrocarbon Oxidation. AC 3665-3673.	S Nano, 2016, 10,	7.3	122
360	Biological and environmental interactions of emerging two-dimensional nanomaterials. Society Reviews, 2016, 45, 1750-1780.	Chemical	18.7	216
361	Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer. European Ceramic Society, 2016, 36, 1589-1594.	Journal of the	2.8	104
362	Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and lic exfoliation strategies. Journal of Materials Science, 2016, 51, 3162-3169.	uid	1.7	36
363	Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets compo slurry compounding. Composites Science and Technology, 2016, 123, 179-186.	osites by	3.8	83
364	Fabrication of CdS/BNNSs nanocomposites with broadband solar absorption for efficier photocatalytic hydrogen evolution. CrystEngComm, 2016, 18, 631-637.	ıt	1.3	32
365	Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwate exfoliation of graphite. Journal Physics D: Applied Physics, 2016, 49, 045301.	r plasma	1.3	4
366	The mechanism of direct laser writing of graphene features into graphene oxide films in photoreduction and thermally assisted structural rearrangement. Carbon, 2016, 99, 42		5.4	139
367	Multifunctional Material Systems: A state-of-the-art review. Composite Structures, 2010	5, 151, 3-35.	3.1	231
368	Graphene Quantum Dots Produced by Microfluidization. Chemistry of Materials, 2016,	28, 21-24.	3.2	71
369	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported graphene foil: an efficient 3D electrode for overall water splitting. Energy and Environm Science, 2016, 9, 478-483.		15.6	774
370	Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route to high quality, oxide-free graphene flakes. Nanoscale, 2016, 8, 2982-2998.	owards	2.8	84
371	Direct synthesis of graphene quantum dots from multilayer graphene flakes through gr assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Advanc 5068-5078.	nding es, 2016, 6,	1.7	43

#	Article	IF	CITATIONS
372	Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Applied Materials Today, 2016, 2, 17-23.	2.3	17
373	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano, 2016, 10, 1589-1601.	7.3	365
374	Chemical Mass Production of Graphene Nanoplatelets in â^¼100% Yield. ACS Nano, 2016, 10, 274-279.	7.3	139
375	Flexible graphene electrothermal films made from electrochemically exfoliated graphite. Journal of Materials Science, 2016, 51, 1043-1051.	1.7	76
376	Preparation, characterization, and physical properties of graphene nanosheets and films obtained from low-temperature expandable graphite. Journal of Materials Science, 2016, 51, 926-936.	1.7	19
377	In-situ exfoliated graphene for high-performance water-based lubricants. Carbon, 2016, 96, 1181-1190.	5.4	168
378	An alternative pathway to water soluble functionalized graphene from the defluorination of graphite fluoride. Carbon, 2016, 96, 1022-1027.	5.4	21
379	Preparation of graphene nanosheets by shear-assisted supercritical CO 2 exfoliation. Chemical Engineering Journal, 2016, 284, 78-84.	6.6	91
380	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2, 107-138.	9.5	371
381	Electrical conductivity and mechanical properties of ionic liquid modified shear exfoliation graphene/COâ€PA nanocomposites at extremely low graphene loading. Polymer Composites, 2017, 38, E277.	2.3	5
382	Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. ACS Nano, 2017, 11, 2742-2755.	7.3	257
383	Oneâ€Step Simultaneous Exfoliation and Covalent Functionalization of MoS ₂ by Amino Acid Induced Solution Processes. ChemNanoMat, 2017, 3, 172-177.	1.5	33
384	Comparison of carbonâ€based nanomaterials characteristics on H13 tool steel. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 198-204.	0.5	4
385	Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 229-236.	3.8	116
386	Unimer-Assisted Exfoliation for Highly Concentrated Aqueous Dispersion Solutions of Single- and Few-Layered van der Waals Materials. Langmuir, 2017, 33, 1217-1226.	1.6	9
387	Thermal Properties of Two Dimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1604134.	7.8	130
388	How much does size really matter? Exploring the limits of graphene as Li ion battery anode material. Solid State Communications, 2017, 251, 88-93.	0.9	36
389	Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Materials, 2017, 4, 025017.	2.0	85

		CITATION REPORT		
#	Article		IF	Citations
390	Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano, 2017, 11,	2180-2186.	7.3	359
391	A Two-Dimensional Polymer Synthesized through Topochemical [2 + 2]-Cycloaddition of Multigram Scale. Journal of the American Chemical Society, 2017, 139, 2053-2059.	on the	6.6	138
392	A benzoxazine surfactant exchange for atomic force microscopy characterization of tw materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-322	o dimensional !8.	1.7	9
393	Films fabricated from partially fluorinated graphene suspension: structural, electronic p and negative differential resistance. Nanotechnology, 2017, 28, 074001.	roperties	1.3	21
394	Structural, chemical and electrical characterisation of conductive graphene-polymer co films. Applied Surface Science, 2017, 403, 403-412.	mposite	3.1	25
395	Scalable Synthesis of Ultrathin g-C ₃ N ₄ Enhanced Photocatalytic Activities via High Shear Exfoliation. Journal of Nano Research	Nanosheets with , 0, 45, 49-54.	0.8	5
396	2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials,	2017, 2, .	23.3	5,261
397	High concentration exfoliation of graphene in ethyl alcohol using block copolymer surfaits influence on properties of epoxy nanocomposites. Fullerenes Nanotubes and Carbor Nanostructures, 2017, 25, 241-249.	actant and 1	1.0	32
398	GeP ₃ : A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Interlayer Quantum Confinement. Nano Letters, 2017, 17, 1833-1838.	Strong	4.5	338
399	Review—Critical Considerations of High Quality Graphene Synthesized by Plasma-Enh Vapor Deposition for Electronic and Energy Storage Devices. ECS Journal of Solid State Technology, 2017, 6, M3035-M3048.		0.9	30
400	Chemical routes to discharging graphenides. Nanoscale, 2017, 9, 3150-3158.		2.8	17
401	Identification of high performance solvents for the sustainable processing of graphene. Chemistry, 2017, 19, 2550-2560.	Green	4.6	133
402	Production of few-layer graphene by microfluidization. Materials Research Express, 201	7, 4, 025604.	0.8	41
403	Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric p Nanotechnology, 2017, 28, 145601.	ressure.	1.3	22
404	One-step exfoliation and fluorination of g-C ₃ N ₄ nanosheets photocatalytic activities. New Journal of Chemistry, 2017, 41, 3061-3067.	with enhanced	1.4	49
405	An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride 2D Materials, 2017, 4, 025047.	nanosheets.	2.0	145
406	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in E Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	nergy-Related	2.0	369
407	Advances in Subcritical Hydro…Solvothermal Processing of Graphene Materials. Advar 2017, 29, 1605473.	nced Materials,	11.1	68

#	Article	IF	CITATIONS
408	Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Accounts of Chemical Research, 2017, 50, 943-951.	7.6	172
409	Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose. Chemistry of Materials, 2017, 29, 2332-2340.	3.2	134
410	One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon, 2017, 116, 695-702.	5.4	20
411	Simultaneous Activation–Exfoliation–Reassembly to Form Layered Carbon with Hierarchical Pores. ChemCatChem, 2017, 9, 2488-2495.	1.8	5
412	Collector and binder-free high quality graphene film as a high performance anode for lithium-ion batteries. RSC Advances, 2017, 7, 1818-1821.	1.7	7
413	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
414	Synthesis of graphene sheets from single walled carbon nanohorns: novel conversion from cone to sheet morphology. Materials Research Express, 2017, 4, 035008.	0.8	6
415	Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation. Carbon, 2017, 118, 18-24.	5.4	72
416	Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture. ACS Nano, 2017, 11, 3189-3197.	7.3	44
417	Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. Journal of Materials Chemistry A, 2017, 5, 5880-5885.	5.2	73
418	Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe ₂ O ₃ /Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11025-11034.	4.0	75
420	A New Fabrication Method for Single‣ayer Nanosheets by Silverâ€Assisted Exfoliation. ChemNanoMat, 2017, 3, 411-414.	1.5	9
421	Improved electrical properties of atomic layer deposited tin disulfide at low temperatures using ZrO2 layer. AIP Advances, 2017, 7, .	0.6	14
422	Facile and size-controllable preparation of graphene oxide nanosheets using high shear method and ultrasonic method. Journal of Experimental Nanoscience, 2017, 12, 247-262.	1.3	44
423	Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode. Nano Energy, 2017, 36, 46-57.	8.2	138
424	Thermo-responsive graphene dispersions by liquid phase exfoliation of graphite aided by an alkylated Percec monodendron. Science China Materials, 2017, 60, 343-351.	3.5	3
426	Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700051.	10.2	140
427	Polydimethylsiloxane and polyisoprene-based graphene composites for strain-sensing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 03D106.	0.6	2

#	Article	IF	CITATIONS
428	Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon, 2017, 119, 555-568.	5.4	70
429	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€Scheme Catalysts. Advanced Energy Materials, 2017, 7, 1700025.	/ 10.2	664
430	Direct Measurement of the Surface Energy of Graphene. Nano Letters, 2017, 17, 3815-3821.	4.5	95
431	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
432	Systematic study of the correlation between surface chemistry, conductivity and electrocatalytic properties of graphene oxide nanosheets. Carbon, 2017, 120, 165-175.	5.4	38
433	Na _{0.35} MnO ₂ as an ionic conductor with randomly distributed nano-sized layers. Journal of Materials Chemistry A, 2017, 5, 10021-10026.	5.2	13
434	Ultrafast Delamination of Graphite into Highâ€Quality Graphene Using Alternating Currents. Angewandte Chemie - International Edition, 2017, 56, 6669-6675.	7.2	134
435	Ultralow friction of ink-jet printed graphene flakes. Nanoscale, 2017, 9, 7612-7624.	2.8	20
436	High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets. Journal of Materials Science, 2017, 52, 8321-8337.	1.7	47
437	Diethylenetriamine assisted synthesis of mesoporous Co and Ni-Co spinel oxides as an electrocatalysts for methanol and water oxidation. Electrochimica Acta, 2017, 240, 277-287.	2.6	31
438	Titanium-zinc-bismuth oxides-graphene composite nanofibers as high-performance photocatalyst for gas purification. Separation and Purification Technology, 2017, 184, 205-212.	3.9	17
439	Synthesis and Enhanced Corrosion Protection Performance of Reduced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method. ACS Applied Materials & Interfaces, 2017, 9, 18263-18275.	4.0	84
440	A comparative study on different aqueous-phase graphite exfoliation methods for few-layer graphene production and its application in alumina matrix composites. Journal of the European Ceramic Society, 2017, 37, 3681-3693.	2.8	27
441	High stability of few layer graphene nanoplatelets in various solvents. IOP Conference Series: Materials Science and Engineering, 2017, 191, 012015.	0.3	2
442	Thermally conductive thin films derived from defect free graphene-natural rubber latex nanocomposite: Preparation and properties. Carbon, 2017, 119, 527-534.	5.4	36
443	Colloidal 2D nanosheets of MoS 2 and other transition metal dichalcogenides through liquid-phase exfoliation. Advances in Colloid and Interface Science, 2017, 245, 40-61.	7.0	143
444	Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy, 2017, 37, 108-117.	8.2	143
445	Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon, 2017, 114, 77-83.	5.4	63

#	Article	IF	CITATIONS
446	Multiscale Shear-Lag Analysis of Stiffness Enhancement in Polymer–Graphene Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 23092-23098.	4.0	19
447	Accordion-like graphene by a facile and green synthesis method reinforcing polyolefin nanocomposites. RSC Advances, 2017, 7, 31085-31092.	1.7	15
448	Simple Covalent Attachment of Redoxâ€Active Nitroxyl Radicals to Graphene via Dielsâ€Alder Cycloaddition. Macromolecular Chemistry and Physics, 2017, 218, 1700050.	1.1	6
449	2D printing technologies using graphene-based materials. Physics-Uspekhi, 2017, 60, 204-218.	0.8	15
450	Black tea assisted exfoliation using a kitchen mixer allowing one-step production of graphene. Materials Research Express, 2017, 4, 075607.	0.8	26
451	Ultraschnelle Schichtablösung von Graphit zu qualitativ hochwertigem Graphen durch Nutzung von Wechselstrom. Angewandte Chemie, 2017, 129, 6770-6776.	1.6	11
452	Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. Journal of Materials Chemistry B, 2017, 5, 5355-5361.	2.9	68
453	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
454	High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon, 2017, 120, 411-418.	5.4	32
455	Carbon nanostructures in biology and medicine. Journal of Materials Chemistry B, 2017, 5, 6437-6450.	2.9	100
456	Conductive graphene coatings synthesized from graphenide solutions. Carbon, 2017, 121, 217-225.	5.4	11
457	Defect-Laden MoSe ₂ Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. Small, 2017, 13, 1700565.	5.2	31
458	Exfoliated MoS ₂ and MoSe ₂ Nanosheets by a Supercritical Fluid Process for a Hybrid Mg–Li-Ion Battery. ACS Omega, 2017, 2, 2360-2367.	1.6	64
459	Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8, 15630.	5.8	258
460	Facile, environmentally friendly, cost effective and scalable production of few-layered graphene. Chemical Engineering Journal, 2017, 326, 1105-1115.	6.6	35
461	Preparation of chitosan–graphene nanosheet composites with enhanced electrochemical and mechanical properties. Journal of Applied Polymer Science, 2017, 134, 45104.	1.3	0
462	Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion. Current Opinion in Electrochemistry, 2017, 2, 97-103.	2.5	33
463	Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Materials, 2017, 4, 025054.	2.0	39

#	Article	IF	CITATIONS
464	Effects of graphene defects on gas sensing properties towards NO ₂ detection. Nanoscale, 2017, 9, 6085-6093.	2.8	78
465	Flexible, thin films of graphene–polymer composites for EMI shielding. Materials Research Express, 2017, 4, 035605.	0.8	44
466	Ultrahigh Conductive Graphene Paper Based on Ballâ€Milling Exfoliated Graphene. Advanced Functional Materials, 2017, 27, 1700240.	7.8	241
467	Preparation and Effects of Shear Exfoliated Multilayer graphene on the Viscosity of Sodium Carboxymethyl Cellulose (NaCMC) polymer. Fullerenes Nanotubes and Carbon Nanostructures, 2017, , 0-0.	1.0	0
468	Graphene-based field effect transistors as biosensors. Current Opinion in Electrochemistry, 2017, 3, 11-17.	2.5	46
469	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
470	Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 171-178.	6.6	325
471	Graphene as a photothermal actuator for control of lipid mesophase structure. Nanoscale, 2017, 9, 341-348.	2.8	12
472	A Novel Mild Phaseâ€Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications. Small, 2017, 13, 1602243.	5.2	97
473	Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer, 2017, 110, 149-157.	1.8	75
474	The dependence of the measured surface energy of graphene on nanosheet size. 2D Materials, 2017, 4, 015040.	2.0	17
475	EuSn ₂ As ₂ : an exfoliatable magnetic layered Zintl–Klemm phase. Inorganic Chemistry Frontiers, 2017, 4, 378-386.	3.0	48
476	Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction. Electrochimica Acta, 2017, 231, 386-395.	2.6	21
477	Redox Exfoliation of Layered Transition Metal Dichalcogenides. ACS Nano, 2017, 11, 635-646.	7.3	68
478	Preparation of high-quality graphene via electrochemical exfoliation & spark plasma sintering and its applications. Applied Surface Science, 2017, 397, 213-219.	3.1	41
479	Reactivity-Controlled Preparation of Ultralarge Graphene Oxide by Chemical Expansion of Graphite. Chemistry of Materials, 2017, 29, 564-572.	3.2	93
480	Scalable Selfâ€Propagating Highâ€Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. Advanced Materials, 2017, 29, 1604690.	11.1	186
481	The Effect of Shear Mixing Speed and Time on the Mechanical Properties of GNP/Epoxy Composites. Applied Composite Materials, 2017, 24, 301-311.	1.3	39

#	Article	IF	CITATIONS
482	An exploration of the ballistic resistance of multilayer graphene polymer composites. Extreme Mechanics Letters, 2017, 11, 49-58.	2.0	19
483	Green chemistry: Co-assembly of tannin-assisted exfoliated low-defect graphene and epoxy natural rubber latex to form soft andÂelastic nacre-like film with good electrical conductivity. Carbon, 2017, 114, 649-660.	5.4	30
484	CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surface and Coatings Technology, 2017, 311, 10-18.	2.2	33
485	Solution processing of two-dimensional black phosphorus. Chemical Communications, 2017, 53, 1445-1458.	2.2	63
486	Graphiteâ€toâ€Graphene: Total Conversion. Advanced Materials, 2017, 29, 1603528.	11.1	117
487	Carambola-shaped VO ₂ nanostructures: a binder-free air electrode for an aqueous Na–air battery. Journal of Materials Chemistry A, 2017, 5, 2037-2044.	5.2	120
488	Evolution of hydrogen by few-layered black phosphorus under visible illumination. Journal of Materials Chemistry A, 2017, 5, 24874-24879.	5.2	45
489	Bioinspired, Graphene/Al ₂ O ₃ Doubly Reinforced Aluminum Composites with High Strength and Toughness. Nano Letters, 2017, 17, 6907-6915.	4.5	128
490	Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. Langmuir, 2017, 33, 12038-12045.	1.6	11
491	2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. Journal of Power Sources, 2017, 371, 156-161.	4.0	52
492	Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells. Journal of Materials Chemistry A, 2017, 5, 23872-23886.	5.2	45
493	Kinetically Enhanced Bubble-Exfoliation of Graphite toward High-Yield Preparation of High-Quality Graphene. Chemistry of Materials, 2017, 29, 8578-8582.	3.2	45
494	Efficient Graphene Production by Combined Bipolar Electrochemical Intercalation and High-Shear Exfoliation. ACS Omega, 2017, 2, 6492-6499.	1.6	20
495	Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry, 2017, 41, 13792-13797.	1.4	91
496	Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes. Nanotechnology, 2017, 28, 47LT02.	1.3	7
497	A Facile One-Pot Method for Co3O4/Graphene Composite as Efficient Electrode Materials for Supercapacitors. Nano, 2017, 12, 1750102.	0.5	4
498	2D printed graphene conductive layers with high carrier mobility. Current Applied Physics, 2017, 17, 1655-1661.	1.1	19
499	Remarkable high-temperature Li-storage performance of few-layer graphene-anchored Fe ₃ O ₄ nanocomposites as an anode. Journal of Materials Chemistry A, 2017, 5, 23035-23042.	5.2	56

#	Article	IF	CITATIONS
500	Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders. ACS Applied Materials & Interfaces, 2017, 9, 29418-29423.	4.0	59
501	CVD Synthesis of Graphene. , 2017, , 19-56.		9
502	Single-step rubbing method for mass production of large-size and defect-free 2D materials. Translational Materials Research, 2017, 4, 025001.	1.2	5
503	Resilient Energy Storage under High-Temperature with In-Situ-Synthesized MnO _{<i>x</i>} @Graphene as Anode. ACS Applied Materials & Interfaces, 2017, 9, 33896-33905.	4.0	30
504	Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Materials Science-Poland, 2017, 35, 382-389.	0.4	46
505	Characterization techniques for graphene. , 2017, , 45-74.		10
506	Production of Single- and Few-Layer Graphene from Graphite. , 2017, , 91-101.		0
507	Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films. ACS Applied Materials & Interfaces, 2017, 9, 34456-34466.	4.0	79
508	Performance Evolution of Alkylation Graphene Oxide Reinforcing High-Density Polyethylene. Journal of Physical Chemistry C, 2017, 121, 21685-21694.	1.5	16
509	Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides. 2D Materials, 2017, 4, 042006.	2.0	46
510	Lithium Titanate/Carbon Nanotubes Composites Processed by Ultrasound Irradiation as Anodes for Lithium Ion Batteries. Scientific Reports, 2017, 7, 7614.	1.6	17
511	Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Scientific Reports, 2017, 7, 10850.	1.6	61
512	Probing Graphene–Surfactant Interactions in Aqueous Dispersions with Nuclear Overhauser Effect NMR Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 16637-16643.	1.5	4
513	Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17151-17173.	5.2	135
514	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	16.0	1,682
515	Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. Journal of Materials Chemistry A, 2017, 5, 17442-17451.	5.2	211
516	Production routes, electromechanical properties and potential application of layered nanomaterials and 2D nanopolymeric composites—a review. International Journal of Advanced Manufacturing Technology, 2017, 93, 3449-3459.	1.5	12
517	Synthesis of layered platelets by self-assembly of rhenium-based clusters directed by long-chain amines. Npj 2D Materials and Applications, 2017, 1, .	3.9	3

#	Article	IF	CITATIONS
518	Few-layer-graphene with high yield and low sheet resistance via mild oxidation of natural graphite. RSC Advances, 2017, 7, 35717-35723.	1.7	8
519	Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1700605.	11.1	39
520	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie - International Edition, 2017, 56, 14417-14422.	7.2	216
521	Promotional Effect of Fe Impurities in Graphene Precursors on the Activity of MnO _X /Graphene Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2017, 4, 2835-2841.	1.7	17
522	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie, 2017, 129, 14609-14614.	1.6	87
523	Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 25-31.	2.3	16
524	Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale, 2017, 9, 13384-13403.	2.8	209
525	Twoâ€Dimensional Nanostructured Materials for Gas Sensing. Advanced Functional Materials, 2017, 27, 1702168.	7.8	588
526	Graphene-based composite electrodes for electrochemical energy storage devices: Recent progress and challenges. FlatChem, 2017, 6, 48-76.	2.8	27
527	Liquid phase exfoliated graphene for electronic applications. Materials Research Express, 2017, 4, 095017.	0.8	8
528	Direct writing based on Weissenberg effect. , 2017, , .		0
529	Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Materials and Design, 2017, 134, 103-110.	3.3	20
530	Preparation of water-soluble graphene nanoplatelets and highly conductive films. Carbon, 2017, 124, 133-141.	5.4	16
531	Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Metals. , 2017, , 238-256.		1
532	Production of functional graphene by kitchen mixer: mechanism and metric development for in situ measurement of sheet size. Journal of Nanostructure in Chemistry, 2017, 7, 231-242.	5.3	15
533	Tuneable photoconductivity and mobility enhancement in printed MoS ₂ /graphene composites. 2D Materials, 2017, 4, 041006.	2.0	13
534	Enhancing thermal conductivity and mechanical properties of poly(methyl methacrylate) via adding expanded graphite and injecting water. Composites Part A: Applied Science and Manufacturing, 2017, 102, 228-235.	3.8	27
535	Colloid Approach to the Sustainable Top-Down Synthesis of Layered Materials. ACS Omega, 2017, 2, 8610-8617.	1.6	30

#	Article	IF	CITATIONS
536	Understanding Solvent Spreading for Langmuir Deposition of Nanomaterial Films: A Hansen Solubility Parameter Approach. Langmuir, 2017, 33, 14766-14771.	1.6	29
537	Fabrication of Graphene–Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 43230-43238.	4.0	47
538	Controlling the Graphene–Bio Interface: Dispersions in Animal Sera for Enhanced Stability and Reduced Toxicity. Langmuir, 2017, 33, 14184-14194.	1.6	23
539	Graphene. Springer Handbooks, 2017, , 363-391.	0.3	2
540	Top-Down, Scalable Graphene Sheets Production: It Is All about the Precipitate. Chemistry of Materials, 2017, 29, 9998-10006.	3.2	36
541	Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances, 2017, 7, 52252-52260.	1.7	59
542	Process optimization of graphene growth in a roll-to-roll plasma CVD system. AIP Advances, 2017, 7, .	0.6	33
543	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41980-41987.	4.0	22
544	Facile one-pot exfoliation and integration of 2D layered materials by dispersion in a photocurable polymer precursor. Nanoscale, 2017, 9, 10590-10595.	2.8	12
545	Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano, 2017, 11, 8249-8256.	7.3	280
546	In Situ Production of Graphene–Fiber Hybrid Structures. ACS Applied Materials & Interfaces, 2017, 9, 25474-25480.	4.0	12
547	Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 2017, 46, 4464-4500.	18.7	356
548	Scale-up of batch rotor-stator mixers. Part 2—Mixing and emulsification. Chemical Engineering Research and Design, 2017, 124, 321-329.	2.7	14
549	Graphene-MWNTs composite coatings with enhanced electrical conductivity. FlatChem, 2017, 4, 33-41.	2.8	14
550	Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy, 2017, 39, 306-320.	8.2	86
551	Single Crystal, Luminescent Carbon Nitride Nanosheets Formed by Spontaneous Dissolution. Nano Letters, 2017, 17, 5891-5896.	4.5	76
552	Atomically Thin Layers of Graphene and Hexagonal Boron Nitride Made by Solvent Exfoliation of Their Phosphoric Acid Intercalation Compounds. ACS Nano, 2017, 11, 6746-6754.	7.3	35
553	High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. ACS Nano, 2017, 11, 7431-7439.	7.3	116

#	Article	IF	CITATIONS
554	Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film. Applied Nanoscience (Switzerland), 2017, 7, 317-324.	1.6	22
555	Scale-up of batch rotor–stator mixers. Part 1—power constants. Chemical Engineering Research and Design, 2017, 124, 313-320.	2.7	24
556	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	6.4	108
557	Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy, 2017, 39, 151-161.	8.2	123
558	Biosynthesis of grapheneâ€metal nanocomposites using plant extract and their biological activities. Journal of Chemical Technology and Biotechnology, 2017, 92, 1428-1435.	1.6	14
559	General overview of graphene: Production, properties and application in polymer composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 215, 9-28.	1.7	289
560	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
561	Green Processing of Carbon Nanomaterials. Advanced Materials, 2017, 29, 1602423.	11.1	51
562	Scalable exfoliation and dispersion of two-dimensional materials – an update. Physical Chemistry Chemical Physics, 2017, 19, 921-960.	1.3	261
563	Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon, 2017, 113, 379-386.	5.4	63
564	Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials, 2017, 29, 243-255.	3.2	401
565	Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Solar Energy Materials and Solar Cells, 2017, 160, 43-53.	3.0	141
566	Liquid exfoliated graphene smart layer for structural health monitoring of composites. Journal of Intelligent Material Systems and Structures, 2017, 28, 1565-1574.	1.4	17
567	Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 2017, 244, 36-53.	7.0	37
568	Temperature assisted shear exfoliation of layered crystals for the large-scale synthesis of catalytically active luminescent quantum dots. Materials Chemistry Frontiers, 2017, 1, 319-325.	3.2	18
569	Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO 2 /H 2 O medium. Chemical Engineering Journal, 2017, 308, 872-879.	6.6	70
570	Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs. wet-chemistry approach. European Polymer Journal, 2017, 87, 422-448.	2.6	59
571	Surfactant-free single-layer graphene in water. Nature Chemistry, 2017, 9, 347-352.	6.6	175

#	Article	IF	CITATIONS
572	Advances in scalable gas-phase manufacturing and processing of nanostructured solids: A review. Particuology, 2017, 30, 15-39.	2.0	31
573	Exfoliation of Few‣ayer Graphene in Volatile Solvents Using Aromatic Perylene Diimide Derivatives as Surfactants. ChemPlusChem, 2017, 82, 358-367.	1.3	18
574	Ionic solutions of two-dimensional materials. Nature Chemistry, 2017, 9, 244-249.	6.6	68
576	6. Graphene via Molecule-Assisted Ultrasound- Induced Liquid-Phase Exfoliation: A Supramolecular Approach. , 2017, , .		0
577	Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication. Nanomaterials, 2017, 7, 125.	1.9	48
578	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17, 1010.	2.1	47
579	Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities. Sensors, 2017, 17, 2937.	2.1	22
580	Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals, 2017, 7, 198.	1.0	138
581	Synthetic routes to graphene preparation from the perspectives of possible biological applications. , 2017, , 17-44.		4
582	Fluorinated Graphene Dielectric and Functional Layers for Electronic Applications. , 0, , .		3
583	High-Efficient Liquid Exfoliation of Boron Nitride Nanosheets Using Aqueous Solution of Alkanolamine. Nanoscale Research Letters, 2017, 12, 596.	3.1	72
585	Hydrodynamic Cavitation through "Labs on a Chipâ€ŧ From Fundamentals to Applications. Oil and Gas Science and Technology, 2017, 72, 19.	1.4	12
586	Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano- and nano-structured sp2 carbon allotropes. EXPRESS Polymer Letters, 2017, 11, 435-448.	1.1	12
587	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
588	Mechanochemical Reinforcement of Graphene Sheets into Alkyd Resin Matrix for the Development of Electrically Conductive Paints. ChemNanoMat, 2018, 4, 568-574.	1.5	12
589	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
590	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
591	Graphene Applications in Sensors. , 2018, , 125-132.		Ο

#	Article	IF	CITATIONS
593	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
594	Graphene Applications in Specialized Materials. , 2018, , 151-154.		Ο
595	Miscellaneous Applications of Graphene. , 2018, , 155-155.		0
596	Basic Electrochromics of CPs. , 2018, , 251-282.		Ο
597	Batteries and Energy Devices. , 2018, , 575-600.		0
598	Brief, General Overview of Applications. , 2018, , 43-44.		Ο
599	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
600	Monolithic Crystalline Swelling of Graphite Oxide: A Bridge to Ultralarge Graphene Oxide with High Scalability. Chemistry of Materials, 2018, 30, 1888-1897.	3.2	39
602	New 2D Carbon Nitride Organic Materials Synthesis with Hugeâ€Application Prospects in CN Photocatalyst. Small, 2018, 14, e1704138.	5.2	47
603	Structural and electronic properties of two-dimensional (110) diamond nanofilms by first-principles calculations. Diamond and Related Materials, 2018, 84, 55-61.	1.8	21
604	Graphene-coated polymer foams as tuneable impact sensors. Nanoscale, 2018, 10, 5366-5375.	2.8	50
605	Spectroscopic Size and Thickness Metrics for Liquid-Exfoliated <i>h</i> -BN. Chemistry of Materials, 2018, 30, 1998-2005.	3.2	65
606	Prediction the concentration of graphite direct exfoliation by liquid solution with solubility parameters map. AIP Advances, 2018, 8, 015018.	0.6	3
607	Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. Environmental Science: Nano, 2018, 5, 1298-1340.	2.2	68
608	Frontâ€Endâ€ofâ€Line Integration of Graphene Oxide for Grapheneâ€Based Electrical Platforms. Advanced Materials Technologies, 2018, 3, 1700318.	3.0	16
609	Biological recognition of graphene nanoflakes. Nature Communications, 2018, 9, 1577.	5.8	75
610	Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Advanced Functional Materials, 2018, 28, 1705183.	7.8	161
611	Efficient exfoliation of graphite in chloroform with a pyrene-containing hyperbranched polyethylene as stabilizer to render pyrene-functionalized high-quality graphene. Carbon, 2018, 136, 417-429.	5.4	28

		CITATION REPORT		
#	Article		IF	CITATIONS
612	Liquid Exfoliation of Icosahedral Quasicrystals. Advanced Functional Materials, 2018, 2	8, 1801181.	7.8	21
613	Re-organized graphene nanoplatelet thin films achieved by a two-step hydraulic metho Related Materials, 2018, 84, 141-145.	d. Diamond and	1.8	2
614	Recent advances in phosphorene as a sensing material. Nano Today, 2018, 20, 13-32.		6.2	134
615	Surface modification of highly porous 3D networks via atmospheric plasma treatment. To Plasma Physics, 2018, 58, 384-393.	Contributions	0.5	9
616	Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene. Chen Letters, 2018, 700, 108-113.	nical Physics	1.2	15
617	Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 2 3265-3300.	018, 47,	18.7	401
618	Functionalized Graphene Nanosheets with Fewer Defects Prepared via Sodium Alginate Exfoliation of Graphite in Aqueous Media for Lithium-Ion Batteries. ACS Applied Nano N 1985-1994.		2.4	16
619	Scalable Waterâ€Based Production of Highly Conductive 2D Nanosheets with Ultrahig Capacitance and Rate Capability. Advanced Energy Materials, 2018, 8, 1800227.	n Volumetric	10.2	26
620	A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbor for high performance sodium/lithium storage. Nano Energy, 2018, 48, 510-517.	ו nanosheets	8.2	139
621	Ag-modified ultrathin Bi ₁₂ O ₁₇ Cl ₂ nanosheets: exfoliation synthesis and enhanced photocatalytic performance. Journal of Materials Cl 2018, 6, 9200-9208.	photo-assisted Ag 1emistry A,	5.2	53
622	Towards scaleâ€นp of graphene production via nonoxidizing liquid exfoliation methods 2018, 64, 3246-3276.	. AICHE Journal,	1.8	32
623	Large-scale synthesis of 2D metal dichalcogenides. Journal of Materials Chemistry C, 20	918, 6, 4627-4640.	2.7	35
624	Controlled Functionalization of Reduced Graphene Oxide Enabled by Microfluidic React Chemistry of Materials, 2018, 30, 2905-2914.	iors.	3.2	8
625	Low-temperature and facile solution-processed two-dimensional TiS ₂ as a electron transport layer for UV-stable planar perovskite solar cells. Journal of Materials A, 2018, 6, 9132-9138.		5.2	78
626	Co-exfoliation and fabrication of graphene based microfibrillated cellulose composites and thermal stability and functional conductive properties. Nanoscale, 2018, 10, 9569-	– mechanical 9582.	2.8	20
627	Controlled Structure Evolution of Graphene Networks in Polymer Composites. Chemist Materials, 2018, 30, 1524-1531.	ry of	3.2	24
628	Thermal-Undoping-Induced 2D Sheet Exfoliations in 1D Nanomaterial. Journal of Physic 2018, 122, 13731-13737.	al Chemistry C,	1.5	3
629	Self-supporting Co3O4/Graphene Hybrid Films as Binder-free Anode Materials for Lithiu Scientific Reports, 2018, 8, 3182.	m Ion Batteries.	1.6	55

#	Article	IF	CITATIONS
630	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705833.	7.8	348
631	Mass production of graphene nanosheets by multi-roll milling technique. Tribology International, 2018, 121, 54-63.	3.0	42
632	Simplified production of graphene oxide assisted by high shear exfoliation of graphite with controlled oxidation. New Journal of Chemistry, 2018, 42, 4507-4512.	1.4	14
633	Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate. Materials Today: Proceedings, 2018, 5, 973-979.	0.9	8
634	Production of ready-to-use few-layer graphene in aqueous suspensions. Nature Protocols, 2018, 13, 495-506.	5.5	62
635	Liquidâ€Phase Exfoliation of Hexagonal Boron Nitride into Boron Nitride Nanosheets in Common Organic Solvents with Hyperbranched Polyethylene as Stabilizer. Macromolecular Chemistry and Physics, 2018, 219, 1700482.	1.1	48
636	Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets. Scientific Reports, 2018, 8, 1557.	1.6	96
637	Liquid Exfoliated Co(OH) ₂ Nanosheets as Low ost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
638	Black Phosphorus Synthesis Path Strongly Influences Its Delamination, Chemical Properties and Electrochemical Performance. ACS Applied Energy Materials, 2018, 1, 503-509.	2.5	19
639	Highly efficient computer algorithm for identifying layer thickness of atomically thin 2D materials. Journal Physics D: Applied Physics, 2018, 51, 11LTO3.	1.3	6
640	Preparation of Few-Layer MoS ₂ Nanosheets via an Efficient Shearing Exfoliation Method. Industrial & Engineering Chemistry Research, 2018, 57, 2838-2846.	1.8	45
641	High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. Journal of Materials Science, 2018, 53, 6763-6773.	1.7	31
642	Design Rules for Graphene and Carbon Nanotube Solvents and Dispersants. ACS Nano, 2018, 12, 1043-1049.	7.3	20
643	Quantitative correlation between interlayer distance and shear rate in liquid-based exfoliation of graphene layers. Carbon, 2018, 129, 661-666.	5.4	8
644	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
645	Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, 7312-7329.	1.7	86
646	Surfactant-exfoliated graphene as a near-infrared photothermal ablation agent. Biomedical Physics and Engineering Express, 2018, 4, 025020.	0.6	2
647	Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions. Carbon, 2018, 129, 191-198.	5.4	32

#	Article	IF	CITATIONS
648	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2018, 2, .	13.8	228
649	Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Advanced Energy Materials, 2018, 8, 1702606.	10.2	153
650	Ultrathin two-dimensional metallic nanomaterials. Materials Chemistry Frontiers, 2018, 2, 456-467.	3.2	73
651	Space-confined vapor deposition synthesis of two dimensional materials. Nano Research, 2018, 11, 2909-2931.	5.8	76
652	Hydrogen storage kinetics: The graphene nanoplatelet size effect. Carbon, 2018, 130, 369-376.	5.4	32
653	A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nature Communications, 2018, 9, 76.	5.8	151
654	THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C, 2018, 6, 1291-1306.	2.7	124
655	Graphene–Solvent Interactions in Nonaqueous Dispersions: 2D ROESY NMR Measurements and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2018, 122, 1881-1888.	1.5	6
656	A reliable and highly efficient exfoliation method for water-dispersible MoS2 nanosheet. Journal of Colloid and Interface Science, 2018, 514, 642-647.	5.0	25
657	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	1.7	6
658	Robust and Antibacterial Polymer/Mechanically Exfoliated Graphene Nanocomposite Fibers for Biomedical Applications. ACS Applied Materials & Interfaces, 2018, 10, 3002-3010.	4.0	59
659	Graphene-based anticorrosive coatings for copper. RSC Advances, 2018, 8, 499-507.	1.7	49
660	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
661	Two-Dimensional Material-Reinforced Separator for Li–Sulfur Battery. Journal of Physical Chemistry C, 2018, 122, 10765-10772.	1.5	23
662	Highâ€Loading Carbon Nanotube/Polymer Nanocomposite Fabric Coatings Obtained by Capillarityâ€Assisted "Excess Assembly―for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2018, 5, 1800116.	1.9	39
663	Graphene inclusion controlling conductivity and gas sorption of metal–organic framework. RSC Advances, 2018, 8, 13921-13932.	1.7	13
664	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	2.0	266
665	Silver Nanowires with Pristine Graphene Oxidation Barriers for Stable and High Performance Transparent Conductive Films. ACS Applied Nano Materials, 2018, 1, 2249-2260.	2.4	37

#	Article	IF	CITATIONS
666	Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene. Solid-State Electronics, 2018, 144, 90-94.	0.8	19
667	A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem, 2018, 8, 40-71.	2.8	154
668	High quality, low-oxidized graphene via anodic exfoliation with table salt as an efficient oxidation-preventing co-electrolyte for water/oil remediation and capacitive energy storage applications. Applied Materials Today, 2018, 11, 246-254.	2.3	28
669	Radical-Initiated and Thermally Induced Hydrogermylation of Alkenes on the Surfaces of Germanium Nanosheets. Chemistry of Materials, 2018, 30, 2274-2280.	3.2	30
670	Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Composites Part A: Applied Science and Manufacturing, 2018, 109, 321-329.	3.8	83
671	Investigation of tip sonication effects on structural quality of graphene nanoplatelets (CNPs) for superior solvent dispersion. Ultrasonics Sonochemistry, 2018, 45, 133-149.	3.8	89
672	Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018, 140, 7561-7567.	6.6	273
673	Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing. Carbon, 2018, 135, 180-186.	5.4	27
674	On the hydrogen evolution reaction activity of graphene–hBN van der Waals heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 15007-15014.	1.3	41
675	Research Progress of Grapheneâ€Based Rubber Nanocomposites. Polymer Composites, 2018, 39, 1006-1022.	2.3	36
676	Thermal stability and mechanical properties of solution mixing–processed co-polyamide–graphene composites at extremely low graphene loading. High Performance Polymers, 2018, 30, 16-23.	0.8	5
677	Mass production and industrial applications of graphene materials. National Science Review, 2018, 5, 90-101.	4.6	222
678	Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and <i>In-vitro</i> Biofunctionality. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 177-212.	6.8	58
679	A general synthetic strategy to monolayer graphene. Nano Research, 2018, 11, 3088-3095.	5.8	45
680	Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 2018, 30, 1703771.	11.1	245
681	Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. Journal of Energy Chemistry, 2018, 27, 1509-1515.	7.1	17
682	Rational utilization of highly conductive, commercial Elicarb graphene to advance the graphene-semiconductor composite photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 424-432.	10.8	45
683	Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction	5.9	134

#	Article	IF	CITATIONS
684	Zweidimensionale Chemie jenseits von Graphen: das aufstrebende Gebiet der Funktionalisierung von Molybdädisulfid und schwarzem Phosphor. Angewandte Chemie, 2018, 130, 4421-4437.	1.6	24
685	Postâ€Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angewandte Chemie - International Edition, 2018, 57, 4338-4354.	7.2	193
686	Highly efficient and continuous production of few-layer black phosphorus nanosheets and quantum dots via acoustic-microfluidic process. Chemical Engineering Journal, 2018, 333, 336-342.	6.6	21
687	Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Research, 2018, 11, 820-830.	5.8	22
688	Graphene dispersion in a surfactant-free, polar solvent. Journal of Materials Science, 2018, 53, 559-572.	1.7	9
689	Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment. Ultrasonics Sonochemistry, 2018, 41, 181-188.	3.8	33
690	Polymer composite hydrogels containing carbon nanomaterials—Morphology and mechanical and functional performance. Progress in Polymer Science, 2018, 77, 1-18.	11.8	101
691	Graphene. , 2018, , 197-228.		4
692	2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horizons, 2018, 3, 74-89.	4.1	126
693	Flexible Solidâ€State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Advanced Functional Materials, 2018, 28, 1704463.	7.8	239
694	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
695	Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Materials, 2018, 12, 110-118.	9.5	26
696	A biosupramolecular approach to graphene: Complementary nucleotide-nucleobase combinations as enhanced stabilizers towards aqueous-phase exfoliation and functional graphene-nucleotide hydrogels. Carbon, 2018, 129, 321-334.	5.4	5
697	Scalable synthesis of two-dimensional nano-sheet materials with chlorophyll extracts: enhancing the hydrogen evolution reaction. Green Chemistry, 2018, 20, 525-533.	4.6	15
698	Hybridization of graphene oxide with commercial graphene for constructing 3D metal-free aerogel with enhanced photocatalysis. Applied Catalysis B: Environmental, 2018, 226, 16-22.	10.8	79
699	Exfoliation of Few-Layer Black Phosphorus in Low-Boiling-Point Solvents and Its Application in Li-Ion Batteries. Chemistry of Materials, 2018, 30, 506-516.	3.2	93
700	Functionally Antagonistic Hybrid Electrode with Hollow Tubular Graphene Mesh and Nitrogenâ€Đoped Crumpled Graphene for Highâ€Performance Ionic Soft Actuators. Advanced Functional Materials, 2018, 28, 1705714.	7.8	51
701	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309

	CITATION	Report	
#	Article	IF	Citations
702	Efficient exfoliation of layered materials by waste liquor. Nanotechnology, 2018, 29, 095603.	1.3	17
703	Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon, 2018, 127, 392-403.	5.4	75
704	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
705	A highly efficient flocculant for graphene oxide recycling and its applications. Nanotechnology, 2018, 29, 015401.	1.3	2
706	PEO-PPO-PEO surfactant exfoliated graphene cyclodextrin drug carriers for photoresponsive release. Materials Chemistry and Physics, 2018, 205, 154-163.	2.0	10
707	Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries. 2D Materials, 2018, 5, 015024.	2.0	21
708	Ultrasonicâ€assisted synthesis and enhancement of chitosan/graphene nanosheet composites. Polymer Composites, 2018, 39, 4217-4223.	2.3	3
709	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	18.7	232
710	Topotactic conversion of calcium carbide to highly crystalline few-layer graphene in water. Journal of Materials Chemistry A, 2018, 6, 23638-23643.	5.2	8
711	Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets. Nanoscale, 2018, 10, 23182-23190.	2.8	40
712	Millstone Exfoliation: a True Shear Exfoliation for Large-Size Few-Layer Graphene Oxide. Nanoscale Research Letters, 2018, 13, 186.	3.1	2
713	Efficient Production of High-Quality Few-Layer Graphene Using a Simple Hydrodynamic-Assisted Exfoliation Method. Nanoscale Research Letters, 2018, 13, 416.	3.1	14
715	Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 2018, 8, 942.	1.9	222
716	Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today, 2018, 23, 73-96.	6.2	96
717	Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures. Nature Communications, 2018, 9, 4913.	5.8	38
718	Molecular Simulation of MoS2 Exfoliation. Scientific Reports, 2018, 8, 16761.	1.6	19
719	2D Material Membranes for Operando Atmospheric Pressure Photoelectron Spectroscopy. Topics in Catalysis, 2018, 61, 2085-2102.	1.3	26
720	Highly Efficient Production of Graphene by an Ultrasound Coupled with a Shear Mixer in Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 16701-16708.	1.8	22

#	Article	IF	CITATIONS
721	Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS Applied Materials & Interfaces, 2018, 10, 43192-43202.	4.0	14
722	Synthesis and Advanced Characterisation of Layered Platelets by Self-assembly of Long-chain Amines. Microscopy and Microanalysis, 2018, 24, 1566-1567.	0.2	0
723	Effect of Size of Multiwalled Carbon Nanotubes Dispersed in Gear Oils for Improvement of Tribological Properties. Advances in Tribology, 2018, 2018, 1-13.	2.1	10
724	Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and loT applications. Nature Communications, 2018, 9, 5197.	5.8	206
725	Few-layer large area graphene samples grown by CVD aiming application in electrochemical sensing devices , 2018, , .		1
726	The war on fake graphene. Nature, 2018, 562, 502-503.	13.7	55
727	One-pot synthesis of graphene- cobalt hydroxide composite nanosheets (Co/G NSs) for electrocatalytic water oxidation. Scientific Reports, 2018, 8, 13772.	1.6	9
728	High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 2018, 8, 14525.	1.6	146
729	Supercapacitor with extraordinary cycling stability and high rate from nano-architectured polyaniline/graphene on Janus nanofibrous film with shape memory. Journal of Materials Chemistry A, 2018, 6, 21064-21077.	5.2	61
730	Inversion domain boundaries in MoSe ₂ layers. RSC Advances, 2018, 8, 33391-33397.	1.7	9
731	A Simple Flow Reactor for Continuous Synthesis of Biographene for Enzymology Studies. Methods in Enzymology, 2018, 609, 273-291.	0.4	0
732	Interplay between oxidative stress and endoplasmic reticulum stress mediated- autophagy in unfunctionalised few-layer graphene-exposed macrophages. 2D Materials, 2018, 5, 045033.	2.0	15
733	Phosphorylated Boron Nitride Nanosheets as Highly Effective Barrier Property Enhancers. Industrial & Engineering Chemistry Research, 2018, 57, 14096-14105.	1.8	33
734	Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Advances in Colloid and Interface Science, 2018, 261, 41-61.	7.0	177
735	Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 2018, 10, 1088.	2.0	14
738	Emerging 2D Nanomaterials for Supercapacitor Applications. , 2018, , 155-183.		1
739	Cyclic Liquid-Phase Exfoliation of Electrically Conductive Graphene-Derivative Inks. IEEE Nanotechnology Magazine, 2018, 17, 1020-1028.	1.1	5
740	On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications. Advanced Functional Materials, 2018, 28, 1804357.	7.8	32

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
741	Anomalous twin boundaries in two dimensional materials. Nature Communications, 2018, 9, 3597.	5.8	46
742	Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications, 2018, 9, 3645.	5.8	204
743	Predicting a two-dimensional P2S3 monolayer: A global minimum structure. Computational Materials Science, 2018, 155, 288-292.	1.4	8
744	Evolution of oxygen functionalities in graphene oxide and its impact on structure and exfoliation: An oxidation time based study. Materials Chemistry and Physics, 2018, 220, 417-425.	2.0	16
745	From Graphene-like Sheet Stabilized Emulsions to Composite Polymeric Foams: Molecular Dynamics Simulations. Macromolecules, 2018, 51, 7360-7367.	2.2	7
746	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
747	Application of Graphene Hybrid Materials in Fault Characteristic Gas Detection of Oil-Immersed Equipment. Frontiers in Chemistry, 2018, 6, 399.	1.8	9
748	Interlocking Enzymes in Graphene-Coated Cellulose Paper for Increased Enzymatic Efficiency. Methods in Enzymology, 2018, 609, 1-22.	0.4	2
749	Highly thermally conductive layered polymer composite from solvent-exfoliated pristine graphene. Carbon, 2018, 140, 596-602.	5.4	36
750	Adsorption of common solvent molecules on graphene and MoS2 from first-principles. Journal of Chemical Physics, 2018, 149, 094702.	1.2	17
751	Influence of ternary hydroalcoholic solvent on direct exfoliation concentration of graphite. AIP Advances, 2018, 8, 065119.	0.6	1
752	Covalent organic nanosheets for bioimaging. Chemical Science, 2018, 9, 8382-8387.	3.7	84
753	Exfoliation of crystals. Russian Chemical Reviews, 2018, 87, 882-903.	2.5	6
754	Mass Production of Largeâ€Sized, Nonlayered 2D Nanosheets: Their Directed Synthesis by a Rapid "Gelâ€Blowing―Strategy, and Applications in Li/Na Storage and Catalysis. Advanced Materials, 2018, 30, e1803569.	11.1	74
755	Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets. Flexible and Printed Electronics, 2018, 3, 034005.	1.5	31
756	Plasma Jet Printing and <i>in Situ</i> Reduction of Highly Acidic Graphene Oxide. ACS Nano, 2018, 12, 5473-5481.	7.3	34
757	Regulation of radicals from electrochemical exfoliation of a double-graphite electrode to fabricate high-quality graphene. Journal of Materials Chemistry C, 2018, 6, 6257-6263.	2.7	29
758	Direct Semiconductor Laser Writing of Few‣ayer Graphene Polyhedra Networks for Flexible Solidâ€State Supercapacitor. Advanced Electronic Materials, 2018, 4, 1800092.	2.6	22

#	Article	IF	CITATIONS
759	Significant improvement in the interface thermal conductivity of graphene-nanoplatelets/silicone composite. Materials Research Express, 2018, 5, 055606.	0.8	4
760	Emerging trends in 2D nanotechnology that are redefining our understanding of "Nanocomposites― Nano Today, 2018, 21, 18-40.	6.2	59
761	Exfoliation of Graphite into Graphene by a Rotor–Stator in Supercritical CO ₂ : Experiment and Simulation. Industrial & Engineering Chemistry Research, 2018, 57, 8220-8229.	1.8	19
762	Solvent mediated hybrid 2D materials: black phosphorus – graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale, 2018, 10, 10443-10449.	2.8	40
763	Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceramics International, 2018, 44, 17660-17666.	2.3	20
764	Sweet graphene: exfoliation of graphite and preparation of glucose-graphene cocrystals through mechanochemical treatments. Green Chemistry, 2018, 20, 3581-3592.	4.6	56
765	Waterâ€Soluble Hybrid Graphene Ink for Gravureâ€Printed Planar Supercapacitors. Advanced Electronic Materials, 2018, 4, 1800059.	2.6	42
766	Graphene-Based Electrochemical Sensors. Springer Series on Chemical Sensors and Biosensors, 2018, , 141-164.	0.5	2
767	Nanoscale infrared identification and mapping of chemical functional groups on graphene. Carbon, 2018, 139, 317-324.	5.4	39
768	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	18.7	513
768 769	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908. Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705.	18.7 7.8	513 183
	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and		
769	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705.	7.8	183
769 770	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705. Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 2018, 9, 319-335. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite	7.8 2.5	183 138
769 770 771	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705. Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 2018, 9, 319-335. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon, 2018, 139, 309-316. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Materials and Design,	7.8 2.5 5.4	183 138 23
769 770 771 772	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705. Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 2018, 9, 319-335. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon, 2018, 139, 309-316. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Materials and Design, 2018, 156, 62-70. Nafion-Mediated Liquid-Phase Exfoliation of Transition Metal Dichalcogenides and Direct Application	7.8 2.5 5.4 3.3	183 138 23 30
769 770 771 772 773	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705. Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 2018, 9, 319-335. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon, 2018, 139, 309-316. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Materials and Design, 2018, 156, 62-70. Nafion-Mediated Liquid-Phase Exfoliation of Transition Metal Dichalcogenides and Direct Application in Hydrogen Evolution Reaction. Chemistry of Materials, 2018, 30, 4658-4666. New In Situ Synthesis Method for Fe ₃ O ₄ /Flake Graphite Nanosheet Composite Structure and Its Application in Anode Materials of Lithium-Ion Batteries. Journal of Nanomaterials,	7.8 2.5 5.4 3.3 3.2	183 138 23 30 30

#	Article	IF	CITATIONS
777	N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim. Sensors and Actuators B: Chemical, 2018, 274, 551-559.	4.0	33
778	Colloids of Holey Gd ₂ O ₃ Nanosheets Converted from Exfoliated Gadolinium Hydroxide Layers. Small, 2018, 14, e1802174.	5.2	5
779	Preparation of graphene quantum dots through liquid phase exfoliation method. Journal of Luminescence, 2018, 204, 203-208.	1.5	20
780	Dispersion of Graphene in Aqueous Solution. Russian Journal of Physical Chemistry A, 2018, 92, 1558-1562.	0.1	4
781	Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 2018, 30, e1801586.	11.1	134
782	2.2 Carbonaceous Materials. , 2018, , 40-71.		3
783	Enhanced Lithium Storage Performance of Liquidâ€Phase Exfoliated Graphene Supported WS ₂ Heterojunctions. ChemElectroChem, 2018, 5, 3222-3228.	1.7	18
784	Graphene-based nanomaterials for solar cells. , 2018, , 127-152.		3
785	Size-Dependent Nonlinear Optical Response of Black Phosphorus Liquid Phase Exfoliated Nanosheets in Nanosecond Regime. ACS Photonics, 2018, 5, 3608-3612.	3.2	31
786	Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparing biocompatible polymer nanocomposites. Scientific Reports, 2018, 8, 11228.	1.6	24
787	Enhanced exfoliation efficiency of graphite into few-layer graphene via reduction of graphite edge. Carbon, 2018, 138, 390-396.	5.4	11
788	Sliding Dynamics of Parallel Graphene Sheets: Effect of Geometry and Van Der Waals Interactions on Nano-Spring Behavior. Crystals, 2018, 8, 149.	1.0	14
789	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	6.4	139
790	Mixed solvent-mediated exfoliation of graphene invoked by synergistic effect of steric hindrance and hydrogen bond for improved electrochemical performance on its polymeric composites. Electrochimica Acta, 2018, 283, 818-825.	2.6	8
791	Toward high production of graphene flakes – a review on recent developments in their synthesis methods and scalability. Journal of Materials Chemistry A, 2018, 6, 15010-15026.	5.2	63
792	Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets. Polymers, 2018, 10, 29.	2.0	12
793	Optical Graphene Gas Sensors Based on Microfibers: A Review. Sensors, 2018, 18, 941.	2.1	39
794	Shear Exfoliation and Photoresponse of 2D‣ayered Gallium Selenide Nanosheets. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800226.	1.2	11

#	Article	IF	CITATIONS
795	Biomimetic graphene for enhanced interaction with the external membrane of astrocytes. Journal of Materials Chemistry B, 2018, 6, 5335-5342.	2.9	21
796	Multilayered graphene grafted copper wires. Carbon, 2018, 139, 666-671.	5.4	19
797	One-step room-temperature exfoliation of graphite to 100% few-layer graphene with high quality and large size. Journal of Materials Chemistry C, 2018, 6, 8343-8348.	2.7	14
798	Liquid Phase Acoustic Wave Exfoliation of Layered MoS ₂ : Critical Impact of Electric Field in Efficiency. Chemistry of Materials, 2018, 30, 5593-5601.	3.2	31
799	Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 7652-7661.	3.2	107
800	Development of radioactive beams at ALTO: Part 1. Physicochemical comparison of different types of UCx targets using a multivariate statistical approach. Nuclear Instruments & Methods in Physics Research B, 2018, 433, 60-68.	0.6	4
801	Hydraulic Power Manufacturing for Highly Scalable and Stable 2D Nanosheet Dispersions and Their Film Electrode Application. Advanced Functional Materials, 2018, 28, 1802952.	7.8	24
802	Solution electrochemical approach to functionalized graphene: History, progress and challenges. Carbon, 2018, 140, 41-56.	5.4	34
803	"Snowing―Graphene using Microwave Ovens. Advanced Materials, 2018, 30, e1803189.	11.1	47
804	Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Applied Sciences (Switzerland), 2018, 8, 1438.	1.3	201
805	A New Facile Route to Flexible and Semiâ€Transparent Electrodes Based on Water Exfoliated Graphene and their Singleâ€Electrode Triboelectric Nanogenerator. Advanced Materials, 2018, 30, e1802953.	11.1	74
806	Simple Method of Exfoliation Multilayer Graphene from Graphite Sheets. SSRN Electronic Journal, 2018, , .	0.4	2
807	High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale, 2018, 10, 17638-17646.	2.8	12
808	Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews, 2018, 118, 7363-7408.	23.0	182
809	Layered franckeite and teallite intrinsic heterostructures: shear exfoliation and electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16590-16599.	5.2	18
810	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 13266-13269.	1.6	26
811	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 13082-13085.	7.2	97
812	Stateâ€ofâ€theâ€Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials, 2018, 30, e1801179.	11.1	79

#	Article	IF	CITATIONS
813	Controlled synthesis of train-structured montmorillonite/layered double hydroxide nanocomposites by regulating the hydrolysis of polylactic acid. Journal of Materials Science, 2018, 53, 15859-15870.	1.7	23
814	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29638-29646.	4.0	63
815	A novel WS ₂ /NbSe ₂ vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17040-17048.	5.2	53
816	Nitrogen and Oxygen Co-doped Graphitized Carbon Fibers with Sodiophilic-Rich Sites Guide Uniform Sodium Nucleation for Ultrahigh-Capacity Sodium-Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 30417-30425.	4.0	78
817	Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets. Nanoscale Research Letters, 2018, 13, 241.	3.1	40
818	Production of Few-Layer Graphene via Enhanced High-Pressure Shear Exfoliation in Liquid for Supercapacitor Applications. ACS Applied Nano Materials, 2018, 1, 2877-2884.	2.4	33
819	BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation. Carbon, 2018, 138, 118-124.	5.4	69
820	Highâ€Throughput Continuous Production of Shearâ€Exfoliated 2D Layered Materials using Compressible Flows. Advanced Materials, 2018, 30, e1800200.	11.1	51
821	Adsorption of CO2 on graphene surface modified with defects. Computational Condensed Matter, 2018, 16, e00315.	0.9	19
822	Biodegradable Transparent Substrate Based on Edible Starch–Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics. ACS Applied Materials & Interfaces, 2018, 10, 23037-23047.	4.0	68
823	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
824	Building Close Ties Between CO ₂ and Functional Twoâ€Dimensional Nanomaterials with Green Chemistry Strategy. Energy and Environmental Materials, 2018, 1, 46-60.	7.3	26
825	Functionalized graphene. , 2018, , 545-584.		4
826	Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation. Journal of Materials Science, 2018, 53, 12807-12815.	1.7	45
827	Bernal stacking-assisted shear exfoliation of nanoplate bilayers. Journal of Chemical Physics, 2018, 148, 214905.	1.2	3
828	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	7.3	78
829	Optimising composite viscosity leads to high sensitivity electromechancial sensors. 2D Materials, 2018, 5, 035042.	2.0	16
830	Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale, 2018, 10, 11604-11615.	2.8	44

#	Article	IF	CITATIONS
831	Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale, 2018, 10, 11820-11830.	2.8	90
832	Introduction of Graphene Nanofibers into the Perovskite Layer of Perovskite Solar Cells. ChemSusChem, 2018, 11, 2921-2929.	3.6	17
833	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
834	Mass Production of Biocompatible Graphene Using Silk Nanofibers. ACS Applied Materials & Interfaces, 2018, 10, 22924-22931.	4.0	40
835	Wonder material graphene: properties, synthesis and practical applications. Advances in Materials and Processing Technologies, 2018, 4, 573-602.	0.8	12
836	Printing of Graphene and Related 2D Materials. , 2019, , .		25
837	2D Material Production Methods. , 2019, , 53-101.		2
838	Influence of graphene oxide on hydration characteristics of tricalcium silicate. Advances in Cement Research, 2019, 31, 448-456.	0.7	6
839	Reduced Graphene Oxide Using an Environmentally Friendly Banana Extracts. MRS Advances, 2019, 4, 2143-2151.	0.5	3
840	High shear-granulated hierarchically porous spheres nanostructure-designed for high-performance supercapacitors. Advanced Powder Technology, 2019, 30, 2440-2449.	2.0	8
841	Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 32225-32234.	4.0	174
842	Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	5.2	89
843	New generation graphene oxide for removal of polycyclic aromatic hydrocarbons. , 2019, , 241-266.		7
844	Few-layer graphene oxide with high yield via efficient surfactant-assisted exfoliation of mildly-oxidized graphite. Applied Surface Science, 2019, 494, 1100-1108.	3.1	12
845	The novel and facile preparation of 2DMoS2@C composites for dye adsorption application. Applied Surface Science, 2019, 495, 143626.	3.1	18
846	Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science, 2019, 496, 143696.	3.1	106
847	The Tribological Behavior of Hybrid Graphene/Tungsten Disulfide Nanoparticle Coatings. Journal of Materials Engineering and Performance, 2019, 28, 5076-5087.	1.2	1
848	Green reduction of graphene oxide by plant extracts: A short review. Ceramics International, 2019, 45, 23857-23868.	2.3	90

		KEI OKI	
#	Article	IF	CITATIONS
849	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	2.8	4
850	A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method. RSC Advances, 2019, 9, 24066-24073.	1.7	9
851	Liquid Phase Exfoliated Hexagonal Boron Nitride/Graphene Heterostructure Based Electrode Toward Asymmetric Supercapacitor Application. Frontiers in Chemistry, 2019, 7, 544.	1.8	22
852	Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply. ACS Nano, 2019, 13, 10272-10278.	7.3	32
853	Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. ACS Nano, 2019, 13, 8957-8969.	7.3	24
854	Pristine graphene for advanced electrochemical energy applications. Journal of Power Sources, 2019, 437, 226899.	4.0	31
855	The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate. Nanoscale, 2019, 11, 14339-14353.	2.8	18
856	Liquid-exfoliated graphene as highly efficient conductive additives for cathodes in lithium ion batteries. Carbon, 2019, 153, 156-163.	5.4	45
857	ZnO rod/reduced graphene oxide sensitized by $\hat{I}\pm$ -Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. Journal of Colloid and Interface Science, 2019, 554, 335-343.	5.0	51
858	Tailored Langmuir–Schaefer Deposition of Few-Layer MoS ₂ Nanosheet Films for Electronic Applications. Langmuir, 2019, 35, 9802-9808.	1.6	22
859	Simultaneous Electrochemical Dualâ€Electrode Exfoliation of Graphite toward Scalable Production of Highâ€Quality Graphene. Advanced Functional Materials, 2019, 29, 1902171.	7.8	63
860	Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Frontiers in Systems Neuroscience, 2019, 13, 26.	1.2	25
861	High-yield production of graphene flakes using a novel electrochemical/mechanical hybrid exfoliation. International Journal of Advanced Manufacturing Technology, 2019, 104, 2751-2760.	1.5	14
862	Zeolite-Assisted Shear Exfoliation of Graphite into Few-Layer Graphene. Crystals, 2019, 9, 377.	1.0	14
863	Defect-dependent electrochemistry of exfoliated graphene layers. Carbon, 2019, 154, 125-131.	5.4	35
864	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10
865	Thermally Healable and Recyclable Graphene-Nanoplate/Epoxy Composites Via an In-Situ Diels-Alder Reaction on the Graphene-Nanoplate Surface. Polymers, 2019, 11, 1057.	2.0	9
867	Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene and nanographite in water. Scientific Reports, 2019, 9, 8966.	1.6	8

ATION P

#	Article		CITATIONS
868	Study of porphyrin-modified liquid exfoliated graphene field-effect transistors for evaluating DNA methylation degree. Analyst, The, 2019, 144, 4787-4794.	1.7	8
869	Graphene and Flavin Mononucleotide Interaction in Aqueous Graphene Dispersions. Journal of Physical Chemistry C, 2019, 123, 26282-26288.	1.5	7
870	Layer-by-Layer Engineered Silicon-Based Sandwich Nanomat as Flexible Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39970-39978.	4.0	26
872	Comparative analysis of nonlinear optical properties of single-layer graphene and few-layer graphene nanosheets. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	3
873	Growth and characterization of two-dimensional crystals for communication and energy applications. Progress in Crystal Growth and Characterization of Materials, 2019, 65, 100465.	1.8	5
876	Natural Amino Acids: High-Efficiency Intercalants for Graphene Exfoliation. ACS Sustainable Chemistry and Engineering, 2019, 7, 18819-18825.	3.2	30
877	Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. TrAC - Trends in Analytical Chemistry, 2019, 121, 115696.	5.8	31
878	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	2.8	52
879	Platinum and Transparent Conducting Oxide Free Graphene-CNT Composite Based Counter-Electrodes for Dye-Sensitized Solar Cells. Surface Engineering and Applied Electrochemistry, 2019, 55, 472-480.	0.3	3
880	Role of Substrate Surface Morphology on the Performance of Graphene Inks for Flexible Electronics. ACS Applied Electronic Materials, 2019, 1, 1909-1916.	2.0	10
881	Graphene-based wearable sensors. Nanoscale, 2019, 11, 18923-18945.	2.8	98
882	High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Science and Technology of Advanced Materials, 2019, 20, 870-875.	2.8	36
883	Synthesis of 2D Li ₄ Ti ₅ O ₁₂ Nanosheets via the "Insertion–Exfoliation–Lithiation―Process. ACS Applied Energy Materials, 2019, 2, 7321-7329.	2.5	11
884	High-Quality Boron Nitride Nanosheets and Their Bioinspired Thermally Conductive Papers. ACS Applied Materials & Interfaces, 2019, 11, 37247-37255.	4.0	51
885	Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coordination Chemistry Reviews, 2019, 400, 213041.	9.5	103
886	Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 22475-22486.	5.2	54
887	Van der Waals thin-film electronics. Nature Electronics, 2019, 2, 378-388.	13.1	131
888	Electronic Properties of a New Family of Layered Materials from Groups 14 and 15: First-Principles Simulations. Journal of Physical Chemistry C, 2019, 123, 25470-25476.	1.5	13

#	Article	IF	CITATIONS
889	Ultrafast Hyperspectral Transient Absorption Spectroscopy: Application to Single Layer Graphene. Photonics, 2019, 6, 95.	0.9	12
890	In situ synthesis of graphene-phenol formaldehyde composites and their highly-efficient radical scavenging effects under the l³ irradiation. Corrosion Science, 2019, 159, 108139.	3.0	7
891	Solution-Processed Layered Hexagonal Boron Nitride Dielectrics: A Route toward Fabrication of High Performance Flexible Devices. ACS Applied Electronic Materials, 2019, 1, 2130-2139.	2.0	17
892	Machining induced transformation of graphite flakes to graphite/graphene nanoplatelets. Manufacturing Letters, 2019, 21, 66-69.	1.1	3
893	Recycling Valuable Elements from the Chemical Synthesis Process of Nanomaterials: A Sustainable View. , 2019, 1, 541-548.		16
894	Thickness-dependent resistive switching in black phosphorus CBRAM. Journal of Materials Chemistry C, 2019, 7, 725-732.	2.7	51
895	Electrospun Nanofibers of p-Type CuO/n-type TZB-Gr Heterojunctions with Enhanced Photocatalytic Activity. Materials Chemistry and Physics, 2019, 232, 475-484.	2.0	7
896	Ultrasound exfoliation of graphite in biphasic liquid systems containing ionic liquids: A study on the conditions for obtaining large few-layers graphene. Ultrasonics Sonochemistry, 2019, 55, 279-288.	3.8	21
897	Liquid thin film dewetting-driven micropatterning of reduced graphene oxide electrodes for high performance OFETs. Journal of Materials Chemistry C, 2019, 7, 153-160.	2.7	8
898	Ultrathin 2D TiS ₂ Nanosheets for High Capacity and Longâ€Life Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803210.	10.2	100
899	In-line monitoring of carbon nanoparticle epoxy dispersion processes. Production Engineering, 2019, 13, 373-390.	1.1	4
900	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	11.1	230
901	Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, 2019, 7, 4813-4822.	5.2	34
902	A Green Route for Quick and Kilogram Production of Reduced Graphene Oxide and Their Applications at Low Loadings in Epoxy Resins. ChemistrySelect, 2019, 4, 1266-1274.	0.7	3
903	Graphene composite nanofibers as a high-performance photocatalyst for environmental remediation. Separation and Purification Technology, 2019, 215, 602-611.	3.9	24
904	Initial Studies Directed toward the Rational Design of Aqueous Graphene Dispersants. ACS Omega, 2019, 4, 1969-1981.	1.6	14
905	Metal Oxide–Graphene and Metal–Graphene Nanocomposites for Energy and Environment. , 2019, , 285-294.		1
906	Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating â€~lab-on-a-chip'. RSC Advances, 2019, 9, 3232-3238.	1.7	28

#	Article	IF	CITATIONS
907	Graphene synthesized in atmospheric plasmas—A review. Journal of Materials Research, 2019, 34, 214-230.		63
908	Dye-sensitized solar cells with shear-exfoliated graphene. Solar Energy, 2019, 180, 16-24.	2.9	11
909	Performance enhancement of passively Q-switched Nd:YVO4 laser using graphene–molybdenum disulphide heterojunction as a saturable absorber. Optics and Laser Technology, 2019, 117, 265-271.	2.2	9
910	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
911	Copper/graphene composites: a review. Journal of Materials Science, 2019, 54, 12236-12289.	1.7	193
912	Controlled Sonication as a Route to in-situ Graphene Flake Size Control. Scientific Reports, 2019, 9, 8710.	1.6	49
913	Application of lasers in the synthesis and processing of two-dimensional quantum materials. Journal of Laser Applications, 2019, 31, 031202.	0.8	9
914	Ultrafast microwave reduction process for high-quality graphene foam with outstanding electromagnetic interference shielding and good adsorption capacity. FlatChem, 2019, 17, 100117.	2.8	6
915	Ultrafast turbulence-induced disintegration of BN and WS2 quantum dots for potential multifunctional nanotheranostics. Materials and Design, 2019, 181, 107925.	3.3	9
916	Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. , 2019, , 1-25.		18
917	Waterâ€Based Solution Processing and Waferâ€Scale Integration of Allâ€Graphene Humidity Sensors. Advanced Science, 2019, 6, 1802318.	5.6	25
918	Surfactant-free carbon black@graphene conductive ink for flexible electronics. Journal of Materials Science, 2019, 54, 11157-11167.	1.7	11
919	3-Phase hierarchical graphene-based epoxy nanocomposite laminates for automotive applications. Journal of Materials Science and Technology, 2019, 35, 2169-2177.	5.6	19
920	Bioinspired, graphene-enabled Ni composites with high strength and toughness. Science Advances, 2019, 5, eaav5577.	4.7	55
921	Exploration of interactions of â€~blood-nano interface' of carbon-based nanomaterials for biomedical applications. Journal of Materials Research, 2019, 34, 1950-1964.	1.2	3
922	Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage. ACS Nano, 2019, 13, 7517-7526.	7.3	83
923	Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide. Journal of Physical Chemistry C, 2019, 123, 15122-15130.	1.5	23
924	Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Progress in Materials Science, 2019, 106, 100573.	16.0	160

ARTICLE IF CITATIONS # Equipartition of Energy Defines the Sizeâ€"Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS 925 7.3 123 Nano, 2019, 13, 7050-7061. Gas-driven exfoliation for producing high-quality graphene. Chemical Communications, 2019, 55, 2.2 7749-7751. Rapid dry exfoliation method for tuneable production of molybdenum disulphide quantum dots and 927 2.8 5 large micron-dimension sheets. Nanoscale, 2019, 11, 11626-11633. Direct Ink Writing of Graphene-Based Solutions for Gas Sensing. ACS Applied Nano Materials, 2019, 2, 2.4 39 4104-4112. Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524. 929 13.3 389 The improvement of thermal conductivity in silica gel composite employing graphene nano-particles. Modern Physics Letters B, 2019, 33, 1950147. 1.0 A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 931 8.3 83 2019, 30, 17-25. Graphene-based composite for dielectric elastomer actuator: A comprehensive review. Sensors and 932 2.0 70 Actuators A: Physical, 2019, 293, 222-241. A novel â€~bottom-up' synthesis of few- and multi-layer graphene platelets with partial oxidation via 933 3.8 11 cavitation. Ultrasonics Sonochemistry, 2019, 56, 466-473. New graphene derivative with <i>N</i>-methylpyrrolidone: suspension, structural, optical and 934 1.3 electrical properties. Physical Chemistry Chemical Physics, 2019, 21, 12494-12504. Processing Influence on Thermal Conductivity of Polymer Nanocomposites., 2019, , 463-487. 935 9 An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the 936 1.3 production of MoOx nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 12396-12405. Top-down synthesis of S-doped graphene nanosheets by electrochemical exfoliation of graphite: Metal-free bifunctional catalysts for oxygen reduction and evolution reactions. Electrochimica Acta, 937 2.6 54 2019, 313, 1-9. Isolation of graphene and graphite by supercritical CO2 elutriation technique: CFD simulation and experimental. Powder Technology, 2019, 352, 478-487. 2.1 Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive 939 2.8 35 foldable actuators. Nanoscale, 2019, 11, 11719-11729. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. 940 790 Science Advances, 2019, 5, eaav7412. Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber 941 1.327 composites. Journal of Applied Polymer Science, 2019, 136, 47951. Highly concentrated and stabilizer-free transition-metal dichalcogenide dispersions in low-boiling 2.8 point solvent for flexible electronics. Nanoscale, 2019, 11, 10746-10755.

	Сітаті	on Report	
#	Article	IF	CITATIONS
943	Ballâ€Millâ€Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small, 2019, 15, e180556	7. 5.2	57
944	Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures. Nanoscale, 2019, 11, 9912-9919.	2.8	34
945	Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. Journal of Colloid and Interface Science, 2019, 549, 236-245.	5.0	61
946	Two-Dimensional Nanomaterials: Crystal Structure and Synthesis. , 2019, , 1-25.		11
947	Black phosphorus electronic and optoelectronic devices. 2D Materials, 2019, 6, 032003.	2.0	76
948	Flexible Graphene/Carbon Nanotube Electrochemical Double‣ayer Capacitors with Ultrahigh Areal Performance. ChemPlusChem, 2019, 84, 882-892.	1.3	28
949	Graphene nanomaterials: chemistry and pharmaceutical perspectives. , 2019, , 373-402.		18
950	Solid-phase synthesis of atomically thin two-dimensional non-layered MoO ₂ nanosheets for surface enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2019, 7, 7196-7200.	2.7	23
951	An aqueous cathodic delamination route towards high quality graphene flakes for oil sorption and electrochemical charge storage applications. Chemical Engineering Journal, 2019, 372, 1226-1239.	6.6	14
952	Ãngstrom-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation. Coatings, 2019, 9, 133.	1.2	22
953	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 035007.	2.0	23
954	Tunable solution-processable anodic exfoliated graphene. Applied Materials Today, 2019, 15, 290-296.	2.3	18
955	Solvent exfoliation stabilizes TiS ₂ nanosheets against oxidation, facilitating lithium storage applications. Nanoscale, 2019, 11, 6206-6216.	2.8	44
956	Carbon-based electronic textiles: materials, fabrication processes and applications. Journal of Materials Science, 2019, 54, 10079-10101.	1.7	48
957	Size selection of liquid-exfoliated 2D nanosheets. 2D Materials, 2019, 6, 031002.	2.0	36
958	Adsorption of Ethene-1,2-Dione on Materials Based on Graphene. Journal of Physical Chemistry C, 2019, 123, 6316-6325.	1.5	1
959	Thermally Self-Healing Graphene-Nanoplate/Polyurethane Nanocomposites via Diels–Alder Reaction through a One-Shot Process. Nanomaterials, 2019, 9, 434.	1.9	16
960	Efficient Production of Highâ€Quality Polystyreneâ€Functionalized Graphene via Graphite Exfoliation in Chloroform with a Heterobifunctional Hyperbranched Polyethylene as Stabilizer. Macromolecular Chemistry and Physics, 2019, 220, 1800577.	1.1	3

#	Article		CITATIONS
961	Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Advanced Functional Materials, 2019, 29, 1901126.		71
962	Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry, 2019, 377, 10.	3.0	95
963	Photonic nanoarchitectonics with stimuli-responsive 2D materials. Molecular Systems Design and Engineering, 2019, 4, 566-579.	1.7	21
964	Insights Into Graphene-Based Materials as Counter Electrodes for Dye-Sensitized Solar Cells. , 2019, , 341-396.		2
965	Synthesizing a LiFePO4/graphene composite with electrochemically prepared few-layer graphene. Journal of Energy Storage, 2019, 22, 373-377.	3.9	12
966	Physical mechanism on edge-dependent electrons transfer in graphene in mid infrared region. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 136-145.	2.0	7
967	Luminescent Grapheneâ€Based Materials via Europium Complexation on Dipyridylpyridazineâ€Functionalized Graphene Sheets. Chemistry - A European Journal, 2019, 25, 6823-6830.	1.7	14
968	Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon, 2019, 149, 213-221.	5.4	73
969	Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design and Engineering, 2019, 4, 503-510.	1.7	13
970	"lon sliding―on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horizons, 2019, 4, 1077-1091.	4.1	22
971	Persian waxing of graphite: towards green large-scale production of graphene. Chemical Communications, 2019, 55, 5331-5334.	2.2	9
972	Flexible MoS2@electrospun PVDF hybrid membrane as advanced anode for lithium storage. Chemical Engineering Journal, 2019, 370, 547-555.	6.6	19
973	An Investigation into the Charge‣torage Mechanism of MnO@Graphite as Anode for Lithiumâ€lon Batteries at Low Temperature. ChemElectroChem, 2019, 6, 2248-2253.	1.7	27
974	The preparation of graphene/polyethylene oxide/sodium dodecyl sulfate composite humidity sensor via electrohydrodynamic direct-writing. Journal Physics D: Applied Physics, 2019, 52, 175307.	1.3	6
975	Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy, 2019, 60, 743-751.	8.2	151
976	Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber. Chinese Physics B, 2019, 28, 034203.	0.7	4
977	Programmed electrochemical exfoliation of graphite to high quality graphene. Chemical Communications, 2019, 55, 3379-3382.	2.2	38
978	2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials, 2019, 31, e1803831.	11.1	86

#	Article	IF	CITATIONS
979	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	10.2	215
980	Engineered Recombinant Proteins for Aqueous Ultrasonic Exfoliation and Dispersion of Biofunctionalized 2D Materials. Chemistry - A European Journal, 2019, 25, 7991-7997.	1.7	6
981	Solvent-free synthesis of a 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutants. Journal of Materials Chemistry A, 2019, 7, 6849-6858.	5.2	99
982	High Energy Density in Poly(Vinylidene Fluoride hlorotrifluoroethylene) Nanocomposite with Oriented Graphene Exfoliated with Assistance of Fluoro Hyperbranched Copolymer. Energy Technology, 2019, 7, 1900023.	1.8	1
983	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	2.2	35
984	Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale, 2019, 11, 4310-4317.	2.8	28
985	Reconfigurable plug-and-play assembly for the continuous production of composite anodes for modulating lithium storage. Chemical Engineering Journal, 2019, 364, 485-492.	6.6	3
986	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, 2019, , .	0.5	3
987	Preparation of Noble Metal/Graphene Nanocomposites Using Various Excited Reaction Sites in an Aqueous System. , 2019, , 201-223.		0
988	Scalable Production of Graphene Inks via Wetâ€Jet Milling Exfoliation for Screenâ€Printed Micro‣upercapacitors. Advanced Functional Materials, 2019, 29, 1807659.	7.8	174
989	Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels. Nanoscale, 2019, 11, 4822-4830.	2.8	26
990	Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices. Nanotechnology, 2019, 30, 245204.	1.3	11
991	A first-principles study: Adsorption of small gas molecules on GeP3 monolayer. Surface Science, 2019, 684, 37-43.	0.8	16
992	Tribological and wear performances of graphene-oil nanofluid under industrial high-speed rotation. Tribology International, 2019, 135, 112-120.	3.0	31
993	Exfoliation of Two-Dimensional Materials: The Role of Entropy. Journal of Physical Chemistry Letters, 2019, 10, 981-986.	2.1	30
994	Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study. Nano, 2019, 14, 1930003.	0.5	13
995	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253
996	The top-down synthesis of single-layered Cs ₄ CuSb ₂ Cl ₁₂ halide perovskite nanocrystals for photoelectrochemical application. Nanoscale, 2019, 11, 5180-5187.	2.8	65

#	Article	IF	CITATIONS
997	Calculation of parameters of the rotary apparatus for the production of graphene concentrate based on synthetic oils. IOP Conference Series: Materials Science and Engineering, 2019, 693, 012007.		0
998	Excellent Electrochemical Performance of Multilayer Graphite Nanosheets as an Anode Material for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2019, 14, 10270-10280.		4
999	A dual-criterion optimization for sulfonated asphalt-assisted aqueous phase exfoliation to prepare graphene suitable for protective coating of aluminium. Materials Research Express, 2019, 6, 1250j2.	0.8	3
1000	Roll-to-Roll Deposition of Semiconducting 2D Nanoflake Films of Transition Metal Dichalcogenides for Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7705-7712.	2.4	25
1001	Toward Nanomechanical Models of Liquid-Phase Exfoliation of Layered 2D Nanomaterials: Analysis of a Ï€ â^' peel Model. Frontiers in Materials, 2019, 6, .	1.2	8
1002	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
1003	Two-dimensional group-VA nanomaterials beyond black phosphorus: synthetic methods, properties, functional nanostructures and applications. Journal of Materials Chemistry A, 2019, 7, 25712-25771.	5.2	49
1004	Length- and Thickness-Dependent Optical Response of Liquid-Exfoliated Transition Metal Dichalcogenides. Chemistry of Materials, 2019, 31, 10049-10062.	3.2	57
1005	Laserâ€Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation. Small, 2019, 15, e1904918.	5.2	11
1006	A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability. Synthetic Metals, 2019, 258, 116201.		7
1007	Stumbling through the Research Wilderness, Standard Methods To Shine Light on Electrically Conductive Nanocomposites for Future Healthcare Monitoring. ACS Nano, 2019, 13, 13627-13636.	7.3	35
1008	Research Progress of the Liquid-Phase Exfoliation and Stable Dispersion Mechanism and Method of Graphene. Frontiers in Materials, 2019, 6, .	1.2	38
1009	SMA-Assisted Exfoliation of Graphite by Microfluidization for Efficient and Large-Scale Production of High-Quality Graphene. Nanomaterials, 2019, 9, 1653.	1.9	15
1010	Three different types of tea as surfactant in liquid exfoliation of graphite: green tea, black tea and oolong tea. IOP Conference Series: Materials Science and Engineering, 2019, 702, 012036.	0.3	2
1011	Development of eco-friendly green and chemical routes for exfoliation of graphite as effective antibacterial agent. Materials Research Express, 2019, 6, 125620.	0.8	3
1012	Path towards graphene commercialization from lab to market. Nature Nanotechnology, 2019, 14, 927-938.	15.6	235
1013	Sodium Fluoride-Assisted Hydrothermal Exfoliation of Graphite into Graphene as Filler of Epoxy Resin Coating To Protect Aluminum. Journal of Physical Chemistry C, 2019, 123, 27969-27977.	1.5	9
1014	Synergistic effect of supercritical CO ₂ and organic solvent on exfoliation of graphene: experiment and atomistic simulation studies. Physical Chemistry Chemical Physics, 2019, 21, 22149-22157.	1.3	13

#	Article	IF	CITATIONS
1015	Stress-transfer from polymer substrates to monolayer and few-layer graphenes. Nanoscale Advances, 2019, 1, 4972-4980.	2.2	14
1016	Mass production of low-boiling point solvent- and water-soluble graphene by simple salt-assisted ball milling. Nanoscale Advances, 2019, 1, 4955-4964.	2.2	14
1017	Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for Two-Dimensional Materials Applications. IEEE Nanotechnology Magazine, 2019, 18, 144-148.	1.1	18
1018	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
1019	Plasma-functionalized exfoliated multilayered graphene as cement reinforcement. Composites Part B: Engineering, 2019, 160, 573-585.	5.9	29
1020	Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. Materials Science and Engineering C, 2019, 97, 486-497.	3.8	32
1021	Size controllable synthesis of graphene water nanofluid with enhanced stability. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 87-96.	1.0	8
1022	Electrically Conductive Thin Films Derived from Bulk Graphite and Liquid–Liquid Interface Assembly. Advanced Materials Interfaces, 2019, 6, 1801570.	1.9	11
1023	Titanium based composite-graphene nanofibers as high-performance photocatalyst for formaldehyde gas purification. Ceramics International, 2019, 45, 5617-5626.	2.3	18
1024	Controllable edge modification of multi-layer graphene for improved dispersion stability and high electrical conductivity. Applied Nanoscience (Switzerland), 2019, 9, 469-477.	1.6	8
1025	Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer. ACS Applied Materials & Interfaces, 2019, 11, 3080-3086.	4.0	58
1026	Lithiation-Aided Conversion of End-of-Life Lithium-Ion Battery Anodes to High-Quality Graphene and Graphene Oxide. Nano Letters, 2019, 19, 512-519.	4.5	106
1027	Modifying the electrical properties of graphene by reversible point-ripple formation. Carbon, 2019, 143, 762-768.	5.4	19
1028	Mechanochemical Routes to Functionalized Graphene Nanofillers Tuned for Lightweight Carbon/Hydrocarbon Composites. Macromolecular Materials and Engineering, 2019, 304, 1800496.	1.7	16
1029	Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. Advanced Materials, 2019, 31, e1803639.	11.1	114
1030	The Effect of Solvent Viscosity on Production of Few-layer Graphene from Liquid-phase Exfoliation of Graphite. MRS Advances, 2019, 4, 241-247.	0.5	6
1031	Wettingâ€Induced Climbing for Transferring Interfacially Assembled Largeâ€Area Ultrathin Pristine Graphene Film. Advanced Materials, 2019, 31, e1806742.	11.1	24
1032	Corrosion Behavior of Zinc–Nickel and Graphene Layered Structures on Steel Substrates. Advanced Engineering Materials, 2019, 21, 1800949.	1.6	2

#	Article	IF	Citations
1033	Terahertz time-domain spectroscopy as a novel metrology tool for liquid-phase exfoliated few-layer graphene. Nanotechnology, 2019, 30, 025709.	1.3	10
1034	Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide. Research on Chemical Intermediates, 2019, 45, 487-505.	1.3	20
1035	Exfoliation of 2D materials by high shear mixing. 2D Materials, 2019, 6, 015008.	2.0	67
1036	The taxonomy of graphite nanoplatelets and the influence of nanocomposite processing. Carbon, 2019, 142, 99-106.	5.4	16
1037	The liquid-phase preparation of graphene by shear exfoliation with graphite oxide as a dispersant. Materials Chemistry and Physics, 2019, 223, 1-8.	2.0	40
1038	Electrolyteâ€Gated nâ€Type Transistors Produced from Aqueous Inks of WS ₂ Nanosheets. Advanced Functional Materials, 2019, 29, 1804387.	7.8	48
1039	Temperature-dependent microwave absorption properties of low-defect graphene oxide. Materials Research Express, 2019, 6, 025609.	0.8	1
1040	Gramâ€Scale Production of Graphene Powder via a Quasiâ€physical Process and Its Application in Electrode Material for Lithiumâ€Ion Battery. Advanced Engineering Materials, 2019, 21, 1800891.	1.6	5
1041	Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents. Journal of Materials Science, 2019, 54, 4546-4558.	1.7	3
1042	Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 2019, 141, 467-480.	5.4	610
1043	Influence of Hydrodynamics on Wet Syntheses of Nanomaterials. , 2019, , 29-59.		0
1044	Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535, 92-99.	5.0	40
1045	Design and Synthesis of Polymer Nanocomposites. , 2019, , 47-83.		74
1046	Green sonochemical synthesis of few-layer graphene in instant coffee. Materials Chemistry and Physics, 2019, 222, 11-19.	2.0	21
1047	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	9.5	313
1048	Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. Chemical Papers, 2020, 74, 757-765.	1.0	15
1049	Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology, 2020, 31, 11-28.	2.0	64
1050	Functionalized sp2 carbon allotropes as fillers for rubber nanocomposites. , 2020, , 43-92.		3

#	Article	IF	CITATIONS
1051	Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model. Journal of the Mechanics and Physics of Solids, 2020, 134, 103764.		21
1052	Screen-printed and spray coated graphene-based RFID transponders. 2D Materials, 2020, 7, 015019.	2.0	12
1053	Thermal Properties of the Binaryâ€Filler Hybrid Composites with Graphene and Copper Nanoparticles. Advanced Functional Materials, 2020, 30, 1904008.	7.8	179
1054	Facile large-scaled fabrication of graphene-like materials by ultrasonic assisted shear exfoliation method for enhanced performance on flexible supercapacitor applications. Applied Nanoscience (Switzerland), 2020, 10, 1131-1139.	1.6	6
1055	Toward Sustainable Chemical Processing With Graphene-Based Materials. , 2020, , 195-229.		0
1056	Dispersed graphene materials of biomedical interest and their toxicological consequences. Advances in Colloid and Interface Science, 2020, 275, 102051.	7.0	27
1057	Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Composites Science and Technology, 2020, 185, 107848.	3.8	36
1058	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
1059	Functional Inks for Printable Energy Storage Applications based on 2 D Materials. ChemSusChem, 2020, 13, 1330-1353.	3.6	25
1060	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	9.5	364
1061	Mass production of 2D materials by intermediate-assisted grinding exfoliation. National Science Review, 2020, 7, 324-332.	4.6	100
1062	Coke-derived few layer graphene-like materials by mild planetary milling exfoliation. Fuel, 2020, 262, 116455.	3.4	8
1063	Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors. Journal of Colloid and Interface Science, 2020, 560, 817-824.	5.0	17
1064	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
1065	2D Materials in Light: Excitedâ€State Dynamics and Applications. Chemical Record, 2020, 20, 413-428.	2.9	10
1066	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
1067	GaSe layered nanorods formed by liquid phase exfoliation for resistive switching memory applications. Journal of Alloys and Compounds, 2020, 823, 153697.	2.8	9
1068	Highly thermal conductive and electrical insulating polymer composites with boron nitride. Composites Part B: Engineering, 2020, 184, 107746.	5.9	142

#	Article	IF	CITATIONS
1069	Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale, 2020, 12, 610-622.	2.8	42
1070	Exfoliation and stabilization mechanism of graphene in carbon dioxide expanded organic solvents: molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 2061-2072.	1.3	8
1071	Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 2020, 8, 1517-1547.	2.7	269
1072	Reduced graphene oxide today. Journal of Materials Chemistry C, 2020, 8, 1198-1224.	2.7	366
1073	Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. TrAC - Trends in Analytical Chemistry, 2020, 124, 115797.	5.8	60
1074	Stirred Not Shaken: Facile Production of High-Quality, High-Concentration Graphene Aqueous Suspensions Assisted by a Protein. ACS Applied Materials & Interfaces, 2020, 12, 3815-3826.	4.0	6
1075	Grinding exfoliation for scalable production of 2D materials. National Science Review, 2020, 7, 559-560.	4.6	5
1076	Smart "Sticky Note―for strain and temperature sensing using few-layer graphene from exfoliation in red spinach solution. Ceramics International, 2020, 46, 9176-9182.	2.3	6
1077	Green, fast, and scalable production of reduced graphene oxide via Taylor vortex flow. Chemical Engineering Journal, 2020, 391, 123482.	6.6	16
1078	The preparation of graphene ink from the exfoliation of graphite in pullulan, chitosan and alginate for strain-sensitive paper. International Journal of Biological Macromolecules, 2020, 153, 1211-1219.	3.6	16
1079	Engineering functional inorganic nanobiomaterials: controlling interactions between 2D-nanosheets and enzymes. Dalton Transactions, 2020, 49, 3917-3933.	1.6	7
1080	Exfoliation Behavior of Large Anionic Graphite Flakes in Liquid Produced by Salt-Assisted Ball Milling. Processes, 2020, 8, 28.	1.3	6
1082	Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angewandte Chemie - International Edition, 2020, 59, 5683-5695.	7.2	31
1083	Hydroxyl-Assisted Phosphorene Stabilization with Robust Device Performances. Nano Letters, 2020, 20, 81-87.	4.5	21
1084	Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110709.	2.5	30
1085	Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angewandte Chemie, 2020, 132, 5732-5744.	1.6	7
1086	Photo-Fenton-inspired deoxygenation of tea polyphenol–graphene by household bleach. Carbon Letters, 2020, 30, 449-456.	3.3	3
1087	Elements beyond graphene: Current state and perspectives of elemental monolayer deposition by bottom-up approach. Applied Materials Today, 2020, 18, 100502.	2.3	29

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1088	Hot rolling behavior of graphene/Cu composites. Journal of Alloys and Compounds, 2020, 816, I	.53204.	2.8	21
1089	Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Applied Materials Today, 2020, 21, 100806.		2.3	23
1090	Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalys Water Splitting. Catalysts, 2020, 10, 1111.	ts for	1.6	35
1091	Low-Cost Scalable Production of Freestanding Two-Dimensional Metallic Nanosheets by Polyme Surface Buckling Enabled Exfoliation. Cell Reports Physical Science, 2020, 1, 100235.		2.8	14
1092	Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis. Nanomaterials, 2 2050.)20, 10,	1.9	10
1093	Efficient production of few-layer black phosphorus by liquid-phase exfoliation. Royal Society Ope Science, 2020, 7, 201210.	n	1.1	21
1094	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Applied Materi & Interfaces, 2020, 12, 49945-49956.	als	4.0	43
1095	A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors, 2020,	20, 5642.	2.1	53
1096	Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Appl Crystals, 2020, 10, 902.	ication.	1.0	38
1097	Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness. Scie Advances, 2020, 6, .	nce	4.7	40
1098	Enhanced mechanical properties of functionalized BN nanosheets-polymer composites. Journal o Polymer Research, 2020, 27, 1.	of	1.2	13
1099	Langmuir films of low-dimensional nanomaterials. Advances in Colloid and Interface Science, 20 283, 102239.	20,	7.0	19
1100	A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) materia and recent developments. Inorganic Chemistry Communication, 2020, 121, 108200.	l: Past	1.8	155
1101	A new, fast and facile synthesis method for reduced graphene oxide in N,N-dimethylformamide. Synthetic Metals, 2020, 269, 116576.		2.1	12
1102	Efficient MoWO3/VO2/MoS2/Si UV Schottky photodetectors; MoS2 optimization and monoclin surface modifications. Scientific Reports, 2020, 10, 15926.	ic VO2	1.6	23
1103	Industrial manufacturing and characterization of multiscale CFRP laminates made from prepregs containing graphene-related materials. Materials Research Express, 2020, 7, 075601.		0.8	7
1104	Mechanism for Redox Exfoliation of Layered Transition Metal Dichalcogenides. Chemistry of Materials, 2020, 32, 6550-6565.		3.2	28
1105	Superior to graphene: super-anticorrosive natural mica nanosheets. Nanoscale, 2020, 12, 16253	-16261.	2.8	28

#	Article	IF	CITATIONS
1106	Review of fabrication methods of large-area transparent graphene electrodes for industry. Frontiers of Optoelectronics, 2020, 13, 91-113.	1.9	31
1107	Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Scientific Reports, 2020, 10, 11728.	1.6	26
1108	2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial. APL Materials, 2020, 8, .	2.2	24
1109	Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Mikrochimica Acta, 2020, 187, 441.	2.5	64
1110	Wideband Radar Absorbing Structure Using Polyaniline-Graphene Nanocomposite. Journal of Carbon Research, 2020, 6, 72.	1.4	5
1111	Mechanochemical Formation of Protein Nanofibril: Graphene Nanoplatelet Hybrids and Their Thermoelectric Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 17368-17378.	3.2	13
1112	Carbon nanomaterials: synthesis, functionalization, and properties. , 2020, , 137-179.		4
1113	The key role of microscopic structure and graphene sheet-high homogenization in the high rate capability and cycling stability of Ni–Co LDH. Nanoscale, 2020, 12, 23799-23808.	2.8	8
1114	Wetting-Induced Fabrication of Graphene Hybrid with Conducting Polymers for High-Performance Flexible Transparent Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 55372-55381.	4.0	19
1115	Experimental investigation of oligo cyclic compression behavior of pure epoxy and graphene-epoxy nanocomposites. Polymer Bulletin, 2020, , 1.	1.7	2
1116	Controlled Size Reduction of Liquid Exfoliated Graphene Micro-Sheets via Tip Sonication. Crystals, 2020, 10, 1049.	1.0	5
1117	Moistureâ€Enabled Electricity Generation: From Physics and Materials to Selfâ€Powered Applications. Advanced Materials, 2020, 32, e2003722.	11.1	175
1118	Intercalator-assisted plasma-liquid technology: an efficient exfoliation method for few-layer two-dimensional materials. Science China Materials, 2020, 63, 2079-2085.	3.5	5
1119	Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample. Analytica Chimica Acta, 2020, 1132, 110-120.	2.6	59
1120	Onâ€Demand Hydrophobic Drug Release Based on Microwaveâ€Responsive Graphene Hydrogel Scaffolds. Chemistry - A European Journal, 2020, 26, 17069-17080.	1.7	10
1121	Alkyl-Functionalized Boron Nitride Nanosheets as Lubricant Additives. ACS Applied Nano Materials, 2020, 3, 9108-9116.	2.4	33
1122	Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coordination Chemistry Reviews, 2020, 422, 213469.	9.5	33
1123	Advances on the Use of Graphene as a Label for Electrochemical Biosensors. ChemElectroChem, 2020, 7, 4177-4185.	1.7	4

#	Article	IF	Citations
1124	Avenue to Large-Scale Production of Graphene Quantum Dots from High-Purity Graphene Sheets Using Laboratory-Grade Graphite Electrodes. ACS Omega, 2020, 5, 18831-18841.	1.6	23
1125	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
1126	Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries. Energy Storage Materials, 2020, 31, 470-491.	9.5	34
1127	Surfactant-free liquid-exfoliated copper hydroxide nanocuboids for non-enzymatic electrochemical glucose detection. Journal of Materials Chemistry B, 2020, 8, 7733-7739.	2.9	7
1128	Graphene–Metal–Organic Framework Composite Sulfur Electrodes for Li–S Batteries with High Volumetric Capacity. ACS Applied Materials & Interfaces, 2020, 12, 37173-37181.	4.0	51
1129	Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. Journal of Physical Chemistry B, 2020, 124, 7184-7193.	1.2	2
1130	State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials, 2020, 10, 1555.	1.9	115
1131	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630.	1.7	59
1132	From 2D Graphene Nanosheets to 3D Grapheneâ€based Macrostructures. Chemistry - an Asian Journal, 2020, 15, 2902-2924.	1.7	28
1133	Flexible graphene paper electrode prepared via polyvinyl alcohol-assisted shear-exfoliation for all-solid-state polymer supercapacitor application. Electrochimica Acta, 2020, 363, 137208.	2.6	25
1134	Sublethal exposure of small few-layer graphene promotes metabolic alterations in human skin cells. Scientific Reports, 2020, 10, 18407.	1.6	15
1135	Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 2020, 32, e2005763.	11.1	64
1136	A novel method for graphene synthesis via electrochemical process and its utilization in organic photovoltaic devices. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
1137	Synthesis and assessment of schwertmannite/few-layer graphene composite for the degradation of sulfamethazine in heterogeneous Fenton-like reaction. Royal Society Open Science, 2020, 7, 191977.	1.1	5
1138	Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers: Mechanical and Thermal Conductivity Properties. Nanomaterials, 2020, 10, 1682.	1.9	14
1139	<p>Efficacy and Molecular Effects of a Reduced Graphene Oxide/Fe₃O₄ Nanocomposite in Photothermal Therapy Against Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 6421-6432.	3.3	32
1140	Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L Nanomaterials, 2020, 10, 1877.	1.9	5
1141	Low-temperature, rapid preparation of functionalized graphene platelets. Composites Communications, 2020, 22, 100500.	3.3	7

#	Article	IF	CITATIONS
1142	Screen-Printed High-Performance Flexible Electrothermal Films Based on Three-Dimensional Intercalation Graphene Nanosheets/MWCNT/Carbon Black Composite. ACS Applied Materials & Interfaces, 2020, 12, 48077-48083.	4.0	32
1143	Application of semiâ€ <i>in situ</i> liquid exfoliation of graphite to the scalable production of grapheneâ€epoxy nanocomposites. Polymer Composites, 2020, 41, 4933-4944.	2.3	6
1144	Green and facile edge-oxidation of multi-layer graphene by sodium persulfate activated with ferrous ions. RSC Advances, 2020, 10, 30716-30722.	1.7	5
1145	Kinetics of liquid-phase shear exfoliation of graphite in synthetic oils. MATEC Web of Conferences, 2020, 315, 06003.	0.1	0
1146	Improving functional and environmental performance of Portland cement-based materials by graphene nanostructures. MATEC Web of Conferences, 2020, 315, 06006.	0.1	1
1147	A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions. Advanced Science, 2020, 7, 2001600.	5.6	9
1148	Selective C ₃ -C ₄ Keto-Alcohol Production from Cellulose Hydrogenolysis over Ni-WO <i>_x</i> /C Catalysts. ACS Catalysis, 2020, 10, 10646-10660.	5.5	39
1149	Epitaxial Electrodeposition of Bil ₃ and Topotactic Conversion to Highly Ordered Solar Light-Absorbing Perovskite (CH ₃ NH ₃) ₃ Bi ₂ I ₉ . Chemistry of Materials, 2020, 32, 8367-8372.	3.2	13
1150	Double-Walled Carbon Nanotubes Ink for High-Conductivity Flexible Electrodes. ACS Applied Nano Materials, 2020, 3, 9385-9392.	2.4	11
1151	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655.	5.6	58
1151 1152		5.6 1.3	58
	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico</i>		
1152	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico</i> ― perspective. Physical Chemistry Chemical Physics, 2020, 22, 22157-22179. Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies. Journal of Biomolecular Structure and Dynamics, 2022,	1.3	17
1152 1153	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico</i> ― perspective. Physical Chemistry Chemical Physics, 2020, 22, 22157-22179. Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 712-721. Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon	1.3 2.0	17 17
1152 1153 1154	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico</i> perspective. Physical Chemistry Chemical Physics, 2020, 22, 22157-22179. Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 712-721. Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626.	1.3 2.0 7.8	17 17 15
1152 1153 1154 1156	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico </i> ― perspective. Physical Chemistry Chemical Physics, 2020, 22, 22157-22179. Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 712-721. Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626. 2D nanosheets and composites for EMI shielding analysis. Scientific Reports, 2020, 10, 21550. Controlling the Morphology of Nanoflakes Obtained by Liquid-Phase Exfoliation: Implications for the	1.3 2.0 7.8 1.6	17 17 15 12
1152 1153 1154 1156 1157	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 2001655. Disentangling the liquid phase exfoliation of two-dimensional materials: an " <i>in silico</i> éperspective. Physical Chemistry Chemical Physics, 2020, 22, 22157-22179. Synthesis of exfoliated multilayer graphene and its putative interactions with SARS-CoV-2 virus investigated through computational studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 712-721. Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626. 2D nanosheets and composites for EMI shielding analysis. Scientific Reports, 2020, 10, 21550. Controlling the Morphology of Nanoflakes Obtained by Liquid-Phase Exfoliation: Implications for the Mass Production of 2D Materials. ACS Applied Nano Materials, 2020, 3, 12095-12105. Fluid Dynamics-Induced Surface Engineering for Holey and Stable Metallic MoS ₂ Nanosheets with High Pseudocapacitance and Ultrafast Rate Capability. ACS Applied Energy Materials,	1.3 2.0 7.8 1.6 2.4	17 17 15 12 21

#	Article	IF	CITATIONS
1161	Poly(ionic liquid)-Stabilized Graphene Nanoinks for Scalable 3D Printing of Graphene Aerogels. ACS Applied Nano Materials, 2020, 3, 11608-11619.	2.4	23
1162	Scalable Fabrication of Carbon Nanomaterials by Electrochemical Dual-Electrode Exfoliation of Graphite in Hydroxide Molten Salt. Industrial & Engineering Chemistry Research, 2020, 59, 10010-10017.	1.8	9
1163	Two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CP<mml:mn>3</mml:mn></mml:mi </mml:msub></mml:math> monolayer and its fluorinated derivative with promising electronic and optical properties: A theoretical study. Physical Review B, 2020, 101, .	1.1	27
1164	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	7.8	48
1165	Insightful Understanding of Shear-Assisted Supercritical CO ₂ Exfoliation for Fabricating Graphene Nanosheets through the Combination of Kinetics and Process Parameters. Industrial & Engineering Chemistry Research, 2020, 59, 10967-10975.	1.8	7
1166	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	15.6	35
1167	Theranostics Application of Graphene-Based Materials in Cancer Imaging, Targeting and Treatment. , 0, ,		3
1168	Cera alba-assisted ultraclean graphene transfer for high-performance PbI2 UV photodetectors. Nanotechnology, 2020, 31, 365204.	1.3	6
1169	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
1170	Synergistic effects of a novel method of preparing graphene/polyvinyl alcohol to modify cementitious material. Construction and Building Materials, 2020, 258, 119647.	3.2	7
1171	Shear exfoliation synthesis of large-scale graphene-reinforced nanofibers. Carbon, 2020, 166, 405-413.	5.4	9
1172	Largeâ€Scale Surfactant Exfoliation of Graphene and Conductivityâ€Optimized Graphite Enabling Wireless Connectivity. Advanced Materials Technologies, 2020, 5, 2000284.	3.0	27
1173	In-situ shear exfoliation and thermal conductivity of SBS/Graphite nanoplatelet nanocomposites. Composites Part B: Engineering, 2020, 197, 108172.	5.9	12
1174	Ultrafast Exfoliation of 2D Materials by Solvent Activation and One-Step Fabrication of All-2D-Material Photodetectors by Electrohydrodynamic Printing. ACS Applied Materials & Interfaces, 2020, 12, 28840-28851.	4.0	34
1175	Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals. ACS Nano, 2020, 14, 7435-7443.	7.3	19
1176	2D materials–based flexible supercapacitors for high energy storage devices. , 2020, , 417-436.		0
1177	Defect Engineering of 2D Materials for Electrochemical Energy Storage. Advanced Materials Interfaces, 2020, 7, 2000494.	1.9	19
1178	Emulsionâ€Tailored Pore Properties and Electrochemical Performance of Ni(OH) 2 Spheres Using High Shear as Driving Force. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000135.	0.8	0

#	Article	IF	CITATIONS
1179	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	6.2	49
1180	Lightweight and Bulk Organic Thermoelectric Generators Employing Novel P-Type Few-Layered Graphene Nanoflakes. ACS Applied Materials & Interfaces, 2020, 12, 30643-30651.	4.0	16
1181	Heterostructures formed through abraded van der Waals materials. Nature Communications, 2020, 11, 3047.	5.8	36
1182	Kinetic study of surfactant-free graphene exfoliation at a solvent interface. Carbon, 2020, 168, 354-361.	5.4	5
1183	Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery. Nanomaterials, 2020, 10, 1073.	1.9	26
1184	High-Throughput Processing of Nanographite–Nanocellulose-Based Electrodes for Flexible Energy Devices. Industrial & Engineering Chemistry Research, 2020, 59, 11232-11240.	1.8	11
1185	Numerical simulation of Taylor-Couette fluidic device for the exfoliation of two-dimensional materials. Chemical Engineering Journal, 2020, 399, 125726.	6.6	6
1186	Exfoliation of graphene nanosheets in aqueous media. Ceramics International, 2020, 46, 21873-21887.	2.3	37
1187	Numerical simulation of ammonium perchlorate particles based on a population balance equation model in Taylor-Couette flow. Journal of Industrial and Engineering Chemistry, 2020, 89, 280-287.	2.9	2
1188	Bottom-up synthesis of highly soluble carbon materials. Journal of Materials Science, 2020, 55, 11808-11828.	1.7	19
1189	Water-dispersible few-layer graphene flakes for selective and rapid ion mercury (Hg ²⁺)-rejecting membranes. Materials Advances, 2020, 1, 387-402.	2.6	11
1190	Largeâ€Scale Fast Fluid Dynamic Processes for the Syntheses of 2D Nanohybrids of Metal Nanoparticleâ€Deposited Boron Nitride Nanosheet and Their Clycolysis of Poly(ethylene terephthalate). Advanced Materials Interfaces, 2020, 7, 2000599.	1.9	11
1191	Graphene–Rubber Layered Functional Composites for Seismic Isolation of Structures. Advanced Engineering Materials, 2020, 22, 1900852.	1.6	3
1192	2D Material-Enabled Nanomechanical Bolometer. Nano Letters, 2020, 20, 2326-2331.	4.5	14
1193	The production of graphene using impinging jet exfoliation in a binary system of CO ₂ and N-methyl pyrrolidone. Nanotechnology, 2020, 31, 265601.	1.3	5
1194	Two-Dimensional Amorphous SnO _{<i>x</i>} from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO ₂ Reduction toward Formic Acid. Nano Letters, 2020, 20, 2916-2922.	4.5	97
1195	Transition metal dichalcogenides for biomedical applications. , 2020, , 211-247.		2
1196	Liquid exfoliation of multilayer graphene in sheared solvents: A molecular dynamics investigation. Journal of Chemical Physics, 2020, 152, 104701.	1.2	22

#	Article	IF	CITATIONS
1197	Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry - A European Journal, 2020, 26, 6360-6401.	1.7	88
1198	Graphene-based hybrid materials for advanced batteries. , 2020, , 73-95.		0
1199	Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation. Journal of Alloys and Compounds, 2020, 829, 154614.	2.8	32
1200	Stimuli-responsive graphene-based hydrogel driven by disruption of triazine hydrophobic interactions. Nanoscale, 2020, 12, 7072-7081.	2.8	11
1201	Graphene-based nanomaterials for healthcare applications. , 2020, , 45-81.		10
1202	Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€Styrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725.	1.7	2
1203	A comparative study for producing few-layer graphene sheets via electrochemical and microwave-assisted exfoliation from graphite powder. Journal of Materials Science: Materials in Electronics, 2020, 31, 7022-7034.	1.1	12
1204	Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors. Scientific Reports, 2020, 10, 5282.	1.6	14
1206	Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). Nanophotonics, 2020, 9, 2169-2189.	2.9	43
1207	Factors Governing the Chemical Stability of Shear-Exfoliated ZnSe(alkylamine) II–VI Layered Hybrids. Chemistry of Materials, 2020, 32, 2379-2388.	3.2	3
1208	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	7.3	157
1209	Raman Metrics for Molybdenum Disulfide and Graphene Enable Statistical Mapping of Nanosheet Populations. Chemistry of Materials, 2020, 32, 6213-6221.	3.2	11
1210	Ultrasonic exfoliation of graphene in water: A key parameter study. Carbon, 2020, 168, 737-747.	5.4	76
1211	Tuning the Solubility Parameters of Carbon Nanotubes by Means of Their Adducts with Janus Pyrrole Compounds. Nanomaterials, 2020, 10, 1176.	1.9	15
1212	Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 2020, 10, 10759.	1.6	100
1213	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
1214	Synthesis of bilayer MoS2 nanosheets by green chemistry approach and its application in triboelectric and catalytic energy harvesting. Journal of Alloys and Compounds, 2020, 844, 155690.	2.8	17
1215	Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosensors and Bioelectronics, 2020, 166, 112426.	5.3	19

#	Article	IF	CITATIONS
1216	Facile synthesis of nanographene by a high-yield and scalable method. Ceramics International, 2020, 46, 22861-22868.	2.3	10
1217	Harnessing biological applications of quantum materials: opportunities and precautions. Journal of Materials Chemistry C, 2020, 8, 10498-10525.	2.7	4
1218	Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials, 2020, 10, 228.	1.9	15
1219	3D Assembly of Graphene Nanomaterials for Advanced Electronics. Advanced Intelligent Systems, 2020, 2, 1900151.	3.3	10
1220	Scalable Preparation of Low-Defect Graphene by Urea-Assisted Liquid-Phase Shear Exfoliation of Graphite and Its Application in Doxorubicin Analysis. Nanomaterials, 2020, 10, 267.	1.9	15
1221	Synthesis of Few-Layer Graphene Sheets from Waste Expanded Polystyrene by Dense Fe Cluster Catalysis. ACS Omega, 2020, 5, 4075-4082.	1.6	20
1222	Facile Solvothermal Synthesis of Black Phosphorus Nanosheets from Red Phosphorus for Efficient Photocatalytic Hydrogen Evolution. European Journal of Inorganic Chemistry, 2020, 2020, 773-779.	1.0	31
1223	A semi-automated general statistical treatment of graphene systems. 2D Materials, 2020, 7, 025045.	2.0	17
1224	Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Advanced Biology, 2020, 4, 1900233.	3.0	12
1225	New Findings on an Old Question: Can Defectâ€Free Graphene Monolayers be Superior Metalâ€lon Battery Anodes?. Advanced Sustainable Systems, 2020, 4, 1900152.	2.7	10
1226	Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 13481-13493.	4.0	27
1227	Few-Layer Hydroxyl-Functionalized Boron Nitride Nanosheets for Nanoscale Thermal Management. ACS Applied Nano Materials, 2020, 3, 2310-2321.	2.4	30
1228	Detonation exfoliated mechanism of graphene-like MoS2 prepared by the intercalation-detonation method and promising exfoliation for 2D materials. Applied Surface Science, 2020, 525, 145867.	3.1	10
1229	Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. Journal of Colloid and Interface Science, 2020, 569, 114-127.	5.0	13
1230	Reversible Enlargement of Photoswitchable Dielectric Properties by Plasmonic [60]Fullerenyl Core–Shell Nanoparticles on Graphene Nanosheets. Journal of Physical Chemistry C, 2020, 124, 5759-5771.	1.5	1
1231	High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. Biosensors, 2020, 10, 6.	2.3	29
1232	Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Advanced Functional Materials, 2020, 30, 1908427.	7.8	42
1233	Shear exfoliation of graphite into graphene nanoflakes directly within polyetheretherketone and a spectroscopic study of this high modulus, lightweight nanocomposite. Composites Part B: Engineering, 2020, 188, 107842.	5.9	22

#	Article	IF	CITATIONS
1234	Shear Exfoliated Metal–Organic Framework Nanosheet-Enabled Flexible Sensor for Real-Time Monitoring of Superoxide Anion. ACS Applied Materials & Interfaces, 2020, 12, 5429-5436.	4.0	49
1235	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
1236	2D bismuthene/graphene modified electrodes for the ultra-sensitive stripping voltammetric determination of lead and cadmium. Electrochimica Acta, 2020, 336, 135726.	2.6	45
1237	Effects of high-shear mixing and the graphene oxide weight fraction on the electrochemical properties of the GO/Ni(OH) ₂ electrode. Dalton Transactions, 2020, 49, 1752-1764.	1.6	4
1238	Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today, 2020, 30, 100829.	6.2	91
1239	An outlook on printed microsupercapacitors: Technology status, remaining challenges, and opportunities. Current Opinion in Electrochemistry, 2020, 21, 69-75.	2.5	14
1240	Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrasonics Sonochemistry, 2020, 63, 104976.	3.8	36
1241	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
1242	Stable wide-temperature and low volume expansion Al batteries: Integrating few-layer graphene with multifunctional cobalt boride nanocluster as positive electrode. Nano Research, 2020, 13, 419-429.	5.8	15
1243	Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactor. Chemical Engineering Journal, 2020, 388, 124133.	6.6	17
1244	Solutionâ€Processable 2D Materials Applied in Lightâ€Emitting Diodes and Solar Cells. Advanced Materials Technologies, 2020, 5, 1900972.	3.0	40
1245	Graphene reinforced carbon fibers. Science Advances, 2020, 6, eaaz4191.	4.7	87
1246	Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. Journal of Materials Chemistry A, 2020, 8, 10269-10282.	5.2	47
1247	Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications. Progress in Materials Science, 2020, 114, 100683.	16.0	61
1248	Graphene nanofl akes and hybrid nanocomposites with gold and silver nanoparticles: optical and thermal properties. Russian Chemical Bulletin, 2020, 69, 32-42.	0.4	3
1249	Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research, 2020, 13, 1564-1570.	5.8	22
1250	Adjustable anchoring of Ni/Co cations by oxygen-containing functional groups on functionalized graphite paper and accelerated mass/electron transfer for overall water splitting. Catalysis Science and Technology, 2020, 10, 2627-2643.	2.1	16
1251	Graphene Layers Functionalized with A Janus Pyrrole-Based Compound in Natural Rubber Nanocomposites with Improved Ultimate and Fracture Properties. Polymers, 2020, 12, 944.	2.0	11

#	Article	IF	CITATIONS
1252	Synthesis of a pyreneâ€functionalized hyperbranched polyethylene ternary copolymer for efficient graphite exfoliation in chloroform and formation of ethyleneâ€vinyl acetate /graphene nanocomposites. Journal of Applied Polymer Science, 2020, 137, 49320.	1.3	3
1253	Towards large-scale graphene transfer. Nanoscale, 2020, 12, 10890-10911.	2.8	59
1254	Carbon Nanomaterials Based Saturable Absorbers for Ultrafast Passive Mode-Locking of Fiber Lasers. Current Nanoscience, 2020, 16, 441-457.	0.7	17
1255	High-Yield Production of Few-Layer Graphene via New-fashioned Strategy Combining Resonance Ball Milling and Hydrothermal Exfoliation. Nanomaterials, 2020, 10, 667.	1.9	10
1256	The Adsorption of Methylene Blue on Eco-Friendly Reduced Graphene Oxide. Nanomaterials, 2020, 10, 681.	1.9	62
1257	Multifunctional coatings of exfoliated and reassembled graphite on cellulosic substrates. Faraday Discussions, 2021, 227, 105-124.	1.6	9
1258	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	16.0	150
1259	Mass production of two-dimensional materials beyond graphene and their applications. Nano Research, 2021, 14, 1583-1597.	5.8	54
1260	Graphene quantum dots synthesis and energy application: a review. Carbon Letters, 2021, 31, 1-12.	3.3	59
1261	Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method. Journal of Cleaner Production, 2021, 279, 123590.	4.6	38
1262	Study of induced structural, optical and electrochemical properties of Poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) and their blend as an effect of graphene doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109644.	1.9	10
1263	Printability and performance of 3D conductive graphite structures. Additive Manufacturing, 2021, 37, 101618.	1.7	18
1264	On the relationship between morphology and conductivity in nanosheet networks. Carbon, 2021, 171, 306-319.	5.4	22
1265	"Molecular insights into the production of few-layer graphene in N-CyclohexylpyrrolidoneÂ+ water mixtures― Carbon, 2021, 171, 723-738.	5.4	6
1266	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	9.5	61
1267	Stacking of 2D Materials. Advanced Functional Materials, 2021, 31, 2007810.	7.8	123
1268	Analysis of dual role of nanographene on the microstructureâ€properties correlation of TPU / NG nanocomposite. Polymers for Advanced Technologies, 2021, 32, 1150-1161.	1.6	7
1269	Sandâ€Milling Exfoliation of Structure Controllable Graphene for Formulation of Highly Conductive and Multifunctional Graphene Inks. Advanced Materials Interfaces, 2021, 8, 2000888.	1.9	9

#	Article	IF	CITATIONS
1270	Highâ€Conductivity–Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithiumâ€lon Battery. Advanced Functional Materials, 2021, 31, 2007630.	7.8	26
1271	Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discussions, 2021, 227, 46-60.	1.6	12
1272	Total-conversion, high-concentration exfoliation of two-dimensional boron nitride by paste-based sand milling strategy for massively producing high-performance nanocomposites. Composites Science and Technology, 2021, 201, 108545.	3.8	11
1273	Fast high-shear exfoliation of natural flake graphite with temperature control and high yield. Carbon, 2021, 174, 123-131.	5.4	35
1274	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
1275	Graphene and grapheneâ€like structure from biomass for Electrochemical Energy Storage application―A Review. Electrochemical Science Advances, 2021, 1, e2000028.	1.2	13
1276	Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy and Environmental Science, 2021, 14, 965-974.	15.6	164
1277	The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling liquid media: The effect of liquid media on yield and optimization. Ceramics International, 2021, 47, 521-533.	2.3	27
1278	Carbonization of phloroglucinol promoted by heteropoly acids. Journal of Materials Science, 2021, 56, 2944-2960.	1.7	11
1279	Facile assembly of layer-interlocked graphene heterostructures as flexible electrodes for Li-ion batteries. Faraday Discussions, 2021, 227, 321-331.	1.6	1
1280	Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 152-187.	6.8	44
1281	A review of strain sensors based on two-dimensional molybdenum disulfide. Journal of Materials Chemistry C, 2021, 9, 9083-9101.	2.7	23
1282	Bottom-up fabrication of semiconducting 2D coordination nanosheets for versatile bioimaging and photodetecting applications. Materials Advances, 2021, 2, 5189-5194.	2.6	5
1283	Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries. Cell Reports Physical Science, 2021, 2, 100286.	2.8	30
1284	An electrochemically exfoliated graphene/poly(3,4-ethylenedioxythiophene) nanocomposite-based electrochemical sensor for the detection of nicotine. Materials Advances, 0, , .	2.6	21
1285	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
1286	Synthesis and characterization of 2D materials. , 2021, , 77-104.		2
1287	Ultra-Fast, Chemical-Free, Mass Production of High Quality Exfoliated Graphene. ACS Nano, 2021, 15, 1775-1784.	7.3	61

#	Article	IF	CITATIONS
1288	Transmissible Plasma-Evolved Suspended Graphene for TEM Observation Window. ACS Applied Nano Materials, 2021, 4, 1485-1494.	2.4	0
1289	Structure and properties of 2D materials in general and their importance to energy storage. , 2021, , 11-75.		0
1290	Applications of Graphene-Based Nanomaterials. , 2021, , 1-26.		0
1291	Defect-Free MoS ₂ -Flakes/Amorphous-Carbon Hybrid as an Advanced Anode for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 3459-3468.	2.5	17
1292	An ecologically friendly process for graphene exfoliation based on the "hydrodynamic cavitation on a chip―concept. RSC Advances, 2021, 11, 17965-17975.	1.7	7
1293	Consumer Applications of Graphene and Its Composites. , 2021, , 1-30.		0
1294	GeP ₃ /NbX ₂ (X=S, Se) Nano-Heterostructures: Promising Isotropic Flexible Anodes for Lithium-Ion Batteries with High Lithium Storage Capacity. ACS Omega, 2021, 6, 2956-2965.	1.6	6
1295	Hot carrier photovoltaics in van der Waals heterostructures. Nature Reviews Physics, 2021, 3, 178-192.	11.9	77
1296	Preparation of solution processed photodetectors comprised of two-dimensional tin(<scp>ii</scp>) sulfide nanosheet thin films assembled <i>via</i> the Langmuir–Blodgett method. RSC Advances, 2021, 11, 26813-26819.	1.7	5
1297	Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications. Mikrochimica Acta, 2021, 188, 6.	2.5	17
1298	Total conversion from graphite to few-layer graphene nanocomposite. Carbon Trends, 2021, 2, 100017.	1.4	5
1299	Rational design and solvent-free synthesis of iron-embedded 2D composite materials derived from biomass for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 3979-3986.	2.5	4
1300	Production of graphene and other two-dimensional nanosheets by liquid phase exfoliation. , 2021, , 251-314.		0
1301	Preparation of hybrid paper electrode based on hexagonal boron nitride integrated graphene nanocomposite for free-standing flexible supercapacitors. RSC Advances, 2021, 11, 3445-3451.	1.7	15
1302	Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites. ACS Omega, 2021, 6, 1809-1822.	1.6	9
1303	Synthesizing Highâ€quality Graphene from Spent Anode Graphite and Further Functionalization Applying in ORR Electrocatalyst. ChemistrySelect, 2021, 6, 90-95.	0.7	8
1304	Challenges of Coating Textiles with Graphene. Johnson Matthey Technology Review, 2022, 66, 106-113.	0.5	2
1305	Graphene-based metal matrix nanocomposites: Recent development and challenges. Journal of Composite Materials, 2021, 55, 2369-2413.	1.2	26

#	Article	IF	CITATIONS
1306	A Review of the Synthesis, Properties, and Applications of Bulk and Two-Dimensional Tin (II) Sulfide (SnS). Applied Sciences (Switzerland), 2021, 11, 2062.	1.3	37
1307	Continuous and semi-continuous industrial production of lubricants modified with graphene nanostructures. IOP Conference Series: Materials Science and Engineering, 2021, 1100, 012027.	0.3	0
1308	Plasma Assisted Reduction of Graphene Oxide Films. Nanomaterials, 2021, 11, 382.	1.9	9
1309	Using Cellulose Nanocrystal as Adjuvant to Improve the Dispersion Ability of Multilayer Graphene in Aqueous Suspension. Frontiers in Bioengineering and Biotechnology, 2021, 9, 638744.	2.0	6
1310	Understanding Oxygen Bubbleâ€Triggered Exfoliation of Graphite Toward the Lowâ€Defect Graphene. Advanced Materials Interfaces, 2021, 8, 2001899.	1.9	5
1311	Exfoliation of Alphaâ€Germanium: A Covalent Diamondâ€Like Structure. Advanced Materials, 2021, 33, e2006826.	11.1	27
1312	Graphene-reinforced polymer matrix composites fabricated by in situ shear exfoliation of graphite in polymer solution: processing, rheology, microstructure, and properties. Nanotechnology, 2021, 32, 175703.	1.3	5
1313	Real-time monitoring and hydrodynamic scaling of shear exfoliated graphene. 2D Materials, 2021, 8, 025029.	2.0	10
1314	A novel preparation of water-dispersed graphene and their application to electrochemical detection of dopamine. Advanced Powder Technology, 2021, 32, 619-629.	2.0	4
1315	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	2.4	5
1316	Dirac cones for graph models of multilayer AA-stacked graphene sheets. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 371-384.	0.7	2
1317	Additive-Enhanced Exfoliation for High-Yield 2D Materials Production. Nanomaterials, 2021, 11, 601.	1.9	3
1318	Single-Step Direct Growth of Graphene on Cu Ink toward Flexible Hybrid Electronic Applications by Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 6951-6959.	4.0	10
1319	Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance. Nanomaterials, 2021, 11, 687.	1.9	5
1320	Harnessing the Unique Features of 2D Materials toward Dendriteâ€free Metal Anodes. Energy and Environmental Materials, 2022, 5, 45-67.	7.3	33
1321	Experimental Investigation on Strength and Durability of Graphene Nanoengineered Concrete. Construction and Building Materials, 2021, 276, 122236.	3.2	31
1322	Seeded Growth of Ultrathin Carbon Films Directly onto Silicon Substrates. ACS Omega, 2021, 6, 8829-8836.	1.6	4
1323	Dropletâ€Based Techniques for Printing of Functional Inks for Flexible Physical Sensors. Advanced Materials, 2021, 33, e2006792.	11.1	90

#	Article	IF	CITATIONS
1324	Fluidâ€Dynamicsâ€Processed Highly Stretchable, Conductive, and Printable Graphene Inks for Realâ€Time Monitoring Sweat during Stretching Exercise. Advanced Functional Materials, 2021, 31, 2011059.	7.8	44
1325	Ball Milled Graphene Nano Additives for Enhancing Sliding Contact in Vegetable Oil. Nanomaterials, 2021, 11, 610.	1.9	14
1326	Organic salt-assisted liquid-phase shear exfoliation of expanded graphite into graphene nanosheets. Journal of Materiomics, 2021, 7, 1181-1189.	2.8	13
1327	Nonlinear saturable absorption in antimonene quantum dots for passively Qâ€switching Pr:YLF laser. Nano Select, 2021, 2, 1741-1749.	1.9	4
1329	Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application. Nano-Micro Letters, 2021, 13, 87.	14.4	36
1330	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
1331	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864.	5.6	77
1332	Polymer nanocomposites with aligned two-dimensional materials. Progress in Polymer Science, 2021, 114, 101360.	11.8	39
1333	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	6.8	45
1334	Mechanical Cell Disruption Technologies for the Extraction of Dyes and Pigments from Microorganisms: A Review. Fermentation, 2021, 7, 36.	1.4	30
1335	Ionic Liquids Achieve the Exfoliation of Ultrathin Two-Dimensional VOPO ₄ ·2H ₂ O Crystalline Nanosheets: Implications on Energy Storage and Catalysis. ACS Applied Nano Materials, 2021, 4, 2503-2514.	2.4	5
1336	Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48, 214-240.	8.3	178
1337	Drying-Time Study in Graphene Oxide. Nanomaterials, 2021, 11, 1035.	1.9	19
1338	Chlorosulfuric acid-assisted production of functional 2D materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	3
1339	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
1340	Surfactant-Free Stabilization of Aqueous Graphene Dispersions Using Starch as a Dispersing Agent. ACS Omega, 2021, 6, 12050-12062.	1.6	8
1341	The liquid exfoliation of graphene in polar solvents. Applied Surface Science, 2021, 546, 149046.	3.1	36
1342	Exploration of the form factors of turbulence kinetic energy transfer for shear exfoliation of graphene. Nanotechnology, 2021, 32, 265601.	1.3	1

#	Article	IF	Citations
" 1343	Applications of graphene for energy harvesting applications: Focus on mechanical synthesis routes for graphene production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-30.	1.2	4
1344	Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling. ACS Applied Materials & Interfaces, 2021, 13, 25325-25333.	4.0	39
1345	Combination of few-layer graphene and commercial cosmetic film for tetrahydrofuran-sensitive smart film. Materials Letters, 2021, 298, 130024.	1.3	2
1346	Inkjet Printed Circuits with 2D Semiconductor Inks for Highâ€Performance Electronics. Advanced Electronic Materials, 2021, 7, 2100112.	2.6	46
1347	Synthesis of graphene nanosheets by the electrical explosion of graphite powder confined in a tube. Ceramics International, 2021, 47, 21934-21942.	2.3	15
1348	Doping and Stress Induced Raman Shifts in Pd-Decorated CVD Grown Graphene. ECS Journal of Solid State Science and Technology, 0, , .	0.9	3
1349	Rapid production of mixed metal oxy-fluoride nanoplates as superior oxygen evolution electrocatalysts. Materials Letters, 2021, 291, 129530.	1.3	0
1350	Graphene's Role in Emerging Trends of Capacitive Energy Storage. Small, 2021, 17, e2006875.	5.2	28
1351	Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials, 2021, 4, 5187-5197.	2.4	5
1352	Effect of hydrodynamic slip on the rotational dynamics of a thin Brownian platelet in shear flow. Journal of Fluid Mechanics, 2021, 919, .	1.4	9
1353	Room-temperature deposition of ZnO-graphene nanocomposite hybrid photocatalysts for improved visible-light-driven degradation of methylene blue. Ceramics International, 2021, 47, 12812-12825.	2.3	40
1354	Molten salt in-situ exfoliation of graphite to graphene nanoplatelets applied for energy storage. Carbon, 2021, 176, 168-177.	5.4	14
1355	Ab initio prediction of semiconductivity in a novel two-dimensional Sb2X3 (X= S, Se, Te) monolayers with orthorhombic structure. Scientific Reports, 2021, 11, 10366.	1.6	44
1356	Investigation on the robust adsorption mechanism of alkyl-functional boric acid nanoparticles as high performance green lubricant additives. Tribology International, 2021, 157, 106909.	3.0	18
1357	Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. Ultrasonics Sonochemistry, 2021, 73, 105519.	3.8	55
1358	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224.	2.8	143
1359	Ultrahigh concentration and stable dispersion of graphite nanosheet paste as composite nanofillers for thermal management and electromagnetic shielding. Nano Select, 2021, 2, 2159-2167.	1.9	4
1360	Band-Gap Engineering of Lead-Free Iron-Based Halide Double-Perovskite Single Crystals and Nanocrystals by an Alloying or Doping Strategy. Journal of Physical Chemistry C, 2021, 125, 11743-11749.	1.5	24

#	Article	IF	CITATIONS
1361	Regulating cations and solvents of the electrolyte for ultra-efficient electrochemical production of high-quality graphene. Carbon, 2021, 176, 157-167.	5.4	18
1362	High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes. Carbon, 2021, 176, 21-30.	5.4	35
1363	A facile and industrial method for synthesis of modified magnetic lipophilic graphene as a super oil additive. Main Group Chemistry, 2021, 20, 89-101.	0.4	5
1364	Epoxy/graphene nanocomposites prepared by in-situ microwaving. Carbon, 2021, 177, 271-281.	5.4	25
1365	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
1366	Segregated highly conductive linear lowâ€density polyethylene/graphene nanoplatelet composite through aqueous dispersing and selfâ€leveling method. Journal of Applied Polymer Science, 2021, 138, 51212.	1.3	4
1367	Ultrafast Fabrication of Grapheneâ€Reinforced Nanocomposites via Synergy of Steam Explosion and Alternating Convergentâ€Đivergent Flow. Small, 2021, 17, e2100017.	5.2	14
1368	Dependence of capacitive properties of an EDLC on exfoliation time of graphite electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 17580-17587.	1.1	2
1369	Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials, 2021, 11, 1517.	1.9	27
1370	Defect-Free Single-Layer Graphene by 10 s Microwave Solid Exfoliation and Its Application for Catalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 28600-28609.	4.0	17
1371	Advances in Liquidâ€Phase and Intercalation Exfoliations of Transition Metal Dichalcogenides to Produce 2D Framework. Advanced Materials Interfaces, 2021, 8, 2002205.	1.9	43
1372	Large-Scale Preparation of MoS ₂ /Graphene Composites for Electrochemical Detection of Morin. ACS Applied Nano Materials, 2021, 4, 6668-6677.	2.4	19
1373	Environmentally Friendly Graphene Inks for Touch Screen Sensors. Advanced Functional Materials, 2021, 31, 2103287.	7.8	33
1374	Graphene Aerosol Gel Ink for Printing Micro-Supercapacitors. ACS Applied Energy Materials, 2021, 4, 7632-7641.	2.5	19
1375	Exfoliation of hexagonal boron nitride nanosheets in low-modulus concentrated alkali silicate pastes. Materials Letters, 2021, 292, 129551.	1.3	5
1376	A Review on the Applications of Graphene in Mechanical Transduction. Advanced Materials, 2022, 34, e2101326.	11.1	59
1377	Miscanthus as a carbon precursor for graphene oxide: A possibility influenced by pyrolysis temperature. Bioresource Technology, 2021, 331, 124934.	4.8	14
1378	Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets. Journal of Molecular Liquids, 2021, 333, 116002.	2.3	9

		CITATION REPORT		
#	Article		IF	CITATIONS
1379	Conversionâ€Alloying Anode Materials for Sodium Ion Batteries. Small, 2021, 17, e210	1137.	5.2	102
1380	Dependence of the polycarbonate mechanical performances on boron nitride flakes mo Materials, 2021, 4, 045002.	orphology. JPhys	1.8	4
1381	Reduction of Device Operating Temperatures with Graphene-Filled Thermal Interface M Journal of Carbon Research, 2021, 7, 53.	aterials.	1.4	4
1382	Chromatographic Approach to Isolate Exfoliated Graphene. Langmuir, 2021, 37, 9378-	9384.	1.6	2
1383	Intrinsic Room-Temperature Ferromagnetism in V ₂ C MXene Nanosheets. / Materials & Interfaces, 2021, 13, 33363-33370.	ACS Applied	4.0	20
1384	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials, 2	2021, 11, 1778.	1.9	31
1385	Supercritical CO2-assisted microfluidization as ultra-high efficiency strategy for graphe preparation. Journal of Materials Science, 2021, 56, 15653-15666.	ne	1.7	3
1386	Nano-Modified Screen-Printed Electrodes for the Determination of Organic Pollutants. ,	. 2021, , .		1
1387	Synthesis of copper oxides-graphene composites for glucose sensing. Carbon Trends, 2	.021, 4, 100050.	1.4	10
1388	Nanopoxia: Targeting Cancer Hypoxia by Antimoneneâ€Based Nanoplatform for Precisi Advanced Functional Materials, 2021, 31, 2104607.	on Cancer Therapy.	7.8	18
1389	Highly Water-Dispersible Graphene Nanosheets From Electrochemical Exfoliation of Gra Frontiers in Chemistry, 2021, 9, 699231.	aphite.	1.8	11
1390	Facile one-step deposition of ZnO-graphene nanosheets hybrid photoanodes for enhan photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 870, 15	ced 9430.	2.8	17
1391	Recent Advances in All-Inorganic Lead-Free Three-Dimensional Halide Double Perovskite Energy & Fuels, 2021, 35, 18871-18887.	Nanocrystals.	2.5	30
1392	From shear exfoliation of graphite in Coca-Cola® to few-layer graphene for smart ink. International, 2021, 47, 23309-23317.	Ceramics	2.3	7
1393	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic S and H ₂ Generation. Angewandte Chemie - International Edition, 2021, 60,		7.2	82
1394	Plasma modification of carbon nanowalls induces transition from superhydrophobic to superhydrophilic. Nanotechnology, 2021, 32, 435706.		1.3	6
1395	Recent progress on improving the mechanical, thermal and electrical conductivity prop polyimide matrix composites from nanofillers perspective for technological applications Polymer Engineering, 2021, .		0.6	4
1396	High-concentration graphene dispersions prepared via exfoliation of graphite in PVA/H2 solvent system using high-shear forces. Journal of Nanoparticle Research, 2021, 23, 1.	20 green	0.8	9

#	Article	IF	CITATIONS
1397	Status and Prospects of Laserâ€Induced Graphene for Battery Applications. Energy Technology, 2021, 9, 2100454.	1.8	27
1398	Colloidal chemistry as a guide to design intended dispersions of carbon nanomaterials. Materials Today Chemistry, 2021, 21, 100526.	1.7	7
1399	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	2.6	56
1400	Synthesis of nickel cobalt manganese metal organic framework@high quality graphene composites as novel electrode materials for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 895, 115452.	1.9	11
1401	Fabrication of the amphiphilic hyperbranched poly(ether amine)@graphene (hPEAâ€AN@G) hybrid assemblies by ball milling. Polymer International, 0, , .	1.6	1
1402	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie, 2021, 133, 21720-21727.	1.6	4
1403	Bio-functionalized few-layer graphene for in situ growth of gold nanoparticles, improvement of polymer properties, and dye removal. Journal of Cleaner Production, 2021, 310, 127515.	4.6	13
1404	Alignment of a flexible platelike particle in shear flow: Effect of surface slip and edges. Physical Review Fluids, 2021, 6, .	1.0	4
1405	Non-Enzymatic H ₂ O ₂ Sensor Using Liquid Phase High-Pressure Exfoliated Graphene. Journal of the Electrochemical Society, 2021, 168, 086508.	1.3	13
1406	Accelerated Photoreduction of CO ₂ to CO over a Stable Heterostructure with a Seamless Interface. ACS Applied Materials & amp; Interfaces, 2021, 13, 39523-39532.	4.0	47
1407	Graphene signatures: Identifying graphite and graphene grades via radio frequency heating. Carbon, 2021, 182, 564-570.	5.4	5
1408	Graphene/Hexagonal Boron Nitride Composite Nanoparticles for 2D Printing Technologies. Advanced Engineering Materials, 2022, 24, 2100917.	1.6	5
1409	Scalable production of concentrated graphene oxide dispersion from acidic graphite oxide within one system. Chemical Engineering Science, 2022, 248, 117143.	1.9	3
1410	Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis. Advanced Functional Materials, 2021, 31, 2104543.	7.8	29
1411	"Simple-Stir―Heterolayered MoS ₂ /Graphene Nanosheets for Zn–Air Batteries. ACS Applied Nano Materials, 2021, 4, 10389-10398.	2.4	17
1412	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
1413	Homogeneous dispersion of boron nitride nanoplatelets in powder feedstocks for plasma spraying. Advanced Powder Technology, 2021, 32, 4167-4176.	2.0	3
1414	High oriented graphite film with high thermal conductivity prepared by pure polyimide film formed with catalyst pyridine. Ceramics International, 2021, 47, 24519-24526.	2.3	11

#	Article	IF	CITATIONS
1415	Role of supercritical carbon dioxide (scCO ₂) in fabrication of inorganic-based materials: a green and unique route. Science and Technology of Advanced Materials, 2021, 22, 695-717.	2.8	12
1416	Monodispersed Ni active sites anchored on N-doped porous carbon nanosheets as high-efficiency electrocatalyst for hydrogen peroxide sensing. Analytica Chimica Acta, 2021, 1179, 338812.	2.6	10
1417	Polyvinylpyrrolidone assisted transformation of Cu-MOF into N/P-co-doped Octahedron carbon encapsulated Cu3P nanoparticles as high performance anode for lithium ion batteries. Journal of Colloid and Interface Science, 2022, 608, 227-238.	5.0	21
1418	Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Materials Today, 2021, 51, 145-154.	8.3	58
1419	In-situ formed graphene providing lubricity for the FeCoCrNiAl based composite containing graphite nanoplate. Composites Part B: Engineering, 2021, 221, 109032.	5.9	21
1420	Open-atmosphere flame synthesis of monolayer graphene. Carbon, 2021, 182, 307-315.	5.4	5
1421	Ambient energy dispersion and long-term stabilisation of large graphene sheets from graphite using a surface energy matched ionic liquidâ€. Journal of Ionic Liquids, 2021, 1, 100001.	1.0	6
1422	Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchemical Journal, 2021, 169, 106583.	2.3	45
1423	Ultrahigh concentration, single-layer of graphene paste as conductive additive for lithium-ion battery. Carbon Trends, 2021, 5, 100104.	1.4	6
1424	Thermally stable, adhesively strong graphene/polyimide films for inkjet printing ultrasound sensors. Carbon, 2021, 184, 64-71.	5.4	17
1425	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
1426	Facile and scalable synthesis of high-quality few-layer graphene from biomass by a universal solvent-free approach. Applied Surface Science, 2021, 562, 150203.	3.1	13
1427	Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques. Construction and Building Materials, 2021, 303, 124472.	3.2	37
1428	The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review. Construction and Building Materials, 2021, 306, 124774.	3.2	31
1429	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	7.1	73
1430	2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021, 178, 113970.	6.6	23
1431	Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon, 2021, 185, 536-545.	5.4	20
1432	Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis. Chemical Engineering Journal, 2021, 426, 131345.	6.6	15

#	ARTICLE Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solution.	IF 1.9	Citations
1434	Chemical Engineering Science, 2021, 245, 116848. Distribution states of graphene in polymer nanocomposites: A review. Composites Part B: Engineering, 2021, 226, 109353.	5.9	67
1435	Preparation of functionalized boron nitride nanosheets by high-gravity liquid phase exfoliation technology. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108602.	1.8	11
1436	Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere, 2022, 287, 132106.	4.2	39
1437	Electrical conductivity of polymer-graphene composites. , 2022, , 107-139.		5
1438	Synthesis/preparation and surface modification/functionalization of graphene, and concept of nanocomposites. , 2022, , 1-44.		0
1439	Delocalized electrochemical exfoliation toward high-throughput fabrication of high-quality graphene. Chemical Engineering Journal, 2022, 428, 131122.	6.6	10
1440	Graphene and water-based elastomer nanocomposites $\hat{a} \in \hat{a}$ a review. Nanoscale, 2021, 13, 9505-9540.	2.8	10
1441	Liquidâ€Phase Exfoliated Gallium Selenide for Lightâ€Driven Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2001080.	2.6	18
1442	Applications of Graphene-Based Nanomaterials. , 2021, , 1069-1093.		0
1443	Supramolecular assembly of pyrene-tetrathiafulvalene hybrids on graphene: structure–property relationships and biosensing activity. Journal of Materials Chemistry C, 2021, 9, 10944-10951.	2.7	6
1444	Current trends in MXene research: properties and applications. Materials Chemistry Frontiers, 2021, 5, 7134-7169.	3.2	30
1445	Covalent organic functionalization of graphene nanosheets and reduced graphene oxide <i>via</i> 1,3-dipolar cycloaddition of azomethine ylide. Nanoscale Advances, 2021, 3, 5841-5852.	2.2	11
1446	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
1448	Graphene transparent electrodes. , 2021, , 487-516.		1
1449	Characterization of Various Carbon-Based Polypropylene Nanocomposites. Journal of Materials Engineering and Performance, 2021, 30, 190-201.	1.2	2
1450	Graphene: The magic material. , 2021, , 517-549.		3
1451	Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches. RSC Advances, 2021, 11, 31284-31327.	1.7	41

		REPORT	
# 1452	ARTICLE Graphene and its derivatives for environmental applications. , 2021, , 219-259.	IF	CITATIONS
1453	Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology, 2021, 32, 142003.	1.3	76
1455	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	10.2	33
1456	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1
1457	CNT Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 73-75.		1
1458	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. , 2018, , 141-146.		4
1459	Characterization Methods. , 2018, , 403-488.		2
1460	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
1461	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
1462	Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon, 2020, 167, 169-180.	5.4	17
1463	Single-atom catalysis: A practically viable technology?. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100358.	3.2	5
1464	A new method for preparation of functionalized graphene and its epoxy nanocomposites. Composites Part B: Engineering, 2020, 196, 108096.	5.9	41
1465	Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. International Journal of Heat and Mass Transfer, 2020, 157, 119727.	2.5	48
1466	Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer, 2020, 200, 122577.	1.8	22
1467	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. ACS Applied Energy Materials, 2021, 4, 98-110.	2.5	9
1468	Thin-Film Carbon Nanofuses for Permanent Data Storage. ACS Omega, 2017, 2, 2432-2438.	1.6	1
1469	Synthetic Techniques and Functionalization Approaches of 2D Transition Metal Dichalcogenides. RSC Smart Materials, 2019, , 245-282.	0.1	2
1470	Exfoliation of two-dimensional polymer single crystals into thin sheets and investigations of their surface structure by high-resolution atomic force microscopy. Nanoscale, 2017, 9, 9481-9490.	2.8	9

#	Article	IF	CITATIONS
1471	Dirac cones for bi- and trilayer Bernal-stacked graphene in a quantum graph model. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 505201.	0.7	3
1472	Spectroscopic thickness and quality metrics for PtSe ₂ layers produced by top-down and bottom-up techniques. 2D Materials, 2020, 7, 045027.	2.0	21
1473	Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles. JPhys Materials, 2021, 4, 014004.	1.8	21
1474	EPR and Impedance Measurements of Graphene Oxide and Reduced Graphene Oxide. Acta Physica Polonica A, 2017, 132, 81-85.	0.2	12
1475	Application of UV-vis optical spectroscopy in electrochemical processes: case-study of graphite anion intercalation. Applied Optics, 2020, 59, 8175.	0.9	4
1476	Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 2020, 28, 7274.	1.7	18
1477	Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water. PLoS ONE, 2016, 11, e0154686.	1.1	41
1478	Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnology Reviews, 2020, 9, 1284-1314.	2.6	72
1479	Properties of Graphene Flakes Obtained by Treating Graphite with Ultrasound. Ukrainian Journal of Physics, 2017, 62, 432-440.	0.1	4
1480	In situ single-step reduction of bromine-intercalated graphite to covalently brominated and alkylated/brominated graphene. Journal of Materials Research, 2020, 35, 1472-1480.	1.2	5
1481	Molecular Scaffold Growth of Two-Dimensional, Strong Interlayer-Bonding-Layered Materials. CCS Chemistry, 0, , 117-127.	4.6	10
1483	Toward Large-Scale Production of Oxidized Graphene. Nanomaterials, 2020, 10, 279.	1.9	64
1484	Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602.	2.8	93
1485	Structural properties of reduced graphene oxides prepared using various reducing agents. Carbon Letters, 2015, 16, 255-259.	3.3	9
1486	2D-Layered Nanomaterials for Energy Harvesting and Sensing Applications. , 0, , .		1
1487	Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic–organic nanostructures. Soft Matter, 2021, 17, 9819-9841.	1.2	4
1488	Laser-assisted graphene layer exfoliation from graphite slab. Molecular Simulation, 2021, 47, 1540-1548.	0.9	0
1489	Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem, 2021, 30, 100305.	2.8	65

#	Article	IF	CITATIONS
1490	Large‧cale Syntheses of 2D Materials: Flash Joule Heating and Other Methods. Advanced Materials, 2022, 34, e2106970.	11.1	66
1491	A Universal Approach for Roomâ€Temperature Printing and Coating of 2D Materials. Advanced Materials, 2022, 34, e2103660.	11.1	15
1492	Shear exfoliation of large-size GO sheets for high-performance films. Journal of Materials Science, 2021, 56, 18946-18958.	1.7	6
1493	2D materials inks toward smart flexible electronics. Materials Today, 2021, 50, 116-148.	8.3	57
1494	Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem, 2022, 23, .	1.0	12
1495	A review of graphene-based films for heat dissipation. New Carbon Materials, 2021, 36, 897-908.	2.9	25
1496	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	6.6	19
1497	Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, 8, .	5.5	19
1498	Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, 2021, 9, 106506.	3.3	23
1501	Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.		0
1503	Characteristics of Graphene Production from Graphite using Plant Extracts. KSBB Journal, 2016, 31, 208-213.	0.1	1
1504	Preparation of Ni-C Ultrafine Composite from Waste Material. Advances in Science, Technology and Engineering Systems, 2017, 2, 695-701.	0.4	1
1505	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
1506	Structure and band structure of epitaxial graphene on hexagonal silicon carbide. , 2018, , 689-715.		0
1507	Miscellaneous CNT Applications. , 2018, , 89-90.		0
1508	CNT Applications in Specialized Materials. , 2018, , 45-48.		0
1509	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
1510	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		Ο

#	Article	IF	CITATIONS
1511	Electrochromics. , 2018, , 601-624.		1
1512	Classes of CPs: Part 1. , 2018, , 489-507.		0
1513	Electro-Optic and Optical Devices. , 2018, , 671-684.		2
1514	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		0
1515	Miscellaneous Applications. , 2018, , 695-715.		0
1516	Introduction to epigraphene and overview. , 2018, , 665-673.		1
1517	CNT Applications in the Environment and in Materials Used in Separation Science. , 2018, , 81-87.		0
1518	Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.		0
1519	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 147-148.		0
1520	Classes of CPs: Part 2. , 2018, , 509-545.		0
1521	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		0
1522	Syntheses and Processing of CPs. , 2018, , 311-388.		Ο
1523	Production of Nanosheets with High Aspect Ratio in Liquid Process. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2018, 26, 20-24.	0.0	0
1524	Applications of new exfoliation technique in study of two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 218201.	0.2	4
1525	Physical, Mechanical, and Thermal Properties of CNTs. , 2018, , 33-36.		0
1526	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Superconductors. , 2018, , 77-79.		1
1527	Toxicology of CNTs. , 2018, , 37-39.		0
1528	Synthesis, Purification, and Chemical Modification of CNTs. , 2018, , 17-31.		0

#	Article	IF	CITATIONS
1529	Introducing Graphene. , 2018, , 93-99.		0
1531	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
1532	Brief, General Overview of Applications. , 2018, , 123-124.		0
1533	Electrochemomechanical, Chemomechanical, and Related Devices. , 2018, , 685-693.		0
1534	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
1535	Ultrafast carrier dynamics in atomically thin two-dimensional crystals. , 2018, , .		1
1536	Pell-Shear-Exfoliation of few-layer graphene nanoflakes as an electrode in supercapacitors. Innovaciencia, 2018, 6, 1-10.	0.1	0
1537	High concentration of fewâ€layer graphene and MoS ₂ nanosheets using carboxyl methyl cellulose as a highâ€performance stabiliser. Micro and Nano Letters, 2019, 14, 835-839.	0.6	0
1538	Graphene: Preparation and Applications. RSC Smart Materials, 2020, , 100-130.	0.1	0
1539	Correlative imaging of exciton distribution in monolayer of transition metal dichalcogenides. , 2020, ,		0
1540	Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review. International Journal of Hydrogen Energy, 2022, 47, 1371-1389.	3.8	34
1541	Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers. ACS Applied Materials & Interfaces, 2021, 13, 53073-53082.	4.0	26
1542	Chemical Functionalization of 2D Black Phosphorus toward Its Applications in Energy Devices and Catalysis: A Review. Energy Technology, 2021, 9, 2100581.	1.8	12
1543	Adsorption of Single and Multiple Graphene-Oxide Nanoparticles at a Water–Vapor Interface. Langmuir, 2021, 37, 13322-13330.	1.6	3
1545	High-performance flexible WSe2 flake photodetector with broadband detection capability. AIP Advances, 2020, 10, .	0.6	12
1546	Electronic, optical and thermoelectric properties of a novel two-dimensional SbXY (X = Se, Te; Y = Br, I) family: <i>ab initio</i> perspective. Physical Chemistry Chemical Physics, 2021, 23, 25866-25876.	1.3	17
1547	Insights into the exfoliation mechanism of pyrene-assisted liquid phase exfoliation of graphene from lateral size-thickness characterisation. Carbon, 2022, 186, 550-559.	5.4	12
1549	Facile fabrication of conductive MoS ₂ thin films by sonication in hot water and evaluation of their electrocatalytic performance in the hydrogen evolution reaction. Nanoscale Advances, 2021, 4, 125-137.	2.2	10

#	Article	IF	CITATIONS
1550	Graphene Flake Self-Assembly Enhancement via Stretchable Platforms and External Mechanical Stimuli. ACS Omega, 2021, 6, 30607-30617.	1.6	2
1551	Development of a Method to Produce a Potential Transparent Conductive Material. Lecture Notes in Networks and Systems, 2022, , 169-179.	0.5	0
1552	Foam flows in turbulent liquid exfoliation of layered materials and implications for graphene production and inline characterisation. Chemical Engineering Research and Design, 2022, 177, 245-254.	2.7	2
1553	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
1554	The electrical conductivity of solution-processed nanosheet networks. Nature Reviews Materials, 2022, 7, 217-234.	23.3	75
1555	First-principles study of borophene/phosphorene heterojunction as anode material for lithium-ion batteries. Nanotechnology, 2022, 33, 075403.	1.3	2
1556	Potential Applications of Graphene-Based Nanomaterials in Biomedical, Dental, and Implant Applications. , 2021, , 77-105.		7
1557	Scrolled Production of Large-Scale Continuous Graphene on Copper Foils*. Chinese Physics Letters, 2020, 37, 108101.	1.3	4
1558	Roadblocks faced by graphene in replacing graphite in large-scale applications. Oxford Open Materials Science, 2020, 1, .	0.5	2
1559	Automated Mechanical Exfoliation of MoS and MoTe Layers for 2D Materials Applications. IEEE Nanotechnology Magazine, 2019, 18, .	1.1	0
1560	Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Materials Science in Semiconductor Processing, 2022, 139, 106313.	1.9	24
1561	One-step mechanical exfoliation and deposition of layered materials (graphite, MoS2, and BN) by vacuum-kinetic spray process. Vacuum, 2022, 196, 110732.	1.6	7
1562	Recent advances in positron emission particle tracking: a comparative review. Reports on Progress in Physics, 2022, 85, 016101.	8.1	24
1563	Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	17
1564	High-Yield Production of Selected 2D Materials by Understanding Their Sonication-Assisted Liquid-Phase Exfoliation. Nanomaterials, 2021, 11, 3253.	1.9	12
1565	A review on sustainable production of graphene and related life cycle assessment. 2D Materials, 2022, 9, 012002.	2.0	21
1566	Prediction of the molecular-level critical shear rates for the liquid exfoliation of graphene layers. Journal of Applied Physics, 2021, 130, .	1.1	2
1567	Improved efficiency of liquid-phase shear exfoliation of expanded graphite with mica plates as bifunctional additives. Journal of Materials Chemistry A, 2021, 9, 27586-27595.	5.2	2

#	Article	IF	CITATIONS
1568	Nanofabrication route to achieve sustainable production of next generation defect-free graphene: analysis and characterisation. Nanofabrication, 2021, 6, 36-43.	1.1	4
1569	Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 1521-1529.	1.9	6
1570	Preparation and electromagnetic shielding performances of graphene/TPU–PVDF nanocomposites by high-energy ball milling. Journal of Materials Science: Materials in Electronics, 2022, 33, 1817-1829.	1.1	2
1571	Untying the Bundles of Solutionâ€Synthesized Graphene Nanoribbons for Highly Capacitive Microâ€Supercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	7.8	13
1572	Few-Layers Graphene-Based Cement Mortars: Production Process and Mechanical Properties. Sustainability, 2022, 14, 784.	1.6	8
1573	High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method. Nanotechnology, 2022, 33, 185602.	1.3	5
1574	Industrial-scale production of high-quality graphene sheets by millstone grinders. Journal Physics D: Applied Physics, 2022, 55, 164002.	1.3	2
1575	Graphene for Antimicrobial and Coating Application. International Journal of Molecular Sciences, 2022, 23, 499.	1.8	26
1576	Effects of hybrid surfactants on the quality and yield of graphene using a novel electrochemical-mechanical exfoliation process. International Journal of Advanced Manufacturing Technology, 0, , 1.	1.5	0
1577	Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. Npj 2D Materials and Applications, 2022, 6, .	3.9	15
1578	Strength and feasibility aspects of concrete mixes induced with low-cost surfactant functionalized graphene powder. Asian Journal of Civil Engineering, 2022, 23, 39-52.	0.8	2
1579	Fabrication Technologies for the On hip Integration of 2D Materials. Small Methods, 2022, 6, e2101435.	4.6	39
1580	MXenes and their composites for energy storage and conversion. , 2022, , 201-240.		1
1581	Î'io-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performance. Nanomaterials, 2022, 12, 222.	1.9	8
1582	Revisiting the Roles of Natural Graphite in Ongoing Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2106704.	11.1	99
1583	Nanomaterials recycling in industrial applications. , 2022, , 375-395.		0
1584	Synthesis of layered nanomaterials. , 2023, , 171-188.		1
1585	Graphene Microelectrodes for Real-Time Impedance Spectroscopy of Neural Cells. ACS Applied Bio Materials, 2022, 5, 113-122.	2.3	6

#	Article	IF	CITATIONS
1586	Nanotechnology for biosensor applications. , 2022, , 513-531.		4
1587	Phosphorus-doped silicon nanoparticles as high performance LIB negative electrode. Journal of Materials Science, 2022, 57, 2803-2812.	1.7	12
1588	Conversion of antibacterial activity of grapheneâ€coated textiles through surface polarity. Nano Select, 0, , .	1.9	1
1589	CALCULATION OF ROTARY APPARATUS FOR PRODUCTION OF GRAPHENE-CONTAINING SUSPENSIONS. Bulletin of Belgorod State Technological University Named After V G Shukhov, 2022, 7, 112-120.	0.1	0
1590	Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. Chemical Record, 2022, 22, e202100274.	2.9	16
1591	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. Matter, 2022, 5, 515-545.	5.0	33
1592	Field-assisted additive manufacturing of polymeric composites. Additive Manufacturing, 2022, 51, 102642.	1.7	11
1593	The influence of mechanochemical treatment in hexane on dispersibility and floatability of graphite flakes with enhanced water evaporation performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128326.	2.3	5
1594	Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications. Nanotechnology Reviews, 2022, 11, 770-792.	2.6	22
1595	Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS/MWCNT nanocomposites. Nanotechnology Reviews, 2021, 11, 55-64.	2.6	28
1596	Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN ₄ sites for ORR and OER electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 1603-1615.	2.5	3
1597	Defective Carbon Nanostructures for Biomedical Application. Advances in Material Research and Technology, 2022, , 1-34.	0.3	1
1598	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	5.2	43
1599	Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry A, 2022, 10, 8107-8128.	5.2	38
1600	Facile and Scalable Preparation of 2d-Mos2/Graphene Oxide Composite for Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
1601	Exfoliation of MoS2-RGO Hybrid 2D Sheets by Supercritical Fluid Process. Asian Journal of Chemistry, 2022, 34, 1009-1014.	0.1	1
1603	Graphene/Copper Nanoparticles as Thermal Interface Materials. ACS Applied Nano Materials, 2022, 5, 3450-3457.	2.4	8
1604	Nanostructured Carbons: Towards Softâ€Bioelectronics, Biosensing and Theraputic Applications. Chemical Record, 2022, 22, e202100319.	2.9	7

#	Article	IF	CITATIONS
1605	Green Reduction of Graphene Oxide Involving Extracts of Plants from Different Taxonomy Groups. Journal of Composites Science, 2022, 6, 58.	1.4	21
1606	Liquid phase exfoliated nanosheets as multifunctional fillers to semicrystalline polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 257-270.	1.2	2
1607	Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. International Journal of Hydrogen Energy, 2022, 47, 40317-40326.	3.8	21
1608	Recent Advances in Structure Separation of Singleâ€Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science, 2022, 9, e2200054.	5.6	39
1609	Soil Improvement by Re-Orienting Magnetic Particles Using a Magnetic Field. , 2022, , .		0
1610	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	3.0	16
1611	Microchannel insulating foams comprising a multifunctional epoxy/ <scp>grapheneâ€nanoplatelet</scp> nanocomposite. Polymer Engineering and Science, 2022, 62, 1677-1687.	1.5	3
1612	Solvent-Free Thermomechanical Exfoliation of Graphite into Graphene Nanoplatelet Flakes: Implications for Conductive Composites. ACS Applied Nano Materials, 2022, 5, 4938-4947.	2.4	9
1613	Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: from synthesis to modifications in doping, surface and heterojunction engineering. Materials Today Nano, 2022, 18, 100191.	2.3	15
1614	A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Advanced Composites and Hybrid Materials, 2022, 5, 547-605.	9.9	54
1615	Recent advances in biomass-derived graphene and carbon nanotubes. Materials Today Sustainability, 2022, 18, 100138.	1.9	27
1616	Peeling under large bending deformations: Follower versus fixed loads. A unified approach for concentrated or distributed loads. International Journal of Solids and Structures, 2022, 241, 111450.	1.3	1
1617	Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 2022, 70, 103268.	1.4	11
1618	Exfoliated graphene and its derivatives from liquid phase and their role in performance enhancement of epoxy matrix composite. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106886.	3.8	12
1619	Tetragonal transition metal selenide for hydrogen evolution. Applied Surface Science, 2022, 591, 153249.	3.1	19
1620	Graphene for a green-environmentally methodology with organic surfactants. , 2021, , .		0
1621	A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Materials, 2021, 36, 1179-1186.	2.9	9
1622	Non-invasive on-skin sensors for brain machine interfaces with epitaxial graphene. Journal of Neural Engineering, 2021, 18, 066035.	1.8	12

#	Article	IF	CITATIONS
1624	The scalable production of high-quality nanographite by organic radical-assisted electrochemical exfoliation Journal of Physics: Conference Series, 2021, 2086, 012014.	0.3	0
1625	Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nature Electronics, 2021, 4, 893-905.	13.1	52
1626	Graphene-reinforced cement composites for smart infrastructure systems. , 2022, , 79-114.		1
1627	Graphene in automotive parts. , 2022, , 623-651.		2
1628	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic‣ayered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	7.8	24
1629	Industrially scalable exfoliated graphene nanoplatelets by high-pressure airless spray technique for high-performance supercapacitors. FlatChem, 2022, 33, 100373.	2.8	18
1630	Minute-sensitive real-time monitoring of neural cells through printed graphene microelectrodes. Biosensors and Bioelectronics, 2022, 210, 114284.	5.3	7
1631	Green Solvents for the Liquid Phase Exfoliation Production of Graphene: The Promising Case of Cyrene. Frontiers in Chemistry, 2022, 10, 878799.	1.8	14
1632	An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals, 2022, 12, 555.	1.0	6
1633	Highâ€speed shear dispersion of <scp>MWCNTs</scp> assisted by <scp>PVP</scp> in water and its effective combination with wetâ€mixing technology for <scp>NR</scp> / <scp>MWCNTs</scp> nanocomposites. Polymer Composites, 2022, 43, 3858-3870.	2.3	8
1635	Liquidâ€Phase Exfoliation of Nonlayered Nonâ€Vanâ€Derâ€Waals Crystals into Nanoplatelets. Advanced Materials, 2022, 34, e2202164.	11.1	40
1636	Effect of the Embedment of Carbon Doped Nanocomposites in a Real Matrix on the Enhanced Photocatalytic Activity. SSRN Electronic Journal, 0, , .	0.4	0
1637	Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Materials Advances, 2022, 3, 4103-4131.	2.6	5
1638	Consumer Applications of Graphene and Its Composites. , 2022, , 471-500.		1
1639	An electrochemical biosensor based on few-layer MoS ₂ nanosheets for highly sensitive detection of tumor marker ctDNA. Analytical Methods, 2022, 14, 1956-1962.	1.3	5
1640	Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Advanced Functional Materials, 2022, 32, .	7.8	28
1641	High-efficiency, self-grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives. Science China Materials, 2022, 65, 2463-2471.	3.5	5
1642	One-dimensional van der Waals quantum materials. Materials Today, 2022, 55, 74-91.	8.3	49

#	Article	IF	CITATIONS
1643	Seaweed-like Nitrogen-Doped Porous Carbon Superstructures <i>via</i> an Ultrasonic Atomization Ice Template as High-Performance Electrodes in Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6163-6173.	2.5	8
1644	Simulation of interacting elastic sheets in shear flow: Insights into buckling, sliding, and reassembly of graphene nanosheets in sheared liquids. Physics of Fluids, 2022, 34, .	1.6	7
1645	Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS Materials Au, 2022, 2, 382-393.	2.6	9
1646	Thermal Properties of Graphite Nanoplatelet-Epoxy Composites Formed Through High Shear Exfoliation of Expanded Graphite. Journal of Micro and Nano-Manufacturing, 2022, , .	0.8	0
1647	Scalable production of high-quality carbon nanotube dispersion in aqueous solution using cellulose as dispersant by a freezing/thawing process. Journal of Colloid and Interface Science, 2022, 623, 1200-1209.	5.0	8
1648	Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Scientific Reports, 2022, 12, 7664.	1.6	11
1649	Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. Environmental Research, 2022, 212, 113372.	3.7	19
1650	Bilayer-favored intercalation induced efficient and selective liquid phase production of bilayer graphene. Journal of Materials Chemistry A, 2022, 10, 14381-14391.	5.2	2
1651	Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. Nanomaterials, 2022, 12, 1779.	1.9	12
1652	High-strength, flexible and superhydrophobic graphene/aramid nanofiber nanocomposite films for electromagnetic interference shielding application. Ceramics International, 2022, 48, 26013-26021.	2.3	7
1653	Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics. Biosensors and Bioelectronics, 2022, 212, 114418.	5.3	4
1654	Mesoscale Interaction between Liquid and the Particles in Lpe Process. SSRN Electronic Journal, 0, , .	0.4	0
1655	Remarkable Enhancement in Thermal Performance of Polypropylene Carbonate by Using Exfoliated Boron Nitride Nanosheets. SSRN Electronic Journal, 0, , .	0.4	0
1656	Subchronic Graphene Exposure Reshapes Skin Cell Metabolism. Journal of Proteome Research, 2022, 21, 1675-1685.	1.8	3
1657	Two-dimensional material inks. Nature Reviews Materials, 2022, 7, 717-735.	23.3	71
1658	MXene (Ti ₃ C ₂ T _{<i>x</i>})-/Amine-Functionalized Graphene-Supported Self-Assembled Co ₉ S ₈ Nanoflower for Ultrastable Hybrid Supercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7727-7738.	1.8	15
1659	Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors, 2022, 12, 386.	2.3	18
1660	Casting light on black phosphorus-based catalysts for water electrolysis: Approaches, promotion manners, and perspectives. Journal of Environmental Chemical Engineering, 2022, 10, 108018.	3.3	7

#	Article	IF	CITATIONS
1661	A novel mechanocatalytical reaction system driven by fluid shear force for the mild and rapid pretreatment of lignocellulosic biomass. Waste Management, 2022, 148, 98-105.	3.7	9
1662	Preparation of multi-axial compressible 3D PVDF nanofibre/graphene wearable composites sensor sponge and application of integrated sensor. Sensors and Actuators A: Physical, 2022, 342, 113648.	2.0	6
1663	Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review. Journal of Materials Science and Technology, 2022, 129, 139-162.	5.6	46
1664	Materials Innovations in 2D-filler Reinforced Dielectric Polymer Composites. , 2022, 02, 47-66.		4
1665	Polyaromatic cores for the exfoliation of popular 2D materials. Nanoscale, 2022, 14, 8986-8994.	2.8	2
1666	Graphene-integrated waveguides: Properties, preparation, and applications. Nano Research, 2022, 15, 9704-9726.	5.8	7
1667	Inkjet-printed TMDC–graphene heterostructures for flexible and broadband photodetectors. Journal of Applied Physics, 2022, 131, .	1.1	3
1668	Effects of halogen and hydrogen halide on graphene: Halogenation and exfoliation. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115379.	1.3	1
1669	Graphene-based materials prepared by supercritical fluid technology and its application in energy storage. Journal of Supercritical Fluids, 2022, 188, 105672.	1.6	13
1670	Selenene and Tellurene. , 2022, , 197-224.		2
1671	Scalable Production of Electrochemically Exfoliated Graphene by an Extensible Electrochemical Reactor with Encapsulated Anode and Dual Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
1672	Dual-metal precursors for the universal growth of non-layered 2D transition metal chalcogenides with ordered cation vacancies. Science Bulletin, 2022, 67, 1649-1658.	4.3	10
1673	Practical Graphene Technologies for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	32
1674	Emerging Organic Surface Chemistry for Si Anodes in Lithiumâ€ion Batteries: Advances, Prospects, and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	60
1676	Facile Synthesis of Ag/Carbon Quantum Dots/Graphene Composites for Highly Conductive Water-Based Inks. ACS Applied Materials & Interfaces, 0, , .	4.0	5
1677	One-Step Green Production of Biocompatible Functionalized Few-Layer Graphene/Boron Nitride Nanosheet Hybrids Using Tannic Acid-Based Liquid-Phase Exfoliation. ACS Sustainable Chemistry and Engineering, 2022, 10, 9573-9583.	3.2	2
1678	Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm. Materials, 2022, 15, 4802.	1.3	1
1679	Graphene in Solid-State Batteries: An Overview. Nanomaterials, 2022, 12, 2310.	1.9	2

#	Article	IF	CITATIONS
1680	Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .	5.2	19
1681	Functionalized graphene nanosheets obtained by direct shear exfoliation with poly(ionic liquid)s and its PAA composite. Diamond and Related Materials, 2022, 127, 109202.	1.8	6
1682	Remarkable enhancement in thermal performance of polypropylene carbonate by using exfoliated boron nitride nanosheets. Chemical Engineering Journal, 2022, 450, 138247.	6.6	7
1683	Dynamic exfoliation of graphene in various solvents: All-atom molecular simulations. Chemical Physics Letters, 2022, 804, 139900.	1.2	2
1684	Eco-friendly and mechanochemically functionalised graphene with quick and high water dispersibility. Materials Chemistry Frontiers, 2022, 6, 2718-2728.	3.2	3
1685	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		0
1686	Two-dimensional Materials based Printed Photodetectors. , 2022, 2, 160-175.		0
1687	Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays. Journal of Sensor Science and Technology, 2022, 31, 228-237.	0.1	0
1688	Green Production of Functionalized Few-Layer Graphene–Silver Nanocomposites Using Gallnut Extract for Antibacterial Application. Micromachines, 2022, 13, 1232.	1.4	8
1689	Design and Characterization of a Planar Micro-Conveyor Device Based on Cooperative Legged Piezoelectric MEMS Resonators. Micromachines, 2022, 13, 1202.	1.4	3
1690	Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor. lonics, 2022, 28, 5223-5232.	1.2	1
1691	A note on using expanded graphite for achieving energy―and timeâ€efficient production of graphene nanoplatelets via liquid phase exfoliation. Canadian Journal of Chemical Engineering, 0, , .	0.9	1
1692	Synthesis of Largeâ€Area MXenes with High Yields through Powerâ€Focused Delamination Utilizing Vortex Kinetic Energy. Advanced Science, 2022, 9, .	5.6	25
1693	Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. Nanomaterials, 2022, 12, 2858.	1.9	8
1694	Bubbleâ€Mediated Mass Production of Graphene: A Review. Advanced Functional Materials, 2022, 32, .	7.8	8
1695	Graphene-Dominated Hybrid Coatings with Highly Compacted Structure on Stainless Steel Bipolar Plates. ACS Applied Materials & Interfaces, 2022, 14, 37059-37067.	4.0	3
1696	Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. , 2022, 140, 213055.		16
1698	From Materials to Devices: Graphene toward Practical Applications. Small Methods, 2022, 6, .	4.6	16

#	Article	IF	CITATIONS
1699	Effect of the embedment of carbon doped nanocomposites in a real matrix on the enhanced photocatalytic activity. Journal of Hazardous Materials Advances, 2022, 7, 100133.	1.2	0
1700	Bi ₂ Se ₃ Nanolayer Growth on 2D Printed Graphene. Crystal Growth and Design, 0, , .	1.4	0
1701	Emerging reconfigurable electronic devices based on twoâ€dimensional materials: A review. InformaÄnÃ- Materiály, 2022, 4, .	8.5	21
1702	Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties. Nano-Micro Letters, 2022, 14, .	14.4	17
1703	Shear delamination of multilayer MXenes. Journal of Materials Research, 2022, 37, 4006-4016.	1.2	11
1704	2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. Journal of Hazardous Materials, 2022, 440, 129705.	6.5	29
1705	High yields of graphene nanoplatelets by liquid phase exfoliation using graphene oxide as a stabilizer. Chemical Engineering Journal, 2023, 451, 138365.	6.6	19
1706	Large‣cale Production of Rectorite Nanosheets and Their Coâ€Assembly with Aramid Nanofibers for Highâ€Performance Electrical Insulating Nanopapers. Advanced Materials, 2022, 34, .	11.1	14
1707	Graphene-based anti-corrosive coating on steel for reinforced concrete infrastructure applications: Challenges and potential. Construction and Building Materials, 2022, 351, 128947.	3.2	21
1708	Surfactant assisted exfoliation of high purity graphene in aqueous solution as a nanofluid using kitchen blender: Influence on dispersion, thermal conductivity and rheological properties. Advanced Powder Technology, 2022, 33, 103767.	2.0	2
1709	Shear exfoliated few-layer graphene and cellulose nanocrystal composite as biocompatible anode with efficient charge transfer. Carbon Trends, 2022, 9, 100210.	1.4	5
1710	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	9.5	22
1711	Printable Inorganic Materials for Printed Electronics. , 2022, , 103-192.		0
1712	Recent advances in novel graphene: new horizons in renewable energy storage technologies. Journal of Materials Chemistry C, 2022, 10, 11472-11531.	2.7	18
1713	Mechanical behavior of graphene conductive ink for wearable applications. , 2022, , 107-127.		0
1714	Particle dispersions in liquid media. , 2022, , 27-62.		0
1715	Synthesis methods of graphene. , 2022, , 19-42.		0
1716	Electrochemical electrodes based on Laser Induced Graphene on PECVD a-SiC:H and Polyimide. , 2022, , .		0

#	Article	IF	CITATIONS
1717	Analytical Model of CVD Growth of Graphene on Cu(111) Surface. Nanomaterials, 2022, 12, 2963.	1.9	3
1718	Printed Stretchable Graphene Conductors for Wearable Technology. Chemistry of Materials, 2022, 34, 8031-8042.	3.2	5
1719	Identification of Graphene Dispersion Agents through Molecular Fingerprints. ACS Nano, 2022, 16, 16109-16117.	7.3	2
1720	Nanostructured 2D WS2@PANI nanohybrids for electrochemical energy storage. Frontiers in Chemistry, 0, 10, .	1.8	6
1721	Multiplying Energy Storage Capacity: In Situ Polypyrrole Electrodeposition for Laser-Induced Graphene Electrodes. ACS Applied Energy Materials, 2022, 5, 12790-12797.	2.5	7
1722	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	9.5	23
1723	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
1724	Cytotoxicity survey of commercial graphene materials from worldwide. Npj 2D Materials and Applications, 2022, 6, .	3.9	12
1725	Graphene: A multifunctional additive for sustainability. Sustainable Materials and Technologies, 2022, 33, e00487.	1.7	2
1726	Scalable production of electrochemically exfoliated graphene by an extensible electrochemical reactor with encapsulated anode and dual cathodes. Applied Surface Science, 2023, 608, 155211.	3.1	3
1727	Ultrathin Cageâ€based Covalent Organic Framework Nanosheets as Precursor for Pyrolysisâ€Free Oxygen Evolution Reaction Electrocatalyst. ChemNanoMat, 2022, 8, .	1.5	4
1728	Layered Thin Film Deposition via Extreme Inter-Brush Slip in a Lamellar Block Copolymer. Macromolecules, 2022, 55, 9022-9029.	2.2	3
1729	Exfoliation mechanisms of 2D materials and their applications. Applied Physics Reviews, 2022, 9, .	5.5	23
1730	Recent major advances and challenges in the emerging graphene-based nanomaterials in electrocatalytic fuel cell technology. Journal of Materials Chemistry C, 2022, 10, 17812-17873.	2.7	3
1731	Graphene Properties, Synthesis and Applications: A Review. Jom, 2023, 75, 614-630.	0.9	48
1732	Latest Fabrication Approaches for Surface Modified Carbon Materials: Carbon Nanotubes and Graphene. ACS Symposium Series, 0, , 27-47.	0.5	1
1733	Sustainable Upcycling of Spent Electric Vehicle Anodes into Solution-Processable Graphene Nanomaterials. Industrial & Engineering Chemistry Research, 2022, 61, 16529-16538.	1.8	1
1734	2D Magnetic Semiconductor Fe ₃ GeTe ₂ with Few and Single Layers with a Greatly Enhanced Intrinsic Exchange Bias by Liquid-Phase Exfoliation. ACS Nano, 2022, 16, 19439-19450.	7.3	15

	CITATION	N REPORT	
#	Article	IF	CITATIONS
1735	Nanostructured MoS2 and WS2 Photoresponses under Gas Stimuli. Nanomaterials, 2022, 12, 3585.	1.9	11
1736	Innovative ceramic-matrix composite substrates with tunable electrical conductivity for high–power applications. Science and Technology of Advanced Materials, 0, , .	2.8	0
1737	Optimization of Graphene Nanoplatelets Dispersion and Its Performance in Cement Mortars. Materials, 2022, 15, 7308.	1.3	1
1738	Quick and surfactant-free dispersion of various carbon nanoparticles in aqueous solution as casting technique for devices. Chemical Engineering Journal Advances, 2022, 12, 100413.	2,4	3
1739	High-Quality and Efficient Liquid-Phase Exfoliation of Few-Layered Graphene by Natural Surfactant. ACS Sustainable Chemistry and Engineering, 2022, 10, 14746-14760.	3.2	7
1740	Single process of pulsed wire discharge for defect healing and reduction of graphene oxide. Carbon, 2023, 201, 1184-1192.	5.4	3
1741	Engineering of graphene flakes in the process of synthesis in DC plasma jets. Physical Chemistry Chemical Physics, 2022, 24, 28232-28241.	1.3	1
1742	Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 2023, 202, 495-527.	5.4	54
1743	Mechanical exfoliation assisted with carbon nanospheres to prepare a few-layer graphene for flexible strain sensor. Applied Surface Science, 2023, 611, 155649.	3.1	18
1744	Competitive growth between the top and bottom layers of few-layer graphene at the domain boundary merging stage. Ceramics International, 2023, 49, 9251-9259.	2.3	1
1745	2D material inorganic liquid crystals for tunable deep UV light modulation. National Science Review, 0, , .	4.6	0
1746	Sustainable carbon sources for green laser-induced graphene: A perspective on fundamental principles, applications, and challenges. Applied Physics Reviews, 2022, 9, .	5.5	23
1747	Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Materials Today Chemistry, 2022, 26, 101235.	1.7	5
1748	Sulfonated cobalt phthalocyanine-stabilized graphene: Ultrasonic exfoliation and application in anticorrosion of aluminum. FlatChem, 2023, 37, 100460.	2.8	0
1749	Highly conductive quasi-defect-free reduced graphene oxide for qualitative scalable production. Carbon, 2023, 203, 221-229.	5.4	8
1750	Highly conductive and long-term stable films from liquid-phase exfoliated platinum diselenide. Journal of Materials Chemistry C, 2023, 11, 593-599.	2.7	4
1751	Highly efficient dual-electrode exfoliation of graphite into high-quality graphene via square-wave alternating currents. Chemical Engineering Journal, 2023, 456, 140977.	6.6	4
1752	Assessment of skin sensitization properties of few-layer graphene and graphene oxide through the Local Lymph Node Assay (OECD TG 442B). NanoImpact, 2023, 29, 100448.	2.4	5

#	Article	IF	CITATIONS
1753	Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107373.	3.8	32
1754	Progress and roadmap for graphene films in electromagnetic interference shielding. , 2023, 2, 11-38.		3
1755	Application of graphene and its derivatives in cementitious materials: An overview. Journal of Building Engineering, 2023, 65, 105721.	1.6	2
1756	Solution-processed 2D materials on paper substrates for photodetection and photomechanical applications. Journal of Materials Chemistry C, 2022, 10, 18326-18335.	2.7	1
1757	Total exfoliation of graphite in molten salts. Physical Chemistry Chemical Physics, 2023, 25, 2618-2628.	1.3	5
1758	Kinetic study of graphene oxide synthesis by electrochemical exfoliation of graphite. Journal of Industrial and Engineering Chemistry, 2023, 119, 335-345.	2.9	4
1759	Ultraâ€High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers. Advanced Functional Materials, 2023, 33, .	7.8	6
1760	Zero-Strain Cathodes for Lithium-Based Rechargeable Batteries: A Comprehensive Review. ACS Applied Energy Materials, 2023, 6, 12-30.	2.5	2
1761	Tuning electrical conductivity in AlN-based ceramics by incorporating graphene. Journal of the European Ceramic Society, 2023, 43, 1887-1896.	2.8	1
1762	Easy and Versatile Synthesis of Bulk Quantities of Highly Enriched ¹³ C-Graphene Materials for Biological and Safety Applications. ACS Nano, 2023, 17, 606-620.	7.3	5
1763	Only gold can pull this off: mechanical exfoliations of transition metal dichalcogenides beyond scotch tape. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	7
1764	Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy, 2023, 107, 108147.	8.2	22
1765	Study of Molecular-Level Dispersion of Pristine Graphene in Aqueous Media via Polyvinyl Alcohol Coil Physisorption. Langmuir, 2022, 38, 16046-16054.	1.6	1
1766	Solar-thermal cold-wall chemical vapor deposition reactor design and characterization for graphene synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, .	0.6	3
1767	Amorphous 2Dâ€Nanoplatelets of Red Phosphorus Obtained by Liquidâ€Phase Exfoliation Yield High Areal Capacity Naâ€Ion Battery Anodes. Advanced Energy Materials, 2023, 13, .	10.2	5
1768	Zero to Three Dimension Structure Evolution from Carbon Allotropes to Phosphorus Allotropes. Advanced Materials Interfaces, 2023, 10, .	1.9	7
1769	Unique grapheneâ€carbon black hybrid nanofiller by a micromechanical cleavage technique as a reinforcing agent in elastomers: Fundamental and experimental studies. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
1770	Ionovoltaic electricity generation over graphene-nanoplatelets: protein-nanofibril hybrid materials. Nanoscale Advances, 2023, 5, 820-829.	2.2	1

#	ARTICLE Sulfonated polythiophene-interfaced graphene for water-redispersible graphene powder with high conductivity and electrocatalytic activity. Energy Advances, 2023, 2, 365-374.	IF 1.4	Citations
1772	Liquid phase exfoliation of talc: effect of the medium on flake size and shape. Beilstein Journal of Nanotechnology, 0, 14, 68-78.	1.5	1
1773	Scalable high yield exfoliation for monolayer nanosheets. Nature Communications, 2023, 14, .	5.8	10
1774	ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation. Micromachines, 2023, 14, 189.	1.4	2
1775	Systematic Design of a Graphene Ink Formulation for Aerosol Jet Printing. ACS Applied Materials & Interfaces, 2023, 15, 3325-3335.	4.0	11
1776	An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions. Carbon, 2023, 204, 434-446.	5.4	21
1777	Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Composites Science and Technology, 2023, 233, 109913.	3.8	43
1778	Electrochemically Exfoliated Two-Dimensional Nanomaterials for Electronics. Ceramist, 2022, 25, 427-436.	0.0	0
1779	Scalable synthesis of 2D materials. , 2023, , 1-54.		0
1780	Graphene based nano-inks for electronic industries. , 2023, , 197-226.		2
1781	Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. Advanced Science, 2023, 10, .	5.6	15
1782	Recent advances in single crystal narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials. Journal of Materials Chemistry C, 2023, 11, 2430-2448.	2.7	6
1783	Membranes Coated with Graphene-Based Materials: A Review. Membranes, 2023, 13, 127.	1.4	6
1784	Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. Journal of Carbon Research, 2023, 9, 13.	1.4	4
1785	A sprayed graphene transistor platform for rapid and low-cost chemical sensing. Nanoscale, 0, , .	2.8	0
1786	Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine. Chemical Society Reviews, 2023, 52, 1288-1330.	18.7	18
1787	From <scp>twoâ€dimensional</scp> materials to polymer nanocomposites with emerging multifunctional applications: A critical review. Polymer Composites, 2023, 44, 1438-1470.	2.3	14
1788	Effects of green solvents and surfactants on the characteristics of few-layer graphene produced by dual-frequency ultrasonic liquid phase exfoliation technique. Carbon, 2023, 206, 7-15.	5.4	9

CITATION REPORT ARTICLE IF CITATIONS Preparation and formation mechanism of few-layer black phosphorene through liquid pulsed 2.7 2 discharge. Journal of Materials Chemistry C, 2023, 11, 3652-3660. Plasma-treated carbon nanotubes for fast infrared bolometers. Applied Physics Letters, 2023, 122, . 1.5 Stable Graphene Membranes for Selective Ion Transport and Emerging Contaminants Removal in 2 7.8 Water. Advanced Functional Materials, 2023, 33, . 2023 roadmap for potassium-ion batteries. JPhys Energy, 2023, 5, 021502. Electrochemically Versatile Graphite Nanoplatelets Prepared by a Straightforward, Highly Efficient, 4.0 1 and Scalable Route. ACS Applied Materials & amp; Interfaces, Ó, , . Tribological properties of physically modified fluorinated graphene and soluble starch hybrid as 3.0 water-based lubricating additive system. Tribology International, 2023, 183, 108412. Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications. Composites Part A: Applied Science and Manufacturing, 3.8 22 2023, 169, 107533. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. 16.0 120 Progress in Materials Science, 2023, 135, 101089. Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced 1.7 5 Technology, 2023, 292, 116400. 2D excitation-emission fluorescence mapping analysis of plant food pigments. Food Chemistry, 2023, 4.2 418, 135875. A novel two-step route to unidirectional growth of multilayer MoS2 nanoribbons. Applied Surface 7 3.1Science, 2023, 619, 156748. Eco-friendly production of functionalized few-layer graphene using coffee waste extract and in-situ growth of copper oxide nanoparticles. Journal of Environmental Chemical Engineering, 2023, 11, 3.3 Ĭ09350. A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: Bridging 2.5 39 Material Design and Practical Application. Energy & amp; Fuels, 2023, 37, 2608-2630. State-of-the-Art Graphene Synthesis Methods and Environmental Concerns. Applied and Environmental 0.8 Soil Science, 2023, 2023, 1-23. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose 5.811 nanofluidic macrofibers. Nano Research, 2023, 16, 7609-7617. Preparation of Hexagonal Boron Nitride-Containing Foam with Improved Thermal Conductivity of Epoxy Resins. ACS Applied Polymer Materials, 2023, 5, 1786-1796. 2.0

energy storage devices. Chemical Physics Reviews, 2023, 4, .
Synthesis of high-quality graphene by electrochemical anodic and cathodic co-exfoliation method.
6.6 4

2.6

0

Electrochemical production of two-dimensional atomic layer materials and their application for

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1801

1802

1803

1804

		CITATION REPORT		
#	Article		IF	CITATIONS
1807	Lightning Strike Protection: Current Challenges and Future Possibilities. Materials, 202	3, 16, 1743.	1.3	2
1808	Quantum Composites with Chargeâ€Đensityâ€Wave Fillers. Advanced Materials, 2023	, 35, .	11.1	2
1809	Comparison of copper and graphene-assembled films in 5G wireless communication ar electromagnetic-interference shielding. Proceedings of the National Academy of Science United States of America, 2023, 120, .		3.3	18
1810	A review of low-cost approaches to synthesize graphene and its functional composites Materials Science, 2023, 58, 4359-4383.	. Journal of	1.7	5
1811	Exfoliation procedure-dependent optical properties of solution deposited MoS2 films. I Materials and Applications, 2023, 7, .	√pj 2D	3.9	4
1812	Iron Nanoparticles to Catalyze Graphitization of Cellulose for Energy Storage Applicatio Applied Nano Materials, 2023, 6, 3549-3559.	bns. ACS	2.4	4
1813	Graphene and its quantum dots. , 2023, , 1-25.			0
1814	Thickness measurements of graphene oxide flakes using atomic force microscopy: resu international interlaboratory comparison. Nanotechnology, 2023, 34, 225702.	lts of an	1.3	2
1815	Solution-Processed 2D Materials for Electronic Applications. ACS Applied Electronic Ma 5, 1335-1346.	ıterials, 2023,	2.0	4
1816	Environmentally sustainable implementations of two-dimensional nanomaterials. Front Chemistry, 0, 11, .	iers in	1.8	4
1817	Assessment of genotoxicity induced by subchronic exposure to graphene in HaCaT hur line. Nanotoxicology, 2023, 17, 42-61.	nan skin cell	1.6	2
1818	Assembling a Photoactive 2D Puzzle: From Bulk Powder to Large-Area Films of Semicor Transition-Metal Dichalcogenide Nanosheets. Accounts of Materials Research, 2023, 4		5.9	2
1819	Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Pow Starting Raw Material for Graphene Production. Langmuir, 2023, 39, 4413-4426.	'der as	1.6	3
1820	Design of thermal conductive polymer composites with precisely controlling <scp>grap nanoplatelets </scp> at the interface of <scp>polypropylene </scp> and <scp>high mel polypropylene </scp> via elongation flow. Polymers for Advanced Technologies, 2023, 3	t strength	1.6	0
1821	Centrifugeâ€Free Separation of Solutionâ€Exfoliated 2D Nanosheets via Crossâ€Flow Materials, 2023, 35, .	Filtration. Advanced	11.1	3
1822	Design and advanced manufacturing of electromagnetic interference shielding materia Today, 2023, 66, 245-272.	ls. Materials	8.3	40
1823	Green and scalable narrow-gap exfoliation of high-quality two-dimensional vermiculite poly (vinyl chloride) thermal stabilizers. Journal of Materials Research and Technology, 3804-3814.	nanosheets as 2023, 24,	2.6	1
1824	Two-dimensional material-assisted remote epitaxy and van der Waals epitaxy: a review. 20220068.	, 2023, 2,		2

#	Article	IF	CITATIONS
1825	Experimental investigation on the static and dynamic stability of water-based graphene nanofluids prepared by one-step liquid phase shear exfoliation of graphite. Journal of Molecular Liquids, 2023, 381, 121848.	2.3	6
1826	Shock Wave-Assisted Exfoliation of 2D-Material-Based Polymer Nanocomposites: A Breakthrough in Nanotechnology. Industrial & Engineering Chemistry Research, 2023, 62, 6584-6598.	1.8	6
1827	How to obtain high monolayer content in liquid phase exfoliation of graphene: A molecular dynamic simulation. Journal of Molecular Liquids, 2023, 382, 121873.	2.3	1
1828	Emerging monoelemental 2D materials (Xenes) for biosensor applications. Nano Research, 2023, 16, 7030-7052.	5.8	3
1830	Catalytic Performance of Graphene-Based Nanocomposites. Advanced Structured Materials, 2023, , 119-143.	0.3	0
1836	Preparation and pulsed fiber laser applications of emerging nanostructured materials. Journal of Materials Chemistry C, 2023, 11, 7538-7569.	2.7	1
1850	Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification. Springer Series in Materials Science, 2023, , 179-244.	0.4	2
1859	High-Quality AB Bilayer Graphene Films by Direct Solar-Thermal Chemical Vapor Deposition. ACS Sustainable Chemistry and Engineering, 2023, 11, 11719-11728.	3.2	1
1867	Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Research, 2024, 17, 2088-2110.	5.8	2
1892	Processing Influence on Thermal Conductivity of Polymer Nanocomposites. , 2019, , 463-487.		0
1895	Synthesis and Properties of Layered Materials. Engineering Materials, 2023, , 17-44.	0.3	0
1908	Laser-induced graphene in flexible PI/PDMS polymer aiming application in pressure sensors. , 2023, , .		0
1923	New Materials for Low-carbon Supercapacitors: Latest Developments and Perspectives. , 2023, , 117-145.		0
1938	Organometallic and biomass-derived nanostructured materials for biosensing applications. , 2024, , 57-75.		Ο
1940	Solution-based electrostatic self-assembly route for obtaining graphene–transition metal dichalcogenide heterostructures. Dalton Transactions, 2024, 53, 3465-3469.	1.6	0
1942	Advanced Graphene-Based Materials for Electrochemical Biomarkers and Protein Detection. , 0, , .		Ο
1945	Graphene and its hybrid materials: Properties and applications. , 2023, , .		0
1951	Graphene Nanoplatelets in Brief. Springer Series in Materials Science, 2024, , 7-25.	0.4	0

ARTICLE

IF CITATIONS