Enhancement of Cd phytoextraction by two Amaranthu sp. JN27

Chemosphere 103, 99-104 DOI: 10.1016/j.chemosphere.2013.11.040

Citation Report

#	Article	IF	CITATIONS
1	Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Frontiers in Plant Science, 2015, 6, 638.	1.7	53
2	Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology, 2015, 89, 44-49.	2.1	99
3	Removal of lead(II) from aqueous solution using modified palygorskite, contribution of inverse gas chromatography. Journal of Chromatography A, 2015, 1408, 207-216.	1.8	10
4	Effect of short-term cadmium stress on Populus nigra L. detached leaves. Journal of Plant Physiology, 2015, 182, 40-48.	1.6	34
5	Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 2015, 117, 28-40.	2.0	563
6	Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 2016, 7, 918.	1.7	324
7	Drought-tolerant Streptomyces pactum Act12 assist phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus: great potential application in arid/semi-arid areas. Environmental Science and Pollution Research, 2016, 23, 14898-14907.	2.7	34
8	Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation. Environmental Science and Pollution Research, 2016, 23, 22477-22487.	2.7	28
10	Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?. Scientific Reports, 2016, 6, 21805.	1.6	105
11	Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174, 14-25.	3.8	490
12	Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes. , 2016, , 115-132.		1
13	Factors Affecting Phytoextraction: A Review. Pedosphere, 2016, 26, 148-166.	2.1	218
14	Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. International Journal of Phytoremediation, 2016, 18, 494-501.	1.7	22
15	Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 2016, 98, 112-120.	2.1	57
16	Microbial Inoculants-Assisted Phytoremediation for Sustainable Soil Management. , 2017, , 3-17.		8
17	Role of Bioremediation Agents (Bacteria, Fungi, and Algae) in Alleviating Heavy Metal Toxicity. , 2017, , 517-537.		25
18	Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Scientific Reports, 2017, 7, 7210.	1.6	47
19	Role of Ni-tolerant <i>Bacillus</i> spp. and <i>Althea rosea</i> L. in the phytoremediation of Ni-contaminated soils. International Journal of Phytoremediation, 2017, 19, 470-477.	1.7	25

		CITATION R	EPORT	
#	Article		IF	CITATIONS
20	Value added phytoremediation of metal stressed soils using phosphate solubilizing mic consortium. World Journal of Microbiology and Biotechnology, 2017, 33, 9.	robial	1.7	51
21	Potential of Endophytic Bacteria in Heavy Metal and Pesticide Detoxification. Microorg Sustainability, 2018, , 307-336.	anisms for	0.4	13
22	Augmentation with potential endophytes enhances phytostabilization of Cr in contami Environmental Science and Pollution Research, 2018, 25, 7021-7032.	inated soil.	2.7	16
23	Bioremediation of Heavy Metals. Environmental Chemistry for A Sustainable World, 20	18, , 277-311.	0.3	15
24	Soil Remediation Through Microbes. , 2018, , 101-128.			2
25	Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enha switchgrass (Panicum virgatum L.) biomass. Acta Physiologiae Plantarum, 2018, 40, 1.	nce	1.0	30
26	Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) p mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety 648-658.	əhytotoxic γ, 2018, 164,	2.9	71
27	Oilseed rape cultivation increases the microbial richness and diversity in soils contamin cadmium. Journal of Soils and Sediments, 2018, 18, 2451-2462.	ated with	1.5	6
28	Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites. , 2019, , 299-328.			8
29	Metabolic responses and their correlations with phytochelatins in Amaranthus hypochound under cadmium stress. Environmental Pollution, 2019, 252, 1791-1800.	ondriacus	3.7	77
30	Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its in microbial community. Environmental Science and Pollution Research, 2019, 26, 34818		2.7	35
31	Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic det Microbiological Research, 2019, 221, 36-49.	cerminants.	2.5	518
32	Phosphate solubilization by microorganisms. , 2019, , 161-176.			59
33	Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Fi Sustainability Issues, and Future Prospects. Reviews of Environmental Contamination a 2019, 249, 71-131.		0.7	103
34	Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Br World Journal of Microbiology and Biotechnology, 2019, 35, 188.	achiaria mutica.	1.7	14
35	Rhizoremediation of Polluted Sites. , 2019, , 389-407.			6
36	Mechanisms of Plant-Microbe Interactions and its Significance for Sustainable Agricult 17-39.	ure. , 2019, ,		13
37	Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for plant growth and manganese accumulation in Myriophyllum verticillatum. Science of th Environment, 2020, 707, 135867.		3.9	26

#	Article	IF	CITATIONS
38	Improving cadmium mobilization by phosphate-solubilizing bacteria via regulating organic acids metabolism with potassium. Chemosphere, 2020, 244, 125475.	4.2	34
39	The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicology and Environmental Safety, 2020, 203, 110988.	2.9	34
40	Morphological Responses and Gene Expression of Grain Amaranth (Amaranthus spp.) Growing under Cd. Plants, 2020, 9, 572.	1.6	7
41	Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives. Microorganisms for Sustainability, 2020, , 161-189.	0.4	17
42	Microbial Secondary Metabolites: Effectual Armors to Improve Stress Survivability in Crop Plants. , 2020, , 47-70.		0
43	Endophytic bacteria in xenobiotic degradation. , 2020, , 125-156.		10
44	Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Science of the Total Environment, 2020, 721, 137581.	3.9	88
45	Diversity of endophytic plant-growth microorganisms from Gentianella weberbaueri and Valeriana pycnantha, highland Peruvian medicinal plants. Microbiological Research, 2020, 233, 126413.	2.5	22
46	Bioremediation: A Low-Cost and Clean-Green Technology for Environmental Management. , 2020, , 153-171.		4
47	Phytoaugmentation technology for phytoremediation of environmental pollutants: current scenario and future prospects. , 2021, , 329-381.		7
48	Assessment of physiological and biochemical responses of <i>Amaranthus retroflexus</i> seedlings to the accumulation of heavy metals with regards to phytoremediation potential. International Journal of Phytoremediation, 2021, 23, 219-230.	1.7	7
49	Microbial Endophytes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Sustainable Development and Biodiversity, 2021, , 35-75.	1.4	3
50	Tropical Endophytic Bacillus Species Enhance Plant Growth and Nutrient Uptake in Cereals. Sustainable Development and Biodiversity, 2021, , 157-180.	1.4	2
51	Root Characteristics and Metal Uptake of Maize (Zea mays L.) under Extreme Soil Contamination. Agronomy, 2021, 11, 178.	1.3	19
52	Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.). Environmental Pollution, 2021, 274, 116572.	3.7	29
54	Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. Environmental Pollution, 2021, 283, 117159.	3.7	35
55	Unsnarling Plausible Role of Plant Growth-Promoting Rhizobacteria for Mitigating Cd-Toxicity from Plants: An Environmental Safety Aspect. Journal of Plant Growth Regulation, 2022, 41, 2514-2542.	2.8	13
56	Organic Acid Excretion in Root Exudates as a Mechanism of Cadmium Uptake in a Sonchus Asper–Zea Mays Intercropping System. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1059-1064.	1.3	11

CITATION REPORT

#	Article	IF	CITATIONS
57	The intercropping and arbuscular mycorrhizal fungus decrease Cd accumulation in upland rice and improve phytoremediation of Cd-contaminated soil by Sphagneticola calendulacea (L.) Pruski. Journal of Environmental Management, 2021, 298, 113516.	3.8	15
58	Are endophytes essential partners for plants and what are the prospects for metal phytoremediation?. Plant and Soil, 2021, 460, 1-30.	1.8	18
59	Endophytic bacteria as source of novel bioactive compounds. , 2021, , 177-203.		0
60	Bacterial Inoculants: How Can These Microbes Sustain Soil Health and Crop Productivity?. Soil Biology, 2020, , 337-372.	0.6	5
61	Diversity and Role of Endophytic and Rhizosphere Microbes Associated with Hyperaccumulator Plants During Metal Accumulation. Mineral Resource Reviews, 2021, , 239-279.	1.5	7
62	Effects of root exudation on the accumulation of Cd by Chenopodium ambrosioides L. and maize in intercropping systems. IOP Conference Series: Earth and Environmental Science, 2020, 446, 032066.	0.2	4
63	Effect of Inoculation with Glomus versiforme on Cadmium Accumulation, Antioxidant Activities and Phytochelatins of Solanum photeinocarpum. PLoS ONE, 2015, 10, e0132347.	1.1	46
64	Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies. Journal of Soil Science and Plant Nutrition, 2022, 22, 212-269.	1.7	62
65	Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects. Microbiology and Biotechnology Letters, 2020, 48, 399-421.	0.2	3
66	Adverse Effect of Heavy Metal Toxicity in Plants' Metabolic Systems and Biotechnological Approaches for Its Tolerance Mechanism. , 2020, , 145-168.		0
67	Endophytic Bacterial Applications in Phytoremediation of Organic Pollutants and Toxic Metals. , 2020, , 131-160.		1
68	Plant-Microbe-Metal Interactions: A Biochemical and Molecular Analysis for Phytoremediation. , 2020, , 71-92.		0
69	Hazards and Usability of Coal Fly Ash. Innovations in Landscape Research, 2022, , 571-608.	0.2	3
71	Role and significance of biofilm-forming microbes in phytoremediation -A review. Environmental Technology and Innovation, 2022, 25, 102182.	3.0	17
73	Study of Efficacy Adsorption of Methyl Green by Attapulgite and Modified Attapulgite Clay from Aqueous Solution. Ibn Al-Haitham Journal for Pure and Applied Sciences, 2021, 34, .	0.1	0
74	Modeling the Carbon Sequestration Potential of Multifunctional Agroforestry-Based Phytoremediation (MAP) Systems in Chinandega, Nicaragua. Sustainability, 2022, 14, 4932.	1.6	0
75	An overview on bioremediation technologies for soil pollution in E-waste dismantling areas. Journal of Environmental Chemical Engineering, 2022, 10, 107839.	3.3	11
76	Transcriptome analysis reveals decreased accumulation and toxicity of Cd in upland rice inoculated with arbuscular mycorrhizal fungi. Applied Soil Ecology, 2022, 177, 104501.	2.1	9

CITATION REPORT

#	ARTICLE	IF	CITATIONS
77	Revisiting soil-plant-microbes interactions: Key factors for soil health and productivity. , 2022, , 125-154.		1
78	Potential Effect of Novel Endophytic Nitrogen Fixing Rahnella Spp. On Growth Promotion of Wheat (Triticum Aestivum L.). SSRN Electronic Journal, 0, , .	0.4	0
79	Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 2022, 303, 135196.	4.2	68
80	First report on Rahnella sp. strain EU-A3SNfb, a plant growth promoting endophytic bacterium from wild wheat relative Aegilops kotschyi. The National Academy of Sciences, India, 2022, 45, 393-396.	0.8	3
81	Effects of Arbuscular Mycorrhizal Fungi on Growth and Heavy Metal Uptake in Robinia Pseudoacacia L. Grown on Heavy Metal-Contaminated Soils. SSRN Electronic Journal, 0, , .	0.4	0
82	Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives. Environmental Science and Engineering, 2022, , 615-644.	0.1	4
84	CHARACTERISATION OF ENDOPHYTIC BACTERIA FROM NAM-NAM PLANTS (Cynometra cauliflora) FOR ANTIBACTERIAL ACTIVITY AND PRODUCTION OF PLANT GROWTH PROMOTING FACTORS. , 2022, 51, 119-126.		0
85	Effect of Some Bacterial Strains on Some Morphological and Pomological Characteristics Against Cadmium Toxicity in Three Strawberry (Fragaria x ananassa Duch.) Cultivars. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	0.5	0
86	Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiological Research, 2023, 266, 127256.	2.5	11
87	Endophytic Bacteria in Ricinus communis L.: Diversity of Bacterial Community, Plantâ "Growth Promoting Traits of the Isolates and Its Effect on Cu and Cd Speciation in Soil. Agronomy, 2023, 13, 333.	1.3	2
88	Bioformulations for Sustainable Phytoremediation of Heavy Metal-Polluted Soil. , 2023, , 101-125.		0
89	Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. International Journal of Phytoremediation, 2023, 25, 1596-1613.	1.7	6
90	Microbial bioremediation as a tool for the removal of heavy metals. Bulletin of the National Research Centre, 2023, 47, .	0.7	7
91	Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki. Brazilian Journal of Microbiology, 0, , .	0.8	0
95	Microbe-assisted heavy metal phytoremediation. , 2023, , 187-197.		0
98	Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils. , 2024, , 327-348.		Ο