The co-pathogenesis of influenza viruses with bacteria

Nature Reviews Microbiology 12, 252-262 DOI: 10.1038/nrmicro3231

Citation Report

#	Article	IF	CITATIONS
1	Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, 2014, , .	1.1	11
2	What is a pathogen? Toward a process view of host-parasite interactions. Virulence, 2014, 5, 775-785.	4.4	108
3	Passive Broad-Spectrum Influenza Immunoprophylaxis. Influenza Research and Treatment, 2014, 2014, 1-9.	1.5	4
4	Reply to "No Clinical Association of Live Attenuated Influenza Vaccine with Nasal Carriage of Bacteria or Acute Otitis Media― Specific Recommendations for Future Studies. MBio, 2014, 5, e01173-14.	4.1	4
6	The role of macrophages in influenza A virus infection. Future Virology, 2014, 9, 847-862.	1.8	29
7	Editorial Commentary: What is the Real Role of Respiratory Viruses in Severe Community-Acquired Pneumonia?. Clinical Infectious Diseases, 2014, 59, 71-73.	5.8	29
8	Polybacterial human disease: the ills of social networking. Trends in Microbiology, 2014, 22, 508-516.	7.7	147
9	Dynamic Changes in the Streptococcus pneumoniae Transcriptome during Transition from Biofilm Formation to Invasive Disease upon Influenza A Virus Infection. Infection and Immunity, 2014, 82, 4607-4619.	2.2	121
10	The Public Health Policy Implications of Understanding Metabiosis. Cell Host and Microbe, 2014, 16, 3-4.	11.0	3
11	Secondary Bacterial Infections in Influenza Virus Infection Pathogenesis. Current Topics in Microbiology and Immunology, 2014, 385, 327-356.	1.1	104
12	Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus:S. pyogenes super-infection. Vaccine, 2014, 32, 5241-5249.	3.8	20
13	Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus. Journal of Virology, 2014, 88, 11995-12005.	3.4	27
14	Post-infectious immune suppression: A new paradigm of severe infections. Médecine Et Maladies Infectieuses, 2014, 44, 455-463.	5.0	19
15	Molecular and genomic characterization of pathogenic traits of group A <i>Streptococcus pyogenes</i> . Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 539-559.	3.8	22
16	The role of influenza in the epidemiology of pneumonia. Scientific Reports, 2015, 5, 15314.	3.3	38
17	TRAIL ⁺ monocytes and monocyteâ€related cells cause lung damage and thereby increase susceptibility to influenza– <i> <scp>S</scp> treptococcus pneumoniae </i> coinfection. EMBO Reports, 2015, 16, 1203-1218.	4.5	82
18	A review of the role of Haemophilus influenzae in community-acquired pneumonia. Pneumonia (Nathan) Tj ETQq	0 0 0 rgBT 6.1	Overlock 10

19 T V	The W-Shaped Mortality-Age Distribution of Novel H1N1 Influenza Virus Helps Reconstruct the Second Wave of Pandemic 1918 Spanish Flu. Journal of Pulmonary & Respiratory Medicine, 2015, 05, .	0.1
-----------	---	-----

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Modeling Influenza Virus Infection: A Roadmap for Influenza Research. Viruses, 2015, 7	7, 5274-5304.	3.3	125
21	Influence of respiratory viruses on the evaluation of the 13-valent pneumococcal conju effectiveness in children under 5 years old: A time-series study for the 2001-2013 perio Argentinos De Pediatria, 2015, 113, .	igate vaccine od. Archivos	0.2	0
22	Macrophage Polarization in Virus-Host Interactions. Journal of Clinical & Cellular Immu 06, .	nology, 2015,	1.5	73
23	Streptococcus pneumoniae biofilm formation and dispersion during colonization and o Frontiers in Cellular and Infection Microbiology, 2014, 4, 194.	disease.	3.9	144
24	Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic U Anti-Inflammatory Drugs. Frontiers in Immunology, 2015, 6, 361.	se of	4.8	95
25	Carriage of Streptococcus pneumoniae in Aged Adults with Influenza-Like-Illness. PLoS e0119875.	ONE, 2015, 10,	2.5	77
26	A Retrospective Longitudinal Within-Subject Risk Interval Analysis of Immunoglobulin Recurrent Acute Exacerbation of Chronic Obstructive Pulmonary Disease. PLoS ONE, 2	Freatment for 1015, 10, e0142205.	2.5	38
27	Infection of Murine Macrophages by Salmonella enterica Serovar Heidelberg Blocks Mu Norovirus Infectivity and Virus-induced Apoptosis. PLoS ONE, 2015, 10, e0144911.	urine	2.5	13
28	Neuraminidase inhibitors, superinfection and corticosteroids affect survival of influenz European Respiratory Journal, 2015, 45, 1642-1652.	a patients.	6.7	83
29	Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like in <i>Streptococcus pneumoniae</i> and Related Streptococci. Genome Biology and Ev 2747-2761.		2.5	29
30	Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant inte Scientific Reports, 2014, 4, 7176.	rferon.	3.3	111
31	Role of biofilm in children with recurrent upper respiratory tract infections. European Jo Clinical Microbiology and Infectious Diseases, 2015, 34, 421-429.	burnal of	2.9	52
32	Influenza viral neuraminidase primes bacterial coinfection through TGF-β–mediated cell receptors. Proceedings of the National Academy of Sciences of the United States of 112, 238-243.	expression of host of America, 2015,	7.1	110
33	Lethal Coinfection of Influenza Virus and Streptococcus pneumoniae Lowers Antibody Influenza Virus in Lung and Reduces Numbers of Germinal Center B Cells, T Follicular H and Plasma Cells in Mediastinal Lymph Node. Journal of Virology, 2015, 89, 2013-2023	Ielper Cells,	3.4	23
34	The Biofilm Community: Rebels with a Cause. Current Oral Health Reports, 2015, 2, 48	J-56.	1.6	55
35	Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of D Infection and Immunity, 2015, 83, 3764-3770.	isease.	2.2	254
36	Point-of-care testing for respiratory viruses in adults: The current landscape and future Journal of Infection, 2015, 71, 501-510.	potential.	3.3	61
37	The lung mycobiome: an emerging field of the human respiratory microbiome. Frontier Microbiology, 2015, 6, 89.	s in	3.5	218

#	Article	IF	CITATIONS
38	A Toll-Like Receptor 5 Agonist Improves the Efficacy of Antibiotics in Treatment of Primary and Influenza Virus-Associated Pneumococcal Mouse Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 6064-6072.	3.2	40
39	Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiology Letters, 2015, 362, .	1.8	98
40	Dynamic Virus-Bacterium Interactions in a Porcine Precision-Cut Lung Slice Coinfection Model: Swine Influenza Virus Paves the Way for Streptococcus suis Infection in a Two-Step Process. Infection and Immunity, 2015, 83, 2806-2815.	2.2	55
41	Complementary assays helping to overcome challenges for identifying neuraminidase inhibitors. Future Virology, 2015, 10, 77-88.	1.8	23
42	Disease-Promoting Effects of Type I Interferons in Viral, Bacterial, and Coinfections. Journal of Interferon and Cytokine Research, 2015, 35, 252-264.	1.2	154
43	Mechanisms of Predisposition to Pneumonia. , 2015, , 363-382.		6
44	Interfering with Immunity: Detrimental Role of Type I IFNs during Infection. Journal of Immunology, 2015, 194, 2455-2465.	0.8	72
45	Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to <i>Staphylococcus aureus</i> . American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 459-470.	2.9	31
46	No Love Lost Between Viruses and Interferons. Annual Review of Virology, 2015, 2, 549-572.	6.7	123
47	Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 2015, 69, 425-444.	7.3	154
48	The Influence of Influenza and Pneumococcal Vaccines on Community-Acquired Pneumonia (CAP) Outcomes Among Elderly Patients. Current Infectious Disease Reports, 2015, 17, 49.	3.0	5
49	Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L11-L16.	2.9	42
50	Macrophage adaptation in airway inflammatory resolution. European Respiratory Review, 2015, 24, 510-515.	7.1	25
51	PHiD-CV induces anti-Protein D antibodies but does not augment pulmonary clearance of nontypeable Haemophilus influenzae in mice. Vaccine, 2015, 33, 4954-4961.	3.8	24
52	Prevention of serious events in adults 65 years of age or older: A comparison between high-dose and standard-dose inactivated influenza vaccines. Vaccine, 2015, 33, 4988-4993.	3.8	86
53	Influenza-associated bacterial pneumonia; managing and controlling infection on two fronts. Expert Review of Anti-Infective Therapy, 2015, 13, 55-68.	4.4	16
54	Stop the executioners. Nature Immunology, 2015, 16, 6-8.	14.5	1
55	Nonâ€proteolytic functions of microbial proteases increase pathological complexity. Proteomics, 2015, 15, 1075-1088.	2.2	16

#	Article	IF	CITATIONS
56	The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nature Immunology, 2015, 16, 67-74.	14.5	120
57	Influenza Virus. , 2016, , 1009-1058.		5
58	Role of Autophagy and Apoptosis in the Postinfluenza Bacterial Pneumonia. BioMed Research International, 2016, 2016, 1-10.	1.9	8
59	Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection. Frontiers in Cellular and Infection Microbiology, 2016, 6, 60.	3.9	29
60	The Role of IL-22 in Viral Infections: Paradigms and Paradoxes. Frontiers in Immunology, 2016, 7, 211.	4.8	27
61	The Association between Invasive Group A Streptococcal Diseases and Viral Respiratory Tract Infections. Frontiers in Microbiology, 2016, 7, 342.	3.5	44
62	Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Frontiers in Microbiology, 2016, 7, 357.	3.5	38
63	The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?. Pathogens, 2016, 5, 57.	2.8	6
64	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	4.7	49
65	Immunity by equilibrium. Nature Reviews Immunology, 2016, 16, 524-532.	22.7	161
66	A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza. Scientific Reports, 2016, 6, 38703.	3.3	50
67	Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biology and Philosophy, 2016, 31, 819-837.	1.4	22
68	Severity of Respiratory Syncytial Virus Lower Respiratory Tract Infection With Viral Coinfection in HIV-Uninfected Children. Clinical Infectious Diseases, 2017, 64, ciw756.	5.8	33
69	Droplet microfluidics for kinetic studies of viral fusion. Biomicrofluidics, 2016, 10, 024102.	2.4	16
70	The Role of Streptococcus pneumoniae in Community-Acquired Pneumonia. Seminars in Respiratory and Critical Care Medicine, 2016, 37, 806-818.	2.1	34
71	Histone Deacetylase Inhibition Protects Mice Against Lethal Postinfluenza Pneumococcal Infection. Critical Care Medicine, 2016, 44, e980-e987.	0.9	13
72	The Role of Punctuated Evolution in the Pathogenicity of Influenza Viruses. Microbiology Spectrum, 2016, 4, .	3.0	4
73	Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respiratory Research, 2016, 17, 68.	3.6	50

#	Article	IF	CITATIONS
74	Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cellular and Molecular Immunology, 2016, 13, 432-442.	10.5	121
75	How best to determine causative pathogens of pneumonia. Pneumonia (Nathan Qld), 2016, 8, 1.	6.1	14
76	Bacterial and viral co-infections complicating severe influenza: Incidence and impact among 507 U.S. patients, 2013–14. Journal of Clinical Virology, 2016, 80, 12-19.	3.1	79
77	Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science, 2016, 352, 463-466.	12.6	210
78	Positive Contribution of Adjuvanted Influenza Vaccines to the Resolution of Bacterial Superinfections. Journal of Infectious Diseases, 2016, 213, 1876-1885.	4.0	7
79	Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacological Research, 2016, 112, 68-83.	7.1	7
80	Differential Type I Interferon Signaling Is a Master Regulator of Susceptibility to Postinfluenza Bacterial Superinfection. MBio, 2016, 7, .	4.1	49
81	Non-typeable Haemophilus influenzae protects human airway epithelial cells from a subsequent respiratory syncytial virus challenge. Virology, 2016, 498, 128-135.	2.4	7
82	Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality. Cell Host and Microbe, 2016, 20, 458-470.	11.0	82
83	Association of sputum microbiota profiles with severity of community-acquired pneumonia in children. BMC Infectious Diseases, 2016, 16, 317.	2.9	44
84	Effects of Sialic Acid Modifications on Virus Binding and Infection. Trends in Microbiology, 2016, 24, 991-1001.	7.7	104
85	1918 pandemic influenza virus and <i>Streptococcus pneumoniae</i> coâ€infection results in activation of coagulation and widespread pulmonary thrombosis in mice and humans. Journal of Pathology, 2016, 238, 85-97.	4.5	39
86	Infant Mouse Model for the Study of Shedding and Transmission during Streptococcus pneumoniae Monoinfection. Infection and Immunity, 2016, 84, 2714-2722.	2.2	59
87	Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection. Scientific Reports, 2016, 6, 37045.	3.3	48
88	Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation. Infection and Immunity, 2016, 84, 3445-3457.	2.2	57
89	The frequency of influenza and bacterial coinfection: a systematic review and metaâ€analysis. Influenza and Other Respiratory Viruses, 2016, 10, 394-403.	3.4	391
90	Exogenous Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Reduces Pneumococcal Outgrowth and Dissemination Postinfluenza. MBio, 2016, 7, .	4.1	18
91	Haemophilus parasuis modulates cellular invasion via TGF-β1 signaling. Veterinary Microbiology, 2016, 196, 18-22.	1.9	5

#	Article	IF	CITATIONS
92	Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Scientific Reports, 2016, 6, 27156.	3.3	63
93	Efficient suilysin-mediated invasion and apoptosis in porcine respiratory epithelial cells after streptococcal infection under air-liquid interface conditions. Scientific Reports, 2016, 6, 26748.	3.3	33
94	The Roles of Type I Interferon in Bacterial Infection. Cell Host and Microbe, 2016, 19, 760-769.	11.0	294
95	Microbial pathogenesis and type III interferons. Cytokine and Growth Factor Reviews, 2016, 29, 45-51.	7.2	17
96	Polymicrobial communityâ€acquired pneumonia: An emerging entity. Respirology, 2016, 21, 65-75.	2.3	31
97	Reduction of Streptococcus pneumoniae Colonization and Dissemination by a Nonopsonic Capsular Polysaccharide Antibody. MBio, 2016, 7, e02260-15.	4.1	19
98	How recent advances in molecular tests could impact the diagnosis of pneumonia. Expert Review of Molecular Diagnostics, 2016, 16, 533-540.	3.1	23
99	Lambda Interferon Restructures the Nasal Microbiome and Increases Susceptibility to Staphylococcus aureus Superinfection. MBio, 2016, 7, e01939-15.	4.1	94
100	Prevalence, codetection and seasonal distribution of upper airway viruses and bacteria in children with acute respiratory illnesses with cough as a symptom. Clinical Microbiology and Infection, 2016, 22, 527-534.	6.0	15
101	Genotyping of human rhinovirus in adult patients with acute respiratory infections identified predominant infections of genotype A21. Scientific Reports, 2017, 7, 41601.	3.3	14
102	Legionnaire's Disease and Influenza. Infectious Disease Clinics of North America, 2017, 31, 137-153.	5.1	5
103	Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L138-L153.	2.9	36
104	Viruses in cystic fibrosis patients' airways. Critical Reviews in Microbiology, 2017, 43, 690-708.	6.1	26
105	Pneumolysin as a potential therapeutic target in severe pneumococcal disease. Journal of Infection, 2017, 74, 527-544.	3.3	31
106	Viral–bacterial co-infections in the respiratory tract. Current Opinion in Microbiology, 2017, 35, 30-35.	5.1	119
107	Postviral Complications. Clinics in Chest Medicine, 2017, 38, 127-138.	2.1	51
110	Pneumonia with bacterial and viral coinfection. Current Opinion in Critical Care, 2017, 23, 385-390.	3.2	66
111	Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model. Clinical Science, 2017, 131, 2347-2362.	4.3	53

#	Article	IF	CITATIONS
112	Quantifying the therapeutic requirements and potential for combination therapy to prevent bacterial coinfection during influenza. Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44, 81-93.	1.8	13
113	miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discovery, 2017, 3, 17021.	6.7	95
114	The inflammatory response triggered by Influenza virus: a two edged sword. Inflammation Research, 2017, 66, 283-302.	4.0	101
115	Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment. Frontiers in Physiology, 2017, 8, 115.	2.8	27
116	Mathematical modeling of postcoinfection with influenza A virus and Streptococcus pneumoniae , with implications for pneumonia and COPD-risk assessment. International Journal of COPD, 2017, Volume 12, 1973-1988.	2.3	16
117	Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses, 2017, 9, 58.	3.3	83
118	Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Frontiers in Microbiology, 2017, 8, 205.	3.5	13
119	Porcine alveolar macrophage polarization is involved in inhibition of porcine reproductive and respiratory syndrome virus (PRRSV) replication. Journal of Veterinary Medical Science, 2017, 79, 1906-1915.	0.9	52
121	The nasopharyngeal microbiome. Emerging Topics in Life Sciences, 2017, 1, 297-312.	2.6	14
122	Improving the Care and Treatment of Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox Biodefense Research. Viruses, 2017, 9, 380.	3.3	161
123	Dissecting host cell death programs in the pathogenesis of influenza. Microbes and Infection, 2018, 20, 560-569.	1.9	22
124	Secondary Bacterial Pneumonia by Staphylococcus aureus Following Influenza A Infection Is SaeR/S Dependent. Journal of Infectious Diseases, 2018, 218, 809-813.	4.0	23
125	Pathogenic mechanisms of invasive group A <i>Streptococcus</i> infections by influenza virus–group A <i>Streptococcus</i> superinfection. Microbiology and Immunology, 2018, 62, 141-149.	1.4	16
126	Innate and adaptive T cells in influenza disease. Frontiers of Medicine, 2018, 12, 34-47.	3.4	67
127	Amoxicillin for acute lower respiratory tract infection in primary care: subgroup analysis by bacterial and viral aetiology. Clinical Microbiology and Infection, 2018, 24, 871-876.	6.0	21
128	Etiology and Impact of Coinfections in Children Hospitalized With Community-Acquired Pneumonia. Journal of Infectious Diseases, 2018, 218, 179-188.	4.0	71
129	Coinfections in Hospitalized Children With Community-Acquired Pneumonia: What Does This Mean for the Clinician?. Journal of Infectious Diseases, 2018, 218, 173-175.	4.0	5
130	Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews Microbiology, 2018, 16, 355-367.	28.6	636

#	Article	IF	CITATIONS
131	Discovery of Bioactive Natural Products for the Treatment of Acute Respiratory Infections – An Integrated Approach. Planta Medica, 2018, 84, 684-695.	1.3	18
132	Genotype 2 Strains of Porcine Reproductive and Respiratory Syndrome Virus Dysregulate Alveolar Macrophage Cytokine Production via the Unfolded Protein Response. Journal of Virology, 2018, 92, .	3.4	22
133	<i>Streptococcus pneumoniae</i> colonization of the nasopharynx is associated with increased severity during respiratory syncytial virus infection in young children. Respirology, 2018, 23, 220-227.	2.3	48
134	The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunology, 2018, 31, 159-173.	1.3	28
135	Effects of influenza immunization on pneumonia in the elderly. Human Vaccines and Immunotherapeutics, 2018, 14, 744-749.	3.3	48
136	Evaluating the Value of Defensins for Diagnosing Secondary Bacterial Infections in Influenza-Infected Patients. Frontiers in Microbiology, 2018, 9, 2762.	3.5	5
137	The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Frontiers in Immunology, 2018, 9, 2530.	4.8	74
138	Hormonal Regulation of Physiology, Innate Immunity and Antibody Response to H1N1 Influenza Virus Infection During Pregnancy. Frontiers in Immunology, 2018, 9, 2455.	4.8	37
139	Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Frontiers in Immunology, 2018, 9, 3067.	4.8	90
140	Synthetic biology-based portable <i>in vitro</i> diagnostic platforms. Alexandria Journal of Medicine, 2018, 54, 423-428.	0.6	9
141	Clinical, immunological and bacteriological characteristics of H7N9 patients nosocomially co-infected by Acinetobacter Baumannii: a case control study. BMC Infectious Diseases, 2018, 18, 664.	2.9	8
142	Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12353-E12362.	7.1	249
143	Treating Influenza Infection, From Now and Into the Future. Frontiers in Immunology, 2018, 9, 1946.	4.8	62
144	Bacterial coinfection restrains antiviral CD8 T-cell response via LPS-induced inhibitory NK cells. Nature Communications, 2018, 9, 4117.	12.8	15
145	Validated models of immune response to virus infection. Current Opinion in Systems Biology, 2018, 12, 46-52.	2.6	20
146	Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment. Current Opinion in Infectious Diseases, 2018, 31, 471-480.	3.1	133
147	Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathogens, 2018, 14, e1007360.	4.7	29
148	Role of Inflammatory Risk Factors in the Pathogenesis of Streptococcus pneumoniae. Frontiers in Immunology, 2018, 9, 2275.	4.8	10

#	Article	IF	CITATIONS
149	Influenza infection directly alters innate IL-23 and IL-12p70 and subsequent IL-17A and IFN-Î ³ responses to pneumococcus in vitro in human monocytes. PLoS ONE, 2018, 13, e0203521.	2.5	11
150	Understanding Influenza. Methods in Molecular Biology, 2018, 1836, 1-21.	0.9	12
151	In Vitro Models to Study Influenza Virus and Staphylococcus aureus Super-Infection on a Molecular Level. Methods in Molecular Biology, 2018, 1836, 375-386.	0.9	2
153	Effects of Influenza on Alveolar Macrophage Viability Are Dependent on Mouse Genetic Strain. Journal of Immunology, 2018, 201, 134-144.	0.8	61
154	Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound. Scientific Reports, 2018, 8, 9114.	3.3	10
155	Structure of ScpC, a virulence protease from <i>Streptococcus pyogenes</i> , reveals the functional domains and maturation mechanism. Biochemical Journal, 2018, 475, 2847-2860.	3.7	23
156	Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respiratory Medicine,the, 2018, 6, 782-792.	10.7	638
157	Human coronavirus OC43 outbreak in wild chimpanzees, Côte dÂ1voire, 2016. Emerging Microbes and Infections, 2018, 7, 1-4.	6.5	66
158	Integrative Physiology of Pneumonia. Physiological Reviews, 2018, 98, 1417-1464.	28.8	154
159	Protective Capacity of Statins during Pneumonia Is Dependent on Etiological Agent and Obesity. Frontiers in Cellular and Infection Microbiology, 2018, 8, 41.	3.9	9
160	A Model of Superinfection of Virus-Infected Zebrafish Larvae: Increased Susceptibility to Bacteria Associated With Neutrophil Death. Frontiers in Immunology, 2018, 9, 1084.	4.8	21
161	Surviving Deadly Lung Infections: Innate Host Tolerance Mechanisms in the Pulmonary System. Frontiers in Immunology, 2018, 9, 1421.	4.8	37
162	Elimination of Falciparum Malaria and Emergence of Severe Dengue: An Independent or Interdependent Phenomenon?. Frontiers in Microbiology, 2018, 9, 1120.	3.5	4
163	Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs. Viruses, 2018, 10, 183.	3.3	35
164	Epidemiology and clinical characteristics of acute respiratory tract infections among hospitalized infants and young children in Chengdu, West China, 2009–2014. BMC Pediatrics, 2018, 18, 216.	1.7	47
165	Clarithromycin expands CD11b+Gr-1+ cells via the STAT3/Bv8 axis to ameliorate lethal endotoxic shock and post-influenza bacterial pneumonia. PLoS Pathogens, 2018, 14, e1006955.	4.7	34
166	The role of type I interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge. Developmental and Comparative Immunology, 2018, 86, 156-170.	2.3	23
167	Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome, 2018, 6, 9.	11.1	194

ARTICLE IF CITATIONS The Streptococcus pyogenes fibronectin/tenascin-binding protein PrtF.2 contributes to virulence in 3.3 8 168 an influenza superinfection. Scientific Reports, 2018, 8, 12126. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Frontiers in 169 4.8 Immunology, 2018, 9, 1750. Hostâ€pathogen kinetics during influenza infection and coinfection: insights from predictive modeling. 170 6.0 65 Immunological Reviews, 2018, 285, 97-112. Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal 171 injury. PLoS Pathogens, 2018, 14, e1007212. Contributions of Influenza Virus Hemagglutinin and Host Immune Responses Toward the Severity of 172 1.313 Influenza Virus:<i>Streptococcus pyogenes</i>Superinfections. Viral Immunology, 2018, 31, 457-469. Effect of prior vaccination on carriage rates of Streptococcus pneumoniae in older adults: A 3.8 longitudinal surveillance study. Vaccine, 2018, 36, 4304-4310 174 Microbiological Diagnosis of Respiratory Illness., 2019, , 396-405.e3. 1 In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae 4.8 Infection Post Influenza A Virus Infection. Frontiers in Immunology, 2019, 10, 1864. Characterization of cellular transcriptomic signatures induced by different respiratory viruses in 176 3.3 33 human reconstituted airway epithelia. Scientific Reports, 2019, 9, 11493. Escalas predictoras de mortalidad en pacientes con gripe: lecciones aprendidas y camino por recorrer. Medicina ClÃnica, 2019, 153, 430-431. Eicosanoid Profile of Influenza A Virus Infected Pigs. Metabolites, 2019, 9, 130. 178 2.9 10 Interaction between the nasal microbiota and S. pneumoniae in the context of live-attenuated influenza vaccine. Nature Communications, 2019, 10, 2981. 179 12.8 59 Making a bad relationship good. Nature Microbiology, 2019, 4, 1251-1252. 180 13.3 0 Estimating age-stratified influenza-associated invasive pneumococcal disease in England: A time-series 8.4 16 model based on population surveillance data. PLoS Medicine, 2019, 16, e1002829 Emerging concepts in the pathogenesis of the <i>Streptococcus pneumoniae </i>: From nasopharyngeal 182 2.1 79 colonizer to intracellular pathogen. Cellular Microbiology, 2019, 21, e13077. Clinique et diagnostic de la grippe saisonniÃ[°]re. Actualites Pharmaceutiques, 2019, 58, 27-30. Contribution of Host Immune Responses Against Influenza D Virus Infection Toward Secondary 184 3.3 13 Bacterial Infection in a Mouse Model. Viruses, 2019, 11, 994. Vaccination against Paediatric Respiratory Pathogens. Vaccines, 2019, 7, 168. 4.4

	Сітатіс	on Report	
#	Article	IF	Citations
186	Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines, 2019, 7, 171.	4.4	29
188	Use of antiviral drugs for seasonal influenza: Foundation document for practitioners—Update 2019. Jammi, 2019, 4, 60-82.	0.5	4
189	Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs. Clinical Microbiology Reviews, 2019, 32, .	13.6	79
190	Mortality of critically ill patients with severe influenza starting four years after the 2009 pandemic. Infectious Diseases, 2019, 51, 831-837.	2.8	16
191	Influenza: annual seasonal severity. Current Opinion in Pediatrics, 2019, 31, 112-118.	2.0	24
192	Influenza-induced immune suppression to methicillin-resistant Staphylococcus aureus is mediated by TLR9. PLoS Pathogens, 2019, 15, e1007560.	4.7	23
193	Rapid Molecular Tests for Influenza, Respiratory Syncytial Virus, and Other Respiratory Viruses: A Systematic Review of Diagnostic Accuracy and Clinical Impact Studies. Clinical Infectious Diseases, 2019, 69, 1243-1253.	5.8	77
194	Protective effect of influenza vaccination on outcomes in geriatric stroke patients: A nationwide matched cohort study. Atherosclerosis, 2019, 282, 85-90.	0.8	19
195	Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental Medicine, 2019, 216, 2038-2056.	8.5	134
196	Host-Pathogen Interactions in Gram-Positive Bacterial Pneumonia. Clinical Microbiology Reviews, 2019, 32, .	13.6	53
197	Viral Coinfection Replaces Effects of Suilysin on Streptococcus suis Adherence to and Invasion of Respiratory Epithelial Cells Grown under Air-Liquid Interface Conditions. Infection and Immunity, 2019, 87, .	2.2	10
198	Biomarkers of Community-Acquired Pneumonia: A Key to Disease Diagnosis and Management. BioMed Research International, 2019, 2019, 1-20.	1.9	17
199	Direct interactions with influenza promote bacterial adherence during respiratory infections. Nature Microbiology, 2019, 4, 1328-1336.	13.3	106
200	Plastics, Micro- and Nanomaterials, and Virus-Soil Microbe-Plant Interactions in the Environment. Nanotechnology in the Life Sciences, 2019, , 83-101.	0.6	6
201	The dual role of innate immunity during influenza. Biomedical Journal, 2019, 42, 8-18.	3.1	39
202	How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Frontiers in Cellular and Infection Microbiology, 2019, 9, 42.	3.9	149
203	A Novel Role for PDZ-Binding Motif of Influenza A Virus Nonstructural Protein 1 in Regulation of Host Susceptibility to Postinfluenza Bacterial Superinfections. Viral Immunology, 2019, 32, 131-143.	1.3	11
204	Etiology and characteristics of community-acquired pneumonia in an influenza epidemic period. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 64, 153-158.	1.6	5

#	Article	IF	CITATIONS
205	Severe Influenza A(H1N1) Virus Infection Complicated by Myositis, Refractory Rhabdomyolysis, and Compartment Syndrome. Case Reports in Medicine, 2019, 2019, 1-3.	0.7	5
206	Efficacy of Aminomethyl Spectinomycins against Complex Upper Respiratory Tract Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
207	Respiratory viral infection: a potential "missing link―in the pathogenesis of COPD. European Respiratory Review, 2019, 28, 180063.	7.1	93
208	Influenza infection and bacteremic pneumococcal pneumonia. Médecine Et Maladies Infectieuses, 2019, 49, 483-484.	5.0	0
209	Therapeutic Synergy Between Antibiotics and Pulmonary Toll-Like Receptor 5 Stimulation in Antibiotic-Sensitive or -Resistant Pneumonia. Frontiers in Immunology, 2019, 10, 723.	4.8	23
210	Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae. PLoS ONE, 2019, 14, e0212236.	2.5	26
211	Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice. Frontiers in Immunology, 2018, 9, 3189.	4.8	39
212	Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses, 2019, 11, 116.	3.3	21
213	Modeling Influenza Virus Infection. , 2019, , 65-84.		0
215	Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Frontiers in Immunology, 2019, 10, 336.	4.8	53
216	Outcome prediction using the Mortality in Emergency Department Sepsis score combined with procalcitonin for influenza patients. Medicina ClAnica (English Edition), 2019, 153, 411-417.	0.2	1
217	Acute infectious diseases occurring in the Ta $ ilde{A}^-$ chimpanzee population: a review. , 2019, , 385-393.		39
218	Close Encounters of the Viral Kind: Crossâ€Kingdom Synergies at the Host–Pathogen Interface. BioEssays, 2019, 41, 1900128.	2.5	2
219	Predictive scores of mortality in patients with influenza: lessons learned and way to go. Medicina ClÃnica (English Edition), 2019, 153, 430-431.	0.2	0
220	Volatile scents of influenza A and S. pyogenes (co-)infected cells. Scientific Reports, 2019, 9, 18894.	3.3	26
221	Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Scientific Reports, 2019, 9, 19360.	3.3	23
222	Type III IFNs: Beyond antiviral protection. Seminars in Immunology, 2019, 43, 101303.	5.6	66
223	Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains. Toxins, 2019, 11, 734.	3.4	20

#	Article	IF	Citations
224	Progranulin Decreases Susceptibility to <i>Streptococcus pneumoniae</i> in Influenza and Protects against Lethal Coinfection. Journal of Immunology, 2019, 203, 2171-2182.	0.8	11
225	Necrotizing pneumonia (aetiology, clinical features and management). Current Opinion in Pulmonary Medicine, 2019, 25, 225-232.	2.6	23
226	Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clinical Infectious Diseases, 2019, 68, e1-e47.	5.8	449
227	Influenza virus N-linked glycosylation and innate immunity. Bioscience Reports, 2019, 39, .	2.4	45
228	The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clinical Infectious Diseases, 2019, 68, 1993-2002.	5.8	32
229	Combination of procalcitonin and Câ€reactive protein levels in the early diagnosis of bacterial coâ€infections in children with H1N1 influenza. Influenza and Other Respiratory Viruses, 2019, 13, 184-190.	3.4	14
230	Ménage à trois: Virus, Host, and Microbiota in Experimental Infection Models. Trends in Microbiology, 2019, 27, 440-452.	7.7	16
231	Etiology and Risk Factors for Mortality in an Adult Community-acquired Pneumonia Cohort in Malawi. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 359-369.	5.6	51
232	Microorganisms associated with respiratory syncytial virus pneumonia in the adult population. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 157-160.	2.9	16
233	Loss of Tâ€bet confers survival advantage to influenza–bacterial superinfection. EMBO Journal, 2019, 38,	7.8	20
234	Global Burden of Influenza as a Cause of Cardiopulmonary Morbidity and Mortality. Global Heart, 2014, 9, 325.	2.3	71
235	Risk factors for influenza B virus–associated pneumonia in adults. American Journal of Infection Control, 2020, 48, 194-198.	2.3	5
236	Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunology, 2020, 13, 128-139.	6.0	31
237	Natural products against acute respiratory infections: Strategies and lessons learned. Journal of Ethnopharmacology, 2020, 248, 112298.	4.1	32
238	Factors Associated With Fatality Due to Avian Influenza A(H7N9) Infection in China. Clinical Infectious Diseases, 2020, 71, 128-132.	5.8	18
239	Procalcitonin to Distinguish Viral From Bacterial Origin of Pneumonia: No Premature Conclusion!. Clinical Infectious Diseases, 2020, 71, 246-247.	5.8	4
240	SHP2 deficiency promotes <scp><i>Staphylococcus aureus</i></scp> pneumonia following influenza infection. Cell Proliferation, 2020, 53, e12721.	5.3	22
241	Prevalence and clinical impact of VIral Respiratory tract infections in patients hospitalized for Community-Acquired Pneumonia: the VIRCAP study. Internal and Emergency Medicine, 2020, 15, 645-654.	2.0	7

#	Article	IF	CITATIONS
242	Community-Acquired Pneumonia in Childhood. , 2020, , .		5
243	Synthetic gene-regulatory networks in the opportunistic human pathogen <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27608-27619.	7.1	22
244	Influenza A Virus Inhibits RSV Infection via a Two-Wave Expression of IFIT Proteins. Viruses, 2020, 12, 1171.	3.3	23
245	Influenza challenging the diagnosis and management of pulmonary coccidioidomycosis. Medical Mycology Case Reports, 2020, 29, 35-37.	1.3	1
246	Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries. Frontiers in Applied Mathematics and Statistics, 2020, 6, .	1.3	14
247	Oral Microbiome and SARS-CoV-2: Beware of Lung Co-infection. Frontiers in Microbiology, 2020, 11, 1840.	3.5	135
248	The role of IL-17A/IL-17RA and lung injuries in children with lethal non-pandemic acute viral pneumonia. Immunobiology, 2020, 225, 151981.	1.9	3
249	Influenza-associated aspergillosis in critically-ill patients—a retrospective bicentric cohort study. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1915-1923.	2.9	34
250	Dysregulated Host Responses Underlie 2009 Pandemic Influenza-Methicillin Resistant Staphylococcus aureus Coinfection Pathogenesis at the Alveolar-Capillary Barrier. Cells, 2020, 9, 2472.	4.1	3
251	Capillary leakage provides nutrients and antioxidants for rapid pneumococcal proliferation in influenza-infected lower airways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31386-31397.	7.1	28
252	Flu Virus Attenuates Memory Clearance of Pneumococcus via IFN-Î ³ -Dependent Th17 and Independent Antibody Mechanisms. IScience, 2020, 23, 101767.	4.1	6
253	Role of Î ³ δT cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virology Journal, 2020, 17, 174.	3.4	35
254	Bacterial coâ€infections with <scp>SARS oV</scp> â€2. IUBMB Life, 2020, 72, 2097-2111.	3.4	202
255	Early identification of patients with severe influenza-associated aspergillosis (IAA) in the intensive care unit——an IAA prediction score system (Asper-PreSS). Journal of Infection, 2020, 81, 639-646.	3.3	6
256	Aggravated MRSA pneumonia secondary to influenza A virus infection is derived from decreased expression of ILâ€1β. Journal of Medical Virology, 2020, 92, 3047-3056.	5.0	7
257	Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. Journal of Infection and Public Health, 2020, 13, 1397-1404.	4.1	59
258	High-performance Countercurrent Chromatography to Access Rhodiola rosea Influenza Virus Inhibiting Constituents. Planta Medica, 2021, 87, 818-826.	1.3	5
259	Influenza virusâ€mediated suppression of bronchial Chitinaseâ€3â€like 1 secretion promotes secondary pneumococcal infection. FASEB Journal, 2020, 34, 16432-16448.	0.5	11

#	Article	IF	CITATIONS
260	<p>Coinfection of SARS-CoV-2 and Other Respiratory Pathogens</p> . Infection and Drug Resistance, 2020, Volume 13, 3045-3053.	2.7	47
261	Respiratory Bacteria Stabilize and Promote Airborne Transmission of Influenza A Virus. MSystems, 2020, 5, .	3.8	22
262	The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathogens, 2020, 16, e1008761.	4.7	11
263	Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerging Microbes and Infections, 2020, 9, 1958-1964.	6.5	144
264	Influenza virus infection augments susceptibility to respiratory Yersinia pestis exposure and impacts the efficacy of antiplague antibiotic treatments. Scientific Reports, 2020, 10, 19116.	3.3	4
265	Transcriptional Profiling of Immune and Inflammatory Responses in the Context of SARS-CoV-2 Fungal Superinfection in a Human Airway Epithelial Model. Microorganisms, 2020, 8, 1974.	3.6	4
266	Opportunistic Fungal Infections in the Epidemic Area of COVID-19: A Clinical and Diagnostic Perspective from Iran. Mycopathologia, 2020, 185, 607-611.	3.1	124
267	Nasal Microbiota in RSV Bronchiolitis. Microorganisms, 2020, 8, 731.	3.6	19
268	Local sympathetic innervations modulate the lung innate immune responses. Science Advances, 2020, 6, eaay1497.	10.3	39
269	Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 2020, 369, 712-717.	12.6	333
270	Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science, 2020, 369, 706-712.	12.6	301
271	Impact of Influenza on Pneumococcal Vaccine Effectiveness during Streptococcus pneumoniae Infection in Aged Murine Lung. Vaccines, 2020, 8, 298.	4.4	3
272	Cryptococcal Pneumonia Following Influenza in an Immunocompetent Patient. Infectious Diseases in Clinical Practice, 2020, 28, 158-160.	0.3	1
273	Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research, 2020, 51, 80.	3.0	119
274	16HBE Cell Lipid Mediator Responses to Mono and Co-Infections with Respiratory Pathogens. Metabolites, 2020, 10, 113.	2.9	8
275	Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens. Frontiers in Immunology, 2020, 11, 91.	4.8	24
276	Inflammation as a Modulator of Host Susceptibility to Pulmonary Influenza, Pneumococcal, and Co-Infections. Frontiers in Immunology, 2020, 11, 105.	4.8	40

#	Article	IF	CITATIONS
278	Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Reports, 2020, 32, 107915.	6.4	113
279	Staphylococcus aureus Lipase 1 Enhances Influenza A Virus Replication. MBio, 2020, 11, .	4.1	16
280	Influenza-induced acute respiratory distress syndrome during the 2010-2016 seasons: bacterial co-infections and outcomes by virus type and subtype. Clinical Microbiology and Infection, 2020, 26, 947.e1-947.e4.	6.0	14
281	Viral strategies predisposing to respiratory bacterial superinfections. Pediatric Pulmonology, 2020, 55, 1061-1073.	2.0	30
282	State-of-the-art in the pneumococcal field: Proceedings of the 11th International Symposium on Pneumococci and Pneumococcal Diseases (ISPPD-11). Pneumonia (Nathan Qld), 2020, 12, 2.	6.1	15
283	IL-6 During Influenza-Streptococcus pneumoniae Co-Infected Pneumonia—A Protector. Frontiers in Immunology, 2019, 10, 3102.	4.8	22
284	Lower respiratory tract delivery, airway clearance, and preclinical efficacy of inhaled GM-CSF in a postinfluenza pneumococcal pneumonia model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L571-L579.	2.9	20
285	Clinical significance of viral–bacterial codetection among young children with respiratory tract infections. Medicine (United States), 2020, 99, e18504.	1.0	21
286	Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, The, 2020, 395, 1407-1409.	13.7	472
287	A Sulfathiazole–Amantadine Hydrochloride Cocrystal: The First Codrug Simultaneously Comprising Antiviral and Antibacterial Components. Crystal Growth and Design, 2020, 20, 3236-3246.	3.0	33
288	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	6.0	14
289	Vaccines to Protect Older Adults against Pneumococcal Disease. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 113-130.	2.6	7
290	Invasive pulmonary aspergillosis complicating COVID-19 in the ICU - A case report. Medical Mycology Case Reports, 2021, 31, 2-5.	1.3	83
291	Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038711.	6.2	13
292	COVID-19 Comes 40 Years After AIDS - Any Lesson?. AIDS Reviews, 2021, 22, 63-77.	1.0	4
293	Superinfection with difficult-to-treat bacteria in COVID-19 patients: a call for compliance with diagnostic and antimicrobial stewardship. Internal and Emergency Medicine, 2021, 16, 789-791.	2.0	6
294	Virus strain influenced the interspecies transmission of influenza D virus between calves and pigs. Transboundary and Emerging Diseases, 2021, 68, 3396-3404.	3.0	8
295	Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq. Cell Host and Microbe, 2021, 29, 107-120.e6.	11.0	66

#	Article	IF	Citations
296	Effect of Vitamin A Deficiency in Dysregulating Immune Responses to Influenza Virus and Increasing Mortality Rates After Bacterial Coinfections. Journal of Infectious Diseases, 2021, 223, 1806-1816.	4.0	13
297	Modeling Viral Infections. , 2021, , 554-564.		0
298	Repositioning Drugs on Human Influenza A Viruses Based on a Novel Nuclear Norm Minimization Method. Frontiers in Physiology, 2020, 11, 597494.	2.8	3
299	Viral Infections in the ICU. , 2021, , 217-231.		0
300	ACE-2-interacting Domain of SARS-CoV-2 (AIDS) Peptide Suppresses Inflammation to Reduce Fever and Protect Lungs and Heart in Mice: Implications for COVID-19 Therapy. Journal of NeuroImmune Pharmacology, 2021, 16, 59-70.	4.1	33
301	The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology, 2021, 14, 296-304.	6.0	160
302	Invasive Aspergillosis After Influenza and Other Viral Respiratory Infections Among Intensive Care Unit Patients in a Commercially Insured Population in the United States, 2013–2018. Open Forum Infectious Diseases, 2021, 8, ofab091.	0.9	7
303	Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza a Virus Infection in C57BL/6 Mice. Cells, 2021, 10, 509.	4.1	14
304	Potential for bacteriophage therapy for <i>Staphylococcus aureus</i> pneumonia with influenza A coinfection. Future Microbiology, 2021, 16, 175-184.	2.0	4
305	Corona-Cov-2 (COVID-19) and ginseng: Comparison of possible use in COVID-19 and influenza. Journal of Ginseng Research, 2021, 45, 535-537.	5.7	13
306	The Balance of Neutrophil Extracellular Trap Formation and Nuclease Degradation: an Unknown Role of Bacterial Coinfections in COVID-19 Patients?. MBio, 2021, 12, .	4.1	16
307	Polymorphism of genes associated with infectious lung diseases in Northern Asian populations and in patients with community-acquired pneumonia. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 1, 301-309.	1.1	0
308	Protective efficacy of mucosal and subcutaneous immunization with DnaJ-ΔA146Ply against influenza and Streptococcus pneumoniae co-infection in mice. Microbes and Infection, 2021, 23, 104813.	1.9	2
309	COVID-19-associated invasive pulmonary aspergillosis in a tertiary care center in Mexico City. Medical Mycology, 2021, 59, 828-833.	0.7	27
311	Radiological, epidemiological and clinical patterns of pulmonary viral infections. European Journal of Radiology, 2021, 136, 109548.	2.6	11
312	Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 641920.	3.9	56
313	Comparative efficacy assessment of antiviral alone and antiviral-antibiotic combination in prevention of influenza-B infection associated complications. Expert Review of Anti-Infective Therapy, 2021, 19, 1165-1173.	4.4	3
314	Prevention of Coronavirus Disease 2019 Among Older Adults Receiving Pneumococcal Conjugate Vaccine Suggests Interactions Between <i>Streptococcus pneumoniae</i> and Severe Acute Respiratory Syndrome Coronavirus 2 in the Respiratory Tract. Journal of Infectious Diseases, 2022, 225. 1710-1720.	4.0	44

#	Article	IF	CITATIONS
315	SARS-CoV-2 respiratory co-infections: Incidence of viral and bacterial co-pathogens. International Journal of Infectious Diseases, 2021, 105, 617-620.	3.3	57
316	Co-infection in critically ill patients with COVID-19: an observational cohort study from England. Journal of Medical Microbiology, 2021, 70, .	1.8	81
317	Dectin-2-mediated initiation of immune responses caused by influenza virus hemagglutinin. Biomedical Research, 2021, 42, 53-66.	0.9	3
318	MetR is a molecular adaptor for pneumococcal carriage in the healthy upper airway. Molecular Microbiology, 2021, 116, 438-458.	2.5	2
319	Is viral coinfection a risk factor for severe lower respiratory tract infection? A retrospective observational study. Pediatric Pulmonology, 2021, 56, 2195-2203.	2.0	8
320	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	2.0	5
321	Induction of cyclophilin A by influenza A virus infection facilitates group A Streptococcus coinfection. Cell Reports, 2021, 35, 109159.	6.4	18
322	Increased Pulmonary Pneumococcal Clearance after Resolution of H9N2 Avian Influenza Virus Infection in Mice. Infection and Immunity, 2021, 89, .	2.2	0
323	Investigation of Cyprinid herpesvirus 2 and bacterial coinfection in Carassius gibel. Aquaculture, 2021, 537, 736521.	3.5	5
324	Regulation of Tissue Immune Responses by Local Glucocorticoids at Epithelial Barriers and Their Impact on Interorgan Crosstalk. Frontiers in Immunology, 2021, 12, 672808.	4.8	14
325	Vanillin Attenuates Cadmium-Induced Lung Injury Through Inhibition of Inflammation and Lung Barrier Dysfunction Through Activating AhR. Inflammation, 2021, 44, 2193-2202.	3.8	6
326	GP96 Drives Exacerbation of Secondary Bacterial Pneumonia following Influenza A Virus Infection. MBio, 2021, 12, e0326920.	4.1	15
327	Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines, 2021, 9, 589.	4.4	6
328	Dynamic Pneumococcal Genetic Adaptations Support Bacterial Growth and Inflammation during Coinfection with Influenza. Infection and Immunity, 2021, 89, e0002321.	2.2	6
329	Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Archives of Microbiology, 2021, 203, 4737-4742.	2.2	4
330	Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: clinical features and potential inference with lung dysbiosis. Critical Care, 2021, 25, 197.	5.8	41
331	Secondary bacterial infection in COVID-19 patients is a stronger predictor for death compared to influenza patients. Scientific Reports, 2021, 11, 12703.	3.3	144
332	Macrophage Polarization Modulated by Porcine Circovirus Type 2 Facilitates Bacterial Coinfection. Frontiers in Immunology, 2021, 12, 688294.	4.8	8

#	Article	IF	CITATIONS
333	Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microbial Pathogenesis, 2021, 156, 104941.	2.9	59
334	Pre-exposure to Streptococcus suis improved survival of influenza virus co-infection in mice. Veterinary Microbiology, 2021, 258, 109071.	1.9	1
336	Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients. EClinicalMedicine, 2021, 37, 100955.	7.1	36
339	A Murine Model for Enhancement of Streptococcus pneumoniae Pathogenicity upon Viral Infection and Advanced Age. Infection and Immunity, 2021, 89, e0047120.	2.2	1
340	Interleukin-4 protects mice against lethal influenza and <i>Streptococcus pneumoniae</i> co-infected pneumonia. Clinical and Experimental Immunology, 2021, 205, 379-390.	2.6	4
341	Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses, 2021, 13, 1725.	3.3	34
342	Influenza Virus Infection Impairs the Gut's Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infection and Immunity, 2021, 89, e0073420.	2.2	46
343	Dynamics of SARS-CoV2 Infection and Multi-Drug Resistant Bacteria Superinfection in Patients With Assisted Mechanical Ventilation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 683409.	3.9	14
344	Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Frontiers in Veterinary Science, 2021, 8, 699561.	2.2	21
345	COVID-Associated Pulmonary Aspergillosis and Its Related Outcomes: A Single-Center Prospective Observational Study. Cureus, 2021, 13, e16982.	0.5	5
346	Early Bacterial Identification among Intubated Patients with COVID-19 or Influenza Pneumonia: A European Multicenter Comparative Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 546-556.	5.6	65
347	Liu Shen Wan inhibits influenza virus-induced secondary Staphylococcus aureus infection in vivo and in vitro. Journal of Ethnopharmacology, 2021, 277, 114066.	4.1	15
348	Bacterial Coinfection in COVID-19 and Influenza Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 498-500.	5.6	3
349	Material-herbology: An effective and safe strategy to eradicate lethal viral-bacterial pneumonia. Matter, 2021, 4, 3030-3048.	10.0	20
350	The drop in reported invasive pneumococcal disease among adults during the first COVID-19 wave in the Netherlands explained International Journal of Infectious Diseases, 2021, 111, 196-203.	3.3	16
351	CRISPR based development of RNA editing and the diagnostic platform. Progress in Molecular Biology and Translational Science, 2021, 179, 117-159.	1.7	0
352	Early oseltamivir reduces risk for influenza-associated aspergillosis in a double-hit murine model. Virulence, 2021, 12, 2493-2508.	4.4	20
353	Pathogenicity and virulence of <i>Staphylococcus aureus</i> . Virulence, 2021, 12, 547-569.	4.4	469

#	Article	IF	CITATIONS
354	SARSâ€CoVâ€2 spike glycoproteinâ€binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Letters, 2020, 594, 1651-1660.	2.8	25
355	Outcome prediction using the Mortality in Emergency Department Sepsis score combined with procalcitonin for influenza patients. Medicina ClAnica, 2019, 153, 411-417.	0.6	6
356	Sialic acid-dependent interactions between influenza viruses and Streptococcus suis affect the infection of porcine tracheal cells. Journal of General Virology, 2015, 96, 2557-2568.	2.9	23
357	Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection. Journal of General Virology, 2016, 97, 2501-2515.	2.9	15
358	Viral–bacterial interactions in the respiratory tract. Journal of General Virology, 2016, 97, 3089-3102.	2.9	50
359	Binding host proteins to the M protein contributes to the mortality associated with influenza–Streptococcus pyogenes superinfections. Microbiology (United Kingdom), 2017, 163, 1445-1456.	1.8	9
366	Survival during influenza-associated bacterial superinfection improves following viral- and bacterial-specific monoclonal antibody treatment. JCI Insight, 2019, 4, .	5.0	3
367	Fatal Fulminant Pneumonia Caused by Methicillin-Sensitive Staphylococcus aureus Negative for Major High-Virulence Factors Following Influenza B Virus Infection. American Journal of Case Reports, 2015, 16, 454-458.	0.8	3
368	Compromised Defenses: Exploitation of Epithelial Responses During Viral-Bacterial Co-Infection of the Respiratory Tract. PLoS Pathogens, 2016, 12, e1005797.	4.7	33
369	An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 2016, 12, e1005804.	4.7	37
370	The immunological mechanisms that control pneumococcal carriage. PLoS Pathogens, 2017, 13, e1006665.	4.7	69
371	Drug-Resistant Infections. , 2017, , 433-448.		7
372	Lethal Synergism between Influenza and Streptococcus pneumoniae. Journal of Infectious Pulmonary Diseases, 2016, 2, .	0.4	34
373	Progress in using the drugs based on hydrobionts in treatment of respiratory viral infections and their complications. Reviews on Clinical Pharmacology and Drug Therapy, 2017, 15, 4-13.	0.6	1
375	The problem of bacterial complications post respiratory viral infections. Microbiology Independent Research Journal, 0, 5, .	0.2	8
376	Digital gene expression analysis in mice lung with coinfection of influenza and streptococcus pneumoniae. Oncotarget, 2017, 8, 112748-112760.	1.8	3
377	Synergic Viral-Bacterial Co-Infection in Catalase-Deficient COVID-19 Patients Causes Suppressed Innate Immunity and Lung Damages Due to Detrimental Elevation of Hydrogen Peroxide Concentration. SSRN Electronic Journal, 0, , .	0.4	5
378	Respiratory tissue-associated commensal bacteria offer therapeutic potential against pneumococcal colonization. ELife, 2020, 9, .	6.0	22

#	Article	IF	CITATIONS
379	Increased lethality in influenza and SARS-CoV-2 coinfection is prevented by influenza immunity but not SARS-CoV-2 immunity. Nature Communications, 2021, 12, 5819.	12.8	40
380	Severe Dysbiosis and Specific <i>Haemophilus</i> and <i>Neisseria</i> Signatures as Hallmarks of the Oropharyngeal Microbiome in Critically III Coronavirus Disease 2019 (COVID-19) Patients. Clinical Infectious Diseases, 2022, 75, e1063-e1071.	5.8	18
381	Influencia de los virus respiratorios en la evaluación de la efectividad de la vacuna neumocócica de 13 serotipos en menores de 5 años: estudio de series temporales 2001-2013. Archivos Argentinos De Pediatria, 2015, 113, 310-6.	0.2	3
382	Invasive Pulmonary Aspergillosis after Recent Influenza in a Child with Acute Myeloid Leukemia. Clinical Pediatric Hematology-Oncology, 2015, 22, 190-194.	0.2	0
383	The Role of Punctuated Evolution in the Pathogenicity of Influenza Viruses. , 0, , 121-130.		0
393	COVID-19 Pandemic and Upcoming Influenza Season—Does an Expert's Computed Tomography Assessment Differentially Identify COVID-19, Influenza and Pneumonias of Other Origin?. Journal of Clinical Medicine, 2021, 10, 84.	2.4	3
394	Early amplified respiratory bioactive lipid response is associated with worse outcomes in pediatric influenza-related respiratory failure. Open Forum Infectious Diseases, 2020, 7, ofaa122.	0.9	1
397	Interpandemic (seasonal) influenza. , 0, , 35-64.		0
399	Pneumonia: Immunocompetent Children. Respiratory Medicine, 2021, , 221-233.	0.1	0
400	Point-of-Care Influenza Testing Impacts Clinical Decision, Patient Flow, and Length of Stay in Hospitalized Adults. Journal of Infectious Diseases, 2022, 226, 97-108.	4.0	4
401	Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs. Journal of Preventive Medicine and Hygiene, 2014, 55, 69-85.	0.9	30
402	How a mild influenza B infection can kill: A case of pulmonary hemorrhage. Lung India, 2017, 34, 452-456.	0.7	1
403	Clinical characteristics and outcomes of influenza-associated pulmonary aspergillosis among critically ill patients: a systematic review and meta-analysis. Journal of Hospital Infection, 2022, 120, 98-109.	2.9	6
404	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	13.6	64
405	Modeling radicalization of terrorism under the influence of multiple ideologies. AIMS Mathematics, 2021, 7, 4833-4850.	1.6	5
406	Control of antibiotic resistance and superinfections as a strategy to manage COVID-19 deaths. , 2022, , 507-530.		0
407	Klebsiella pneumoniae infection following H9N2 influenza A virus infection contributes to the development of pneumonia in mice. Veterinary Microbiology, 2022, 264, 109303.	1.9	5
408	Secondary streptococcal infection following influenza. Microbiology and Immunology, 2022, 66, 253-263.	1.4	11

#	Article	IF	CITATIONS
410	Impact of introducing procalcitonin testing on antibiotic usage in acute NHS hospitals during the first wave of COVID-19 in the UK: a controlled interrupted time series analysis of organization-level data. Journal of Antimicrobial Chemotherapy, 2022, 77, 1189-1196.	3.0	9
411	Evaluation of bacterial agents isolated from endotracheal aspirate cultures of Covid-19 general intensive care patients and their antibiotic resistance profiles compared to pre-pandemic conditions. Microbial Pathogenesis, 2022, 164, 105409.	2.9	23
413	SARS-CoV-2 Dysregulates Neutrophil Degranulation and Reduces Lymphocyte Counts. Biomedicines, 2022, 10, 382.	3.2	9
414	Nasopharyngeal Viral and Bacterial Co-Detection among Children from Low- and Middle-Income Countries with and without Pneumonia. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	0
415	The Immune Response to Respiratory Viruses: From Start to Memory. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 759-770.	2.1	4
416	Relationship Between Molecular Pathogen Detection and Clinical Disease in Febrile Children Across Europe. SSRN Electronic Journal, 0, , .	0.4	0
417	Co-infecting pathogens can contribute to inflammatory responses and severe symptoms in COVID-19. Journal of Thoracic Disease, 2022, 14, 355-370.	1.4	5
419	Bacterial Coinfections Increase Mortality of Severely Ill COVID-19 Patients in Saudi Arabia. International Journal of Environmental Research and Public Health, 2022, 19, 2424.	2.6	29
420	A 37-Year-Old Woman Presenting With Hemoptysis, Dyspnea and Fever. Chest, 2022, 161, e159-e162.	0.8	2
423	Interferon- \hat{I}^3 promotes monocyte-mediated lung injury during influenza infection. Cell Reports, 2022, 38, 110456.	6.4	29
424	IL-6 Prevents Lung Macrophage Death and Lung Inflammation Injury by Inhibiting GSDME- and GSDMD-Mediated Pyroptosis during Pneumococcal Pneumosepsis. Microbiology Spectrum, 2022, 10, e0204921.	3.0	22
425	Prevention of antimicrobial prescribing among infants following maternal vaccination against respiratory syncytial virus. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112410119.	7.1	18
426	<i>Streptococcus pneumoniae</i> Impairs Maturation of Human Dendritic Cells and Consequent Activation of CD4 ⁺ T Cells via Pneumolysin. Journal of Innate Immunity, 2022, 14, 569-580.	3.8	4
427	N-glycosylation, a leading role in viral infection and immunity development. Molecular Biology Reports, 2022, 49, 8109-8120.	2.3	18
428	Description of a Newly Isolated BlautiaÂfaecis Strain and Its Benefit in Mouse Models of Post-Influenza Secondary Enteric and Pulmonary Infections. Nutrients, 2022, 14, 1478.	4.1	7
430	Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs. Microbiology Spectrum, 2021, 9, e0169021.	3.0	16
431	Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathogens, 2021, 17, e1010106.	4.7	12
432	Examining the Executioners, Influenza Associated Secondary Bacterial Pneumonia. Infectious Diseases, 0, , .	4.0	0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
441	How a mild influenza B infection can kill: A case of pulmonary hemorrhage. Lung India,	2017, 34, 452.	0.7	2
442	Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infectior SARS-CoV-2. Frontiers in Immunology, 2022, 13, .	s During	4.8	11
443	Low Levels of Procalcitonin Are Related to Decreased Antibiotic Use in Children Hospita Influenza. Diagnostics, 2022, 12, 1148.	lized Due to	2.6	2
444	Influence of the Polysaccharide Capsule on the Bactericidal Activity of Indolicidin on Str pneumoniae. Frontiers in Microbiology, 2022, 13, .	reptococcus	3.5	2
445	The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection 2022, 14, 1064.	n. Viruses,	3.3	6
446	Human Identical Sequences, hyaluronan, and hymecromone ─ the newÂmechanism a COVID-19. Molecular Biomedicine, 2022, 3, 15.	ind management of	4.4	4
447	A Retrospective, Monocentric Study Comparing Co and Secondary Infections in Critical and Influenza Patients. Antibiotics, 2022, 11, 704.	ly Ill COVID-19	3.7	2
448	Effects of Different Inhalation Therapy on Ventilator-Associated Pneumonia in Ventilate Patients: A Randomized Controlled Trial. Microorganisms, 2022, 10, 1118.	d COVID-19	3.6	5
449	Bioactive lipid screening during respiratory tract infections with bacterial and viral path mice. Metabolomics, 2022, 18, .	ogens in	3.0	2
450	Risk factors for lower respiratory tract disease and outcomes in allogeneic hematopoie transplantation recipients with influenza virus infection. Journal of Infection and Chemo 2022, , .		1.7	1
451	Early predictors of lung necrosis severity in children with communityâ€acquired necrot pneumonia. Pediatric Pulmonology, 2022, 57, 2172-2179.	zing	2.0	3
452	Microbial diversity and antimicrobial susceptibility in endotracheal tube biofilms recove mechanically ventilated COVID-19 patients. Biofilm, 2022, 4, 100079.	red from	3.8	9
453	Effect of Platycodon grandiflorus Polysaccharide on M1 Polarization Induced by Autoph Degradation of SOCS1/2 Proteins in 3D4/21 Cells. Frontiers in Immunology, 0, 13, .	ıagy	4.8	5
456	Modeling the crossover behavior of the bacterial infection with the COVID-19 epidemic Physics, 2022, 39, 105774.	s. Results in	4.1	13
457	Overnutrition, Nasopharyngeal Pathogenic Bacteria and Proinflammatory Cytokines in Viral Lower Respiratory Tract Infections. International Journal of Environmental Researc Health, 2022, 19, 8781.		2.6	3
458	Inâ€hospital incidence of and risk factors for influenzaâ€associated respiratory failure. of Clinical Investigation, 2022, 52, .	European Journal	3.4	0
459	Successful treatment of pleural empyema and necrotizing pneumonia caused by methi Staphylococcus aureus infection following influenza A virus infection: A case report and review. Frontiers in Pediatrics, 0, 10, .	cillin-resistant d literature	1.9	2
460	Chronic Exposure to Environmentally Relevant Concentrations of Microcystin-Leucine A Causes Lung Barrier Damage through PP2A Activity Inhibition and Claudin1 Ubiquitinat Agricultural and Food Chemistry, 2022, 70, 10907-10918.	Arginine ion. Journal of	5.2	11

#	Article	IF	CITATIONS
462	An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses, 2022, 14, 1774.	3.3	9
463	COVID-19 and Fungal infections: a double debacle. Microbes and Infection, 2022, 24, 105039.	1.9	10
465	Lianhuaqingwen capsule inhibits non-lethal doses of influenza virus-induced secondary Staphylococcus aureus infection in mice. Journal of Ethnopharmacology, 2022, 298, 115653.	4.1	4
467	Biofilm Formation by Pathogenic Bacteria: The Role of Quorum Sensing and Physical - Chemical Interactions. , 0, , .		0
468	Novel Requirement for Staphylococcal Cell Wall-Anchored Protein SasD in Pulmonary Infection. Microbiology Spectrum, 2022, 10, .	3.0	1
469	Transient RNA structures cause aberrant influenza virus replication and innate immune activation. Science Advances, 2022, 8, .	10.3	11
470	The Influence of Influenza Virus Infections in Patients with Chronic Obstructive Pulmonary Disease. International Journal of COPD, 0, Volume 17, 2253-2261.	2.3	5
471	Oropharyngeal microbiome profiled at admission is predictive of the need for respiratory support among COVID-19 patients. Frontiers in Microbiology, 0, 13, .	3.5	8
472	The impacts of bacterial co-infections and secondary bacterial infections on patients with severe influenza pneumonitis admitted to the intensive care units. Journal of Critical Care, 2022, 72, 154164.	2.2	0
473	Detection of pneumococcus during hospitalization for SARS-CoV-2. FEMS Microbes, 2022, 3, .	2.1	2
474	Polymicrobial Infections in the Immunocompromised Host: The COVID-19 Realm and Beyond. Medical Sciences (Basel, Switzerland), 2022, 10, 60.	2.9	0
476	Capillary Blood Gas in Children Hospitalized Due to Influenza Predicts the Risk of Lower Respiratory Tract Infection. Diagnostics, 2022, 12, 2412.	2.6	0
477	Updates in the management of respiratory virus infections in ICU patients: revisiting the non-SARS-CoV-2 pathogens. Expert Review of Anti-Infective Therapy, 2022, 20, 1537-1550.	4.4	2
478	Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nature Communications, 2022, 13, .	12.8	67
479	Postinfluenza Environment Reduces Aspergillus fumigatus Conidium Clearance and Facilitates Invasive Aspergillosis <i>In Vivo</i> . MBio, 2022, 13, .	4.1	5
480	Oral mitis group streptococci reduce infectivity of influenza A virus via acidification and H2O2 production. PLoS ONE, 2022, 17, e0276293.	2.5	3
481	Respiratory Viruses and Cystic Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2023, 44, 196-208.	2.1	1
482	¹ H NMR-Based Biochemometric Analysis of <i>Morus alba</i> Extracts toward a Multipotent Herbal Anti-Infective. Journal of Natural Products, 2023, 86, 8-17.	3.0	6

#	Article	IF	CITATIONS
483	GCRV NS38 counteracts SVCV proliferation by intracellular antagonization during co-infection. Virologica Sinica, 2023, 38, 142-156.	3.0	2
484	A multiomics analysis of direct interkingdom dynamics between influenza A virus and Streptococcus pneumoniae uncovers host-independent changes to bacterial virulence fitness. PLoS Pathogens, 2022, 18, e1011020.	4.7	2
485	Rocking Pneumonia and the Boogie Woogie Flu. European Medical Journal (Chelmsford, England), 0, , 48-54.	3.0	1
487	The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. IScience, 2023, 26, 105975.	4.1	3
488	Coinfection with porcine circovirus type 2 and Glaesserella parasuis serotype 4 enhances pathogenicity in piglets. Veterinary Microbiology, 2023, 278, 109663.	1.9	1
489	Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial Infection. Journal of Immunology, 2022, 209, 760-771.	0.8	4
490	Microbial antigens, allergies, and antibodies to microbial allergens: Significance of preexisting antibodies and stress for vaccination. , 2023, , 173-185.		0
491	Silent neonatal influenza A virus infection primes systemic antimicrobial immunity. Frontiers in Immunology, 0, 14, .	4.8	0
492	Pandemic Co-pathogenesis: From the Vectors to the Variants of Neoliberal Disease. International Political Economy Series, 2023, , 293-318.	0.5	5
493	Microscale combinatorial stimulation of human myeloid cells reveals inflammatory priming by viral ligands. Science Advances, 2023, 9, .	10.3	1
494	A systematic review of pneumococcal conjugate vaccine impact on pneumococcal nasopharyngeal colonisation density in children under 5 years of age. Vaccine, 2023, 41, 3028-3037.	3.8	0
495	Prognostic factors for the development of lower respiratory tract infection after influenza virus infection in allogeneic hematopoietic stem cell transplantation recipients: A Kanto Study Group for Cell Therapy multicenter analysis. International Journal of Infectious Diseases, 2023, 131, 79-86.	3.3	2
496	Antigen-specific memory Th17 cells promote cross-protection against nontypeable Haemophilus influenzae after mild influenza A virus infection. Mucosal Immunology, 2023, 16, 153-166.	6.0	2
498	Topography of respiratory tract and gut microbiota in mice with influenza A virus infection. Frontiers in Microbiology, 0, 14, .	3.5	3
500	The ion channel <scp>CALHM6</scp> controls bacterial infectionâ€induced cellular crossâ€talk at the immunological synapse. EMBO Journal, 2023, 42, .	7.8	5
501	A contemporary view of the problem of destructive pneumonia in children. Meditsinskiy Sovet, 2023, , 28-33.	0.5	0
502	Type I Interferon Orchestrates Demand-Adapted Monopoiesis during Influenza A Virus Infection via STAT1-Mediated Upregulation of Macrophage Colony-Stimulating Factor Receptor Expression. Journal of Virology, 0, , .	3.4	0
503	Determinants of poor clinical outcome in patients with influenza pneumonia: A systematic review and meta-analysis. International Journal of Infectious Diseases, 2023, 131, 173-179.	3.3	3

#	Article	IF	CITATIONS
504	COVID-19 association with multidrug-resistant bacteria superinfections: Lessons for future challenges. Experimental and Therapeutic Medicine, 2023, 25, .	1.8	3
505	Evaluation of Implementation and Effectiveness of China's Antibiotic Stewardship in the First Affiliated Hospital of Sun Yat-sen University. Antibiotics, 2023, 12, 770.	3.7	1
506	Factors Associated With the Development of Bacterial Pneumonia Related to Seasonal Influenza Virus Infection: A Study Using a Large-scale Health Insurance Claim Database. Open Forum Infectious Diseases, 2023, 10, .	0.9	0
507	Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Frontiers in Microbiology, 0, 14, .	3.5	1
508	Two putative glutamate decarboxylases of Streptococcus pneumoniae as possible antigens for the production of anti-GAD65 antibodies leading to type 1 diabetes mellitus. International Microbiology, 2023, 26, 675-690.	2.4	1
509	Functional diversity of staphylococcal surface proteins at the host-microbe interface. Frontiers in Microbiology, 0, 14, .	3.5	0
510	Expression of TMPRSS2 is up-regulated by bacterial flagellin, LPS, and Pam3Cys in human airway cells. Life Science Alliance, 2023, 6, e202201813.	2.8	0
512	Airway proteolytic control of pneumococcal competence. PLoS Pathogens, 2023, 19, e1011421.	4.7	0
513	<code>IFNÎ</code> »: balancing the light and dark side in pulmonary infection. MBio, 0, , .	4.1	2
514	Burden of Lower Respiratory Tract Infections Preventable by Adult Immunization With 15- and 20-Valent Pneumococcal Conjugate Vaccines in the United States. Clinical Infectious Diseases, 2023, 77, 1340-1352.	5.8	1
515	The prevalence of influenza bacterial co-infection and its role in disease severity: A systematic review and meta-analysis. Journal of Global Health, 0, 13, .	2.7	1
516	Pyrrolo[2,3- <i>e</i>]indazole as a novel chemotype for both influenza A virus and pneumococcal neuraminidase inhibitors. RSC Advances, 2023, 13, 18253-18261.	3.6	0
518	Vaccinations in children with hematologic malignancies and those receiving hematopoietic stem cell transplants or cellular therapies. Transplant Infectious Disease, 0, , .	1.7	0
519	Stimulation of lipopolysaccharide from Pseudomonas aeruginosa following H9N2 IAV infection exacerbates inflammatory responses of alveolar macrophages and decreases virus replication. Microbial Pathogenesis, 2023, 182, 106254.	2.9	0
520	Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study. Lancet Regional Health - Europe, The, 2023, 32, 100682.	5.6	4
521	Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections. Infection and Drug Resistance, 0, Volume 16, 5091-5105.	2.7	3
522	Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms, 2023, 11, 2051.	3.6	1
523	Post-Viral Aspergillosis. Infectious Diseases, 0, , .	4.0	0

#	Article	IF	CITATIONS
524	Multicompartmental analysis of the murine pulmonary immune response by spectral flow cytometry. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 325, L518-L535.	2.9	3
525	Coinfection and superinfection in ICU critically ill patients with severe COVID-19 pneumonia and influenza pneumonia: are the pictures different?. Frontiers in Public Health, 0, 11, .	2.7	2
526	Viral Prevalence and Genomic Xenology in the Coevolution of HzNV-2 (Nudiviridae) with Host Helicoverpa zea (Lepidoptera: Noctuidae). Insects, 2023, 14, 797.	2.2	0
527	CT findings of 144 in-hospital patients with influenza pneumonia: A retrospective analysis. Journal of the Formosan Medical Association, 2023, , .	1.7	1
528	ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Molecular Immunology, 2023, 161, 91-103.	2.2	0
529	Staphylococcus epidermidis induced toxic shock syndrome (TSS) secondary to influenza infection. BMC Infectious Diseases, 2023, 23, .	2.9	1
530	Influenza enhances host susceptibility to non-pulmonary invasive <i>Streptococcus pyogenes</i> infections. Virulence, 2023, 14, .	4.4	1
531	Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. Journal of Clinical Investigation, 2023, 133, .	8.2	2
532	Outbreak of Invasive Group A <i>Streptococcus</i> in Children—Colorado, October 2022–April 2023. Journal of the Pediatric Infectious Diseases Society, 2023, 12, 540-548.	1.3	1
533	Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection. PLoS Pathogens, 2023, 19, e1011719.	4.7	Ο
534	The gift of preexisting immunity for developing an alternative vaccine strategy. Journal of Clinical Investigation, 2023, 133, .	8.2	0
537	Cost of illness of the vaccine-preventable diseases influenza, herpes zoster and pneumococcal disease in France. European Journal of Public Health, 2024, 34, 170-175.	0.3	Ο
538	Correlation of bioactive marker compounds of an orally applied Morus alba root bark extract with toxicity and efficacy in BALB/c mice. Frontiers in Pharmacology, 0, 14, .	3.5	0
539	Porcine circovirus type 2 and Glaesserella parasuis serotype 4 co-infection activates Snail1 to disrupt the intercellular junctions and facilitate bacteria translocation across the tracheal epithelium. Veterinary Microbiology, 2024, 288, 109954.	1.9	Ο
540	Pneumonia-associated microbial species and stabilized chlorine dioxide–containing oral care products. , 2023, 2, 100028.		0
541	The evolution of lung computed tomography findings in COVID-19 from 2020 to 2023: more signs of co-infection. ERJ Open Research, 2024, 10, 00727-2023.	2.6	0
542	Avian influenza and gut microbiome in poultry and humans: A "One Health'' perspective. Fundamental Research, 2023, , .	3.3	0
543	Targeting complement hyperactivation: a novel therapeutic approach for severe pneumonia induced by influenza virus/staphylococcus aureus coinfection. Signal Transduction and Targeted Therapy, 2023, 8	17.1	Ο

#	Article	IF	CITATIONS
544	Pathogenic Characteristics of an Infection with Canine Influenza Virus and Streptococcus equi subsp. zooepidemicus Alone or in Combination in Mice. Transboundary and Emerging Diseases, 2024, 2024, 1-16.	3.0	0
546	The clinical outcome of COVID-19 is strongly associated with microbiome dynamics in the upper respiratory tract. Journal of Infection, 2024, 88, 106118.	3.3	0
547	A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host and Microbe, 2024, 32, 304-314.e8.	11.0	0
548	The host transcriptional response to superinfection by influenza A virus and <i>Streptococcus pneumoniae</i> . MSystems, 2024, 9, .	3.8	0
549	Intracranial complications of sinogenic and otogenic infections in children: an ESPN survey on their occurrence in the pre-COVID and post-COVID era. Child's Nervous System, 2024, 40, 1221-1237.	1.1	0
550	Faecalibacterium duncaniae as a novel next generation probiotic against influenza. Frontiers in Immunology, 0, 15, .	4.8	0