Towards low-cost, environmentally friendly printed cha

Energy and Environmental Science 7, 1829-1849 DOI: 10.1039/c3ee43865a

Citation Report

#	Article	IF	CITATIONS
1	Phase-dependent photocatalytic H ₂ evolution of copper zinc tin sulfide under visible light. Chemical Communications, 2014, 50, 12726-12729.	4.1	28
2	Solution-deposited Culn(S,Se)2 absorber layers from metal chalcogenides. , 2015, , .		0
4	An efficient descriptor model for designing materials for solar cells. Npj Computational Materials, 2015, 1, .	8.7	39
6	Preparation of a CuInS2Nanoparticle Ink and Application in a Selenization-Free, Solution-Processed Superstrate Solar Cell. European Journal of Inorganic Chemistry, 2015, 2015, 5793-5800.	2.0	14
7	Lowâ€Temperature and Hysteresisâ€Free Electronâ€Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501056.	19.5	69
8	A comprehensive study on the mechanism behind formation and depletion of Cu ₂ ZnSnS ₄ (CZTS) phases. CrystEngComm, 2015, 17, 6972-6984.	2.6	37
9	Ternary and quaternary wurtzite-type oxide semiconductors: new materials and their properties. , 2015, , .		0
10	Colloidal synthesis of zincblende Cu3InZnSnS6 nanocrystals and their optical property. Materials Letters, 2015, 157, 131-134.	2.6	5
11	Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chemical Communications, 2015, 51, 10198-10201.	4.1	41
12	Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13590-13596.	8.0	15
13	A facile one-step method to reduce surface impurities in solution-processed CuInS ₂ nanocrystal solar cells. Journal of Materials Chemistry A, 2015, 3, 14116-14120.	10.3	7
14	Kesterite Cu ₂ ZnSnS ₄ as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28466-28473.	8.0	147
15	Dark and photo-conductivity of doctor-bladed CZTS films above room temperature. Journal Physics D: Applied Physics, 2015, 48, 455109.	2.8	32
16	A simple chemical route for composition graded Cu(In,Ga)S2 thin film solar cells: multi-stage paste coating. RSC Advances, 2015, 5, 103439-103444.	3.6	7
17	Growth and characterization of CuInS2 nanoparticles prepared using sonochemical synthesis. Journal of the Taiwan Institute of Chemical Engineers, 2015, 48, 87-94.	5.3	14
18	Scalable synthesis of CuInS ₂ nanocrystal inks for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 4470-4476.	10.3	15
19	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	19.5	144
21	Assessing the Use of BiCuOS for Photovoltaic Application: From DFT to Macroscopic Simulation. Journal of Physical Chemistry C, 2015, 119, 17585-17595.	3.1	31

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
22	Transport properties of solution processed Cu2SnS3/AZnO heterostructure for low cost photovoltaics. Solar Energy Materials and Solar Cells, 2015, 143, 152-158.	6.2	38
23	Wurtzite-derived ternary l–Ill–O ₂ semiconductors. Science and Technology of Advanced Materials, 2015, 16, 024902.	6.1	23
24	Elucidating the Excitedâ€State Properties of CuInS ₂ Nanocrystals upon Phase Transformation: <i>Quasi</i> â€Quantum Dots Versus Bulk Behavior. Advanced Electronic Materials, 2015, 1, 1500040.	5.1	5
25	A Nonvacuum Approach for Fabrication of Cu ₂ ZnSnSe ₄ /In ₂ S ₃ Thin Film Solar Cell and Optoelectronic Characterization. Journal of Physical Chemistry C, 2015, 119, 12226-12235.	3.1	76
26	Inkjetâ€Printed Cu ₂ ZnSn(S, Se) ₄ Solar Cells. Advanced Science, 2015, 2, 1500028.	11.2	65
27	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	12.8	221
28	Topochemical Solid-State Reactivity: Redox-Induced Direct Structural Transformation from CuSe ₂ to CuInSe ₂ . Chemistry of Materials, 2015, 27, 7179-7186.	6.7	18
29	High-density Cu–In intermetallic nanocrystal layers: towards high-efficiency printable CulnSe ₂ solar cells. Journal of Materials Chemistry A, 2015, 3, 15889-15896.	10.3	9
30	Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer. ACS Applied Materials & Interfaces, 2015, 7, 21100-21106.	8.0	28
31	Kesterite Cu ₂ ZnSnS ₄ thin film solar cells by a facile DMF-based solution coating process. Journal of Materials Chemistry C, 2015, 3, 10783-10792.	5.5	61
32	Chalcogenization-Derived Band Gap Grading in Solution-Processed Culn _{<i>x</i>} Ga _{1–<i>x</i>} (Se,S) ₂ Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27391-27396.	8.0	34
33	A robust and low-cost strategy to prepare Cu ₂ ZnSnS ₄ precursor solution and its application in Cu ₂ ZnSn(S,Se) ₄ solar cells. RSC Advances, 2015, 5, 4184-4190.	3.6	36
34	Formation of CuIn(S Se1â^)2 microcrystals from CuInSe2 nanoparticles by two step solvothermal method. Journal of Alloys and Compounds, 2015, 618, 522-526.	5.5	9
35	Optimization of Electrochemically Deposited Highly Doped ZnO Bilayers on Ga-Rich Chalcopyrite Selenide for Cost-Effective Photovoltaic Device Technology. Energies, 2016, 9, 951.	3.1	5
36	The current status and future prospects of kesterite solar cells: a brief review. Progress in Photovoltaics: Research and Applications, 2016, 24, 879-898.	8.1	316
37	Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances, 2016, 6, 60643-60656.	3.6	47
38	Ge-alloyed CZTSe thin film solar cell using molecular precursor adopting spray pyrolysis approach. RSC Advances, 2016, 6, 37621-37627.	3.6	37
39	Impact of Minor Phases on the Performances of CZTSSe Thin-Film Solar Cells. Chemistry of Materials, 2016, 28, 3540-3563.	6.7	112

#	Article	IF	CITATIONS
40	Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Solar Energy Materials and Solar Cells, 2016, 153, 84-107.	6.2	139
41	11.3% efficiency Cu(In,Ga)(S,Se) ₂ thin film solar cells via drop-on-demand inkjet printing. Energy and Environmental Science, 2016, 9, 2037-2043.	30.8	71
42	Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route. Nanotechnology, 2016, 27, 185603.	2.6	17
43	Nanoscale Photo-Absorbing Kesterite Grown on Anatase Mesoscopic Films by Sequential Binary Chalcogenide Solution Deposition-Exchange, Annealing, and Etching. Crystal Growth and Design, 2016, 16, 3618-3630.	3.0	9
44	Effect of sputtering power on Cd/Zn atomic ratio and optical properties of Cu2ZnxCd1â^'xSnS4 thin films deposited by magnetron sputtering: An experimental and first-principle study. Chemical Physics Letters, 2016, 660, 132-135.	2.6	6
45	Facile synthesis and optical properties of zincblende and wurtzite Cu3ZnInSnSe6 nanocrystals. Journal of Alloys and Compounds, 2016, 689, 425-431.	5.5	4
46	High-Pressure Preparation of High-Density Cu 2 ZnSnS 4 Materials. Chinese Physics Letters, 2016, 33, 076101.	3.3	2
47	Controlled Synthesis of Nanostructured CuInS2: Study of Mechanism and Its Application in Low-Cost Solar Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1075-1086.	3.7	6
48	Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772.	2.2	79
49	A Comparative Study of Nanoparticleâ€Inkâ€Based <scp>CIGSSe</scp> Thin Film Solar Cells on Different Back Contact Substrates. Bulletin of the Korean Chemical Society, 2016, 37, 361-365.	1.9	1
50	Solvothermal approach to synthesize wurtzite structure Cu 2 SnS 3 nanocrystals and their application to fabricate Cu 2 ZnSn(S,Se) 4 thin film. Journal of Alloys and Compounds, 2016, 658, 1020-1024.	5.5	9
51	Synthesis of Mn doping Ag–In–Zn–S nanoparticles and their photoluminescence properties. Materials and Design, 2016, 91, 256-261.	7.0	16
52	Molecular-ink route to 13.0% efficient low-bandgap Culn(S,Se) ₂ and 14.7% efficient Cu(In,Ga)(S,Se) ₂ solar cells. Energy and Environmental Science, 2016, 9, 130-134.	30.8	122
53	Kesterite Inorganic-Organic Heterojunction for Solution Processable Solar Cells. Electrochimica Acta, 2016, 201, 78-85.	5.2	8
54	Carbon-Impurity Affected Depth Elemental Distribution in Solution-Processed Inorganic Thin Films for Solar Cell Application. ACS Applied Materials & amp; Interfaces, 2016, 8, 5261-5272.	8.0	32
55	Facile one-pot synthesis of polytypic (wurtzite–chalcopyrite) CuGaS2. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
56	Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films. Materials Letters, 2016, 162, 40-43.	2.6	53
57	Structural, optical, electrical properties, and strain/stress of electrochemically deposited highly doped ZnO layers and nanostructured ZnO antireflective coatings for cost-effective photovoltaic device technology. Thin Solid Films, 2016, 605, 215-231.	1.8	16

#	Article	IF	CITATIONS
58	Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu ₂ ZnSn(S,Se) ₄ photovoltaic cells achieving over 9% efficiency. Sustainable Energy and Fuels, 2017, 1, 267-274.	4.9	19
59	Defect Engineering in Multinary Earthâ€Abundant Chalcogenide Photovoltaic Materials. Advanced Energy Materials, 2017, 7, 1602366.	19.5	250
60	Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Advances, 2017, 7, 4806-4814.	3.6	49
61	A versatile strategy for fabricating various Cu ₂ ZnSnS ₄ precursor solutions. Journal of Materials Chemistry C, 2017, 5, 3035-3041.	5.5	20
62	Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hierarchical Microstructures and Their Visible-Light Photocatalytic Activities. Nanoscale Research Letters, 2017, 12, 181.	5.7	26
63	Solution-based synthesis of dense, large grained Culn(S, Se)2 thin films using elemental precursor. Ceramics International, 2017, 43, 6257-6262.	4.8	6
64	Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy, 2017, 36, 313-321.	16.0	107
65	Naphthodifuran-based zigzag-type polycyclic arene with conjugated side chains for efficient photovoltaics. Physical Chemistry Chemical Physics, 2017, 19, 14289-14295.	2.8	7
67	Fabrication of CZTSSe absorbers by optimized selenization of one-step co-electrodeposited CZTS precursors. Journal of Materials Science, 2017, 52, 11014-11024.	3.7	7
68	Elemental Precursor Solution Processed (Cu _{1–<i>x</i>} Ag _{<i>x</i>}) ₂ ZnSn(S,Se) ₄ Photovoltaic Devices with over 10% Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 21243-21250.	8.0	114
69	Significantly enhancing back contact adhesion and improving stability of Cu2(Zn,Cd)Sn(S,Se)4 solar cell by a rational carbon doping strategy. Journal of Alloys and Compounds, 2017, 710, 403-408.	5.5	16
70	Solution processed single-phase Cu ₂ SnS ₃ films: structure and photovoltaic performance. Sustainable Energy and Fuels, 2017, 1, 899-906.	4.9	27
71	Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cellÂapplications. Thin Solid Films, 2017, 628, 163-169.	1.8	10
72	Single Molecular Precursor Solution for CuIn(S,Se) ₂ Thin Films Photovoltaic Cells: Structure and Device Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 2301-2308.	8.0	25
73	Sol-gel synthesis of Cu2ZnSnS4 thin films under mild conditions. Journal of Alloys and Compounds, 2017, 697, 361-366.	5.5	11
74	Efficiency Improvements in Solutionâ€Based CuInS ₂ Solar Cells Incorporating a Clâ€Doped ZnO Nanopillars Array. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700191.	1.8	7
75	Chemically Deposited CdS Buffer/Kesterite Cu ₂ ZnSnS ₄ Solar Cells: Relationship between CdS Thickness and Device Performance. ACS Applied Materials & Interfaces, 2017, 9, 36733-36744.	8.0	27
76	Thieno[3,2- <i>b</i>]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 31985-31992.	8.0	161

#	Article	IF	CITATIONS
77	One-Pot Synthesis of Zincblende CuInSe ₂ Nanocrystals via a Green Solution Reaction Route. Nano, 2017, 12, 1750107.	1.0	2
78	Different ligand exchange solvents effect on the densification of CuIn 0.7 Ga 0.3 Se 2 prepared using the heating-up method. Applied Surface Science, 2017, 426, 1148-1157.	6.1	4
79	Nanoparticles of Ag-In-S and Cu-In-S in Aqueous Media: Preparation, Spectral and Luminescent Properties. Theoretical and Experimental Chemistry, 2017, 53, 338-348.	0.8	5
80	3-D architecture between indium tin oxide nano-rods and a solution processed CuInGaS2 absorber layer for thin film solar cells. Thin Solid Films, 2017, 636, 506-511.	1.8	1
81	Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	7
82	Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Solar Energy Materials and Solar Cells, 2017, 171, 239-252.	6.2	110
83	Fabrication of selenization-free superstrate-type CulnS2 solar cells based on all-spin-coated layers. Materials Chemistry and Physics, 2017, 186, 446-455.	4.0	25
84	Photovoltaics. , 2017, , 371-407.		1
85	Chalcopyrite CIGS absorber layer by inkjet printing for photovoltaic application. Materials Today: Proceedings, 2017, 4, 12480-12483.	1.8	9
86	Infiltrated photonic crystals for light-trapping in CuInSe_2 nanocrystal-based solar cells. Optics Express, 2017, 25, A502.	3.4	9
87	Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy. Journal of Chemical Physics, 2018, 148, 134702.	3.0	7
88	Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Solar Energy, 2018, 162, 357-363.	6.1	29
89	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	3.6	51
90	High-Efficiency Nanoparticle Solution-Processed Cu(In,Ga)(S,Se) ₂ Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 288-292.	2.5	10
91	Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C, 2018, 6, 414-445.	5.5	40
92	Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes. Journal of Physics Condensed Matter, 2018, 30, 18LT02.	1.8	13
93	Review on earth-abundant and environmentally benign Cu–Sn–X(X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion. Journal of Industrial and Engineering Chemistry, 2018, 60, 19-52.	5.8	36
94	Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step process. Current Applied Physics, 2018, 18, 191-199.	2.4	10

#	Article	IF	CITATIONS
95	Optimization of ink-jet printed precursors for Cu2ZnSn(S,Se)4 solar cells. Journal of Alloys and Compounds, 2018, 735, 2462-2470.	5.5	16
96	Recent Progress in Solutionâ€Processed Copperâ€Chalcogenide Thinâ€Film Solar Cells. Energy Technology, 2018, 6, 46-59.	3.8	43
97	Deposition and characterization of Cu(In,Ga)Se 2 thin films from the ink of sonochemically prepared CIGSe nanoparticles. Chinese Journal of Physics, 2018, 56, 392-403.	3.9	5
98	Phase-Selective Synthesis of CICS Nanoparticles with Metastable Phases Through Tuning Solvent Composition. Nanoscale Research Letters, 2018, 13, 362.	5.7	6
99	Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga ³⁺ Doping. ACS Applied Materials & Interfaces, 2018, 10, 42844-42855.	8.0	55
100	Phase-Separation-Induced Crystal Growth for Large-Grained Cu ₂ ZnSn(S,Se) ₄ Thin Film. ACS Applied Materials & Interfaces, 2018, 10, 35069-35078.	8.0	34
101	Green and room-temperature synthesis of aqueous CuInS2 and Cu2SnS3 nanocrystals for efficient photoelectrochemical water splitting. Materials Today Energy, 2018, 10, 200-207.	4.7	12
102	Solution-Processed Bi ₂ S ₃ Photoresistor Film To Mitigate a Trade-off between Morphology and Electronic Properties. Journal of Physical Chemistry Letters, 2018, 9, 5392-5399.	4.6	20
103	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	3.3	39
104	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	38.1	177
105	A review on applications of Cu2ZnSnS4 as alternative counter electrodes in dye-sensitized solar cells. AIP Advances, 2018, 8, .	1.3	16
106	Fabrication of ZnO Thin Film through Chemical Preparations. , 2018, , .		2
107	Cd-free Cu2ZnSnS4 thin film solar cell on a flexible substrate using nano-crystal ink. Thin Solid Films, 2018, 657, 70-75.	1.8	12
108	Synthesis, characterization and application of nanocrystalline CdZn(SeTe)2 thin films for energy application. AIP Conference Proceedings, 2018, , .	0.4	0
109	Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy and Fuels, 2018, 2, 1671-1685.	4.9	24
110	Naâ€Induced Conversion of a Notorious Fineâ€Grained Residue Layer into a Working Absorber in Solutionâ€Processed CuInSe 2 Devices. Solar RrI, 2019, 3, 1900260.	5.8	6
111	Improved Quality Absorber Layer of I–III–VI 2 Compound Semiconductors: Purification Process Revisited. Energy Technology, 2019, 7, 1900615.	3.8	5

#	Article	IF	CITATIONS
113	Green and scalable synthesis of nanocrystalline kuramite. Beilstein Journal of Nanotechnology, 2019, 10, 2073-2083.	2.8	0
114	"Safer-by-design―synthesis of quantum dots in flow reactors. Journal of Physics: Conference Series, 2019, 1323, 012007.	0.4	4
115	Novel Cu2BaSn(S,Se)4 thin film fabricated by solution process and its application in solar cells. Superlattices and Microstructures, 2019, 135, 106243.	3.1	4
116	Efficient TiO2 Surface Treatment Using Cs2CO3 for Solution-Processed Planar-Type Sb2S3 Solar Cells. Nanoscale Research Letters, 2019, 14, 25.	5.7	14
117	Dense CIGS films obtained by blending submicronâ€sized particles with nanoparticle suspensions using a nonâ€vacuum process. International Journal of Applied Ceramic Technology, 2019, 16, 974-980.	2.1	1
118	Defect Analysis of Solution-Based Process CIGS Thin-Film Solar Cells Using Technology Computer-Aided Design. Journal of Nanoscience and Nanotechnology, 2019, 19, 6601-6608.	0.9	1
119	Study of Precursorâ€inks Designed for Highâ€Quality Cu ₂ ZnSnS ₄ Films for Lowâ€Cost PV Application. ChemistrySelect, 2019, 4, 4905-4912.	1.5	3
121	Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review. Solar Energy Materials and Solar Cells, 2019, 196, 138-156.	6.2	180
122	Control of composition and grain growth in Cu2ZnSnS4 thin films from nanoparticle inks. Thin Solid Films, 2019, 674, 12-21.	1.8	22
123	A thiol-amine mixture for metal oxide towards device quality metal chalcogenides. Science China Materials, 2019, 62, 899-906.	6.3	10
124	Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, 123, 2632-2641.	3.1	53
125	Sustainable synthesis of quaternary sulphides: The problem of the uptake of zinc in CZTS. Journal of Alloys and Compounds, 2019, 775, 1221-1229.	5.5	6
126	Multifunctional Copperâ€Based Quaternary Chalcogenide Semiconductors Toward Stateâ€ofâ€theâ€Art Energy Applications. ChemNanoMat, 2019, 5, 373-402.	2.8	30
127	Facile synthesis of CdS Quantum dots for QDSSC with high photo current density. Materials Research Express, 2020, 7, 015528.	1.6	5
128	Pure sulfide Cu2ZnSnS4 layers through a one-step low-temperature PLD technique: Insight into simulation on modified back contact to overcome the barrier of MoS2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114701.	3.5	6
129	Underlying mechanism of the efficiency loss in CZTSSe solar cells: Disorder and deep defects. Science China Materials, 2020, 63, 2371-2396.	6.3	37
130	Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 36082-36091.	8.0	13
131	Morphological–Electrical Property Relation in Cu(In,Ga)(S,Se) ₂ Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment. Small, 2020, 16, e2003865.	10.0	12

#	ARTICLE Boosting the efficiency of solution-based CZTSSe solar cells by supercritical carbon dioxide	IF 9.0	Citations
133	treatment. Green Chemistry, 2020, 22, 3597-3607. Two-phase synthesized Cu2ZnSnS4 nanoparticles as inorganic hole-transporting material of paintable carbon-based perovskite solar cells. Solar Energy, 2020, 201, 547-554.	6.1	5
134	Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , .	0.8	3
135	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17551-17557.	7.1	24
136	Effect of a graphene oxide intermediate layer in Cu ₂ ZnSn(S,Se) ₄ solar cells. Journal of Materials Chemistry A, 2020, 8, 4920-4930.	10.3	21
137	Influence of a nanostructured ZnO layer on the carrier recombination and dynamics in chalcopyrite solar cells. Journal of Materials Science, 2020, 55, 9703-9711.	3.7	4
138	Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells. Science Bulletin, 2020, 65, 738-746.	9.0	34
139	A Dual Protection System for Heterostructured 3D CNT/CoSe ₂ /C as High Areal Capacity Anode for Sodium Storage. Advanced Science, 2020, 7, 1902907.	11.2	97
140	Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 7286-7314.	2.2	55
141	Wide Band Gap Chalcogenide Semiconductors. Chemical Reviews, 2020, 120, 4007-4055.	47.7	246
142	Influence of Sulfurization Time on the Properties of Cu2ZnSnS4 Thin Films Deposited on Mo-coated Soda Lime Glass Substrates by Co-sputtering Technique. Thin Solid Films, 2020, 704, 138028.	1.8	13
143	Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach. Materials Science in Semiconductor Processing, 2021, 121, 105401.	4.0	17
144	Optimizing kesterite solar cells from Cu ₂ ZnSnS ₄ to Cu ₂ CdGe(S,Se) ₄ . Journal of Materials Chemistry A, 2021, 9, 9882-9897.	10.3	18
145	Open-air solvothermal synthesis and photoresponse of plate-shaped Cu3ZnInSnSe6 nanocrystals. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	1
146	Present Status of Solutionâ€Processing Routes for Cu(In,Ga)(S,Se) ₂ Solar Cell Absorbers. Advanced Energy Materials, 2021, 11, 2003743.	19.5	57
147	Improvement of grain growth and composition distribution of Cu2ZnSn(S,Se)4 by using chloride-based precursor solution. Solar Energy, 2021, 215, 451-458.	6.1	3
148	One-step synthesis of CulnS2 nanoparticles using aqueous chelated metal complexes as a starting material. Journal of Materials Science: Materials in Electronics, 2021, 32, 9531-9539.	2.2	1
149	Cellulose: A Contribution for the Zero eâ€Waste Challenge. Advanced Materials Technologies, 2021, 6, .	5.8	56

#	Article	IF	CITATIONS
150	Solution-processed near-infrared Cu(In,Ga)(S,Se)2 photodetectors with enhanced chalcopyrite crystallization and bandgap grading structure via potassium incorporation. Scientific Reports, 2021, 11, 7820.	3.3	12
151	Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell. Journal of Materials Research and Technology, 2021, 12, 1252-1287.	5.8	18
152	Effect of Mg doping on Cu2ZnSnS4 solar cells prepared by DMF-based solution method. Optical Materials, 2021, 117, 111211.	3.6	13
153	Eco-friendly and cost-efficient inks for screen-printed fabrication of copper indium gallium diselenide photoabsorber thin films. Journal of Colloid and Interface Science, 2021, 598, 388-397.	9.4	13
154	Insights into the exceptional stability of the molecular precursor solution for Cu2ZnSnS4 solar absorber. Journal of Colloid and Interface Science, 2021, 599, 326-331.	9.4	2
155	Microwave-Processed Copper Zinc Tin Sulphide (CZTS) Inks for Coatings in Solar Cells. , 2018, , 121-174.		4
156	Analyzing and Tuning the Chalcogen–Amine–Thiol Complexes for Tailoring of Chalcogenide Syntheses. Inorganic Chemistry, 2020, 59, 8240-8250.	4.0	14
157	Impact of Absorber Layer Morphology on Photovoltaic Properties in Solution-Processed Chalcopyrite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 34-47.	8.0	5
159	Benign fabrication of low-cost Cu2ZnSnS4 films for photovoltaic cells. Catalysis Today, 2022, 403, 58-66.	4.4	2
160	Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance. Solar Energy, 2021, 230, 13-58.	6.1	20
162	Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , 67-122.	0.8	2
163	Temperature dependences of photoluminescence intensities observed from AgInGaS and AgInGaS/GaSx core–shell nanoparticles. Journal of Nanophotonics, 2020, 14, 1.	1.0	1
164	Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance. Solar Energy, 2022, 231, 41-46.	6.1	15
165	Solution-Processed Chalcogenide Photovoltaic Thin Films. , 0, , .		0
166	Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 55243-55253.	8.0	25
168	A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Solar Energy, 2022, 234, 81-102.	6.1	45
169	Charge dynamics in CuInS2 photovoltaic devices with In2S3 as buffer layer. Materials Chemistry and Physics, 2022, 282, 125871.	4.0	4
170	Solutionâ€Processed Chalcopyrite Solar Cells: the Grain Growth Mechanism and the Effects of Cu/In Mole Ratio. Advanced Energy Materials, 2022, 12, .	19.5	9

#	Article	IF	CITATIONS
171	Extrinsic Doping of Inkâ€Based Cu(In,Ga)(S,Se) ₂ â€Absorbers for Photovoltaic Applications. Advanced Energy Materials, 2022, 12, .	19.5	13
172	Toward Understanding Chalcopyrite Solar Cells via Advanced Characterization Techniques. Advanced Materials Interfaces, 2022, 9, .	3.7	1
173	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity. Advanced Materials, 2022, 34, e2202255.	21.0	20
174	Investigation of the electronic, structural, optical and thermoelectric properties of ternary chalcopyrite ACuS2(A=Al, Ga and In): Ab initio study. Optik, 2022, 260, 169077.	2.9	10
176	Over 16% Efficient Solutionâ€Processed Cu(In,Ga)Se ₂ Solar Cells via Incorporation of Copperâ€Rich Precursor Film. Small, 2022, 18, .	10.0	6
177	<i>>A</i> InSn ₂ S ₆ (<i>A</i> = K, Rb, Cs)─Layered Semiconductors Based on the SnS ₂ Structure. Inorganic Chemistry, 2022, 61, 13525-13531.	4.0	2
178	Recent Advances in Earth Abundant and Environmentally Green Semiconducting Chalcogenide Nanomaterials for Photovoltaics Applications. Advances in Material Research and Technology, 2022, , 21-50.	0.6	1
179	Photocurrent generation and charge transport mechanism study in solution-processed CZTS thin films. Optik, 2023, 272, 170381.	2.9	1
180	Silver Atom Off-Centering in Diamondoid Solid Solutions Causes Crystallographic Distortion and Suppresses Lattice Thermal Conductivity. Journal of the American Chemical Society, 2023, 145, 3211-3220.	13.7	14
181	Tandem cells for unbiased photoelectrochemical water splitting. Chemical Society Reviews, 2023, 52, 4644-4671.	38.1	17
182	Environmentally Benign Nanostructured Kesterite Binate Quantum Dot Well (BQDW) Solar Cell: A Proposal Towards High Efficiency. IEEE Nanotechnology Magazine, 2023, 22, 473-480.	2.0	0
183	12.3% Efficient Low <i>V</i> _{oc} Loss Pure Sulfide Kesterite Solar Cells from DMSO Solution via Cadmium Alloying. Advanced Energy Materials, 2023, 13, .	19.5	5
184	Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells. ChemEngineering, 2023, 7, 87.	2.4	1
185	Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review. Solar Energy, 2023, 263, 111982.	6.1	5
186	Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives. Materials Today Energy, 2024, 39, 101473.	4.7	0
187	Lattice dynamics and thermoelectric properties of diamondoid materials. , 2024, 3, 5-28.		3