Flexible solid-state supercapacitors: design, fabrication

Energy and Environmental Science 7, 2160 DOI: 10.1039/c4ee00960f

Citation Report

#	Article	IF	CITATIONS
1	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. Journal of Materials Chemistry A, 2014, 2, 20916-20922.	5.2	72
2	Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676-16681.	3.3	1,713
3	All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon, 2014, 79, 156-164.	5.4	151
4	Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage. Journal of Power Sources, 2014, 272, 203-210.	4.0	48
5	Flexible supercapacitors based on carbon nanotube/MnO ₂ nanotube hybrid porous films for wearable electronic devices. Journal of Materials Chemistry A, 2014, 2, 17561-17567.	5.2	132
6	Nanosheet-Based Hierarchical Ni ₂ (CO ₃)(OH) ₂ Microspheres with Weak Crystallinity for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2014, 6, 17208-17214.	4.0	126
7	High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. Journal of Power Sources, 2014, 272, 16-23.	4.0	103
8	Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors. Scientific Reports, 2015, 5, 16195.	1.6	67
9	Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors. Scientific Reports, 2015, 5, 17629.	1.6	71
10	High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors. Scientific Reports, 2015, 5, 15388.	1.6	44
11	VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors. Scientific Reports, 2015, 5, 16012.	1.6	63
12	Flexible Asymmetric Supercapacitor Based on Structureâ€Optimized Mn ₃ O ₄ /Reduced Graphene Oxide Nanohybrid Paper with High Energy and Power Density. Advanced Functional Materials, 2015, 25, 7291-7299.	7.8	146
13	Programmable Nanocarbonâ€Based Architectures for Flexible Supercapacitors. Advanced Energy Materials, 2015, 5, 1500677.	10.2	87
14	Sodiumâ€Doped Mesoporous Ni ₂ P ₂ O ₇ Hexagonal Tablets for Highâ€Performance Flexible Allâ€Solidâ€State Hybrid Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1731-1737.	1.7	80
15	Nitrogenâ€Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Selfâ€Supported Electrodes for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2015, 2, 1500211.	1.9	104
16	Condimentâ€Đerived 3D Architecture Porous Carbon for Electrochemical Supercapacitors. Small, 2015, 11, 4959-4969.	5.2	109
17	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
18	Flexible and Binderâ€Free Electrodes of Sb/rGO and Na ₃ V ₂ (PO ₄) ₃ /rGO Nanocomposites for Sodiumâ€lon Batteries. Small, 2015, 11, 3822-3829.	5.2	184

#	Article	IF	CITATIONS
19	Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Advanced Materials, 2015, 27, 7451-7457.	11.1	386
20	Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor. PLoS ONE, 2015, 10, e0129780.	1.1	6
21	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
22	Three dimensional architectures: design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 15792-15823.	5.2	135
23	Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14445-14457.	5.2	212
24	Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors. Journal of Power Sources, 2015, 293, 657-674.	4.0	93
25	Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo ₂ N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14617-14624.	5.2	75
26	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	7.8	230
27	Vertically Aligned Carbon Nanotubes on Carbon Nanofibers: A Hierarchical Three-Dimensional Carbon Nanostructure for High-Energy Flexible Supercapacitors. Chemistry of Materials, 2015, 27, 1194-1200.	3.2	113
28	Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy and Environmental Science, 2015, 8, 1339-1347.	15.6	350
29	Atomic layer deposition of Co ₃ O ₄ on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology, 2015, 26, 094001.	1.3	84
30	High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. Journal of Materials Chemistry A, 2015, 3, 4729-4737.	5.2	81
31	Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12. Scientific Reports, 2015, 5, 7780.	1.6	104
32	One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitive properties. Composites Science and Technology, 2015, 109, 12-17.	3.8	42
33	Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Research, 2015, 8, 1148-1158.	5.8	188
34	Controlled partial-exfoliation of graphite foil and integration with MnO2nanosheets for electrochemical capacitors. Nanoscale, 2015, 7, 3581-3587.	2.8	91
35	Rational Design of Mesoporous Carbon Electrodes with High Mass Loading for Binderâ€Free Supercapacitors. Energy Technology, 2015, 3, 234-241.	1.8	9
36	On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochimica Acta, 2015, 163, 107-115.	2.6	50

#	Article	IF	CITATIONS
37	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	5.2	70
38	A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. Journal of Power Sources, 2015, 296, 186-196.	4.0	111
39	Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Applied Surface Science, 2015, 355, 160-165.	3.1	45
40	A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo ₂ O ₄ @polypyrrole core–shell nanowires on hemp-derived carbon. Journal of Materials Chemistry A, 2015, 3, 17209-17216.	5.2	131
41	A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@ï€-Conjugated Polymer Film Electrodes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2067-2076.	3.2	47
42	Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. Journal of Materials Chemistry A, 2015, 3, 17827-17836.	5.2	48
43	Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. Journal of Alloys and Compounds, 2015, 646, 990-997.	2.8	27
44	α-Fe ₂ O ₃ @PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 14843-14850.	4.0	369
45	A facile one-pot hydrothermal synthesis of branched α-MnO ₂ nanorods for supercapacitor application. CrystEngComm, 2015, 17, 5970-5977.	1.3	40
46	Enhancing the Energy Density of Asymmetric Stretchable Supercapacitor Based on Wrinkled CNT@MnO ₂ Cathode and CNT@polypyrrole Anode. ACS Applied Materials & Interfaces, 2015, 7, 15303-15313.	4.0	137
47	Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44, 6684-6696.	18.7	719
48	Hydrophilic Hierarchical Nitrogenâ€Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. Advanced Materials, 2015, 27, 3541-3545.	11.1	680
49	Hybrids of silver nanowires and silica nanoparticles as morphology controlled conductive filler applied in flexible conductive nanocomposites. Composites Part A: Applied Science and Manufacturing, 2015, 73, 195-203.	3.8	38
50	Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. Journal of Alloys and Compounds, 2015, 638, 204-213.	2.8	62
51	Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano, 2015, 9, 5198-5207.	7.3	441
52	Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.	6.6	832
53	Advanced Tiâ€Doped Fe ₂ O ₃ @PEDOT Core/Shell Anode for Highâ€Energy Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1402176.	10.2	416
54	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015

#	Article	IF	CITATIONS
55	Bendable Allâ€Solidâ€State Asymmetric Supercapacitors based on MnO ₂ and Fe ₂ O ₃ Thin Films. Energy Technology, 2015, 3, 625-631.	1.8	59
56	Hierarchically Porous NaCoPO ₄ -Co ₃ O ₄ Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 831-839.	1.2	47
57	Selfâ€Powered Electronics by Integration of Flexible Solid‧tate Grapheneâ€Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 2420-2427.	7.8	142
58	A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284, 400-408.	4.0	96
59	Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO ₂ nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 9754-9762.	5.2	45
60	Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Advances, 2015, 5, 15438-15447.	1.7	103
61	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44, 5181-5199.	18.7	546
62	Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale, 2015, 7, 9399-9404.	2.8	171
63	Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters, 2015, 155, 78-81.	1.3	72
64	MnO ₂ Nanosheets Grown on Nitrogenâ€Doped Hollow Carbon Shells as a Highâ€Performance Electrode for Asymmetric Supercapacitors. Chemistry - A European Journal, 2015, 21, 7119-7126.	1.7	56
65	Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials, 2015, 27, 3085-3091.	11.1	177
66	Influence of water-soluble conjugated/non-conjugated polyelectrolytes on electrodeposition of nanostructured MnO2 film for supercapacitors. Materials Chemistry and Physics, 2015, 155, 211-216.	2.0	7
67	Hydrothermal synthesis of 3D Ni Co1â^'S2 particles/graphene composite hydrogels for high performance supercapacitors. Carbon, 2015, 90, 44-52.	5.4	68
68	A review of negative electrode materials for electrochemical supercapacitors. Science China Technological Sciences, 2015, 58, 1799-1808.	2.0	84
69	Free-Standing <i>T</i> -Nb ₂ O ₅ /Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano, 2015, 9, 11200-11208.	7.3	349
70	New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Materials Chemistry and Physics, 2015, 165, 207-214.	2.0	40
71	CoMoO4 and Ni1/3Co2/3MoO4 nanosheets with high performance supercapacitor and nonenzymatic glucose detection properties. RSC Advances, 2015, 5, 84451-84456.	1.7	10
72	Recent progress in micro-scale energy storage devices and future aspects. Journal of Materials Chemistry A, 2015, 3, 22507-22541.	5.2	169

#	Article	IF	CITATIONS
73	Titanium Dioxide@Polyaniline Core-Shell Nanowires as High-Performance and Stable Electrodes for Flexible Solid-State Supercapacitors. Electrochimica Acta, 2015, 184, 1-7.	2.6	10
74	Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage Materials, 2015, 1, 82-102.	9.5	114
75	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	1.5	28
76	Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 23932-23940.	4.0	77
77	Notice of Removal Development of flexible supercapacitor for mobile robot. , 2015, , .		0
79	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23283-23288.	5.2	103
80	Ionically conducting PVA–LiClO 4 gel electrolyte for high performance flexible solid state supercapacitors. Journal of Colloid and Interface Science, 2015, 460, 370-376.	5.0	89
81	Advances and prospects of fiber supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20863-20879.	5.2	110
82	Nanocrystal-constructed mesoporous CoFe ₂ O ₄ nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2015, 17, 21476-21484.	1.3	28
83	Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Research, 2015, 8, 3430-3445.	5.8	28
84	A nest-like Ni@Ni _{1.4} Co _{1.6} S ₂ electrode for flexible high-performance rolling supercapacitor device design. Journal of Materials Chemistry A, 2015, 3, 20973-20982.	5.2	105
85	Tungsten Oxide@Polypyrrole Core-Shell Nanowire Arrays as Novel Negative Electrodes for Asymmetric Supercapacitors. Small, 2015, 11, 749-755.	5.2	161
86	Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices. Scientific Reports, 2014, 4, 7349.	1.6	85
87	Facile Synthesis of Hematite Quantumâ€Dot/Functionalized Grapheneâ€Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors. Advanced Functional Materials, 2015, 25, 627-635.	7.8	398
88	Flexible Asymmetric Micro‧upercapacitors Based on Bi ₂ O ₃ and MnO ₂ Nanoflowers: Larger Areal Mass Promises Higher Energy Density. Advanced Energy Materials, 2015, 5, 1401882.	10.2	479
89	Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11, 348-355.	8.2	180
90	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	18.7	498
91	Hierarchical heterostructures of Ag nanoparticles decorated MnO ₂ nanowires as promising electrodes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1216-1221.	5.2	179

#	Article	IF	CITATIONS
92	Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015, 3, 1364-1387.	5.2	396
93	Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. Journal of Materials Chemistry A, 2015, 3, 617-623.	5.2	44
94	Facile synthesis of vanadium pentoxide@carbon core–shell nanowires for high-performance supercapacitors. Journal of Power Sources, 2015, 273, 804-809.	4.0	47
95	Carbon Nanotubes Supported Conducting Polymer Electrode for Supercapacitor. , 2016, , .		1
96	Effect of Microwave Treatment of Graphite on the Electrical Conductivity and Electrochemical Properties of Polyaniline/Graphene Oxide Composites. Polymers, 2016, 8, 399.	2.0	18
97	Nb ₂ O ₅ nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors. RSC Advances, 2016, 6, 71338-71344.	1.7	34
98	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	5.2	79
99	Binderâ€Free Electrodes of CoAl Layered Double Hydroxide on Carbon Fibers for Allâ€Solidâ€State Flexible Yarn Supercapacitors. Energy Technology, 2016, 4, 997-1004.	1.8	29
100	Flexible Advanced Asymmetric Supercapacitors Based on Titanium Nitride-based Nanowire Electrodes. Electrochimica Acta, 2016, 213, 393-399.	2.6	20
101	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	10.2	138
102	High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673.	3.1	37
102 103		3.1 5.8	37 198
	graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode		
103	graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors.	5.8	198
103 104	 graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Science China Materials, 2016, 59, 412-420. 1D Alignment of PEDOT in a Buckypaper for Highâ€Performance Solid Supercapacitors. 	5.8 3.5	198 62
103 104 105	 graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Science China Materials, 2016, 59, 412-420. ID Alignment of PEDOT in a Buckypaper for Highâ€Performance Solid Supercapacitors. ChemElectroChem, 2016, 3, 1329-1336. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics, 	5.8 3.5 1.7	198 62 15
103 104 105 106	 graphene/polypyrrole nanoparticle papers. Applied Surface Science, 2016, 387, 666-673. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Science China Materials, 2016, 59, 412-420. 1D Alignment of PEDOT in a Buckypaper for Highâ€Performance Solid Supercapacitors. ChemElectroChem, 2016, 3, 1329-1336. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics, 2016, 37, 197-206. Freestanding, Hydrophilic Nitrogenâ€Doped Carbon Foams for Highly Compressible All Solidâ€State 	5.8 3.5 1.7 1.4	198 62 15 84

ARTICLE IF CITATIONS Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible 110 5.2 43 supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9133-9145. Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Materials, 2016, 5, 33-42. Three-dimensional flexible electrode derived from low-cost nickel–phytate with improved 112 5.228 electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 9486-9495. High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage. RSC Advances, 2016, 6, 45986-45992. Realization of high performance flexible wire supercapacitors based on 3-dimensional 114 5.2 100 NiCo₂O₄/Ni fibers. Journal of Materials Chemistry A, 2016, 4, 4718-4727. Highâ€Performance Solidâ€5tate Supercapacitors Based on V₂O₅/Carbon 1.7 Nanotube Composites. ChemElectroChem, 2016, 3, 158-164. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with 116 8.2 56 excellent performance. Nano Energy, 2016, 24, 158-164. Facile synthesis of a metal–organic framework-derived Mn₂O₃ nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor 5.2 167 electrodes. Journal of Materials Chemistry A, 2016, 4, 8283-8290. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance 118 3.1 48 flexible all-solid-state supercapacitors. Applied Surface Science, 2016, 379, 206-212. Carbon encapsulated RuO₂ nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. Journal of 5.2 Materials Chemistry A, 2016, 4, 8180-8189. Flexible honeycomb-like NiMn layered double hydroxide/carbon cloth architecture for 120 1.3 36 electrochemical energy storage. Materials Letters, 2016, 175, 275-278. Hierarchical mesoporous NiFe₂O₄ nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 5.2 123 4,8851-8859. A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic 122 5.2 138 liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8316-8327. Highly Flexible Graphene/Mn₃O₄ Nanocomposite Membrane as Advanced 123 291 Anodes for Li-Ion Batteries. ACS Nano, 2016, 10, 6227-6234. Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. 124 5.2137 Journal of Materials Chemistry A, 2016, 4, 9910-9922. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30, 900-908. 188 Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 126 2.7 254 9116-9142. Phosphonium ionic liquids as greener electrolytes for poly(vinyl chloride)-based ionic conducting polymers. RSC Advances, 2016, 6, 88979-88990.

ARTICLE IF CITATIONS # Hybrid Fe₂O₃ Nanoparticle Clusters/rGO Paper as an Effective Negative 128 3.2 95 Electrode for Flexible Supercapacitors. Chemistry of Materials, 2016, 28, 7296-7303. Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry, 129 4.6 2016, 18, 5930-5956. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative 130 electrode for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5.2 124 16635-16644. Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 34 2016, 4, 16588-1<u>6596.</u> Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive 132 1.7 17 Properties. Chemistry - A European Journal, 2016, 22, 16668-16674. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS 7.3 Nano, 2016, 10, 9201-9207. A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors 134 5.2 99 with superior cycling stability. Journal of Materials Chemistry A, 2016, 4, 17324-17332. Synthesis of a hierarchical MoSe₂/C hybrid with enhanced electrochemical performance 1.7 for supercapacitors. RSC Advances, 2016, 6, 91621-91628. Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy 136 5.2 69 storage. Journal of Materials Chemistry A, 2016, 4, 17704-17710. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27701-27709. Cross-linked carbon network with hierarchical porous structure for high performance solid-state 138 4.023 electrochemical capacitor. Journal of Power Sources, 2016, 327, 488-494. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2016, 8, 22516-22525. Bridging of Ultrathin NiCo₂O₄ Nanosheets and Graphene with Polyaniline: A 140 3.2 116 Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863. Fundamentals of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 141 2016, , 1-30. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte 142 2.8 44 containing a redox-active additive. Nanoscale, 2016, 8, 15611-15620. Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299. 143 163 Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film 144 0.7 60 interconnected by electrochemically -codeposited PEDOT-GO. ChemistrySelect, 2016, 1, 285-289. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion 145 supercapacitors. Journal of Power Sources, 2016, 328, 599-606.

#	Article		CITATIONS
146	Construction of a Hierarchical NiCo ₂ S ₄ @PPy Core–Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 24525-24535.		408
147	A Flexible Quasiâ€Solidâ€State Nickel–Zinc Battery with High Energy and Power Densities Based on 3D Electrode Design. Advanced Materials, 2016, 28, 8732-8739.	11.1	479
148	Synthesis of Co(OH)2/Ni(OH)2 nanomaterials with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Journal of Electroanalytical Chemistry, 2016, 778, 110-115.	1.9	36
149	Steamed water engineering mechanically robust graphene films for high-performance electrochemical capacitive energy storage. Nano Energy, 2016, 26, 668-676.	8.2	51
150	Monolayer Nickel Cobalt Hydroxyl Carbonate for High Performance All-Solid-State Asymmetric Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 22997-23005.	4.0	140
151	Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 14509-14538.	5.2	95
152	Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. Journal of Materials Chemistry A, 2016, 4, 14298-14306.	5.2	117
153	Enhanced Pseudocapacitive Performance of α-MnO ₂ by Cation Preinsertion. ACS Applied Materials & Interfaces, 2016, 8, 33732-33740.	4.0	241
154	Flexible, Free‣tanding and Holey Graphene Paper for Highâ€Power Supercapacitors. ChemNanoMat, 2016, 2, 1055-1063.	1.5	15
155	Electro-synthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 16476-16483.	5.2	31
156	Nanostructured core-shell electrode materials for electrochemical capacitors. Journal of Power Sources, 2016, 331, 408-425.	4.0	102
157	Fe3O4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications. Materials Chemistry and Physics, 2016, 183, 571-579.	2.0	73
158	Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric. Journal of Materials Chemistry A, 2016, 4, 12981-12986.	5.2	40
159	Highâ€Performance Flexible Solidâ€State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. Advanced Energy Materials, 2016, 6, 1601034.	10.2	262
160	A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta, 2016, 212, 561-571.	2.6	66
161	Fe ₃ O ₄ @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 19475-19483.	4.0	247
162	High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy, 2016, 27, 230-237.	8.2	297
163	Freeâ€Standing 3D Nanoporous Ductâ€Like and Hierarchical Nanoporous Graphene Films for Micronâ€Level Flexible Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2016, 6, 1600755.	10.2	66

#	Article	IF	CITATIONS
164	Carbonâ€Nanotube Fibers for Wearable Devices and Smart Textiles. Advanced Materials, 2016, 28, 10529-10538.	11.1	310
165	Facile synthesis of Ni(OH) 2 /graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. Journal of Power Sources, 2016, 335, 76-83.	4.0	60
166	Mixed 1T–2H Phase MoS ₂ /Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance. ACS Applied Materials & Interfaces, 2016, 8, 32842-32852.	4.0	132
167	Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11, 738-762.	6.2	144
168	Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers. Scientific Reports, 2016, 6, 19527.	1.6	6
169	Surface engineering of carbon fiber paper for efficient capacitive energy storage. Journal of Materials Chemistry A, 2016, 4, 18639-18645.	5.2	63
170	A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature Communications, 2016, 7, 11782.	5.8	374
171	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
172	Facile synthesis of mesoporous hierarchical ZnS@β-Ni(OH) ₂ microspheres for flexible solid state hybrid supercapacitors. RSC Advances, 2016, 6, 101016-101022.	1.7	10
173	Highly Conductive Mo ₂ C Nanofibers Encapsulated in Ultrathin MnO ₂ Nanosheets as a Self-Supported Electrode for High-Performance Capacitive Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 32460-32467.	4.0	49
174	Metal Organic Frameworkâ€Derived Metal Phosphates as Electrode Materials for Supercapacitors. Advanced Energy Materials, 2016, 6, 1501833.	10.2	212
175	Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy, 2016, 26, 610-619.	8.2	103
176	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26, 446-455.	8.2	167
177	Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochimica Acta, 2016, 211, 411-419.	2.6	126
178	All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy and Environmental Science, 2016, 9, 2812-2821.	15.6	377
179	Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016, 45, 4340-4363.	18.7	480
180	3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. Journal of Power Sources, 2016, 325, 286-291.	4.0	88
181	Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance. RSC Advances, 2016, 6, 60454-60466.	1.7	39

#	Article	IF	CITATIONS
182	Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition. Carbon, 2016, 107, 338-343.	5.4	36
183	High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon, 2016, 107, 844-851.	5.4	66
184	Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. Journal of Materials Chemistry A, 2016, 4, 11616-11624.	5.2	107
185	Flower-like manganese-cobalt oxysulfide supported on Ni foam as a novel faradaic electrode with commendable performance. Electrochimica Acta, 2016, 191, 916-922.	2.6	46
186	High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308, 7-17.	4.0	182
187	Electrospun Carbon Nanofibers/Carbon Nanotubes/Polyaniline Ternary Composites with Enhanced Electrochemical Performance for Flexible Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 1689-1696.	3.2	90
188	Bamboo-like Composites of V ₂ O ₅ /Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 3776-3783.	4.0	194
189	Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 2079-2086.	1.5	274
190	A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6V with aqueous gel electrolyte. Journal of Energy Chemistry, 2016, 25, 463-471.	7.1	102
191	Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, 307, 391-400.	4.0	499
192	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 2016, 9, 729-762.	15.6	1,037
193	Poly(ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes. Journal of Materials Chemistry A, 2016, 4, 1112-1118.	5.2	72
194	Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5828-5833.	5.2	95
195	Electroactive ion exchange materials: current status in synthesis, applications and future prospects. Journal of Materials Chemistry A, 2016, 4, 6236-6258.	5.2	85
196	Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy, 2016, 22, 189-201.	8.2	102
197	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
198	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493
199	Layered-MnO ₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 5251-5260.	4.0	199

#	Article	IF	CITATIONS
200	Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. ACS Applied Materials & amp; Interfaces, 2016, 8, 4724-4729.	4.0	119
201	All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer–ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 4386-4391.	5.2	39
202	Hierarchical Manganese Dioxide/Poly(3,4-ethylenedioxythiophene) Core–Shell Nanoflakes on Ramie-Derived Carbon Fiber for High-Performance Flexible All-Solid-State Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 1201-1211.	3.2	81
203	Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 6972-6981.	4.0	47
204	Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 8587-8597.	1.3	59
205	First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device. Electrochimica Acta, 2016, 198, 203-211.	2.6	118
206	Facile synthesis of layered MnWO4/reduced graphene oxide for supercapacitor application. Journal of Alloys and Compounds, 2016, 666, 15-22.	2.8	62
207	Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors. Journal of Power Sources, 2016, 306, 593-601.	4.0	90
208	Electrochromic energy storage devices. Materials Today, 2016, 19, 394-402.	8.3	415
209	A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries. Energy and Environmental Science, 2016, 9, 663-670.	15.6	275
210	Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper. ACS Nano, 2016, 10, 1273-1282.	7.3	215
211	Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. Journal of Materials Chemistry A, 2016, 4, 1792-1805.	5.2	97
212	Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon, 2016, 100, 151-157.	5.4	201
213	Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy, 2016, 95, 233-241.	4.5	122
214	Exploring electrolyte preference of vanadium nitride supercapacitor electrodes. Materials Research Bulletin, 2016, 76, 37-40.	2.7	31
215	Nafion® and Fumapem® polymer electrolytes for the development of advanced solid-state supercapacitors. Electrochimica Acta, 2016, 206, 432-439.	2.6	13
216	Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. Journal of Materials Chemistry A, 2016, 4, 667-674.	5.2	133
217	Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 372-378.	5.2	123

#	Article	IF	Citations
218	MnO ₂ nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124.	4.1	82
219	Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources, 2016, 302, 39-45.	4.0	176
220	Asymmetric supercapacitors with high energy density based on helical hierarchical porous Na _x MnO ₂ and MoO ₂ . Chemical Science, 2016, 7, 510-517.	3.7	89
221	Flexible polyethylene terephthalate (PET) electrodes based on single-walled carbon nanotubes (SWCNTs) for supercapacitor application. Composite Interfaces, 2017, 24, 99-109.	1.3	7
222	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 99-105.	4.1	227
223	Free-standing hybrid films based on graphene and porous carbon particles for flexible supercapacitors. Sustainable Energy and Fuels, 2017, 1, 127-137.	2.5	37
224	Highly Conducting Spaced TiO ₂ Nanotubes Enable Defined Conformal Coating with Nanocrystalline Nb ₂ O ₅ and High Performance Supercapacitor Applications. Small, 2017, 13, 1603821.	5.2	57
225	Materials Design and System Construction for Conventional and New oncept Supercapacitors. Advanced Science, 2017, 4, 1600382.	5.6	365
226	Mesoporous Quaternary Ceâ€Niâ€Mn–Co Oxides as Electrodematerials forHighPerformance Flexible Solid‣tateAsymmetric Supercapacitors. ChemistrySelect, 2017, 2, 1497-1503.	0.7	11
227	Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochimica Acta, 2017, 227, 455-461.	2.6	40
228	A Continuous Carbon Nitride Polyhedron Assembly for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2017, 27, 1606219.	7.8	141
229	Rational Design of Metalâ€Organic Framework Derived Hollow NiCo ₂ O ₄ Arrays for Flexible Supercapacitor and Electrocatalysis. Advanced Energy Materials, 2017, 7, 1602391.	10.2	874
230	Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 2017, 34, 242-248.	8.2	122
231	Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials, 2017, 29, 1606794.	11.1	121
232	High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MnO3. Carbon, 2017, 116, 470-478.	5.4	244
233	Efficient and Facile Fabrication of Hierarchical Carbon Foams with Abundant Nanoscale Pores for Use in Supercapacitors. Bulletin of the Korean Chemical Society, 2017, 38, 350-355.	1.0	8
234	Monolithic Flexible Supercapacitors Integrated into Single Sheets of Paper and Membrane via Vapor Printing. Advanced Materials, 2017, 29, 1606091.	11.1	55
235	High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Scientific Reports, 2017, 7, 43676.	1.6	120

		CITATION R	EPORT	
#	Article		IF	Citations
236	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 16	05336.	11.1	1,021
237	Reduced Graphene Oxide/Fe ₃ O ₄ /Polyaniline Nanostructures Materials for an All-Solid-State Hybrid Supercapacitor. Journal of Physical Chemistry C, 7573-7583.	as Electrode 2017, 121,	1.5	221
238	Freestanding solid-state micro-supercapacitor based on laser-patterned nanofibers. , 20	017,,.		0
239	Facile synthesis of 3D porous Co ₃ V ₂ O ₈ nanoro NiCo ₂ V ₂ O ₈ nanoplates for high performance s and their electrocatalytic oxygen evolution reaction properties. Dalton Transactions, 2 3295-3302.	supercapacitors	1.6	68
240	V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendab stabilized energy efficient supercapacitor device. Scientific Reports, 2017, 7, 43430.	le highly	1.6	148
241	TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 a supercapacitors. Journal of Materials Science, 2017, 52, 7733-7743.	asymmetric	1.7	27
242	A facile synthetic method and electrochemical performances of nickel oxide/carbon fib composites. Journal of Materials Science, 2017, 52, 7709-7718.	ers	1.7	24
243	Interconnected 3 D Network of Grapheneâ€Oxide Nanosheets Decorated with Ca Highâ€Performance Supercapacitors. ChemSusChem, 2017, 10, 2626-2634.	rbon Dots for	3.6	75
244	3D Porous Graphene Nanostructure from a Simple, Fast, Scalable Process for High Perf Flexible Gel-Type Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017,	5, 4457-4467.	3.2	36
245	Stretchable wire-shaped supercapacitors with high energy density for size-adjustable w electronics. Chemical Engineering Journal, 2017, 322, 538-545.	vearable	6.6	27
246	Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. ACS Materials & Interfaces, 2017, 9, 17865-17871.	Applied	4.0	80
247	Flexible and Highly Photosensitive Electrolyte-Gated Organic Transistors with Ionogel/S Nanowire Membranes. ACS Applied Materials & Interfaces, 2017, 9, 18134-18141	Silver 	4.0	22
248	Preparation and characterization of PEDOT:PSS wrapped carbon nanotubes/MnO2 cor electrodes for flexible supercapacitors. Synthetic Metals, 2017, 228, 84-90.	nposite	2.1	32
249	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Fu Materials, 2017, 27, 1604639.	nctional	7.8	83
250	Novel graphene nanosheet-wrapped polyaniline rectangular-like nanotubes for flexible supercapacitors. Journal of Materials Science, 2017, 52, 10981-10992.	all-solid-state	1.7	17
251	High Performance, Flexible, Solidâ€State Supercapacitors Based on a Renewable and B Mesoporous Cellulose Membrane. Advanced Energy Materials, 2017, 7, 1700739.	iodegradable	10.2	202
252	Highâ€Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Form Na _{0.5} MnO ₂ Nanosheet Assembled Nanowall Arrays. Advanc 29, 1700804.	ied ed Materials, 2017,	11.1	526
253	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance sc supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	blid-state	5.2	132

#	Article	IF	CITATIONS
254	Nickel cobaltite nanosheets strongly anchored on boron and nitrogen co-doped graphene for high-performance asymmetric supercapacitors. Nanotechnology, 2017, 28, 315403.	1.3	20
255	A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale, 2017, 9, 10794-10801.	2.8	126
256	Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Metals, 2017, 36, 691-697.	3.6	10
257	Calligraphy-inspired brush written foldable supercapacitors. Nano Energy, 2017, 38, 428-437.	8.2	26
258	The advance of fiber-shaped lithium ion batteries. Materials Today Chemistry, 2017, 5, 24-33.	1.7	26
259	Conductive Metal–Organic Framework Nanowire Array Electrodes for Highâ€Performance Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702067.	7.8	490
260	High performance solid-state flexible supercapacitor based on Fe ₃ O ₄ /carbon nanotube/polyaniline ternary films. Journal of Materials Chemistry A, 2017, 5, 11271-11277.	5.2	106
261	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
262	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€∤Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	11.1	79
263	Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes. Scientific Reports, 2017, 7, 1685.	1.6	102
264	Pen lithography for flexible microsupercapacitors with layer-by-layer assembled graphene flake/PEDOT nanocomposite electrodes. Journal of Materials Chemistry A, 2017, 5, 13581-13590.	5.2	39
265	Freestanding Micro-Supercapacitor With Interdigital Electrodes for Low-Power Electronic Systems. Journal of Microelectromechanical Systems, 2017, 26, 1055-1062.	1.7	21
266	Flexible and Lightweight Fuel Cell with High Specific Power Density. ACS Nano, 2017, 11, 5982-5991.	7.3	88
267	Nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nano Energy, 2017, 35, 299-320.	8.2	329
268	Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Advances, 2017, 7, 18926-18936.	1.7	29
269	PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors. Journal of Alloys and Compounds, 2017, 709, 596-601.	2.8	40
270	Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors. ACS Omega, 2017, 2, 1089-1096.	1.6	45
271	An Allâ€Stretchableâ€Component Sodiumâ€Ion Full Battery. Advanced Materials, 2017, 29, 1700898.	11.1	141

#	Article	IF	CITATIONS
272	Synthesis and electrochemical capacitive performance of thieno[3,4-b]pyrazine-based Donor-Acceptor type copolymers used as supercapacitor electrode material. Electrochimica Acta, 2017, 238, 36-48.	2.6	31
273	Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Research Letters, 2017, 12, 246.	3.1	79
274	Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochimica Acta, 2017, 237, 109-118.	2.6	91
275	A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Transactions, 2017, 46, 6601-6611.	1.6	118
276	Flexible N-doped active carbon/bacterial cellulose paper for supercapacitor electrode with high areal performance. Synthetic Metals, 2017, 226, 104-112.	2.1	21
277	Electrochemical synthesis of MnO ₂ porous nanowires for flexible all-solid-state supercapacitor. New Journal of Chemistry, 2017, 41, 3750-3757.	1.4	25
278	Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. International Journal of Hydrogen Energy, 2017, 42, 12087-12093.	3.8	30
279	In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor. Electrochimica Acta, 2017, 224, 517-526.	2.6	29
280	Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatomâ€doped Carbon Nanofibers for Flexible Supercapacitors. Chemistry - A European Journal, 2017, 23, 2610-2618.	1.7	35
281	Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. Journal of Power Sources, 2017, 342, 1-8.	4.0	144
282	A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte. Journal of Materials Chemistry A, 2017, 5, 2224-2234.	5.2	55
283	Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy, 2017, 42, 187-194.	8.2	85
284	Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochimica Acta, 2017, 255, 15-22.	2.6	71
285	Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors. Journal of Electroanalytical Chemistry, 2017, 804, 212-219.	1.9	64
286	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	11.7	400
287	A novel high-performance electrode architecture for supercapacitors: Fe ₂ O ₃ nanocube and carbon nanotube functionalized carbon. Journal of Materials Chemistry A, 2017, 5, 22648-22653.	5.2	11
288	Sponge integrated highly compressible all-solid-state supercapacitor with superior performance. New Journal of Chemistry, 2017, 41, 13347-13354.	1.4	22
289	A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22559-22567.	5.2	37

#	Article	IF	CITATIONS
290	Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Scientific Reports, 2017, 7, 14324.	1.6	52
291	An Ultrastable and Highâ€Performance Flexible Fiberâ€Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode. Advanced Materials, 2017, 29, 1702698.	11.1	314
292	Nitrogenâ€Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat, 2017, 3, 895-901.	1.5	17
293	Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors. ACS Nano, 2017, 11, 10860-10874.	7.3	259
294	Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors. RSC Advances, 2017, 7, 45363-45368.	1.7	24
295	Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2ÂV voltage and high volumetric energy density. Journal of Materials Chemistry A, 2017, 5, 22216-22223.	5.2	30
296	Membrane-assisted assembly strategy of flexible electrodes for multifunctional supercapacitors. Carbon, 2017, 125, 419-428.	5.4	15
297	From Dead Pine Needles to O, N Codoped Activated Carbons by a One-Step Carbonization for High Rate Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 10474-10482.	3.2	49
298	Cobalt hexacyanoferrate nanoparticles and MoO 3 thin films grown on carbon fiber cloth for efficient flexible hybrid supercapacitor. Journal of Power Sources, 2017, 370, 98-105.	4.0	56
299	The Pineâ€Needleâ€Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for Highâ€Performance Flexible Supercapacitors. Small, 2017, 13, 1702142.	5.2	35
300	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	5.2	82
301	Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330, 1166-1173.	6.6	106
302	Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 17533-17540.	1.1	24
303	Conductingâ€Polymerâ€Based Materials for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1703044.	11.1	88
304	3D Highly Conductive Silver Nanowire@PEDOT:PSS Composite Sponges for Flexible Conductors and Their All‣olid‣tate Supercapacitor Applications. Advanced Materials Interfaces, 2017, 4, 1700860.	1.9	23
305	Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon, 2017, 125, 308-317.	5.4	47
306	Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. Journal of Power Sources, 2017, 364, 200-207.	4.0	48
307	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	6.4	222

#	Article	IF	CITATIONS
308	Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)–Poly(propylene oxide)–Poly(ethylene) Tj ETO Flexible Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 33913-33924.	2q0 0 0 rg 4.0	BT /Overlock 23
309	Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 2017, 140, 901-911.	4.5	70
310	Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel. ACS Applied Materials & Interfaces, 2017, 9, 33941-33947.	4.0	129
311	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	15.6	477
312	Synthesis and characterization of free-standing activated carbon/reduced graphene oxide film electrodes for flexible supercapacitors. RSC Advances, 2017, 7, 45066-45074.	1.7	27
313	Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 2017, 4, 035016.	2.0	146
314	Comparative study of individual aqueous electrolytes with porous ZnFe2O4 for supercapacitor. Materials Letters, 2017, 207, 195-197.	1.3	11
315	Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 2017, 5, 17705-17733.	5.2	464
316	Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2017, 328, 599-608.	6.6	57
317	Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Applied Surface Science, 2017, 426, 99-106.	3.1	66
318	Flexible Tiâ€Ðoped FeOOH Quantum Dots/Graphene/Bacterial Cellulose Anode for Highâ€Energy Asymmetric Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1700213.	1.2	18
319	Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors. Journal of Colloid and Interface Science, 2017, 506, 572-581.	5.0	23
320	Designed construction of yolk–shell structured trimanganese tetraoxide nanospheres via polar solvent-assisted etching and biomass-derived activated porous carbon materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15808-15821.	5.2	57
321	Hydrothermal Synthesis of Zn _{<i>x</i>} Ni _{1â^'<i>x</i>} S Nanosheets for Hybrid Supercapacitor Applications. ChemPlusChem, 2017, 82, 1145-1152.	1.3	15
322	A nanocrystalline Co ₃ O ₄ @polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Advances, 2017, 7, 36833-36843.	1.7	38
323	Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 27649-27656.	4.0	66
324	Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 2017, 9, 12324-12329.	2.8	48
325	All-fabric-based wearable self-charging power cloth. Applied Physics Letters, 2017, 111, .	1.5	62

#	Article	IF	CITATIONS
326	Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose. Chinese Chemical Letters, 2017, 28, 2212-2218.	4.8	19
327	Facile Electrochemical Fabrication of Porous Fe ₂ O ₃ Nanosheets for Flexible Asymmetric Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 18982-18991.	1.5	90
328	Molecularly Stacking Manganese Dioxide/Titanium Carbide Sheets to Produce Highly Flexible and Conductive Film Electrodes with Improved Pseudocapacitive Performances. Advanced Energy Materials, 2017, 7, 1602834.	10.2	144
329	Highly Uniform Anodically Deposited Film of MnO ₂ Nanoflakes on Carbon Fibers for Flexible and Wearable Fiber-Shaped Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 28386-28393.	4.0	71
330	Bidirectional Correlation between Mechanics and Electrochemistry of Poly(vinyl alcohol)-Based Gel Polymer Electrolytes. Journal of Physical Chemistry Letters, 2017, 8, 6106-6112.	2.1	7
331	Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i> . Journal of Materials Chemistry A, 2017, 5, 25282-25292.	5.2	85
332	Electrodeposited nickel–cobalt sulfide nanosheet on polyacrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors. Materials Research Express, 2017, 4, 116309.	0.8	26
333	Hierarchical polypyrrole nanotubes@NiCo2S4 nanosheets core-shell composites with improved electrochemical performance as supercapacitors. Electrochimica Acta, 2017, 258, 182-191.	2.6	76
334	Large anion incorporation to improve the performance of large, paper based conducting polymer supercapacitors. Materials Today Energy, 2017, 5, 112-117.	2.5	8
335	Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. Journal of Colloid and Interface Science, 2017, 505, 796-804.	5.0	97
336	Investigation of polyacrylamide based hydroxide ion-conducting electrolyte and its application in all-solid electrochemical capacitors. Sustainable Energy and Fuels, 2017, 1, 1580-1587.	2.5	16
337	Flexible Supercapacitors Based on Solid Ion Conducting Polymer with High Mechanical Strength. Journal of the Electrochemical Society, 2017, 164, A1952-A1957.	1.3	34
338	An easily manipulated protocol for patterning ofÂMXenes on paper for planar micro-supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19639-19648.	5.2	118
339	Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Advanced Energy Materials, 2017, 7, 1601301.	10.2	334
340	Graphene-CNT Hybrids for Energy Applications. Springer Briefs in Molecular Science, 2017, , 53-90.	0.1	5
341	High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. Journal of Colloid and Interface Science, 2017, 488, 155-165.	5.0	97
342	Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale, 2017, 9, 193-200.	2.8	104
343	Porous zinc cobaltite (ZnCo2O4) film by successive ionic layer adsorption and reaction towards solid-state symmetric supercapacitive device. Journal of Colloid and Interface Science, 2017, 487, 201-208	5.0	35

#	Article	IF	CITATIONS
344	Interior design engineering of CuS architecture alteration with rise in reaction bath temperature for high performance symmetric flexible solid state supercapacitor. Journal of Industrial and Engineering Chemistry, 2017, 46, 91-102.	2.9	43
345	Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon, 2017, 111, 658-666.	5.4	104
346	High capacitive performance of hollow activated carbon fibers derived from willow catkins. Applied Surface Science, 2017, 394, 569-577.	3.1	76
347	Rational design of nickel cobalt sulfide/oxide core-shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors. Ceramics International, 2017, 43, 2155-2164.	2.3	39
348	Conducting Polymer Nanocomposite-Based Supercapacitors. Springer Series on Polymer and Composite Materials, 2017, , 269-304.	0.5	2
349	S, Nâ€Coâ€Doped Grapheneâ€Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Advanced Science, 2017, 4, 1600214.	5.6	204
350	Scalable Fabrication of Flexible Solid‣tate Asymmetric Supercapacitors with a Wide Operation Voltage utilizing Printable Carbon Film Electrodes. Energy Technology, 2017, 5, 656-664.	1.8	7
351	Highâ€Performance Flexible Solidâ€State Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide. Energy Technology, 2017, 5, 544-548.	1.8	14
352	Wearable Highâ€Performance Supercapacitors Based on Silverâ€Sputtered Textiles with FeCo ₂ S ₄ –NiCo ₂ S ₄ Composite Nanotubeâ€Built Multitripod Architectures as Advanced Flexible Electrodes. Advanced Energy Materials, 2017, 7, 1601234.	10.2	293
353	Flexible Asymmetric Supercapacitors via Spray Coating of a New Electrochromic Donor–Acceptor Polymer. Advanced Energy Materials, 2017, 7, 1601623.	10.2	131
354	Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon, 2017, 113, 151-158.	5.4	243
355	Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors. Electrochemistry Communications, 2017, 74, 33-37.	2.3	41
356	Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy, 2017, 31, 432-440.	8.2	112
357	High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes. High Performance Polymers, 2017, 29, 984-993.	0.8	19
358	PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo 2 O 4 nanoparticles for high-performance pseudocapacitor. Chemical Engineering Journal, 2017, 308, 202-213.	6.6	100
359	Energy Storage Devices Based on Polymers. , 2017, , 197-242.		11
360	Preparation and Electrochemical Performances of Cellulose Nanofiber/Graphene Nanosheet/Polyaniline Composite Film via in-Situ Polymerization. International Journal of Electrochemical Science, 2017, 12, 6662-6675.	0.5	10
361	Supercapacitors using Binderless Activated Carbon Monoliths Electrodes consisting of a Graphite Additive and Pre-carbonized Biomass Fibers. International Journal of Electrochemical Science, 2017, 12, 2520-2539.	0.5	27

#	Article	IF	CITATIONS
362	Electrophoresis deposition of flexible and transparent silver nanowire/graphene composite film and its electrochemical properties. Journal of Alloys and Compounds, 2018, 745, 370-377.	2.8	29
363	Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. Journal of Saudi Chemical Society, 2018, 22, 908-918.	2.4	29
364	Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor. Nanotechnology, 2018, 29, 195405.	1.3	15
365	Nanocarbonâ€Based Materials for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2018, 30, e1705489.	11.1	330
366	A Flexible Stretchable Hydrogel Electrolyte for Healable Allâ€inâ€One Configured Supercapacitors. Small, 2018, 14, e1704497.	5.2	230
367	Facile Preparation of Highâ€Performance Stretchable Fiberâ€Like Electrodes and Supercapacitors. ChemistrySelect, 2018, 3, 4179-4184.	0.7	16
368	A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale, 2018, 10, 9360-9368.	2.8	71
369	Highâ€Performance Polypyrrole/Graphene/SnCl ₂ Modified Polyester Textile Electrodes and Yarn Electrodes for Wearable Energy Storage. Advanced Functional Materials, 2018, 28, 1800064.	7.8	66
370	In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors. Nanotechnology, 2018, 29, 275401.	1.3	5
371	Electrically Conductive Graphene-Based Biodegradable Polymer Composite Films with High Thermal Stability and Flexibility. Nano, 2018, 13, 1850033.	0.5	9
372	Homogeneously Dispersed Co ₉ S ₈ Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 16436-16448.	4.0	57
373	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
374	Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochimica Acta, 2018, 273, 392-401.	2.6	93
375	Magnetically enhanced plasma exfoliation of polyaniline-modified graphene for flexible solid-state supercapacitors. Energy Storage Materials, 2018, 14, 230-237.	9.5	18
376	Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy, 2018, 46, 266-276.	8.2	135
377	Electrochemical cycling stability of nickel (II) coordinated polyaniline. Synthetic Metals, 2018, 237, 29-39.	2.1	47
378	Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. Journal of Power Sources, 2018, 380, 55-63.	4.0	62
379	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338

#	Article	IF	CITATIONS
380	Designed Synthesis and Supercapacitor Electrode of V ₂ O ₃ @C Coreâ€shell Structured Nanorods with Excellent Pseudo apacitance in Na ₂ SO ₄ Neutral Electrolyte. ChemistrySelect, 2018, 3, 1577-1584.	0.7	10
381	A novel flexible electrode with coaxial sandwich structure based polyaniline-coated MoS 2 nanoflakes on activated carbon cloth. Electrochimica Acta, 2018, 264, 91-100.	2.6	36
382	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
383	All-solid-state pseudocapacitive micro-supercapacitors from laser-treated polymer derivatives. Chinese Chemical Letters, 2018, 29, 596-598.	4.8	5
384	Allâ€Handâ€Drawn Zn–Air Batteries: Toward Userâ€Customized Onâ€theâ€Fly Power Sources. Advanced Sustainable Systems, 2018, 2, 1700132.	2.7	9
385	Metal Precursor Dependent Synthesis of NiFe ₂ O ₄ Thin Films for High-Performance Flexible Symmetric Supercapacitor. ACS Applied Energy Materials, 2018, 1, 638-648.	2.5	112
386	Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T O, F, OH) MXene film electrodes. Electrochimica Acta, 2018, 266, 86-93.	2.6	35
387	Sea urchin-like architectures and nanowire arrays of cobalt–manganese sulfides for superior electrochemical energy storage performance. Journal of Materials Science, 2018, 53, 6157-6169.	1.7	27
388	Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. Journal of Power Sources, 2018, 378, 603-609.	4.0	68
389	Zinc Ferrite Anchored Multiwalled Carbon Nanotubes for Highâ€Performance Supercapacitor Applications. European Journal of Inorganic Chemistry, 2018, 2018, 137-142.	1.0	41
390	High energy density symmetric capacitor using zinc cobaltate flowers grown in situ on Ni foam. Electrochimica Acta, 2018, 261, 265-274.	2.6	33
391	Hierarchical graphite foil/CoNi 2 S 4 flexible electrode with superior thermal conductivity for high-performance supercapacitors. Journal of Energy Chemistry, 2018, 27, 463-471.	7.1	19
392	A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors. Carbon, 2018, 129, 819-825.	5.4	98
393	Flexible, planar integratable and all-solid-state micro-supercapacitors based on nanoporous gold/ manganese oxide hybrid electrodes via template plasma etching method. Journal of Alloys and Compounds, 2018, 739, 979-986.	2.8	22
394	Microwave-assisted synthesis method for rapid synthesis of tin selenide electrode material for supercapacitors. Journal of Alloys and Compounds, 2018, 737, 623-629.	2.8	47
395	The synthesis of hierarchical ZnCo ₂ O ₄ @MnO ₂ core–shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 597-604.	3.0	58
396	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	11.1	302
397	N-doped porous carbon sheets derived from ZIF-8: Preparation and their electrochemical capacitive properties. Journal of Electroanalytical Chemistry, 2018, 810, 86-94.	1.9	37

#	Article	IF	CITATIONS
398	Flexible β-Ni(OH)2/graphene electrode with high areal capacitance enhanced by conductive interconnection. Journal of Alloys and Compounds, 2018, 737, 731-739.	2.8	23
399	A critical review on multifunctional composites as structural capacitors for energy storage. Composite Structures, 2018, 188, 126-142.	3.1	89
400	Novel freestanding N-doped carbon coated Fe3O4 nanocomposites with 3D carbon fibers network derived from bacterial cellulose for supercapacitor application. Journal of Electroanalytical Chemistry, 2018, 810, 18-26.	1.9	18
401	Noncovalent Approach to Liquid-Crystalline Ion Conductors: High-Rate Performances and Room-Temperature Operation for Li-Ion Batteries. ACS Omega, 2018, 3, 159-166.	1.6	29
402	Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained <i>via</i> bimetallic-coordination organic framework modification and their application in supercapacitors. Dalton Transactions, 2018, 47, 7316-7326.	1.6	27
403	Constructing Flexible and Binder-Free NaTi ₂ (PO ₄) ₃ Film Electrode with a Sandwich Structure by a Two-Step Graphene Hybridizing Strategy as an Ultrastable Anode for Long-Life Sodium-Ion Batteries. Crystal Growth and Design, 2018, 18, 3291-3301.	1.4	16
404	Zeolite-templated nanoporous carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10388-10394.	5.2	66
405	A peptide-based supercapacitor and its performance improvement <i>via</i> TiO ₂ coating. Journal of Materials Chemistry A, 2018, 6, 8047-8052.	5.2	25
406	Ni(OH) ₂ /CNTs hierarchical spheres for a foldable all-solid-state supercapacitor with high specific energy. Nanoscale, 2018, 10, 7377-7381.	2.8	52
407	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	7.3	439
408	Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors. Electrochimica Acta, 2018, 271, 624-631.	2.6	41
409	Large scale production of polyacrylonitrile-based porous carbon nanospheres for asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 6891-6903.	5.2	21
410	NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors. Materials Research Bulletin, 2018, 103, 55-62.	2.7	74
411	Ni-Co hydroxide nanoneedles embedded in graphene hydrogel as a binder-free electrode for high-performance asymmetric supercapacitor. Electrochimica Acta, 2018, 270, 156-164.	2.6	28
412	Carbon-based core–shell nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 7310-7337.	5.2	102
413	Electrochemical energy storage performance of asymmetric PEDOT and graphene electrode-based supercapacitors using ionic liquid gel electrolyte. Journal of Applied Electrochemistry, 2018, 48, 747-764.	1.5	9
414	Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 11008-11017.	4.0	57
415	Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Advances, 2018, 8, 7997-8006.	1.7	63

#	Article	IF	CITATIONS
π 416	Boosted electrochemistry properties of Cu4[(OH)0.29Cl0.71](OH)6 hexagonal prisms by 3D-cage atomic configuration of (100) facet. Applied Surface Science, 2018, 428, 586-592.	3.1	24
417	2D Metal–Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors. Small, 2018, 14, e1702641.	5.2	80
418	Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochimica Acta, 2018, 259, 338-347.	2.6	75
419	Non-aqueous quasi-solid electrolyte for use in supercapacitors. Journal of Industrial and Engineering Chemistry, 2018, 59, 192-195.	2.9	7
420	A flexible and high voltage symmetric supercapacitor based on hybrid configuration of cobalt hexacyanoferrate/reduced graphene oxide hydrogels. Chemical Engineering Journal, 2018, 335, 321-329.	6.6	61
421	A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes. Energy Storage Materials, 2018, 11, 75-82.	9.5	73
422	Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2018, 511, 456-462.	5.0	163
423	New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, 3639-3649.	1.7	211
424	Simple and novel strategy to fabricate ultra-thin, lightweight, stackable solid-state supercapacitors based on MnO2-incorporated CNT-web paper. Energy, 2018, 142, 608-616.	4.5	32
425	Perovskite LaNiO3-δoxide as an anion-intercalated pseudocapacitor electrode. Journal of Alloys and Compounds, 2018, 731, 381-388.	2.8	90
426	Aqueous based solid battery-capacitor asymmetrical system for capacitive energy storage device. Materials Chemistry and Physics, 2018, 203, 346-351.	2.0	5
427	Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry, 2018, 9, 18-24.	3.2	64
428	Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon, 2018, 127, 699-706.	5.4	114
429	Polyampholyte-doped aligned polymer hydrogels as anisotropic electrolytes for ultrahigh-capacity supercapacitors. Journal of Materials Chemistry A, 2018, 6, 58-64.	5.2	38
430	Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2018, 735, 1505-1513.	2.8	81
431	Flexible, all-solid-state, high-cell potential supercapacitors based on holey reduced graphene oxide/manganese dioxide nanosheets. Electrochimica Acta, 2018, 260, 944-951.	2.6	42
432	Simple Synthesis of Au–Pd Alloy Nanowire Networks as Macroscopic, Flexible Electrocatalysts with Excellent Performance. ACS Applied Materials & Interfaces, 2018, 10, 602-613.	4.0	36
433	Recent Smart Methods for Achieving Highâ€Energy Asymmetric Supercapacitors. Small Methods, 2018, 2, 1700230.	4.6	147

#	Article	IF	Citations
434	Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. Chemical Engineering Journal, 2018, 335, 467-474.	6.6	28
435	Hierarchically nanostructured transition metal oxides for supercapacitors. Science China Materials, 2018, 61, 185-209.	3.5	90
436	Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy. Nanotechnology, 2018, 29, 055401.	1.3	24
437	Construction of NiTe/NiSe Composites on Ni Foam for Highâ€Performance Asymmetric Supercapacitor. ChemElectroChem, 2018, 5, 507-514.	1.7	36
438	Hydrothermal encapsulation of VO ₂ (A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Dalton Transactions, 2018, 47, 452-464.	1.6	171
439	Recent Advances toward Achieving Highâ€Performance Carbonâ€Fiber Materials for Supercapacitors. ChemElectroChem, 2018, 5, 571-582.	1.7	54
440	RF-sputter deposited flexible copper oxide thin films for electrochemical energy storage. Indian Journal of Physics, 2018, 92, 21-27.	0.9	3
441	Micromixing Study of a Clustered Countercurrent-Flow Micro-Channel Reactor and Its Application in the Precipitation of Ultrafine Manganese Dioxide. Micromachines, 2018, 9, 549.	1.4	6
442	A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Nanoscale, 2018, 10, 22329-22334.	2.8	65
443	Stitchable supercapacitors with high energy density and high rate capability using metal nanoparticle-assembled cotton threads. Journal of Materials Chemistry A, 2018, 6, 20421-20432.	5.2	21
444	Ultrafine MnO ₂ nanowires grown on RGO-coated carbon cloth as a binder-free and flexible supercapacitor electrode with high performance. RSC Advances, 2018, 8, 38631-38640.	1.7	11
445	NiCo ₂ O ₄ /NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Transactions, 2018, 47, 16320-16328.	1.6	79
446	Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template. New Carbon Materials, 2018, 33, 316-323.	2.9	32
447	Percolating Film of Pillared Graphene Layer Integrated with Silver Nanowire Network for Transparent and Flexible Supercapacitors. Langmuir, 2018, 34, 15245-15252.	1.6	23
448	Lithium polyacrylate-polyacrylamide blend as polymer electrolytes for solid-state electrochemical capacitors. Electrochemistry Communications, 2018, 97, 77-81.	2.3	32
449	Effect of gel polymer electrolyte based on polyvinyl alcohol/polyethylene oxide blend and sodium salts on the performance of solid-state supercapacitor. Bulletin of Materials Science, 2018, 41, 1.	0.8	20
450	Facial Synthesis of 3D MnO2 Nanofibers Sponge and Its Application in Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 12320-12330.	0.5	6
451	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	4.6	154

#	Article	IF	CITATIONS
452	Low Temperature Tolerant Organohydrogel Electrolytes for Flexible Solid‣tate Supercapacitors. Advanced Energy Materials, 2018, 8, 1801967.	10.2	288
453	Stretchable and Self-Healing Integrated All-Gel-State Supercapacitors Enabled by a Notch-Insensitive Supramolecular Hydrogel Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 36028-36036.	4.0	94
454	Synthesis of Porous Carbon by Activation Method and its Electrochemical Performance. International Journal of Electrochemical Science, 2018, 13, 10766-10773.	0.5	65
455	Biotemplated Synthesis of Transition Metal Nitride Architectures for Flexible Printed Circuits and Wearable Energy Storages. Advanced Functional Materials, 2018, 28, 1805510.	7.8	43
456	Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nature Communications, 2018, 9, 4573.	5.8	181
457	Hierarchical FeCo ₂ O ₄ @polypyrrole Core/Shell Nanowires on Carbon Cloth for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 14945-14954.	3.2	117
458	A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon, 2018, 140, 634-643.	5.4	48
459	Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage. Journal of Power Sources, 2018, 402, 91-98.	4.0	48
460	A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustainable Energy and Fuels, 2018, 2, 2727-2732.	2.5	23
461	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
462	Graphene-Wrapped Polyaniline Nanowire Array Modified Functionalized of Carbon Cloth for High-Performance Flexible Solid-State Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 14723-14733.	3.2	77
463	Lithium Ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. Advanced Energy Materials, 2018, 8, 1801243.	10.2	207
464	Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochimica Acta, 2018, 280, 9-16.	2.6	69
465	Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance. Nano Energy, 2018, 50, 182-191.	8.2	66
466	Probing the electrical properties and energy storage performance of electrospun ZnMn2O4 nanofibers. Solid State Ionics, 2018, 321, 75-82.	1.3	40
467	Construction of hierarchical zinc cobalt sulfide@nickel sulfide core-shell nanosheet arrays for high-performance asymmetric solid-state supercapacitors. Chemical Engineering Journal, 2018, 349, 397-407.	6.6	45
468	Special report on the achievements realized by researchers of Chinese Academy of Sciences in the field of energy storage technologies. Journal of Energy Storage, 2018, 18, 285-294.	3.9	5
469	A Flexible and Knittable Fiber Supercapacitor for Wearable Energy Storage with High Energy Density and Mechanical Robustness. Journal of the Electrochemical Society, 2018, 165, A1515-A1522.	1.3	24

#	Article	IF	CITATIONS
470	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. Journal of Power Sources, 2018, 391, 73-79.	4.0	168
471	Conjugated polymer-based carbonaceous films as binder-free carbon electrodes in supercapacitors. RSC Advances, 2018, 8, 19512-19523.	1.7	4
472	High-Performance Ionic Liquid-Based Gel Polymer Electrolyte Incorporating Anion-Trapping Boron Sites for All-Solid-State Supercapacitor Application. ACS Applied Materials & Interfaces, 2018, 10, 39570-39580.	4.0	78
473	A novel stretchable supercapacitor electrode with high linear capacitance. Chemical Engineering Journal, 2018, 349, 168-175.	6.6	46
474	Ag-Nanoparticle-Decorated 2D Titanium Carbide (MXene) with Superior Electrochemical Performance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7442-7450.	3.2	120
475	Oxygen-deficient tungsten oxide nanorods with high crystallinity: Promising stable anode for asymmetric supercapacitors. Electrochimica Acta, 2018, 283, 639-645.	2.6	28
476	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	11.1	571
477	Solid polymer electrolyte membranes based on quaternized polysulfone and solvent-free fluid as separators for electrical double-layer capacitors. Electrochimica Acta, 2018, 283, 97-103.	2.6	15
478	Mn3O4/RGO/SWCNT hybrid film for all-solid-state flexible supercapacitor with high energy density. Electrochimica Acta, 2018, 283, 174-182.	2.6	28
479	One-step mild synthesis of Mn-based spinel MnIICrIII2O4/MnIIMnIII2O4/C and Co-based spinel CoCr2O4/C nanoparticles as battery-type electrodes for high-performance supercapacitor application. Electrochimica Acta, 2018, 283, 197-211.	2.6	29
480	Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer Theses, 2018, , .	0.0	5
481	Synthesis of NiMoSO/rGO Composites Based on NiMoO ₄ and Reduced Graphene with Highâ€Performance Electrochemical Electrodes. ChemistrySelect, 2018, 3, 6719-6728.	0.7	15
482	Synthesis and application of nanocages in supercapacitors. Chemical Engineering Journal, 2018, 351, 135-156.	6.6	52
483	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	5.8	121
484	Green Biobatteries: Hybrid Paper–Polymer Microbial Fuel Cells. Advanced Sustainable Systems, 2018, 2, 1800041.	2.7	30
485	Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors. Journal of Colloid and Interface Science, 2018, 530, 29-36.	5.0	55
486	Engineering Microsized Materials through Enhanced Colloidal Interactions of Graphene for Ultrahigh-Mass-Loading and Flexible Electrodes. ACS Applied Energy Materials, 2018, 1, 2378-2384.	2.5	8
487	Transitionâ€Metal Oxides Anchored on Nitrogenâ€Enriched Carbon Ribbons for Highâ€Performance Pseudocapacitors. Chemistry - A European Journal, 2018, 24, 16104-16112.	1.7	22

#	ARTICLE	IF	CITATIONS
488	Hierarchical self-assembly flower-like ammonium nickel phosphate as high-rate performance electrode material for asymmetric supercapacitors with enhanced energy density. Nanotechnology, 2018, 29, 425401.	1.3	31
489	Surface-crumpled graphene hydrogels with macro- and microporous structures for ultrahigh-volumetric energy storage. Journal of Power Sources, 2018, 399, 115-124.	4.0	39
490	Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2018, 284, 128-141.	2.6	47
491	Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage. Journal of Materials Chemistry A, 2018, 6, 16074-16086.	5.2	26
492	A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device. Electrochimica Acta, 2018, 284, 30-37.	2.6	12
495	Hierarchical NiMoS and NiFeS Nanosheets with Ultrahigh Energy Density for Flexible All Solid‣tate Supercapacitors. Advanced Functional Materials, 2018, 28, 1803287.	7.8	223
496	Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chemical Communications, 2018, 54, 9234-9237.	2.2	65
497	Adhesionâ€Enhanced Flexible Conductive Metal Patterns on Polyimide Substrate Through Direct Writing Catalysts with Novel Surfaceâ€Modification Electroless Deposition. ChemistrySelect, 2018, 3, 7612-7618.	0.7	7
498	N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor. Electrochimica Acta, 2018, 278, 51-60.	2.6	136
499	Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. Journal of Power Sources, 2018, 400, 566-571.	4.0	83
500	One-Pot Synthesis of a Double-Network Hydrogel Electrolyte with Extraordinarily Excellent Mechanical Properties for a Highly Compressible and Bendable Flexible Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 29684-29693.	4.0	98
501	Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydrate Polymers, 2018, 200, 456-467.	5.1	37
502	Wearable stretchable double-sided micro-supercapacitors with porous conductive elastomers. , 2018, ,		0
503	All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy, 2018, 53, 189-197.	8.2	79
504	Low temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor application. Journal of Electroanalytical Chemistry, 2018, 823, 80-91.	1.9	35
505	One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. Journal of Power Sources, 2018, 396, 41-48.	4.0	73
506	Flexible Fe ₂ O ₃ and V ₂ O ₅ Nanofibers as Binderâ€Free Electrodes for Highâ€Performance Allâ€Solidâ€State Asymmetric Supercapacitors. Chemistry - A European Journal, 2018, 24, 10683-10688.	1.7	49
507	In situ confined conductive nickel cobalt sulfoselenide with tailored composition in graphitic carbon hollow structure for energy storage. Chemical Engineering Journal, 2018, 351, 678-687.	6.6	33

#	Article	IF	CITATIONS
508	Highly loaded manganese oxide with high rate capability for capacitive applications. Journal of Power Sources, 2018, 396, 238-245.	4.0	19
509	High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 22190-22200.	4.0	141
510	Lowâ€Resistance Porous Nanocellular MnSe Electrodes for Highâ€Performance Allâ€Solidâ€State Batteryâ€Supercapacitor Hybrid Devices. Advanced Materials Technologies, 2018, 3, 1800074.	3.0	58
511	Asymmetric Supercapacitors Assembled by Dual Spinel Ferrites@Graphene Nanocomposites as Electrodes. ACS Applied Energy Materials, 2018, 1, 3206-3215.	2.5	44
512	Wrapping RGO/MoO2/carbon textile as supercapacitor electrode with enhanced flexibility and areal capacitance. Electrochimica Acta, 2018, 282, 784-791.	2.6	20
513	Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors. Journal of Power Sources, 2018, 396, 319-326.	4.0	54
514	Recent Development of Fabricating Flexible Micro‣upercapacitors for Wearable Devices. Advanced Materials Technologies, 2018, 3, 1800028.	3.0	69
515	Design of an intermediate carbon layer between bimetallic sulfide and a carbon-based substrate for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2018, 42, 12511-12519.	1.4	7
516	Freeâ€standing Reduced Graphene Oxide/MoO _{3â€<i>x</i>} Composite Film with High Performance for Flexible Supercapacitors. ChemistrySelect, 2019, 4, 9165-9173.	0.7	8
517	An Ecofriendly Gel Polymer Electrolyte Based on Natural Lignocellulose with Ultrahigh Electrolyte Uptake and Excellent Ionic Conductivity for Alkaline Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6031-6042.	2.5	28
518	Computational Studies on Structural and Electronic Properties of NiCo2S4 (001)/KOH Electrolyte Interface. Journal of Electronic Materials, 2019, 48, 6347-6353.	1.0	1
519	Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydrate Polymers, 2019, 224, 115149.	5.1	61
520	An interfacial polymerization strategy towards high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 20158-20161.	5.2	24
521	Poly(ethylene glycol) nanocomposites of sub-nanometer metal oxide clusters for dynamic semi-solid proton conductive electrolytes. Chemical Science, 2019, 10, 7333-7339.	3.7	56
522	Rational design of modified fluororubber-based quasi-solid-state electrolyte for flexible supercapacitors with enhanced performance. Chemical Engineering Journal, 2019, 378, 122244.	6.6	13
523	Hydrothermal synthesis of VS4/CNTs composite with petal-shape structures performing a high specific capacity in a large potential range for high-performance symmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 554, 191-201.	5.0	57
524	Freestanding Lamellar Porous Carbon Stacks for Lowâ€Temperatureâ€Foldable Supercapacitors. Small, 2019, 15, e1902071.	5.2	39
525	Mixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy density. New Journal of Chemistry, 2019, 43, 12385-12395.	1.4	41

	Сітатіо	n Report	
#	Article	IF	Citations
526	Synthesis of holey graphene networks functionalized with p-phenylene diamine monomers for superior performance flexible solid-state supercapacitors. Electrochimica Acta, 2019, 320, 134610.	2.6	20
527	A novel ordered hollow spherical nickel silicate–nickel hydroxide composite with two types of morphologies for enhanced electrochemical storage performance. Materials Chemistry Frontiers, 2019, 3, 2090-2101.	3.2	74
528	Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO ₂ nanowires. Journal of Materials Chemistry A, 2019, 7, 19297-19304.	5.2	25
529	Synthesis of urchin-like Ni3Si2O5(OH)4 hierarchical hollow spheres/GO composite with enhanced electrochemical properties for high-performance hybrid supercapacitors. Dalton Transactions, 2019, 48, 11749-11762.	1.6	30
530	Solution-processed organic PDI/CB/TPU cathodes for flexible lithium ion batteries. Electrochimica Acta, 2019, 319, 201-209.	2.6	13
531	Controlled sulfidation towards achieving core-shell 1D-NiMoO4 @ 2D-NiMoS4 architecture for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 804, 27-34.	2.8	39
532	Design and performance of an ultra-flexible solid state supercapacitor based on thermo-crosslinking carbon nanotube paper/Co ₃ O ₄ nanowire electrode. Materials Research Express, 2019, 6, 085628.	0.8	0
533	Graphene quantum dots/graphene fiber nanochannels for osmotic power generation. Journal of Materials Chemistry A, 2019, 7, 23727-23732.	5.2	30
534	Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13462-13473.	1.1	7
535	Porous Mo–Co–S Nanosheets on Carbon Cloth for Allâ€5olidâ€5tate Flexible Asymmetric Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901138.	1.9	21
536	Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl) Tj ETQq0 0 () rgBT /Overloo 1.8	ck 10 Tf 50 3
537	Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development. Sensors, 2019, 19, 4231.	2.1	16
538	Composite of manganese dioxide impregnated in porous hollow carbon spheres for flexible asymmetric solidâ€state supercapacitors. International Journal of Energy Research, 2019, 43, 9025-9033.	2.2	12
539	Self‣upported, Sulfateâ€Functionalized Nickel Hydroxide Nanoplates with Enhanced Wettability and Conductivity for Use in Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 5291-5299.	3.6	23
540	2D Metal Carbides and Nitrides (MXenes). , 2019, , .		240
541	Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. Biotechnology Journal, 2019, 14, e1900062.	1.8	21
542	High-performance fibre supercapacitors based on ball-milled activated carbon nanoparticles mixed with pen ink. Journal of Materials Science: Materials in Electronics, 2019, 30, 20881-20891.	1.1	5
543	Wide Potential Window Supercapacitors Using Openâ€Shell Donor–Acceptor Conjugated Polymers with Stable Nâ€Doped States. Advanced Energy Materials, 2019, 9, 1902806.	10.2	53

#	Article	IF	CITATIONS
544	<i>In situ</i> formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors. Sustainable Energy and Fuels, 2019, 3, 3109-3115.	2.5	50
545	Incorporation of MnO2 into Egg Yolk Derived P, N, O-Tridoped Carbon for Supercapacitors with Excellent Cycling Stability. International Journal of Electrochemical Science, 2019, 14, 8284-8295.	0.5	5
546	Free-standing PEDOT/polyaniline conductive polymer hydrogel for flexible solid-state supercapacitors. Electrochimica Acta, 2019, 322, 134769.	2.6	127
547	Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. Materials Today Nano, 2019, 8, 100050.	2.3	33
548	An inorganic salt reinforced Zn ²⁺ -conducting solid-state electrolyte for ultra-stable Zn metal batteries. Journal of Materials Chemistry A, 2019, 7, 22287-22295.	5.2	62
549	Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors. Journal of Power Sources, 2019, 439, 227066.	4.0	21
550	Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 2019, 155, 706-726.	5.4	273
551	Construction of Hierarchical NiCo ₂ O ₄ @Ni-MOF Hybrid Arrays on Carbon Cloth as Superior Battery-Type Electrodes for Flexible Solid-State Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 37675-37684.	4.0	169
552	Soluble Covalent Organic Polymer for the Flexible Electrode of Supercapacitors. Frontiers in Materials, 2019, 6, .	1.2	5
553	Ammonia-assisted thermal activation of graphene-embellished biological fiber for flexible supercapacitors. Journal of Alloys and Compounds, 2019, 785, 944-950.	2.8	10
554	Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Science China Materials, 2019, 62, 936-946.	3.5	19
555	Flexible Znâ€lon Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	412
556	A 3D walking palm-like core–shell CoMoO ₄ @NiCo ₂ S ₄ @nickel foam composite for high-performance supercapacitors. Dalton Transactions, 2019, 48, 3853-3861.	1.6	103
557	Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 2019, 301, 136-144.	2.6	69
558	A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58, 732-742.	8.2	187
559	Construction of 3D Si@Ti@TiN thin film arrays for aqueous symmetric supercapacitors. Chemical Communications, 2019, 55, 1402-1405.	2.2	25
560	Reconfigurable solid-state electrolytes for high performance flexible supercapacitor. Journal of Power Sources, 2019, 432, 16-23.	4.0	22
561	Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 21895-21903.	4.0	80

ARTICLE IF CITATIONS # Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber 562 5.2 27 electrodes. Journal of Materials Chemistry A, 2019, 7, 14447-14454. Engineering the volumetric effect of Polypyrrole for auto-deformable supercapacitor. Chemical 6.6 Engineering Journal, 2019, 374, 59-67. A universal <i>in situ</i> strategy for charging supercapacitors. Journal of Materials Chemistry A, 564 5.213 2019, 7, 15131-15136. Integration of Ultrathin MoS₂/PANI/CNT Composite Paper in Producing All-Solid-State Flexible Supercapacitors with Exceptional Volumetric Energy Density. Journal of Physical Chemistry C, 565 2019, 123, 17864-17872. Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for 566 11.1 216 Highâ€Energyâ€Density Lithiumâ€"Sulfur Batteries. Advanced Materials, 2019, 31, e1902228. Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes. Journal 4.0 of Power Sources, 2019, 434, 226735. V2O3/C nanocomposites with interface defects for enhanced intercalation pseudocapacitance. 568 2.6 51 Electrochimica Acta, 2019, 318, 635-643. In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chemical Engineering Journal, 2019, 375, 6.6 122061. Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid 570 Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & amp; Interfaces, 2019, 11, 4.0 35 26235-26242. A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with 571 2.6 PEDOT:PSS and MWCNTs for high-performance supercapacitor. Electrochimica Acta, 2019, 317, 42-51. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for 572 flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 5.485 152, 134-143. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for 6.6 flexible supércapacitors. Chemical Engineering Journal, 2019, 374, 738-747. High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal–Organic 574 2.5 48 Framework/Graphene Composite. ACS Applied Energy Materials, 2019, 2, 5029-5038. Nanocellulose based functional materials for supercapacitor applications. Journal of Science: 1.5 Advanced Materials and Devices, 2019, 4, 333-340. Three-dimensional VO2@PANI micro flower array for flexible supercapacitor. Materials Letters, 2019, 576 23 1.3 253, 90-94. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. Journal of Alloys and Compounds, 2019, 797, 1031-1040. Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 578 18.7 360 3229-3264. Polypyrroleâ€decorated, milled carbon fibersâ€inserted chitin nanofibers/multiwalled carbon nanotubes 579 2.3 flexible freeâ€standing film for supercapacitors. Polymer Composites, 2019, 40, 4311-4320.

# 580	ARTICLE Electrochemical performance of carbon paper supercapacitor using sodium molybdate gel polymer electrolyte and nickel molybdate electrode. Journal of Solid State Electrochemistry, 2019, 23, 1911-1927.	IF 1.2	CITATIONS 33
581	Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors. Frontiers of Materials Science, 2019, 13, 133-144.	1.1	13
582	Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceramics International, 2019, 45, 15164-15170.	2.3	59
583	High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 17742-17750.	4.0	31
584	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	10.2	88
585	Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. Journal of Colloid and Interface Science, 2019, 549, 236-245.	5.0	61
586	Facile synthesis of rod-like nickel-cobalt oxide nanostructure for supercapacitor with excellent cycling stability. Materials Research Bulletin, 2019, 116, 117-125.	2.7	22
587	Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors. Chemical Engineering Journal, 2019, 372, 1047-1055.	6.6	89
588	Three-dimensional core-shell structure of CoMn2O4@Niâ€Coâ€S nanowires grown on nickel foam as binder free battery-type electrode. Electrochimica Acta, 2019, 313, 161-170.	2.6	10
589	Three-dimensional "skin-framework―hybrid network as electroactive material platform for high-performance solid-state asymmetric supercapacitor. RSC Advances, 2019, 9, 12877-12885.	1.7	0
590	Manganese oxide(â¢)/carbon hybrids with interesting morphologies as improved active materials for supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 13623-13631.	3.8	12
591	Textile-based RGO-muffled cobalt (II, III) oxide hybrid nano-architectures for flexible energy storage device. Applied Surface Science, 2019, 485, 238-246.	3.1	13
592	Highly compressible zinc-ion batteries with stable performance. Journal of Materials Chemistry A, 2019, 7, 11734-11741.	5.2	53
593	High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon, 2019, 149, 273-280.	5.4	91
594	High-Performance Symmetric Supercapacitor Constructed Using Carbon Cloth Boosted by Engineering Oxygen-Containing Functional Groups. ACS Applied Materials & Interfaces, 2019, 11, 18044-18050.	4.0	110
595	Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Materials, 2019, 20, 299-306.	9.5	108
596	Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances. Ceramics International, 2019, 45, 14642-14651.	2.3	41
597	Strongly coupled polypyrrole/molybdenum oxide hybrid films <i>via</i> electrochemical layer-by-layer assembly for pseudocapacitors. Journal of Materials Chemistry A, 2019, 7, 9815-9821.	5.2	28

#	Article	IF	CITATIONS
598	Electrochemical Performance of Transition Metalâ€Coordinated Polypyrrole: A Mini Review. Chemical Record, 2019, 19, 2370-2384.	2.9	58
599	Systematic study on hybrid supercapacitor of Ni-Co layered double hydroxide//activated carbons. Electrochimica Acta, 2019, 305, 403-415.	2.6	58
600	Core-shell nanomaterials: Applications in energy storage and conversion. Advances in Colloid and Interface Science, 2019, 267, 26-46.	7.0	125
601	Critical importance of current collector property to the performance of flexible electrochemical power sources. Chinese Chemical Letters, 2019, 30, 1282-1288.	4.8	14
602	A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials. Materials, 2019, 12, 703.	1.3	76
603	High performance flexible solid-state symmetric supercapacitors based on laser induced porous reduced graphene oxide-graphene oxide hybrid nanostructure devices. Applied Surface Science, 2019, 480, 671-679.	3.1	25
605	Co-Incorporated NiV ₂ O ₆ /Ni(HCO ₃) ₂ nanoflake arrays grown on nickel foam as a high-performance supercapacitor electrode. Dalton Transactions, 2019, 48, 5315-5326.	1.6	14
606	Multi-layer-stacked Co ₉ S ₈ micro/nanostructure directly anchoring on carbon cloth as a flexible electrode in supercapacitors. Nanoscale, 2019, 11, 7457-7464.	2.8	43
607	A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Research, 2019, 12, 1199-1206.	5.8	78
608	Cyanometallic framework-derived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors. Chemical Engineering Journal, 2019, 369, 57-63.	6.6	142
609	Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 7301-7327.	5.2	284
610	Flexible H2O2 microfluidic fuel cell using graphene/Prussian blue catalyst for high performance. Chemical Engineering Journal, 2019, 369, 813-817.	6.6	63
611	A Comparative Study of Activated Carbons from Liquid to Solid Polymer Electrolytes for Electrochemical Capacitors. Journal of the Electrochemical Society, 2019, 166, A821-A828.	1.3	10
612	3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability. Chemical Engineering Journal, 2019, 371, 348-355.	6.6	59
613	Fabrication of graphene-based electrochemical capacitors through reactive inverse matrix assisted pulsed laser evaporation. Applied Surface Science, 2019, 484, 245-256.	3.1	16
614	Controllable synthesis of CoNb2O6 nanoparticles on multifunctional sulfur and phosphorus dual-doped graphene as advanced electrodes for hybrid supercapacitors. Electrochimica Acta, 2019, 309, 104-115.	2.6	17
615	A fundamental approach to design of injectable high-content gel polymer electrolyte for activated carbon electrode supercapacitors. Journal of Industrial and Engineering Chemistry, 2019, 76, 429-436.	2.9	9
616	Cauliflowerâ€shaped ternary nanocomposites with enhanced power and energy density for supercapacitors. International Journal of Energy Research, 2019, 43, 3446-3460.	2.2	26

#	Article	IF	CITATIONS
617	Allâ€Sprayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible Allâ€Solidâ€State Supercapacitor. Energy Technology, 2019, 7, 1801109.	1.8	6
618	Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors. Nano Energy, 2019, 61, 18-26.	8.2	107
619	Asymmetric supercapacitor based on reduced graphene oxide/MnO2 and polypyrrole deposited on carbon foam derived from melamine sponge. Journal of Physics and Chemistry of Solids, 2019, 130, 100-110.	1.9	29
620	Nanostructure NiCo2S4 with different morphologies grown on Ni foam for high-performance supercapacitors. Ionics, 2019, 25, 3331-3339.	1.2	8
621	1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chemical Engineering Journal, 2019, 366, 163-171.	6.6	105
622	Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 366, 550-559.	6.6	170
623	Facile synthesis of a Bi ₂ MoO ₆ /TiO ₂ nanotube arrays composite by the solvothermal method and its application for high-performance supercapacitor. RSC Advances, 2019, 9, 4693-4699.	1.7	19
624	2D materials for 1D electrochemical energy storage devices. Energy Storage Materials, 2019, 19, 102-123.	9.5	71
625	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	4.0	54
626	A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.	5.2	130
627	Egg Albumin-Assisted Hydrothermal Synthesis of Co3O4 Quasi-Cubes as Superior Electrode Material for Supercapacitors with Excellent Performances. Nanoscale Research Letters, 2019, 14, 340.	3.1	29
628	Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Polymers, 2019, 11, 1895.	2.0	26
629	A nitrogen and phosphorus enriched pyridine bridged inorganic–organic hybrid material for supercapacitor application. New Journal of Chemistry, 2019, 43, 16670-16675.	1.4	27
630	Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 2019, 1, 4644-4658.	2.2	403
631	Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors. Processes, 2019, 7, 922.	1.3	25
632	Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chemical Engineering Journal, 2019, 356, 985-993.	6.6	128
633	Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 14-37.	5.2	181
634	Highly Conductive and Stretchable Ag Nanodendrite-Based Composites for Application in Nanoelectronics. ACS Applied Nano Materials, 2019, 2, 351-359.	2.4	7

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
635	Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. Journal of Alloys and Compounds, 2019, 782, 952-960.	2.8	65
636	Hierarchical interpenetrating rHGO-decorated NiCo2O4 nanowires architectures for high-performance supercapacitors. Applied Surface Science, 2019, 473, 326-333.	3.1	45
637	Hierarchical NiCo hydroxide nanosheets deposited on 3D porous Ni arrays for cost-effective high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 2552-2562.	1.1	13
638	Reduced graphene Oxide/Poly(1,5 dihydroxynaphthalene)/TiO2 nanocomposite conducting polymer coated on gold as a supercapacitor electrode. Electrochimica Acta, 2019, 298, 726-734.	2.6	29
639	Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 2019, 410-411, 69-77.	4.0	159
640	A Single Robust Hydrogel Film Based Integrated Flexible Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 165-173.	3.2	89
641	Core–shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics, 2019, 25, 897-901.	1.2	18
642	Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 296, 198-205.	2.6	33
643	Synthesis of amorphous MnSiO3/graphene oxide with excellent electrochemical performance as supercapacitor electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 93-100.	2.3	31
644	Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2019, 71, 250-259.	2.9	66
645	Highâ€Performance Yarn Supercapacitor Based on Metal–Inorganic–Organic Hybrid Electrode for Wearable Electronics. Advanced Electronic Materials, 2019, 5, 1800435.	2.6	17
646	Layer-by-layer in situ growth flexible polyaniline/graphene paper wrapped by MnO2 nanoflowers for all-solid-state supercapacitor. Materials Research Bulletin, 2019, 111, 267-276.	2.7	43
647	Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon, 2019, 145, 281-289.	5.4	22
648	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
649	Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation. ACS Applied Materials & Interfaces, 2019, 11, 5022-5036.	4.0	63
650	A Study of Bending Properties of Solid Electrochemical Capacitors. Journal of the Electrochemical Society, 2019, 166, A15-A20.	1.3	6
651	Flexible Solid‣tate Supercapacitor Based on Carbon Nanotube/Fe ₃ O ₄ /Reduced Graphene Oxide Binary Films. ChemistrySelect, 2019, 4, 437-440.	0.7	25
652	A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 2019, 299, 789-799.	2.6	63

#	Article	IF	CITATIONS
653	Advanced three-dimensional hierarchical Pr6O11@Ni-Co oxides-based core-shell electrodes for supercapacitance application. Journal of Alloys and Compounds, 2019, 783, 772-778.	2.8	21
654	High-efficiency self-charging smart bracelet for portable electronics. Nano Energy, 2019, 55, 29-36.	8.2	116
655	Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices. Journal of Solid State Electrochemistry, 2019, 23, 125-133.	1.2	13
656	Co ions doped NiTe electrode material for asymmetric supercapacitor application. Journal of Alloys and Compounds, 2019, 776, 993-1001.	2.8	36
657	Highly Stretchable and Compressible Selfâ€Healing P(AAâ€ <i>co</i> â€AAm)/CoCl ₂ Hydrogel Electrolyte for Flexible Supercapacitors. ChemElectroChem, 2019, 6, 467-472.	1.7	35
658	Integrating a photovoltaic storage system in one device: A critical review. Progress in Photovoltaics: Research and Applications, 2019, 27, 346-370.	4.4	81
659	Facile Fabrication of Three-Dimensional Hierarchical Nanoarchitectures of VO ₂ /Graphene@NiS ₂ Hybrid Aerogel for High-Performance All-Solid-State Asymmetric Supercapacitors with Ultrahigh Energy Density. ACS Applied Energy Materials, 2019, 2, 459-467.	2.5	23
660	Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydrate Polymers, 2019, 207, 447-459.	5.1	142
661	Hierarchical NiCoP nanosheet arrays with enhanced electrochemical properties for high-performance wearable hybrid capacitors. Journal of Alloys and Compounds, 2019, 781, 783-789.	2.8	19
662	Effects of Sodium Alginate on the Composition, Morphology, and Electrochemical Properties of Electrospun Carbon Nanofibers as Electrodes for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 632-640.	3.2	30
663	Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. Nanotechnology, 2019, 30, 085404.	1.3	35
664	High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors. Journal of Energy Chemistry, 2019, 37, 66-72.	7.1	80
665	A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chemical Engineering Journal, 2019, 360, 334-341.	6.6	72
666	Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon, 2019, 141, 748-757.	5.4	108
667	A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte. Chemical Engineering Journal, 2019, 357, 428-434.	6.6	87
668	Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@3DNF framework. Electrochimica Acta, 2019, 293, 84-96.	2.6	62
669	Synthesis of NiGa2S4-rGO on nickel foam as advanced electrode for flexible solid-state supercapacitor with superior energy density. Journal of Colloid and Interface Science, 2019, 535, 195-204.	5.0	67
670	All-fabric flexible supercapacitor for energy storage. Journal of Industrial Textiles, 2020, 49, 1061-1077.	1.1	9

#	Article	IF	CITATIONS
671	In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors. Journal of Energy Chemistry, 2020, 41, 209-215.	7.1	75
672	Hierarchical Mn ₃ O ₄ Anchored on 3D Graphene Aerogels via Câ^'Oâ^'Mn Linkage with Superior Electrochemical Performance for Flexible Asymmetric Supercapacitor. Chemistry - A European Journal, 2020, 26, 9314-9318.	1.7	15
673	Dynamic Ion Correlations in Solid and Liquid Electrolytes: How Do They Affect Charge and Mass Transport?. ChemElectroChem, 2020, 7, 367-385.	1.7	84
674	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering Reports, 2020, 139, 100520.	14.8	145
675	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	7.8	252
676	Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chemical Engineering Journal, 2020, 379, 122325.	6.6	59
677	Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors. Chemical Engineering Journal, 2020, 380, 122621.	6.6	21
678	Fabrication of 3D hierarchical porous VO2(B)/CNT/rGO ternary nanocomposite with sandwich-like structure as enhanced electrodes for high-performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124222.	2.3	17
679	Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface. Journal of Colloid and Interface Science, 2020, 561, 629-637.	5.0	46
680	Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 2020, 63, 185-206.	3.5	40
681	Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Applied Surface Science, 2020, 504, 144487.	3.1	79
682	Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 818, 152905.	2.8	68
683	Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors. Journal of Power Sources, 2020, 447, 227390.	4.0	32
684	Smart supercapacitors from materials to devices. InformaÄnÃ-Materiály, 2020, 2, 113-125.	8.5	145
685	Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 406-413.	1.7	12
686	Multifunctional microporous activated carbon nanotubes anchored on graphite fibers for high-strength and high-rate flexible all-solid-state supercapacitors. Applied Surface Science, 2020, 502, 144423.	3.1	15
687	Ni(HCO3)2 nanosheet/nickel tetraphosphate (Ni(P4O11)) nanowire composite as a high-performance electrode material for asymmetric supercapacitors. Nanotechnology, 2020, 31, 015401.	1.3	7
688	Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO ₂ capture. Nanoscale Advances, 2020, 2, 878-887.	2.2	40

#	Article	IF	CITATIONS
689	NiWO ₄ nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. Journal of Materials Chemistry C, 2020, 8, 3418-3430.	2.7	40
690	Review of Transition Metal Nitrides and Transition Metal Nitrides/Carbon nanocomposites for supercapacitor electrodes. Materials Chemistry and Physics, 2020, 245, 122533.	2.0	98
691	A super-thermostable, flexible supercapacitor for ultralight and high performance devices. Journal of Materials Chemistry A, 2020, 8, 532-542.	5.2	60
692	Embroidering a Filmsy Photorechargeable Energy Fabric with Wide Weather Adaptability. ACS Applied Materials & Interfaces, 2020, 12, 3654-3660.	4.0	17
693	Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state electrolytes for energy storage devices. Electrochimica Acta, 2020, 332, 135536.	2.6	45
694	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	6.6	44
695	A polypyrrole-adorned, self-supported, pseudocapacitive zinc vanadium oxide nanoflower and nitrogen-doped reduced graphene oxide-based asymmetric supercapacitor device for power density applications. New Journal of Chemistry, 2020, 44, 1063-1075.	1.4	35
696	Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 366-366.	1.7	0
697	Template synthesis of structure-controlled 3D hollow nickel-cobalt phosphides microcubes for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 561, 23-31.	5.0	50
698	A flexible, cost-effective, and eco-friendly solid state supercapacitor based on PVA/KCl/Carbon black nanocomposite. Ionics, 2020, 26, 1465-1473.	1.2	13
699	Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 498-511.	3.2	58
700	Sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 polyelectrolyte for high-performance all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227587.	4.0	23
701	Twisted ladder-like donor-acceptor polymers as electrode materials for flexible electrochromic supercapacitors. Electrochimica Acta, 2020, 333, 135495.	2.6	45
702	Self-standing Substrates. Engineering Materials, 2020, , .	0.3	2
703	In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. Applied Nanoscience (Switzerland), 2020, 10, 1591-1601.	1.6	17
704	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€Supercapacitors. ChemSusChem, 2020, 13, 1255-1274.	3.6	16
705	Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Advanced Energy Materials, 2020, 10, 1902769.	10.2	93
706	A Dualâ€Functional Conductive Framework Embedded with TiNâ€VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li–S Full Batteries. Advanced Materials, 2020, 32, e1905658.	11.1	276

#	Article	IF	CITATIONS
707	High-performance solid-state supercapacitors with designable patterns based on used newspaper. Cellulose, 2020, 27, 1033-1042.	2.4	24
708	Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. Journal of Energy Storage, 2020, 27, 101072.	3.9	299
709	Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochimica Acta, 2020, 363, 137262.	2.6	25
710	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. Journal of Power Sources, 2020, 479, 228795.	4.0	16
711	Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines, 2020, 11, 866.	1.4	52
712	Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors. Nanomaterials, 2020, 10, 2046.	1.9	38
713	Electrospun Ni-Ni(OH)2/Carbon Nanofibers as Flexible Binder-Free Supercapacitor Electrode with Enhanced Specific Capacitance. Journal of Electronic Materials, 2020, 49, 7211-7218.	1.0	11
714	A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. IScience, 2020, 23, 101502.	1.9	31
715	Boosted Electrochemical Performance of Honeycomb-Like NiCu–LDH Nanosheets Anchoring on NiCo ₂ S ₄ Nanotube Arrays for Flexible Solid-State Hybrid Supercapacitors. Energy & Fuels, 2020, 34, 13157-13166.	2.5	26
716	CuO nanorods grown vertically on graphene nanosheets as a battery-type material for high-performance supercapacitor electrodes. RSC Advances, 2020, 10, 36554-36561.	1.7	14
717	Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Materials, 2020, 32, 402-417.	9.5	47
718	Widening potential window of flexible solid-state supercapacitor through asymmetric configured iron oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate coated multi-walled carbon nanotubes assembly. Journal of Energy Storage, 2020, 31, 101622.	3.9	16
719	Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability. Scientific Reports, 2020, 10, 11023.	1.6	32
720	Pseudocapacitive Charge Storage in MXene–V ₂ O ₅ for Asymmetric Flexible Energy Storage Devices. ACS Applied Materials & Interfaces, 2020, 12, 54791-54797.	4.0	28
721	Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance. Frontiers of Materials Science, 2020, 14, 450-458.	1.1	6
722	A reclaimed piezoelectric catalyst of MoS ₂ @TNr composites as high-performance anode materials for supercapacitors. RSC Advances, 2020, 10, 38715-38726.	1.7	5
723	Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes. Materials, 2020, 13, 5255.	1.3	8
724	MXene-Based Flexible Supercapacitors: Influence of an Organic Ionic Conductor Electrolyte on the Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 53039-53048.	4.0	42

#	Article	IF	CITATIONS
725	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
726	Unique stabilizing effects of molybdenum disulfide and graphene oxide dual dopants toward polyaniline's energy storage behavior. Synthetic Metals, 2020, 269, 116527.	2.1	12
727	Textile-based supercapacitors for flexible and wearable electronic applications. Scientific Reports, 2020, 10, 13259.	1.6	61
728	Green Synthesis of Free Standing Cellulose/Graphene Oxide/Polyaniline Aerogel Electrode for High-Performance Flexible All-Solid-State Supercapacitors. Nanomaterials, 2020, 10, 1546.	1.9	54
729	â€~In-Situ' Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application. Journal of Composites Science, 2020, 4, 87.	1.4	3
730	Matching design of high-performance electrode materials with different energy-storage mechanism suitable for flexible hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 844, 156196.	2.8	17
731	Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Materials, 2020, 33, 11-17.	9.5	46
732	A Flexible and Safe Aqueous Zinc–Air Battery with a Wide Operating Temperature Range from â^'20 to 70 °C. ACS Sustainable Chemistry and Engineering, 2020, 8, 11501-11511.	3.2	63
733	Boosting the Energy Density of Flexible Supercapacitors by Redox-Additive Hydrogels. Energy & Fuels, 2020, 34, 11536-11546.	2.5	28
734	Electrochemical properties of poly(2-acrylamido-2-methylpropane sulfonic acid) polyelectrolyte containing zwitterionic silica sulfobetaine for supercapacitors. Journal of Power Sources, 2020, 479, 228657.	4.0	13
735	Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Analytical and Bioanalytical Chemistry, 2020, 412, 7515-7524.	1.9	25
736	Threeâ€Phase Boundary in Crossâ€Coupled Microâ€Mesoporous Networks Enabling 3Dâ€Printed and Ionogelâ€Based Quasiâ€Solidâ€State Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2002474.	11.1	54
737	Flexible Solid PANI Fiber Networks/Niâ€MOF@CC Electrodes for Highâ€Performance Capacitors: Synthesis and Stability Study. ChemistrySelect, 2020, 5, 10656-10662.	0.7	10
738	Electrodeposited Films of Graphene, Carbon Nanotubes, and Their Mixtures for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 10003-10013.	2.4	17
739	High performance <i>in situ</i> annealed partially pressurized pulsed laser deposited WO ₃ & V ₂ O ₅ thin film electrodes for use as flexible all solid state supercapbatteries. Journal of Materials Chemistry A, 2020, 8, 24148-24165.	5.2	21
740	Solar-driven integrated energy systems: State of the art and challenges. Journal of Power Sources, 2020, 478, 228762.	4.0	42
741	3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Molecular Crystals and Liquid Crystals, 2020, 705, 105-111.	0.4	14
742	Doped photo-crosslinked polyesteramide hydrogels as solid electrolytes for supercapacitors. Soft Matter, 2020, 16, 8033-8046.	1.2	10

#	Article	IF	CITATIONS
743	Organic Molecular Electrode with Ultrahigh Rate Capability for Supercapacitors. Energy & Fuels, 2020, 34, 13079-13088.	2.5	17
744	Knitting Controllable Oxygen-Functionalized Carbon Fiber for Ultrahigh Capacitance Wire-Shaped Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44866-44873.	4.0	20
745	MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44777-44788.	4.0	82
746	Study of the specific energy of universal electrode materials for hybrid ultra-high-volume capacitor systems. IOP Conference Series: Materials Science and Engineering, 2020, 868, 012013.	0.3	2
747	Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. Journal of Energy Storage, 2020, 32, 101767.	3.9	70
748	Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives. Nano Materials Science, 2021, 3, 154-169.	3.9	25
749	Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Frontiers in Chemistry, 2020, 8, 261.	1.8	59
750	Comparative Study of the Supercapacitive Performance of Three Ferroceneâ€Based Structures: Targeted Design of a Conductive Ferroceneâ€Functionalized Coordination Polymer as a Supercapacitor Electrode. Chemistry - A European Journal, 2020, 26, 9518-9526.	1.7	23
751	Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage. Journal of Industrial and Engineering Chemistry, 2020, 87, 173-179.	2.9	7
752	Intercalation in Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy and Environmental Materials, 2020, 3, 306-322.	7.3	66
753	Oxygen-deficient BiFeO3-NC nanoflake anodes for flexible battery-supercapacitor hybrid devices with high voltage and long-term stability. Chemical Engineering Journal, 2020, 397, 125524.	6.6	37
754	Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 2020, 51, 342-361.	7.1	67
755	Single-pot hydrothermal synthesis of manganese phosphate microrods as a cathode material for highly stable flexible solid-state symmetric supercapacitors. Synthetic Metals, 2020, 267, 116446.	2.1	41
756	A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance. Carbohydrate Polymers, 2020, 245, 116611.	5.1	82
757	Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125172.	2.3	54
758	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversibleâ€Compressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	5.6	64
759	Design and synthesis of high performance flexible and green supercapacitors made of manganeseâ€dioxideâ€decorated alkali lignin. Energy Storage, 2020, 2, e184.	2.3	21
760	Gel Polymer Electrolyte with Anionâ€Trapping Boron Moieties via Oneâ€Step Synthesis for Symmetrical Supercapacitors. Macromolecular Materials and Engineering, 2020, 305, 1900807.	1.7	3

ARTICLE IF CITATIONS # Fabrication and Performance of Self-Supported Flexible Cellulose Nanofibrils/Reduced Graphene 761 1.7 21 Oxide Supercapacitor Electrode Materials. Molecules, 2020, 25, 2793. Transparent Supercapacitor Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & amp; Interfaces, 2020, 12, 16342-16349. Dual-Core Supercapacitor Yarns: An Enhanced Performance Consistency and Linear Power Density. 763 4.0 17 ACS Applied Materials & amp; Interfaces, 2020, 12, 15211-15219. A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state 764 supercapacitor application. RSC Advances, 2020, 10, 9299-9308. Reviewâ€"Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and 765 1.3 74 Integrations. Journal of the Electrochemical Society, 2020, 167, 037573. Controlling reaction kinetics of layered zinc vanadate having brucite-like Zn–O layers supported by pyrovanadate pillars for use in supercapacitors. Journal of Alloys and Compounds, 2020, 829, 154479. 2.8 Highly transparent and flexible graphitic C3N4 nanowire/PVA/PEDOT:PSS supercapacitors for 767 0.7 0 transparent electronic devices. Functional Materials Letters, 2020, 13, 2051006. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy 5.2 conversion. Journal of Materials Chemistry A, 2020, 8, 5812-5842. Electrochemical properties of Bi0.85Mg0.15PO4 nanostructures for supercapacitor applications. AIP 769 0.3 1 Conference Proceedings, 2020, , . Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen 770 6.6 electrocatalysis in flexible zinc-air batteries. Chemical Engineering Journal, 2020, 401, 126088. Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407. 771 55 Making Stretchable Hybrid Supercapacitors by Knitting Nonâ€Stretchable Metal Fibers. Advanced Functional Materials, 2020, 30, 2003153. A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior 773 2.8 69 performance. Journal of Alloys and Compounds, 2020, 843, 155895. Preparation and characterization of colorful graphene oxide papers and flexible Nâ€doping graphene 774 papers for supercapacitor and capacitive deionization. , 2020, 2, 656-674. Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials 775 5.2111 Chemistry A, 2020, 8, 4677-4699. An Acidâ€Resistant Gel Polymer Electrolyte Based on Lignocellulose of Natural Biomass for 1.8 Supercapacitors. Energy Technology, 2020, 8, 2000009. Postulates of Supercapacitor and Performance Assessment Parameters: A Technical Overview. 777 0.9 1 Materials Today: Proceedings, 2020, 21, 1911-1918. Cost-Effective Yarn-Shaped Lithium-Ion Battery with High Wearability. ACS Omega, 2020, 5, 4697-4704.

#	Article	IF	CITATIONS
779	Nanofiber NiMoO4/g-C3N4 Composite Electrode Materials for Redox Supercapacitor Applications. Nanomaterials, 2020, 10, 392.	1.9	63
780	A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 13386-13399.	4.0	35
781	Structural reduced graphene oxide supercapacitors mechanically enhanced with tannic acid. Sustainable Energy and Fuels, 2020, 4, 2301-2308.	2.5	18
782	Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chemical Engineering Journal, 2020, 390, 124477.	6.6	90
783	Beyond intercalation-based supercapacitors: The electrochemical oxidation from Mn3O4 to Li4Mn5O12 in Li2SO4 electrolyte. Nano Energy, 2020, 71, 104626.	8.2	60
784	Effects of Electrolyte Mediation and MXene Size in Fiber-Shaped Supercapacitors. ACS Applied Energy Materials, 2020, 3, 2949-2958.	2.5	55
785	A Hierarchical Interconnected Nanosheet Structure of Porous δ-MnO ₂ on Graphite Paper as Cathode with a Broad Potential Window for NaNO ₃ Aqueous Electrolyte Supercapacitors. ACS Applied Energy Materials, 2020, 3, 2614-2622.	2.5	32
786	Direct detection of charge and discharge process in supercapacitor by fiber-optic LSPR sensors. Nanophotonics, 2020, 9, 1071-1079.	2.9	11
787	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
788	Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. Journal of Energy Storage, 2020, 29, 101302.	3.9	145
789	Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy, 2020, 70, 104519.	8.2	188
790	Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors. Journal of Materials Chemistry A, 2020, 8, 3186-3202.	5.2	66
791	Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chemical Engineering Journal, 2020, 387, 124105.	6.6	92
792	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	5.2	234
793	A Highly Stretchable Microsupercapacitor Using Laserâ€Induced Graphene/NiO/Co ₃ O ₄ Electrodes on a Biodegradable Waterborne Polyurethane Substrate. Advanced Materials Technologies, 2020, 5, 1900903.	3.0	53
794	Flexible and transparent capacitors based on gelâ€ŧype natural polymers. Journal of Applied Polymer Science, 2020, 137, 49028.	1.3	3
795	Ionic self-assembled organogel polyelectrolytes for energy storage applications. RSC Advances, 2020, 10, 11743-11749.	1.7	2
796	NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Metals, 2020, 39, 1034-1044.	3.6	80

#	Article	IF	CITATIONS
797	3D silk fibroin/carbon nanotube array composite matrix for flexible solid-state supercapacitors. New Journal of Chemistry, 2020, 44, 6575-6582.	1.4	10
798	<i>In situ</i> filling of a robust carbon sponge with hydrogel electrolyte: a type of omni-healable electrode for flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 7746-7755.	5.2	11
799	Carbon Transitionâ€metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors. Chemistry - an Asian Journal, 2020, 15, 1628-1647.	1.7	37
800	Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor. Journal of Colloid and Interface Science, 2020, 574, 33-42.	5.0	63
801	Rational design of hybrid Fe7S8/Fe2N nanoparticles as effective and durable bifunctional electrocatalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2020, 457, 228038.	4.0	20
802	Mesh-like vertical structures enable both high areal capacity and excellent rate capability. Journal of Energy Chemistry, 2021, 53, 226-233.	7.1	18
803	Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136.	8.3	125
804	A flexible Ni3S2/Ni@CC electrode for high-performance battery-like supercapacitor and efficient oxygen evolution reaction. Chemical Engineering Journal, 2021, 420, 127646.	6.6	33
805	lonic crosslinked polymer as protective layer in electrochromic supercapacitors for improved electrochemical stability and ion transmission performance. Electrochimica Acta, 2021, 365, 137373.	2.6	9
806	Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation. International Journal of Biological Macromolecules, 2021, 166, 923-933.	3.6	54
807	Multifunctional structural supercapacitor based on cement/PVA-KOH composite and graphene. Journal of Composite Materials, 2021, 55, 1359-1369.	1.2	9
808	A Highly Flexible and Lightweight MnO ₂ /Graphene Membrane for Superior Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2007397.	7.8	153
809	Preparation of activated carbon derived from oil palm empty fruit bunches and its modification by nitrogen doping for supercapacitors. Journal of Porous Materials, 2021, 28, 9-18.	1.3	21
810	Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor. Chemical Engineering Journal, 2021, 403, 126325.	6.6	115
811	Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 320-355.	9.5	98
812	Matching electrode lengths enables the practical use of asymmetric fiber supercapacitors with a high energy density. Nano Energy, 2021, 80, 105523.	8.2	32
813	Graphene-based flexible all-solid-state supercapacitors. Materials Chemistry Frontiers, 2021, 5, 557-583.	3.2	33
814	Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2021, 408, 127302.	6.6	17

#	Article	IF	CITATIONS
815	Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. Journal of Energy Chemistry, 2021, 58, 94-109.	7.1	109
816	Controllable synthesis of Ni1-xCoxMoO4 with tunable morphologies for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 850, 156734.	2.8	22
817	In Situ Formation of "Dimethyl Sulfoxide/Waterâ€inâ€Saltâ€â€Based Chitosan Hydrogel Electrolyte for Advanced Allâ€Solidâ€State Supercapacitors. ChemSusChem, 2021, 14, 632-641.	3.6	33
818	Ultralight Flexible Electrodes of Nitrogenâ€Đoped Carbon Macrotube Sponges for Highâ€Performance Supercapacitors. Small, 2021, 17, e2004827.	5.2	59
819	Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529.	7.1	56
820	Hierarchical porous "skin/skeleton―like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Journal of Hazardous Materials, 2021, 410, 124565.	6.5	51
821	Prototype symmetric configured MWCNTs/Fe2O3 based solid-state supercapacitor. Synthetic Metals, 2021, 271, 116629.	2.1	18
822	Effects of repeat unit charge density on the physical and electrochemical properties of novel heterocationic poly(ionic liquid)s. New Journal of Chemistry, 2021, 45, 53-65.	1.4	8
823	Stretchable Supercapacitors: From Materials and Structures to Devices. Small Methods, 2021, 5, e2000853.	4.6	30
824	Highly dispersive Co ₃ O ₄ nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale, 2021, 13, 355-370.	2.8	98
825	NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors. Chemical Engineering Journal, 2021, 421, 127871.	6.6	97
826	Fine-regulating ultramicropores in porous carbon <i>via</i> a self-sacrificial template route for high-performance supercapacitors. Nanoscale, 2021, 13, 1961-1969.	2.8	19
827	Selfâ€ŧemplate porous carbon by direct activation of <scp>highâ€ash</scp> coal liquefaction residue for <scp>highâ€rate</scp> supercapacitor electrodes. International Journal of Energy Research, 2021, 45, 4782-4792.	2.2	15
828	Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal, 2021, 412, 127500.	6.6	19
829	A universal strategy for ultra-flexible inorganic all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 852, 156613.	2.8	6
830	BN-codoped CNT based nanoporous brushes for all-solid-state flexible supercapacitors at elevated temperatures. Electrochimica Acta, 2021, 365, 137345.	2.6	17
831	All Types of Flexible Solid-State Supercapacitors. Springer Series in Materials Science, 2021, , 81-117.	0.4	4
832	Advanced Photonic Processes for Photovoltaic, Energy Storage, and Environmental Systems. Advanced Sustainable Systems, 2021, 5, 2000237.	2.7	10

#	Article	IF	CITATIONS
833	Physicochemical properties and performance of graphene oxide/polyacrylonitrile composite fibers as supercapacitor electrode materials. RSC Advances, 2021, 11, 11233-11243.	1.7	8
834	Nanoporous Transition Metal Oxide-Based Electrodes for Supercapacitor Application. , 2021, , 623-672.		3
835	A solution-assisted etching preparation of an MOF-derived NH ₄ CoPO ₄ ·H ₂ O/Ti ₃ C ₂ T _x MXene nanocomposite for high-performance hybrid supercapacitors. New Journal of Chemistry, 2021, 45, 11174-11182.	1.4	17
836	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
837	Flexible supercapacitors based on 2D materials. , 2021, , 253-310.		1
838	Transition metal sulfides for supercapacitors. , 2021, , 407-445.		5
839	Non-Isothermal Decomposition as Efficient and Simple Synthesis Method of NiO/C Nanoparticles for Asymmetric Supercapacitors. Nanomaterials, 2021, 11, 187.	1.9	11
840	Recent advances in conjugated polymers for lithium-ion and supercapacitor applications. , 2021, , 265-289.		0
841	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. Materials Chemistry Frontiers, 2021, 5, 4772-4779.	3.2	5
842	Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes. Journal of Solid State Electrochemistry, 2021, 25, 1121-1129.	1.2	9
843	The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11580-11594.	5.2	58
844	Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9, 7278-7300.	5.2	77
845	High-performance polymer applications for renewable energy. , 2021, , 3-26.		1
846	Controllable Synthesis of Nickel Sulfide Nanosheet/Carbon Fibers Composite and Its Electrochemical Performances. International Journal of Electrochemical Science, 2021, 16, 210254.	0.5	2
847	Performance-tuning of PVA-based gel electrolytes by acid/PVA ratio and PVA molecular weight. SN Applied Sciences, 2021, 3, 1.	1.5	23
848	Ionogels Obtained by Thiol-Ene Photopolymerization—Physicochemical Characterization and Application in Electrochemical Capacitors. Molecules, 2021, 26, 758.	1.7	6
849	Recent Developments and Future Prospects for Zincâ€ion Hybrid Capacitors: a Review. Advanced Energy Materials, 2021, 11, 2003994.	10.2	219
850	Metal-organic framework derived porous flakes of cobalt chalcogenides (CoX, XÂ=ÂO, S, Se and Te) rooted in carbon fibers as flexible electrode materials for pseudocapacitive energy storage. Electrochimica Acta, 2021, 369, 137681.	2.6	16

#	Article	IF	CITATIONS
851	Recent Progress and Application Challenges of Wearable Supercapacitors. Batteries and Supercaps, 2021, 4, 1279-1290.	2.4	33
852	Advances in MXene Films: Synthesis, Assembly, and Applications. Transactions of Tianjin University, 2021, 27, 217-247.	3.3	66
853	A novel flexible wire-shaped supercapacitor with enhanced electrochemical performance based on hierarchical Co(OH)2@Ni(OH)2 decorated porous dendritic Ni film/Ni wire. Journal of Alloys and Compounds, 2021, 856, 158101.	2.8	21
854	Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature. Science China Chemistry, 2021, 64, 852-860.	4.2	13
855	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
856	Advanced Tri-Layer Carbon Matrices with π–π Stacking Interaction for Binder-Free Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 16516-16527.	4.0	18
857	Superflexible, Self-Biased, High-Voltage-Stable, and Seal-Packed Office-Paper Based Gallium-Oxide Photodetector. ACS Applied Electronic Materials, 2021, 3, 1852-1863.	2.0	19
858	Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express, 2021, 2, 022004.	1.2	37
859	Synergistic engineering of fluorine doping and oxygen vacancies towards high-energy and long-lifespan flexible solid-state asymmetric supercapacitor. Ionics, 2021, 27, 2649-2658.	1.2	1
860	One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors. ACS Omega, 2021, 6, 11199-11208.	1.6	23
861	Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors. Advanced Functional Materials, 2021, 31, 2100290.	7.8	95
862	An experimental study of the performance of a low-cost paper-based membraneless direct hydrogen peroxide fuel cell. Turkish Journal of Engineering, 2022, 6, 161-165.	0.7	4
864	Direct heating pattern on graphene oxide film to build flexible micro-supercapacitors. Carbon, 2021, 175, 27-35.	5.4	18
865	Potentially Wearable Thermoâ€Electrochemical Cells for Body Heat Harvesting: From Mechanism, Materials, Strategies to Applications. Advanced Science, 2021, 8, 2100669.	5.6	50
866	Polypyrrole/Organic Sulfonic Acid Coated Activated Carbon Fiber Felt as Flexible Supercapacitor with High-performance. Fibers and Polymers, 2021, 22, 2119-2126.	1.1	7
867	"Waterâ€inâ€Salt―Electrolytes for Supercapacitors: A Review. ChemSusChem, 2021, 14, 2501-2515.	3.6	67
868	Polyacrylonitrile/polyvinyl alcoholâ€based porous carbon nanofiber electrodes for supercapacitor applications. International Journal of Energy Research, 2021, 45, 16497-16510.	2.2	18
872	Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983.	11.1	63

#	Article	IF	CITATIONS
874	Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Materials, 2021, 37, 94-122.	9.5	80
875	Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 28433-28441.	4.0	30
876	Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices. Journal of Materials Science, 2021, 56, 14448-14486.	1.7	21
877	Emerging polyimide and graphene derived nanocomposite foam: research and technical tendencies. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 643-658.	1.2	12
878	Facile synthesis of N-doped NiCo2S4/CNTs with coordinated effects as cathode materials for high-performance supercapacitors. Ionics, 2021, 27, 3567-3578.	1.2	8
879	A novel ternary Fe3O4@Fc-GO/PANI nanocomposite for outstanding supercapacitor performance. Electrochimica Acta, 2021, 383, 138296.	2.6	38
880	Overlapped T-Nb ₂ O ₅ /Graphene Hybrid for a Quasi-Solid-State Asymmetric Supercapacitor with a High Rate Capacity. Energy & Fuels, 2021, 35, 12546-12555.	2.5	4
881	Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors. Journal of Power Sources, 2021, 499, 229962.	4.0	27
882	3Dâ€Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials, 2022, 32, 2103092.	7.8	37
883	Fully organic polyaniline nanotubes as electrode material for durable supercapacitor. Journal of Energy Storage, 2021, 39, 102662.	3.9	18
884	Single step fabrication of nanostructured Cr2O3-MoO2 composite flexible electrode for top-notch asymmetric supercapacitor. Applied Surface Science, 2021, 555, 149721.	3.1	25
885	A high energy density flexible solid-state supercapacitor based on poly (arylene ether sulfone) copolymers with polyether side chains for Li+ conducting polymer electrolytes. Materials Chemistry and Physics, 2021, 267, 124623.	2.0	8
886	Nanostructured Co ₃ O ₄ Asymmetrically Deposited on a Single Carbon Cloth for an All-Solid-State Integrated Hybrid Device with Reversible Zinc-Air High-Energy Conversion and Asymmetric Supercapacitive High-Power Delivery. Energy & Fuels, 2021, 35, 12706-12717.	2.5	8
887	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	2.3	18
888	Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage. Applied Surface Science, 2021, 558, 149910.	3.1	16
889	Microcrystalline cellulose derived hierarchically porous nanocarbons via a template-free method for high performance supercapacitors. Diamond and Related Materials, 2021, 117, 108462.	1.8	7
890	Fabrication of Flexible Supercapacitor Using N-Doped Porous Activated Carbon Derived from Poultry Waste. Energy & Fuels, 2021, 35, 15094-15100.	2.5	26
891	Fabrication of rGO/CoSx-rGO/rGO hybrid film via coassembly and sulfidation of 2D metal organic framework nanoflakes and graphene oxide as free-standing supercapacitor electrode. Journal of Alloys and Compounds, 2021, 872, 159702.	2.8	29

#	Article	IF	CITATIONS
892	Progress in Iron Oxides Based Nanostructures for Applications in Energy Storage. Nanoscale Research Letters, 2021, 16, 138.	3.1	19
893	Physicochemical Approaches for Thin Film Energy Storage Devices through PVD Techniques. , 0, , .		0
894	AC Line Filter Electrochemical Capacitors: Materials, Morphology, and Configuration. Energy and Environmental Materials, 2022, 5, 1060-1083.	7.3	21
895	Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres. Journal of Materials Science, 2021, 56, 18147-18161.	1.7	15
896	Porous manganese dioxide nanosheets on modified graphite felt for cathodes in high-capacity flexible Zinc-MnO2 batteries. Vacuum, 2021, 191, 110353.	1.6	10
897	Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte. Nature Communications, 2021, 12, 5515.	5.8	13
898	Polyaniline nanowire arrays oriented on the functionalized rGO/PEDOT/PP fabric substrate for high performance supercapacitors with mechanical flexibility. Synthetic Metals, 2021, 280, 116891.	2.1	4
899	Template assisted synthesis of porous termite nest-like manganese cobalt phosphide as binder-free electrode for supercapacitors. Electrochimica Acta, 2021, 393, 139060.	2.6	21
900	Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor. Journal of Energy Chemistry, 2021, 61, 489-496.	7.1	38
901	Two-dimensional Mg-doped MnO2@ carbon cloth nanosheets for high performance typical flexible solid supercapacitor. Journal of Alloys and Compounds, 2021, 877, 160243.	2.8	34
902	Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. Journal of Colloid and Interface Science, 2021, 600, 586-593.	5.0	32
903	Recent trends in transition metal diselenides (XSe2: XÂ=ÂNi, Mn, Co) and their composites for high energy faradic supercapacitors. Journal of Energy Storage, 2021, 43, 103176.	3.9	57
904	MnO2/carbon nanotube-embedded carbon nanofibers as core–shell cables for high performing asymmetric flexible supercapacitors. Journal of Industrial and Engineering Chemistry, 2021, 103, 142-153.	2.9	20
905	Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics. Renewable and Sustainable Energy Reviews, 2021, 151, 111595.	8.2	20
906	Electrochemically grown highly crystalline single-phase Ni3P superstructure accelerating ionic diffusion in rechargeable Ni–Zn battery. Journal of Power Sources, 2021, 512, 230527.	4.0	16
907	Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chemical Engineering Journal, 2021, 423, 130203.	6.6	60
908	A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte. Journal of Alloys and Compounds, 2021, 888, 161554.	2.8	40
909	Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chemical Engineering Journal, 2021, 426, 131274.	6.6	2

#	ARTICLE	IF	CITATIONS
910	Ti3C2T MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chemical Engineering Journal, 2022, 429, 132232.	6.6	20
911	Rational design of A-CNTs/KxMnO2 and Ti3C2Tx/MoO3 free-standing hybrid films for flexible asymmetric supercapacitor. Chemical Engineering Journal, 2022, 428, 131138.	6.6	31
912	Paper-based nanosensors for smart manufacturing. , 2021, , 517-532.		1
913	Carbon Nanocages//Tungsten Trioxide Nanorods Supercapacitors with <i>in situ</i> Polymerized Gel Electrolytes. Acta Chimica Sinica, 2021, 79, 755.	0.5	2
914	Comparing Graphite and Graphene Oxide Supercapacitors with a Constant Potential Model. Journal of Physical Chemistry C, 2021, 125, 2318-2326.	1.5	13
915	Supercapacitive behaviour of a novel nanocomposite of 3,4,9,10-perylenetetracarboxylic acid incorporated captopril-Ag nanocluster decorated on graphene nanosheets. Materials Advances, 2021, 2, 1358-1368.	2.6	6
916	Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. Journal of Materials Chemistry A, 2021, 9, 14233-14264.	5.2	55
917	Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors. Nanoscale, 2021, 13, 3079-3091.	2.8	24
918	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
919	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 2020, 4, 1900824.	4.6	56
920	MXenes for Supercapacitor Application. , 2019, , 349-365.		3
921	Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors. Carbon Nanostructures, 2019, , 1-48.	0.1	4
922	Design and fabrication of high performance supercapacitor with cellulosic paper electrode and plant-derived redox active molecules. Carbohydrate Polymers, 2020, 244, 116442.	5.1	20
923	Carbon Nanofibers Cross-Linked and Decorated with Graphene Quantum Dots as Binder-Free Electrodes for Flexible Supercapacitors. Journal of Physical Chemistry C, 2021, 125, 143-151.	1.5	10
924	In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light: Science and Applications, 2018, 7, 34.	7.7	129
925	Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23059-23095.	5.2	151
926	Improved chemical precipitation prepared rapidly NiCo2S4 with high specific capacitance for supercapacitors. Nanotechnology, 2021, 32, 085604.	1.3	9
927	Transition Metal Dichalcogenides in energy applications. , 2018, , 176-196.		1

#	Article	IF	Citations
928	Preparation of Material Based on Biochar - MnOx, Its Morphology, Thermal Stability and Phytotoxicity. Transactions of the VÅB: Technical University of Ostrava, Safety Engineering Series, 2018, 13, 21-28.	0.1	2
929	Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials, 2021, 11, 3.	1.9	15
930	Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications. Journal of Electrochemical Science and Technology, 2017, 8, 314-322.	0.9	3
931	Construction of 3D CrN@nitrogen-doped carbon nanosheet arrays by reactive magnetron sputtering for the free-standing electrode of supercapacitor. Nanotechnology, 2022, 33, 055402.	1.3	6
932	Nucleotideâ€Tackified Organohydrogel Electrolyte for Environmentally Selfâ€Adaptive Flexible Supercapacitor with Robust Electrolyte/Electrode Interface. Small, 2021, 17, e2103091.	5.2	43
933	Dense (non-hollow) carbon nanospheres: synthesis and electrochemical energy applications. Materials Today Nano, 2021, 16, 100147.	2.3	11
934	Ultrastable Na-TiS2 battery enabled by in situ construction of gel polymer electrolyte. Journal of Power Sources, 2021, 516, 230653.	4.0	4
935	Hierarchical MCo2O4@Ni(OH)2 (MÂ=ÂZn or Mn) core@shell architectures as electrode materials for asymmetric solid-state supercapacitors. Journal of Energy Storage, 2021, 44, 103345.	3.9	8
936	Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 028201.	0.2	1
937	Optimized Hybrid Mn3O4 Nanofiber/rGO Paper for High Performance Flexible ASCs. Springer Theses, 2018, , 75-90.	0.0	0
939	Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper for Flexible Supercapacitors. Springer Theses, 2018, , 91-104.	0.0	0
940	Graphene-Based Materials for Flexible Supercapacitors. Engineering Materials, 2020, , 297-326.	0.3	2
941	Fiber-shaped micro-supercapacitors. , 2022, , 257-271.		1
942	Bioenergy-Byproducts Based Electrodes for Flexible Supercapacitors. Clean Energy Production Technologies, 2020, , 437-464.	0.3	0
943	Recent Advancements of Supercapacitor Electrode Materials Derived From Agriculture Waste Biomass. , 2022, , 382-397.		5
944	Stretchable supercapacitors: Electrodes, electrolytes, and devices. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178801.	0.2	1
945	Flexible micro-supercapacitors fabricated from MnO2 nanosheet/graphene composites with black phosphorus additive. Progress in Natural Science: Materials International, 2022, 32, 10-19.	1.8	16
946	3D Printing for Solidâ€&tate Energy Storage. Small Methods, 2021, 5, e2100877.	4.6	24

#	Article	IF	CITATIONS
947	Metal-organic framework-based materials for flexible supercapacitor application. Coordination Chemistry Reviews, 2022, 452, 214300.	9.5	112
948	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
949	Recent advances on quasi-solid-state electrolytes for supercapacitors. Journal of Energy Chemistry, 2022, 67, 697-717.	7.1	46
950	Controlled Preparation of Zn–Co–S Nanosheet Arrays for High-Performance All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2021, 4, 13803-13810.	2.5	9
951	Rational ratio of quinoid imine to benzenoid amine via in situ doping with gold nanoparticles for electrochemically activation of polyaniline. Journal of Materials Science: Materials in Electronics, 2022, 33, 2138-2151.	1.1	0
952	Two-Dimensional Metal–Organic Framework Nanosheets Grown on Carbon Fiber Paper Interwoven with Polyaniline as an Electrode for Supercapacitors. Energy & Fuels, 2021, 35, 19818-19826.	2.5	22
953	Network-like FeNb2O6 nanostructures on flexible carbon cloth as a binder-free electrode for aqueous supercapacitors. Journal of Alloys and Compounds, 2022, 896, 162986.	2.8	5
954	A Flexible and Transparent Zincâ€Nanofiber Network Electrode for Wearable Electrochromic, Rechargeable Znâ€lon Battery. Small, 2022, 18, e2104462.	5.2	50
955	Highly flexible and high energy density fiber supercapacitors based upon spiral silk composite membranes encapsulation. Electrochimica Acta, 2022, 404, 139611.	2.6	5
956	Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.	2.5	5
957	Self-assembled polypyrrole nanotubes/MoS ₂ quantum dots for high performance solid state flexible symmetric supercapacitors. Sustainable Energy and Fuels, 2021, 5, 6338-6351.	2.5	5
958	Mesoporous carbon rods capable of fast transport of axial electrons and radial ions for ultra-thick supercapacitor electrodes. Electrochimica Acta, 2022, 404, 139768.	2.6	7
959	Sodium tungsten oxide nanowires-based all-solid-state flexible transparent supercapacitors with solar thermal enhanced performance. Chemical Engineering Journal, 2022, 431, 134086.	6.6	7
960	Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life. Chemical Engineering Journal, 2022, 431, 134100.	6.6	19
961	Water-based asymmetric supercapacitors with 2.5ÂV wide potential and high energy density based on Na0.6CoO2 nanoarray formed via electrochemical oxidation. Carbon, 2022, 189, 81-92.	5.4	19
962	Cotton Fibers/PVA Based Neutral Hydrogel with Internal Cross-Linking as Electrolyte for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
963	Route to a Porous Carbon Nanofiber Membrane Containing Fe _{<i>x</i>} C _{<i>y</i>} /Fe by Facile In Situ Ion-Exchange Functionalization of the PAA Carboxyl Group: Exemplified by a Supercapacitor. ACS Applied Energy Materials, 2022, 5, 1580-1594.	2.5	9
964	All-in-one flexible supercapacitor with ultrastable performance under extreme load. Science Advances, 2022, 8, eabl8631.	4.7	55

#	Article	IF	CITATIONS
965	Review of poly (methyl methacrylate) based polymer electrolytes in solid-state supercapacitors. International Journal of Electrochemical Science, 2022, 17, 22013.	0.5	17
966	Gamma(É£)-MnO2/rGO Fibered Cathode Fabrication from Wet Spinning and Dip Coating Techniques for Cable-Shaped Zn-Ion Batteries. Advanced Fiber Materials, 2022, 4, 457-474.	7.9	27
967	Glycine based auto-combustion synthesis of ZnO nanoparticles as electrode material for supercapacitor. Physica Scripta, 0, , .	1.2	0
968	Attaining remarkable switching speed of nickel oxide-based electrode for electrochromic energy storage devices. Surfaces and Interfaces, 2022, 29, 101792.	1.5	4
969	Nanostrucutured MnO2-TiN nanotube arrays for advanced supercapacitor electrode material. Scientific Reports, 2022, 12, 2088.	1.6	3
970	All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte. Journal of Energy Storage, 2022, 49, 104178.	3.9	7
971	Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy and Environmental Science, 2022, 15, 2233-2258.	15.6	76
974	Enhancement of polypyrrole nanotubes stability by gold nanoparticles for the construction of flexible solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2022, 911, 116212.	1.9	10
975	Highly stable fish-scale derived lamellar carbon for high performance supercapacitor application. Diamond and Related Materials, 2022, 124, 108925.	1.8	16
976	Redox-active Hexaazatriphenylene@MXene composite for high-performance flexible proton batteries. Composites Part B: Engineering, 2022, 235, 109750.	5.9	21
977	A novel moss-like 3D Ni-MOF for high performance supercapacitor electrode material. Journal of Solid State Chemistry, 2022, 309, 122994.	1.4	18
978	An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor. Journal of Energy Storage, 2022, 50, 104231.	3.9	24
979	Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives. Journal of Energy Storage, 2022, 50, 104223.	3.9	47
980	A super-stretchable and thermally stable hydrogel electrolyte for high performance supercapacitor with wide operation temperature. Journal of Alloys and Compounds, 2022, 909, 164646.	2.8	6
981	Ions Transport in Electrochemical Energy Storage Devices at Low Temperatures. Advanced Functional Materials, 2022, 32, .	7.8	24
982	Supercapacitance/Resistance Behaviors of Helminth Eggs as Reliable Recognition and Direct Differentiation Probe. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782380.	2.0	1
983	Recent advances in solidâ€state supercapacitors: From emerging materials to advanced applications. International Journal of Energy Research, 2022, 46, 10389-10452.	2.2	16
984	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	1.9	9

#	Article	IF	CITATIONS
986	Lignin-Inspired Hydrogel Matrixes with Adhesion and Toughness for All-Hydrogel Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
987	Two-in-one template-assisted construction of hollow phosphide nanotubes for electrochemical energy storage. Inorganic Chemistry Frontiers, 0, , .	3.0	1
988	Flexible carbon nanofiber yarn electrodes for self-standing fiber supercapacitors. Journal of Industrial Textiles, 2022, 51, 4254S-4267S.	1.1	11
989	Layer-by-Layer Self-Assembled TEMPO-Oxidized Cellulose Nanofiber/Reduced Graphene Oxide/Polypyrrole Films for Self-Supporting Flexible Supercapacitor Electrodes. ACS Applied Nano Materials, 2022, 5, 6305-6315.	2.4	16
990	Enhanced supercapacitor performance of Bi2O3 by Mn doping. Journal of Alloys and Compounds, 2022, 914, 165258.	2.8	20
991	Ionic Liquidâ€Based Redox Active Electrolytes for Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	40
992	Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chemical Engineering Journal, 2022, 446, 137032.	6.6	9
993	Biochar electrocatalysts for clean energy applications. , 2022, , 333-343.		0
995	Carbon Nanotube-Functionalized Surface-Assisted Growth of Cobalt Phosphate Nanodots: A Highly Stable and Bendable All-Solid-State Symmetric Supercapacitor. Energy & Fuels, 2022, 36, 5953-5964.	2.5	14
996	Synthesis and characterization of cellulose hydrogel/graphene oxide/polyaniline composite for highâ€performing supercapacitors. International Journal of Energy Research, 2022, 46, 13844-13854.	2.2	2
997	Constructing two dimensional composite nanosheets with montmorillonite and graphene-like carbon: Towards high-rate-performance PVA based gel polymer electrolytes for quasi-solid-state supercapacitors. Materials Chemistry and Physics, 2022, 287, 126333.	2.0	4
998	Construction of 3d Porous Carbon Framework for Supercapacitors: Abundant Pore Structure and Proper Hydrophilicity. SSRN Electronic Journal, 0, , .	0.4	0
999	Cotton Fibers/Pva Based Neutral Hydrogel with Al3+ as Electrolyte Additive for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1000	Fibrous asymmetric supercapacitor based on wet spun MXene/PAN Fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chemical Engineering Journal, 2022, 449, 137732.	6.6	44
1001	Battery-like flexible supercapacitors from vertical 3D diamond/graphite composite films on carbon cloth. Carbon, 2022, 197, 400-407.	5.4	7
1002	Microsupercapacitive Stone Module for Natural Energy Storage. ACS Nano, 2022, 16, 11708-11719.	7.3	4
1003	Hydrothermal development of a novel NiO/rGO nanocomposites for dual supercapacitor and photocatalytic applications. Materials Chemistry and Physics, 2022, 289, 126425.	2.0	6
1004	Enhanced Reaction Kinetics of N–MnO ₂ Nanosheets with Oxygen Vacancies via Mild NH ₃ ·H ₂ O Bath Treatment for Advanced Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7490-7502.	2.5	12

#	Article	IF	CITATIONS
1005	Glycol-assisted Cu-doped ZnS polyhedron-like structure as binder-free novel electrode materials. Journal of Saudi Chemical Society, 2022, 26, 101510.	2.4	12
1006	Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review. Journal of Energy Storage, 2022, 52, 104937.	3.9	61
1007	Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. Inorganic Chemistry Communication, 2022, 142, 109648.	1.8	9
1008	Preparation of a multifunctional organogel and its electrochemical properties. Soft Matter, 2022, 18, 5166-5170.	1.2	7
1009	Ï€-Conjugated polymeric materials for cutting-edge electrochemical energy storage devices. , 2022, , 145-173.		0
1010	Ultra-thin flexible paper of BNNT–CNF/ZnO ternary nanostructure for enhanced solid-state supercapacitor and piezoelectric response. Journal of Materials Chemistry A, 2022, 10, 15580-15594.	5.2	19
1011	Conjugated polymer-based electrodes for flexible all-solid-state supercapacitors. , 2022, , 243-281.		0
1012	Selfâ€Healing and Shapeâ€Editable Wearable Supercapacitors Based on Highly Stretchable Hydrogel Electrolytes. Advanced Science, 2022, 9, .	5.6	41
1013	Recent progress in electrospun nanomaterials for wearables. APL Bioengineering, 2022, 6, 021505.	3.3	13
1014	Se-doped nickel-cobalt sulfide nanotube arrays with 3D networks for high-performance hybrid supercapacitor. Ceramics International, 2022, 48, 30536-30545.	2.3	8
1015	Ordered Interface Engineering Enabled High-Performance		11
	Ti ₃ C ₂ T _{<i>x</i>} MXene Fiber-Based Supercapacitors. Energy & Fuels, 2022, 36, 7898-7907.	2.5	
1016		2.5 1.6	2
1016	Fuels, 2022, 36, 7898-7907. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a		
	 Fuels, 2022, 36, 7898-7907. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. Langmuir, 2022, 38, 8614-8622. Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel 	1.6	2
1017	 Fuels, 2022, 36, 7898-7907. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. Langmuir, 2022, 38, 8614-8622. Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025. Construction and Electrochemical Properties ofÂSolidâ€state Supercapacitors with Redox Additives. 	1.6 6.6	2 22
1017 1018	 Fuels, 2022, 36, 7898-7907. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. Langmuir, 2022, 38, 8614-8622. Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025. Construction and Electrochemical Properties ofÂSolidâ€state Supercapacitors with Redox Additives. Chemistry - an Asian Journal, 0, , . Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid 	1.6 6.6 1.7	2 22 0
1017 1018 1019	 Fuels, 2022, 36, 7898-7907. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. Langmuir, 2022, 38, 8614-8622. Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025. Construction and Electrochemical Properties ofÂSolidâ€state Supercapacitors with Redox Additives. Chemistry - an Asian Journal, 0, , . Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid supercapacitor with high volumetric energy density. Carbon, 2022, 198, 252-263. Self-Supporting Lignin-Based Carbon Material Flexible Supercapacitor Prepared by the Microwave 	1.6 6.6 1.7 5.4	2 22 0 7

#	Article	IF	CITATIONS
1023	Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers, 2022, 14, 3433.	2.0	28
1024	Research Progress on MXene-Based Flexible Supercapacitors: A Review. Crystals, 2022, 12, 1099.	1.0	6
1025	Electrochemical performance of zinc-based metal-organic framework with reduced graphene oxide nanocomposite electrodes for supercapacitors. Synthetic Metals, 2022, 290, 117155.	2.1	16
1026	In-situ polymerized polyacrylamide/magnesium phosphate cement electrolyte for structural supercapacitor. Journal of Energy Storage, 2022, 55, 105416.	3.9	5
1027	Preparation and Electrochemical Properties of Conjugated Polymers with Carbazole Unit as Side Chain Terminal Group for Supercapacitor Electrodes. International Journal of Electrochemical Science, 0, , ArticleID:221049.	0.5	1
1028	The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606, 154817.	3.1	20
1029	Role of Mo doping and the interfacial interaction mechanism of Ni–Mo–S electrodes: experimental and computational study. Physical Chemistry Chemical Physics, 2022, 24, 21688-21696.	1.3	0
1030	Wearable Supercapacitors. Engergy Systems in Electrical Engineering, 2022, , 285-325.	0.5	0
1031	Lamellar structured Ni ₃ P ₂ O ₈ : first-ever use to design 1.8 V operated flexible all-solid-state symmetric supercapacitor. Dalton Transactions, 2022, 51, 13878-13891.	1.6	1
1032	A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors. Journal of Energy Chemistry, 2023, 76, 41-50.	7.1	9
1033	Tailoring molecular interaction in heteronetwork polymer electrolytes for stretchable, high-voltage fiber supercapacitors. Chemical Engineering Journal, 2023, 452, 139432.	6.6	5
1034	Carboxylated graphene oxide nanosheets as efficient electrodes for high-performance supercapacitors. Frontiers in Chemistry, 0, 10, .	1.8	0
1036	Recent advances in flexible supercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 2627-2658.	1.2	11
1037	Fiber-Based Materials for Aqueous Zinc Ion Batteries. Advanced Fiber Materials, 2023, 5, 36-58.	7.9	36
1038	Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes. Electrochimica Acta, 2022, 434, 141311.	2.6	9
1039	Recent advances on the utilization of nanosheets as electrode material for supercapacitor application. Journal of Energy Storage, 2022, 55, 105697.	3.9	9
1040	Biopolymer Based Materials as Alternative Greener Binders for Sustainable Electrochemical Energy Storage Applications. ChemistrySelect, 2022, 7, .	0.7	6
1041	MXene Based Electrospun Polymer Electrolyte fibers: Fabrication and Enhanced Ionic Conductivity. ChemistrySelect, 2022, 7, .	0.7	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1042	Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review. Energies, 20	22, 15, 7276.	1.6	0
1043	Titanium carbide@Poly (3,4-propylenedioxythiophene) composite as electrode for asyr supercapacitors. Ceramics International, 2023, 49, 5409-5418.	nmetric flexible	2.3	7
1044	All-solid-state, self-powered supercapacitors: State-of-the-art and future perspectives. J Energy Storage, 2022, 56, 105882.	ournal of	3.9	14
1045	Enhanced electrochromic capacity performances of hierarchical MnO2-polyaniline/PED nanowires cathode for flexible and rechargeable electrochromic Zn-Ion battery. Chemic Engineering Journal, 2023, 452, 139555.		6.6	27
1046	Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Ba Nanomaterials, 2022, 12, 3997.	itteries (FZIBs).	1.9	14
1047	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication applications. , 2023, 5, .	designs, and		26
1048	Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supe Chemical Engineering Journal, 2023, 454, 140386.	rcapacitors.	6.6	3
1049	Fabrication, properties, and performance of graphene-based textile fabrics for supercap applications: A review. Journal of Energy Storage, 2022, 56, 105988.	pacitor	3.9	12
1050	In-situ grown of FeCo2O4 @ 2D-Carbyne coated nickel foam - A newer nanohybrid elec performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56, 10594		3.9	9
1051	Solid polymer electrolyte membranes using the "polymer-in-ceramic―approach fo supercapacitor applications. Solid State Ionics, 2022, 387, 116063.	r all-solid-state	1.3	5
1052	In Situ Polymerization of Xanthan/Acrylamide for Highly Ionic Conductive Gel Polymer I with Unique Interpenetrating Network. ACS Applied Polymer Materials, 2022, 4, 9241-	Electrolytes 9249.	2.0	2
1053	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023	. 10, 670-697.	6.4	13
1054	Ni3P2O8 nanodots anchored multiwalled carbon nanotubes composite for flexible all-s symmetric supercapacitor. Journal of Energy Storage, 2023, 58, 106396.	olid-state	3.9	7
1055	Design of in-situ grown copper-based bimetallic phosphide electrode materials for effic storage. Journal of Energy Storage, 2023, 59, 106398.	ient energy	3.9	2
1056	Application of GO anchored mediator in a polymer electrolyte membrane for high-rate supercapacitors. Journal of Membrane Science, 2023, 669, 121285.	solid-state	4.1	1
1057	Nitrogenous MOFs and their composites as high-performance electrode material for su Recent advances and perspectives. Coordination Chemistry Reviews, 2023, 478, 2149		9.5	17
1058	Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chem Engineering Journal, 2023, 455, 140546.	lical	6.6	6
1059	Flexible supercapacitors toward wearable energy storage devices. Bulletin of the Korea Society, 2023, 44, 125-136.	n Chemical	1.0	3

#	Article	IF	CITATIONS
1060	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€lon Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
1061	Sustainable and Flexible Energy Storage Devices: A Review. Energy & Fuels, 2023, 37, 74-97.	2.5	16
1062	Integrated Gas Diffusion Electrode with High Conductivity Obtained by Skin Electroplating for High Specific Power Density Fuel Cell. Small Methods, 2023, 7, .	4.6	4
1063	Nanocellulose-based electrodes and separator toward sustainable and flexible all-solid-state supercapacitor. International Journal of Biological Macromolecules, 2023, 228, 467-477.	3.6	12
1064	Flexible All-Solid-State Asymmetric Supercapacitor Based on In Situ-Grown Bimetallic Metal Sulfides/Ti3C2Tx MXene Nanocomposite on Carbon Cloth Via a Facile Hydrothermal Method. Journal of Electronic Materials, 2023, 52, 1668-1680.	1.0	6
1065	Wearable and Flexible Allâ€Solidâ€State Supercapacitor Based on MXene and Chitin. Energy Technology, 2023, 11, .	1.8	7
1066	Recent developments in MoS2-based flexible supercapacitors. Materials Today Chemistry, 2023, 27, 101333.	1.7	8
1067	An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, , .	2.9	2
1068	Cotton Fiber/PVA-Based Neutral Hydrogel with Al ³⁺ as an Electrolyte Additive for High-Performance Supercapacitors. ACS Applied Energy Materials, 2023, 6, 644-656.	2.5	9
1069	Nitrogen-doped Ti3C2Tx MXene prepared by thermal decomposition of ammonium salts and its application in flexible quasi-solid-state supercapacitor. Chemical Engineering Journal, 2023, 458, 141338.	6.6	18
1070	The fabrication of Co3S4/NF@NiCo-LDH nanocomposites for integrated all-solid-state asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2023, 930, 117154.	1.9	2
1071	A comprehensive review of hybrid supercapacitor from transition metal and industrial crop based activated carbon for energy storage applications. Materials Today Communications, 2023, 34, 105207.	0.9	9
1072	RuO2-decorated CsxWO3 composite nanorods as transparent photothermal negative electrode material for enhancing supercapacitor performance in acid electrolyte. Composites Part B: Engineering, 2023, 252, 110497.	5.9	3
1073	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	7.8	66
1074	Recent advances in microsupercapacitors: material design, system construction, and applications. , 2023, , 559-584.		0
1075	Binder-Free Supercapacitors Based on Thin Films of MWCNT/GO Nanohybrids: Computational and Experimental Analysis. Catalysts, 2023, 13, 235.	1.6	3
1076	Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Letters, 2023, 15, .	14.4	34
1077	Improving Interfaces in All-Solid-State Supercapacitors Using Polymer-Added Activated Carbon Electrodes. Batteries, 2023, 9, 81.	2.1	2

# 1078	ARTICLE Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.	IF	CITATIONS
1079	Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Materials Science in Semiconductor Processing, 2023, 158, 107366.	1.9	22
1080	All-in-one integration of polyaniline-polyvinyl alcohol electrode/electrolyte interface for tailorable solid-state supercapacitors. Journal of Energy Storage, 2023, 61, 106701.	3.9	9
1081	Metal–organic framework and MXene-based flexible supercapacitors. , 2023, , 299-324.		0
1082	0D, 1D, 2D, and 3D Structured Chalcogenides for Supercapacitor Applications. , 2023, , 1-52.		0
1083	3D Printed Lattice Template by Material Extrusion Technique for Fabrication of Pixelated Photodetector. 3D Printing and Additive Manufacturing, 2023, 10, 1394-1404.	1.4	1
1084	Enhanced electrochemical performance of CuCo2O4 nanowire arrays based solid-state symmetric supercapacitor by K3[Fe(CN)6] redox additive electrolyte. Journal of Energy Storage, 2023, 63, 106945.	3.9	5
1085	Effect of variation of metals in quaternary metal oxide based electrodes on carbon fiber for super capacitor application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116350.	1.7	2
1086	Hierarchical NiMn-LDH Hollow Spheres as a Promising Pseudocapacitive Electrode for Supercapacitor Application. Micromachines, 2023, 14, 487.	1.4	4
1087	Bubble Up Induced Graphene Microspheres for Engineering Capacitive Energy Storage. Advanced Energy Materials, 2023, 13, .	10.2	6
1088	Sphere-like Naphthalene-Based Microporous Nickel Phosphonate Facile for Asymmetric Supercapacitor Devices and Bifunctional Oxygen Electrocatalysts. ACS Applied Energy Materials, 2023, 6, 3347-3356.	2.5	6
1089	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Materials, 2023, 58, 48-73.	9.5	8
1090	Performance of a PANI/MnO ₂ Nanocomposite-Based Supercapacitor/Diode Under DC Magnetic Field and Visible and Ultraviolet Photon Irradiation. ECS Journal of Solid State Science and Technology, 2023, 12, 033004.	0.9	2
1091	High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Research, 2023, 16, 7696-7709.	5.8	16
1092	Construction of indigenous tin incorporated nickel dichalcogenide nanosheets for high energy all solid-state hybrid supercapacitor. Composites Part B: Engineering, 2023, 260, 110747.	5.9	2
1118	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
1127	Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Metals, 2024, 43, 431-454.	3.6	2
1134	Nature-inspired Green Supercapacitors: Advantages and Limitations. , 2023, , 291-325.		0

ARTICLE

IF CITATIONS