Global warming and 21st century drying

Climate Dynamics 43, 2607-2627

DOI: 10.1007/s00382-014-2075-y

Citation Report

#	Article	IF	CITATIONS
1	Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A. PLoS ONE, 2014, 9, e96747.	1.1	34
2	How unusual is the 2012–2014 California drought?. Geophysical Research Letters, 2014, 41, 9017-9023.	1.5	694
3	Responses of terrestrial aridity to global warming. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7863-7875.	1.2	253
4	Effects of realistic land surface initializations on subseasonal to seasonal soil moisture and temperature predictability in North America and in changing climate simulated by CCSM4. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,250.	1.2	13
5	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	3.5	211
6	Climate changeâ€associated tree mortality increases without decreasing water availability. Ecology Letters, 2015, 18, 1207-1215.	3.0	73
7	Adaptation of Irrigation Infrastructure on Irrigation Demands under Future Drought in the United States*. Earth Interactions, 2015 , 19 , $1-16$.	0.7	8
8	Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology, 2015, 21, 4627-4641.	4.2	90
9	On the assessment of aridity with changes in atmospheric <scp>CO</scp> ₂ . Water Resources Research, 2015, 51, 5450-5463.	1.7	194
10	Increased evapotranspiration demand in a <scp>M</scp> editerranean climate might cause a decline in fungal yields under global warming. Global Change Biology, 2015, 21, 3499-3510.	4.2	33
11	Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought. Climate, 2015, 3, 999-1017.	1.2	18
12	DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice. PLoS Genetics, 2015, 11, e1005617.	1.5	92
13	Agave as a model CAM crop system for a warming and drying world. Frontiers in Plant Science, 2015, 6, 684.	1.7	50
14	A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Quaternary Science Reviews, 2015, 121, 89-97.	1.4	77
15	Assessment of future changes in water availability and aridity. Geophysical Research Letters, 2015, 42, 5493-5499.	1.5	136
16	Terrestrial Aridity and Its Response to Greenhouse Warming across CMIP5 Climate Models. Journal of Climate, 2015, 28, 5583-5600.	1.2	125
17	Regional Variation of Transient Precipitation and Rainless-day Frequency Across a Subcontinental Hydroclimate Gradient. Journal of Extreme Events, 2015, 02, 1550007.	1.2	12
18	Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 2015, 42, 6819-6828.	1.5	464

#	ARTICLE	IF	CITATIONS
19	Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances, 2015, 1, e1400082.	4.7	1,092
20	A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 2015, 526, 196-207.	2.3	296
21	Bridging Past and Future Climate across Paleoclimatic Reconstructions, Observations, and Models: A Hydroclimate Case Study*. Journal of Climate, 2015, 28, 3212-3231.	1.2	40
22	Are Simulated Megadroughts in the North American Southwest Forced?*. Journal of Climate, 2015, 28, 124-142.	1.2	68
23	Causes of the 2011–14 California Drought*. Journal of Climate, 2015, 28, 6997-7024.	1.2	317
24	CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dynamics, 2015, 44, 2737-2750.	1.7	118
25	The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate Emissions Scenario. Journal of Climate, 2015, 28, 4490-4512.	1.2	226
26	Multiple causes of wind erosion in the Dust Bowl. Aeolian Research, 2015, 19, 15-36.	1.1	89
27	Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?. Water Research, 2015, 85, 124-136.	5. 3	170
28	Past and future rainfall in the Horn of Africa. Science Advances, 2015, 1, e1500682.	4.7	175
29	North American Pancontinental Droughts in Model Simulations of the Last Millennium*. Journal of Climate, 2015, 28, 2025-2043.	1.2	46
30	Contribution of precipitation and reference evapotranspiration to drought indices under different climates. Journal of Hydrology, 2015, 526, 42-54.	2.3	245
31	The improbable but unexceptional occurrence of megadrought clustering in the American West during the Medieval Climate Anomaly. Environmental Research Letters, 2016, 11, 074025.	2.2	34
32	Climate Change Impacts on the Hydrological Processes of a Small Agricultural Watershed. Climate, 2016, 4, 56.	1.2	29
33	Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species. Frontiers in Plant Science, 2016, 7, 418.	1.7	56
34	Phenology and species determine growingâ€season albedo increase at the altitudinal limit of shrub growth in the subâ€Arctic. Global Change Biology, 2016, 22, 3621-3631.	4.2	30
35	The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophysical Research Letters, 2016, 43, 6985-6994.	1,5	86
36	On the projected increase of Sahel rainfall during the late rainy season. International Journal of Climatology, 2016, 36, 4373-4383.	1.5	23

#	ARTICLE	IF	CITATIONS
37	North American megadroughts in the Common Era: reconstructions and simulations. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 411-432.	3.6	123
38	Climate change and ecosystem services. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 537-550.	3.6	50
39	Treeâ€ring recorded drought variability in the northern Min Mountains of northwestern China. International Journal of Climatology, 2016, 36, 3550-3560.	1.5	13
40	Simulated responses of terrestrial aridity to black carbon and sulfate aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 785-794.	1.2	19
41	Stress-induced DREB1A gene changes heliotropism and reduces drought stress in soybean plants under greenhouse conditions. , 2016, , .		1
42	Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2857-2873.	1.2	35
43	Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,901.	1.2	41
44	Water's past revisited to predict its future. Nature, 2016, 532, 44-45.	13.7	4
45	Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nature Climate Change, 2016, 6, 869-874.	8.1	300
46	Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. Journal of Climate, 2016, 29, 3989-4019.	1.2	161
47	Spatiotemporal drought variability in the Mediterranean over the last 900Âyears. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2060-2074.	1.2	284
48	Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 2016, 532, 94-98.	13.7	164
49	Future freshwater stress for island populations. Nature Climate Change, 2016, 6, 720-725.	8.1	49
50	Ecological and climatological signals in tree-ring width and density chronologies along a latitudinal boreal transect. Scandinavian Journal of Forest Research, 2016, 31, 750-757.	0.5	15
51	The challenge of accurately quantifying future megadrought risk in the American Southwest. Geophysical Research Letters, 2016, 43, 9225-9233.	1.5	21
52	Examining climate-biome ("cliomeâ€) shifts for Yukon and its protected areas. Global Ecology and Conservation, 2016, 8, 1-17.	1.0	18
54	Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in Californian oak-grass savanna. Agricultural and Forest Meteorology, 2016, 228-229, 252-264.	1.9	57
55	Plant responses to increasing CO ₂ reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10019-10024.	3.3	399

#	Article	IF	Citations
56	The Physics of Drought in the U.S. Central Great Plains. Journal of Climate, 2016, 29, 6783-6804.	1.2	78
57	A copulaâ€based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resources Research, 2016, 52, 5662-5675.	1.7	106
58	The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12820-12838.	1.2	24
59	Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Science Advances, 2016, 2, e1600873.	4.7	168
60	Evidence of El Niñ0 driven desiccation cycles in a shallow estuarine lake: The evolution and fate of Africa's largest estuarine system, Lake St Lucia. Global and Planetary Change, 2016, 147, 97-105.	1.6	27
61	Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century. Environmental Research Letters, 2016, 11, 094026.	2.2	37
62	The warmest year 2015 in the instrumental record and its comparison with year 1998. Atmospheric and Oceanic Science Letters, 2016, 9, 487-494.	0.5	6
63	Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy. Ecological Applications, 2016, 26, 1677-1692.	1.8	57
64	Potential evapotranspiration and continentalÂdrying. Nature Climate Change, 2016, 6, 946-949.	8.1	439
65	Contributing factors for drought in United States forest ecosystems under projected future climates and their uncertainty. Forest Ecology and Management, 2016, 380, 299-308.	1.4	43
66	A review of the relationships between drought and forest fire in the United States. Global Change Biology, 2016, 22, 2353-2369.	4.2	328
67	The Influence of Climate Model Biases on Projections of Aridity and Drought. Journal of Climate, 2016, 29, 1269-1285.	1.2	36
68	Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees - Structure and Function, 2016, 30, 1507-1521.	0.9	34
69	Tree-ring reconstructed May–June precipitation in the Caucasus since 1752 CE. Climate Dynamics, 2016, 47, 3011-3027.	1.7	22
70	Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agricultural and Forest Meteorology, 2016, 221, 13-33.	1.9	48
71	A forest vulnerability index based on drought and high temperatures. Remote Sensing of Environment, 2016, 173, 314-325.	4.6	68
72	Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change, 2017, 144, 519-533.	1.7	191
73	Timescales, mechanisms, and controls of incisional avulsions in floodplain wetlands: Insights from the Tshwane River, semiarid South Africa. Geomorphology, 2017, 283, 158-172.	1.1	30

#	Article	IF	CITATIONS
74	Impact of Evapotranspiration Formulations at Various Elevations on the Reconnaissance Drought Index. Water Resources Management, 2017, 31, 531-548.	1.9	30
75	Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert <i>Drosophila</i> . Ecology and Evolution, 2017, 7, 619-637.	0.8	14
76	The twentyâ€first century Colorado River hot drought and implications for the future. Water Resources Research, 2017, 53, 2404-2418.	1.7	368
77	Climate controls on tree growth in the Western Mediterranean. Holocene, 2017, 27, 1429-1442.	0.9	25
78	Temporal Hydrologic Alterations Coupled with Climate Variability and Drought for Transboundary River Basins. Water Resources Management, 2017, 31, 1489-1502.	1.9	14
79	Projecting and Attributing Future Changes of Evaporative Demand over China in CMIP5 Climate Models. Journal of Hydrometeorology, 2017, 18, 977-991.	0.7	18
80	Breaks in MODIS time series portend vegetation change: verification using longâ€ŧerm data in an arid grassland ecosystem. Ecological Applications, 2017, 27, 1677-1693.	1.8	36
81	The reconnaissance drought index: A method for detecting regional arid climatic variability and potential drought risk. Journal of Arid Environments, 2017, 144, 181-191.	1.2	30
82	A 189-year tree-ring record of drought for the Dzungarian Alatau, arid Central Asia. Journal of Asian Earth Sciences, 2017, 148, 305-314.	1.0	24
83	How warm? How wet? Hydroclimate reconstruction of the past 7500 years in northern Carpathians, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 482, 1-12.	1.0	33
84	Adaptation Strategy to Mitigate the Impact of Climate Change on Water Resources in Arid and Semi-Arid Regions: a Case Study. Water Resources Management, 2017, 31, 3557-3573.	1.9	31
85	Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity. Journal of Climate, 2017, 30, 6883-6904.	1.2	20
86	Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming. Journal of Climate, 2017, 30, 6593-6609.	1.2	73
87	Rapid catalytic reduction of NaHCO3 into formic acid and methane with hydrazine over Raney Ni catalyst. Catalysis Today, 2017, 298, 124-129.	2.2	15
88	Shifting Pacific storm tracks as stressors to ecosystems of western North America. Global Change Biology, 2017, 23, 4896-4906.	4.2	15
89	Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China. Water Resources Management, 2017, 31, 3921-3937.	1.9	30
90	Forest disturbances under climate change. Nature Climate Change, 2017, 7, 395-402.	8.1	1,561
91	Multiyear Droughts and Pluvials over the Upper Colorado River Basin and Associated Circulations. Journal of Hydrometeorology, 2017, 18, 799-818.	0.7	11

#	Article	IF	CITATIONS
92	Hypothetical scenario exercises to improve planning and readiness for drinking water quality management during extreme weather events. Water Research, 2017, 111, 100-108.	5.3	20
93	Lessons and guidance for the management of safe drinking water during extreme weather events. Environmental Science: Water Research and Technology, 2017, 3, 262-277.	1.2	15
94	Why Do Different Drought Indices Show Distinct Future Drought Risk Outcomes in the U.S. Great Plains?. Journal of Climate, 2017, 30, 265-278.	1.2	64
95	Divergent surface and total soil moisture projections under global warming. Geophysical Research Letters, 2017, 44, 236-244.	1.5	206
96	The impact of weather variations on maize yields and household income: Income diversification as adaptation in rural China. Global Environmental Change, 2017, 42, 93-106.	3.6	30
97	Assessing the suitability of various screening methods as a proxy for drought tolerance in barley. Functional Plant Biology, 2017, 44, 253.	1.1	23
98	Causes of model dry and warm bias over central U.S. and impact on climate projections. Nature Communications, 2017, 8, 881.	5.8	92
99	The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10888-10905.	1.2	48
100	Water conservation benefits of urban heat mitigation. Nature Communications, 2017, 8, 1072.	5.8	19
101	Leaving moss and litter layers undisturbed reduces the short-term environmental consequences of heathland managed burns. Journal of Environmental Management, 2017, 204, 102-110.	3.8	4
102	Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 2017, 55, 719-778.	9.0	507
103	Multiâ€century treeâ€ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment. Global Change Biology, 2017, 23, 5436-5454.	4.2	35
104	Increasing risk of months with low rainfall and high temperature in southeast Australia for the past 150 years. Climate Risk Management, 2017, 16, 10-21.	1.6	35
105	Temporal and spatial transcriptomic and micro <scp>RNA</scp> dynamics of <scp>CAM</scp> photosynthesis in pineapple. Plant Journal, 2017, 92, 19-30.	2.8	78
106	Projected drought risk in 1.5°C and 2°C warmer climates. Geophysical Research Letters, 2017, 44, 7419-7428.	1.5	227
107	Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 2017, 7, 1316.	1.6	122
108	Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub. AoB PLANTS, 2017, 9, plx036.	1.2	14
109	Simulating the Effects of Anthropogenic Aerosols on Terrestrial Aridity Using an Aerosol–Climate Coupled Model. Journal of Climate, 2017, 30, 7451-7463.	1.2	16

#	Article	IF	CITATIONS
110	The Curious Case of Projected Twenty-First-Century Drying but Greening in the American West. Journal of Climate, 2017, 30, 8689-8710.	1.2	74
111	Drought impacts on photosynthesis, isoprene emission and atmospheric formaldehyde in a mid-latitude forest. Atmospheric Environment, 2017, 167, 190-201.	1.9	16
112	The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations. Scientific Reports, 2017, 7, 5891.	1.6	25
113	A Hydrologic Drying Bias in Waterâ€Resource Impact Analyses of Anthropogenic Climate Change. Journal of the American Water Resources Association, 2017, 53, 822-838.	1.0	77
114	Future changes in summer MODIS-based enhanced vegetation index for the South-Central United States. Ecological Informatics, 2017, 41, 64-73.	2.3	13
115	Tree ring δ ¹⁸ O reveals no longâ€term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6697-6712.	1.2	18
116	Low-Hanging DendroDynamic Fruits Regarding Disturbance in Temperate, Mesic Forests. Ecological Studies, 2017, , 97-134.	0.4	4
117	Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotypeâ€specific manner. Plant, Cell and Environment, 2017, 40, 3088-3100.	2.8	40
118	Competition amplifies drought stress in forests across broad climatic and compositional gradients. Ecosphere, 2017, 8, e01849.	1.0	119
119	Atmospheric Inputs of Iron and Manganese to Coastal Waters of the Southern California Current System: Seasonality, Santa Ana Winds, and Biogeochemical Implications. Journal of Geophysical Research: Oceans, 2017, 122, 9230-9254.	1.0	11
120	The Microbiome of the Himalayan Ecosystem. , 2017, , 101-116.		15
121	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	0.5	47
122	A Comparison of the Early Twenty-First Century Drought in the United States to the 1930s and 1950s Drought Episodes. Bulletin of the American Meteorological Society, 2017, 98, 2579-2592.	1.7	40
123	Insights from a New High-Resolution Drought Atlas for the Caribbean Spanning 1950–2016. Journal of Climate, 2017, 30, 7801-7825.	1.2	66
124	Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change, 2017, 144, 535-548.	1.7	133
125	The response of ecosystem waterâ€use efficiency to rising atmospheric <scp>CO</scp> ₂ concentrations: sensitivity and largeâ€scale biogeochemical implications. New Phytologist, 2017, 213, 1654-1666.	3.5	92
126	Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate Relationships with ENSO. Journal of Climate, 2017, 30, 5395-5417.	1.2	16
127	A glimpse at short-term controls of evapotranspiration along the southern slopes of Kilimanjaro. Environmental Monitoring and Assessment, 2017, 189, 465.	1.3	3

#	Article	IF	CITATIONS
129	Dominance of climate warming effects on recent drying trends over wet monsoon regions. Atmospheric Chemistry and Physics, 2017, 17, 10467-10476.	1.9	14
130	Human and Societal Dimensions of Past Climate Change. , 0, , 41-83.		6
131	Effects of prolonged elevated water salinity on submerged macrophyte and waterbird communities in Swartvlei Lake, South Africa. Water S A, 2017, 43, 666.	0.2	4
132	Developing a Risk-Based Framework for Drought Contingency. , 2017, , .		0
133	Water deficit enhances the transmission of plant viruses by insect vectors. PLoS ONE, 2017, 12, e0174398.	1.1	37
134	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	1.3	93
135	Hydroclimatic variability and predictability: a survey of recent research. Hydrology and Earth System Sciences, 2017, 21, 3777-3798.	1.9	28
136	The Application of Remote Sensing (RS) Technology in Renewable Energy Development: A Review. SSRN Electronic Journal, 2017, , .	0.4	0
137	Probabilistic assessment of projected climatological drought characteristics over the Southeast USA. Climatic Change, 2018, 147, 601-615.	1.7	15
138	Plants and Drought in a Changing Climate. Current Climate Change Reports, 2018, 4, 192-201.	2.8	66
139	Drought Indices, Drought Impacts, CO2, and Warming: a Historical and Geologic Perspective. Current Climate Change Reports, 2018, 4, 202-209.	2.8	28
140	Climate Change and Drought: the Soil Moisture Perspective. Current Climate Change Reports, 2018, 4, 180-191.	2.8	170
141	Whither the 100th Meridian? The Once and Future Physical and Human Geography of America's Arid–Humid Divide. Part II: The Meridian Moves East. Earth Interactions, 2018, 22, 1-24.	0.7	21
142	Whither the 100th Meridian? The Once and Future Physical and Human Geography of America's Arid–Humid Divide. Part I: The Story So Far. Earth Interactions, 2018, 22, 1-22.	0.7	26
143	Global Changes in Drought Conditions Under Different Levels of Warming. Geophysical Research Letters, 2018, 45, 3285-3296.	1.5	442
144	Diverse responses of different structured forest to drought in Southwest China through remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 217-225.	1.4	17
145	Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 2018, 24, 3344-3356.	4.2	197
146	Drying tendency dominating the global grain production area. Global Food Security, 2018, 16, 138-149.	4.0	58

#	Article	IF	Citations
147	Wetland drying increases the temperature sensitivity of soil respiration. Soil Biology and Biochemistry, 2018, 120, 24-27.	4.2	45
148	Mechanism of Future Spring Drying in the Southwestern United States in CMIP5 Models. Journal of Climate, 2018, 31, 4265-4279.	1.2	35
149	Feral horses influence both spatial and temporal patterns of water use by native ungulates in a semiâ€arid environment. Ecosphere, 2018, 9, e02096.	1.0	41
150	Projected changes in the evolution of drought on various timescales over the Czech Republic according to Euro ORDEX models. International Journal of Climatology, 2018, 38, e939.	1.5	18
151	Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions. Ecological Modelling, 2018, 368, 377-390.	1.2	34
152	Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agricultural and Forest Meteorology, 2018, 249, 149-162.	1.9	140
153	Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Reviews of Geophysics, 2018, 56, 108-141.	9.0	323
154	Emergency water treatment with ferrate(<scp>vi</scp>) in response to natural disasters. Environmental Science: Water Research and Technology, 2018, 4, 359-368.	1.2	28
155	From Pinot to Xinomavro in the world's future wine-growing regions. Nature Climate Change, 2018, 8, 29-37.	8.1	136
156	Warming and Elevated CO2 Have Opposing Influences on Transpiration. Which is more Important?. Current Forestry Reports, 2018, 4, 51-71.	3.4	73
157	Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Science of the Total Environment, 2018, 636, 360-366.	3.9	109
158	Statistics of multiâ€year droughts from the method for objectâ€based diagnostic evaluation. International Journal of Climatology, 2018, 38, 3405-3420.	1.5	8
159	Past and future drought in Mongolia. Science Advances, 2018, 4, e1701832.	4.7	91
160	A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes. Journal of Hydrology, 2018, 560, 382-395.	2.3	20
161	Improved water use efficiency and shorter life cycle of Nicotiana tabacum due to modification of guard and vascular companion cells. Scientific Reports, 2018, 8, 4380.	1.6	20
162	Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change, 2018, 146, 407-422.	1.7	76
163	Advancing ecohydrology in the changing tropics: Perspectives from early career scientists. Ecohydrology, 2018, 11, e1918.	1.1	28
164	Fire severity is more sensitive to low fuel moisture content on Calluna heathlands than on peat bogs. Science of the Total Environment, 2018, 616-617, 1261-1269.	3.9	17

#	Article	IF	CITATIONS
165	Longâ€term change of potential evapotranspiration over southwest China and teleconnections with largeâ€scale climate anomalies. International Journal of Climatology, 2018, 38, 1964-1975.	1.5	13
166	Revisiting the Leading Drivers of Pacific Coastal Drought Variability in the Contiguous United States. Journal of Climate, 2018, 31, 25-43.	1.2	27
167	Groundwater-dependent irrigation costs and benefits for adaptation to global change. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 953-979.	1.0	9
168	Thermal Anomalies Detect Critical Global Land Surface Changes. Journal of Applied Meteorology and Climatology, 2018, 57, 391-411.	0.6	41
169	Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology, 2018, 24, e522-e533.	4.2	74
170	Changes in climatic elements in the Pan-Hexi region during 1960–2014 and responses to global climatic changes. Theoretical and Applied Climatology, 2018, 133, 405-420.	1.3	4
171	A simple tool for refining GCM water availability projections, applied to Chinese catchments. Hydrology and Earth System Sciences, 2018, 22, 6043-6057.	1.9	4
172	Drought Analysis in the Yellow River Basin Based on a Short-Scalar Palmer Drought Severity Index. Water (Switzerland), 2018, 10, 1526.	1.2	26
173	Role of clouds in accelerating coldâ€season warming during 2000–2015 over the Tibetan Plateau. International Journal of Climatology, 2018, 38, 4950-4966.	1.5	32
174	Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. International Journal of Climatology, 2018, 38, 3963-3975.	1.5	11
175	Blue Water Tradeâ€Offs With Vegetation in a CO ₂ â€Enriched Climate. Geophysical Research Letters, 2018, 45, 3115-3125.	1.5	46
176	Performance in Coupled Fluidized Beds for Chemical Looping Combustion of CO and Biomass Using Hematite as an Oxygen Carrier. Energy & Energy & 2018, 32, 12721-12729.	2.5	15
177	Changes in the severity of compound drought and hot extremes over global land areas. Environmental Research Letters, 2018, 13, 124022.	2.2	114
178	Response of electricity sector air pollution emissions to drought conditions in the western United States. Environmental Research Letters, 2018, 13, 124032.	2.2	20
179	Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environmental Research Letters, 2018, 13, 124010.	2.2	123
180	21st century California drought risk linked to model fidelity of the El Ni $ ilde{A}\pm$ o teleconnection. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	19
181	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	5.4	282
183	On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annual Review of Genetics, 2018, 52, 421-444.	3.2	182

#	Article	IF	CITATIONS
184	Exacerbation of the 2013–2016 Pan aribbean Drought by Anthropogenic Warming. Geophysical Research Letters, 2018, 45, 10619-10626.	1.5	39
185	Hazard assessment of drought disaster using a grey projection incidence model for the heterogeneous panel data. Grey Systems Theory and Application, 2018, 8, 509-526.	1.0	10
186	Functional Anatomical Traits of the Photosynthetic Organs of Plants with Crassulacean Acid Metabolism. Advances in Photosynthesis and Respiration, 2018, , 281-305.	1.0	30
187	Drivers, timing and some impacts of global aridity change. Environmental Research Letters, 2018, 13, 104010.	2.2	50
188	Future Projections of Global Pluvial and Drought Event Characteristics. Geophysical Research Letters, 2018, 45, 11,913.	1.5	44
189	Bison and Cattle Grazing Impacts on Grassland Stream Morphology in the Flint Hills of Kansas. Rangeland Ecology and Management, 2018, 71, 783-791.	1.1	31
190	Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015. PeerJ, 2018, 6, e4926.	0.9	28
191	Can land degradation drive differences in the CÂexchange of two similar semiarid ecosystems?. Biogeosciences, 2018, 15, 263-278.	1.3	8
192	Forest drought resistance distinguished by canopy height. Environmental Research Letters, 2018, 13, 075003.	2.2	20
193	Correlation analysis between drought indices and terrestrial water storage from 2002 to 2015 in China. Environmental Earth Sciences, 2018, 77, 1.	1.3	12
194	Early monsoon failure and mid-summer dryness induces growth cessation of lower range margin Picea crassifolia. Trees - Structure and Function, 2018, 32, 1401-1413.	0.9	12
195	Parental Drought-Priming Enhances Tolerance to Post-anthesis Drought in Offspring of Wheat. Frontiers in Plant Science, 2018, 9, 261.	1.7	75
196	Temperature and Dissolved Oxygen Determine Submersion Time in Aquatic Beetle Peltodytes callosus (Coleoptera: Haliplidae). Journal of Insect Behavior, 2018, 31, 427-435.	0.4	4
197	Stock Volume Dependency of Forest Drought Responses in Yunnan, China. Forests, 2018, 9, 209.	0.9	9
198	Apprehensive Drought Characteristics over Iraq: Results of a Multidecadal Spatiotemporal Assessment. Geosciences (Switzerland), 2018, 8, 58.	1.0	46
199	Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height. International Journal of Environmental Research and Public Health, 2018, 15, 1257.	1.2	15
200	Hydrological Variability and Changes in the Arctic Circumpolar Tundra and the Three Largest Pan-Arctic River Basins from 2002 to 2016. Remote Sensing, 2018, 10, 402.	1.8	30
201	Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 2018, 213, 492-508.	1.8	86

#	Article	IF	CITATIONS
202	Delaying conservation actions matters for species vulnerable to climate change. Journal of Applied Ecology, 2018, 55, 2843-2853.	1.9	10
203	Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area: Lower Zab River Basin, Iraq. Environmental Earth Sciences, 2018, 77, 1.	1.3	11
204	Boreal tree hydrodynamics: asynchronous, diverging, yet complementary. Tree Physiology, 2018, 38, 953-964.	1.4	46
205	Climate Change and Drought: From Past to Future. Current Climate Change Reports, 2018, 4, 164-179.	2.8	304
206	Climate Change and Drought: a Precipitation and Evaporation Perspective. Current Climate Change Reports, 2018, 4, 301-312.	2.8	303
207	Daily heliotropic movements assist gas exchange and productive responses in <scp>DREB</scp> 1A soybean plants under drought stress in the greenhouse. Plant Journal, 2018, 96, 801-814.	2.8	9
208	Interpreting Results from the NARCCAP and NA-CORDEX Ensembles in the Context of Uncertainty in Regional Climate Change Projections. Bulletin of the American Meteorological Society, 2018, 99, 2093-2106.	1.7	18
209	California: It's Complicated. , 2018, , 127-142.		1
210	Biocrust contribution to ecosystem carbon fluxes varies along an elevational gradient. Ecosphere, 2018, 9, e02315.	1.0	16
211	Components and Mechanisms of Hydrologic Cycle Changes over North America at the Last Glacial Maximum. Journal of Climate, 2018, 31, 7035-7051.	1.2	20
212	Dew deposition suppresses transpiration and carbon uptake in leaves. Agricultural and Forest Meteorology, 2018, 259, 305-316.	1.9	54
213	Disconnection Between Trends of Atmospheric Drying and Continental Runoff. Water Resources Research, 2018, 54, 4700-4713.	1.7	58
214	On observed aridity changes over the semiarid regions of India in a warming climate. Theoretical and Applied Climatology, 2019, 136, 693-702.	1.3	36
215	Climate information to support wildlife management in the North Central United States. Regional Environmental Change, 2019, 19, 1187-1199.	1.4	10
216	A New Perspective on Terrestrial Hydrologic Intensity That Incorporates Atmospheric Water Demand. Geophysical Research Letters, 2019, 46, 8114-8124.	1.5	13
217	Oceanic Drivers of Widespread Summer Droughts in the United States Over the Common Era. Geophysical Research Letters, 2019, 46, 8271-8280.	1.5	8
218	Projected changes of alpine grassland carbon dynamics in response to climate change and elevated CO2 concentrations under Representative Concentration Pathways (RCP) scenarios. PLoS ONE, 2019, 14, e0215261.	1.1	8
219	European warm-season temperature and hydroclimate since 850 CE. Environmental Research Letters, 2019, 14, 084015.	2.2	52

#	Article	IF	CITATIONS
220	Characterizing the Role of Wind and Dust in Traffic Accidents in California. GeoHealth, 2019, 3, 328-336.	1.9	36
221	Cross-cutting Issues. , 2019, , 74-103.		1
222	Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia. Sustainability, 2019, 11, 4421.	1.6	16
223	National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics. Climatic Change, 2019, 156, 323-340.	1.7	32
224	Competing droughts affect dust delivery to Sierra Nevada. Aeolian Research, 2019, 41, 100545.	1.1	17
225	Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement. Earth's Future, 2019, 7, 748-761.	2.4	21
226	Management and Limnology Interact to Drive Water Temperature Patterns in a Middle Rockies Riverâ€Reservoir System. Journal of the American Water Resources Association, 2019, 55, 1323-1334.	1.0	4
227	Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18848-18853.	3.3	283
228	Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal of Biological Macromolecules, 2019, 139, 1212-1223.	3.6	25
229	Soil Phosphorus Modeling for Modern Agriculture Requires Balance of Science and Practicality: A Perspective. Journal of Environmental Quality, 2019, 48, 1281-1294.	1.0	20
230	Droughts as a catalyst for water policy change. Analysis of Spain, Australia (MDB), and California. Global Environmental Change, 2019, 58, 101969.	3.6	48
231	Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress. Frontiers in Plant Science, 2019, 10, 129.	1.7	28
232	Highlighting the importance of water availability in reproductive processes to understand climate change impacts on plant biodiversity. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 37, 20-25.	1.1	12
233	Attribution of Global Soil Moisture Drying to Human Activities: A Quantitative Viewpoint. Geophysical Research Letters, 2019, 46, 2573-2582.	1.5	72
234	Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China. Sustainability, 2019, 11, 2856.	1.6	9
235	Climate Variability and Change of Mediterranean-Type Climates. Journal of Climate, 2019, 32, 2887-2915.	1.2	132
236	Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agricultural and Forest Meteorology, 2019, 276-277, 107628.	1.9	29
237	Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data. Water (Switzerland), 2019, 11, 705.	1.2	46

#	Article	IF	CITATIONS
238	Meteorological drought prediction of marathwada subdivision based on hydro-climatic inputs using genetic programming. ISH Journal of Hydraulic Engineering, 2019, , 1-13.	1.1	5
239	The contribution of internal climate variability to climate change impacts on droughts. Science of the Total Environment, 2019, 684, 229-246.	3.9	51
240	Coupling between the terrestrial carbon and water cycles—a review. Environmental Research Letters, 2019, 14, 083003.	2.2	118
241	Effect of climate change on the centennial drought over China using high-resolution NASA-NEX downscaled climate ensemble data. Theoretical and Applied Climatology, 2019, 138, 1189-1202.	1.3	9
242	Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections. International Journal of Climatology, 2019, 39, 5256-5272.	1.5	9
243	Model consensus projections of US regional hydroclimates under greenhouse warming. Environmental Research Letters, 2019, 14, 014005.	2.2	5
244	A Time-Series Analysis of Climate Variability in Urban and Agricultural Sites (Rome, Italy). Agriculture (Switzerland), 2019, 9, 103.	1.4	11
245	Regional Widening of Tropical Overturning: Forced Change, Natural Variability, and Recent Trends. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6104-6119.	1.2	39
246	Adaptation to Future Water Shortages in the United States Caused by Population Growth and Climate Change. Earth's Future, 2019, 7, 219-234.	2.4	137
247	Physical Understanding of Human-Induced Changes in U.S. Hot Droughts Using Equilibrium Climate Simulations. Journal of Climate, 2019, 32, 4431-4443.	1.2	37
248	The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. International Journal of Climatology, 2019, 39, 4853-4868.	1.5	29
249	Combining phosphorus placement and water saving technologies enhances rice production in phosphorus-deficient lowlands. Field Crops Research, 2019, 236, 177-189.	2.3	25
250	Historic and Projected Changes in Coupling Between Soil Moisture and Evapotranspiration (ET) in CMIP5 Models Confounded by the Role of Different ET Components. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5791-5806.	1.2	15
251	Twentieth-century hydroclimate changes consistent with human influence. Nature, 2019, 569, 59-65.	13.7	192
252	Radiative sky cooling: Fundamental principles, materials, and applications. Applied Physics Reviews, 2019, 6, .	5.5	442
253	Analysis of Severe Droughts in Taiwan and its Related Atmospheric and Oceanic Environments. Atmosphere, 2019, 10, 159.	1.0	7
254	Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dynamics, 2019, 53, 2031-2046.	1.7	73
255	Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nature Communications, 2019, 10, 1265.	5.8	98

#	Article	IF	CITATIONS
256	Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 2019, 25, 2174-2188.	4.2	126
257	Assessing seasonal drought variations and trends over Central Europe. Advances in Water Resources, 2019, 127, 53-75.	1.7	114
258	CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Canadian Water Resources Journal, 2019, 44, 90-107.	0.5	48
259	Wetland drying linked to variations in snowmelt runoff across Grand Teton and Yellowstone national parks. Science of the Total Environment, 2019, 666, 1188-1197.	3.9	17
260	Tree-ring isotopes suggest atmospheric drying limits temperature–growth responses of treeline bristlecone pine. Tree Physiology, 2019, 39, 983-999.	1.4	9
261	Characterising droughts in Central America with uncertain hydro-meteorological data. Theoretical and Applied Climatology, 2019, 137, 2125-2138.	1.3	30
262	A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 2019, 22, 100593.	1.0	178
263	Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring Eucalyptus species. Annals of Forest Science, 2019, 76, 1.	0.8	32
264	Littoral habitat loss caused by multiyear drought and the response of an endemic fish species in a deep desert lake. Freshwater Biology, 2019, 64, 421-432.	1.2	12
265	Response of streamflow to environmental changes: A Budyko-type analysis based on 144 river basins over China. Science of the Total Environment, 2019, 664, 824-833.	3.9	39
266	The Modality of Climate Change in the Middle East: Drought or Drying up?. The Journal of Interrupted Studies, 2019, 2, 118-140.	0.4	14
267	Two types of North American droughts related to different atmospheric circulation patterns. Climate of the Past, 2019, 15, 2053-2065.	1.3	6
268	Drought Trend Analysis Based on the Standardized Precipitation–Evapotranspiration Index Using NASA's Earth Exchange Global Daily Downscaled Projections, High Spatial Resolution Coupled Model Intercomparison Project Phase 5 Projections, and Assessment of Potential Impacts on China's Crop Yield in the 21st Century. Water (Switzerland), 2019, 11, 2455.	1.2	5
269	Spatial Upscaling of Tree-Ring-Based Forest Response to Drought with Satellite Data. Remote Sensing, 2019, 11, 2344.	1.8	16
270	Continuous Wetting on the Tibetan Plateau during 1970–2017. Water (Switzerland), 2019, 11, 2605.	1.2	11
271	Climates of Warm Earth-like Planets. III. Fractional Habitability from a Water Cycle Perspective. Astrophysical Journal, 2019, 887, 197.	1.6	5
272	Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nature Geoscience, 2019, 12, 983-988.	5.4	132
273	Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evolutionary Biology, 2019, 19, 231.	3.2	18

#	Article	IF	CITATIONS
274	Quantifying Drought Sensitivity of Mediterranean Climate Vegetation to Recent Warming: A Case Study in Southern California. Remote Sensing, 2019, 11, 2902.	1.8	15
275	Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Science of the Total Environment, 2019, 656, 1326-1336.	3.9	59
276	Burning increases post-fire carbon emissions in a heathland and a raised bog, but experimental manipulation of fire severity has no effect. Journal of Environmental Management, 2019, 233, 321-328.	3.8	12
277	Greater focus on water pools may improve our ability to understand and anticipate droughtâ€induced mortality in plants. New Phytologist, 2019, 223, 22-32.	3.5	134
278	Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nature Climate Change, 2019, 9, 44-48.	8.1	253
279	Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems. Journal of Environmental Management, 2019, 231, 1004-1011.	3.8	22
280	The synergy between drought and extremely hot summers in the Mediterranean. Environmental Research Letters, 2019, 14, 014011.	2.2	60
281	Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario. Journal of Chinese Geography, 2019, 29, 29-48.	1.5	28
282	Spatio-temporal variations in extreme drought in China during 1961–2015. Journal of Chinese Geography, 2019, 29, 67-83.	1.5	23
283	Water Footprint and Crop Water Usage of Oil Palm (Eleasis guineensis) in Central Kalimantan: Environmental Sustainability Indicators for Different Crop Age and Soil Conditions. Water (Switzerland), 2019, 11, 35.	1.2	15
284	Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. Journal of Climate, 2019, 32, 737-748.	1.2	40
285	Leaf traits of C3- and C4-plants indicating climatic adaptation along a latitudinal gradient in Southern Siberia and Mongolia. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 254, 122-134.	0.6	18
286	Global drought trends under 1.5 and 2 °C warming. International Journal of Climatology, 2019, 39, 2375-2385.	1.5	100
287	Reconnaissance Drought Index. , 2019, , 9-31.		1
288	Understanding physiological and morphological traits contributing to drought tolerance in barley. Journal of Agronomy and Crop Science, 2019, 205, 129-140.	1.7	34
289	Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Theoretical and Applied Climatology, 2019, 135, 855-871.	1.3	42
290	Enlargement of the semi-arid region in China from 1961 to 2010. Climate Dynamics, 2019, 52, 509-521.	1.7	16
291	Application of penalized linear regression and ensemble methods for drought forecasting in Northeast China. Meteorology and Atmospheric Physics, 2020, 132, 113-130.	0.9	22

#	Article	IF	CITATIONS
292	High resilience to extreme climatic changes in the CAM epiphyte <i>Tillandsia utriculata</i> L. (Bromeliaceae). Physiologia Plantarum, 2020, 168, 547-562.	2.6	8
293	A review of environmental droughts: Increased risk under global warming?. Earth-Science Reviews, 2020, 201, 102953.	4.0	283
294	A multi-proxy analysis of hydroclimate trends in an ombrotrophic bog over the last millennium in the Eastern Carpathians of Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109390.	1.0	10
295	Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada. Atmospheric Research, 2020, 232, 104695.	1.8	43
296	Evaluation of the Climate Extremes Index over the United States using 20th and midâ€21st century North American Regional Climate Change Assessment Program data. International Journal of Climatology, 2020, 40, 1542-1560.	1.5	5
297	Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabuliformis) show high vulnerability and similar resilience to early-growing-season drought in the Helan Mountains, China. Ecological Indicators, 2020, 110, 105871.	2.6	34
298	High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant, Cell and Environment, 2020, 43, 116-130.	2.8	60
299	Detecting changes in irrigation water requirement in Central Asia under CO2 fertilization and land use changes. Journal of Hydrology, 2020, 583, 124315.	2.3	20
300	Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology, 2020, 584, 124316.	2.3	52
301	What prevails in climatic response of Pinus sylvestris in-between its range limits in mountains: slope aspect or elevation?. International Journal of Biometeorology, 2020, 64, 333-344.	1.3	12
302	Temporal and spatial evolution trends of drought in northern Shaanxi of China: 1960–2100. Theoretical and Applied Climatology, 2020, 139, 965-979.	1.3	25
303	Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. International Journal of Climatology, 2020, 40, 3360-3379.	1.5	15
304	Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China. International Journal of Climatology, 2020, 40, 3380-3397.	1.5	47
305	North Atlantic Integrated Water Vapor Transportâ€"From 850 to 2100 CE: Impacts on Western European Rainfall. Journal of Climate, 2020, 33, 263-279.	1.2	26
306	Individualâ€based relative deprivation as a response to interpersonal help: The roles of status discrepancy and type of help. British Journal of Social Psychology, 2020, 59, 329-346.	1.8	4
307	Characterization of sudden and sustained base flow jump hydrologic behaviour in the humid seasonal tropics of the Panama Canal Watershed. Hydrological Processes, 2020, 34, 569-582.	1.1	7
308	Local adaptation constrains drought tolerance in a tropical foundation tree. Journal of Ecology, 2020, 108, 1540-1552.	1.9	31
309	Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e632.	3.6	118

#	Article	IF	CITATIONS
310	Contrasting drought impacts on the start of phenological growing season in Northern China during 1982–2015. International Journal of Climatology, 2020, 40, 3330-3347.	1.5	13
311	Applicability of long-term satellite-based precipitation products for drought indices considering global warming. Journal of Environmental Management, 2020, 255, 109846.	3.8	40
312	Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Science of the Total Environment, 2020, 703, 135541.	3.9	60
313	Drought effects on tropical estuarine benthic assemblages in Eastern Brazil. Science of the Total Environment, 2020, 703, 135490.	3.9	20
314	Brazilian Dry Forest (Caatinga) Response To Multiple ENSO: the role of Atlantic and Pacific Ocean. Science of the Total Environment, 2020, 705, 135717.	3.9	19
315	Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment, 2020, 704, 135245.	3.9	126
316	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	1.2	230
317	Can severe drought periods increase metal concentrations in mangrove sediments? A case study in eastern Brazil. Science of the Total Environment, 2020, 748, 142443.	3.9	12
318	On-Site Use of Plant Litter and Yard Waste as Mulch in Gardening and Landscaping Systems. Sustainability, 2020, 12, 7521.	1.6	9
319	Climate-Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation. Forests, 2020, 11, 1015.	0.9	12
320	Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water (Switzerland), 2020, 12, 1925.	1.2	123
321	Declining Soil Moisture Threatens Water Availability in the U.S. Great Plains. Transactions of the ASABE, 2020, 63, 1147-1156.	1.1	1
322	Impacts of climate change on multiple use management of Bureau of Land Management land in the Intermountain West, USA. Ecosphere, 2020, 11, e03286.	1.0	14
323	Genome-wide transcriptional changes triggered by water deficit on a drought-tolerant common bean cultivar. BMC Plant Biology, 2020, 20, 525.	1.6	10
324	Relating Climate, Drought and Radial Growth in Broadleaf Mediterranean Tree and Shrub Species: A New Approach to Quantify Climate-Growth Relationships. Forests, 2020, 11, 1250.	0.9	8
325	Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. Water Science and Engineering, 2020, 13, 265-274.	1.4	31
326	Projected Changes in Reference Evapotranspiration in California and Nevada: Implications for Drought and Wildland Fire Danger. Earth's Future, 2020, 8, e2020EF001736.	2.4	27
327	Increasing risk of another Cape Town "Day Zero―drought in the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29495-29503.	3.3	64

#	Article	IF	CITATIONS
328	Preparing for the worst: Utilizing stressâ€tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecological Solutions and Evidence, 2020, 1, e12027.	0.8	21
329	Atmospheric dynamics drive most interannual U.S. droughts over the last millennium. Science Advances, 2020, 6, eaay7268.	4.7	11
330	Global socioeconomic exposure of heat extremes under climate change. Journal of Cleaner Production, 2020, 277, 123275.	4.6	29
331	Modelling the Effects of Changes in Forest Cover and Climate on Hydrology of Headwater Catchments in South-Central Chile. Water (Switzerland), 2020, 12, 1828.	1.2	9
332	Additive and nonâ€additive responses of seedlings to simulated herbivory and drought. Biotropica, 2020, 52, 1217-1228.	0.8	14
333	Quantifying future drought change and associated uncertainty in southeastern Australia with multiple potential evapotranspiration models. Journal of Hydrology, 2020, 590, 125394.	2.3	25
334	Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere, 2020, 11, 839.	1.0	3
335	A shifting â€~river of sand': The profound response of Australia's Warrego River to Holocene hydroclimatic change. Geomorphology, 2020, 370, 107385.	1.1	11
336	Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmospheric and Oceanic Science Letters, 2020, 13, 568-575.	0.5	29
337	Temporal Variability of Drought in Nine Agricultural Regions of China and the Influence of Atmospheric Circulation. Atmosphere, 2020, 11, 990.	1.0	3
338	Molecular study of drought response in the Mediterranean conifer ⟨i⟩Pinus pinaster⟨/i⟩ Ait.: Differential transcriptomic profiling reveals constitutive water deficitâ€independent drought tolerance mechanisms. Ecology and Evolution, 2020, 10, 9788-9807.	0.8	19
339	Longer-lived tropical songbirds reduce breeding activity as they buffer impacts of drought. Nature Climate Change, 2020, 10, 953-958.	8.1	29
340	Uncovering Dryland Woody Dynamics Using Optical, Microwave, and Field Dataâ€"Prolonged Above-Average Rainfall Paradoxically Contributes to Woody Plant Die-Off in the Western Sahel. Remote Sensing, 2020, 12, 2332.	1.8	12
341	Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982–2015). Water (Switzerland), 2020, 12, 2146.	1.2	8
342	Global Characterization of the Varying Responses of the Standardized Precipitation Evapotranspiration Index to Atmospheric Evaporative Demand. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033017.	1.2	35
343	Effects of evapotranspiration and precipitation on dryness/wetness changes in China. Theoretical and Applied Climatology, 2020, 142, 1027-1038.	1.3	10
344	Future evolution of the Sahel precipitation zonal contrast in CESM1. Climate Dynamics, 2020, 55, 2801-2821.	1.7	19
345	Vegetation Response to Elevated CO 2 Slows Down the Eastward Movement of the 100th Meridian. Geophysical Research Letters, 2020, 47, e2020GL089681.	1.5	5

#	ARTICLE	IF	CITATIONS
346	Tree-Ring Width and Carbon Isotope Chronologies Track Temperature, Humidity, and Baseflow in the Tianshan Mountains, Central Asia. Forests, 2020, 11, 1308.	0.9	7
347	Resource Partitioning of Sympatric African Wolves (Canis lupaster) and Side-Striped Jackals (Canis) Tj ETQq1 1	0.784314 0.7	rgBŢ /Overlo
348	Changes in the Characteristics of Dry and Wet Periods in Europe (1851–2015). Atmosphere, 2020, 11, 1080.	1.0	10
349	Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets. Scientific Reports, 2020, 10, 8112.	1.6	31
350	A Framework for Determining Population-Level Vulnerability to Climate: Evidence for Growth Hysteresis in Chamaecyparis thyoides Along Its Contiguous Latitudinal Distribution. Frontiers in Forests and Global Change, 2020, 3, .	1.0	8
351	Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earth's Future, 2020, 8, e2020EF001502.	2.4	164
352	Divergent Regional Climate Consequences of Maintaining Current Irrigation Rates in the 21st Century. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031814.	1.2	17
353	Vulnerability of vegetation activities to drought in Central Asia. Environmental Research Letters, 2020, 15, 084005.	2.2	43
354	Conditional distribution selection for SPEI-daily and its revealed meteorological drought characteristics in China from 1961 to 2017. Atmospheric Research, 2020, 246, 105108.	1.8	51
355	Impact of climate change on drought in Aragon (NE Spain). Science of the Total Environment, 2020, 740, 140094.	3.9	26
356	Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrology and Earth System Sciences, 2020, 24, 2921-2930.	1.9	46
357	Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water (Switzerland), 2020, 12, 1715.	1.2	34
358	Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages. Sustainability, 2020, 12, 3598.	1.6	3
359	Estimation of annual regional drought index considering the joint effects of climate and water budget for Krishna River basin, India. Environmental Monitoring and Assessment, 2020, 192, 427.	1.3	7
360	Anthropogenic Climate Change in Deserts. , 2020, , 343-370.		1
361	Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. Journal of Environmental Management, 2020, 261, 110214.	3.8	103
362	Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. Journal of Environmental Management, 2020, 261, 110220.	3.8	15
363	Expansion of the Sahara Desert and shrinking of frozen land of the Arctic. Scientific Reports, 2020, 10, 4109.	1.6	14

#	Article	IF	Citations
364	Response of potential woody cover of Texas savanna to climate change in the 21st century. Ecological Modelling, 2020, 431, 109177.	1.2	1
365	Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology, 2020, 7, 33.	1.3	9
366	Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water (Switzerland), 2020, 12, 1738.	1.2	15
367	Biodiversity of microbial life: Indian Himalayan region. , 2020, , 1-17.		2
368	Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment, 2020, 744, 140701.	3.9	71
369	Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring Over Eurasia. IEEE Access, 2020, 8, 30050-30059.	2.6	28
370	Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. Forest Ecology and Management, 2020, 461, 117980.	1.4	26
371	Recent wetting trend in China from 1982 to 2016 and the impacts of extreme El Ni $ ilde{A}$ ±0 events. International Journal of Climatology, 2020, 40, 5485-5501.	1.5	3
372	Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique. Journal of Hydrology, 2020, 585, 124746.	2.3	25
373	Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability, 2020, 12, 477.	1.6	68
374	Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 2020, 26, 3325-3335.	4.2	142
375	Datasets of meteorological drought events and risks for the developing countries in Eurasia. Big Earth Data, 2020, 4, 191-223.	2.0	10
376	Ecological strategies begin at germination: Traits, plasticity and survival in the first 4Âdays of plant life. Functional Ecology, 2020, 34, 968-979.	1.7	49
377	Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting, 2020, 2, 59-84.	1.6	32
378	Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers. Biogeochemistry, 2020, 148, 255-269.	1.7	25
379	Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. Atmospheric Research, 2020, 242, 104979.	1.8	51
380	Robust ecological drought projections for drylands in the 21st century. Global Change Biology, 2020, 26, 3906-3919.	4.2	118
381	A comprehensive statistical assessment of drought indices to monitor drought status in Bangladesh. Arabian Journal of Geosciences, 2020, 13 , 1 .	0.6	54

#	Article	IF	CITATIONS
382	Twentyâ€First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth's Future, 2020, 8, e2019EF001461.	2.4	435
383	On the essentials of drought in a changing climate. Science, 2020, 368, 256-260.	6.0	258
384	Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. Journal of Hydrometeorology, 2020, 21, 891-908.	0.7	108
385	Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 2021, 41, 278-294.	1.5	30
386	Effects of $1.5 {\rm \^{A}}^{\circ}{\rm C}$ and $2 {\rm \^{A}}^{\circ}{\rm C}$ of warming on regional reference evapotranspiration and drying: A case study of the Yellow River Basin, China. International Journal of Climatology, 2021, 41, 791-810.	1.5	7
387	Dynamic effects of insect herbivory and climate on tundra shrub growth: Roles of browsing and ramet age. Journal of Ecology, 2021, 109, 1250-1262.	1.9	3
388	Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmospheric Research, 2021, 248, 105199.	1.8	21
389	A <scp>SOM</scp> â€based analysis of the drivers of the 2015â€"2017 Western Cape drought in South Africa. International Journal of Climatology, 2021, 41, E1518.	1.5	11
390	Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of the Total Environment, 2021, 750, 141258.	3.9	39
391	Dominant factor of dryâ€wet change in China since 1960s. International Journal of Climatology, 2021, 41, 1039-1055.	1.5	11
392	Multidimensional assessment of global dryland changes under future warming in climate projections. Journal of Hydrology, 2021, 592, 125618.	2.3	22
393	Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate. Science of the Total Environment, 2021, 751, 142159.	3.9	71
394	A comprehensive analysis of meteorological drought stress over the Yellow River basin (China) for the next 40 years. International Journal of Climatology, 2021, 41, E2927.	1.5	6
395	Shifts of sediment bacterial community and respiration along a successional gradient in a typical karst plateau lake wetland (China). Journal of Oceanology and Limnology, 2021, 39, 880-891.	0.6	2
396	Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management, 2021, 245, 106565.	2.4	32
397	The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 2021, 229, 1995-2006.	3.5	46
398	Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotechnology, 2021, 16, 153-158.	15.6	405
399	Investigating the role of evaporation in dew formation under different climates using 170-excess. Journal of Hydrology, 2021, 592, 125847.	2.3	13

#	Article	IF	CITATIONS
400	Projected changes in the Iberian Peninsula drought characteristics. Science of the Total Environment, 2021, 757, 143702.	3.9	26
401	Quantitative analysis of nonlinear climate change impact on drought based on the standardized precipitation and evapotranspiration index. Ecological Indicators, 2021, 121, 107107.	2.6	24
402	Spatial and temporal patterns of drought hazard for China under different RCP scenarios in the 21st century. International Journal of Disaster Risk Reduction, 2021, 52, 101948.	1.8	14
403	The collapse of mangrove litterfall production following a climate-related forest loss in Brazil. Marine Pollution Bulletin, 2021, 162, 111910.	2.3	13
404	Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 103-131.	0.6	13
405	Model evaluation and uncertainties in projected changes of drought over northern China based on CMIP5 models. International Journal of Climatology, 2021, 41, E3085.	1.5	9
406	Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theoretical and Applied Climatology, 2021, 143, 521-531.	1.3	36
407	Public perception of climate change and its impact on natural disasters. Journal of the Geographical Institute Jovan Cvijic SASA, 2021, 71, 43-58.	0.3	12
408	Streamflow Alteration Impacts with Particular Reference to the Lower Zab River, Tributary of the Tigris River., 2021,, 243-273.		1
409	Influence of land surface aridification on regional monsoon precipitation in East Asian summer monsoon transition zone. Theoretical and Applied Climatology, 2021, 144, 93-102.	1.3	4
410	Water deprivation compromises maternal physiology and reproductive success in a cold and wet adapted snake <i>Vipera berus</i> ., 2021, 9, coab071.		15
411	An Important Afro-Asian Biological Control Agent, Chrysoperla zastrowi sillemi (Neuroptera:) Tj ETQq1 1 0.784314	4 rgBT /Ον 1.3	verlock 10 T 2
412	Intergovernmental Panel on Climate Change and Global Climate Change Projections. Springer Hydrogeology, 2021, , 71-88.	0.1	1
413	Chapter 10 Climate Change Responses and Adaptations in Crassulacean Acid Metabolism (CAM) Plants. Advances in Photosynthesis and Respiration, 2021, , 283-329.	1.0	5
414	Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 2021, 10, 259.	1.6	566
415	Climate change affected the spatio-temporal occurrence of disasters in China over the past five centuries. Royal Society Open Science, 2021, 8, 200731.	1.1	4
416	Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework. Water (Switzerland), 2021, 13, 557.	1,2	13
417	Hydroclimatic trends during 1950–2018 over global land. Climate Dynamics, 2021, 56, 4027-4049.	1.7	43

#	Article	IF	CITATIONS
418	CO ₂ -plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environmental Research Letters, 2021, 16, 034018.	2.2	20
419	Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, waterâ€use efficiency and productivity. New Phytologist, 2021, 230, 1378-1393.	3.5	56
420	Microâ€dose placement of phosphorus induces deep rooting of upland rice. Plant and Soil, 2021, 463, 187-204.	1.8	8
421	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
422	Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nature Communications, 2021, 12, 1476.	5.8	40
423	Documented and Simulated Warm Extremes during the Last 600 Years over Monsoonal China. Atmosphere, 2021, 12, 362.	1.0	2
424	Environmental factors controlling vegetation attributes, soil nutrients and hydrolases in South Mediterranean arid grasslands. Ecological Engineering, 2021, 161, 106155.	1.6	11
425	Debris-Flow Hazard Assessments: A Practitioner's View. Environmental and Engineering Geoscience, 2021, 27, 153-166.	0.3	12
426	Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theoretical and Applied Climatology, 2021, 145, 79-94.	1.3	24
427	The Observed Relationship between Pacific SST Variability and Hadley Cell Extent Trends in Reanalyses. Journal of Climate, 2021, 34, 2511-2527.	1.2	12
428	Metamorphosis in an Era of Increasing Climate Variability. Trends in Ecology and Evolution, 2021, 36, 360-375.	4.2	41
429	Global Analysis of Atmospheric Transmissivity Using Cloud Cover, Aridity and Flux Network Datasets. Remote Sensing, 2021, 13, 1716.	1.8	23
430	Five Decades of Observed Daily Precipitation Reveal Longer and More Variable Drought Events Across Much of the Western United States. Geophysical Research Letters, 2021, 48, e2020GL092293.	1.5	70
431	The Role of Vegetation in Flash Drought Occurrence: A Sensitivity Study Using Community Earth System Model, Version 2. Journal of Hydrometeorology, 2021, 22, 845-857.	0.7	16
432	Spatiotemporal Variations of Drought in the Arid Region of Northwestern China during 1950–2012. Advances in Meteorology, 2021, 2021, 1-12.	0.6	5
433	Multi-centennial reconstruction of drought events in South-Western Iran using tree rings of Mediterranean cypress (Cupressus sempervirens L.). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110296.	1.0	7
434	Breeding for Climate Change Resilience: A Case Study of Loblolly Pine (Pinus taeda L.) in North America. Frontiers in Plant Science, 2021, 12, 606908.	1.7	12
435	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	0.9	19

#	Article	IF	CITATIONS
436	Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need. Agricultural Water Management, 2021, 251, 106858.	2.4	21
437	Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena, 2021, 200, 105129.	2.2	50
438	A small neighborhood well-organized: seasonal and daily activity patterns of the community of large and mid-sized mammals around waterholes in the Gobi Desert, Mongolia. Frontiers in Zoology, 2021, 18, 25.	0.9	3
439	Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey. Journal of Arid Land, 2021, 13, 470-486.	0.9	17
440	Evaluation of Drought – Review of Drought Indices and their Application in the Recent Studies from Slovakia. Acta Horticulturae Et Regiotecturae, 2021, 24, 97-108.	0.5	2
441	Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: insights from the Israeli Negev. Current Opinion in Environmental Sustainability, 2021, 50, 129-137.	3.1	10
442	Wildfire affects expression of male sexual plumage through suppressed testosterone circulation in a tropical songbird. Journal of Avian Biology, 2021, 52, .	0.6	4
443	Divergent Response of Vegetation Growth to Soil Water Availability in Dry and Wet Periods Over Central Asia. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005912.	1.3	17
444	New Drought Projections Over East Asia Using Evapotranspiration Deficits From the CMIP6 Warming Scenarios. Earth's Future, 2021, 9, e2020EF001697.	2.4	13
445	Regional drying and wetting trends over Central Asia based on Köppen climate classification in 1961–2015. Advances in Climate Change Research, 2021, , .	2.1	19
446	Human Influence on the Increasing Drought Risk Over Southeast Asian Monsoon Region. Geophysical Research Letters, 2021, 48, e2021GL093777.	1.5	18
447	Spatioâ€temporal variability of dryness and wetness based on standardized precipitation evapotranspiration index and standardized wetness index and its relation to the normalized difference vegetation index. International Journal of Climatology, 0, , .	1.5	2
448	Future drought changes and associated uncertainty over the homogenous regions of India: A multimodel approach. International Journal of Climatology, 2022, 42, 652-670.	1.5	20
449	Evaluating the grassland NPP dynamics in response to climate change in Tanzania. Ecological Indicators, 2021, 125, 107600.	2.6	26
450	Differences in Reference Evapotranspiration Variation and Climate-Driven Patterns in Different Altitudes of the Qinghai–Tibet Plateau (1961–2017). Water (Switzerland), 2021, 13, 1749.	1.2	9
451	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	1.5	26
452	Multi-criteria, time dependent sensitivity analysis of an event-oriented, physically-based, distributed sediment and runoff model. Journal of Hydrology, 2021, 598, 126268.	2.3	9
453	Comparative Assessment of Standard Precipitation Index and Standard Precipitation Evapotranspiration Index as Drought Evaluation Tools in Coastal Winneba-Ghana. Journal of Geography Environment and Earth Science International, 0, , 39-54.	0.2	1

#	Article	IF	CITATIONS
454	Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces. Hydrology and Earth System Sciences, 2021, 25, 3805-3818.	1.9	22
455	Climate change and wildfire-induced alteration of fight-or-flight behavior. Climate Change Ecology, 2021, 1, 100012.	0.9	4
456	Effects of drought on groundwater-fed lake areas in the Nebraska Sand Hills. Journal of Hydrology: Regional Studies, 2021, 36, 100877.	1.0	7
457	The Ongoing Greening in Southwest China despite Severe Droughts and Drying Trends. Remote Sensing, 2021, 13, 3374.	1.8	7
458	Expansion of the rare <i>Eucalyptus risdonii </i> under climate change through hybridization with a closely related species despite hybrid inferiority. Annals of Botany, 2022, 129, 1-14.	1.4	11
459	Global Land Surface Dry/Wet Conditions Mining Based on Spatialâ€Temporal Association Rules. Earth and Space Science, 2021, 8, e2020EA001501.	1.1	4
460	Assessing the Long-Term Impact of Traditional Agriculture and the Mid-Term Impact of Intensification in Face of Local Climatic Changes. Agriculture (Switzerland), 2021, 11, 814.	1.4	4
461	Inference of Gene Regulatory Network Uncovers the Linkage between Circadian Clock and Crassulacean Acid Metabolism in Kalanchoë fedtschenkoi. Cells, 2021, 10, 2217.	1.8	2
462	Simulating low flows over a heterogeneous landscape in southeastern Poland. Hydrological Processes, 2021, 35, e14322.	1.1	4
463	Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth. Nature Climate Change, 2021, 11, 766-771.	8.1	48
464	Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Frontiers in Environmental Science, 2021, 9, .	1.5	92
465	Coastal tree-ring records for paleoclimate and paleoenvironmental applications in North America. Quaternary Science Reviews, 2021, 265, 107044.	1.4	7
466	Characterizing potato yield responses to water supply in Atlantic Canada's humid climate using historical yield and weather data: Implications for supplemental irrigation. Agricultural Water Management, 2021, 255, 107047.	2.4	9
467	Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. Earth's Future, 2021, 9, e2021EF002014.	2.4	30
468	Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Applied Materials Today, 2021, 24, 101103.	2.3	10
469	Changes in the drought condition over northern East Asia and the connections with extreme temperature and precipitation indices. Global and Planetary Change, 2021, 207, 103645.	1.6	14
470	Adaptation strategies and land productivity of banana farmers under climate change in China. Climate Risk Management, 2021, 34, 100368.	1.6	10
471	South African drought, deconstructed. Weather and Climate Extremes, 2021, 33, 100334.	1.6	15

#	ARTICLE	IF	Citations
472	Responses of tree leaf gas exchange to elevated CO ₂ combined with changes in temperature and water availability: A global synthesis. Global Ecology and Biogeography, 2021, 30, 2500-2512.	2.7	7
473	Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. Journal of Hydrology, 2021, 600, 126502.	2.3	17
474	Bioinspired Radiative Cooling Structure with Randomly Stacked Fibers for Efficient All-Day Passive Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43387-43395.	4.0	39
475	Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States. Hydrology, 2021, 8, 136.	1.3	1
476	Relationship between Drought and Precipitation Heterogeneity: An Analysis across Rain-Fed Agricultural Regions in Eastern Gansu, China. Atmosphere, 2021, 12, 1274.	1.0	7
477	Positive impacts of livestock and wild ungulate routes on functioning of dryland ecosystems. Ecology and Evolution, 2021, 11, 13684-13691.	0.8	6
478	Soil moisture continues declining in North China over the regional warming slowdown of the past 20 years. Journal of Hydrometeorology, 2021, , .	0.7	1
479	Contrasting patterns of radial growth rate between Larix principis-rupprechtii and Pinus sylvestris var. mongolica along an elevational gradient are mediated by differences in xylem hydraulics. Forest Ecology and Management, 2021, 497, 119524.	1.4	7
480	Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over mainland China. Journal of Hydrology, 2021, 601, 126643.	2.3	47
481	How will the progressive global increase of arid areas affect population and land-use in the 21st century?. Global and Planetary Change, 2021, 205, 103597.	1.6	37
482	Global warming induces significant changes in the fraction of stored precipitation in the surface soil. Global and Planetary Change, 2021, 205, 103616.	1.6	12
483	A multi-index evaluation of changes in compound dry and hot events of global maize areas. Journal of Hydrology, 2021, 602, 126728.	2.3	20
484	Assessing the inter-annual variability of vegetation phenological events observed from satellite vegetation index time series in dryland sites. Ecological Indicators, 2021, 130, 108042.	2.6	5
485	Global analysis of the hydrologic sensitivity to climate variability. Journal of Hydrology, 2021, 603, 126720.	2.3	5
486	Time-varying network-based approach for capturing hydrological extremes under climate change with application on drought. Journal of Hydrology, 2021, 603, 126958.	2.3	12
487	A global perspective on the probability of propagation of drought: From meteorological to soil moisture. Journal of Hydrology, 2021, 603, 126907.	2.3	48
488	Quantifying the relative importance of potential evapotranspiration and timescale selection in assessing extreme drought frequency in conterminous China. Atmospheric Research, 2021, 263, 105797.	1.8	8
489			

#	Article	IF	CITATIONS
490	Clinal variation in phenological traits and fitness responses to drought across the native range of California poppy. Climate Change Ecology, 2021, 2, 100021.	0.9	4
491	Ecohydrology of Arid and Semiarid Ecosystems: An Introduction. , 2019, , 1-27.		3
492	Forest-Water Interactions Under Global Change. Ecological Studies, 2020, , 589-624.	0.4	20
493	Climate Change, Air Pollution, and Health: Common Sources, Similar Impacts, and Common Solutions. , 2020, , 49-59.		13
494	Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10, 1091-1095.	8.1	160
495	The other side of sea level change. Communications Earth & Environment, 2020, 1, .	2.6	27
497	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	4.2	394
498	Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America. Journal of Climate, 2020, 33, 3173-3195.	1.2	58
499	Moisture and Temperature Covariability over the Southeastern Tibetan Plateau during the Past Nine Centuries. Journal of Climate, 2020, 33, 6583-6598.	1.2	10
500	Projected End-of-Century Changes in the South American Monsoon in the CESM Large Ensemble. Journal of Climate, 2020, 33, 7859-7874.	1.2	13
501	Arid/humid patterns over Asia in response to national-committed emission reductions under the Paris agreement. Progress in Earth and Planetary Science, 2020, 7, .	1.1	6
502	Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari:) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf
503	EFFECT OF MYCORRHIZAL INOCULATION AND METHANOL SPRAYING ON SOME PHOTOSYNTHETIC CHARACTERISTICS AND YIELD IN WHEAT CULTIVARS UNDER END-SEASON DROUGHT STRESS. Applied Ecology and Environmental Research, 2018, 16, 3783-3803.	0.2	1
504	Actividad del fuego en áreas forestales de México a partir de sensores remotos y su sensibilidad a la sequÃa. Madera Bosques, 2018, 24, .	0.1	2
505	Nonlinear changes in aridity due to precipitation and evapotranspiration in China from 1961 to 2015. Climate Research, 2018, 74, 263-281.	0.4	8
506	Multi-index drought characteristics in Songhua River basin, Northeast China. Climate Research, 2019, 78, 1-19.	0.4	6
507	Extreme rainfall and drought events in Tamil Nadu, India. Climate Research, 2020, 80, 175-188.	0.4	3
508	Historical droughts in the Qing dynasty (1644–1911) of China. Climate of the Past, 2020, 16, 911-931.	1.3	9

#	Article	IF	CITATIONS
509	Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate ExperimentÂ(GRACE) water storage deficit. Hydrology and Earth System Sciences, 2021, 25, 511-526.	1.9	25
512	Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management. Environmental Research Letters, 2021, 16, 114024.	2.2	12
513	Placing the east-west North American aridity gradient in a multi-century context. Environmental Research Letters, 2021, 16, 114043.	2.2	6
514	Statistical climate model downscaling for impact projections in the Midwest United States. International Journal of Climatology, 2022, 42, 3038-3055.	1.5	5
515	Influences of climate fluctuations on northeastern North America's burned areas largely outweigh those of European settlement since AD 1850. Environmental Research Letters, 2021, 16, 114007.	2.2	3
516	Climate Change and Dryland Systems. , 2016, , 3-11.		0
521	Dynamical and hydrological changes in climate simulations of the last millennium. Climate of the Past, 2020, 16, 1285-1307.	1.3	4
522	Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project. Hydrology and Earth System Sciences, 2021, 25, 5623-5640.	1.9	17
523	Investigating the effect of improved drought events extraction method on spatiotemporal characteristics of drought. Theoretical and Applied Climatology, 2022, 147, 395-408.	1.3	17
525	Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change. Agricultural Water Management, 2022, 259, 107273.	2.4	12
526	Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing. Agricultural Water Management, 2022, 259, 107246.	2.4	6
527	The Central and Southern Great Plains. Dunes of the World, 2020, , 121-179.	0.5	1
528	Do CMIP models capture long-term observed annual precipitation trends?. Climate Dynamics, 2022, 58, 2825-2842.	1.7	20
529	Sensitivity analysis of the effective reconnaissance drought index. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
530	Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios. Remote Sensing, 2021, 13, 4409.	1.8	20
531	Global distribution, trends, and drivers of flash drought occurrence. Nature Communications, 2021, 12, 6330.	5.8	130
532	DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes. MBio, 2021, 12, e0259521.	1.8	24
533	A copula model integrating atmospheric moisture demand and supply for vegetation vulnerability mapping. Science of the Total Environment, 2022, 812, 151464.	3.9	8

#	Article	IF	CITATIONS
534	Growth of canopy red oak near its northern range limit: current trends, potential drivers, and implications for the future. Canadian Journal of Forest Research, 2020, 50, 975-988.	0.8	3
535	Paleoclimate Constraints on the Spatiotemporal Character of Past and Future Droughts. Journal of Climate, 2020, 33, 9883-9903.	1.2	13
536	Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31. Geoscientific Model Development, 2020, 13, 4749-4771.	1.3	6
537	Spatiotemporal variations of multi-scale drought in Shandong Province from 1961 to 2017. Water Science and Technology: Water Supply, 2021, 21, 525-541.	1.0	8
538	Hydrological variability in southern Siberia and the role of permafrost degradation. Journal of Hydrology, 2022, 604, 127203.	2.3	11
539	Smartforests Canada: A Network of Monitoring Plots for Forest Management Under Environmental Change. Managing Forest Ecosystems, 2022, , 521-543.	0.4	6
540	CMIP6 Model-projected Hydroclimatic and Drought Changes and Their Causes in the 21st Century. Journal of Climate, 2021, , 1-58.	1.2	19
541	Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, 2022, 28, 1583-1595.	4.2	20
542	Northern Hemisphere drought risk in a warming climate. Npj Climate and Atmospheric Science, 2021, 4,	2.6	47
543	The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. BioScience, 2022, 72, 333-346.	2.2	9
544	Future changes in aridity in the Upper Indus Basin during the twenty-first century. Climate Research, 2022, 87, 117-132.	0.4	1
545	Shifts in Dry-Wet Climate Regions over China and Its Related Climate Factors between 1960–1989 and 1990–2019. Sustainability, 2022, 14, 719.	1.6	3
546	Hydroclimate of the Lake Urmia Catchment Area: A Brief Overview. Handbook of Environmental Chemistry, 2021, , .	0.2	1
547	The Study of Drought in Future Climate Scenarios in the Huang-Huai-Hai Region. Water (Switzerland), 2021, 13, 3474.	1.2	2
548	Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes. Agronomy, 2022, 12, 145.	1.3	6
549	A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. Water (Switzerland), 2022, 14, 157.	1.2	3
550	Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide. International Journal of Climatology, 2022, 42, 5038-5054.	1.5	24
551	Provisioning ecosystem services related with oak (Quercus) systems: a review of challenges and opportunities. Agroforestry Systems, 2022, 96, 293-313.	0.9	12

#	Article	IF	CITATIONS
552	Trends and drivers of recent summer drying in Switzerland. Environmental Research Communications, 2022, 4, 025004.	0.9	10
553	Assessing the characteristics of recent drought events in South Korea using WRF-Hydro. Journal of Hydrology, 2022, 607, 127459.	2.3	19
554	Spatiotemporal climate variability in the Andes of northern Peru: Evaluation of gridded datasets to describe cloud forest microclimate and local rainfall. International Journal of Climatology, 2022, 42, 5892-5915.	1.5	10
555	Variation in Germination Traits Inform Conservation Planning of Hawaiʻi's Foundational ʻŌhiʻa Trees. Journal of Sustainable Forestry, 2022, 41, 861-877.	0.6	1
556	Climate change and the suitability of local and nonâ€local species for ecosystem restoration. Ecological Management and Restoration, 2021, 22, 75-91.	0.7	23
557			

#	Article	IF	CITATIONS
570	Vegetation Drought Vulnerability Mapping Using a Copula Model of Vegetation Index and Meteorological Drought Index. Remote Sensing, 2021, 13, 5103.	1.8	6
571	Effect of <scp>CO₂</scp> concentration on drought assessment in China. International Journal of Climatology, 2022, 42, 7465-7482.	1.5	6
572	Response of Ecohydrological Variables to Meteorological Drought under Climate Change. Remote Sensing, 2022, 14, 1920.	1.8	7
573	Spatio-temporal trend analysis and future projections of precipitation at regional scale: a case study of Haryana, India. Journal of Water and Climate Change, 2022, 13, 2143-2170.	1.2	5
574	Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India. Sustainability, 2022, 14, 4888.	1.6	6
575	Extreme weather and societal impacts in the eastern Mediterranean. Earth System Dynamics, 2022, 13, 749-777.	2.7	34
576	Spatio-temporal and trend analysis of rain days having different intensity from 1901 – 2020 at regional scale in Haryana, India. Results in Geophysical Sciences, 2022, 10, 100041.	0.4	3
577	A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Computers and Electronics in Agriculture, 2022, 197, 106925.	3.7	18
580	Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Global Change Biology, 2022, 28, 4794-4806.	4.2	46
581	Characterizing Drought Behavior in the Colorado River Basin Using Unsupervised Machine Learning. Earth and Space Science, 2022, 9, .	1.1	3
582	Monitoring drought pattern for pre- and post-monsoon seasons in a semi-arid region of western part of India. Environmental Monitoring and Assessment, 2022, 194, 396.	1.3	6
583	Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environmental Research Letters, 2022, 17, 054041.	2.2	12
584	Digital Transformation in Water Organizations. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	11
585	Human and natural resource exposure to extreme drought at 1.0 °C–4.0 °C warming levels. Environmental Research Letters, 2022, 17, 064005.	2.2	5
586	Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range. Small, 2022, 18, e2202400.	5.2	42
587	Effects of Stokes shift and Purcell enhancement on fluorescence-assisted radiative cooling. Journal of Materials Chemistry A, 2022, 10, 19635-19640.	5. 2	11
588	Historical and future Palmer Drought Severity Index with improved hydrological modeling. Journal of Hydrology, 2022, 610, 127941.	2.3	16
589	Increased and Highly Variable Atmospheric Evapotranspiration Demand Intensified Drought in Semi-Arid Sandy Lands. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
590	The Rise of Atmospheric Evaporative Demand Is Increasing Flash Droughts in Spain During the Warm Season. Geophysical Research Letters, 2022, 49, .	1.5	12
591	ldentification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China. Land, 2022, 11, 849.	1.2	1
592	Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27222-27232.	4.0	11
593	Glacial runoff buffers droughts through the 21st century. Earth System Dynamics, 2022, 13, 935-959.	2.7	5
594	Evaluating the uncertainty of climate model structure and bias correction on the hydrological impact of projected climate change in a Mediterranean catchment. Journal of Hydrology: Regional Studies, 2022, 42, 101120.	1.0	14
596	Wildland fires ignited by avian electrocutions. Wildlife Society Bulletin, 2022, 46, .	0.4	5
597	Cropland Exposed to Drought Is Overestimated without Considering the CO2 Effect in the Arid Climatic Region of China. Land, 2022, 11, 881.	1.2	2
598	Intensified Likelihood of Concurrent Warm and Dry Months Attributed to Anthropogenic Climate Change. Water Resources Research, 2022, 58, .	1.7	8
599	The efficacy of rhizobia inoculation under climate change., 2022,, 171-205.		0
600	Longâ€term (2001–2020) trend analysis of temperature and rainfall and drought characteristics by in situ measurements at a tropical semiâ€arid station from southern peninsular India. International Journal of Climatology, 0, , .	1.5	1
601	Greenhouse Gas Emissions Drive Global Dryland Expansion but Not Spatial Patterns of Change in Aridification. Journal of Climate, 2022, 35, 2901-2917.	1.2	8
602	Droughts and Mega-Droughts. Atmosphere - Ocean, 2022, 60, 245-306.	0.6	3
603	A Framework on Analyzing Long-Term Drought Changes and Its Influential Factors Based on the PDSI. Atmosphere, 2022, 13, 1151.	1.0	2
604	Characterising the spatiotemporal dynamics of drought and wet events in Australia. Science of the Total Environment, 2022, 846, 157480.	3.9	6
605	Climate change impacts on rainfed agriculture and mitigation strategies for sustainable agricultural management: A case study of Prince Edward Island, Canada. , 0, , .		2
606	Climate drives anuran breeding phenology in a continental perspective as revealed by citizenâ€collected data. Diversity and Distributions, 2022, 28, 2094-2109.	1.9	9
607	Influences of drought on the stability of an alpine meadow ecosystem. Ecosystem Health and Sustainability, 2022, 8, .	1.5	5
608	Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant and Soil, 2022, 481, 349-365.	1.8	4

#	Article	IF	CITATIONS
609	The 1820s Marks a Shift to Hotterâ€Drier Summers in Western Europe Since 1360. Geophysical Research Letters, 2022, 49, .	1.5	4
610	Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossilâ€Fueled Development. Water Resources Research, 2022, 58, .	1.7	13
611	Recent droughts in the United States are among the fastest-developing of the last seven decades. Weather and Climate Extremes, 2022, 37, 100491.	1.6	6
612	Future changes in drought over Central Asia under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, 2022, 43, 101191.	1.0	8
613	Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. Science of the Total Environment, 2022, 851, 157926.	3.9	11
614	Southwestern United States drought of the 21st century presages drier conditions into the future. Communications Earth & Environment, 2022, 3, .	2.6	6
615	Localized carryâ€over effects of pond drying on survival, growth, and pathogen defenses in amphibians. Ecosphere, 2022, 13, .	1.0	6
616	Severe drought changes the soil bacterial community in wetland ecosystem: Evidence from the largest freshwater lake wetland in China. Limnologica, 2022, 97, 126023.	0.7	4
617	Performance evaluation of using Shannon's entropy crossing time to monitor drought: a case study of the Karkheh. Hydrological Sciences Journal, 2022, 67, 1971-1987.	1.2	0
618	High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices. Atmosphere, 2022, 13, 1468.	1.0	9
619	Nonlinear multidecadal trends in organic matter dynamics in Midwest reservoirs are a function of variable hydroclimate. Limnology and Oceanography, 0, , .	1.6	2
620	Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. Frontiers in Forests and Global Change, 0, 5, .	1.0	7
621	Spiderâ€Silkâ€Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling. Advanced Materials, 2022, 34, .	11.1	49
622	Projection of Streamflow Change Using a Timeâ€Varying Budyko Framework in the Contiguous United States. Water Resources Research, 2022, 58, .	1.7	6
623	Carbon uptake of the sugarcane agroecosystem is profoundly impacted by climate variations due to seasonality and topography. Field Crops Research, 2022, 289, 108729.	2.3	0
624	Quantification of human contribution to soil moisture-based terrestrial aridity. Nature Communications, 2022, 13 , .	5.8	5
625	Soil viral diversity, ecology and climate change. Nature Reviews Microbiology, 2023, 21, 296-311.	13.6	41
626	Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Science Reviews, 2022, 235, 104241.	4.0	33

#	Article	IF	CITATIONS
627	Global Assessment of Cumulative and Time-Lag Effects of Drought on Land Surface Phenology. GIScience and Remote Sensing, 2022, 59, 1918-1937.	2.4	3
628	Effects of Drying and Rewetting Cycles on Carbon Dioxide Emissions and Soil Microbial Communities. Forests, 2022, 13, 1916.	0.9	2
629	SPEI and multi-threshold run theory based drought analysis using multi-source products in China. Journal of Hydrology, 2023, 616, 128737.	2.3	15
630	Effects of anthropogenic climate change on the drought characteristics in China: From frequency, duration, intensity, and affected area. Journal of Hydrology, 2023, 617, 129008.	2.3	12
631	Recent Advances in Material Engineering and Applications for Passive Daytime Radiative Cooling. Advanced Optical Materials, 2023, 11, .	3.6	19
632	2021 North American heatwave amplified by climate change-driven nonlinear interactions. Nature Climate Change, 2022, 12, 1143-1150.	8.1	47
633	Spatial and temporal evolution characteristics of meteorological drought in the Northwest of Yellow River Basin and its response to large-scale climatic factors. Journal of Water and Climate Change, 2022, 13, 4283-4301.	1.2	1
634	Evaluating Satellite-Observed Ecosystem Function Changes and the Interaction with Drought in Songnen Plain, Northeast China. Remote Sensing, 2022, 14, 5887.	1.8	3
636	Analyzing Driving Factors of Drought in Growing Season in the Inner Mongolia Based on Geodetector and GWR Models. Remote Sensing, 2022, 14, 6007.	1.8	11
637	Profitability of Supplemental Irrigation and Soil Dewatering for Potato Production in Atlantic Canada: Insights from Historical Yield and Weather Data. American Journal of Potato Research, 2022, 99, 369-389.	0.5	3
640	Agro-climatic Variability in Climate Change Scenario: Adaptive Approach and Sustainability. Springer Climate, 2022, , 313-348.	0.3	1
641	Identify the relationship of meteorological drought and ecohydrological drought in Xilin Gol Grassland, China. Natural Hazards, 0, , .	1.6	0
642	Remote sensing drought factor integration based on machine learning can improve the estimation of drought in arid and semi-arid regions. Theoretical and Applied Climatology, 0, , .	1.3	2
643	Have China's drylands become wetting in the past 50 years?. Journal of Chinese Geography, 2023, 33, 99-120.	1.5	2
644	Trend and spatial-temporal variation of drought characteristics over equatorial East Africa during the last 120Âyears. Frontiers in Earth Science, 0, 10, .	0.8	4
645	Wildland Fires in the Subtropical Hill Forests of Southeastern Bangladesh. Atmosphere, 2023, 14, 97.	1.0	3
646	MeWP: Meta-learning based Water-Level Prediction. , 2022, , .		0
647	How are atmospheric extremes likely to change into the future?. , 2023, , 145-179.		O

#	Article	IF	CITATIONS
648	Assessment of vulnerability to water shortage in semi-arid river basins: The value of demand reduction and storage capacity. Science of the Total Environment, 2023, 871, 161964.	3.9	9
649	Characterisation of Meteorological Drought in Northern Nigeria Using Comparative Rainfall-Based Drought Metrics. Journal of Water Resource and Protection, 2023, 15, 51-70.	0.3	0
650	Combined tree-ring width and wood anatomy chronologies provide insights into the radial growth and hydraulic strategies in response to an extreme drought in plantation-grown Mongolian pine trees. Environmental and Experimental Botany, 2023, 208, 105259.	2.0	1
651	The increasing risk of future simultaneous droughts over the Yangtze River basin based on CMIP6 models. Stochastic Environmental Research and Risk Assessment, 2023, 37, 2577-2601.	1.9	6
652	The uneven impact of climate change on drought with elevation in the Canary Islands. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	1
653	Morphological and Physiological Mechanisms of Melatonin on Delaying Drought-Induced Leaf Senescence in Cotton. International Journal of Molecular Sciences, 2023, 24, 7269.	1.8	4
654	Evolution of cyber-physical-human water systems: Challenges and gaps. Technological Forecasting and Social Change, 2023, 191, 122540.	6.2	1
655	Metal-free radiative cooling polymer films containing high bandgap materials employing a tandem approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 298, 108495.	1.1	1
656	Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agricultural and Forest Meteorology, 2023, 331, 109329.	1.9	5
657	Assessing the contribution of human activities and climate change to the dynamics of NPP in ecologically fragile regions. Global Ecology and Conservation, 2023, 42, e02393.	1.0	2
658	A Global Multiscale SPEI Dataset under an Ensemble Approach. Data, 2023, 8, 36.	1.2	1
659	Higher atmospheric evapotranspiration demand intensified drought in semiâ€arid sandy lands, northern China. International Journal of Climatology, 2023, 43, 3298-3311.	1.5	1
660	Monitoring of longâ€term vegetation dynamics and responses to droughts of various timescales in Inner Mongolia. Ecosphere, 2023, 14, .	1.0	5
661	Quantitative attribution of vertical motions responsible for the early spring drought conditions over southeastern China. Climate Dynamics, 2023, 61, 2655-2672.	1.7	5
662	Assessing climate change impact on flood discharge in South America and the influence of its main drivers. Journal of Hydrology, 2023, 619, 129284.	2.3	5
663	Analysis of the Difference between Climate Aridity Index and Meteorological Drought Index in the Summer Monsoon Transition Zone. Remote Sensing, 2023, 15, 1175.	1.8	2
664	Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 2023, 534, 120853.	1.4	14
665	Creating and <i>De Novo</i> Improvement of New Allopolyploid Crops for Future Agriculture. Critical Reviews in Plant Sciences, 2023, 42, 53-64.	2.7	0

#	ARTICLE	IF	CITATIONS
666	The impacts of global warming on arid climate and drought features. Theoretical and Applied Climatology, 2023, 152, 693-708.	1.3	2
668	Long-term passive restoration of severely degraded drylands — divergent impacts on soil and vegetation: An Israeli case study. Journal of Chinese Geography, 2023, 33, 529-546.	1.5	O
669	An overall consistent increase of global aridity in 1970–2018. Journal of Chinese Geography, 2023, 33, 449-463.	1.5	7
670	Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index. Hydrology and Earth System Sciences, 2023, 27, 1151-1171.	1.9	7
671	Diel dynamics of multi-omics in elkhorn fern provide new insights into weak CAM photosynthesis. Plant Communications, 2023, 4, 100594.	3.6	O
672	Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Reviews of Geophysics, 2023, 61, .	9.0	10
673	干旱指数åœ""西风æ"¡æ€"æ¸å¿ƒåŒºçš"é€,ç""性评估&	am p;lt ;/b&	.amφ;gt;. SCIE
674	Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Nano Convergence, 2023, 10, .	6.3	3
675	Analysis of Drought Characteristic of Sichuan Province, Southwestern China. Water (Switzerland), 2023, 15, 1601.	1.2	2
694	Hydrological Drought Analysis of Bearma Basin, Madhya Pradesh, India. Advances in Geographical and Environmental Sciences, 2023, , 339-352.	0.4	O
697	Photonic structures in radiative cooling. Light: Science and Applications, 2023, 12, .	7.7	28
715	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	18.7	9
737	Climate Change: Its Impact on Land Degradation and Plant Nutrients Dynamics. Earth and Environmental Sciences Library, 2023, , 189-209.	0.3	0
738	Effects of Drought Stress on Agricultural Plants, and Molecular Strategies for Drought Tolerant Crop Development. Environmental Science and Engineering, 2023, , 267-287.	0.1	O
745	Evaluation of Regional Drought in Yunnan–Guizhou Plateau of China. Mechanisms and Machine Science, 2024, , 345-359.	0.3	O