Understanding coâ€occurrence by modelling species size Distribution Model (<scp>JSDM</scp>)

Methods in Ecology and Evolution 5, 397-406 DOI: 10.1111/2041-210x.12180

Citation Report

#	Article	IF	CITATIONS
1	Visualization of species pairwise associations: a case study of surrogacy in bird assemblages. Ecology and Evolution, 2014, 4, 3279-3289.	0.8	18
2	Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites and Vectors, 2015, 8, 367.	1.0	35
3	Multi-species distribution modeling using penalized mixture of regressions. Annals of Applied Statistics, 2015, 9, .	0.5	20
4	Fineâ€scale hydrological niche differentiation through the lens of multiâ€species coâ€occurrence models. Journal of Ecology, 2015, 103, 1264-1275.	1.9	47
5	Shallow environmental gradients put inland species at risk: Insights and implications from predicting future distributions of <i>Eucalyptus</i> species in South Western Australia. Austral Ecology, 2015, 40, 923-932.	0.7	11
6	Tracking the distribution and impacts of diseases with biological records and distribution modelling. Biological Journal of the Linnean Society, 2015, 115, 664-677.	0.7	36
7	Estimating the Effects of Habitat and Biological Interactions in an Avian Community. PLoS ONE, 2015, 10, e0135987.	1.1	36
8	Analyzing plant cover class data quantitatively: Customized zero-inflated cumulative beta distributions show promising results. Ecological Informatics, 2015, 26, 18-26.	2.3	22
9	Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 2015, 6, 627-637.	2.2	135
10	Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 2015, 6, 465-473.	2.2	122
11	Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150927.	1.2	47
12	Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation, 2015, 186, 319-325.	1.9	76
13	Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology, 2015, 21, 3005-3020.	4.2	27
14	Indirect gradient analysis by Markov-chain Monte Carlo. Plant Ecology, 2015, 216, 697-708.	0.7	7
15	So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology and Evolution, 2015, 30, 766-779.	4.2	607
16	From species distributions to metaâ€communities. Ecology Letters, 2015, 18, 1321-1328.	3.0	92
17	Modeling Species and Community Responses to Past, Present, and Future Episodes of Climatic and Ecological Change. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 343-368.	3.8	107
18	The Roles of Ecological and Evolutionary Processes in Plant Community Assembly: The Environment, Hybridization, and Introgression Influence Co-occurrence of <i>Eucalyptus</i> . American Naturalist, 2015, 185, 784-796.	1.0	28

#	Article	IF	CITATIONS
19	Uses of Innovative Modeling Tools within the Implementation of the Marine Strategy Framework Directive. Frontiers in Marine Science, 2016, 3, .	1.2	32
20	Joint dynamic species distribution models: a tool for community ordination and spatioâ€ŧemporal monitoring. Global Ecology and Biogeography, 2016, 25, 1144-1158.	2.7	148
21	Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods in Ecology and Evolution, 2016, 7, 598-608.	2.2	87
22	Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling, 2016, 337, 96-106.	1.2	60
23	Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 2016, 7, 428-436.	2.2	170
24	Using latent variable models to identify large networks of speciesâ€ŧoâ€species associations at different spatial scales. Methods in Ecology and Evolution, 2016, 7, 549-555.	2.2	161
25	On the integration of biotic interaction and environmental constraints at the biogeographical scale. Ecography, 2016, 39, 921-931.	2.1	33
26	Do community-level models account for the effects of biotic interactions? A comparison of community-level and species distribution modeling of Rocky Mountain conifers. Plant Ecology, 2016, 217, 533-547.	0.7	6
27	Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll. Biological Conservation, 2016, 203, 160-167.	1.9	43
28	Inferring species interactions from coâ€occurrence data with Markov networks. Ecology, 2016, 97, 3308-3314.	1.5	85
29	The influence of climate on species distribution over time and space during the late Quaternary. Quaternary Science Reviews, 2016, 149, 188-199.	1.4	16
30	Coâ€infections and environmental conditions drive the distributions of blood parasites in wild birds. Journal of Animal Ecology, 2016, 85, 1461-1470.	1.3	73
31	What we use is not what we know: environmental predictors in plant distribution models. Journal of Vegetation Science, 2016, 27, 1308-1322.	1.1	165
32	The limits of direct community modeling approaches for broad-scale predictions of ecological assemblage structure. Biological Conservation, 2016, 201, 396-404.	1.9	6
33	Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology, 2016, 97, 3219-3230.	1.5	72
34	When Climate Reshuffles Competitors: A Call for Experimental Macroecology. Trends in Ecology and Evolution, 2016, 31, 831-841.	4.2	132
35	<i>Plateau</i> : a new method for ecologically plausible climate envelopes for species distribution modelling. Methods in Ecology and Evolution, 2016, 7, 1489-1502.	2.2	13
36	A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 2016, 7, 1164-1173.	2.2	150

ARTICLE IF CITATIONS # Identifying multispecies synchrony in response to environmental covariates. Ecology and Evolution, 37 0.8 13 2016, 6, 8515-8525. Niche partitioning among sexual and unisexual <i>Ambystoma</i> salamanders. Ecosphere, 2016, 7, 1.0 e01579. Effects of functional traits on the prediction accuracy of species richness models. Diversity and 39 1.9 13 Distributions, 2016, 22, 905-917. A network approach for inferring species associations from $coa\in occurrence$ data. Ecography, 2016, 39, 96 1139-1150. Shared environmental responses drive coâ€occurrence patterns in river bird communities. Ecography, 41 2.1 23 2016, 39, 733-742. <scp>boral</scp> – Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in <scp>r</scp>. Methods in Ecology and Evolution, 2016, 7, 744-750. 2.2 A theory for species co-occurrence in interaction networks. Theoretical Ecology, 2016, 9, 39-48. 44 0.4 83 Using spatioâ€temporal models of population growth and movement to monitor overlap between human impacts and fish populations. Journal of Applied Ecology, 2017, 54, 577-587. Modelling of species distributions, range dynamics and communities under imperfect detection: 2.1 296 46 advances, challenges and opportunities. Ecography, 2017, 40, 281-295. Joint species models reveal the effects of environment on community assemblage of freshwater mussels and fishes in European rivers. Diversity and Distributions, 2017, 23, 284-296. Urbanization may limit impacts of an invasive predator on native mammal diversity. Diversity and 48 1.9 27 Distributions, 2017, 23, 355-367. Bayesian Modeling and Analysis of Geostatistical Data. Annual Review of Statistics and Its Application, 49 4.1 34 2017, 4, 245-266. Integrating demography, dispersal and interspecific interactions into bird distribution models. 50 0.6 40 Journal of Avian Biology, 2017, 48, 1505-1516. Using joint species distribution models for evaluating how speciesâ€toâ€species associations depend on 2.2 132 the environmental context. Methods in Ecology and Evolution, 2017, 8, 443-452. Technical advances at the interface between ecology and statistics: improving the biodiversity 52 2.2 3 knowledge generation workflow. Methods in Ecology and Evolution, 2017, 8, 396-397. Colonization potential of an endangered riparian shrub species. Biodiversity and Conservation, 2017, 26, 2099-2114. Managing biodiversity under climate change: challenges, frameworks, and tools for adaptation. 54 1.2 38 Biodiversity and Conservation, 2017, 26, 2277-2293. Integrating Biogeography with Contemporary Niche Theory. Trends in Ecology and Evolution, 2017, 32, 4.2 488-499.

#	Article	IF	CITATIONS
56	Space oddity: The mission for spatial integration. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1698-1716.	0.7	62
57	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	1.9	13
58	Biodiversity Models: What If Unsaturation Is the Rule?. Trends in Ecology and Evolution, 2017, 32, 556-566.	4.2	71
59	Combining phylogeny and coâ€occurrence to improve single species distribution models. Clobal Ecology and Biogeography, 2017, 26, 740-752.	2.7	33
60	Species partitioning in a temperate mountain chain: Segregation by habitat vs. interspecific competition. Ecology and Evolution, 2017, 7, 2685-2696.	0.8	21
61	How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 2017, 20, 561-576.	3.0	646
62	Integrating multiple data sources in species distribution modeling: a framework for data fusion*. Ecology, 2017, 98, 840-850.	1.5	183
63	Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications, 2017, 8, 1161.	5.8	73
64	Specialized mutualisms may constrain the geographical distribution of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171841.	1.2	35
65	Fit to predict? Ecoâ€informatics for predicting the catchability of a pelagic fish in near real time. Ecological Applications, 2017, 27, 2313-2329.	1.8	53
66	Joint Species Distribution Modeling: Dimension Reduction Using Dirichlet Processes. Bayesian Analysis, 2017, 12, .	1.6	30
67	Characterizing biotic interactions within the Order Lagomorpha using Joint Species Distribution Models at 3 different spatial scales. Journal of Mammalogy, 0, , .	0.6	4
68	Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. Journal of Biogeography, 2017, 44, 2828-2838.	1.4	28
69	Predicting Distributions of Invasive Species. , 2017, , 93-129.		33
70	Ecological Network Inference From Long-Term Presence-Absence Data. Scientific Reports, 2017, 7, 7154.	1.6	50
72	Toward an improved conceptual understanding of North American tree species distributions. Ecosphere, 2017, 8, e01853.	1.0	20
73	Incorporating Context Dependency of Species Interactions in Species Distribution Models. Integrative and Comparative Biology, 2017, 57, 159-167.	0.9	12
74	<scp>ssdm</scp> : An <scp>r</scp> package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 2017, 8, 1795-1803.	2.2	129

#	Article	IF	CITATIONS
75	Balancing generality and specificity in ecological gradient analysis with species abundance distributions and individual size distributions. Global Ecology and Biogeography, 2017, 26, 318-332.	2.7	9
76	Generalized joint attribute modeling for biodiversity analysis: medianâ€zero, multivariate, multifarious data. Ecological Monographs, 2017, 87, 34-56.	2.4	195
77	The community ecology of invasive species: where are we and what's next?. Ecography, 2017, 40, 335-352.	2.1	154
78	When and how should biotic interactions be considered in models of species niches and distributions?. Journal of Biogeography, 2017, 44, 8-17.	1.4	141
79	Favourable areas for coâ€occurrence of parapatric species: niche conservatism and niche divergence in Iberian tree frogs and midwife toads. Journal of Biogeography, 2017, 44, 88-98.	1.4	21
80	Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography, 2017, 40, 36-47.	2.1	16
81	Linking trait variation to the environment: critical issues with communityâ€weighted mean correlation resolved by the fourthâ€corner approach. Ecography, 2017, 40, 806-816.	2.1	124
82	Nonâ€stationarity in the coâ€occurrence patterns of species across environmental gradients. Journal of Ecology, 2017, 105, 391-399.	1.9	24
83	Enhanced effects of biotic interactions on predicting multispecies spatial distribution of submerged macrophytes after eutrophication. Ecology and Evolution, 2017, 7, 7719-7728.	0.8	3
84	Spatial phylogenetics of the native California flora. BMC Biology, 2017, 15, 96.	1.7	104
85	Species Distribution Modeling \hat{a}^{\dagger} ., 2017, , .		12
86	Tree diversity patterns along the latitudinal gradient in the northwestern Russia. Forest Ecosystems, 2017, 4, .	1.3	7
87	Do joint species distribution models reliably detect interspecific interactions from coâ€occurrence data in homogenous environments?. Ecography, 2018, 41, 1812-1819.	2.1	105
88	Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3227-3244.	1.9	71
89	Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model. Ecology, 2018, 99, 1018-1023.	1.5	13
90	A traitâ€based framework for discerning drivers of species coâ€occurrence across heterogeneous landscapes. Ecography, 2018, 41, 1921-1933.	2.1	40
91	Do priority effects outweigh environmental filtering in a guild of dominant freshwater macroinvertebrates?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180205.	1.2	27
92	Fundamental contradictions among observational and experimental estimates of nonâ€trophic species interactions. Ecology, 2018, 99, 557-566.	1.5	89

#	Article	IF	CITATIONS
93	Comparing the prediction of joint species distribution models with respect to characteristics of sampling data. Ecography, 2018, 41, 1876-1887.	2.1	30
94	Species interactions weakly modify climateâ€induced tree coâ€occurrence patterns. Journal of Vegetation Science, 2018, 29, 52-61.	1.1	10
95	Occupancy in Community-Level Studies. , 2018, , 557-583.		7
97	Through the jungle of methods quantifying multiple-site resemblance. Ecological Informatics, 2018, 44, 1-6.	2.3	2
98	Predictive modelling of chromium removal using multiple linear and nonlinear regression with special emphasis on operating parameters of bioelectrochemical reactor. Journal of Bioscience and Bioengineering, 2018, 126, 205-212.	1.1	6
99	Traitâ€dependent distributional shifts in fruiting of common British fungi. Ecography, 2018, 41, 51-61.	2.1	19
100	Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species coâ€occurrence. Ecography, 2018, 41, 1233-1244.	2.1	146
101	Joint species distribution modelling for spatioâ€ŧemporal occurrence and ordinal abundance data. Global Ecology and Biogeography, 2018, 27, 142-155.	2.7	33
102	Empirically-based modeling and mapping to consider the co-occurrence of ecological receptors and stressors. Science of the Total Environment, 2018, 613-614, 1228-1239.	3.9	1
103	Integrating correlation between traits improves spatial predictions of plant functional composition. Oikos, 2018, 127, 472-481.	1.2	19
104	Adapting systematic conservation planning for climate change. Biodiversity and Conservation, 2018, 27, 1-29.	1.2	109
105	Identifying spatially and temporally transferrable surrogate measures of species richness. Ecological Indicators, 2018, 84, 470-478.	2.6	8
106	Assessing the joint behaviour of species traits as filtered by environment. Methods in Ecology and Evolution, 2018, 9, 716-727.	2.2	10
107	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	4.7	203
108	Hypervolume concepts in niche―and traitâ€based ecology. Ecography, 2018, 41, 1441-1455.	2.1	223
109	Spatial and temporal patterns of covariation in productivity of Chinook salmon populations of the northeastern Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1082-1095.	0.7	30
110	Combining pointâ€process and landscape vegetation models to predict large herbivore distributions in space and time—A case study of <i>Rupicapra rupicapra</i> . Diversity and Distributions, 2018, 24, 352-362.	1.9	19
111	Multiresponse algorithms for communityâ€level modelling: Review of theory, applications, and comparison to species distribution models. Methods in Ecology and Evolution, 2018, 9, 834-848.	2.2	39

#	Article	IF	Citations
112	Modelling the niche space of desert annuals needs to include positive interactions. Oikos, 2018, 127, 264-273.	1.2	20
113	Calling-Site Preferences of Three Co-occurring Endangered Frog Species on Amami-Oshima Island. Herpetologica, 2018, 74, 199-206.	0.2	5
114	Spatially Structured Communities. , 2018, , 419-474.		1
115	Sympatry or syntopy? Investigating drivers of distribution and coâ€occurrence for two imperiled sea turtle species in Gulf of Mexico neritic waters. Ecology and Evolution, 2018, 8, 12656-12669.	0.8	29
116	Negative biotic interactions drive predictions of distributions for species from a grassland community. Biology Letters, 2018, 14, 20180426.	1.0	8
117	Community structure informs species geographic distributions. PLoS ONE, 2018, 13, e0197877.	1.1	6
118	Better late than never: a synthesis of strategic land retirement and restoration in California. Ecosphere, 2018, 9, e02367.	1.0	17
119	Species persistence under climate change: a geographical scale coexistence problem. Ecology Letters, 2018, 21, 1589-1603.	3.0	31
120	Functional traits modulate the response of alien plants along abiotic and biotic gradients. Global Ecology and Biogeography, 2018, 27, 1173-1185.	2.7	32
121	Hybrid datasets: integrating observations with experiments in the era of macroecology and big data. Ecology, 2018, 99, 2654-2666.	1.5	18
122	Estimating the population size of lemurs based on their mutualistic food trees. Journal of Biogeography, 2018, 45, 2546-2563.	1.4	10
123	Uncovering the drivers of hostâ€essociated microbiota with joint species distribution modelling. Molecular Ecology, 2018, 27, 2714-2724.	2.0	36
124	Combining nutrient, productivity, and landscapeâ€based regressions improves predictions of lake nutrients and provides insight into nutrient coupling at macroscales. Limnology and Oceanography, 2018, 63, 2372-2383.	1.6	11
125	Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 2018, 27, 1004-1016.	2.7	211
126	Population persistence in the face of climate change and competition: A battle on two fronts. Ecological Modelling, 2018, 385, 78-88.	1.2	32
127	Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 334-357.	0.7	5
128	Tree species coâ€occurrence patterns change across grains: insightsÂfrom a subtropical forest. Ecosphere, 2018, 9, e02213.	1.0	10
129	Processes structuring amphibian assemblages along a subtropical arid gradient. Acta Oecologica, 2018, 91, 43-49.	0.5	3

#	Article	IF	CITATIONS
130	The decline of the lanner falcon in Mediterranean landscapes: competition displacement or habitat loss?. Animal Conservation, 2019, 22, 24-34.	1.5	3
131	Integration of ground survey and remote sensing derived data: Producing robust indicators of habitat extent and condition. Ecology and Evolution, 2019, 9, 8104-8112.	0.8	10
132	From individual to joint species distribution models: A comparison of model complexity and predictive performance. Journal of Biogeography, 2019, 46, 2260-2274.	1.4	18
133	How to predict biodiversity in space? An evaluation of modelling approaches in marine ecosystems. Diversity and Distributions, 2019, 25, 1697-1708.	1.9	12
134	Identifying main interactions in marine predator–prey networks of the Bay of Biscay. ICES Journal of Marine Science, 2019, 76, 2247-2259.	1.2	20
135	Predictive Ecosystem Mapping of South-Eastern Australian Temperate Forests Using Lidar-Derived Structural Profiles and Species Distribution Models. Remote Sensing, 2019, 11, 93.	1.8	14
136	Untangling direct species associations from indirect mediator species effects with graphical models. Methods in Ecology and Evolution, 2019, 10, 1571-1583.	2.2	57
137	Testing the link between species interactions and species coâ€occurrence in a trophic network. Ecography, 2019, 42, 1658-1670.	2.1	43
138	Vegetation mapping to support greater sageâ€grouse habitat monitoring and management: multi―or univariate approach?. Ecosphere, 2019, 10, e02838.	1.0	12
139	gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in <scp>r</scp> . Methods in Ecology and Evolution, 2019, 10, 2173-2182.	2.2	88
140	Spatioâ€ŧemporal models of intermediate complexity for ecosystem assessments: A new tool for spatial fisheries management. Fish and Fisheries, 2019, 20, 1083-1099.	2.7	22
141	Untangling the dynamics of persistence and colonization in microbial communities. ISME Journal, 2019, 13, 2998-3010.	4.4	3
142	Iterative Models for Early Detection of Invasive Species across Spread Pathways. Forests, 2019, 10, 108.	0.9	17
143	Knowing your limits: estimating range boundaries and coâ€occurrence zones for two competing plethodontid salamanders. Ecosphere, 2019, 10, e02727.	1.0	7
144	Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecological Modelling, 2019, 405, 86-101.	1.2	46
145	Unmasking structural patterns in incidence matrices: an application to ecological data. Journal of the Royal Society Interface, 2019, 16, 20180747.	1.5	4
146	Joint species distribution models with species correlations and imperfect detection. Ecology, 2019, 100, e02754.	1.5	94
147	Spatial optimizations of multiple plant species for ecological restoration of the mountainous areas of North China. Environmental Earth Sciences, 2019, 78, 1.	1.3	5

# 148	ARTICLE A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	lF 2.4	Citations
149	Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography, 2019, 42, 1247-1266.	2.1	38
150	Environmental filtering governs the spatial distribution of alien fishes in a large, humanâ€impacted Mediterranean river. Diversity and Distributions, 2019, 25, 701-714.	1.9	28
151	Disentangling the processes driving tree community assembly in a tropical biodiversity hotspot (New) Tj ETQq1	1 0,78431 1.4	4 rgBT /Ove
152	Modeling competition, niche, and coexistence between an invasive and a native species in a twoâ€species metapopulation. Ecology, 2019, 100, e02700.	1.5	18
153	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
154	A pathway for multivariate analysis of ecological communities using copulas. Ecology and Evolution, 2019, 9, 3276-3294.	0.8	28
155	Assessing effects of genetic, environmental, and biotic gradients in species distribution modelling. ICES Journal of Marine Science, 2019, 76, 1762-1775.	1.2	16
156	What's hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distributions, 2019, 25, 492-498.	1.9	16
157	The recent past and promising future for data integration methods to estimate species' distributions. Methods in Ecology and Evolution, 2019, 10, 22-37.	2.2	148
158	Estimating effects of arable land use intensity on farmland birds using joint species modeling. Ecological Applications, 2019, 29, e01875.	1.8	17
159	Integrating experimental and distribution data to predict future species patterns. Scientific Reports, 2019, 9, 1821.	1.6	51
160	Multi label learning approaches for multi species avifaunal occurrence modelling: a case study of south eastern Tamil Nadu. International Journal of Business Intelligence and Data Mining, 2019, 15, 449.	0.2	2
161	Presence-Only Geographical Priors for Fine-Grained Image Classification. , 2019, , .		44
162	The effect of local species composition on the distribution of an avian invader. Scientific Reports, 2019, 9, 15861.	1.6	9
163	Bayesian inference to partition determinants of community dynamics from observational time series. Community Ecology, 2019, 20, 238-251.	0.5	7
164	Mapping floristic gradients of forest composition using an ordination-regression approach with landsat OLI and terrain data in the Central Hardwoods region. Forest Ecology and Management, 2019, 434, 87-98.	1.4	15
165	Geographically variable biotic interactions and implications for species ranges. Global Ecology and Biogeography, 2019, 28, 42-53.	2.7	43

#	ARTICLE	IF	Citations
166	Modelling spatial and temporal dynamics of two small mud carp species in the Tonle Sap flood-pulse ecosystem. Ecological Modelling, 2019, 392, 82-91.	1.2	5
167	Niche Estimation Above and Below the Species Level. Trends in Ecology and Evolution, 2019, 34, 260-273.	4.2	139
168	Understanding environmental change through the lens of trait-based, functional, and phylogenetic biodiversity in freshwater ecosystems. Environmental Reviews, 2019, 27, 263-273.	2.1	57
169	Beyond the model: expert knowledge improves predictions of species' fates under climate change. Ecological Applications, 2019, 29, e01824.	1.8	42
170	A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 2019, 10, 198-211.	2.2	58
171	Complex Ecological Networks. , 2019, , 536-545.		3
172	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	2.1	85
173	Changing cultures, changing environments: A novel means of investigating the effects of introducing non-native species into past ecosystems. Journal of Archaeological Science: Reports, 2019, 23, 1066-1075.	0.2	1
174	Testing species assemblage predictions from stacked and joint species distribution models. Journal of Biogeography, 2020, 47, 101-113.	1.4	88
175	Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evolutionary Applications, 2020, 13, 195-209.	1.5	24
176	Macroecology in the age of Big Data – Where to go from here?. Journal of Biogeography, 2020, 47, 1-12.	1.4	81
177	Tropical forest type influences community assembly processes in arbuscular mycorrhizal fungi. Journal of Biogeography, 2020, 47, 434-444.	1.4	10
178	Using hierarchical joint models to study reproductive interactions in plant communities. Journal of Ecology, 2020, 108, 485-495.	1.9	6
179	Measuring competitive impact: Jointâ€species modelling of invaded plant communities. Journal of Ecology, 2020, 108, 449-459.	1.9	13
180	Positive interspecific associations consistent with social information use shape juvenile fish assemblages. Ecology, 2020, 101, e02920.	1.5	19
181	Functional traits that moderate tropical tree recruitment during postâ€windstorm secondary succession. Journal of Ecology, 2020, 108, 1322-1333.	1.9	15
182	Species interactions and climate change: How the disruption of species coâ€occurrence will impact on an avian forest guild. Global Change Biology, 2020, 26, 1212-1224.	4.2	34
183	Evaluating multispecies survey designs using a joint species distribution model. Aquaculture and Fisheries, 2020, 5, 156-162.	1.2	9

#	Article	IF	CITATIONS
184	Complementary strengths of spatiallyâ€explicit and multiâ€species distribution models. Ecography, 2020, 43, 456-466.	2.1	11
185	Coexistence barriers confine the poleward range of a globally distributed plant. Ecology Letters, 2020, 23, 1838-1848.	3.0	23
186	You must choose, but choose wisely: Model-based approaches for microbial community analysis. Soil Biology and Biochemistry, 2020, 151, 108042.	4.2	30
187	A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 2020, 60, 101150.	2.3	191
188	The challenge of novel abiotic conditions for species undergoing climateâ€induced range shifts. Ecography, 2020, 43, 1571-1590.	2.1	82
189	Covariate-adjusted species response curves derived from long-term macroinvertebrate monitoring data using classical and contemporary model-based ordination methods. Ecological Informatics, 2020, 60, 101159.	2.3	1
190	Trophic behavior of specialist predators from a macroecological approach: The case of the magellanic woodpecker in south American temperate forests. Global Ecology and Conservation, 2020, 24, e01285.	1.0	7
191	Sensitivity of comorbidity network analysis. JAMIA Open, 2020, 3, 94-103.	1.0	8
192	A spatial community regression approach to exploratory analysis of ecological data. Methods in Ecology and Evolution, 2020, 11, 608-620.	2.2	3
193	Determining marine bioregions: A comparison of quantitative approaches. Methods in Ecology and Evolution, 2020, 11, 1258-1272.	2.2	20
194	Incorporating interspecific interactions into phylogeographic models: A case study with Californian oaks. Molecular Ecology, 2020, 29, 4510-4524.	2.0	21
195	Overprediction of species distribution models in conservation planning: A still neglected issue with strong effects. Biological Conservation, 2020, 252, 108822.	1.9	40
196	Methods and approaches to advance soil macroecology. Global Ecology and Biogeography, 2020, 29, 1674-1690.	2.7	28
197	Protecting Biodiversity (in All Its Complexity): New Models and Methods. Trends in Ecology and Evolution, 2020, 35, 1119-1128.	4.2	101
198	Disentangling drivers of spatial autocorrelation in species distribution models. Ecography, 2020, 43, 1741-1751.	2.1	13
199	Data collected by fruit body―and DNAâ€based survey methods yield consistent speciesâ€ŧoâ€species association networks in woodâ€inhabiting fungal communities. Oikos, 2020, 129, 1833-1843.	1.2	8
200	Eco-Evolutionary Feedbacks and the Maintenance of Metacommunity Diversity in a Changing Environment. Genes, 2020, 11, 1433.	1.0	5
201	Using value of information to prioritize research needs for migratory bird management under climate change: a case study using federal land acquisition in the United States. Biological Reviews, 2020, 95, 1109-1130.	4.7	16

#	Article	IF	CITATIONS
202	Historical Development of Community Ecology. , 2020, , 3-18.		0
203	Typical Data Collected by Community Ecologists. , 2020, , 19-29.		0
204	Typical Statistical Methods Applied by Community Ecologists. , 2020, , 30-38.		0
205	Single-Species Distribution Modelling. , 2020, , 53-103.		1
206	Joint Species Distribution Modelling. , 2020, , 104-141.		0
207	Evaluating Model Fit and Selecting among Multiple Models. , 2020, , 217-252.		0
209	Linking HMSC Back to Community Assembly Processes. , 2020, , 255-299.		0
210	Illustration of HMSC Analyses. , 2020, , 300-336.		0
213	Coâ€occurrence is not evidence of ecological interactions. Ecology Letters, 2020, 23, 1050-1063.	3.0	427
214	Agricultural adapters from the vineyard landscape impact native oak woodland birds. Agriculture, Ecosystems and Environment, 2020, 300, 106960.	2.5	8
215	Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection. PLoS ONE, 2020, 15, e0232078.	1.1	26
216	Where and why? Bees, snail shells and climate: Distribution of Rhodanthidium (Hymenoptera:) Tj ETQq1 1 0.7843	914.rgBT /0	Overlock 10
217	Experimental assessment of biotic and abiotic filters driving community composition. Ecology and Evolution, 2020, 10, 7364-7376.	0.8	6
218	Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1540-1551.	0.7	14
219	Predators, fire or resources: What drives the distribution of herbivores in fragmented mesic forests?. Austral Ecology, 2020, 45, 329-339.	0.7	3
220	Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal Review, 2020, 50, 187-199.	2.2	48
221	Predictor species: Improving assessments of rare species occurrence by modeling environmental coâ€responses. Ecology and Evolution, 2020, 10, 3293-3304.	0.8	5
222	A database and synthesis of euglossine bee assemblages collected at fragrance baits. Apidologie, 2020, 51, 519-530.	0.9	9

#	Article	IF	CITATIONS
223	Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand. BMC Ecology, 2020, 20, 37.	3.0	7
224	The emergent interactions that govern biodiversity change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17074-17083.	3.3	30
225	Statistical challenges in spatial analysis of plant ecology data. Spatial Statistics, 2020, 37, 100418.	0.9	3
226	Multiâ€species occupancy models: review, roadmap, and recommendations. Ecography, 2020, 43, 1612-1624.	2.1	92
228	Evaluating and presenting uncertainty in modelâ€based unconstrained ordination. Ecology and Evolution, 2020, 10, 59-69.	0.8	3
229	Using Species Distribution Models For Fungi. Fungal Biology Reviews, 2020, 34, 74-88.	1.9	31
230	Should ecologists prefer model―over distanceâ€based multivariate methods?. Ecology and Evolution, 2020, 10, 2417-2435.	0.8	21
231	Integrating uncertain prior knowledge regarding ecological preferences into multi-species distribution models: Effects of model complexity on predictive performance. Ecological Modelling, 2020, 420, 108956.	1.2	14
232	<scp>hyperoverlap</scp> : Detecting biological overlap in <i>n</i> â€dimensional space. Methods in Ecology and Evolution, 2020, 11, 513-523.	2.2	15
233	Integrating Computational Methods to Investigate the Macroecology of Microbiomes. Frontiers in Genetics, 2019, 10, 1344.	1.1	7
234	Use of openly available occurrence data to generate biodiversity maps within the South African EEZ. African Journal of Marine Science, 2020, 42, 109-121.	0.4	1
236	Reintroduction modelling: A guide to choosing and combining models for species reintroductions. Journal of Applied Ecology, 2020, 57, 1233-1243.	1.9	18
237	Dos and don'ts when inferring assembly rules from diversity patterns. Global Ecology and Biogeography, 2020, 29, 1212-1229.	2.7	83
238	Spatiotemporal variation in occurrence and co-occurrence of pesticides, hormones, and other organic contaminants in rivers in the Chesapeake Bay Watershed, United States. Science of the Total Environment, 2020, 728, 138765.	3.9	19
239	Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits. Ecology and Evolution, 2020, 10, 3856-3867.	0.8	13
240	Co-occurrence of invasive and native carnivorans affects occupancy patterns across environmental gradients. Biological Invasions, 2020, 22, 2251-2266.	1.2	14
241	Refining predictions of metacommunity dynamics by modeling species nonâ€independence. Ecology, 2020, 101, e03067.	1.5	8
242	Arthropod abundance modulates bird community responses to urbanization. Diversity and Distributions, 2021, 27, 34-49.	1.9	34

#	Article	IF	CITATIONS
243	Importance of species translocations under rapid climate change. Conservation Biology, 2021, 35, 775-783.	2.4	40
244	Largeâ€scale multiâ€trophic coâ€response models and environmental control of pelagic food webs in QuA©bec lakes. Oikos, 2021, 130, 377-395.	1.2	4
245	Inferred seasonal interaction rewiring of a freshwater stream fish network. Ecography, 2021, 44, 219-230.	2.1	7
246	Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 2021, 12, 394-404.	2.2	30
247	Habitat amount and ambient temperature dictate patterns of anuran diversity along a subtropical elevational gradient. Diversity and Distributions, 2021, 27, 344-359.	1.9	10
248	Joint species distribution models of Everglades wading birds to inform restoration planning. PLoS ONE, 2021, 16, e0245973.	1.1	7
249	Characterizing Community Structure of Benthic Infauna From the Continental Slope of the Southern California Bight. Frontiers in Marine Science, 2021, 8, .	1.2	3
251	The role of odds ratios in joint species distribution modeling. Environmental and Ecological Statistics, 2021, 28, 287-302.	1.9	4
252	Facilitation in the soil microbiome does not necessarily lead to niche expansion. Environmental Microbiomes, 2021, 16, 4.	2.2	5
253	Natural and anthropogenic climate variability shape assemblages of rangeâ€extending coralâ€reef fishes. Journal of Biogeography, 2021, 48, 1063-1075.	1.4	6
255	Improving the reliability of eDNA data interpretation. Molecular Ecology Resources, 2021, 21, 1422-1433.	2.2	44
256	Partitioning tree diversity patterns to prioritize conservation investments. Environmental Conservation, 2021, 48, 75-83.	0.7	2
257	Improving predictions of range expansion for invasive species using joint species distribution models and surrogate coâ€occurring species. Journal of Biogeography, 2021, 48, 1693-1705.	1.4	8
258	Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	10
259	A hierarchical framework for mapping pollination ecosystem service potential at the local scale. Ecological Modelling, 2021, 444, 109484.	1.2	14
260	Does traitâ€based joint species distribution modelling reveal the signature of competition in stream macroinvertebrate communities?. Journal of Animal Ecology, 2021, 90, 1276-1287.	1.3	11
261	Understanding the interplay between host-specificity, environmental conditions and competition through the sound application of Joint Species Distribution Models. Peer Community in Ecology, 0, , .	0.0	0
263	Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Computational Biology, 2021, 17, e1008856.	1.5	35

		CITATION REPORT		
#	Article		IF	Citations
264	Unifying community detection across scales from genomes to landscapes. Oikos, 2021	, 130, 831-843.	1.2	7
265	Scale dependency of joint species distribution models challenges interpretation of bioti interactions. Journal of Biogeography, 2021, 48, 1541-1551.	C .	1.4	31
266	Understanding the reliability of citizen science observational data using item response r Methods in Ecology and Evolution, 2021, 12, 1533-1548.	nodels.	2.2	9
267	Using historical data to estimate bumble bee occurrence: Variable trends across species support for community-level declines. Biological Conservation, 2021, 257, 109141.	provide little	1.9	37
268	On the Interpretations of Joint Modeling in Community Ecology. Trends in Ecology and 2021, 36, 391-401.	Evolution,	4.2	75
269	Conditional love? Coâ€occurrence patterns of droughtâ€sensitive species in European g consistent with the stressâ€gradient hypothesis. Global Ecology and Biogeography, 202	grasslands are 21, 30, 1609-1620.	2.7	6
270	Modelâ€based ordination for species with unequal niche widths. Methods in Ecology ar 2021, 12, 1288-1300.	d Evolution,	2.2	9
271	Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. Bi 71, 722-740.	oScience, 2021,	2.2	24
273	Trends in bird abundance differ among protected forests but not bird guilds. Ecological 2021, 31, e02377.	Applications,	1.8	6
274	Forage stoichiometry predicts the home range size of a small terrestrial herbivore. Oecc 197, 327-338.	logia, 2021,	0.9	12
275	Positive species interactions shape species' range limits. Oikos, 2021, 130, 1611-1625.		1.2	17
276	A methodological roadmap to quantify animalâ€vectored spatial ecosystem subsidies. J Ecology, 2021, 90, 1605-1622.	purnal of Animal	1.3	23
277	Wildcards in climate change biology. Ecological Monographs, 2021, 91, e01471.		2.4	9
278	Deriving indicators of biodiversity change from unstructured community ontributed 2021, 130, 1225-1239.	data. Oikos,	1.2	19
279	Multivariate Bayesian clustering using covariateâ€informed components with applicatic vegetation sensitivity. Biometrics, 2022, 78, 1427-1440.	n to boreal	0.8	3
280	Broadâ€scale patterns of geographic avoidance between species emerge in the absence mechanisms of coexistence. Diversity and Distributions, 2021, 27, 1606-1618.	e of fineâ€scale	1.9	10
281	Citizen science data for urban planning: Comparing different sampling schemes for mod bird distribution. Landscape and Urban Planning, 2021, 211, 104098.	lelling urban	3.4	7
282	From the ground up: Building predictions for how climate change will affect belowgrour mutualisms, floral traits, and bee behavior. Climate Change Ecology, 2021, 1, 100013.	nd	0.9	12

#	Article	IF	CITATIONS
283	Effectiveness of joint species distribution models in the presence of imperfect detection. Methods in Ecology and Evolution, 2021, 12, 1458-1474.	2.2	2
284	Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies. Ecology Letters, 2021, 24, 1905-1916.	3.0	8
285	Predicting species distributions and community composition using satellite remote sensing predictors. Scientific Reports, 2021, 11, 16448.	1.6	16
286	Human disturbance and shifts in vertebrateÂcommunity compositionÂin a biodiversity hotspot. Conservation Biology, 2022, 36, .	2.4	8
287	A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods in Ecology and Evolution, 2021, 12, 2159-2173.	2.2	27
288	Potential distribution of piscivores across the Atlantic Forest: From bats and marsupials to large-bodied mammals under a trophic-guild viewpoint. Ecological Informatics, 2021, 64, 101357.	2.3	3
289	Responses of vulnerable fishes to environmental stressors in the Canadian Great Lakes basin1. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 1278-1292.	0.7	2
290	Effects of a mobile disturbance pattern on dynamic patch networks and metapopulation persistence. Ecological Modelling, 2021, 460, 109738.	1.2	1
291	Forecasting community reassembly using climateâ€linked spatioâ€ŧemporal ecosystem models. Ecography, 2021, 44, 612-625.	2.1	14
294	An Overview of the Structure and Use of HMSC. , 2020, , 39-50.		1
294 295			1
	An Overview of the Structure and Use of HMSC. , 2020, , 39-50.	0.9	
295	An Overview of the Structure and Use of HMSC. , 2020, , 39-50. Bayesian Inference in HMSC. , 2020, , 184-216.	0.9	2
295 296	An Overview of the Structure and Use of HMSC. , 2020, , 39-50. Bayesian Inference in HMSC. , 2020, , 184-216. Estimating diversity in networked ecological communities. Biostatistics, 2022, 23, 207-222. Scale dependence of ecological assembly rules: Insights from empirical datasets and joint species		2 92
295 296 302	An Overview of the Structure and Use of HMSC. , 2020, , 39-50. Bayesian Inference in HMSC. , 2020, , 184-216. Estimating diversity in networked ecological communities. Biostatistics, 2022, 23, 207-222. Scale dependence of ecological assembly rules: Insights from empirical datasets and joint species distribution modelling. Journal of Ecology, 2020, 108, 1967-1977. The central role of meanâ€variance relationships in the analysis of multivariate abundance data: a	1.9	2 92 21
295 296 302 303	An Overview of the Structure and Use of HMSC. , 2020, , 39-50. Bayesian Inference in HMSC. , 2020, , 184-216. Estimating diversity in networked ecological communities. Biostatistics, 2022, 23, 207-222. Scale dependence of ecological assembly rules: Insights from empirical datasets and joint species distribution modelling. Journal of Ecology, 2020, 108, 1967-1977. The central role of meanâ€variance relationships in the analysis of multivariate abundance data: a response to Roberts (2017). Methods in Ecology and Evolution, 2017, 8, 1408-1414. Unravelling species coâ€occurrence in a steppe bird community of Inner Mongolia: Insights for the	1.9 2.2	2 92 21 33
295 296 302 303 304	An Overview of the Structure and Use of HMSC. , 2020, , 39-50. Bayesian Inference in HMSC. , 2020, , 184-216. Estimating diversity in networked ecological communities. Biostatistics, 2022, 23, 207-222. Scale dependence of ecological assembly rules: Insights from empirical datasets and joint species distribution modelling. Journal of Ecology, 2020, 108, 1967-1977. The central role of meanâ€variance relationships in the analysis of multivariate abundance data: a response to Roberts (2017). Methods in Ecology and Evolution, 2017, 8, 1408-1414. Unravelling species coâ€occurrence in a steppe bird community of Inner Mongolia: Insights for the conservation of the endangered Jankowski〙s Bunting. Diversity and Distributions, 2020, 26, 843-852. Climate change alters stability and species potential interactions in a large marine ecosystem. Clobal	1.9 2.2 1.9	2 92 21 33 13

#	Article	IF	CITATIONS
308	Patterns of occurrence of semi-aquatic reptiles in highly invaded Mediterranean rivers. NeoBiota, 0, 38, 23-35.	1.0	4
309	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
310	Dynamic multi-species occupancy models reveal individualistic habitat preferences in a high-altitude grassland bird community. PeerJ, 2019, 7, e6276.	0.9	11
311	Bird species coâ€occurrence patterns in an alpine environment supports the stressâ€gradient hypothesis. Oikos, 2021, 130, 1905-1918.	1.2	6
312	The internal structure of metacommunities. Oikos, 2022, 2022, .	1.2	32
313	Modelling temperatureâ€driven changes in species associations across freshwater communities. Global Change Biology, 2022, 28, 86-97.	4.2	5
314	Biodiversity scaleâ€dependence and opposing multiâ€level correlations underlie differences among taxonomic, phylogenetic and functional diversity. Journal of Biogeography, 2021, 48, 2989-3003.	1.4	4
315	Conceptual and methodological advances in habitatâ€selection modeling: guidelines for ecology and evolution. Ecological Applications, 2022, 32, e02470.	1.8	63
319	Worldwide co-occurrence analysis of 17 species of the genus Brachypodium using data mining. PeerJ, 2019, 6, e6193.	0.9	1
329	Joint Species Distribution Modelling. , 2020, , 142-183.		1
329 334		0.0	1
	Joint Species Distribution Modelling. , 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion	0.0	
334	Joint Species Distribution Modelling. , 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0, , . Predicting multi-species foraging hotspots for marine turtles in the Gulf of Mexico. Endangered		0
334 337	Joint Species Distribution Modelling., 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0, , . Predicting multi-species foraging hotspots for marine turtles in the Gulf of Mexico. Endangered Species Research, 2020, 43, 253-266. Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species	1.2	0
334 337 338	Joint Species Distribution Modelling. , 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0, , . Predicting multi-species foraging hotspots for marine turtles in the Gulf of Mexico. Endangered Species Research, 2020, 43, 253-266. Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape. Animals, 2021, 11, 3332. Pet distribution modelling: Untangling the invasive potential of Trachemys dorbigni (Emydidae) in the	1.2 1.0	0 4 2
334 337 338 339	Joint Species Distribution Modelling. , 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0, , . Predicting multi-species foraging hotspots for marine turtles in the Gulf of Mexico. Endangered Species Research, 2020, 43, 253-266. Evaluating the Effects of Climate Change on Spatial Aggregation of Ciant Pandas and Sympatric Species in a Mountainous Landscape. Animals, 2021, 11, 3332. Pet distribution modelling: Untangling the invasive potential of Trachemys dorbigni (Emydidae) in the Americas. PLoS ONE, 2021, 16, e0259626. Evaluating alternative study designs for optimal sampling of species' climatic niches. Ecography, 2022,	1.2 1.0 1.1	0 4 2 1
 334 337 338 339 340 	Joint Species Distribution Modelling., 2020, , 142-183. A meaningful application of species distribution models and functional traits to understand invasion dynamics. Peer Community in Ecology, 0, , . Predicting multi-species foraging hotspots for marine turtles in the Culf of Mexico. Endangered Species Research, 2020, 43, 253-266. Evaluating the Effects of Climate Change on Spatial Aggregation of Cliant Pandas and Sympatric Species in a Mountainous Landscape. Animals, 2021, 11, 3332. Pet distribution modelling: Untangling the invasive potential of Trachemys dorbigni (Emydidae) in the Americas. PLoS ONE, 2021, 16, e0259626. Evaluating alternative study designs for optimal sampling of species' climatic niches. Ecography, 2022, 2022, . Spatiotemporal interactions of a novel mesocarnivore community in an urban environment before	1.2 1.0 1.1 2.1	0 4 2 1 7

#	Article	IF	CITATIONS
344	Using fish community and population indicators to assess the biological condition of streams and rivers of the Chesapeake Bay watershed, USA. Ecological Indicators, 2022, 134, 108488.	2.6	4
346	Sampling and modelling rare species: Conceptual guidelines for the neglected majority. Global Change Biology, 2022, 28, 3754-3777.	4.2	27
347	Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic. Scientific Reports, 2022, 12, 132.	1.6	14
348	Spatial modeling for the distribution of species in plant communities. Spatial Statistics, 2022, 50, 100582.	0.9	1
349	The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes. , 0, 1, .		1
350	Models of Joint Distribution of Species on the Example of Benthic Communities from Small Rivers of the Volga Basin. Biology Bulletin Reviews, 2022, 12, 84-93.	0.3	2
351	A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecology and Biogeography, 2022, 31, 802-821.	2.7	50
352	Biochemical traits enhance the trait concept in <i>Sphagnum</i> ecology. Oikos, 2022, 2022, .	1.2	5
353	Evaluating ecological uniqueness over broad spatial extents using species distribution modelling. Oikos, 2022, 2022, .	1.2	12
355	Survival and growth of a high mountain daisy transplanted outside its local range, and implications for climate-induced distribution shifts. AoB PLANTS, 2022, 14, plac014.	1.2	0
357	Investigating Plant–Bird Co-Occurrence Patterns in Mediterranean Wetlands: Can They Reveal Signals of Ecosystem Connectivity?. Diversity, 2022, 14, 253.	0.7	1
359	Fauxcurrence: simulating multiâ€species occurrences for null models in species distribution modelling and biogeography. Ecography, 2022, 2022, .	2.1	6
360	Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecological Indicators, 2022, 138, 108826.	2.6	10
361	Statistical methods for predicting the spatial abundance of reef fish species. Ecological Informatics, 2022, 69, 101624.	2.3	2
362	The Influence of the Interaction between Climate and Competition on the Distributional Limits of European Shrews. Animals, 2022, 12, 57.	1.0	5
363	Niche use and coâ€occurrence patterns of zooplankton along a strong urbanization gradient. Ecography, 2022, 2022, .	2.1	2
364	An integrated highâ€resolution mapping shows congruent biodiversity patterns of Fagales and Pinales. New Phytologist, 2022, 235, 759-772.	3.5	7
366	Examining Epibenthic Assemblages Associated with Artificial Reefs Using a Species Archetype Approach. Marine and Coastal Fisheries, 2022, 14, .	0.6	3

#	Article	IF	CITATIONS
367	Analyzing dynamic species abundance distributions using generalized linear mixed models. Ecology, 2022, 103, e3742.	1.5	3
370	Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry, 2022, 170, 108695.	4.2	12
371	Design-based mapping of plant species presence, association, and richness by nearest-neighbour interpolation. Spatial Statistics, 2022, 51, 100660.	0.9	1
372	The latitudinal gradient in plant community assembly processes: AÂmetaâ€analysis. Ecology Letters, 2022, 25, 1711-1724.	3.0	20
373	Assessing the impact of climate change on threatened endemic vascular plants of Argentina. Folia Geobotanica, 2022, 57, 49-69.	0.4	1
374	Improving the predictability and interpretability of coâ€occurrence modelling through featureâ€based joint species distribution ensembles. Methods in Ecology and Evolution, 2023, 14, 146-161.	2.2	2
375	Recommender systems for fossil community distribution modelling. Methods in Ecology and Evolution, 0, , .	2.2	1
376	Biotic and abiotic effects determining the resilience of conifer mountain forests: The case study of the endangered Spanish fir. Forest Ecology and Management, 2022, 520, 120356.	1.4	0
377	Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India. Sustainability, 2022, 14, 7923.	1.6	1
378	Constructing ecological indices for urban environments using species distribution models. Urban Ecosystems, 0, , .	1.1	0
381	The predictive performance of processâ€explicit range change models remains largely untested. Ecography, 2023, 2023, .	2.1	1
382	How landscape and biotic interactions shape a Mediterranean reptile community. Landscape Ecology, 2022, 37, 2915-2927.	1.9	4
383	Response mixture models based on supervised components: Clustering floristic taxa. Statistical Modelling, 0, , 1471082X2211155.	0.5	0
384	Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography, 2022, 2022, .	2.1	25
385	Anuran assemblages in western Philippines: Unraveling the effects of habitat types, water availability, and elevation. Acta Oecologica, 2022, 117, 103869.	0.5	2
386	Some Noteworthy Issues in Joint Species Distribution Modeling for Plant Data. , 2022, , 1-8.		0
387	Tick microbial associations at the crossroad of horizontal and vertical transmission pathways. Parasites and Vectors, 2022, 15, .	1.0	5
388	Multi-species occupancy modeling suggests interspecific interaction among the three ungulate species. Scientific Reports, 2022, 12, .	1.6	0

#	Article	IF	Citations
389	Modelling potential natural pest control ecosystem services provided by arthropods in agricultural landscapes. Agriculture, Ecosystems and Environment, 2023, 342, 108250.	2.5	7
391	Disentangling the contributions of biotic and abiotic predictors in the niche and the species distribution model of Trypanosoma cruzi, etiological agent of Chagas disease. Acta Tropica, 2023, 238, 106757.	0.9	4
392	Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design. Revista Colombiana De Estadistica, 2022, 45, 391-428.	0.2	2
393	A two-species distribution model for parapatric newts, with inferences on their history of spatial replacement. Biological Journal of the Linnean Society, 2023, 138, 75-88.	0.7	2
395	Environmental filtering drives the assembly of mammal communities in a heterogeneous <scp>Mediterranean</scp> region. Ecological Applications, 2023, 33, .	1.8	2
396	Spatiotemporal dimensions of community assembly. Population Ecology, 2023, 65, 5-16.	0.7	7
397	Realising the promise of large data and complex models. Methods in Ecology and Evolution, 2023, 14, 4-11.	2.2	0
398	Co-occurrence patterns and habitat selection of the mountain hare, European hare, and European rabbit in urban areas of Sweden. Mammalian Biology, 2023, 103, 187-203.	0.8	0
400	Patterns of variation in equine strongyle community structure across age groups and gut compartments. Parasites and Vectors, 2023, 16, .	1.0	5
401	Field experimental evidence of sandy beach community changes in response to artificial light at night (ALAN). Science of the Total Environment, 2023, 872, 162086.	3.9	2
402	Mapping seagrass habitats of potential suitability using a hybrid machine learning model. Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
404	Prey resources are equally important as climatic conditions for predicting the distribution of a broadâ€ranged apex predator. Diversity and Distributions, 2023, 29, 613-628.	1.9	2
406	Habitat partitioning, co-occurrence patterns, and mixed-species group formation in sympatric delphinids. Scientific Reports, 2023, 13, .	1.6	2
408	Assessing abiotic correlations of an indicator species with sympatric riparian birds in a threatened submontane river–forest system using joint species modelling. Diversity and Distributions, 2023, 29, 748-756.	1.9	2
409	Mapping with height and spectral remote sensing implies that environment and forest structure jointly constrain tree community composition in temperate coniferous forests of eastern Washington, United States. Frontiers in Forests and Global Change, 0, 5, .	1.0	0
410	Not only climate: The importance of biotic interactions in shaping species distributions at macro scales. Ecology and Evolution, 2023, 13, .	0.8	2
411	Modeling the rarest of the rare: a comparison between multiâ€species distribution models, ensembles of small models, and singleâ€species models at extremely low sample sizes. Ecography, 2023, 2023, .	2.1	7
412	Decisionâ€making under uncertainty for species introductions into ecological networks. Ecology Letters, 2023, 26, 983-1004.	3.0	2

#	Article	IF	CITATIONS
413	How does spatial extent and environmental limits affect the accuracy of species richness estimates from ecological niche models? A case study with North American Pinaceae and Cactaceae. Ecology and Evolution, 2023, 13, .	0.8	0
415	Modelling species distribution, ecosystem structure and function and climate change. , 2023, , .		0
423	Basic Introduction to Species Distribution Modelling. , 2023, , 21-40.		1
427	Modelling Large-Scale Patterns in Mountain Bird Diversity and Distributions. , 2023, , 296-335.		0
437	Communities and Patterns of Biodiversity. , 2023, , 191-224.		0
438	Biotic Processes as Agents of Pattern. , 2023, , 29-53.		0
450	Climate Change: Adapting for Resilience. , 2023, , 287-321.		0
459	Species Methods. Statistics in the Health Sciences, 2023, , 171-236.	0.2	0