Gene Editing of<i>CCR5</i>in Autologous CD4 T Cells o

New England Journal of Medicine 370, 901-910

DOI: 10.1056/nejmoa1300662

Citation Report

#	Article	IF	CITATIONS
1	Gene/Cell Therapy Approaches for Immune Dysregulation Polyendocrinopathy Enteropathy X-Linked Syndrome. Current Gene Therapy, 2014, 14, 422-428.	2.0	19
2	Tackling HIV: Genetic vs. Immune CCR5 targeting. Journal of AIDS & Clinical Research, 2014, 05, .	0.5	1
3	Preface:. Current Gene Therapy, 2014, 15, 1-2.	2.0	0
4	International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reproductive Biology and Endocrinology, 2014, 12, 108.	3.3	108
5	CCR5 Gene Editing of Resting CD4+ T Cells by Transient ZFN Expression From HIV Envelope Pseudotyped Nonintegrating Lentivirus Confers HIV-1 Resistance in Humanized Mice. Molecular Therapy - Nucleic Acids, 2014, 3, e198.	5.1	45
7	HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies. Viruses, 2014, 6, 1715-1758.	3.3	61
8	A Quantitative Comparison of Anti-HIV Gene Therapy Delivered to Hematopoietic Stem Cells versus CD4+ T Cells. PLoS Computational Biology, 2014, 10, e1003681.	3.2	15
9	Engineered TAL Effector modulators for the large-scale gain-of-function screening. Nucleic Acids Research, 2014, 42, e114-e114.	14.5	6
10	HIV-associated non-Hodgkin lymphoma: viral origins and therapeutic options. Hematology American Society of Hematology Education Program, 2014, 2014, 584-589.	2.5	14
11	Regenerating blood: towards engineering HIV-1-resistant hematopoietic stem cells. Regenerative Medicine, 2014, 9, 705-707.	1.7	O
12	Targeted gene therapy and cell reprogramming in <scp>F</scp> anconi anemia. EMBO Molecular Medicine, 2014, 6, 835-848.	6.9	66
13	Notable advances 2014. Nature Medicine, 2014, 20, 1368-1369.	30.7	0
14	Engineering the Human Genome: Reflections on the Beginning. Human Gene Therapy, 2014, 25, 395-400.	2.7	0
15	Progress and prospects for engineered <scp>T</scp> cell therapies. British Journal of Haematology, 2014, 166, 818-829.	2.5	14
16	Genome Engineering in Human Cells. Methods in Enzymology, 2014, 546, 93-118.	1.0	13
17	Determining the Specificities of TALENs, Cas9, and Other Genome-Editing Enzymes. Methods in Enzymology, 2014, 546, 47-78.	1.0	59
18	Targeting Both Viral and Host Determinants of Human Immunodeficiency Virus Entry, Using a New Lentiviral Vector Coexpressing the T20 Fusion Inhibitor and a Selective CCL5 Intrakine. Human Gene Therapy Methods, 2014, 25, 232-240.	2.1	7
19	Genome-Wide Association Study of Human Immunodeficiency Virus (HIV)-1 Coreceptor Usage in Treatment-Naive Patients from An AIDS Clinical Trials Group Study. Open Forum Infectious Diseases, 2014, 1, ofu018.	0.9	7

#	Article	IF	CITATIONS
20	Human Immunodeficiency Viruses Types 1 and 2., 2014, , 1001-1062.		0
21	An HIV Cure. JAMA - Journal of the American Medical Association, 2014, 312, 335.	7.4	28
22	Challenges in HIV Vaccine Research for Treatment and Prevention. Frontiers in Immunology, 2014, 5, 417.	4.8	52
23	Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors. Pharmaceuticals, 2014, 7, 1049-1068.	3.8	21
24	Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions. Expert Review of Anti-Infective Therapy, 2014, 12, 1187-1201.	4.4	18
25	TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research, 2014, 42, 6762-6773.	14.5	165
26	HIV eradicationâ€"from Berlin to Boston. Nature Biotechnology, 2014, 32, 315-316.	17.5	14
27	Engineering Cellular Resistance to HIV. New England Journal of Medicine, 2014, 370, 968-969.	27.0	8
28	Natural selection and infectious disease in human populations. Nature Reviews Genetics, 2014, 15, 379-393.	16.3	353
29	HIV treatment study clears virus, sends Sangamo stock soaring. Nature Biotechnology, 2014, 32, 405-405.	17.5	1
30	Endonucleases: new tools to edit the mouse genome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1942-1950.	3.8	56
31	Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510, 235-240.	27.8	517
32	A cure for HIV: is it in sight?. Expert Review of Anti-Infective Therapy, 2014, 12, 783-791.	4.4	22
33	Toward Synthetic Biology with Engineered T Cells: A Long Journey Just Begun. Human Gene Therapy, 2014, 25, 779-784.	2.7	8
34	Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15, 643-652.	11.1	406
35	Genome Editing for Human Gene Therapy. Methods in Enzymology, 2014, 546, 273-295.	1.0	17
36	Site-specific host gene modification by zinc finger nucleases: pointing the way to drug free control of HIV-1?. Clinical and Translational Immunology, 2014, 3, e19.	3.8	3
37	Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Research, 2014, 42, e147-e147.	14.5	301

#	Article	IF	CITATIONS
38	TALEN Knockout of the <i>PSIP1</i> Gene in Human Cells: Analyses of HIV-1 Replication and Allosteric Integrase Inhibitor Mechanism. Journal of Virology, 2014, 88, 9704-9717.	3.4	63
39	Epigenetic Mechanisms Underlying the Pathogenesis of Neurogenetic Diseases. Neurotherapeutics, 2014, 11, 708-720.	4.4	14
40	Zinc Finger Nucleases Targeting the Human Papillomavirus <i>E7</i> Oncogene Induce <i>E7</i> Disruption and a Transformed Phenotype in HPV16/18-Positive Cervical Cancer Cells. Clinical Cancer Research, 2014, 20, 6495-6503.	7.0	49
41	Decreased HIV Type 1 Transcription in CCR5-î"32 Heterozygotes During Suppressive Antiretroviral Therapy. Journal of Infectious Diseases, 2014, 210, 1838-1843.	4.0	11
42	Genome engineering: the next genomic revolution. Nature Methods, 2014, 11, 1009-1011.	19.0	26
43	Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nature Reviews Microbiology, 2014, 12, 750-764.	28.6	247
44	Synthetic biology and therapeutic strategies for the degenerating brain. BioEssays, 2014, 36, 979-990.	2.5	23
45	RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11461-11466.	7.1	475
46	Shift of HIV Tropism in Stem-Cell Transplantation with <i>CCR5</i> Delta32 Mutation. New England Journal of Medicine, 2014, 371, 880-882.	27.0	144
47	Towards a cure for HIV—are we making progress?. Lancet, The, 2014, 384, 209-211.	13.7	25
48	Translational strategies and challenges in regenerative medicine. Nature Medicine, 2014, 20, 814-821.	30.7	166
49	Targeted genome regulation and modification using transcription activatorâ€like effectors. FEBS Journal, 2014, 281, 4583-4597.	4.7	15
50	Genome Editing: A Tool For Research and Therapy: Towards a functional understanding of variants for molecular diagnostics using genome editing. Nature Medicine, 2014, 20, 1103-1104.	30.7	14
51	Genome Editing: A Tool For Research and Therapy: Targeted genome editing hits the clinic. Nature Medicine, 2014, 20, 1101-1103.	30.7	22
53	Opportunity for Selection in Human Health. Advances in Genetics, 2014, 87, 1-70.	1.8	5
54	Gene editing: how to stay on-target with CRISPR. Nature Methods, 2014, 11, 1021-1026.	19.0	14
55	DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum. Microbiology and Molecular Biology Reviews, 2014, 78, 469-486.	6.6	88
56	Targeting CCR5 for anti-HIV research. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1881-1887.	2.9	8

#	Article	IF	Citations
57	"Much ado to achieve nothing: prospects for curing HIV infection― Molecular and Cellular Therapies, 2014, 2, 9.	0.2	0
58	Immunologic strategies for HIV-1 remission and eradication. Science, 2014, 345, 169-174.	12.6	193
59	The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opinion on Drug Discovery, 2014, 9, 847-858.	5.0	11
60	CRISPR technology for gene therapy. Nature Medicine, 2014, 20, 476-477.	30.7	17
61	Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9591-9596.	7.1	296
62	Translating the Genomic Revolution — Targeted Genome Editing in Primates. New England Journal of Medicine, 2014, 370, 2342-2345.	27.0	20
63	Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 2014, 157, 1262-1278.	28.9	4,607
64	Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of Clinical Investigation, 2014, 124, 4154-4161.	8.2	369
65	Finding a Cure for HIV: Much Work to Do. Annals of Internal Medicine, 2014, 161, 368.	3.9	5
66	How viruses use the immune system to promote infection of polarized cells. Future Virology, 2014, 9, 655-663.	1.8	1
67	ã,²ãfŽãfç¨é›†æŠ€è¡"ãï勿œã™ãªãé‡è¦èª²é¡Œ. Kagaku To Seibutsu, 2014, 52, 836-840.	0.0	0
68	Engineered T cell therapies. Expert Reviews in Molecular Medicine, 2015, 17, e19.	3.9	5
69	Gene therapy: progress and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143003.	2.6	108
71	Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific Reports, 2015, 5, 15577.	3.3	172
72	In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood, 2015, 126, 1777-1784.	1.4	256
73	Ethics and germline gene editing. EMBO Reports, 2015, 16, 879-880.	4.5	46
74	ãf'ãf^ã®ç"Ÿæ®−ç³»å^—ã®ã,²ãfŽãfã,'ç∵é>†ã™ã₌ãã§ãªã•҉,. Nature Digest, 2015, 12, 25-27.	0.0	0
75	Don't edit the human germ line. Nature, 2015, 519, 410-411.	27.8	419

#	Article	IF	CITATIONS
76	Delivery of long-acting injectable antivirals. Current Opinion in Infectious Diseases, 2015, 28, 603-610.	3.1	12
77	SB-728-T. Reactions Weekly, 2015, 1565, 221-221.	0.0	0
78	Artificial Zinc Finger DNA Binding Domains: Versatile Tools for Genome Engineering and Modulation of Gene Expression. Journal of Cellular Biochemistry, 2015, 116, 2435-2444.	2.6	25
79	Viremic control and viral coreceptor usage in two HIV-1-infected persons homozygous for CCR5 î"32. Aids, 2015, 29, 867-876.	2.2	26
80	The need for treatment interruption studies and biomarker identification in the search for an HIV cure. Aids, 2015, 29, 1429-1432.	2.2	59
81	CrisprGE: a central hub of CRISPR/Cas-based genome editing. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav055.	3.0	32
82	Novel Approaches Based on Autologous Stem Cell Engineering and Gene- Modification; Evidence for the Cure of HIV/AIDS. Journal of Genetic Syndromes & Gene Therapy, 2015, 6, .	0.2	2
83	Perspectives of Genome-Editing Technologies for HIV Therapy. Current HIV Research, 2015, 14, 2-8.	0.5	3
84	Progress toward curing HIV infection with hematopoietic cell transplantation. Stem Cells and Cloning: Advances and Applications, 2015, 8, 109.	2.3	8
85	CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape. Viruses, 2015, 7, 4186-4203.	3.3	91
86	Single-Base Pair Genome Editing in Human Cells by Using Site-Specific Endonucleases. International Journal of Molecular Sciences, 2015, 16, 21128-21137.	4.1	10
87	Application of CRISPR/Cas9 Technology to HBV. International Journal of Molecular Sciences, 2015, 16, 26077-26086.	4.1	35
88	Leukaemia success heralds wave of gene-editing therapies. Nature, 2015, 527, 146-147.	27.8	44
89	A High Excision Potential of TALENs for Integrated DNA of HIV-Based Lentiviral Vector. PLoS ONE, 2015, 10, e0120047.	2.5	48
90	The therapeutic potential of genome editing for \hat{l}^2 -thalassemia. F1000Research, 2015, 4, 1431.	1.6	7
91	Second European Round Table on the Future Management of HIV. Journal of Virus Eradication, 2015, 1, 211-220.	0.5	3
92	The HIV cure research agenda: the role of mathematical modelling and cost-effectiveness analysis. Journal of Virus Eradication, 2015, 1, 245-249.	0.5	12
93	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-236.	0.5	6

#	Article	IF	Citations
95	Genome Editing of the Germline: Broadening the Discussion. Molecular Therapy, 2015, 23, 980-982.	8.2	29
96	Expanding the Biologist's Toolkit with CRISPR-Cas9. Molecular Cell, 2015, 58, 568-574.	9.7	351
97	Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 2015, 125, 2597-2604.	1.4	292
98	Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14057.	4.1	49
99	Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9. Molecules and Cells, 2015, 38, 475-481.	2.6	181
100	Towards an HIV-1 cure: measuring the latent reservoir. Trends in Microbiology, 2015, 23, 192-203.	7.7	177
101	Arresting the Colonial Destiny of Metastatic Seeds with DNA Aptamers. Molecular Therapy, 2015, 23, 982-984.	8.2	1
102	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	11.1	134
103	RNA interference approaches for treatment of HIV-1 infection. Genome Medicine, 2015, 7, 50.	8.2	69
104	Engineering Sequence-Specific DNA Binding Proteins for Antiviral Gene Editing. , 2015, , 63-94.		4
105	Gene Therapy for HIV-1 Infection. , 2015, , 227-279.		0
106	Antiviral Gene Therapy. , 2015, , 355-364.		2
107	Resistance to cellular HIV infection: Figure 1 Evolution, Medicine and Public Health, 2015, 2015, 204-204.	2.5	2
108	Your gut microbiome, deconstructed. Nature Biotechnology, 2015, 33, 1238-1240.	17.5	1
109	Patching up hematopoietic stem cells. Nature Biotechnology, 2015, 33, 1236-1238.	17.5	2
110	Disease: Closing the door on HIV. Nature, 2015, 528, S8-S9.	27.8	2
111	Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14429-14435.	7.1	281
112	CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Molecular Therapy - Nucleic Acids, 2015, 4, e268.	5.1	122

#	Article	IF	CITATIONS
113	Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy. Trends in Genetics, 2015, 31, 627-636.	6.7	111
114	Cell-Based Gene Therapy. , 2015, , 449-475.		0
115	The societal opportunities and challenges of genome editing. Genome Biology, 2015, 16, 242.	8.8	60
116	Towards a new era in medicine: therapeutic genome editing. Genome Biology, 2015, 16, 286.	8.8	52
117	Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates. Molecular Therapy, 2015, 23, 943-951.	8.2	21
118	Therapeutic genome editing: prospects and challenges. Nature Medicine, 2015, 21, 121-131.	30.7	1,042
119	Autograft HIV-DNA Load Predicts HIV-1 Peripheral Reservoir After Stem Cell Transplantation for AIDS-Related Lymphoma Patients. AIDS Research and Human Retroviruses, 2015, 31, 150-159.	1.1	6
120	Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nature Communications, 2015, 6, 6244.	12.8	383
121	Pluripotent Stem Cells and Gene Therapy. , 2015, , 11-26.		1
122	Delivering a disease-modifying treatment for Huntington's disease. Drug Discovery Today, 2015, 20, 50-64.	6.4	39
123	Genome editing-based HIV therapies. Trends in Biotechnology, 2015, 33, 172-179.	9.3	19
124	Stem Cell Gene Therapy for HIV: Strategies to Inhibit Viral Entry and Replication. Current HIV/AIDS Reports, 2015, 12, 79-87.	3.1	8
125	Targeted Genome Editing Using Site-Specific Nucleases., 2015,,.		7
126	CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, 2015, 52, 289-296.	3.2	150
127	Genome editing strategies: potential tools for eradicating HIV-1/AIDS. Journal of NeuroVirology, 2015, 21, 310-321.	2.1	39
128	Effect of therapeutic intensification followed by HIV DNA prime and rAd5 boost vaccination on HIV-specific immunity and HIV reservoir (EraMune 02): a multicentre randomised clinical trial. Lancet HIV,the, 2015, 2, e82-e91.	4.7	34
130	Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015, 6, 6413.	12.8	287
131	Cell therapies for treatment of human immunodeficiency virus infection. Reviews in Medical Virology, 2015, 25, 156-174.	8.3	3

#	ARTICLE	IF	Citations
133	Improved Cell-Penetrating Zinc-Finger Nuclease Proteins for Precision Genome Engineering. Molecular Therapy - Nucleic Acids, 2015, 4, e232.	5.1	51
134	T Cell-Based Gene Therapy of Cancer. , 2015, , 281-304.		0
135	Genome Engineering for Therapeutic Applications. , 2015, , 27-43.		4
136	Cell-based gene therapy against HIV. Gene Therapy, 2015, 22, 851-855.	4.5	3
137	BLT humanized mice as a small animal model of HIV infection. Current Opinion in Virology, 2015, 13, 75-80.	5.4	96
138	Models of Viral Population Dynamics. Current Topics in Microbiology and Immunology, 2015, 392, 277-302.	1.1	6
139	Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10437-10442.	7.1	600
140	Synthetic biology approaches to engineer T cells. Current Opinion in Immunology, 2015, 35, 123-130.	5.5	34
141	CCR5î"32 mutation and HIV infection: basis for curative HIV therapy. Current Opinion in Virology, 2015, 14, 24-29.	5.4	56
142	Possible Clues to a Functional Cure for HIV Infection. Intervirology, 2015, 58, 181-183.	2.8	0
143	Stakeholder Engagement in HIV Cure Research: Lessons Learned from Other HIV Interventions and the Way Forward. AIDS Patient Care and STDs, 2015, 29, 389-399.	2.5	54
144	Personalized gene therapy locks out HIV, paving the way to control virus without antiretroviral drugs. Expert Opinion on Biological Therapy, 2015, 15, 831-843.	3.1	4
145	CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 2015, 43, 838-848.e3.	0.4	116
146	Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of Immunology, 2015, 195, 755-761.	0.8	147
147	Preclinical Assessment of Mutant Human TRIM5α as an Anti-HIV-1 Transgene. Human Gene Therapy, 2015, 26, 664-679.	2.7	22
148	Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy. Human Gene Therapy, 2015, 26, 443-451.	2.7	157
149	Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genetics, 2015, 11, e1005239.	3.5	17
150	Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology, 2015, 33, 985-989.	17.5	882

#	Article	IF	Citations
151	Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector. Molecular Therapy - Nucleic Acids, 2015, 4, e236.	5.1	51
152	Is the age of genetic surgery finally upon us?. Surgical Oncology, 2015, 24, 95-99.	1.6	2
153	Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice. Journal of Virology, 2015, 89, 6761-6772.	3.4	30
154	CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. OMICS A Journal of Integrative Biology, 2015, 19, 261-275.	2.0	11
155	Genome editing at the crossroads of delivery, specificity, and fidelity. Trends in Biotechnology, 2015, 33, 280-291.	9.3	121
156	Dispelling myths and focusing on notable concepts in HIV pathogenesis. Trends in Molecular Medicine, 2015, 21, 341-353.	6.7	12
157	Engineering T Cells to Functionally Cure HIV-1 Infection. Molecular Therapy, 2015, 23, 1149-1159.	8.2	43
158	Genome Editing of the Blood: Opportunities and Challenges. Current Stem Cell Reports, 2015, 1, 23-30.	1.6	6
159	Transcription Activator-Like Effector (TALE) Nucleases and Repressor TALEs for Antiviral Gene Therapy. Current Stem Cell Reports, 2015, 1, 1-8.	1.6	9
160	Generation of CCR5-defective CD34 cells from ZFN-driven stop codon-integrated mesenchymal stem cell clones. Journal of Biomedical Science, 2015, 22, 25.	7.0	15
161	Can HIV Be Cured and Should We Try?. Mayo Clinic Proceedings, 2015, 90, 705-709.	3.0	5
162	\hat{l}_{\pm} -Globin as a molecular target in the treatment of \hat{l}_{\pm} -thalassemia. Blood, 2015, 125, 3694-3701.	1.4	102
163	HIV reservoirs as obstacles and opportunities for an HIV cure. Nature Immunology, 2015, 16, 584-589.	14.5	200
164	Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases. Molecular Therapy, 2015, 23, 523-532.	8.2	100
165	Adoptive cellular therapy: A race to the finish line. Science Translational Medicine, 2015, 7, 280ps7.	12.4	320
166	Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8. Virology, 2015, 481, 73-78.	2.4	22
167	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130.	1.6	25
168	Genome Editing Using Zinc-Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs)., 2015,, 3-24.		6

#	Article	IF	Citations
169	An Emerging Era of Clinical Benefit From Gene Therapy. JAMA - Journal of the American Medical Association, 2015, 313, 1522.	7.4	7
170	Broadly-specific Cytotoxic T Cells Targeting Multiple HIV Antigens Are Expanded From HIV+ Patients: Implications for Immunotherapy. Molecular Therapy, 2015, 23, 387-395.	8.2	46
171	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	8.2	88
173	Advancing the HIV cure agenda. Current Opinion in Infectious Diseases, 2015, 28, 1-9.	3.1	17
174	Application of gene-editing technologies to HIV-1. Current Opinion in HIV and AIDS, 2015, 10, 123-127.	3.8	18
175	Human genetic variation in HIV disease. Current Opinion in HIV and AIDS, 2015, 10, 110-115.	3.8	9
176	A cure for HIV. Current Opinion in HIV and AIDS, 2015, 10, 1-3.	3.8	6
177	Adenoâ€Associated Virus Vector–Based Gene Therapy for Monogenetic Metabolic Diseases of the Liver. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 433-440.	1.8	18
179	Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 2015, 96, 2381-2393.	2.9	168
180	Prolonged re-expression of the hypermethylated gene <i>EPB41L3</i> using artificial transcription factors and epigenetic drugs. Epigenetics, 2015, 10, 384-396.	2.7	28
181	The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opinion on Biological Therapy, 2015, 15, 819-830.	3.1	66
182	Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5142-9.	7.1	90
183	T cell engineering as therapy for cancer and HIV: our synthetic future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140374.	4.0	23
184	Cell-based therapy technology classifications and translational challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150017.	4.0	135
185	Enabling functional genomics with genome engineering. Genome Research, 2015, 25, 1442-1455.	5.5	89
186	From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.	7.6	111
187	Efficient modification of <i>CCR5</i> in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Science Translational Medicine, 2015, 7, 307ra156.	12.4	204
188	DNA sense-and-respond protein modules for mammalian cells. Nature Methods, 2015, 12, 1085-1090.	19.0	46

#	Article	IF	CITATIONS
189	Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015, 14, 681-692.	46.4	226
190	Protective alleles and modifier variants in human health and disease. Nature Reviews Genetics, 2015, 16, 689-701.	16.3	105
191	Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nature Methods, 2015, 12, 939-942.	19.0	88
192	Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Scientific Reports, 2014, 4, 6409.	3.3	55
193	High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. Molecular Therapy - Nucleic Acids, 2015, 4, e228.	5.1	40
194	Defeating AlDS—advancing global health. Lancet, The, 2015, 386, 171-218.	13.7	234
195	African Green Monkey TRIM5 \hat{l}_{\pm} Restriction in Simian Immunodeficiency Virus-Specific Rhesus Macaque Effector CD4 T Cells Enhances Their Survival and Antiviral Function. Journal of Virology, 2015, 89, 4449-4456.	3.4	4
196	The Hepatitis B Virus Receptor. Annual Review of Cell and Developmental Biology, 2015, 31, 125-147.	9.4	61
197	Perspectives on gene therapy for Fanconi anemia. Expert Opinion on Orphan Drugs, 2015, 3, 899-910.	0.8	1
198	Gene therapy returns to centre stage. Nature, 2015, 526, 351-360.	27.8	943
199	Globin gene regulation for treating \hat{l}^2 -thalassemias: progress, obstacles and future. Expert Opinion on Orphan Drugs, 2015, 3, 1047-1062.	0.8	0
200	Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. International Journal of Pharmaceutics, 2015, 494, 180-194.	5.2	94
201	Significant publications on infectious diseases pharmacotherapy in 2014. American Journal of Health-System Pharmacy, 2015, 72, 1380-1392.	1.0	8
202	Comparative mapping of host–pathogen protein–protein interactions. Current Opinion in Microbiology, 2015, 27, 62-68.	5.1	37
203	Lentivirus technologies for modulation of the immune system. Current Opinion in Pharmacology, 2015, 24, 119-127.	3.5	11
204	Leveraging Cancer Therapeutics for the HIV Cure Agenda: Current Status and Future Directions. Drugs, 2015, 75, 1447-1459.	10.9	7
205	Proven and novel strategies for efficient editing of the human genome. Current Opinion in Pharmacology, 2015, 24, 105-112.	3.5	18
206	mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Research, 2015, 43, 5560-5571.	14.5	102

#	Article	IF	CITATIONS
207	From hacking the human genome to editing organs. Organogenesis, 2015, 11, 173-182.	1.2	2
208	Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nature Biotechnology, 2015, 33, 1256-1263.	17.5	250
209	Human knockout research: new horizons and opportunities. Trends in Genetics, 2015, 31, 108-115.	6.7	42
210	Synthetic immunology: modulating the human immune system. Trends in Biotechnology, 2015, 33, 65-79.	9.3	41
211	Gene therapy for HIV infection. Expert Opinion on Biological Therapy, 2015, 15, 319-327.	3.1	8
212	Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opinion on Therapeutic Targets, 2015, 19, 245-263.	3.4	13
213	Progress Toward Curing HIV Infections With Hematopoietic Stem Cell Transplantation. Clinical Infectious Diseases, 2015, 60, 292-297.	5.8	15
214	Emerging Gene Correction Strategies for Muscular Dystrophies: Scientific Progress and Regulatory Impact. , 2016, , .		0
215	Gene Correction Technology and Its Impact on Viral Research and Therapy. , 2016, , .		0
216	Gene Delivery Technologies for Efficient Genome Editing: Applications in Gene Therapy. , 2016, , .		0
217	Stem Cells for Modeling Human Disease. , 2016, , .		2
218	Gene therapies in clinical trials. , 2016, , 231-256.		9
219	Umbilical Cord Blood Stem Cell Banking. , 2016, , 1-13.		0
220	Targeting the latent reservoir to achieve functional HIV cure. F1000Research, 2016, 5, 1009.	1.6	26
221	HIV-1 Latency and Eradication: Past, Present and Future. Current HIV Research, 2016, 14, 431-441.	0.5	29
222	A Cure for HIV Infection: "Not in My Lifetime―or "Just Around the Corner�. Pathogens and Immunity, 2016, 1, 154.	3.1	35
223	Advantage of Genetic Modifications Using Genome Editing Technology in Stem Cells vs. Zygotes in Genetic Diseases. Journal of Fertilization in Vitro IVF Worldwide Reproductive Medicine Genetics & Stem Cell Biology, 2016, 4, .	0.2	0
224	Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ETÇ	0.78 O.78	4314 rgBT /(

#	Article	IF	CITATIONS
225	Hematopoietic stem cell transplantation for HIV cure. Journal of Clinical Investigation, 2016, 126, 432-437.	8.2	40
226	What Lies Ahead?. , 2016, , 313-337.		0
227	Genome Engineering with TALE and CRISPR Systems in Neuroscience. Frontiers in Genetics, 2016, 7, 47.	2.3	25
228	Hereditary Angioedema as a Metabolic Liver Disorder: Novel Therapeutic Options and Prospects for Cure. Frontiers in Immunology, 2016, 7, 547.	4.8	12
229	Insulators to Improve the Safety of Retroviral Vectors for HIV Gene Therapy. Biomedicines, 2016, 4, 4.	3.2	11
230	Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines, 2016, 4, 8.	3.2	2
231	Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes, 2016, 7, 119.	2.4	10
232	In Vivo Delivery Systems for Therapeutic Genome Editing. International Journal of Molecular Sciences, 2016, 17, 626.	4.1	71
233	Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS ONE, 2016, 11, e0161072.	2.5	41
235	Molecular Mechanisms Controlling HIV Transcription and Latency – Implications for Therapeutic Viral Reactivation. , 2016, , .		2
236	Residual inflammation and viral reservoirs. Current Opinion in HIV and AIDS, 2016, 11, 234-241.	3.8	107
237	Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults. JAMA - Journal of the American Medical Association, 2016, 316, 191.	7.4	533
238	International AIDS Society global scientific strategy: towards an HIV cure 2016. Nature Medicine, 2016, 22, 839-850.	30.7	395
239	Strategies to target HIV-1 in the central nervous system. Current Opinion in HIV and AIDS, 2016, 11, 371-375.	3.8	18
240	Brief Report: Relationship Among Viral Load Outcomes in HIV Treatment Interruption Trials. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 310-313.	2.1	20
241	A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Briefings in Bioinformatics, 2017, 18, bbw052.	6.5	15
242	Engineering of synthetic gene circuits for (reâ€)balancing physiological processes in chronic diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 402-422.	6.6	24
243	Stacking up <scp>CRISPR</scp> against <scp>RNA</scp> i for therapeutic gene inhibition. FEBS Journal, 2016, 283, 3249-3260.	4.7	15

#	Article	IF	CITATIONS
244	Multidimensional Genome-wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells. Molecular Therapy, 2016, 24, 607-619.	8.2	12
246	Gene Therapy to Cure HIV: Where to from Here?. AIDS Patient Care and STDs, 2016, 30, 531-533.	2.5	6
247	Human Genetics: The Basics. , 0, , .		3
248	Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Scientific Reports, 2016, 6, 21757.	3.3	33
249	Combining Cell and Gene Therapy in an Effort to Eradicate HIV. AIDS Patient Care and STDs, 2016, 30, 534-538.	2.5	5
250	Barriers to Effective Genome Editing of Haematopoietic Stem Cells. Current Stem Cell Reports, 2016, 2, 2-8.	1.6	0
251	Gene editing and its application for hematological diseases. International Journal of Hematology, 2016, 104, 18-28.	1.6	24
252	Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research, 2016, 53, 1-20.	15.5	42
253	High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper―Proteins. Molecular Therapy, 2016, 24, 1570-1580.	8.2	31
254	Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy. Molecular Therapy, 2016, 24, 1378-1387.	8.2	51
255	Gene Editing for the Efficient Correction of a Recurrent COL7A1 Mutation in Recessive Dystrophic Epidermolysis Bullosa Keratinocytes. Molecular Therapy - Nucleic Acids, 2016, 5, e307.	5.1	50
256	Genome editing for clinical HIV isolates. Nature Biotechnology, 2016, 34, 388-389.	17.5	2
257	Receptor combinations hone T-cell therapy. Nature Biotechnology, 2016, 34, 389-391.	17.5	2
258	Genome editing in pluripotent stem cells: research and therapeutic applications. Biochemical and Biophysical Research Communications, 2016, 473, 665-674.	2.1	17
259	Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy. Clinical Cancer Research, 2016, 22, 1559-1564.	7.0	28
260	The Application of CRISPR/Cas9 Technologies and Therapies in Stem Cells. Current Stem Cell Reports, 2016, 2, 95-103.	1.6	2
261	Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy. Clinical Cancer Research, 2016, 22, 1875-1884.	7.0	228
262	Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Nucleic Acids Research, 2016, 44, e68-e68.	14.5	19

#	Article	IF	CITATIONS
263	Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach. Molecular Therapy - Nucleic Acids, 2016, 5, e312.	5.1	18
264	A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1058-1075.	2.4	44
265	Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34, 477-479.	17.5	34
266	Stem cell-based therapies for HIV/AIDS. Advanced Drug Delivery Reviews, 2016, 103, 187-201.	13.7	28
267	Fine-Tuning Next-Generation Genome Editing Tools. Trends in Biotechnology, 2016, 34, 562-574.	9.3	60
268	Engineering Delivery Vehicles for Genome Editing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 637-662.	6.8	93
269	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	11.1	398
270	CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science, 2016, 352, 1113-1116.	12.6	90
271	CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 2016, 85, 227-264.	11.1	897
272	Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Advanced Drug Delivery Reviews, 2016, 103, 5-19.	13.7	26
273	Glycosyl Phosphatidylinositol-Anchored C34 Peptide Derived From Human Immunodeficiency Virus Type 1 Gp41 Is a Potent Entry Inhibitor. Journal of NeuroImmune Pharmacology, 2016, 11, 601-610.	4.1	16
274	TALEN gene editing takes aim on HIV. Human Genetics, 2016, 135, 1059-1070.	3.8	46
275	Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood, 2016, 127, 839-848.	1.4	138
276	Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood, 2016, 127, 2416-2426.	1.4	62
277	Customizing the genome as therapy for the \hat{l}^2 -hemoglobinopathies. Blood, 2016, 127, 2536-2545.	1.4	48
278	Ethical and regulatory aspects of genome editing. Blood, 2016, 127, 2553-2560.	1.4	36
279	The clinical applications of genome editing in HIV. Blood, 2016, 127, 2546-2552.	1.4	67
280	A genome editing primer for the hematologist. Blood, 2016, 127, 2525-2535.	1.4	23

#	Article	IF	CITATIONS
281	CRISPR-mediated genome editing and human diseases. Genes and Diseases, 2016, 3, 244-251.	3.4	70
282	Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Molecular Neurodegeneration, 2016, 11, 64.	10.8	46
283	Development of peptide inhibitors of HIV transmission. Bioactive Materials, 2016, 1, 109-121.	15.6	22
284	Derisking Drug-Induced Carcinogenicity for Novel Therapeutics. Trends in Cancer, 2016, 2, 398-408.	7.4	11
285	The Glycosylphosphatidylinositol-Anchored Variable Region of Llama Heavy Chain-Only Antibody JM4 Efficiently Blocks both Cell-Free and T Cell-T Cell Transmission of Human Immunodeficiency Virus Type 1. Journal of Virology, 2016, 90, 10642-10659.	3.4	13
286	Enhancing Literacy in Cardiovascular Genetics: A Scientific Statement From the American Heart Association. Circulation: Cardiovascular Genetics, 2016, 9, 448-467.	5.1	64
287	Genetic medicines for CF: Hype versus reality. Pediatric Pulmonology, 2016, 51, S5-S17.	2.0	41
288	CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells, Molecules, and Diseases, 2016, 62, 6-12.	1.4	14
289	Antiviral therapy of persistent viral infection using genome editing. Current Opinion in Virology, 2016, 20, 85-91.	5.4	11
290	In vitro and ex vivo strategies for intracellular delivery. Nature, 2016, 538, 183-192.	27.8	662
291	Double-Strand Break Repair., 2016,, 337-351.		1
292	Conserved and Divergent Features of DNA Repair. , 2016, , 651-666.		0
293	Genome-Editing Technologies: Principles and Applications. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023754.	5.5	209
294	Somatic Genome Editing for Health: Disease Treatments and Beyond. Current Stem Cell Reports, 2016, 2, 313-320.	1.6	2
295	CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. Journal of Controlled Release, 2016, 244, 139-148.	9.9	52
297	Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles. Human Gene Therapy, 2016, 27, 729-740.	2.7	42
300	DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Molecular Cell, 2016, 63, 898-911.	9.7	206
301	Mechanistic Models Predict Efficacy of CCR5â€Deficient Stem Cell Transplants in HIV Patient Populations. CPT: Pharmacometrics and Systems Pharmacology, 2016, 5, 82-90.	2.5	7

#	ARTICLE	IF	CITATIONS
302	Update on Pediatric Human Immunodeficiency Virus Infection. Advances in Pediatrics, 2016, 63, 147-171.	1.4	1
303	Current status of chimeric antigen receptor therapy for haematological malignancies. British Journal of Haematology, 2016, 172, 11-22.	2.5	70
304	Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16, 566-581.	28.4	876
305	Adoptive Cellular Therapy With Synthetic T Cells as an "Instant Vaccine―for Cancer and Immunity. , 2016, , 581-596.		2
306	TALE proteins search DNA using a rotationally decoupled mechanism. Nature Chemical Biology, 2016, 12, 831-837.	8.0	46
307	Genome Editing with Targetable Nucleases. , 2016, , 1-29.		0
308	Research Techniques Made Simple: The Application of CRISPR-Cas9 and Genome Editing in Investigative Dermatology. Journal of Investigative Dermatology, 2016, 136, e87-e93.	0.7	15
309	Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16067.	4.1	91
310	Genome editing: progress and challenges for medical applications. Genome Medicine, 2016, 8, 120.	8.2	26
311	<scp>CRISPR</scp> as9 technology and its application in haematological disorders. British Journal of Haematology, 2016, 175, 208-225.	2.5	22
312	CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chemical Society Reviews, 2016, 45, 6666-6684.	38.1	27
313	Barriers to <scp>HIV</scp> Cure. Hla, 2016, 88, 155-163.	0.6	25
314	Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Research and Therapy, 2016, 13, 31.	1.7	31
315	Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell, 2016, 167, 219-232.e14.	28.9	363
316	Remaining Challenges in Pediatric HIV-1 Infection. Current Pediatrics Reports, 2016, 4, 63-73.	4.0	1
317	CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Molecular Therapy, 2016, 24, 1561-1569.	8.2	157
318	Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection. Cytotherapy, 2016, 18, 1370-1381.	0.7	11
319	Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental and Molecular Medicine, 2016, 48, e265-e265.	7.7	74

#	Article	IF	CITATIONS
320	Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance. Molecular Therapy - Nucleic Acids, 2016, 5, e352.	5.1	16
321	Clinical Applications of Genome Editing to HIV Cure. AIDS Patient Care and STDs, 2016, 30, 539-544.	2.5	11
323	Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. Journal of Controlled Release, 2016, 244, 83-97.	9.9	17
324	HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene. Scientific Reports, 2016, 5, 18088.	3.3	13
325	Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocrine Reviews, 2016, 37, 636-675.	20.1	147
326	A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 2016, 17, 1438-1452.	6.4	167
327	Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Scientific Reports, 2016, 6, 30802.	3.3	48
328	Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochemical Society Transactions, 2016, 44, 1355-1365.	3.4	20
329	Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16034.	4.1	183
330	ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system. Scientific Reports, 2016, 6, 30870.	3.3	38
331	Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?. Transfusion Medicine and Hemotherapy, 2016, 43, 247-254.	1.6	35
332	Cell and gene therapy strategies to eradicate HIV reservoirs. Current Opinion in HIV and AIDS, 2016, 11, 442-449.	3.8	21
333	Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases. Molecular Therapy - Nucleic Acids, 2016, 5, e351.	5.1	45
334	Optimal control applied on an HIVâ€1 withinâ€host model. Mathematical Methods in the Applied Sciences, 2016, 39, 2118-2135.	2.3	6
335	Genome editing and the next generation of antiviral therapy. Human Genetics, 2016, 135, 1071-1082.	3.8	40
336	Gene correction in patient-specific iPSCs for therapy development and disease modeling. Human Genetics, 2016, 135, 1041-1058.	3.8	34
337	T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy, 2016, 18, 931-942.	0.7	36
338	Gene therapy's out-of-body experience. Nature Biotechnology, 2016, 34, 600-607.	17.5	10

#	Article	IF	CITATIONS
339	Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet, The, 2016, 387, 2554-2564.	13.7	73
340	Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Human Genetics, 2016, 135, 993-1010.	3.8	13
342	The Future of Cardiovascular Regenerative Medicine. Circulation, 2016, 133, 2618-2625.	1.6	34
343	Impact of gene editing on the study of cystic fibrosis. Human Genetics, 2016, 135, 983-992.	3.8	15
344	Corporate profile: Sangamo BioSciences, Inc Regenerative Medicine, 2016, 11, 375-379.	1.7	2
345	The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Progress in Biophysics and Molecular Biology, 2016, 121, 123-130.	2.9	17
346	Use of genome-editing tools to treat sickle cell disease. Human Genetics, 2016, 135, 1011-1028.	3.8	24
348	Gene therapy: Myth or reality?. Comptes Rendus - Biologies, 2016, 339, 314-318.	0.2	6
349	Enantioselective synthesis of (+)-brevipolide H. Organic and Biomolecular Chemistry, 2016, 14, 6762-6768.	2.8	8
350	Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes. Journal of Cellular Physiology, 2016, 231, 2380-2392.	4.1	26
351	Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. , 2016, , 203-247.		1
352	The domestication of Cas9. Nature, 2016, 529, 468-469.	27.8	14
353	Salient Features of Endonuclease Platforms for Therapeutic Genome Editing. Molecular Therapy, 2016, 24, 422-429.	8.2	13
354	Providing Appropriate Risk Information on Genome Editing for Patients. Trends in Biotechnology, 2016, 34, 86-90.	9.3	25
355	Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy, 2016, 24, 430-446.	8.2	523
356	Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Research, 2016, 44, 1449-1470.	14.5	63
357	Early Combination Antiretroviral Therapy Limits HIV-1 Persistence in Children. Annual Review of Medicine, 2016, 67, 201-213.	12.2	26
358	Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Molecular Therapy, 2016, 24, 465-474.	8.2	92

#	Article	IF	CITATIONS
359	Curing HIV: Moving Forward Faster. AIDS Research and Human Retroviruses, 2016, 32, 125-128.	1.1	5
360	Genome Editing: A New Approach to Human Therapeutics. Annual Review of Pharmacology and Toxicology, 2016, 56, 163-190.	9.4	97
361	Using Engineered Nucleases to Create HIV-Resistant Cells. Advances in Experimental Medicine and Biology, 2016, , 161-186.	1.6	1
362	The Use and Development of TAL Effector Nucleases. Advances in Experimental Medicine and Biology, 2016, , 29-50.	1.6	1
363	Which therapeutic strategy will achieve a cure for HIV-1?. Current Opinion in Virology, 2016, 18, 14-19.	5.4	61
364	Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. Advances in Experimental Medicine and Biology, 2016, , 223-258.	1.6	1
365	Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, 2016, , .	1.1	42
366	Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. Aids, 2016, 30, 1163-1173.	2.2	68
367	Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Advanced Drug Delivery Reviews, 2016, 103, 174-186.	13.7	38
368	Treating Immunodeficiency through HSC Gene Therapy. Trends in Molecular Medicine, 2016, 22, 317-327.	6.7	96
369	Genome editing: An alternative to retroviral vectors for Wiskott-Aldrich Syndrome (WAS) Gene Therapy?. Expert Opinion on Orphan Drugs, 2016, 4, 281-289.	0.8	1
370	How to Define the Latent Reservoir: Tools of the Trade. Current HIV/AIDS Reports, 2016, 13, 77-84.	3.1	16
371	Ethics of ART interruption after stem-cell transplantation. Lancet HIV, the, 2016, 3, e8-e10.	4.7	20
372	Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34, 401-409.	17.5	108
373	Gene Therapy: The View from NCATS. Human Gene Therapy, 2016, 27, 7-13.	2.7	18
374	The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease. Journal of Molecular Biology, 2016, 428, 206-220.	4.2	5
375	Progress Toward HIV Eradication: Case Reports, Current Efforts, and the Challenges Associated with Cure. Annual Review of Medicine, 2016, 67, 215-228.	12.2	75
376	HIV-associated Hematological Malignancies. , 2016, , .		4

#	Article	IF	CITATIONS
377	Gene Editing 20 Years Later. Advances in Experimental Medicine and Biology, 2016, , 1-14.	1.6	1
378	Paediatric HIV infection: the potential for cure. Nature Reviews Immunology, 2016, 16, 259-271.	22.7	97
380	Autologous Stem Cell Transplantation. , 2016, , 153-164.		2
381	Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnology, 2016, 34, 424-429.	17.5	166
382	A Perspective on the State of Genome Editing. Molecular Therapy, 2016, 24, 412-413.	8.2	4
383	20 years of Nature Biotechnology biomedical research. Nature Biotechnology, 2016, 34, 262-266.	17.5	13
384	The Development and Use of Zinc-Finger Nucleases. Advances in Experimental Medicine and Biology, 2016, , 15-28.	1.6	2
385	From noise to synthetic nucleoli: can synthetic biology achieve new insights?. Integrative Biology (United Kingdom), 2016, 8, 383-393.	1.3	4
386	Re-expression of Selected Epigenetically Silenced Candidate Tumor Suppressor Genes in Cervical Cancer by TET2-directed Demethylation. Molecular Therapy, 2016, 24, 536-547.	8.2	33
387	Avidity of human T cell receptor engineered CD4+ T cells drives T-helper differentiation fate. Cellular Immunology, 2016, 299, 30-41.	3.0	6
388	HIV-1 Eradication: Early Trials (and Tribulations). Trends in Molecular Medicine, 2016, 22, 10-27.	6.7	95
389	Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Research, 2016, 44, e30-e30.	14.5	109
390	Gene editing of <i> DNAH11 < /i> restores normal cilia motility in primary ciliary dyskinesia. Journal of Medical Genetics, 2016, 53, 242-249.</i>	3.2	54
391	Viral vectors for gene therapy and gene modification approaches. Biochemical Engineering Journal, 2016, 108, 98-115.	3.6	34
392	CRISPR-mediated Activation of Latent HIV-1 Expression. Molecular Therapy, 2016, 24, 499-507.	8.2	89
393	Origins of Programmable Nucleases for Genome Engineering. Journal of Molecular Biology, 2016, 428, 963-989.	4.2	239
395	Gene transfer of two entry inhibitors protects CD4+ T cell from HIV-1 infection in humanized mice. Gene Therapy, 2016, 23, 144-150.	4.5	13
396	Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Molecular Therapy, 2016, 24, 570-581.	8.2	168

#	Article	IF	CITATIONS
397	Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Molecular Therapy, 2016, 24, 458-464.	8.2	93
399	Engineered Viruses as Genome Editing Devices. Molecular Therapy, 2016, 24, 447-457.	8.2	119
400	Progress toward improved therapies for inborn errors of metabolism. Human Molecular Genetics, 2016, 25, R27-R35.	2.9	16
401	The complexity of epigenetic diseases. Journal of Pathology, 2016, 238, 333-344.	4.5	24
402	Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 2016, 168, 15-21.	5.0	176
403	Lifelong antiretroviral therapy or HIV cure: The benefits for the individual patient. AIDS Care - Psychological and Socio-Medical Aspects of AIDS/HIV, 2016, 28, 242-246.	1.2	14
404	Genetic Engineering: Tinkering with the Human Body. Science and Fiction, 2016, , 389-428.	0.0	0
405	Hematopoietic Stem Cell Therapy. , 2016, , 152-159.e3.		0
406	Viral vectors for therapy of neurologic diseases. Neuropharmacology, 2017, 120, 63-80.	4.1	130
407	Germ line genome editing in clinics: the approaches, objectives and global society. Briefings in Functional Genomics, 2017, 16, 46-56.	2.7	57
408	CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics, 2017, 16, 4-12.	2.7	48
409	Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Computational and Structural Biotechnology Journal, 2017, 15, 146-160.	4.1	86
410	T memory stem cells in health and disease. Nature Medicine, 2017, 23, 18-27.	30.7	396
411	CRISPR therapeutics push into human testing. Nature Biotechnology, 2017, 35, 3-5.	17.5	17
412	Improving on effective antiretroviral therapy: how good will a cure have to be?. Journal of Medical Ethics, 2017, 43, 71-73.	1.8	7
413	Finding host targets for HIV therapy. Nature Genetics, 2017, 49, 175-176.	21.4	10
414	Engineering HIV-Resistant, Anti-HIV Chimeric Antigen Receptor T Cells. Molecular Therapy, 2017, 25, 570-579.	8.2	134
415	Cell-Based Therapeutics: Making a Faustian Pact with Biology. Trends in Molecular Medicine, 2017, 23, 104-115.	6.7	9

#	ARTICLE	IF	CITATIONS
416	Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine, $2017, 9, .$	12.4	707
417	Genome Editing for the Study of Cardiovascular Diseases. Current Cardiology Reports, 2017, 19, 22.	2.9	21
418	Novel AIDS therapies based on gene editing. Cellular and Molecular Life Sciences, 2017, 74, 2439-2450.	5.4	16
420	A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Scientific Reports, 2017, 7, 41968.	3.3	110
421	Genome editing for inborn errors of metabolism: advancing towards the clinic. BMC Medicine, 2017, 15, 43.	5.5	42
422	New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing. Journal of Allergy and Clinical Immunology, 2017, 139, 726-732.	2.9	38
423	HIV Receives a "One Two Knockout Punch― Molecular Therapy, 2017, 25, 566-567.	8.2	0
424	Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacologica Sinica, 2017, 38, 738-753.	6.1	95
425	Genome editing: a robust technology for human stem cells. Cellular and Molecular Life Sciences, 2017, 74, 3335-3346.	5.4	12
426	New challenges in therapeutic vaccines against HIV infection. Expert Review of Vaccines, 2017, 16, 587-600.	4.4	28
427	Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein and Cell, 2017, 8, 634-643.	11.0	81
428	Genome-Edited T Cell Therapies. Current Stem Cell Reports, 2017, 3, 124-136.	1.6	13
429	Intracellular delivery of biologic therapeutics by bacterial secretion systems. Expert Reviews in Molecular Medicine, 2017, 19, e6.	3.9	22
430	Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. Human Gene Therapy, 2017, 28, 588-597.	2.7	12
431	Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Therapy, 2017, 24, 377-384.	4.5	29
432	The CRISPR/Cas9 system: Their delivery, <i>in vivo</i> and <i>ex vivo</i> applications and clinical development by startups. Biotechnology Progress, 2017, 33, 1035-1045.	2.6	35
433	Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Molecular Therapy, 2017, 25, 1117-1124.	8.2	79
434	Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. Journal of Infectious Diseases, 2017, 215, S160-S171.	4.0	24

#	Article	IF	CITATIONS
435	Research on genodermatoses using novel genomeâ€editing tools. JDDG - Journal of the German Society of Dermatology, 2017, 15, 783-789.	0.8	8
436	High throughput single cell counting in droplet-based microfluidics. Scientific Reports, 2017, 7, 1366.	3.3	45
437	Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. , 2017, , .		3
438	TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 74, 229-241.	2.1	39
439	A history of genome editing in mammals. Mammalian Genome, 2017, 28, 237-246.	2.2	43
440	Practical considerations for chimeric antigen receptor design and delivery. Expert Opinion on Biological Therapy, 2017, 17, 961-978.	3.1	10
441	Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synthetic Biology, 2017, 6, 1614-1626.	3.8	30
442	Cas9 in action: no more known unknowns?. Nature Methods, 2017, 14, 563-564.	19.0	1
443	CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood, 2017, 130, 285-296.	1.4	326
444	Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange. Scientific Reports, 2017, 7, 45775.	3.3	17
445	Delivery technologies for genome editing. Nature Reviews Drug Discovery, 2017, 16, 387-399.	46.4	422
447	Refining strategies to translate genome editing to the clinic. Nature Medicine, 2017, 23, 415-423.	30.7	213
448	Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells. Molecular Therapy - Methods and Clinical Development, 2017, 4, 192-203.	4.1	53
450	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	2.2	72
451	Cornerstones of CRISPR–Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 2017, 16, 89-100.	46.4	370
452	Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica, 2017, 102, 214-223.	3.5	57
453	Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1–Based Lentiviral Vector. Human Gene Therapy, 2017, 28, 271-285.	2.7	7
454	A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 2017, 49, 193-203.	21.4	290

#	Article	IF	Citations
455	Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nature Reviews Neurology, 2017, 13, 647-661.	10.1	68
456	Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell, 2017, 21, 574-590.	11.1	181
457	Genome editing technologies to fight infectious diseases. Expert Review of Anti-Infective Therapy, 2017, 15, 1001-1013.	4.4	10
458	Gene Therapy Blueprints for NeuroAIDS. , 2017, , 953-993.		1
459	Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein and Cell, 2017, 8, 791-795.	11.0	27
460	Gene editing in T cell therapy. Journal of Genetics and Genomics, 2017, 44, 415-422.	3.9	15
461	Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment. Cell Stem Cell, 2017, 21, 427-430.	11.1	24
462	Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development. Current Diabetes Reports, 2017, 17, 116.	4.2	11
464	Modeling of Antilatency Treatment in HIV: What Is the Optimal Duration of Antiretroviral Therapy-Free HIV Remission?. Journal of Virology, 2017, 91, .	3.4	10
465	Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer. Current Hematologic Malignancy Reports, 2017, 12, 522-529.	2.3	60
466	Gene Editing and CRISPR Therapeutics: Strategies Taught by Cell and Gene Therapy. Progress in Molecular Biology and Translational Science, 2017, 152, 115-130.	1.7	0
467	High-Definition Medicine. Cell, 2017, 170, 828-843.	28.9	168
468	Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Human Gene Therapy, 2017, 28, 782-799.	2.7	6
469	European Society for Gene and Cell Therapy—Inaugural Learned Society in the Field Worldwide: A Vision on Its Birth, Life, and Prospects for Sustainability. Human Gene Therapy, 2017, 28, 941-950.	2.7	0
470	Edited course of biomedical research: leaping forward with CRISPR. Pharmacological Research, 2017, 125, 258-265.	7.1	5
471	Curative approaches for sickle cell disease: A review of allogeneic and autologous strategies. Blood Cells, Molecules, and Diseases, 2017, 67, 155-168.	1.4	11
472	Genome Engineering for Personalized Arthritis Therapeutics. Trends in Molecular Medicine, 2017, 23, 917-931.	6.7	54
473	Gene Editing. Hematology/Oncology Clinics of North America, 2017, 31, 797-808.	2.2	9

#	Article	IF	Citations
474	Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematology/Oncology Clinics of North America, 2017, 31, 883-895.	2.2	9
475	Combinatorial CRISPR-Cas9 and RNA Interference Attack on HIV-1 DNA and RNA Can Lead to Cross-Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
476	Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 2017, 266, 17-26.	9.9	376
477	Therapeutic gene editing in <scp>CD</scp> 34 ⁺ hematopoietic progenitors from Fanconi anemia patients. EMBO Molecular Medicine, 2017, 9, 1574-1588.	6.9	54
478	New Drugs in the Pipeline for the Treatment of HIV: a Review. Current Infectious Disease Reports, 2017, 19, 42.	3.0	12
479	British Society for Gene and Cell Therapy Annual Conference and Joint UK Regenerative Medicine Platform MeetingRoyal Welsh College of Music & Drama Cardiff, Wales, United KingdomWednesday April 19–Friday April 21, 2017Conference Abstracts. Human Gene Therapy, 2017, 28, A1-A36.	2.7	2
480	Editing an \hat{l} ±-globin enhancer in primary human hematopoietic stem cells as a treatment for \hat{l}^2 -thalassemia. Nature Communications, 2017, 8, 424.	12.8	85
481	Toward personalized medicine in Bardet–Biedl syndrome. Personalized Medicine, 2017, 14, 447-456.	1.5	13
482	COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa. Molecular Therapy, 2017, 25, 2573-2584.	8.2	81
483	Drug discovery and development for rare genetic disorders. American Journal of Medical Genetics, Part A, 2017, 173, 2307-2322.	1.2	64
484	Gene therapy research in Asia. Gene Therapy, 2017, 24, 572-577.	4.5	15
485	Traceless Targeting and Isolation of Gene-Edited Immortalized Keratinocytes from Epidermolysis Bullosa Simplex Patients. Molecular Therapy - Methods and Clinical Development, 2017, 6, 112-123.	4.1	40
486	Infección por el VIH/sida: ¿El principio del fin de la primera gran pandemia contemporánea?. Revista Clinica Espanola, 2017, 217, 468-472.	0.6	2
487	HIV/AIDS infection: The beginning of the end for today's greatest pandemic?. Revista Clínica Espanõla, 2017, 217, 468-472.	0.5	0
488	CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy, 2017, 19, 1325-1338.	0.7	34
489	Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses. Protein Engineering, Design and Selection, 2017, 30, 503-522.	2.1	2
490	Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Current Hematologic Malignancy Reports, 2017, 12, 335-343.	2.3	9
491	Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 2017, 31, 453-559.	1.7	57

#	Article	IF	CITATIONS
492	Forschung zu Genodermatosen durch neue Genomâ€∢i>Editing ⟨/i>â€Methoden. JDDG - Journal of the German Society of Dermatology, 2017, 15, 783-790.	0.8	1
493	Immune therapy with cytotoxic T-lymphocytes for treatment of infections., 0,, 611-625.		0
494	Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Scientific Reports, 2017, 7, 6122.	3.3	19
495	Post-treatment control or treated controllers? Viral remission in treated and untreated primary HIV infection. Aids, 2017, 31, 477-484.	2.2	51
496	New technologies for engineering neural tissue from stem cells. , 2017, , 181-204.		1
498	Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Poland), 2017, 72, 1101-1112.	1.5	0
499	Genome Editing. Journal of the American College of Cardiology, 2017, 70, 2808-2821.	2.8	27
500	Genome Editing for the \hat{I}^2 -Hemoglobinopathies. Advances in Experimental Medicine and Biology, 2017, 1013, 203-217.	1.6	7
501	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	1.6	2
502	Combining Engineered Nucleases with Adeno-associated Viral Vectors for Therapeutic Gene Editing. Advances in Experimental Medicine and Biology, 2017, 1016, 29-42.	1.6	13
503	The Future of CRISPR Applications in the Lab, the Clinic and Society. Advances in Experimental Medicine and Biology, 2017, 1016, 157-178.	1.6	4
504	Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology, 2017, , .	1.6	4
505	Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Scientific Reports, 2017, 7, 15480.	3.3	12
506	Modern biotechnology-based therapeutic approaches against HIV infection (Review). Biomedical Reports, 2017, 7, 504-507.	2.0	8
507	<i>In vitro</i> modeling of <scp>HIV</scp> proviral activity in microglia. FEBS Journal, 2017, 284, 4096-4114.	4.7	13
508	Control of HIV Infection InÂVivo Using Gene Therapy with a Secreted Entry Inhibitor. Molecular Therapy - Nucleic Acids, 2017, 9, 132-144.	5.1	15
509	HIV-hepatitis B virus coinfection. Aids, 2017, 31, 2035-2052.	2.2	171
510	Fight fire with fire: Gene therapy strategies to cure HIV. Expert Review of Anti-Infective Therapy, 2017, 15, 747-758.	4.4	13

#	Article	IF	CITATIONS
511	Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics, 2017, 69, 489-498.	2.4	54
512	Refining Current Scientific Priorities and Identifying New Scientific Gaps in HIV-Related Heart, Lung, Blood, and Sleep Research. AIDS Research and Human Retroviruses, 2017, 33, 889-897.	1.1	6
513	CRISPR/Cas9, a universal tool for genomic engineering. Russian Journal of Genetics: Applied Research, 2017, 7, 440-458.	0.4	4
514	Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017, 24, 144-150.	4.5	88
515	CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammationâ€Resistant Tissues. Arthritis and Rheumatology, 2017, 69, 1111-1121.	5.6	61
516	Genome Editing Techniques and Their Therapeutic Applications. Clinical Pharmacology and Therapeutics, 2017, 101, 42-51.	4.7	18
517	Retroviruses and Retroviral Infections. , 2017, , 1483-1492.e1.		1
518	Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research, 2017, 23, 2255-2266.	7.0	694
519	Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 2017, 37, 672-684.	9.0	86
520	Therapeutic applications of CRISPR RNA-guided genome editing. Briefings in Functional Genomics, 2017, 16, 38-45.	2.7	26
521	Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discovery Today, 2017, 22, 17-30.	6.4	6
522	Genome editing in cardiovascular diseases. Nature Reviews Cardiology, 2017, 14, 11-20.	13.7	76
523	Reproductive medicine involving genome editing: clinical uncertainties and embryological needs. Reproductive BioMedicine Online, 2017, 34, 27-31.	2.4	22
524	Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice. Journal of Virology, 2017, 91, .	3.4	21
525	InÂvivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research, 2017, 56, 1-18.	15.5	62
526	TALENs-mediated homozygous CCR5Δ32 mutations endow CD4+ U87 cells with resistance against HIV‑1 infection. Molecular Medicine Reports, 2018, 17, 243-249.	2.4	13
527	<i>Ex vivo</i> and <i>in vivo</i> genome editing: a regulatory scientific framework from early development to clinical implementation. Regenerative Medicine, 2017, 12, 1015-1030.	1.7	6
528	Cell and Gene Therapy for HIV Cure. Current Topics in Microbiology and Immunology, 2017, 417, 211-248.	1.1	23

#	Article	IF	CITATIONS
529	Antimicrobial Nanostructures for Neurodegenerative Infections., 2017, , 139-167.		7
530	Use of Zinc-Finger Nucleases for Crop Improvement. Progress in Molecular Biology and Translational Science, 2017, 149, 47-63.	1.7	21
531	An activist's argument that participant values should guide risk–benefit ratio calculations in HIV cure research. Journal of Medical Ethics, 2017, 43, 100-103.	1.8	31
532	Decades research and implementation science of HIV prevention, treatment and cure: highlights from Symposium 2017. Future Virology, 2017, 12, 247-251.	1.8	2
533	Why cure, why now?. Journal of Medical Ethics, 2017, 43, 67-70.	1.8	17
534	Plagues, Populations and Survival. , 0, , 114-135.		0
536	Hematopoietic cell transplants for human immunodeficiency virus-related lymphomas., 0,, 552-558.		0
538	Therapeutic genome editing with engineered nucleases. Hamostaseologie, 2017, 37, 45-52.	1.9	13
539	HIV Diagnosis and Treatment through Advanced Technologies. Frontiers in Public Health, 2017, 5, 32.	2.7	30
540	CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics, 2017, 7, 4445-4469.	10.0	22
541	Alanine Mutagenesis in the Complementarity Determining Region 3 of the MTB and HIV-1 Peptide-Bispecific T Cell Receptor Beta Chain Affects Ligand Recognition. Frontiers in Immunology, 2017, 8, 983.	4.8	2
542	Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method. Viruses, 2017, 9, 325.	3.3	4
543	Ex vivo gene therapy for the treatment of neurological disorders. Progress in Brain Research, 2017, 230, 99-132.	1.4	43
544	Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo, Brazil), 2017, 15, 369-375.	0.7	178
545	May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells, 2017, 6, 5.	4.1	38
546	A Prospective Treatment Option for Lysosomal Storage Diseases: CRISPR/Cas9 Gene Editing Technology for Mutation Correction in Induced Pluripotent Stem Cells. Diseases (Basel, Switzerland), 2017, 5, 6.	2.5	12
547	Disease Resistance and the Definition of Genetic Enhancement. Frontiers in Genetics, 2017, 8, 40.	2.3	13
548	The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Frontiers in Immunology, 2017, 8, 1358.	4.8	33

#	Article	IF	Citations
549	Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era. Frontiers in Immunology, 2017, 8, 1616.	4.8	6
550	Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework. Frontiers in Medicine, 2017, 4, 182.	2.6	41
551	Antiviral Defenses in Plants through Genome Editing. Frontiers in Microbiology, 2017, 8, 47.	3.5	26
552	The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells International, 2017, 2017, 1-13.	2.5	36
553	Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BioMed Research International, 2017, 2017, 1-12.	1.9	34
554	Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. ELife, 2017, 6, .	6.0	94
555	Trait stacking in modern agriculture: application of genome editing tools. Emerging Topics in Life Sciences, 2017, 1, 151-160.	2.6	1
556	Short review on human umbilical cord lining epithelial cells and their potential clinical applications. Stem Cell Research and Therapy, 2017, 8, 222.	5.5	19
557	Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell and Bioscience, 2017, 7, 47.	4.8	108
558	Glance at potential future combating of diseases: Bioengineered antimicrobial organisms. Scientific Research and Essays, 2017, 12, 51-58.	0.4	0
559	Genome-edited livestock: Ethics and social acceptance. Animal Frontiers, 2017, 7, 24-32.	1.7	21
561	CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean Journal of Internal Medicine, 2017, 32, 42-61.	1.7	45
562	Systems and Synthetic Biology Applied to Health. , 2017, , 183-213.		0
563	Berlin-Brandenburgische Akademie der Wissenschaften (BBAW) Genomchirurgie beim Menschen – Zur verantwortlichen Bewertung einer neuen Technologie. Jahrbuch FÂ⅓r Wissenschaft Und Ethik, 2017, 21,	0.2	0
564	Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017, 3, 33-41.	0.1	19
565	The Time Is Ripe for Somatic Genome Editing: NIH Program toÂStrengthen Translation. Molecular Therapy, 2018, 26, 671-674.	8.2	6
566	Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine, 2018, 109, 2-10.	3.2	46
567	Genome Editing in Stem Cells for Disease Therapeutics. Molecular Biotechnology, 2018, 60, 329-338.	2.4	11

#	Article	IF	CITATIONS
568	The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine, 2018, 1, e1003.	3.2	26
569	The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170077.	4.0	20
570	CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Current Research in Translational Medicine, 2018, 66, 39-42.	1.8	43
571	Analysis and dissociation of antiâ€HIV effects of shRNA to CCR5 and the fusion inhibitor C46. Journal of Gene Medicine, 2018, 20, e3006.	2.8	9
572	Recent Advances in Therapeutic Genome Editing in China. Human Gene Therapy, 2018, 29, 136-145.	2.7	5
573	Genome Editing B.C. (Before CRISPR): Lasting Lessons from the "Old Testament― CRISPR Journal, 2018, 1, 34-46.	2.9	52
574	Towards a cure for human immunodeficiency virus. Internal Medicine Journal, 2018, 48, 12-15.	0.8	2
575	Application of Genome Editing Techniques in Immunology. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 289-298.	2.3	14
576	CCR 5 RNA Pseudoknots: Residue and Siteâ€Specific Labeling correlate Internal Motions with microRNA Binding. Chemistry - A European Journal, 2018, 24, 5462-5468.	3.3	12
577	Programming gene and engineered-cell therapies with synthetic biology. Science, 2018, 359, .	12.6	180
578	Reprint of: Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, S1-S6.	2.0	7
579	Perceptions of Equipoise, Risk–Benefit Ratios, and "Otherwise Healthy Volunteers―in the Context of Early-Phase HIV Cure Research in the United States: A Qualitative Inquiry. Journal of Empirical Research on Human Research Ethics, 2018, 13, 3-17.	1.3	30
580	Interferons and beyond: Induction of antiretroviral restriction factors. Journal of Leukocyte Biology, 2018, 103, 465-477.	3.3	28
581	Recent alternative approaches of vascular drug-eluting stents. Journal of Pharmaceutical Investigation, 2018, 48, 153-165.	5.3	5
582	Gene therapy comes of age. Science, 2018, 359, .	12.6	936
583	Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	73
584	Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1. Molecular Therapy - Methods and Clinical Development, 2018, 9, 23-32.	4.1	10
585	Use of â€~eradication' in HIV cure-related research: a public health debate. BMC Public Health, 2018, 18, 245.	2.9	7

#	Article	IF	CITATIONS
586	Time-Restricted PiggyBac DNA Transposition by Transposase Protein Delivery Using Lentivirus-Derived Nanoparticles. Molecular Therapy - Nucleic Acids, 2018, 11, 253-262.	5.1	12
587	Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas. Frontiers of Medicine, 2018, 12, 497-508.	3.4	2
588	Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nature Communications, 2018, 9, 1800.	12.8	33
590	Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Research, 2018, 46, 4456-4468.	14.5	63
591	Efficient ZFN-Mediated Stop Codon Integration into the <i>CCR5 </i> Locus in Hematopoietic Stem Cells: A Possible Source for Intrabone Marrow Cell Transplantation. AIDS Research and Human Retroviruses, 2018, 34, 575-579.	1.1	4
592	Mouse Embryogenesis. Methods in Molecular Biology, 2018, , .	0.9	O
593	Genome Editing During Development Using the CRISPR-Cas Technology. Methods in Molecular Biology, 2018, 1752, 177-190.	0.9	0
594	Gene therapy clinical trials worldwide to 2017: An update. Journal of Gene Medicine, 2018, 20, e3015.	2.8	612
595	Simultaneous Knockout of <i>CXCR4</i> land <i>CCR5</i> Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Human Gene Therapy, 2018, 29, 51-67.	2.7	75
596	"We Need to Deploy Them Very Thoughtfully and Carefully†Perceptions of Analytical Treatment Interruptions in HIV Cure Research in the United States—A Qualitative Inquiry. AIDS Research and Human Retroviruses, 2018, 34, 67-79.	1.1	53
597	Chemical Approach to Biological Safety: Molecular‣evel Control of an Integrated Zinc Finger Nuclease. ChemBioChem, 2018, 19, 66-75.	2.6	3
598	Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, 13-18.	2.0	37
599	Updated summary of genome editing technology in human cultured cells linked to human genetics studies. Journal of Human Genetics, 2018, 63, 133-143.	2.3	6
600	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	3.4	7
601	Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 97-108.	3.3	99
602	<i>In Vitro</i> Transduction and Target-Mutagenesis Efficiency of HIV-1 <i>pol</i> Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure. AIDS Research and Human Retroviruses, 2018, 34, 88-102.	1.1	3
603	Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR Journal, 2018, 59, 276-285.	1.8	5
604	Analytical treatment interruption in HIV-infected individuals: clinical perspectives. Future Virology, 2018, 13, 719-726.	1.8	0

#	Article	IF	Citations
605	#CRISPRbabies: Notes on a Scandal. CRISPR Journal, 2018, 1, 355-357.	2.9	20
606	Highlights from the 8th International Workshop on HIV Persistence during Therapy, 12–15 December 2017, Miami, FL, USA. Journal of Virus Eradication, 2018, 4, 132-142.	0.5	0
607	CRISPR/Cas9 Genome Editing to Disable the Latent HIV-1 Provirus. Frontiers in Microbiology, 2018, 9, 3107.	3.5	24
608	Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Frontiers in Immunology, 2018, 9, 2861.	4.8	27
609	Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biology, 2018, 19, 226.	8.8	28
610	Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 2018, 9, 2940.	3.5	47
611	DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. IScience, 2018, 6, 247-263.	4.1	25
612	Quantification of HIV DNA Using Droplet Digital PCR Techniques. Current Protocols in Microbiology, 2018, 51, e62.	6.5	16
613	Precision HIV care: responding to old questions and meeting new challenges. Pharmacogenomics, 2018, 19, 1299-1302.	1.3	1
615	Promise of gene therapy to treat sickle cell disease. Expert Opinion on Biological Therapy, 2018, 18, 1123-1136.	3.1	18
616	Editing the Genome Ex Vivo Stem Cell Therapy. Current Stem Cell Reports, 2018, 4, 338-345.	1.6	1
617	Development of sensitive dd <scp>PCR</scp> assays to reliably quantify the proviral <scp>DNA</scp> reservoir in all common circulating <scp>HIV</scp> subtypes and recombinant forms. Journal of the International AIDS Society, 2018, 21, e25185.	3.0	16
618	Genetic Strategies for HIV Treatment and Prevention. Molecular Therapy - Nucleic Acids, 2018, 13, 514-533.	5.1	16
619	In Vivo Genome Editing as a Therapeutic Approach. International Journal of Molecular Sciences, 2018, 19, 2721.	4.1	57
620	Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nature Communications, 2018, 9, 3651.	12.8	137
621	The latest evidence for possible HIV-1 curative strategies. Drugs in Context, 2018, 7, 1-14.	2.2	26
622	Noncoding RNAs in Retrovirus Replication. , 2018, , 421-478.		1
623	Correlation of CCR5 and NLRP3 gene polymorphisms with renal damage due to hepatitis C virus-related cryoglobulinemia. Experimental and Therapeutic Medicine, 2018, 16, 3055-3059.	1.8	3

#	ARTICLE	IF	CITATIONS
624	In vivo targeted single-nucleotide editing in zebrafish. Scientific Reports, 2018, 8, 11423.	3.3	22
625	Efficient Enrichment of Gene-Modified Primary T Cells via CCR5-Targeted Integration of Mutant Dihydrofolate Reductase. Molecular Therapy - Methods and Clinical Development, 2018, 9, 347-357.	4.1	8
626	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Cell Transplantation, 2018, 27, 379-392.	2.5	30
627	Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency. Scientific Reports, 2018, 8, 8214.	3.3	6
628	Gene editing of stem cells for kidney disease modelling and therapeutic intervention. Nephrology, 2018, 23, 981-990.	1.6	7
629	2DåŠå°Žä½"ã®æ™æ—¹åÅãƒ~ãƒ†ãƒæŽ¥å•ã,'ãƒ~ãƒãƒãƒãƒã§. Nature Digest, 2018, 15, 33-35.	0.0	0
630	Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antiviral Research, 2018, 155, 76-88.	4.1	154
631	HIV glycoprotein gp120 enhances mesenchymal stem cell migration by upregulating CXCR4 expression. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1790-1800.	2.4	8
632	Inducing CCR5î"32ſî"32 Homozygotes in the Human Jurkat CD4+ Cell Line and Primary CD4+ Cells by CRISPR-Cas9 Genome-Editing Technology. Molecular Therapy - Nucleic Acids, 2018, 12, 267-274.	5.1	25
633	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	27.0	1,488
634	Biomolecular Therapeutics for HIV., 2018, , 541-567.		2
635	Genome editing to 're-write' wrongs. Nature Reviews Drug Discovery, 2018, 17, 689-690.	46.4	9
636	A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine, 2018, 24, 1216-1224.	30.7	573
638	CAR T cells for infection, autoimmunity and allotransplantation. Nature Reviews Immunology, 2018, 18, 605-616.	22.7	173
639	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	47.7	490
640	Genome Editing of Pluripotent Stem Cells. , 0, , 270-284.		1
641	Therapeutic Genome Editing in Human Hematopoietic Stem and Progenitor Cells., 0,, 301-312.		0
642	Gene Silencing, Disruption and Latency Reactivation with RNA-based and Gene Editing CRISPR/Cas, ZFN and TALEN Technologies for HIV-1/AIDS Therapies., 0,, 389-400.		0

#	Article	IF	Citations
643	Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and Cancer Therapies. , 0, , 401-413.		0
644	The Ethics of Human Genome Editing. , 0, , 443-453.		1
645	Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coordination Chemistry Reviews, 2018, 374, 133-152.	18.8	67
646	Fire prevention in the Parkinson's disease brain. Nature Medicine, 2018, 24, 900-902.	30.7	3
647	A path to efficient gene editing. Nature Medicine, 2018, 24, 899-900.	30.7	12
648	RNA Interference Therapies for an HIV-1 Functional Cure. Viruses, 2018, 10, 8.	3.3	36
649	CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses, 2018, 10, 40.	3.3	35
650	An ode to gene edits that prevent deafness. Nature, 2018, 553, 162-163.	27.8	2
651	CRISPRâ€Cas9: A cornerstone for the evolution of precision medicine. Annals of Human Genetics, 2018, 82, 331-357.	0.8	13
652	Developmental progress of CRISPR/Cas9 and its therapeutic applications for HIVâ€1 infection. Reviews in Medical Virology, 2018, 28, e1998.	8.3	14
653	Clinical Interventions in HIV Cure Research. Advances in Experimental Medicine and Biology, 2018, 1075, 285-318.	1.6	16
654	Digital PCR as a tool to measure HIV persistence. Retrovirology, 2018, 15, 16.	2.0	66
655	Engineering altered protein–DNA recognition specificity. Nucleic Acids Research, 2018, 46, 4845-4871.	14.5	36
656	Testing thousands of nanoparticles inÂvivo using DNA barcodes. Current Opinion in Biomedical Engineering, 2018, 7, 1-8.	3.4	52
657	Engineering Platforms for T Cell Modulation. International Review of Cell and Molecular Biology, 2018, 341, 277-362.	3.2	8
658	CRISPR/Cas9-Mediated In Situ Correction of LAMB3 Gene in Keratinocytes Derived from a Junctional Epidermolysis Bullosa Patient. Molecular Therapy, 2018, 26, 2592-2603.	8.2	46
659	Ctrl-Alt-inDel: genome editing to reprogram a cell in the clinic. Current Opinion in Genetics and Development, 2018, 52, 48-56.	3.3	11
660	Gene Therapy Methods and Their Applications in Neurological Disorders. , 2018, , 3-39.		4

#	Article	IF	CITATIONS
661	Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza. Nature Communications, 2018, 9, 2358.	12.8	63
662	Lessons learned from HIV antiretroviral treatment interruption trials. Current Opinion in HIV and AIDS, 2018, 13, 416-421.	3.8	40
663	From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results. Methods in Molecular Biology, 2018, 1793, 259-275.	0.9	2
664	Barriers and strategies to achieve a cure for HIV. Lancet HIV, the, 2018, 5, e317-e328.	4.7	99
665	Progress in achieving long-term HIV remission. Current Opinion in HIV and AIDS, 2018, 13, 435-445.	3.8	7
666	Gene Editing on Center Stage. Trends in Genetics, 2018, 34, 600-611.	6.7	117
667	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	3.3	28
668	Noncoding RNA-Targeted Therapeutics in Autoimmune Diseases: From Bench to Bedside. , 2018, , 359-386.		2
669	Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. International Review of Cell and Molecular Biology, 2018, 335, 85-141.	3.2	23
670	Techniques for Nucleic Acid Engineering. , 2018, , 247-315.		5
671	CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. Journal of Molecular Biology, 2018, 430, 2557-2589.	4.2	67
672	Nanotechnology approaches to eradicating HIV reservoirs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 48-63.	4.3	35
673	Gene Editing in Regenerative Medicine. , 2019, , 741-759.		0
675	Antiretroviral treatment, government policy and economy of HIV/AIDS in Brazil: is it time for HIV cure in the country?. AIDS Research and Therapy, 2019, 16, 19.	1.7	26
676	CRISPR-Cas9 Probing of Infectious Diseases and Genetic Disorders. Indian Journal of Pediatrics, 2019, 86, 1131-1135.	0.8	1
677	Current status and future prospects of virus-based gene medicine. Drug Delivery System, 2019, 34, 99-105.	0.0	0
678	Single-Cell Editing: The CRISPR/Cas9 and Applications. , 2019, , 397-415.		1
679	Gene therapy for primary immunodeficiency. Human Molecular Genetics, 2019, 28, R15-R23.	2.9	55

#	Article	IF	CITATIONS
680	Genetic therapies, human genetic enhancement, and … eugenics?. Gene Therapy, 2019, 26, 351-353.	4.5	18
681	Mechanisms for Controlling HIV-1 Infection: A Gene Therapy Approach. , 0, , .		3
682	Genome Editing for Muscle Gene Therapy. , 2019, , 275-287.		0
683	An anionic human protein mediates cationic liposome delivery of genome editing proteins into mammalian cells. Nature Communications, 2019, 10, 2905.	12.8	20
684	CRISPR-Cas9-mediated loss-of-function screens. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2019, 12, 1-13.	1.1	3
685	The Daunting Economics of Therapeutic Genome Editing. CRISPR Journal, 2019, 2, 280-284.	2.9	21
686	Targeting CCR5 trafficking to inhibit HIV-1 infection. Science Advances, 2019, 5, eaax0821.	10.3	26
687	Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Letters, 2019, 593, 3623-3648.	2.8	35
688	Improved Cas9 activity by specific modifications of the tracrRNA. Scientific Reports, 2019, 9, 16104.	3.3	19
690	Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies. Advances in Experimental Medicine and Biology, 2019, 1237, 17-28.	1.6	3
691	Genomics, Proteomics, and Metabolomics. Pancreatic Islet Biology, 2019, , .	0.3	6
692	The application of genome editing technology. Biotarget, 0, 3, 15-15.	0.5	1
693	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844.	14.6	32
694	A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2019, 93, .	3.4	15
695	Emerging therapeutic applications of CRISPR genome editing. Emerging Topics in Life Sciences, 2019, 3, 257-260.	2.6	2
696	CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. New England Journal of Medicine, 2019, 381, 1240-1247.	27.0	313
697	Emerging Use of CRISPR Technology â€" Chasing the Elusive HIV Cure. New England Journal of Medicine, 2019, 381, 1281-1283.	27.0	8
698	Personal Genetic Information about HIV: Research Participants' Views of Ethical, Social, and Behavioral Implications. Public Health Genomics, 2019, 22, 36-45.	1.0	3

#	Article	IF	CITATIONS
699	The Landscape of Early Clinical Gene Therapies outside of Oncology. Molecular Therapy, 2019, 27, 1706-1717.	8.2	18
700	Indigenous Perspectives and Gene Editing in Aotearoa New Zealand. Frontiers in Bioengineering and Biotechnology, 2019, 7, 70.	4.1	34
701	CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Frontiers in Immunology, 2019, 10, 2310.	4.8	26
702	Discussion on Advanced Targeted Nanomedical Application Scenarios for Treatment of Some Chronic Diseases. Nanomedicine and Nanotoxicology, 2019, , 125-143.	0.2	1
703	Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders. Soft Matter, 2019, 15, 1960-1969.	2.7	20
704	Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Molecular Diagnosis and Therapy, 2019, 23, 173-186.	3.8	23
705	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	21.8	38
706	Matrix Mediated Viral Gene Delivery: A Review. Bioconjugate Chemistry, 2019, 30, 384-399.	3.6	10
707	Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Computational and Structural Biotechnology Journal, 2019, 17, 689-698.	4.1	35
708	Delivery of CRISPR/Cas9 for therapeutic genome editing. Journal of Gene Medicine, 2019, 21, e3107.	2.8	93
709	Gene Therapy. Advances in Pediatrics, 2019, 66, 37-54.	1.4	15
710	Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing. Scientific Reports, 2019, 9, 8067.	3.3	10
711	Gene editing for immune cell therapies. Nature Biotechnology, 2019, 37, 1425-1434.	17.5	147
712	Principles of and strategies for germline gene therapy. Nature Medicine, 2019, 25, 890-897.	30.7	49
713	CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology, 2019, 16, 15.	2.0	36
714	Genome editing for blood disorders: state of the art and recent advances. Emerging Topics in Life Sciences, 2019, 3, 289-299.	2.6	4
715	Small RNAs to treat human immunodeficiency virus type 1 infection by gene therapy. Current Opinion in Virology, 2019, 38, 10-20.	5.4	11
716	DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Journal of Computer-Aided Molecular Design, 2019, 33, 645-658.	2.9	50

#	Article	IF	CITATIONS
717	CCR5 silencing reduces inflammatory response, inhibits viability, and promotes apoptosis of synovial cells in rat models of rheumatoid arthritis through the MAPK signaling pathway. Journal of Cellular Physiology, 2019, 234, 18748-18762.	4.1	21
718	Therapeutic mRNA delivery to leukocytes. Journal of Controlled Release, 2019, 305, 165-175.	9.9	43
719	Genetic Polymorphisms in the Open Reading Frame of the CCR5 gene From HIV-1 Seronegative and Seropositive Individuals From National Capital Regions of India. Scientific Reports, 2019, 9, 7594.	3.3	8
720	HIV "cure― A shot in the arm?. EBioMedicine, 2019, 42, 3-5.	6.1	11
721	Acceptability of Cell and Gene Therapy for Curing HIV Infection Among People Living with HIV in the Northwestern United States: A Qualitative Study. AIDS Research and Human Retroviruses, 2019, 35, 649-659.	1.1	22
722	Advanced Therapies: Clinical, Non-clinical and Quality Considerations. , 2019, , 357-402.		1
723	Targeting reservoirs of HIV replication in lymphoid follicles with cellular therapies to cure HIV. Advances in Cell and Gene Therapy, 2019, 2, e27.	0.9	4
724	Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC Biotechnology, 2019, 19, 23.	3.3	6
725	Off-target genome editing: A new discipline of gene science and a new class of medicine. Cell Biology and Toxicology, 2019, 35, 179-183.	5. 3	15
726	CRISPR/Cas9-modified hematopoietic stem cellsâ€"present and future perspectives for stem cell transplantation. Bone Marrow Transplantation, 2019, 54, 1940-1950.	2.4	26
727	Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Frontiers in Cellular and Infection Microbiology, 2019, 9, 69.	3.9	112
728	Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746.	8.2	148
729	A New Class of Medicines through DNA Editing. New England Journal of Medicine, 2019, 380, 947-959.	27.0	184
730	Cell-free gene-regulatory network engineering with synthetic transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5892-5901.	7.1	59
731	Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends in Biotechnology, 2019, 37, 870-881.	9.3	73
732	Genomic Medicine–Progress, Pitfalls, and Promise. Cell, 2019, 177, 45-57.	28.9	143
733	Safety of CD34+ Hematopoietic Stem Cells and CD4+ T Lymphocytes Transduced with LVsh5/C46 in HIV-1 Infected Patients with High-Risk Lymphoma. Molecular Therapy - Methods and Clinical Development, 2019, 13, 303-309.	4.1	13
734	Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection. Pharmaceutics, 2019, 11, 114.	4.5	4

#	Article	IF	CITATIONS
735	New targets for HIV drug discovery. Drug Discovery Today, 2019, 24, 1139-1147.	6.4	18
736	CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Seminars in Cell and Developmental Biology, 2019, 96, 53-64.	5.0	22
737	Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nature Communications, 2019, 10, 1634.	12.8	140
738	CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood, 2019, 133, 2745-2752.	1.4	57
739	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.9	5
740	Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient InÂVivo Genome Editing of Multiple Therapeutic Gene Targets. Molecular Therapy, 2019, 27, 866-877.	8.2	64
741	Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerging Topics in Life Sciences, 2019, 3, 261-275.	2.6	2
742	Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Frontiers in Immunology, 2019, 10, 456.	4.8	60
743	HIV Eradication Strategies: Implications for the Central Nervous System. Current HIV/AIDS Reports, 2019, 16, 96-104.	3.1	27
744	One-step generation of modular CAR-T cells with AAV–Cpf1. Nature Methods, 2019, 16, 247-254.	19.0	101
745	Experiments that led to the first gene-edited babies: the ethical failings and the urgent need for better governance. Journal of Zhejiang University: Science B, 2019, 20, 32-38.	2.8	51
746	From fiction to science: clinical potentials and regulatory considerations of gene editing. Clinical and Translational Medicine, 2019, 8, 27.	4.0	26
748	EVOLVING ROLE OF CAR T-CELL IN CANCER IMMUNOTHERAPY. International Journal of Current Pharmaceutical Research, 0, , 19-27.	0.2	0
749	Evaluating the Intactness of Persistent Viral Genomes in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Initiating Antiretroviral Therapy within One Year of Infection. Journal of Virology, 2019, 94, .	3.4	23
750	On the Road to a HIV Cure. Infectious Disease Clinics of North America, 2019, 33, 857-868.	5.1	16
751	Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice. International Journal of Molecular Sciences, 2019, 20, 5926.	4.1	11
752	Gene Editing Expands the Donor Pool for CCR5-Negative Stem Cell Transplants. Cell Stem Cell, 2019, 25, 735-736.	11.1	2
753	Gene Therapy. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 321-368.	1.1	12

#	Article	IF	Citations
754	The Safety and Immunogenicity of GTUÂ $^{\odot}$ MultiHIV DNA Vaccine Delivered by Transcutaneous and Intramuscular Injection With or Without Electroporation in HIV-1 Positive Subjects on Suppressive ART. Frontiers in Immunology, 2019, 10, 2911.	4.8	11
755	Clinical trials of antiretroviral treatment interruption in HIV-infected individuals. Aids, 2019, 33, 773-791.	2.2	34
756	Reconstitution of HIV-1 reservoir following high-dose chemotherapy/autologous stem cell transplantation for lymphoma. Aids, 2019, 33, 247-257.	2.2	0
757	Moving towards a cure in genetics: what is needed to bring somatic gene therapy to the clinic?. European Journal of Human Genetics, 2019, 27, 484-487.	2.8	11
758	Toward the Cure of HIV-1 Infection: Lessons Learned and Yet to be Learned as New Strategies are Developed. AIDS Reviews, 2019, 20, 220-225.	1.0	3
7 59	Gene therapy for blood diseases. Current Opinion in Biotechnology, 2019, 60, 39-45.	6.6	27
760	Clinical applications of CRISPRâ€based genome editing and diagnostics. Transfusion, 2019, 59, 1389-1399.	1.6	31
761	Ways of improving precise knock-in by genome-editing technologies. Human Genetics, 2019, 138, 1-19.	3.8	29
762	Functional cure of HIV: the scale of the challenge. Nature Reviews Immunology, 2019, 19, 45-54.	22.7	93
763	Entering the Modern Era of Gene Therapy. Annual Review of Medicine, 2019, 70, 273-288.	12.2	311
764	The Future of Chimeric Antigen Receptor T Cell Therapy for the Treatment of Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2019, 25, e73-e75.	2.0	4
765	Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Molecular Therapy - Nucleic Acids, 2019, 14, 212-238.	5.1	41
766	Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology, 2019, , .	0.2	8
767	Insight in HIV Integration Site Selection Provides a Block-and-Lock Strategy for a Functional Cure of HIV Infection. Viruses, $2019,11,12.$	3.3	26
768	Plant-Derived Molecules in Managing HIV Infection. , 2019, , 273-298.		1
769	Gene Therapy for Primary Immune Deficiency Diseases. , 2019, , 1155-1164.e1.		0
770	Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Advances in Biological Regulation, 2019, 71, 19-33.	2.3	6
771	Gene Therapy for Nonmalignant Hematology. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 265-288.	0.0	0

#	Article	IF	Citations
772	Application of Gene-Editing Technologies in Embryos and Their Potential for Gene Therapy. , 2019, , 659-676.		1
773	Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 75-91.	4.3	36
774	CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology, 2019, 55, 106-119.	9.6	206
775	Emerging Life Sciences: New Challenges to Strategic Stability. Advanced Sciences and Technologies for Security Applications, 2020, , 31-48.	0.5	2
776	Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody. Cellular and Molecular Life Sciences, 2020, 77, 2859-2870.	5.4	14
777	Genome Editing and Hematologic Malignancy. Annual Review of Medicine, 2020, 71, 71-83.	12.2	1
778	Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5, 1.	17.1	1,354
779	Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. IScience, 2020, 23, 100789.	4.1	81
780	Advances toward Curing HIV-1 Infection in Tissue Reservoirs. Journal of Virology, 2020, 94, .	3.4	53
782	CRISPR-Cas9 genome editing for cancer immunotherapy: opportunities and challenges. Briefings in Functional Genomics, 2020, 19, 183-190.	2.7	4
783	Advances in chimeric antigen receptor T cells. Current Opinion in Hematology, 2020, 27, 368-377.	2.5	24
784	Haemopoietic cell transplantation in patients living with HIV. Lancet HIV, the, 2020, 7, e652-e660.	4.7	14
785	Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. , 2020, 2, 1475-1483.		15
786	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	2.4	37
787	CAR T-cell therapy for cancer and HIV through novel approaches to HIV-associated haematological malignancies. Lancet Haematology,the, 2020, 7, e690-e696.	4.6	24
788	Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 18, 679-691.	4.1	28
789	DNA Damage: From Threat to Treatment. Cells, 2020, 9, 1665.	4.1	99
790	Preclinical Development and Clinical-Scale Manufacturing of HIV Gag-Specific, LentivirusModified CD4ÂT Cells for HIV Functional Cure. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1048-1060.	4.1	4

#	Article	IF	CITATIONS
791	A Novel IncRNA, AK130181, Contributes to HIV-1 Latency by Regulating Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 754-763.	5.1	19
792	Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Molecular Therapy, 2020, 28, 1422-1431.	8.2	34
793	Targeting zinc metalloenzymes in coronavirus disease 2019. British Journal of Pharmacology, 2020, 177, 4887-4898.	5.4	32
794	Genome editing of CCR5 by AsCpf1 renders CD4+T cells resistance to HIV-1 infection. Cell and Bioscience, 2020, 10, 85.	4.8	17
795	The once and future gene therapy. Nature Communications, 2020, 11, 5820.	12.8	160
796	CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods and Protocols, 2020, 3, 79.	2.0	9
797	Induction of E.Âcoli-derived endonuclease MazF suppresses HIV-1 production and causes apoptosis in latently infected cells. Biochemical and Biophysical Research Communications, 2020, 530, 597-602.	2.1	3
798	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	11.4	58
799	In vivo locus-specific editing of the neuroepigenome. Nature Reviews Neuroscience, 2020, 21, 471-484.	10.2	44
800	Protein Delivery of Cell-Penetrating Zinc-Finger Activators Stimulates Latent HIV-1-Infected Cells. Molecular Therapy - Methods and Clinical Development, 2020, 18, 145-158.	4.1	3
801	Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Seminars in Hematology, 2020, 57, 83-91.	3.4	5
802	μâ€Lat: A mouse model to evaluate human immunodeficiency virus eradication strategies. FASEB Journal, 2020, 34, 14615-14630.	0.5	2
803	Treating primary immunodeficiencies with defects in NK cells: from stem cell therapy to gene editing. Stem Cell Research and Therapy, 2020, 11, 453.	5.5	3
804	Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 2020, 26, 1776-1787.	30.7	63
805	Designed Ankyrin Repeat Protein (DARPin) to target chimeric antigen receptor (CAR)-redirected T cells towards CD4+ T cells to reduce the latent HIV+ cell reservoir. Medical Microbiology and Immunology, 2020, 209, 681-691.	4.8	1
806	A highly efficient and safe gene delivery platform based on polyelectrolyte core–shell nanoparticles for hard-to-transfect clinically relevant cell types. Journal of Materials Chemistry B, 2020, 8, 9576-9588.	5.8	23
807	Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nature Medicine, 2020, 26, 1339-1350.	30.7	96
808	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252.	5.2	31

#	Article	IF	CITATIONS
809	Molecular mechanisms, offâ€ŧarget activities, and clinical potentials of genome editing systems. Clinical and Translational Medicine, 2020, 10, 412-426.	4.0	31
810	Editing of Endogenous Genes in Cellular Immunotherapies. Current Hematologic Malignancy Reports, 2020, 15, 235-240.	2.3	4
811	A mathematical model of HIV dynamics treated with a population of gene-edited haematopoietic progenitor cells exhibiting threshold phenomenon. Mathematical Medicine and Biology, 2020, 37, 212-242.	1.2	5
812	Genetically-edited induced pluripotent stem cells derived from HIV-1-infected patients on therapy can give rise to immune cells resistant to HIV-1 infection. Aids, 2020, 34, 1141-1149.	2.2	14
813	Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020, 26, 535-541.	30.7	196
814	Advances in Developing CAR T-Cell Therapy for HIV Cure. Frontiers in Immunology, 2020, 11, 361.	4.8	42
815	Evidence for HIV-1 cure after CCR5î"32/Î"32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV,the, 2020, 7, e340-e347.	4.7	151
816	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine, 2020, 98, 615-632.	3.9	66
817	CRISPR-Edited Immune Effectors: The End of the Beginning. Molecular Therapy, 2020, 28, 995-996.	8.2	3
818	In vivo Effects of Romidepsin on T-Cell Activation, Apoptosis and Function in the BCN02 HIV-1 Kick&Kill Clinical Trial. Frontiers in Immunology, 2020, 11, 418.	4.8	23
819	Curing HIV: Seeking to Target and Clear Persistent Infection. Cell, 2020, 181, 189-206.	28.9	126
820	The delivery challenge: fulfilling the promise of therapeutic genome editing. Nature Biotechnology, 2020, 38, 845-855.	17.5	163
821	Robust expansion of HIV CAR T cells following antigen boosting in ART-suppressed nonhuman primates. Blood, 2020, 136, 1722-1734.	1.4	37
822	Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, 2020, 9, 1608.	4.1	257
823	A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotechnology Letters, 2020, 42, 1611-1632.	2,2	25
824	A Handbook of Gene and Cell Therapy. , 2020, , .		9
825	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	4.1	67
826	Gene therapy for primary immune deficiencies. , 2020, , 1215-1228.		0

#	Article	IF	CITATIONS
827	Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 298.	3.9	8
828	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
829	CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 2020, 43, 8-17.	3.1	151
830	CRISPR/Cas9â€mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 2020, 24, 3766-3778.	3.6	61
831	Unleashing the cure: Overcoming persistent obstacles in the translation and expanded use of hematopoietic stem cell-based therapies. Stem Cells Translational Medicine, 2020, 9, 420-426.	3.3	11
832	The clinical potential of gene editing as a tool to engineer cellâ€based therapeutics. Clinical and Translational Medicine, 2020, 9, 15.	4.0	56
833	Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses, 2020, 12, 188.	3.3	10
834	A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Science Advances, 2020, 6, eaax5701.	10.3	44
835	Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Reports, 2020, 30, 1195-1207.e7.	6.4	29
836	Prime Time for Genome Editing?. New England Journal of Medicine, 2020, 382, 481-484.	27.0	7
837	Manipulation of mitochondrial genes and mtDNA heteroplasmy. Methods in Cell Biology, 2020, 155, 441-487.	1.1	15
838	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	28.9	247
839	Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells, 2020, 9, 953.	4.1	19
840	Measuring the Success of HIV-1 Cure Strategies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 134.	3.9	34
841	Gene Therapy Clinical Trials. , 2020, , 285-301.		3
842	Second Generation Genome Editing Technologies in Drug Discovery. , 2020, , 213-242.		О
843	Common therapeutic advances for Duchenne muscular dystrophy (DMD). International Journal of Neuroscience, 2021, 131, 370-389.	1.6	22
844	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	3.6	9

#	Article	IF	CITATIONS
845	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. British Journal of Haematology, 2021, 192, 33-49.	2.5	4
846	Conventional T cell therapies pave the way for novel Treg therapeutics. Cellular Immunology, 2021, 359, 104234.	3.0	2
847	" Designer babies ?!―A CRISPR â€based learning module for undergraduates built around the CCR5 gene. Biochemistry and Molecular Biology Education, 2021, 49, 80-93.	1.2	4
848	Progress and Perspectives in the Development of Lentiviral Vector Producer Cells. Biotechnology Journal, 2021, 16, e2000017.	3.5	42
849	Engaging Cell and Gene Therapists in HIV Cure. Human Gene Therapy, 2021, 32, 17-20.	2.7	3
850	Non-viral strategies for delivering genome editing enzymes. Advanced Drug Delivery Reviews, 2021, 168, 99-117.	13.7	32
851	Gene therapy for primary immunodeficiencies: up-to-date. Expert Opinion on Biological Therapy, 2021, 21, 529-538.	3.1	3
852	Probiotic Research in Therapeutics. , 2021, , .		1
853	Novel insights into gene therapy in the cornea. Experimental Eye Research, 2021, 202, 108361.	2.6	22
854	Gene therapy using haematopoietic stem and progenitor cells. Nature Reviews Genetics, 2021, 22, 216-234.	16.3	151
855	Engineering precision therapies: lessons and motivations from the clinic. Synthetic Biology, 2021, 6, ysaa024.	2.2	5
856	Autologous CD4ÂT Lymphocytes Modified with a Tat-Dependent, Virus-Specific Endoribonuclease Gene in HIV-Infected Individuals. Molecular Therapy, 2021, 29, 626-635.	8.2	3
857	HIV Gene Therapy: An Update. Human Gene Therapy, 2021, 32, 52-65.	2.7	13
858	Preclinical Evaluation of a Novel TALEN Targeting <i>CCR5</i> Confirms Efficacy and Safety in Conferring Resistance to HIV†Infection. Biotechnology Journal, 2021, 16, e2000023.	3.5	18
859	Conserved and divergent features of DNA repair. Future perspectives in genome stability research. , 2021, , 699-714.		0
860	Homologous recombination in mammalian cells: From molecular mechanisms to pathology. , 2021, , 367-392.		0
861	LEDGINs, Inhibitors of the Interaction Between HIV-1 Integrase and LEDGF/p75, Are Potent Antivirals with a Potential to Cure HIV Infection. Advances in Experimental Medicine and Biology, 2021, 1322, 97-114.	1.6	6
862	Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. , 2021, , 1539-1587.		0

#	Article	IF	CITATIONS
863	Pentatricopeptide repeat proteins: II. Present status and future prospects of PPR-based programmable RNA editing in crop improvement. Journal of Crop Improvement, 0, , 1-24.	1.7	1
864	Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope?. Frontiers in Genome Editing, 2020, 2, 615619.	5.2	5
865	DNA Recognition/Processing Zinc Fingers: Structure and Design. , 2021, , 506-516.		1
866	Recent progress in research and application of engineered implanted cells for biomedical applications. Quantitative Biology, 2021, 9, 267-291.	0.5	1
867	An introduction to CRISPR-Cas systems for reprogramming the genome of mammalian cells. Progress in Molecular Biology and Translational Science, 2021, 181, 1-13.	1.7	0
868	Therapeutic genome editing. , 2021, , 193-211.		0
869	Weiterentwicklung in der Therapie rheumatischer Erkrankungen bei Kindern und Jugendlichen. Springer Reference Medizin, 2021 , , $1-19$.	0.0	0
870	Thresholds for post-rebound SHIV control after CCR5 gene-edited autologous hematopoietic cell transplantation. ELife, 2021, 10, .	6.0	9
871	Targeted genome editing., 2021,, 75-89.		7
872	CRISPR/Cas9 technologies to manipulate human induced pluripotent stem cells., 2021,, 249-287.		0
873	Generation of HIV-resistant cells with a single-domain antibody: implications for HIV-1 gene therapy. Cellular and Molecular Immunology, 2021, 18, 660-674.	10.5	9
874	Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyperâ€lgM syndrome. EMBO Molecular Medicine, 2021, 13, e13545.	6.9	36
875	Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Frontiers in Immunology, 2020, 11, 611638.	4.8	26
876	<i>In Vivo</i> T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano, 2021, 15, 3736-3753.	14.6	50
877	The Cas9 Hammer—and Sickle: A Challenge for Genome Editors. CRISPR Journal, 2021, 4, 6-13.	2.9	11
878	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	16.3	63
879	Molecular Medicine: Found in Translation. Med, 2021, 2, 122-136.	4.4	13
880	Implications of hematopoietic stem cells heterogeneity for gene therapies. Gene Therapy, 2021, 28, 528-541.	4.5	12

#	Article	IF	CITATIONS
881	Advances in cell and gene therapy for HIV disease: it is good to be specific. Current Opinion in HIV and AIDS, 2021, 16, 83-87.	3.8	7
883	CRISPR/Cas-Dependent and Nuclease-Free <i>In Vivo</i> Therapeutic Gene Editing. Human Gene Therapy, 2021, 32, 275-293.	2.7	26
884	Chimeric antigen receptor T-cell therapy for HIV cure. Current Opinion in HIV and AIDS, 2021, 16, 88-97.	3.8	6
885	The Strategies and Challenges of CCR5 Gene Editing in Hematopoietic Stem and Progenitor Cells for the Treatment of HIV. Stem Cell Reviews and Reports, 2021, 17, 1607-1618.	3.8	5
886	HIV latency reversal agents: A potential path for functional cure?. European Journal of Medicinal Chemistry, 2021, 213, 113213.	5.5	6
887	Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. British Journal of Pharmacology, 2021, 178, 1741-1755.	5.4	12
888	Towards a Functional Cure of HIV-1: Insight Into the Chromatin Landscape of the Provirus. Frontiers in Microbiology, 2021, 12, 636642.	3.5	9
889	Automated production of CCR5-negative CD4+-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Therapy, 2021, 28, 572-587.	4.5	8
891	Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.4	1
893	CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Current Gene Therapy, 2021, 21, 130-148.	2.0	6
894	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
895	CRISPR Genome Editing Technology and its Application in Genetic Diseases: A Review. Current Pharmaceutical Biotechnology, 2021, 22, 468-479.	1.6	2
896	Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Frontiers in Immunology, 2021, 12, 636775.	4.8	16
897	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	8.2	52
898	Knowledge From London and Berlin: Finding Threads to a Functional HIV Cure. Frontiers in Immunology, 2021, 12, 688747.	4.8	13
899	What Can Genome Editing Be Used for?. , 2021, , 141-191.		0
901	Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine, 2021, 67, 103354.	6.1	48
902	Novel therapies in βâ€thalassaemia. British Journal of Clinical Pharmacology, 2022, 88, 2509-2524.	2.4	7

#	ARTICLE	IF	CITATIONS
904	Antibody-based CCR5 blockade protects Macaques from mucosal SHIV transmission. Nature Communications, 2021, 12, 3343.	12.8	15
906	Prevalence, risk factors and impact of cellular immunity on intestinal parasitosis among people living with HIV at Auchi, Edo State, Nigeria. International Journal of STD and AIDS, 2021, 32, 095646242110209.	1.1	1
907	An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene, 2021, 785, 145615.	2.2	9
908	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	3.2	23
909	Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Therapy, 2021, 28, 588-601.	4.5	13
910	HIV-1 and human genetic variation. Nature Reviews Genetics, 2021, 22, 645-657.	16.3	39
911	A short, idiosyncratic history of genome editing. Gene and Genome Editing, 2021, 1, 100002.	2.6	2
913	Is HSD17B13 Genetic Variant a Protector for Liver Dysfunction? Future Perspective as a Potential Therapeutic Target. Journal of Personalized Medicine, 2021, 11, 619.	2.5	8
914	Could gene therapy cure HIV?. Life Sciences, 2021, 277, 119451.	4.3	12
915	The role of Bryostatin and PMA (Phorbole Myristate Acetate) in enhancing ZFN's Anti-HIV effects. Research Journal of Pharmacy and Technology, 2021, , 3674-3678.	0.8	0
916	Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Frontiers in Cell and Developmental Biology, 2021, 9, 716344.	3.7	5
917	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	2.8	3
918	Antimicrobial immunotherapeutics: past, present and future. Emerging Topics in Life Sciences, 2021, 5, 609-628.	2.6	1
919	The era of gene therapy: From preclinical development to clinical application. Drug Discovery Today, 2021, 26, 1602-1619.	6.4	26
920	GEN TERAPİSİNDE CRISPR-CAS9. Celal Bayar Üniversitesi SaÄŸlık Bilimleri EnstitÃ1⁄4sÃ1⁄4 Dergisi, 0, , .	0.3	1
921	Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Molecular Therapy, 2021, 29, 3219-3229.	8.2	14
922	The New RNA-Editing Era – Ethical Considerations. Trends in Genetics, 2021, 37, 685-687.	6.7	4
923	The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy. Molecular Therapy - Nucleic Acids, 2021, 26, 1466-1478.	5.1	18

#	Article	IF	CITATIONS
924	Targeting and Understanding HIV Latency: The CRISPR System against the Provirus. Pathogens, 2021, 10, 1257.	2.8	5
925	CRISPR-Cas9 Genome Engineering: Trends in Medicine and Health. Mini-Reviews in Medicinal Chemistry, 2022, 22, 410-421.	2.4	10
926	LATE–a novel sensitive cell-based assay for the study of CRISPR/Cas9-related long-term adverse treatment effects. Molecular Therapy - Methods and Clinical Development, 2021, 22, 249-262.	4.1	1
927	Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, 2021, 29, 3205-3218.	8.2	14
928	A new era in functional genomics screens. Nature Reviews Genetics, 2022, 23, 89-103.	16.3	104
929	Moving Toward a Functional Cure for HIV-1. Infectious Diseases & Immunity, 2021, Publish Ahead of Print, .	0.6	1
930	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	8.2	87
931	Visualizing looping of two endogenous genomic loci using synthetic zincâ€finger proteins with antiâ€FLAG and antiâ€HA frankenbodies in living cells. Genes To Cells, 2021, 26, 905-926.	1.2	15
932	Broadly neutralizing antibody–derived CAR T cells reduce viral reservoir in individuals infected with HIV-1. Journal of Clinical Investigation, 2021, 131, .	8.2	38
933	Genome editing in large animal models. Molecular Therapy, 2021, 29, 3140-3152.	8.2	18
934	The evolution and history of gene editing technologies. Progress in Molecular Biology and Translational Science, 2021, 178, 1-62.	1.7	7
935	Assessing and reconditioning kidneys using normothermic machine perfusion., 2021,, 75-93.		0
936	Genome Editing for \hat{l}^2 -Hemoglobinopathies: Advances and Challenges. Journal of Clinical Medicine, 2021, 10, 482.	2.4	17
937	A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Current HIV Research, 2021, 19, 14-26.	0.5	10
938	Gene Therapy in Cellular Immunodeficiencies. Rare Diseases of the Immune System, 2021, , 473-497.	0.1	0
939	Initial proteomic characterization of IMMODIN, commercially available dialysable leukocytes extract. Chemical Papers, 2021, 75, 1959-1968.	2.2	3
940	Myotonic Dystrophy and Developmental Regulation of RNA Processing. , 2018, 8, 509-553.		26
942	The Development of TALE Nucleases for Biotechnology. Methods in Molecular Biology, 2016, 1338, 27-42.	0.9	31

#	Article	IF	CITATIONS
943	Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy. Methods in Molecular Biology, 2016, 1351, 145-162.	0.9	33
944	Human Acute and Chronic Viruses: Host-Pathogen Interactions and Therapeutics. , 2020, , 1-120.		3
945	Genetically Engineered Probiotics. , 2021, , 295-328.		1
946	Gene therapy and gene editing. , 2020, , 463-477.		2
947	Therapeutic Gene Editing with CRISPR. Clinics in Laboratory Medicine, 2020, 40, 205-219.	1.4	3
948	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	4.1	100
949	Ethics of embryo editing divides scientists. Nature, 2015, 519, 272-272.	27.8	38
950	Gene-editing method tackles HIV in first clinical test. Nature, 0, , .	27.8	5
951	Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, .	2.4	122
952	Civil liability for damages related to germline and embryo editing against the legal admissibility of gene editing. Palgrave Communications, 2020, 6, .	4.7	8
953	Gene Therapy for Primary Immunodeficiency. HemaSphere, 2021, 5, e509.	2.7	12
957	Xenotransplantation: back to the future?. Transplant International, 2018, 31, 465-477.	1.6	51
958	Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Advances, 2019, 3, 461-475.	5.2	21
959	CRISPR-Cas9 Genome Editing: A New Era in Characterizing and Treating Hematologic Disease. , 2017, 14, .		1
960	Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Medicine, 2017, 14, e1002461.	8.4	50
961	HIV Cure Strategies: How Good Must They Be to Improve on Current Antiretroviral Therapy?. PLoS ONE, 2014, 9, e113031.	2.5	21
962	CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection. PLoS ONE, 2014, 9, e115987.	2.5	165
963	HIV Replication Is Not Controlled by CD8+ T Cells during the Acute Phase of the Infection in Humanized Mice. PLoS ONE, 2015, 10, e0138420.	2.5	7

#	Article	IF	Citations
964	Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS ONE, 2016, 11, e0150037.	2.5	10
965	HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation. PLoS ONE, 2016, 11, e0152975.	2.5	4
966	Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial. PLoS ONE, 2016, 11, e0154842.	2.5	27
967	No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells. PLoS ONE, 2017, 12, e0177444.	2.5	29
968	Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection. PLoS ONE, 2017, 12, e0177935.	2.5	13
969	Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS ONE, 2017, 12, e0184009.	2.5	71
970	Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathogens, 2016, 12, e1005983.	4.7	43
971	Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathogens, 2017, 13, e1006613.	4.7	106
972	Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy. PLoS Pathogens, 2018, 14, e1006956.	4.7	32
973	Current Approaches to the Treatment of Hunter Syndrome. PediatriÄeskaâ Farmakologiâ, 2018, 15, 324-332.	0.4	1
975	Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review. Current Pharmaceutical Biotechnology, 2022, 23, 72-97.	1.6	3
976	Rescue of the activity of HNH nuclease mutants - towards controlled enzymes for gene therapy. Current Protein and Peptide Science, 2016, 17, 191-197.	1.4	1
977	The Antitumor Efficiency of Zinc Finger Nuclease Combined with Cisplatin and Trichostatin A in Cervical Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 2125-2135.	1.7	4
978	Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy. BIOpreparations Prevention Diagnosis Treatment, 2018, 18, 140-149.	0.5	5
979	Therapy of HIV Infection: Current Approaches and Prospects. Acta Naturae, 2016, 8, 23-32.	1.7	21
980	Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing. Life, 2020, 10, 366.	2.4	32
981	Editing of the TRIM5 Gene Decreases the Permissiveness of Human T Lymphocytic Cells to HIV-1. Viruses, 2021, 13, 24.	3.3	6
982	Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 2020, 46, 521-534.	4.0	19

#	Article	IF	CITATIONS
983	An Overview Of The Crispr-Based Genomic- And Epigenome-Editing System: Function, Applications, And Challenges. Advanced Biomedical Research, 2019, 8, 49.	0.5	5
984	HIV – Is a cure possible?. Indian Journal of Sexually Transmitted Diseases and AIDS, 2019, 40, 1.	0.3	11
985	A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virologica, 2019, 63, 129-138.	0.8	3
986	Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World Journal of Hepatology, 2015, 7, 859.	2.0	5
987	Loss of gene function and evolution of human phenotypes. BMB Reports, 2015, 48, 373-379.	2.4	9
988	Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World Journal of Virology, 2015, 4, 219.	2.9	16
989	Gene editing for corneal disease management. World Journal of Translational Medicine, 2016, 5, 1.	3.5	5
990	Application of Genome Editing Technology to MicroRNA Research in Mammalians. , 0, , .		2
991	HIV-1 DNA predicts disease progression and post-treatment virological control. ELife, 2014, 3, e03821.	6.0	270
992	Biomarker reveals HIV's hidden reservoir. ELife, 2014, 3, e04742.	6.0	5
993	A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. ELife, 2020, 9, .	6.0	22
994	Legal regulation paradigms for the human genome researches and developments and their practical use in Russia and abroad. Part I. Courier of Kutafin Moscow State Law University (MSAL), 2021, , 61-69.	0.1	0
995	Gene editing to enhance the efficacy of cancer cell therapies. Molecular Therapy, 2021, 29, 3153-3162.	8.2	5
996	Proposed genetic approach to protecting infants to be breastfed by HIV positive mothers against HIV infection. International Journal of Infectious and Tropical Diseases, 2014, 1, 73-76.	0.1	2
997	Challenges, progress and strategies in the search for a cure for HIV. Microbiology Australia, 2014, 35, 72.	0.4	0
999	Developing CRISPR/Cas9 Technologies for Research and Medicine. MOJ Cell Science & Report, 2014, 1, .	0.1	0
1000	Editing Cultured Human Cells: From Cell Lines to iPS Cells. , 2015, , 45-69.		1
1001	Hematopoietic Stem Cell-Based Therapy for HIV Disease: A Role for Regulatory T Cells. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	O

#	Article	IF	CITATIONS
1003	Generation of genetically modified animals by genome editing technology. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 626-632.	0.1	0
1006	Mesenchymal Stem Cell as a Vector for Gene and Cell therapy Strategies. Studies on Stem Cells Research and Therapy, 2015, 1, 017-018.	0.0	4
1007	Genome editing tools and its potential applications in translational medicine- a brief overview Annals of SBV, $2016, 5, 14-18$.	0.1	O
1008	Acquired Immune Deficiency Syndrome. , 2016, , 293-330.		0
1010	The Current State-of-the-Art in Therapeutic Genome Editing and the Future. Gene Technology, 2016, 05, .	0.5	0
1013	11: Ethics. , 2016, , 151-164.		O
1015	XRD, Thermal, Haemolysis and DNA Binding Studies of L-Arginine Functionalized Hydroxyapatite Nano-particles. Journal of Nanomedicine Research, 2016, 3, .	1.8	0
1016	The Future for Genomic Medicine in Inflammatory Diseases. , 2017, , 53-72.		0
1017	Designer Effectors for Editing and Regulating Complex Genomes. , 2017, , 137-157.		0
1019	Engineering of Human-Induced Pluripotent Stem Cells for Precise Disease Modeling. , 2018, , 369-411.		0
1020	Unique natural and adaptive response mechanisms to control and eradicate HIV infection. AIMS Allergy and Immunology, 2018, 2, 113-125.	0.5	0
1021	Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. , 2018, , 395-411.		1
1023	Trying to Reveal the Mysteries of Stem Cells Using "Omics―Strategies. Pancreatic Islet Biology, 2019, , 1-50.	0.3	4
1024	Genome Editing Tools: Need of the Current Era. American Journal of Molecular Biology, 2019, 09, 85-109.	0.3	3
1025	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	0.3	1
1026	Transplant success reignites interest in reprogramming cells against HIV. Nature Medicine, 2019, , .	30.7	O
1028	Naturwissenschaftliche Einführung. Veröffentlichungen Des Instituts Für Deutsches, Europäches Und Internationales Medizinrecht, Gesundheitsrecht Und Bioethik Der UniversitÃæn Heidelberg Und Mannheim, 2020, , 7-18.	0.2	1
1029	USE OF GENOME EDITING TECHNOLOGIES: ACHIEVEMENTS AND FURURE PROSPECTS. Journal Biomed, 2019, , 34-42.	0.3	1

#	Article	IF	CITATIONS
1030	First CRISPR editing trial results assuage safety concerns. Nature Medicine, 2019, , .	30.7	0
1032	Biopharmaceutical molecules. , 2020, , 31-68.		1
1033	Application of genome editing technology in human gene therapy. Translational and Regulatory Sciences, 2020, 2, 100-106.	0.2	0
1037	Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human TÂcells and hematopoietic stem and progenitor cells using base editing. Molecular Therapy, 2022, 30, 130-144.	8.2	23
1039	The ethics of gene editing in human stem cells. , 2022, , 111-121.		0
1040	Chimeric antigen receptor T-cell therapy in hematopoietic and nonhematopoietic malignancies. Biomedical and Biotechnology Research Journal, 2020, 4, 179.	0.6	0
1041	Gene and Cell Therapy. , 2020, , 1-22.		2
1042	Gene Editing. , 2020, , 147-164.		0
1044	CAR-T cells leave the comfort zone: current and future applications beyond cancer. Immunotherapy Advances, 2021, $1, \dots$	3.0	5
1045	Development of NanoART for HIV Treatment: Minding the Cytochrome P450 (CYP) Enzymes. Journal of Personalized Nano Medicine, 2015, 1, 24-32.	0.8	4
1046	The HIV Cure Research Agenda: The Role of Mathematical Modelling and Cost-Effectiveness Analysis. Journal of Virus Eradication, 2015, 1, 245-249.	0.5	7
1047	The potential for tumor suppressor gene therapy in head and neck cancer. Discovery Medicine, 2016, 21, 41-7.	0.5	17
1048	Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ETQ)q8.9 0 rg[3T/Overlock
1049	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-6.	0.5	4
1050	HIV cure research: a formidable challenge. Journal of Virus Eradication, 2015, 1, 1-3.	0.5	18
1051	Second European Round Table on the Future Management of HIV: 10-11 October 2014, Barcelona, Spain. Journal of Virus Eradication, 2015, 1, 211-20.	0.5	0
1053	Therapy of HIV Infection: Current Approaches and Prospects. Acta Naturae, 2016, 8, 23-32.	1.7	11
1054	Highlights from the Third Biennial Strategies for an HIV Cure Meeting: 14-16 November 2016, Bethesda, MD, USA. Journal of Virus Eradication, 2017, 3, 69-76.	0.5	2

#	Article	IF	CITATIONS
1055	Genome Editing: Past, Present, and Future. Yale Journal of Biology and Medicine, 2017, 90, 653-659.	0.2	59
1056	Science and Bioethics of CRISPR-Cas9 Gene Editing: An Analysis Towards Separating Facts and Fiction. Yale Journal of Biology and Medicine, 2017, 90, 625-634.	0.2	24
1057	Highlights from the 8 International Workshop on HIV Persistence during Therapy, 12-15 December 2017, Miami, FL, USA. Journal of Virus Eradication, 2018, 4, 132-142.	0.5	1
1058	What Will It Take to Cure HIV?. Topics in Antiviral Medicine, 2015, 23, 80-4.	0.1	8
1059	Hepatitis B and HIV-1 2019 IAS Cure Forum: lessons and benefits from interdisciplinary research. Journal of Virus Eradication, 2019, 5, 234-244.	0.5	0
1060	Advances toward a cure for HIV: getting beyond n=2. Topics in Antiviral Medicine, 2020, 27, 91-95.	0.1	2
1061	THE GORDON WILSON LECTURE: THE ETHICS OF HUMAN GENOME EDITING. Transactions of the American Clinical and Climatological Association, 2020, 131, 99-118.	0.5	1
1062	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	5.5	12
1063	Natural products against HIV latency. , 2021, 1, 10-21.		1
1064	Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells International, 2021, 2021, 1-14.	2.5	5
1065	Optimal Control of an HIV Model with Gene Therapy and Latency Reversing Agents. Mathematical and Computational Applications, 2021, 26, 77.	1.3	0
1066	CCR5 Receptor Occupancy Analysis Reveals Increased Peripheral Blood CCR5+CD4+ T Cells Following Treatment With the Anti-CCR5 Antibody Leronlimab. Frontiers in Immunology, 2021, 12, 794638.	4.8	13
1067	Applications of Genome Editing Tools in Stem Cells Towards Regenerative Medicine: An Update. Current Stem Cell Research and Therapy, 2022, 17, 267-279.	1.3	4
1068	Effect of autohemotherapy in the treatment of viral infections - a systematic review. Public Health, 2021, 201, 78-88.	2.9	1
1069	Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nature Medicine, 2021, 27, 2085-2098.	30.7	146
1070	Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochemical Pharmacology, 2022, 197, 114893.	4.4	8
1071	CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 321-331.	4.1	11
1072	Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virologica Sinica, 2022, 37, 1-10.	3.0	8

#	Article	IF	CITATIONS
1073	So Pathogenic or So What?—A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses, 2022, 14, 135.	3.3	5
1075	Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. MBio, 2022, 13, e0358921.	4.1	6
1077	The Role of Recombinant AAV in Precise Genome Editing. Frontiers in Genome Editing, 2021, 3, 799722.	5.2	24
1078	Past and future of HIV infection. A document based on expert opinion. Revista Espanola De Quimioterapia, 2022, 35, 131-156.	1.3	2
1079	ON-Target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. CRISPR Journal, 2022, 5, 19-30.	2.9	27
1080	Recent developments in genome design and assembly tools. , 2022, , 45-65.		2
1081	Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Frontiers in Immunology, 2021, 12, 816515.	4.8	21
1082	Anti-HIV Aptamers: Challenges and Prospects. Current HIV Research, 2022, 20, 7-19.	0.5	1
1083	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	19.2	85
1084	Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses, 2022, 14, 609.	3.3	0
1086	CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Frontiers in Genome Editing, 2022, 4, 793010.	5.2	2
1088	Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Current Gene Therapy, 2023, 23, 20-40.	2.0	6
1089	Biallelic, Selectable, Knock-in Targeting of CCR5 via CRISPR-Cas9 Mediated Homology Directed Repair Inhibits HIV-1 Replication. Frontiers in Immunology, 2022, 13, 821190.	4.8	7
1090	Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 2022, 22, 719-733.	22.7	22
1091	Generation of SIV-resistant TÂcells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus. Stem Cell Reports, 2022, 17, 953-963.	4.8	8
1092	Gene Editing for Inherited Red Blood Cell Diseases. Frontiers in Physiology, 2022, 13, 848261.	2.8	5
1093	The CCR5 Gene Edited CD34+CD90+ Hematopoietic Stem Cell Population Serves as an Optimal Graft Source for HIV Gene Therapy. Frontiers in Immunology, 2022, 13, 792684.	4.8	6
1094	The Emerging Role of the Serine Incorporator Protein Family in Regulating Viral Infection. Frontiers in Cell and Developmental Biology, 2022, 10, 856468.	3.7	7

#	Article	IF	Citations
1095	DBP-CNN: Deep learning-based prediction of DNA-binding proteins by coupling discrete cosine transform with two-dimensional convolutional neural network. Expert Systems With Applications, 2022, 197, 116729.	7.6	23
1096	Editing out HIV: application of gene editing technology to achieve functional cure. Retrovirology, 2021, 18, 39.	2.0	7
1097	New Approaches to Multi-Parametric HIV-1 Genetics Using Multiple Displacement Amplification: Determining the What, How, and Where of the HIV-1 Reservoir. Viruses, 2021, 13, 2475.	3.3	2
1098	Clustered regularly interspaced short palindromic repeats, a glimpse– impacts in molecular biology, trends and highlights. Hormone Molecular Biology and Clinical Investigation, 2022, 43, 105-112.	0.7	0
1099	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	4.9	20
1100	Efficient generation of locus-specific human CAR-T cells with CRISPR/cCas12a. STAR Protocols, 2022, 3, 101321.	1.2	2
1101	Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Computers in Biology and Medicine, 2022, 145, 105533.	7.0	12
1107	CRISPR-Edited Stem Cell Transplantation for HIV-Related Gene Modification In Vivo: A Systematic Review. Stem Cell Reviews and Reports, 2022, , $1.$	3.8	1
1109	Integrating the Synergy of the Gut Microbiome into Regenerative Medicine: Relevance to Neurological Disorders. Journal of Alzheimer's Disease, 2022, 87, 1451-1460.	2.6	2
1110	HIV cure and HIV reservoirs. Biomedical and Environmental Sciences, 2014, 27, 478-80.	0.2	0
1112	Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Frontiers in Microbiology, 2022, 13, 862270.	3.5	19
1113	Evaluation of CCR5-Δ32 mutation and HIV-1 surveillance drug-resistance mutations in peripheral blood mononuclear cells of long-term nonÂprogressors of HIV-1-infected individuals. Future Virology, 0, , .	1.8	1
1114	Therapeutic Application of Genome Editing Technologies in Viral Diseases. International Journal of Molecular Sciences, 2022, 23, 5399.	4.1	5
1115	Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Frontiers in Genome Editing, 2022, 4, .	5.2	11
1116	Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Reviews and Reports, 2022, 18, 2662-2682.	3.8	9
1117	Genome Editing With TALEN, CRISPR-Cas9 and CRISPR-Cas12a in Combination With AAV6 Homology Donor Restores T Cell Function for XLP. Frontiers in Genome Editing, 2022, 4, .	5.2	8
1118	Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	6
1119	Responsible governance of human germline genome editing in China. Biology of Reproduction, 2022, 107, 261-268.	2.7	3

#	Article	IF	CITATIONS
1120	Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection. Disease Markers, 2022, 2022, 1-10.	1.3	3
1121	mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	160
1122	Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Therapy, 0 , , .	4.5	3
1123	Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. Journal of Virology, 0, , .	3.4	1
1126	The Awesome Power of Human Genetics of Infectious Disease. Annual Review of Genetics, 2022, 56, 41-62.	7.6	5
1127	CRISPR: A Promising Tool for Cancer Therapy. Current Molecular Medicine, 2022, 22, .	1.3	0
1128	Advances in HIV Eradication Strategies. Infectious Microbes & Diseases, 2022, 4, 64-70.	1.3	1
1129	Closing the Door with CRISPR: Genome Editing of CCR5 and CXCR4 as a Potential Curative Solution for HIV. BioTech, 2022, 11, 25.	2.6	5
1130	In vivo Delivery Tools for Clustered Regularly Interspaced Short Palindromic Repeat/Associated Protein 9-Mediated Inhibition of Hepatitis B Virus Infection: An Update. Frontiers in Microbiology, 0, 13, .	3.5	2
1131	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	7.2	2
1132	Genome-Edited T Cell Therapies. Hematology/Oncology Clinics of North America, 2022, 36, 729-744.	2.2	0
1133	A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Frontiers in Pharmacology, 0, 13, .	3.5	10
1134	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	5.2	5
1135	HIV cure strategies: which ones are appropriate for Africa?. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	4
1136	Gene Editing and Rett Syndrome: Does It Make the Cut?. CRISPR Journal, 2022, 5, 490-499.	2.9	1
1137	The HIV Reservoir and Cure and Remission Strategies. , 2021, , 199-217.		0
1139	Stem-like T cells and niches: Implications in human health and disease. Frontiers in Immunology, $0,13,.$	4.8	2
1140	C–C chemokine receptor 5 and acute graftâ€versusâ€host disease. Immunity, Inflammation and Disease, 2022, 10, .	2.7	2

#	Article	IF	CITATIONS
1141	The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opinion on Drug Discovery, 2023, 18, 163-179.	5.0	5
1142	Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. European Journal of Pharmacology, 2022, 931, 175173.	3.5	7
1143	Biological products in medicine. , 2024, , 117-132.		0
1147	Ocular Gene Therapy: A Literature Review With Focus on Current Clinical Trials. Cureus, 2022, , .	0.5	7
1148	Inhibition of HIV-1 replication using the CRISPR/cas9-no NLS system as a prophylactic strategy. Heliyon, 2022, 8, e10483.	3.2	1
1149	Advances in CRISPR/Cas9. BioMed Research International, 2022, 2022, 1-13.	1.9	14
1150	Chimeric antigen receptor engineered cells and their clinical application in infectious disease. Clinical and Translational Discovery, 2022, 2, .	0.5	0
1151	Gene Therapy for Congenital Hearing Loss. Current Otorhinolaryngology Reports, 0, , .	0.5	0
1152	Gene Therapy for Human Diseases: Recent Achievements and Near-Term Development Prospects. Russian Archives of Internal Medicine, 2022, 12, 363-369.	0.2	1
1153	Challenges and hopes in CRISPR CAS technology in future. , 0, , 5-12.		0
1154	CRISPR: En metode til anvendelse i n \tilde{A} ste generations genterapier. , 2021, 132, .		0
1155	Using human genetics to improve safety assessment of therapeutics. Nature Reviews Drug Discovery, 2023, 22, 145-162.	46.4	20
1156	Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders., 2023,, 173-200.		0
1157	Safety and durability of AGT103-T autologous T cell therapy for HIV infection in a Phase 1 trial. Frontiers in Medicine, $0, 9, .$	2.6	3
1158	Analysis of Off-target Effects and Risk Assessment Leading from Preclinical to Clinical Trials of Gene-edited Therapeutic Products. Therapeutic Innovation and Regulatory Science, 0, , .	1.6	0
1159	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in lmmunology, 0, 13 , .	4.8	4
1162	Structure-Based Design of Tropane Derivatives as a Novel Series of CCR5 Antagonists with Broad-Spectrum Anti-HIV-1 Activities and Improved Oral Bioavailability. Journal of Medicinal Chemistry, 2022, 65, 16526-16540.	6.4	3
1163	RNA in Therapeutics: CRISPR in the Clinic. Molecules and Cells, 2023, 46, 4-9.	2.6	1

#	Article	IF	CITATIONS
1164	Gene therapy review: Duchenne muscular dystrophy case study. Revue Neurologique, 2023, 179, 90-105.	1.5	1
1166	Development of HIV-Resistant CAR T Cells by CRISPR/Cas-Mediated CAR Integration into the CCR5 Locus. Viruses, 2023, 15, 202.	3.3	5
1168	Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 2023, 24, 4778.	4.1	10
1169	Burgeoning therapeutic strategies to curb the contemporary surging viral infections. Microbial Pathogenesis, 2023, 179, 106088.	2.9	0
1171	Genome Editing: Moving Toward a New Era of Innovation, Development, and Approval. Human Gene Therapy, 2023, 34, 171-176.	2.7	0
1172	T-CAST: An optimized CAST-Seq pipeline for TALEN confirms superior safety and efficacy of obligate-heterodimeric scaffolds. Frontiers in Genome Editing, 0, 5, .	5.2	7
1173	Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Seminars in Immunology, 2023, 66, 101731.	5.6	2
1174	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1
1175	HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell, 2023, 186, 1115-1126.e8.	28.9	41
1176	Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses, 2023, 15, 789.	3.3	4
1177	Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. International Journal of Molecular Sciences, 2023, 24, 6187.	4.1	7
1178	Gene Therapy for Primary Immune Deficiency Diseases. , 2023, , 1161-1171.		0
1179	Development of Medicinal Products Based onÂGene-Editing Technology: RegulatoryÂPractices. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products, 2023, 13, 248-260.	0.2	0
1180	CRISPR technology and its potential role in treating rare imprinting diseases. , 2023, , 273-300.		0
1181	Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin?. Journal of Allergy and Clinical Immunology, 2023, 151, 1429-1447.	2.9	2
1182	PlmCas12e (CasX2) cleavage of CCR5: impact of guide RNA spacer length and PAM sequence on cleavage activity. RNA Biology, 2023, 20, 296-305.	3.1	0
1183	Retinal organoid and gene editing for basic and translational research. Vision Research, 2023, 210, 108273.	1.4	5
1184	Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomarker Research, 2023, 11, .	6.8	4

#	Article	IF	CITATIONS
1185	Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs. International Journal of Molecular Sciences, 2023, 24, 11399.	4.1	1
1186	Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently. Clinical and Experimental Medicine, 2023, 23, 4163-4175.	3.6	0
1187	Recent advances in poor HIV immune reconstitution: what will the future look like?. Frontiers in Microbiology, 0, 14 , .	3.5	0
1188	Using genetics for enhancement (liberal eugenics). , 2023, , 347-379.		0
1189	Drug delivery systems for CRISPR-based genome editors. Nature Reviews Drug Discovery, 2023, 22, 875-894.	46.4	9
1190	Scalable GMP-compliant gene correction of CD4+ TÂcells with IDLV template functionally validated inÂvitro and inÂvivo. Molecular Therapy - Methods and Clinical Development, 2023, 30, 546-557.	4.1	2
1191	Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clinical Immunology, 2023, 255, 109741.	3.2	0
1192	Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Molecular Therapy - Oncolytics, 2023, 30, 193-215.	4.4	0
1193	Gene Editing and Gene Therapy in Oncology. , 2023, , 155-180.		4
1194	Gene-environment interactions that influence CVD, lipid traits, obesity, diabetes, and hypertension appear to be able to influence gene therapy. Molecular Aspects of Medicine, 2023, 94, 101213.	6.4	2
1195	Genome Editing in Engineered T Cells for Cancer Immunotherapy. Human Gene Therapy, 2023, 34, 853-869.	2.7	1
1196	Engineered CD4 T cells expressing a membrane anchored viral inhibitor restrict HIV-1 through cis and trans mechanisms. Frontiers in Immunology, 0, 14, .	4.8	0
1197	The latent HIV reservoir: current advances in genetic sequencing approaches. MBio, 2023, 14, .	4.1	1
1199	Efficient repair of human genetic defect by CRISPR/Cas9 mediated interlocus gene conversion. , 0, , .		0
1201	Ginsenoside Rg1 treats ischemic stroke by regulating CKLF1/CCR5 axis-induced neuronal cell pyroptosis. Phytomedicine, 2024, 123, 155238.	5.3	0
1202	Challenges for gene editing in common variable immunodeficiency disorders: Current and future prospects. Clinical Immunology, 2024, 258, 109854.	3.2	О
1203	Strategies for HIV-1 suppression through key genes and cell therapy. Frontiers in Medicine, 0, 10, .	2.6	0
1204	Highlights of the HIV cure session, 19th European AIDS Clinical Society (EACS) Conference, 18-21 October 2023, Warsaw, Poland. Journal of Virus Eradication, 2023, 9, 100359.	0.5	0

#	Article	IF	CITATIONS
1205	Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses, 2023, 15, 2435.	3.3	0
1206	Modern Tools of Genome Engineering and Their Applications. , 2023, , 193-232.		O
1207	Eliminating the HIV tissue reservoir: current strategies and challenges. Infectious Diseases, 2024, 56, 165-182.	2.8	0
1208	Advancements in Cell-Based Therapies for HIV Cure. Cells, 2024, 13, 64.	4.1	О
1209	Genome-Editing – Gentherapie 2.0 oder nur eine Wunschvorstellung?. , 2023, , 103-120.		0
1210	Mechanisms and measures to modulate T cell trafficking for amplified and tolerogenic immunity. Nano Today, 2024, 54, 102129.	11.9	О
1211	Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines, 2024, 12, 119.	3.2	0
1212	CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. International Journal of Molecular Sciences, 2024, 25, 1187.	4.1	О
1213	CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield., 2023, 2, 37-48.		0
1214	A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation. Cancer Letters, 2024, 583, 216635.	7.2	0
1215	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199.	1.6	0
1216	CRISPR-Cas-led advancements in translational biotechnology. , 2024, , 71-91.		0
1217	What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. Journal of Allergy and Clinical Immunology: in Practice, 2024, 12, 1139-1149.	3.8	0
1218	A ENGENHARIA GENÉTICA DA CRISPR/CAS9 NO GENE CCR5 COMO POSSÃVEL FONTE TERAPÊUTICA DO VÂRI DA IMUNODEFICIÊNCIA HUMANA. Revista Foco, 2024, 17, e4169.	I§.o	o
1219	The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology, 2024, 21, .	2.0	0
1220	Living donor organ transplantationâ€"gene therapy. , 2024, , 1485-1499.		O
1221	Nucleic Acid Delivery Nanotechnologies for <i>In Vivo</i> Cell Programming. ACS Applied Bio Materials, 0, , .	4.6	0
1222	Gesicles packaging dCas9-VPR ribonucleoprotein complexes can combine with vorinostat and promote HIV proviral transcription. Molecular Therapy - Methods and Clinical Development, 2024, 32, 101203.	4.1	O

#	Article	IF	CITATIONS
1224	How Gene Editing Is Changing Drug Development. , 2024, , 709-717.		0
1225	Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner?. Pathogens and Immunity, 2023, 8, 115-157.	3.1	0
1226	Preclinical toxicity analyses of lentiviral vectors expressing the HIV-1 LTR-specific designer-recombinase Brec1. PLoS ONE, 2024, 19, e0298542.	2.5	0