Nanoporous BiVO ₄ Photoanodes with Dua for Solar Water Splitting

Science 343, 990-994 DOI: 10.1126/science.1246913

Citation Report

#	Article	IF	CITATIONS
24	This Week in Science. Science, 1990, 249, 603-603.	6.0	1
25	Nanoporous WO ₃ – Fe ₂ O ₃ films; structural and photo-electrochemical characterization. Functional Materials Letters, 2014, 07, 1440006.	0.7	9
26	Catecholâ€Mediated Reversible Binding of Multivalent Cations in Eumelanin Halfâ€Cells. Advanced Materials, 2014, 26, 6572-6579.	11.1	126
27	Enhancement of Solar Hydrogen Evolution from Water by Surface Modification with CdS and TiO ₂ on Porous CuInS ₂ Photocathodes Prepared by an Electrodeposition–Sulfurization Method. Angewandte Chemie - International Edition, 2014, 53, 11808-11812.	7.2	181
28	Forming Buried Junctions to Enhance the Photovoltage Generated by Cuprous Oxide in Aqueous Solutions. Angewandte Chemie - International Edition, 2014, 53, 13493-13497.	7.2	160
29	Enhanced Water Splitting at Thin Film Tungsten Trioxide Photoanodes Bearing Plasmonic Gold–Polyoxometalate Particles. Angewandte Chemie - International Edition, 2014, 53, 14196-14200.	7.2	65
30	Unraveling the Carrier Dynamics of BiVO ₄ : A Femtosecond to Microsecond Transient Absorption Study. Journal of Physical Chemistry C, 2014, 118, 27793-27800.	1.5	142
31	Enhanced Activity of BiVO4 Powdered Photocatalyst Under Visible Light Irradiation by Preparing Microwave-Assisted Aqueous Solution Methods. Catalysis Letters, 2014, 144, 1962-1967.	1.4	21
32	Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discussions, 2014, 176, 199-211.	1.6	19
33	Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting. Applied Physics Letters, 2014, 105, .	1.5	55
35	Stability of the Nanoporous Bismuth Oxide Photoanodes for Solar Water Splitting. Nanostructure Science and Technology, 2014, , 173-199.	0.1	6
36	Nanoporous Anodic Bismuth Oxide Photo-Anodes. ECS Transactions, 2014, 61, 1-12.	0.3	5
37	Monoclinic Porous BiVO ₄ Networks Decorated by Discrete gâ€C ₃ N ₄ Nanoâ€Islands with Tunable Coverage for Highly Efficient Photocatalysis. Small, 2014, 10, 2783-2790.	5.2	209
39	Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films. Journal of Physical Chemistry C, 2014, 118, 26543-26550.	1.5	49
40	Earthâ€Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage. Chemistry - A European Journal, 2014, 20, 12954-12961.	1.7	57
41	In-depth investigation of an In–Ni–Ta–O–N photocatalyst for overall water splitting under sunlight. Journal of Catalysis, 2014, 320, 208-214.	3.1	9
42	Highly Efficient Ag ₂ 0/Bi ₂ 0 ₂ CO ₃ p-n Heterojunction Photocatalysts with Improved Visible-Light Responsive Activity. ACS Applied Materials & Interfaces, 2014, 6, 11698-11705.	4.0	257
43	Black TiO ₂ nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry A, 2014, 2, 8612-8616.	5.2	355

ITATION REDO

#	Article	IF	CITATIONS
44	Improving BiVO4 photoanodes for solar water splitting through surface passivation. Physical Chemistry Chemical Physics, 2014, 16, 12014.	1.3	55
45	Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Physical Chemistry Chemical Physics, 2014, 16, 15608-15614.	1.3	94
46	Density of Deep Trap States in Oriented TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2014, 118, 18207-18213.	1.5	73
47	Reduced Graphene Oxide (rGO)/BiVO ₄ Composites with Maximized Interfacial Coupling for Visible Lght Photocatalysis. ACS Sustainable Chemistry and Engineering, 2014, 2, 2253-2258.	3.2	159
49	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
50	Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science, 2014, 345, 1330-1333.	6.0	135
51	Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science, 2014, 345, 1326-1330.	6.0	559
52	Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, 2014, , .	0.1	9
53	Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chemistry of Materials, 2014, 26, 5592-5597.	3.2	88
54	Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 2014, 6, 14044-14063.	2.8	426
55	Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nature Communications, 2014, 5, 5122.	5.8	161
56	Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis, 2014, 4, 3701-3714.	5.5	451
57	Efficient Waterâ€ S plitting Device Based on a Bismuth Vanadate Photoanode and Thinâ€Film Silicon Solar Cells. ChemSusChem, 2014, 7, 2832-2838.	3.6	149
58	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	6.0	2,260
59	Infrared-driven unimolecular reaction of CH ₃ CHOO Criegee intermediates to OH radical products. Science, 2014, 345, 1596-1598.	6.0	125
60	Improved Photoelectrochemical Activity of CaFe ₂ O ₄ /BiVO ₄ Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 17762-17769.	4.0	114
61	Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5, 4775.	5.8	367
62	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	6.6	1,744

#	Article	IF	CITATIONS
63	Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9390-9395.	3.3	50
64	Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43, 5234.	18.7	3,257
65	Electronic Structure of Monoclinic BiVO ₄ . Chemistry of Materials, 2014, 26, 5365-5373.	3.2	356
66	Preparation of Bi-Based Ternary Oxide Photoanodes BiVO ₄ , Bi ₂ WO ₆ , and Bi ₂ Mo ₃ O ₁₂ Using Dendritic Bi Metal Electrodes. Journal of Physical Chemistry Letters, 2014, 5, 2994-2999.	2.1	104
67	Just Accepted, Most Read, and New Faces. Chemistry of Materials, 2014, 26, 1983-1984.	3.2	0
68	Topotactic transformation to mesoporous Co 3 O 4 nanosheet photocathode for visible-light-driven direct photoelectrochemical hydrogen generation. Materials Letters, 2014, 134, 276-280.	1.3	44
69	Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO ₂ /Ni Coatings. Journal of Physical Chemistry C, 2014, 118, 19618-19624.	1.5	129
70	Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014, 136, 6744-6753.	6.6	2,659
71	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	7.2	354
72	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	6.6	260
73	Theory and Simulations of Electrocatalyst-Coated Semiconductor Electrodes for Solar Water Splitting. Physical Review Letters, 2014, 112, 148304.	2.9	87
76	Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting. Scientific Reports, 2015, 5, 16660.	1.6	53
78	UV-Vis optoelectronic properties of α-SnWO4: A comparative experimental and density functional theory based study. APL Materials, 2015, 3, 096101.	2.2	40
79	Synthesis of highly nanoporous YBO ₃ architecture via a coâ€precipitation approach and tunable luminescent properties. Scanning, 2015, 37, 277-283.	0.7	4
81	Efficient Hole Extraction from a Holeâ€Storageâ€Layerâ€Stabilized Tantalum Nitride Photoanode for Solar Water Splitting. Chemistry - A European Journal, 2015, 21, 9624-9628.	1.7	66
82	Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungstenâ€doped Bismuth Vanadate Photoanodes. ChemSusChem, 2015, 8, 4049-4055.	3.6	41
83	Atomicâ€Layerâ€Confined Doping for Atomicâ€Level Insights into Visibleâ€Light Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9266-9270.	7.2	158
84	Multifunctional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting. Advanced Energy Materials, 2015, 5, 1501668.	10.2	73

#	Article	IF	CITATIONS
85	Imaging the Anisotropic Reactivity of a Tungsten Diselenide Photocathode. ChemElectroChem, 2015, 2, 1259-1263.	1.7	6
86	Enhanced Photoelectrochemical Oxygen Evolution Reaction Ability of Ironâ€Đerived Hematite Photoanode with Titanium Modification. Chemistry - A European Journal, 2015, 21, 19250-19256.	1.7	14
87	General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. ChemSusChem, 2015, 8, 3192-3203.	3.6	64
88	Efficient Photoelectrochemical Water Oxidation over Hydrogenâ€Reduced Nanoporous BiVO ₄ with Ni–B _i Electrocatalyst. ChemElectroChem, 2015, 2, 1385-1395.	1.7	50
89	Bandgap Tunability in Sbâ€Alloyed BiVO ₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications. Advanced Materials, 2015, 27, 6733-6740.	11.1	38
90	Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation. Nanomaterials, 2015, 5, 1971-1984.	1.9	32
91	Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight. Coatings, 2015, 5, 293-311.	1.2	21
92	Ni-Ci oxygen evolution catalyst integrated BiVO ₄ photoanodes for solar induced water oxidation. RSC Advances, 2015, 5, 47080-47089.	1.7	15
93	Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO ₄ . Journal of Physical Chemistry Letters, 2015, 6, 2379-2383.	2.1	36
94	Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage. Journal of the American Chemical Society, 2015, 137, 7576-7579.	6.6	52
95	Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Scientific Reports, 2015, 5, 11141.	1.6	464
96	Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy, 2015, 15, 153-163.	8.2	113
97	Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. Applied Physics Letters, 2015, 106, .	1.5	49
98	Nanotextured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting. Langmuir, 2015, 31, 3727-3737.	1.6	59
99	Ultrathin CoOOH Oxides Nanosheets Realizing Efficient Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 26362-26366.	1.5	43
100	Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting. Applied Surface Science, 2015, 358, 436-442.	3.1	52
101	Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 2015, 36, 2171-2177.	6.9	19
102	All Solution-Processed Lead Halide Perovskite-BiVO ₄ Tandem Assembly for Photolytic Solar Fuels Production. Journal of the American Chemical Society, 2015, 137, 974-981.	6.6	244

#	Article	IF	CITATIONS
103	Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research, 2015, 8, 56-81.	5.8	92
104	Aerosol Codeposition of Ceramics: Mixtures of Bi ₂ O ₃ –TiO ₂ Bi ₂ O ₃ –V ₂ O ₅ . Journal of the American Ceramic Society, 2015, 98, 717-723.	1.9	20
105	Photochemical Deposition of Co-Ac Catalyst on ZnO Nanorods for Solar Water Oxidation. Journal of the Electrochemical Society, 2015, 162, H235-H243.	1.3	19
106	A porous ZnGaNO photoanode for efficient water oxidation modified by a Co-based electrocatalyst. Dalton Transactions, 2015, 44, 3856-3861.	1.6	4
107	Quantifying Bulk and Surface Recombination Processes in Nanostructured Water Splitting Photocatalysts via In Situ Ultrafast Spectroscopy. Nano Letters, 2015, 15, 1076-1082.	4.5	50
108	Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Applied Catalysis B: Environmental, 2015, 170-171, 206-214.	10.8	325
110	Photoelectrochemical Water Splitting Promoted with a Disordered Surface Layer Created by Electrochemical Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 3791-3796.	4.0	75
111	Five-Fold Twinned Pd ₂ NiAg Nanocrystals with Increased Surface Ni Site Availability to Improve Oxygen Reduction Activity. Journal of the American Chemical Society, 2015, 137, 2820-2823.	6.6	100
112	Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-CaFe ₂ O ₄ /n-Fe ₂ O ₃ Heterojunction Formation. Journal of Physical Chemistry C, 2015, 119, 5864-5871.	1.5	130
113	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€Irradiation. Angewandte Chemie, 2015, 127, 3090-3094.	1.6	48
114	Electrostatically Assembled CdS-Co ₃ O ₄ Nanostructures for Photo-assisted Water Oxidation and Photocatalytic Reduction of Dye Molecules. Small, 2015, 11, 668-674.	5.2	39
115	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€Irradiation. Angewandte Chemie - International Edition, 2015, 54, 3047-3051.	7.2	254
116	Fe2O3–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts. RSC Advances, 2015, 5, 10951-10959.	1.7	34
117	Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe ₂ O ₃ photoanode. Journal of Materials Chemistry A, 2015, 3, 5949-5961.	5.2	211
118	Energetics of bismuth vanadate. Journal of Solid State Chemistry, 2015, 225, 187-192.	1.4	18
119	Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy and Environmental Science, 2015, 8, 731-759.	15.6	1,985
120	Aerosolâ€Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chemical Vapor Deposition, 2015, 21, 41-45.	1.4	55
121	A highly durable p-LaFeO ₃ /n-Fe ₂ O ₃ photocell for effective water splitting under visible light. Chemical Communications, 2015, 51, 3630-3633.	2.2	83

#	Article	IF	CITATIONS
122	Layered Co(OH) ₂ Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. ACS Catalysis, 2015, 5, 941-947.	5.5	335
123	Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. International Journal of Hydrogen Energy, 2015, 40, 2107-2114.	3.8	84
124	Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. Journal of Physical Chemistry C, 2015, 119, 2969-2974.	1.5	233
125	Positive onset potential and stability of Cu ₂ O-based photocathodes in water splitting by atomic layer deposition of a Ga ₂ O ₃ buffer layer. Energy and Environmental Science, 2015, 8, 1493-1500.	15.6	196
126	Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy, 2015, 13, 182-191.	8.2	138
127	Photoelectrochemical Water Oxidation Efficiency of a Core/Shell Array Photoanode Enhanced by a Dual Suppression Strategy. ChemSusChem, 2015, 8, 1568-1576.	3.6	95
128	Moâ€Ðoped BiVO ₄ Photoanodes Synthesized by Reactive Sputtering. ChemSusChem, 2015, 8, 1066-1071.	3.6	100
129	Effect of the Si/TiO ₂ /BiVO ₄ Heterojunction on the Onset Potential of Photocurrents for Solar Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 5788-5796.	4.0	60
130	Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications, 2015, 6, 7447.	5.8	429
131	Self-assembly of a mesoporous ZnS/mediating interface/CdS heterostructure with enhanced visible-light hydrogen-production activity and excellent stability. Chemical Science, 2015, 6, 5263-5268.	3.7	65
132	On structure and methylene blue degradation activity of an Aurivillius-type photocatalyst of Bi4V2O11 nanoparticles. Applied Surface Science, 2015, 347, 719-726.	3.1	38
133	Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 2427-2433.	2.1	59
134	Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst. Journal of Power Sources, 2015, 297, 9-15.	4.0	25
135	α-Fe ₂ O ₃ /NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catalysis, 2015, 5, 5292-5300.	5.5	219
136	Enhanced photoelectrochemical water oxidation on a BiVO ₄ photoanode modified with multi-functional layered double hydroxide nanowalls. Journal of Materials Chemistry A, 2015, 3, 17977-17982.	5.2	201
137	A stable inverse opal structure of cadmium chalcogenide for efficient water splitting. Journal of Materials Chemistry A, 2015, 3, 18521-18527.	5.2	31
138	Synthesis and phase transfer of well-defined BiVO ₄ nanocrystals for photocatalytic water splitting. RSC Advances, 2015, 5, 58755-58759.	1.7	14
139	Ultrathin insulating under-layer with a hematite thin film for enhanced photoelectrochemical (PEC) water splitting activity. Journal of Materials Chemistry A, 2015, 3, 15723-15728.	5.2	35

#	Article	IF	CITATIONS
140	Hierarchical NiCo ₂ O ₄ nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2015, 3, 19314-19321.	5.2	182
141	Solar fuel production: Strategies and new opportunities with nanostructures. Nano Today, 2015, 10, 468-486.	6.2	126
142	Role of Catalyst Preparation on the Electrocatalytic Activity of Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 18303-18316.	1.5	114
143	An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the American Chemical Society, 2015, 137, 9927-9936.	6.6	247
144	Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon, 2015, 94, 599-606.	5.4	62
145	Wavelength-switchable photocurrent in a hybrid TiO ₂ –Ag nanocluster photoelectrode. Chemical Communications, 2015, 51, 12072-12075.	2.2	24
146	Vertically aligned hexagonal WO3 nanotree electrode for photoelectrochemical water oxidation. Chemical Physics Letters, 2015, 635, 306-311.	1.2	16
147	Enhanced photo-electrochemical water oxidation on MnO _x in buffered organic/inorganic electrolytes. Journal of Materials Chemistry A, 2015, 3, 16642-16652.	5.2	16
148	Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation. Applied Physics Letters, 2015, 106, .	1.5	64
149	Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co ₃ O ₄ /BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2015, 137, 8356-8359.	6.6	767
150	Synthesis and optimization of BiVO4 and co-catalyzed BiVO4 nanofibers for visible light-activated photocatalytic degradation of aquatic micropollutants. Journal of Molecular Catalysis A, 2015, 404-405, 18-26.	4.8	29
151	Recent progress in photoelectrochemical water splitting for solar hydrogen production. Annals of Physics, 2015, 358, 236-247.	1.0	43
152	Improved Photocurrents for Water Oxidation by Using Metal–Organic Framework Derived Hybrid Porous Co ₃ O ₄ @Carbon/BiVO ₄ as a Photoanode. ChemPlusChem, 2015, 80, 1465-1471.	1.3	15
153	Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method. Journal of Alloys and Compounds, 2015, 636, 131-137.	2.8	60
154	Photoelectrochemical Reaction for the Efficient Production of Hydrogen and Highâ€Valueâ€Added Oxidation Reagents. ChemSusChem, 2015, 8, 1593-1600.	3.6	52
155	Polyoxometalate-Based Nickel Clusters as Visible Light-Driven Water Oxidation Catalysts. Journal of the American Chemical Society, 2015, 137, 5486-5493.	6.6	341
156	A tree-like nanoporous WO ₃ photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2015, 3, 12920-12926.	5.2	60
157	Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na ₃ VO ₂ B ₆ O ₁₁ under UV-visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 12179-12187.	5.2	54

#	Article	IF	CITATIONS
158	Solar hydrogen evolution using a CuGaS ₂ photocathode improved by incorporating reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 8566-8570.	5.2	45
159	Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. Advanced Functional Materials, 2015, 25, 2686-2692.	7.8	223
160	Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 2015, 7, 328-333.	6.6	564
161	Anisotropic small-polaron hopping in W:BiVO4 single crystals. Applied Physics Letters, 2015, 106, .	1.5	75
162	High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu _x S core–shell nanowire arrays: nanoporous surface with Cu _x S as a hole mediator. Physical Chemistry Chemical Physics, 2015, 17, 14827-14835.	1.3	28
163	Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Analytical Methods, 2015, 7, 7029-7041.	1.3	18
164	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
165	Black nanostructured Nb ₂ O ₅ with improved solar absorption and enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 11830-11837.	5.2	85
166	N-type hedgehog-like CuBi ₂ O ₄ hierarchical microspheres: room temperature synthesis and their photoelectrochemical properties. CrystEngComm, 2015, 17, 4019-4025.	1.3	39
167	Uniform Decoration of CdS Nanoparticles on TiO2 Inverse Opals for Visible Light Photoelectrochemical Cell. Electrochimica Acta, 2015, 166, 350-355.	2.6	7
168	Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015, 9, 5180-5188.	7.3	446
169	W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield. Superlattices and Microstructures, 2015, 82, 67-74.	1.4	36
170	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>p</i> -Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.	6.6	542
171	Band alignment and enhanced photocatalytic activation of α/β-Bi ₂ O ₃ heterojunctions via in situ phase transformation. Dalton Transactions, 2015, 44, 7835-7843.	1.6	61
172	Enhanced Photoelectrochemical Performance of Anodic Nanoporous β-Bi ₂ O ₃ . Journal of the Electrochemical Society, 2015, 162, H380-H391.	1.3	18
173	In Situ Formation of Efficient Cobaltâ€Based Water Oxidation Catalysts from Co ²⁺ ontaining Tungstate and Molybdate Solutions. Chemistry - an Asian Journal, 2015, 10, 2228-2233.	1.7	12
174	High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4964-4969.	3.3	200
175	NiFe Layered Double-Hydroxide and Cobalt-Carbon Composite as a High-Performance Eletrocatalyst for Bifunctional Oxygen Electrode. Journal of the Electrochemical Society, 2015, 162, A2362-A2366.	1.3	14

#	Article	IF	CITATIONS
176	Controllable synthesis of 3D BiVO ₄ superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis. Physical Chemistry Chemical Physics, 2015, 17, 28809-28817.	1.3	22
177	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.	2.8	312
178	Graphene-modified BiMo _{0.03} V _{0.97} O ₄ thin-film photoanode for enhanced photoelectrochemical water splitting performance. RSC Advances, 2015, 5, 77823-77830.	1.7	3
179	Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators. Journal of Physical Chemistry C, 2015, 119, 24201-24228.	1.5	245
180	Low-dimensional nanostructured photocatalysts. Journal of Advanced Ceramics, 2015, 4, 159-182.	8.9	31
181	Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical Science, 2015, 6, 6799-6805.	3.7	51
182	Recent advances in surface and interface engineering for electrocatalysis. Chinese Journal of Catalysis, 2015, 36, 1476-1493.	6.9	48
183	BiOl–BiVO 4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18, 222-231.	8.2	199
184	Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 2015, 115, 12839-12887.	23.0	481
185	A General and Facile Approach to Heterostructured Core/Shell BiVO ₄ /BiOI <i>p–n</i> Junction: Room-Temperature <i>in Situ</i> Assembly and Highly Boosted Visible-Light Photocatalysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 3262-3273.	3.2	285
186	Phase transition-induced band edge engineering of BiVO ₄ to split pure water under visible light. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13774-13778.	3.3	116
187	Facile Hydrothermal Synthesis of Three Dimensional Hematite Nanostructures with Enhanced Water Splitting Performance. Electrochimica Acta, 2015, 186, 95-100.	2.6	24
188	Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nature Communications, 2015, 6, 8769.	5.8	471
189	Controlling the Structure and Photoelectrochemical Performance of BiVO4 Photoanodes Prepared from Electrodeposited Bismuth Precursors: Effect of Zinc Ions as Directing Agent. Industrial & Engineering Chemistry Research, 2015, 54, 10723-10730.	1.8	24
190	Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chemistry of Materials, 2015, 27, 7218-7235.	3.2	131
191	Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO ₄ Photoanodes between the BiVO ₄ and the FTO Side Illumination. Journal of Physical Chemistry C, 2015, 119, 23350-23357.	1.5	70
192	Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters, 2015, 15, 7347-7354.	4.5	26
193	Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO ₂ –BaTiO ₃ Core–Shell Nanowire Photoanodes. Nano Letters, 2015, 15, 7574-7580.	4.5	280

#	Article	IF	CITATIONS
194	Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO ₄ Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano, 2015, 9, 11820-11829.	7.3	219
195	Pt/In ₂ S ₃ /CdS/Cu ₂ ZnSnS ₄ Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. Journal of the American Chemical Society, 2015, 137, 13691-13697.	6.6	262
196	A three-dimensional interconnected hierarchical FeOOH/TiO ₂ /ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation. Nanoscale, 2015, 7, 19178-19183.	2.8	50
197	New application for the BiVO4 photoanode: A photoelectroanalytical sensor for nitrite. Electrochemistry Communications, 2015, 61, 1-4.	2.3	45
198	Dynamics of Photogenerated Charge Carriers in WO ₃ /BiVO ₄ Heterojunction Photoanodes. Journal of Physical Chemistry C, 2015, 119, 20792-20800.	1.5	203
199	Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH) ₂ -Decorated ZnO Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 3410-3416.	2.1	67
200	Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chemical Science, 2015, 6, 6632-6638.	3.7	45
201	Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358, 404-411.	3.1	66
202	Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2015, 40, 12964-12972.	3.8	29
203	Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. Journal of Materials Chemistry A, 2015, 3, 20649-20657.	5.2	117
204	Quantum-sized BiVO ₄ modified TiO ₂ microflower composite heterostructures: efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene. Journal of Materials Chemistry A, 2015, 3, 21655-21663.	5.2	79
205	A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination. Nano Letters, 2015, 15, 6821-6828.	4.5	55
206	Mapping Photoelectrochemical Current Distribution at Nanoscale Dimensions on Morphologically Controlled BiVO ₄ . Journal of Physical Chemistry Letters, 2015, 6, 3702-3707.	2.1	18
207	An effect of Ag(<scp>i</scp>)-substitution at Cu sites in CuGaS ₂ on photocatalytic and photoelectrochemical properties for solar hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 21815-21823.	5.2	59
208	A facile approach to construct BiOI/Bi ₅ O ₇ I composites with heterostructures: efficient charge separation and enhanced photocatalytic activity. RSC Advances, 2015, 5, 74174-74179.	1.7	38
209	A perovskite solar cell-TiO ₂ @BiVO ₄ photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, 2015, 3, 21630-21636.	5.2	109
210	Improved Photoelectrochemical Water Oxidation by the WO ₃ /CuWO ₄ Composite with a Manganese Phosphate Electrocatalyst. Langmuir, 2015, 31, 10897-10903.	1.6	79
211	Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions. Journal of Physical Chemistry C, 2015, 119, 20453-20458.	1.5	66

#	ARTICLE	IF	CITATIONS
212	Facile fabrication of BiVO ₄ nanofilms with controlled pore size and their photoelectrochemical performances. Nanoscale, 2015, 7, 20374-20379.	2.8	28
213	Reduced N/Ni-doped TiO ₂ nanotubes photoanodes for photoelectrochemical water splitting. RSC Advances, 2015, 5, 95478-95487.	1.7	25
214	Microcontactâ€Printingâ€Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application. Advanced Materials, 2015, 27, 712-718.	11.1	177
215	Phosphorusâ€Doped Graphitic Carbon Nitrides Grown Inâ€Situ on Carbonâ€Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angewandte Chemie - International Edition, 2015, 54, 4646-4650.	7.2	722
216	Photocatalysis from UV/Vis to Nearâ€Infrared Light: Towards Full Solarâ€Light Spectrum Activity. ChemCatChem, 2015, 7, 559-573.	1.8	148
217	Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution. Energy and Environmental Science, 2015, 8, 650-660.	15.6	76
218	Carrier dynamics of a visible-light-responsive Ta ₃ N ₅ photoanode for water oxidation. Physical Chemistry Chemical Physics, 2015, 17, 2670-2677.	1.3	85
219	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	5.2	1,609
220	Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
221	Water Oxidation at Electrodes Modified with Earthâ€Abundant Transitionâ€Metal Catalysts. ChemElectroChem, 2015, 2, 37-50.	1.7	213
222	CdS-sensitized 1-D single-crystalline anatase TiO2 nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 863-869.	3.8	18
223	Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384.	2.1	824
224	Efficient Photoelectrochemical Water Oxidation by Metal-Doped Bismuth Vanadate Photoanode with Iron Oxyhydroxide Electrocatalyst. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	8
225	Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. Materials, 2016, 9, 759.	1.3	26
227	Visible-light-driven Fe2O3 nanoparticles/TiO2 array photoelectrode and its photoelectrochemical property. Research on Chemical Intermediates, 2016, 42, 7935-7946.	1.3	9
228	Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. Journal of Alloys and Compounds, 2016, 688, 923-932.	2.8	38
229	(040)â€Crystal Facet Engineering of BiVO ₄ Plate Photoanodes for Solar Fuel Production. Advanced Energy Materials, 2016, 6, 1501754.	10.2	136
230	Pore Structure Controlling the Activity of Mesoporous Crystalline CsTaWO ₆ for Photocatalytic Hydrogen Generation. Advanced Energy Materials, 2016, 6, 1600208.	10.2	31

#	Article	IF	CITATIONS
231	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	10.2	268
232	Robust Subâ€Monolayers of Co ₃ O ₄ Nanoâ€Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	10.2	44
233	Lightâ€Driven Highly Selective Conversion of CO ₂ to Formate by Electrosynthesized Enzyme/Cofactor Thin Film Electrode. Advanced Energy Materials, 2016, 6, 1502207.	10.2	79
234	Highly Efficient and Stable Solar Water Splitting at (Na)WO ₃ Photoanodes in Acidic Electrolyte Assisted by Nonâ€Noble Metal Oxygen Evolution Catalyst. Advanced Energy Materials, 2016, 6, 1600526.	10.2	58
235	Oxyhydroxide Nanosheets with Highly Efficient Electron–Hole Pair Separation for Hydrogen Evolution. Angewandte Chemie, 2016, 128, 2177-2181.	1.6	26
236	Predicting the electronic and optical properties of IB metals doped monoclinic BiVO ₄ : First principle calculations. International Journal of Quantum Chemistry, 2016, 116, 388-395.	1.0	12
237	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92
238	Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for Highâ€Performance, Selfâ€Powered, Wireless UV Photodetector. Small, 2016, 12, 2759-2767.	5.2	66
239	Photoinduced Absorption Spectroscopy of CoPi on BiVO ₄ : The Function of CoPi during Water Oxidation. Advanced Functional Materials, 2016, 26, 4951-4960.	7.8	169
240	New Insights into Defectâ€Mediated Heterostructures for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2016, 6, 1502268.	10.2	95
241	Efficiency Enhancement of Carbon Nitride Photoelectrochemical Cells via Tailored Monomers Design. Advanced Energy Materials, 2016, 6, 1600263.	10.2	116
242	Oxyhydroxide Nanosheets with Highly Efficient Electron–Hole Pair Separation for Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 2137-2141.	7.2	99
243	Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials. ChemSusChem, 2016, 9, 1727-1735.	3.6	17
244	Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO 4 nano-octahedrals. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 266-272.	1.7	70
245	Abnormal Cathodic Photocurrent Generated on an nâ€Type FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	1.7	6
246	Efficient Charge Separation between Bi and Bi ₂ MoO ₆ for Photoelectrochemical Properties. Chemistry - A European Journal, 2016, 22, 5844-5848.	1.7	40
247	<i>In situ</i> ETEM study of composition redistribution in Ptâ€Ni octahedral catalysts for electrochemical reduction of oxygen. AICHE Journal, 2016, 62, 399-407.	1.8	24
248	Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie, 2016, 128, 1801-1804.	1.6	94

#	Article	IF	CITATIONS
249	Metal–Hydroxide and Gold–Nanocluster Interfaces: Enhancing Catalyst Activity and Stability for Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 29348-29357.	1.5	47
250	Solvothermal synthesis of Bi ₂ O ₃ /BiVO ₄ heterojunction with enhanced visible-light photocatalytic performances. Journal of Semiconductors, 2016, 37, 083004.	2.0	10
251	An In0.5Ga0.5N nanowire photoanode for harvesting deep visible light photons. APL Materials, 2016, 4, .	2.2	15
252	Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nature Communications, 2016, 7, 13380.	5.8	263
253	Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Applied Physics Letters, 2016, 108, .	1.5	30
254	Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO ₃ /BiVO ₄ device for solar hydrogen generation. Japanese Journal of Applied Physics, 2016, 55, 04ES01.	0.8	28
255	Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. ChemSusChem, 2016, 9, 61-66.	3.6	112
256	Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research, 2016, 49, 733-740.	7.6	281
257	Towards understanding the photocatalytic activity enhancement of ordered mesoporous Bi ₂ MoO ₆ crystals prepared via a novel vacuum-assisted nanocasting method. RSC Advances, 2016, 6, 35709-35718.	1.7	21
258	Bulky crystalline BiVO ₄ thin films for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 9858-9864.	5.2	40
259	Semiempirical modeling of a three sublayer photoanode for highly efficient photoelectrochemical water splitting: Parameter and electrolyte optimizations. Solar Energy Materials and Solar Cells, 2016, 157, 190-199.	3.0	3
260	A water splitting system using an organo-photocathode and titanium dioxide photoanode capable of bias-free H ₂ and O ₂ evolution. Chemical Communications, 2016, 52, 7735-7737.	2.2	26
261	Unique three dimensional architecture using a metal-free semiconductor cross-linked bismuth vanadate for efficient photoelectrochemical water oxidation. Nano Energy, 2016, 24, 148-157.	8.2	44
262	Surface morphology-controlled fabrication of Na2WO4 films with high structural stability. Chemical Physics Letters, 2016, 653, 73-77.	1.2	5
263	Er3+, Yb3+ doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties. Journal of Molecular Catalysis A, 2016, 416, 1-9.	4.8	64
264	Controlled synthesis of m-BiVO4 dendrites for enhanced photocatalytic activity. Journal of Crystal Growth, 2016, 448, 93-96.	0.7	11
265	Transparent Nanoparticulate FeOOH Improves the Performance of a WO ₃ Photoanode in a Tandem Water-Splitting Device. Journal of Physical Chemistry C, 2016, 120, 10941-10950.	1.5	52
266	High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO ₂ /BiVO ₄ Core/Shell Nanorod-Array Photoanodes. Nano Letters, 2016, 16, 3463-3474.	4.5	166

#	Article	IF	CITATIONS
267	Hierarchical forest-like photoelectrodes with ZnO nanoleaves on a metal dendrite array. Journal of Materials Chemistry A, 2016, 4, 9816-9821.	5.2	15
268	A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters, 2016, 1, 121-135.	8.8	163
269	Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Research, 2016, 9, 1561-1569.	5.8	51
270	Understanding the synergistic effect of WO3–BiVO4 heterostructures by impedance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 9255-9261.	1.3	41
271	Comparison of sandwich and fingers-crossing type WO ₃ /BiVO ₄ multilayer heterojunctions for photoelectrochemical water oxidation. RSC Advances, 2016, 6, 27557-27565.	1.7	34
272	Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. Chemistry - an Asian Journal, 2016, 11, 22-42.	1.7	74
273	CdSe-sensitized branched CdS hierarchical nanostructures for efficient photoelectrochemical solar hydrogen generation. Physical Chemistry Chemical Physics, 2016, 18, 11460-11466.	1.3	16
274	Effective Charge Carrier Utilization in Photocatalytic Conversions. Accounts of Chemical Research, 2016, 49, 911-921.	7.6	266
275	Enhanced Visible Light Activity of Single-Crystalline WO ₃ Microplates for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 9192-9199.	1.5	37
276	Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy, 2016, 24, 94-102.	8.2	243
277	Enhanced photoelectrochemical performance of nanoporous BiVO4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment. Electrochimica Acta, 2016, 195, 51-58.	2.6	66
278	Single step hydrothermal synthesis of beyerite, CaBi ₂ O ₂ (CO ₃) ₂ for the fabrication of UV-visible light photocatalyst BiOI/CaBi ₂ O ₂ (CO ₃) ₂ . RSC Advances, 2016. 6. 38252-38262.	1.7	14
279	α-Fe ₂ O ₃ quantum dots: low-cost synthesis and photocatalytic oxygen evolution capabilities. RSC Advances, 2016, 6, 41060-41066.	1.7	33
280	Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi ₂ MoO ₆ frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. Journal of Materials Chemistry A, 2016, 4, 8298-8307.	5.2	71
281	Multinary Metal Oxide Photoelectrodes. , 2016, , 355-391.		11
282	Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. Journal of Catalysis, 2016, 339, 77-83.	3.1	62
283	Photoelectrochemical Solar Fuel Production. , 2016, , .		87
284	Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays. ACS Nano, 2016, 10, 5525-5535.	7.3	70

#	Article	IF	CITATIONS
285	Synthesis of hierarchical flower-like Bi ₂ MoO ₆ microspheres as efficient photocatalyst for photoreduction of CO ₂ into solar fuels under visible light. CrystEngComm, 2016, 18, 3472-3480.	1.3	82
286	Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO _{<i>x</i>} . ACS Catalysis, 2016, 6, 3619-3628.	5.5	68
287	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. , 2016, , 41-104.		81
288	Advanced Photoelectrochemical Characterization: Principles and Applications of Dual-Working-Electrode Photoelectrochemistry. , 2016, , 323-351.		2
289	Fabrication of hierarchically ordered porous scheelite-related monoclinic BiVO ₄ nanotubes by electrochemical deposition. Functional Materials Letters, 2016, 09, 1650036.	0.7	11
290	High-Performance Ultrathin BiVO ₄ Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters, 2016, 1, 68-75.	8.8	66
291	Plasmon-enhanced nanoporous BiVO4photoanodes for efficient photoelectrochemical water oxidation. Nanotechnology, 2016, 27, 235401.	1.3	19
292	One-pot hydrothermal fabrication of layered β-Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	10.8	102
293	Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity. Applied Surface Science, 2016, 383, 165-176.	3.1	84
294	Fabrication of novel p–n heterojunction BiOI/La ₂ Ti ₂ O ₇ composite photocatalysts for enhanced photocatalytic performance under visible light irradiation. Dalton Transactions, 2016, 45, 7986-7997.	1.6	88
295	A new benzimidazole based covalent organic polymer having high energy storage capacity. Chemical Communications, 2016, 52, 7592-7595.	2.2	97
296	Fabrication of p-type BiOCl/n-type La ₂ Ti ₂ O ₇ facet-coupling heterostructure with enhanced photocatalytic performance. RSC Advances, 2016, 6, 48599-48609.	1.7	31
297	Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 12149-12157.	4.0	21
298	Aerosol synthesis of shape-controlled template particles: a route to Ta ₃ N ₅ nanoplates and octahedra as photocatalysts. Journal of Materials Chemistry A, 2016, 4, 8451-8457.	5.2	23
299	The role of the CeO ₂ /BiVO ₄ interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, 2016, 4, 14356-14363.	5.2	19
300	Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy, 2016, 28, 250-260.	8.2	158
301	Highly Dispersed Polyoxometalateâ€Doped Porous Co ₃ O ₄ Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chemistry - A European Journal, 2016, 22, 15513-15520.	1.7	87
302	Translational Science for Energy and Beyond. Inorganic Chemistry, 2016, 55, 9131-9143.	1.9	11

#	Article	IF	CITATIONS
303	In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis, 2016, 6, 6987-6992.	5.5	103
304	Fast and Simple Construction of Efficient Solarâ€Waterâ€Splitting Electrodes with Micrometerâ€Sized Lightâ€Absorbing Precursor Particles. Advanced Materials Technologies, 2016, 1, 1600119.	3.0	16
305	Enhanced Waterâ€6plitting Performance of Perovskite SrTaO ₂ N Photoanode Film through Ameliorating Interparticle Charge Transport. Advanced Functional Materials, 2016, 26, 7156-7163.	7.8	86
306	ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology, 2016, 27, 402001.	1.3	80
307	What Limits the Performance of Ta3N5 for Solar Water Splitting?. CheM, 2016, 1, 640-655.	5.8	143
308	One-Pot Growth of 3D Reduced Graphene Oxide Foams Embedded with NiFe Oxide Nanocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, F3158-F3163.	1.3	10
309	Fabrication of metallic charge transfer channel between photoanode Ti/Fe ₂ O ₃ and cocatalyst CoO _x : an effective strategy for promoting photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 16661-16669.	5.2	69
310	Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics, 2016, 5, 112-133.	2.9	102
311	Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO ₄ . ACS Applied Materials & Interfaces, 2016, 8, 28607-28614.	4.0	73
312	Hydrogen-reduced bismuth oxyiodide nanoflake arrays with plasmonic enhancements for efficient photoelectrochemical water reduction. Electrochimica Acta, 2016, 219, 20-27.	2.6	26
313	Undoped and Ni-Doped CoO _{<i>x</i>} Surface Modification of Porous BiVO ₄ Photoelectrodes for Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 23449-23457.	1.5	52
314	Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 17891-17912.	5.2	165
315	Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. Journal of the American Chemical Society, 2016, 138, 13664-13672.	6.6	121
316	A Multistep Ion Exchange Approach for Fabrication of Porous BiVO ₄ Nanorod Arrays on Transparent Conductive Substrate. ACS Sustainable Chemistry and Engineering, 2016, 4, 4492-4497.	3.2	23
317	Nanowire-Enabled Energy Conversion. Nanoscience and Technology, 2016, , 227-254.	1.5	0
318	Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 10854-10858.	7.2	200
319	Fabrication of graphene-modified nano-sized red phosphorus for enhanced photocatalytic performance. Journal of Molecular Catalysis A, 2016, 423, 356-364.	4.8	37
320	Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Angewandte Chemie, 2016, 128, 11012-11016.	1.6	32

#	Article	IF	CITATIONS
321	Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance. Nano Energy, 2016, 27, 515-525.	8.2	36
322	Photoelectrochemical Behavior of Snâ€Doped <i>α</i> â€Fe ₂ O ₃ Photoanode with Different Reducer. Chinese Journal of Chemistry, 2016, 34, 778-782.	2.6	6
323	Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 13837-13843.	5.2	13
324	Room temperature aqueous synthesis of BiVO4/NaBiO3 heterojunction with high efficiency for sulfadiazine removal. Catalysis Communications, 2016, 86, 51-54.	1.6	16
325	Photoelectrocatalytic properties of BiVO4 prepared with different alcohol solvents. International Journal of Hydrogen Energy, 2016, 41, 17380-17389.	3.8	15
326	Synthesis of hierarchical Mn 2 O 3 microspheres for photocatalytic hydrogen production. Materials Research Bulletin, 2016, 84, 99-104.	2.7	23
327	Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy and Environmental Science, 2016, 9, 2744-2775.	15.6	450
328	BiOl–TiO ₂ Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2016, 3, 1500273.	1.9	34
329	Highly efficient three-dimensional flower-like AgI/Bi2O2CO3 heterojunction with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2016, 688, 225-234.	2.8	42
	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1	0.784314	rgBT /Overlo
330	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science, 2016, 482, 58-72	0.784314 5.0	rgBT /Overlo 85
330 331	 Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482. 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. 	0.784314 5.0 2.1	rgBT /Over 85 11
330 331 332	 Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482. 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO₄–TiO₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 20032-20039. 	0.784314 5.0 2.1 4.0	rgBT /Over 85 11 116
330331332333	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482. 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO ₄ –TiO ₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 20032-20039. Carbon Quantum Dots sensitized Vertical WO ₃ Nanoplates with Enhanced Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777.	0.784314 5.0 2.1 4.0 0.7	rgBT /Over 85 11 116 25
 330 331 332 333 333 	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482. 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO ₄ –TiO ₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 20032-20039. Carbon Quantum Dots sensitized Vertical WO ₃ Nanoplates with Enhanced Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777. Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291.	0.784314 5.0 2.1 4.0 0.7 11.1	rgBT /Over 85 11 116 25 1,392
 330 331 332 333 334 335 	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (Znln 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science, 2016, 482, 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO ₄ â ^{cer} TiO ₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 20032-20039. Carbon Quantum Dots sensitized Vertical WO _{3 Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777. Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291. Synthesis of dendritic-like BiVO 4 :Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 2016, 84, 414-421.}	0.784314 5.0 2.1 4.0 0.7 11.1 2.7	rgBT /Over o 85 11 116 25 1,392 9
 330 331 332 333 334 335 336 	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482. 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO ₄ â€"TiO ₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 20032-20039. Carbon Quantum Dots sensitized Vertical WO ₃ Nanoplates with Enhanced Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777. Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291. Synthesis of dendritic-like BiVO 4 :Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 2016, 84, 414-421. One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632.	0.784314 5.0 2.1 4.0 0.7 11.1 2.7 8.8	rgBT /Over 6 85 11 116 25 1,392 9 122
 330 331 332 333 334 335 336 337 	Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn 2 S) Tj ETQq1 1 nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science. 2016. 482, 58-72. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844. Fabrication of an Efficient BiVO ₄ 442 Fabrication of an Efficient BiVO ₄ 3 Carbon Quantum Dots sensitized Vertical WO _{3 Vertical Properties. ChemistrySelect, 2016, 1, 2772-2777. Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291. Synthesis of dendritic-like BiVO 4 :Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 2016, 84, 414-421. One-Step Hydrothermal Deposition of NI:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632. Fe/W Coâ€Doped BiVO₄ Photoanodes with a Metalã€"Organic Framework Cocatalyst for Improved Photoelectrochemical Stability and Activity. ChemSusChem, 2016, 9, 2824-2831.}	0.784314 5.0 2.1 4.0 0.7 11.1 2.7 8.8 3.6	rgBT /Over 6 85 11 116 25 1,392 9 122 81

#	Article	IF	CITATIONS
339	Cooperative Catalytic Effect of ZrO ₂ and αâ€Fe ₂ O ₃ Nanoparticles on BiVO ₄ Photoanodes for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 2779-2783.	3.6	42
340	Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACS Symposium Series, 2016, , 23-52.	0.5	2
341	Solution-processed CuSbS2 thin film: A promising earth-abundant photocathode for efficient visible-light-driven hydrogen evolution. Nano Energy, 2016, 28, 135-142.	8.2	70
342	Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO ₄ Photoanode. ACS Energy Letters, 2016, 1, 618-623.	8.8	76
343	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	7.8	62
344	Synthesis, surface and optical properties of Ag 2 ZnV 4 O 12 nanoparticles for efficient dye removal under visible-light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 400-406.	2.7	6
345	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 11819-11823.	7.2	178
346	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie, 2016, 128, 11998-12002.	1.6	71
347	Tandem Core–Shell Si–Ta ₃ N ₅ Photoanodes for Photoelectrochemical Water Splitting. Nano Letters, 2016, 16, 7565-7572.	4.5	99
348	Tantalum nitride for photocatalytic water splitting: concept and applications. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	1.5	70
349	Enhanced Photoelectrochemical Performance of the BiVO ₄ /Zn:BiVO ₄ Homojunction for Water Oxidation. ChemCatChem, 2016, 8, 3279-3286.	1.8	33
350	Graphitic Carbon Nitride Film: An Emerging Star for Catalytic and Optoelectronic Applications. ChemSusChem, 2016, 9, 2723-2735.	3.6	96
351	Atomic-scale marriage of light-harvesting and charge-storing components for efficient photoenergy storage catalysis. Nano Energy, 2016, 28, 407-416.	8.2	10
352	Photoelectrochemical Water Splitting on Particulate ANbO ₂ N (A = Ba, Sr) Photoanodes Prepared from Perovskite-Type ANbO ₃ . Chemistry of Materials, 2016, 28, 6869-6876.	3.2	68
353	Ultrafast fabrication of highly active BiVO ₄ photoanodes by hybrid microwave annealing for unbiased solar water splitting. Nanoscale, 2016, 8, 17623-17631.	2.8	40
354	Solar-driven BiVO ₄ Photoanodes Prepared by a Facile Screen Printing Method. Chemistry Letters, 2016, 45, 152-154.	0.7	20
355	Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 12842-12851.	3.8	33
356	Exposure of WO ₃ Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 25010-25013.	4.0	26

#	Article	IF	CITATIONS
357	Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water splitting systems: 2-Water-oxidizing activities. International Journal of Hydrogen Energy, 2016, 41, 18472-18477.	3.8	13
358	Discovery of Fe–Ce Oxide/BiVO ₄ Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials & Interfaces, 2016, 8, 23696-23705.	4.0	35
359	Controlled Aqueous Growth of Hematite Nanoplate Arrays Directly on Transparent Conductive Substrates and Their Photoelectrochemical Properties. Chemistry - an Asian Journal, 2016, 11, 2328-2334.	1.7	11
360	Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting. Journal of Power Sources, 2016, 325, 697-705.	4.0	58
361	Role of Hydrogen in Defining the n-Type Character of BiVO ₄ Photoanodes. Chemistry of Materials, 2016, 28, 5761-5771.	3.2	104
362	Solar Water Oxidation by Multicomponent TaON Photoanodes Functionalized with Nickel Oxide. ChemPlusChem, 2016, 81, 1107-1115.	1.3	3
363	Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2016, 8, 19446-19455.	4.0	227
364	Moistureâ€Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2016, 6, 1600864.	10.2	54
365	Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and a Cobalt(II) Chlorin Complex. ACS Energy Letters, 2016, 1, 913-919.	8.8	98
366	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, .	23.3	1,212
366 367	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, .	23.3 23.3	1,212 1,031
366 367 368	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681.	23.3 23.3 6.6	1,212 1,031 72
366 367 368 369	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368.	23.3 23.3 6.6 0.4	1,212 1,031 72 9
366 367 368 369	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) < sub>2 Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368. Efficient water oxidation kinetics and enhanced electron transport in Li-doped TiO ₂ nanotube photoanodes. Journal of Materials Chemistry A, 2016, 4, 19070-19077.	23.3 23.3 6.6 0.4 5.2	1,212 1,031 72 9 25
366 367 368 369 370	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368. Efficient water oxidation kinetics and enhanced electron transport in Li-doped TiO ₂ nanotube photoanodes. Journal of Materials Chemistry A, 2016, 4, 19070-19077. Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764.	23.3 23.3 6.6 0.4 5.2 4.7	1,212 1,031 72 9 25 351
 366 367 368 369 370 371 372 	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368. Efficient water oxidation kinetics and enhanced electron transport in Li-doped TiO ₂ nanotube photoanodes. Journal of Materials Chemistry A, 2016, 4, 19070-19077. Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764. Semiconductorâ Solarâ Sub> 4 Solarâ Semiconductorâ Solarâ	 23.3 23.3 6.6 0.4 5.2 4.7 3.6 	1,212 1,031 72 9 25 25 351
 366 367 368 369 370 371 372 373 	Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 2016, 1, . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368. Efficient water oxidation kinetics and enhanced electron transport in Li-doped TiO ₂ nanotube photoanodes. Journal of Materials Chemistry A, 2016, 4, 19070-19077. Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764. SemiconductorãeBased, SolarãeDriven Photochemical Cells for Fuel Generation from Carbon Dioxide in Aqueous Solutions. ChemSusChem, 2016, 9, 3188-3195. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NIP ₂ Cocatalyst Films. ACS Applied Materials & Bamp; Interfaces, 2016, 8, 31025-31031.	 23.3 23.3 6.6 0.4 5.2 4.7 3.6 4.0 	1,212 1,031 72 9 25 351 17 46

#	Article	IF	CITATIONS
375	Hollow α-Fe ₂ O ₃ nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe ₂ O ₃ /ITO-composite photoanodes. Journal of Materials Chemistry A, 2016, 4, 18444-18456.	5.2	37
376	Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Physical Chemistry Chemical Physics, 2016, 18, 31803-31810.	1.3	35
377	Ultrafast carrier dynamics in BiVO ₄ thin film photoanode material: interplay between free carriers, trapped carriers and low-frequency lattice vibrations. Journal of Materials Chemistry A, 2016, 4, 18516-18523.	5.2	60
378	Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 2016, 7, 12012.	5.8	231
379	Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 2016, 116, 14120-14136.	23.0	1,259
380	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
381	Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nature Communications, 2016, 7, 11480.	5.8	403
382	Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures. Electronic Materials Letters, 2016, 12, 753-760.	1.0	23
383	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (M =) Tj ETQc	0 0 0 rgBT 7.8	/Overlock 1
383 384	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (M =) Tj ETQC Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 1769-1772.	0 0 0 0 rgBT	138
383 384 385	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 1769-1772. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 2016, 28, 4059-4064.	0 9.0 rgBT 7.2 11.1	- / <mark>82</mark> grlock 1 138 538
383 384 385 386	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (i) (M =) Tj ETQC Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 1769-1772. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 2016, 28, 4059-4064. A Frontâ€Iluminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645.	0 9.8 rgBT 7.2 11.1 10.2	- / <u>82</u> grlock 1 138 538 313
383 384 385 386 387	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_{<}</i> (i>M <i></i> Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 1769-1772. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 2016, 28, 4059-4064. A Frontâ€Illuminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645. Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General, 2016, 523, 130-138.	0 9.9 rgBT 7.2 11.1 10.2 2.2	- / <u>82</u> grlock 1 138 538 313 35
383 384 385 386 387	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (i) M(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	0 9.9 rgBT 7.2 11.1 10.2 2.2 2.6	- / <u>&y</u> grlock 1 138 538 313 35 75
383 384 385 386 387 388	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_{<}</i> M <i>_y</i> (i>M =) Tj ETQC Curing BiVO ₄ Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 1769-1772. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 2016, 28, 4059-4064. A Frontâ elluminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645. Photoelectrochemical water splitting with porous î±-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General, 2016, 523, 130-138. Electrospun Mo-BiVO4 for Efficient Photoelectrochemical Water Oxidation: Direct Evidence of Improved Hole Diffusion Length and Charge separation. Electrochimica Acta, 2016, 211, 173-182. Comprehensive Evaluation of CuBi ₂ O ₄ as a Photocathode Material for Photoelectrochemical Water Splitting. Charge Separation. 2016, 28, 4231-4242.	0 9.0 rgBT 7.2 11.1 10.2 2.2 2.6 3.2	- / <u>8</u> 2grlock 1 138 538 313 35 75 271
 383 384 385 386 387 388 389 390 	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i> </i>	0 9.8 rgBT 7.2 11.1 10.2 2.2 2.6 3.2 5.5	- /&ggrlock 1 138 538 313 35 75 271 117

392Hydrogenation of oxalic acid using light-assisted water electrolysis for the production of an
alcoholic compound. Green Chemistry, 2016, 18, 3700-3706.4.626

ARTICLE IF CITATIONS Accepting Excited High-Energy-Level Electrons and Catalyzing H₂ Evolution of Dual-Functional Ag-TiO₂ Modifier for Promoting Visible-Light Photocatalytic Activities of 393 1.5 27 Nanosized Oxides. Journal of Physical Chemistry C, 2016, 120, 11831-11836. Efficient solar-to-chemical conversion with chlorine photoanode. Electrochemistry 394 2.3 Communications, 2016, 67, 69-72. Enhanced Performance of Î²-Bi₂O₃by In-Situ Photo-Conversion to 395 Bi₂O₃-BiO_{2-x}Composite Photoanode for Solar Water Splitting. 1.3 40 Journal of the Electrochemical Society, 2016, 163, H546-H558. Plasmon resonance-enhanced photoelectrodes and photocatalysts. Coordination Chemistry Reviews, 396 2016, 325, 116-124. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical 397 4.0 69 Water Splitting Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 16071-16077. Distinguishing surface effects of gold nanoparticles from plasmonic effect on photoelectrochemical 398 1.2 water splitting by hematite. Journal of Materials Research, 2016, 31, 1608-1615. Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric 399 Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. Journal of Physical 1.532 Chemistry C, 2016, 120, 12999-13012. Enhanced Photocatalytic Performance in Ag+-Induced BiVO4 Î²-Bi2O3Heterojunctions. European Journal 400 1.0 14 of Inorganic Chemistry, 2016, 2016, 232-239. Photoanode-immobilized molecular cobalt-based oxygen-evolving complexes with enhanced 401 5.2 24 solar-to-fuel efficiency. Journal of Materials Chemistry A, 2016, 4, 11228-11233. An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient 6.6 453 Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 8336-8339. Fabrication of porous nanoflake BiMO_x (M = W, V, and Mo) photoanodes via 403 3.7 65 hydrothermal anion exchange. Chemical Science, 2016, 7, 6381-6386. A Novel Photocathode Material for Sunlightâ€Driven Overall Water Splitting: Solid Solution of ZnSe 404 104 and Cu(In,Ga)Se₂. Advanced Functional Materials, 2016, 26, 4570-4577. Controlling the Active Sites of Sulfurâ€Doped Carbon Nanotube–Graphene Nanolobes for Highly 405 10.2 242 Efficient Oxygen Evolution and Reduction Catalysis. Advanced Energy Materials, 2016, 6, 1501966. Optimization of porous BiVO 4 photoanode from electrodeposited Bi electrode: Structural factors 406 2.6 affecting photoelectrochemical performance. Electrochimica Acta, 2016, 189, 252-258. An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic 407 79 2.6 framework. Electrochimica Acta, 2016, 191, 813-820. Nonstoichiometric In 2 O 3 nanorods/black Ti–Ni–O nanotubes heterojunction photoanode for high-efficiency photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2016, 408 145, 382-390. Atomic Insight into the W-Doping Effect on Carrier Dynamics and Photoelectrochemical Properties of 409 1.581 BiVO₄ Photoanodes. Journal of Physical Chemistry C, 2016, 120, 1421-1427. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical 5.2 114 water oxidation. Journal of Materials Chemistry A, 2016, 4, 2849-2855.

#	Article	IF	CITATIONS
411	Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO ₄ /SnO ₂ /Si by thermally increasing the minority carrier diffusion length. Energy and Environmental Science, 2016, 9, 2044-2052.	15.6	105
412	Facile surfactant driven fabrication of transparent WO3 photoanodes for improved photoelectrochemical properties. Applied Catalysis A: General, 2016, 521, 233-239.	2.2	10
413	A photocatalytic graphene quantum dots–Cu ₂ O/bipolar membrane as a separator for water splitting. New Journal of Chemistry, 2016, 40, 3075-3079.	1.4	18
414	Tailoring Multilayered BiVO ₄ Photoanodes by Pulsed Laser Deposition for Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 4076-4085.	4.0	71
415	Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Applied Surface Science, 2016, 365, 314-335.	3.1	147
416	Photocatalytic water oxidation via combination of BiVO ₄ –RGO and molecular cobalt catalysts. Chemical Communications, 2016, 52, 3050-3053.	2.2	42
417	Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes. Journal of Physical Chemistry Letters, 2016, 7, 471-479.	2.1	224
418	A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. Nanoscale, 2016, 8, 3474-3481.	2.8	29
419	Enhanced Photoelectrocatalytic Activity of a Novel Bi ₂ O ₃ –BiPO ₄ Composite Electrode for the Degradation of Refractory Pollutants under Visible Light Irradiation. Industrial & Engineering Chemistry Research, 2016, 55, 1221-1228.	1.8	33
420	Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy and Environmental Science, 2016, 9, 1327-1334.	15.6	332
421	Bi ₂ MoO ₆ /BiVO ₄ heterojunction electrode with enhanced photoelectrochemical properties. Physical Chemistry Chemical Physics, 2016, 18, 5091-5094.	1.3	34
422	Enhancement of photochemical heterogeneous water oxidation by a manganese based soft oxometalate immobilized on a graphene oxide matrix. New Journal of Chemistry, 2016, 40, 994-1003.	1.4	22
423	Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. Journal of Materials Chemistry A, 2016, 4, 2783-2800.	5.2	120
424	Nanostructured materials for water splitting - state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63, 10-17.	2.3	126
425	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	5.5	354
426	Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO ₄ . Energy and Environmental Science, 2016, 9, 565-580.	15.6	61
427	Solvation effect promoted formation of p–n junction between WO3 and FeOOH: A high performance photoanode for water oxidation. Journal of Catalysis, 2016, 333, 200-206.	3.1	86
428	Enhanced photoelectrochemical performance of inorganic–organic hybrid consisting of BiVO4 and PEDOT:PSS. Applied Surface Science, 2016, 388, 753-761.	3.1	23

~			-		
(11	ΓΔΤΙ	ON	RE	DO	DT.
				. F O	

#	Article	IF	CITATIONS
429	A BiOCl/bipolar membrane as a separator for regenerating NaOH in water-splitting cells. RSC Advances, 2016, 6, 9880-9883.	1.7	4
430	An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.	3.1	66
431	CuWO ₄ Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 9211-9217.	4.0	81
432	Fabrication of a porous ZnRh ₂ O ₄ photocathode for photoelectrochemical water splitting under visible light irradiation and a significant effect of surface modification by ZnO necking treatment. Journal of Materials Chemistry A, 2016, 4, 6116-6123.	5.2	13
433	Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chemical Communications, 2016, 52, 5406-5409.	2.2	197
434	Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source. ACS Catalysis, 2016, 6, 1840-1847.	5.5	147
435	Sulfur-Doped g-C ₃ N ₄ /BiVO ₄ Composite Photocatalyst for Water Oxidation under Visible Light. Chemistry of Materials, 2016, 28, 1318-1324.	3.2	214
436	Self-assembled 3D-hierarchical structure Cu2ZnSnS4photocathodes by tuning anion ratios in precursor solution. Journal Physics D: Applied Physics, 2016, 49, 105102.	1.3	0
437	Improving Stability and Photoelectrochemical Performance of BiVO ₄ Photoanodes in Basic Media by Adding a ZnFe ₂ O ₄ Layer. Journal of Physical Chemistry Letters, 2016, 7, 447-451.	2.1	108
438	Textured nanoporous Mo:BiVO ₄ photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy and Environmental Science, 2016, 9, 1412-1429.	15.6	135
439	TiO ₂ /BiVO ₄ Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. ACS Central Science, 2016, 2, 80-88.	5.3	263
440	Photocatalysts in close-up. Nature, 2016, 530, 36-37.	13.7	13
441	A bismuth based layer structured organic–inorganic hybrid material with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2016, 469, 231-236.	5.0	18
442	The photocatalytic properties of ultrathin bismuth oxychloride nanosheets: a first principles study. Physical Chemistry Chemical Physics, 2016, 18, 7261-7268.	1.3	43
443	Photoelectrochemical Approach Using Photocatalysts. Lecture Notes in Energy, 2016, , 319-344.	0.2	2
444	Solar Hydrogen Production on Photocatalysis-Electrolysis Hybrid System Using Redox Mediator and Porous Oxide Photoelectrodes. Lecture Notes in Energy, 2016, , 345-365.	0.2	0
445	β-SnWO ₄ Photocatalyst with Controlled Morphological Transition of Cubes to Spikecubes. ACS Catalysis, 2016, 6, 2357-2367.	5.5	29
446	Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent. Electrochimica Acta, 2016, 192, 319-327.	2.6	22

#	Article	IF	CITATIONS
447	Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1, 243-267.	4.1	612
448	Rapid Characterization of Multi-Metallic Electrocatalysts for the Water Splitting Reactions Utilizing Printed Microelectrodes on a Chip. Journal of the Electrochemical Society, 2016, 163, H359-H366.	1.3	10
449	Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency. Applied Catalysis B: Environmental, 2016, 189, 133-140.	10.8	72
450	Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts. Chemical Science, 2016, 7, 4024-4035.	3.7	91
451	Synthesis of BiOI nanosheet/coarsened TiO ₂ nanobelt heterostructures for enhancing visible light photocatalytic activity. RSC Advances, 2016, 6, 30037-30047.	1.7	43
452	Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C ₃ N ₄ Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation. Nano Letters, 2016, 16, 2268-2277.	4.5	256
453	Photoelectrochemical Water Splitting System—A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2016, 8, 1606-1614.	4.0	38
454	Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems. Nano-Micro Letters, 2016, 8, 1-12.	14.4	122
455	Crystal facet engineering of ZnO photoanode for the higher water splitting efficiency with proton transferable nafion film. Nano Energy, 2016, 20, 156-167.	8.2	99
456	Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO ₂ Nanoplatelets <i>via</i> Thermal Stress. ACS Nano, 2016, 10, 2636-2643.	7.3	258
457	Binary nickel and iron oxide modified Ti-doped hematite photoanode for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 873-881.	3.8	15
458	High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2016, 120, 133-141.	1.5	22
459	Solution-processed multilayered BiVO ₄ photoanodes: influence of intermediate heat treatments on the photoactivity. Journal of Materials Chemistry A, 2016, 4, 1723-1728.	5.2	31
460	Electrospun Mo-doped BiVO4 photoanode on a transparent conductive substrate for solar water oxidation. Catalysis Communications, 2016, 75, 18-22.	1.6	21
461	Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance. New Journal of Chemistry, 2016, 40, 107-112.	1.4	45
462	A shuriken-shaped m-BiVO4/{0 0 1}–TiO2 heterojunction: Synthesis, structure and enhanced visible light photocatalytic activity. Applied Catalysis A: General, 2016, 521, 42-49.	2.2	42
463	Synthesis of flower-like monoclinic BiVO 4 /surface rough TiO 2 ceramic fiber with heterostructures and its photocatalytic property. Ceramics International, 2016, 42, 1791-1800.	2.3	37
464	Atomic layer stack deposition-annealing synthesis of CuWO ₄ . Journal of Materials Chemistry A, 2016, 4, 2826-2830.	5.2	65

#	Article	IF	CITATIONS
465	Photocatalytic overall water splitting promoted by SnO x –NiGa 2 O 4 photocatalysts. Applied Catalysis B: Environmental, 2016, 182, 220-228.	10.8	33
466	Improving charge collection with delafossite photocathodes: a host–guest CuAlO ₂ /CuFeO ₂ approach. Journal of Materials Chemistry A, 2016, 4, 3018-3026.	5.2	86
467	Photocharged BiVO ₄ photoanodes for improved solar water splitting. Journal of Materials Chemistry A, 2016, 4, 2919-2926.	5.2	203
468	Ligand removal from CdS quantum dots for enhanced photocatalytic H ₂ generation in pH neutral water. Journal of Materials Chemistry A, 2016, 4, 2856-2862.	5.2	103
469	Solar photocatalytic degradation of bisphenol A with CuO x /BiVO 4 : Insights into the unexpectedly favorable effect of bicarbonates. Chemical Engineering Journal, 2017, 318, 39-49.	6.6	112
470	Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity. Applied Surface Science, 2017, 391, 384-391.	3.1	48
471	Photocatalytic water oxidation at bismuth vanadate thin film electrodes grown by direct liquid injection chemical vapor deposition method. International Journal of Hydrogen Energy, 2017, 42, 8475-8485.	3.8	24
472	Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Letters, 2017, 2, 445-453.	8.8	214
473	Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy and Environmental Science, 2017, 10, 772-779.	15.6	315
474	Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition. ACS Applied Materials & Interfaces, 2017, 9, 505-512.	4.0	50
475	Bi2MoO6 nanosheet array modified with ultrathin graphitic carbon nitride for high photoelectrochemical performance. Carbon, 2017, 114, 591-600.	5.4	45
476	Modelling heterogeneous interfaces for solar water splitting. Nature Materials, 2017, 16, 401-408.	13.3	252
477	WO ₃ /W:BiVO ₄ /BiVO ₄ graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4648-4655.	1.3	38
478	An Efficient, Visible Light Driven, Selective Oxidation of Aromatic Alcohols and Amines with O ₂ Using BiVO ₄ /g-C ₃ N ₄ Nanocomposite: A Systematic and Comprehensive Study toward the Development of a Photocatalytic Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 2562-2577.	3.2	172
479	Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure. Journal of Power Sources, 2017, 343, 67-75.	4.0	23
480	Nano-Photoelectrochemical Cell Arrays with Spatially Isolated Oxidation and Reduction Channels. ACS Nano, 2017, 11, 2150-2159.	7.3	18
481	Enhanced photoelectrochemical water splitting using oxidized mass-selected Ti nanoclusters on metal oxide photoelectrodes. Sustainable Energy and Fuels, 2017, 1, 336-344.	2.5	10
482	Facile Preparation of Ultrathin Co ₃ O ₄ /Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst. Chemistry - A European Journal, 2017, 23, 4010-4016.	1.7	49

#	Article	IF	CITATIONS
483	<scp>BiOI</scp> Nanosheets Grown by Chemical Vapor Deposition and Its Conversion to Highly Efficient <scp>BiVO₄</scp> Photoanode. Chinese Journal of Chemistry, 2017, 35, 30-34.	2.6	5
484	Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights. , 2017, , 983-1030.		0
485	Selective CO Production in Photoelectrochemical Reduction of CO ₂ with a Cobalt Chlorin Complex Adsorbed on Multiwalled Carbon Nanotubes in Water. ACS Energy Letters, 2017, 2, 532-536.	8.8	40
486	Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1, .	13.8	2,578
487	Optimization of charge transport in a Co–Pi modified hematite thin film produced by scalable electron beam evaporation for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 3412-3424.	5.2	56
488	Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chinese Journal of Catalysis, 2017, 38, 5-12.	6.9	206
489	Heterometallic Lanthanide–Titanium Oxo Clusters: A New Family of Water Oxidation Catalysts. Inorganic Chemistry, 2017, 56, 1057-1060.	1.9	72
490	Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting. Journal Physics D: Applied Physics, 2017, 50, 074006.	1.3	25
491	A Simplified Successive Ionic Layer Adsorption and Reaction (s-SILAR) Method for Growth of Porous BiVO ₄ Thin Films for Photoelectrochemical Water Oxidation. Journal of the Electrochemical Society, 2017, 164, H119-H125.	1.3	17
492	Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO ₄ Photoanode. ACS Catalysis, 2017, 7, 1868-1874.	5.5	151
493	Non-monotonic dependence of the current density on the thickness of the photoactive layer. Journal of Electroanalytical Chemistry, 2017, 788, 61-65.	1.9	5
494	Efficient Solar Water Oxidation to Oxygen over Mo-doped BiVO ₄ Thin Film Photoanode Prepared by a Facile Aqueous Solution Route. Chemistry Letters, 2017, 46, 651-654.	0.7	14
495	Synthesis of yellow mesoporous Ni-doped TiO ₂ with enhanced photoelectrochemical performance under visible light. Inorganic Chemistry Frontiers, 2017, 4, 898-906.	3.0	43
496	Synthesis of a monoclinic BiVO ₄ nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. RSC Advances, 2017, 7, 7547-7554.	1.7	67
497	Hollow Iron–Vanadium Composite Spheres: A Highly Efficient Ironâ€Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt. Angewandte Chemie, 2017, 129, 3337-3341.	1.6	26
498	Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. Applied Surface Science, 2017, 403, 389-395.	3.1	34
499	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
500	Analysis of charge separation processes in WO 3 -BiVO 4 composite for efficient photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2017, 789, 17-23.	1.9	22

#	Article	IF	CITATIONS
501	Photocurrent of BiVO ₄ is limited by surface recombination, not surface catalysis. Chemical Science, 2017, 8, 3712-3719.	3.7	409
502	Novel framework g-C 3 N 4 film as efficient photoanode for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2017, 209, 657-662.	10.8	76
503	Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46, 1933-1954.	18.7	427
504	3D WO ₃ /BiVO ₄ /Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Small, 2017, 13, 1603840.	5.2	105
505	Enhanced Photoelectrochemical Performance of Hydrogen Treated Hematite Thin Films Decorated with a Thin Akaganéite (βâ€FeOOH) Layer. ChemistrySelect, 2017, 2, 1413-1420.	0.7	6
506	Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Science China Materials, 2017, 60, 193-207.	3.5	57
507	Surface functionalized atomic layer deposition of bismuth vanadate for single-phase scheelite. Journal of Materials Chemistry A, 2017, 5, 6060-6069.	5.2	9
508	Interfacial Charge Transfer in Photoelectrochemical Processes. Advanced Materials Interfaces, 2017, 4, 1600981.	1.9	40
509	Plasmon-Sensitized Graphene/TiO ₂ Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 7075-7083.	4.0	121
510	Highly crystalline β-FeOOH(Cl) nanorod catalysts doped with transition metals for efficient water oxidation. Sustainable Energy and Fuels, 2017, 1, 636-643.	2.5	40
511	Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photoâ€Electrochemical Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1603904.	7.8	260
512	A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application. Carbon, 2017, 117, 343-350.	5.4	68
513	Fabrication and optical characterization of polystyrene opal templates for the synthesis of scalable, nanoporous (photo)electrocatalytic materials by electrodeposition. Journal of Materials Chemistry A, 2017, 5, 11601-11614.	5.2	32
514	Semiconductor-to-Metal Transition in Rutile TiO ₂ Induced by Tensile Strain. Chemistry of Materials, 2017, 29, 2173-2179.	3.2	19
515	Multilayer Ni/Fe thin films as oxygen evolution catalysts for solar fuel production. Journal Physics D: Applied Physics, 2017, 50, 104003.	1.3	15
516	X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis. MRS Communications, 2017, 7, 53-66.	0.8	22
517	Hollow Iron–Vanadium Composite Spheres: A Highly Efficient Ironâ€Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt. Angewandte Chemie - International Edition, 2017, 56, 3289-3293.	7.2	216
518	Readily attainable spongy foam photocatalyst for promising practical photocatalysis. Applied Catalysis B: Environmental, 2017, 208, 75-81.	10.8	43

#	Article	IF	CITATIONS
519	CaBi ₆ O ₁₀ : a novel promising photoanode for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 8545-8554.	5.2	22
520	Recent developments in complex metal oxide photoelectrodes. Journal Physics D: Applied Physics, 2017, 50, 193002.	1.3	127
521	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	4.6	106
522	Optimization of the Photoâ€Electrochemical Performance of Moâ€Doped BiVO ₄ Photoanode by Controlling the Metal–Oxygen Bond State on (020) Facet. Advanced Materials Interfaces, 2017, 4, 1601235.	1.9	44
523	Photoresponsive polyelectrolyte/mesoporous silica hybrid materials with remote-controllable ionic transportation. Chemical Engineering Journal, 2017, 322, 445-453.	6.6	12
524	Synthesis, characterization and application of BiVO 4 photoanode for photoelectrochemical oxidation of chlorate. Chinese Journal of Catalysis, 2017, 38, 710-716.	6.9	8
525	Unravelling Photocarrier Dynamics beyond the Space Charge Region for Photoelectrochemical Water Splitting. Chemistry of Materials, 2017, 29, 4036-4043.	3.2	23
526	Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Singleâ€Crystalline Fe ₂ O ₃ Nanoflake Photoelectrodes. ChemSusChem, 2017, 10, 2720-2727.	3.6	60
527	Electrospinning Preparation of Nanostructured g-C ₃ N ₄ /BiVO ₄ Composite Films with an Enhanced Photoelectrochemical Performance. Langmuir, 2017, 33, 4694-4701.	1.6	81
528	InN/InGaN quantum dot electrochemical devices: new solutions for energy and health. National Science Review, 2017, 4, 184-195.	4.6	15
529	Photoelectrochemical Oxygen Evolution Reaction Activity of Amorphous Co–La Double Hydroxide-BiVO ₄ Fabricated by Pulse Plating Electrodeposition. ACS Energy Letters, 2017, 2, 1062-1069.	8.8	51
530	Suppressing the electron–hole recombination rate in hematite photoanode with a rapid cooling treatment. Journal of Catalysis, 2017, 350, 48-55.	3.1	32
531	Enhanced Photoelectrochemical Activity by Autologous Cd/CdO/CdS Heterojunction Photoanodes with High Conductivity and Separation Efficiency. Chemistry - A European Journal, 2017, 23, 9625-9631.	1.7	14
532	Water splitting dye-sensitized solar cells. Nano Today, 2017, 14, 42-58.	6.2	174
533	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Angewandte Chemie, 2017, 129, 6683-6688.	1.6	51
534	ZnO/CdS nanorod arrays decorated by layered double hydroxides for efficient solar water oxidation. International Journal of Energy Research, 2017, 41, 1781-1789.	2.2	10
535	Capturing local structure modulations of photoexcited BiVO ₄ by ultrafast transient XAFS. Chemical Communications, 2017, 53, 7314-7317.	2.2	18
536	Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes. Scientific Reports, 2017, 7, 1303.	1.6	23

#	Article	IF	CITATIONS
537	Interface engineering of 3D BiVO ₄ /Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 9952-9959.	5.2	134
538	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 6583-6588.	7.2	66
539	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie, 2017, 129, 7015-7019.	1.6	40
540	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie - International Edition, 2017, 56, 6911-6915.	7.2	130
541	Facile Fabrication of Nanoporous Bi ₂ WO ₆ Photoanodes for Efficient Solar Water Splitting. Energy Technology, 2017, 5, 1912-1918.	1.8	18
542	Optimization of photoelectrochemical performance in chemical bath deposited nanostructured CuO. Journal of Alloys and Compounds, 2017, 695, 3655-3665.	2.8	33
543	Surface-functionalized perovskite films for stable photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 910-913.	5.2	60
544	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO ₂ Photoanode: A Rate Law Analysis. ACS Catalysis, 2017, 7, 4896-4903.	5.5	105
545	Facile synthesis and characterizations of polypyrrole/BiOCl hybrid composites. Journal of Solid State Electrochemistry, 2017, 21, 3247-3255.	1.2	12
546	An Electrochemically Treated BiVO ₄ Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie, 2017, 129, 8620-8624.	1.6	106
547	An Electrochemically Treated BiVO ₄ Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 8500-8504.	7.2	369
548	A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie, 2017, 129, 8333-8337.	1.6	29
549	A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie - International Edition, 2017, 56, 8221-8225.	7.2	130
550	Hydrothermal synthesis of pyramid-like In2S3 film for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 15085-15095.	3.8	29
551	Integration of plasmonic and amorphous effects in MoO _{3â^'x} spheres for efficient photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 12022-12026.	5.2	28
552	Hierarchically self-assembled ZnO architectures: Establishing light trapping networks for effective photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 15126-15139.	3.8	29
553	Facile synthesis of Bi 25 VO 40 nanowires for visible-light-driven photocatalysts. Materials Letters, 2017, 202, 73-77.	1.3	1
554	Monolithic Photoassisted Water Splitting Device Using Anodized Niâ€Fe Oxygen Evolution Catalytic Substrate. Advanced Energy Materials, 2017, 7, 1700659.	10.2	35

#	Article	IF	CITATIONS
555	Sonochemical synthesis of ZnOâ€ZnS coreâ€shell nanorods for enhanced photoelectrochemical water oxidation. Journal of the American Ceramic Society, 2017, 100, 3825-3834.	1.9	16
556	Amorphous ferric oxide as a hole-extraction and transfer layer on nanoporous bismuth vanadate photoanode for water oxidation. Chinese Journal of Catalysis, 2017, 38, 1045-1051.	6.9	5
557	Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606570.	11.1	441
558	Simple solid-state synthesis and improved performance of Ni(OH)2-TiO2 nanocomposites for photocatalytic H2 production. Ceramics International, 2017, 43, 11109-11115.	2.3	20
559	Carbon Quantum Dots Decorated C ₃ N ₄ /TiO ₂ Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of the Electrochemical Society, 2017, 164, H515-H520.	1.3	22
560	Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO ₄ Photoanode for Unassisted Solar Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 22449-22455.	4.0	24
561	Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 2017, 46, 4645-4660.	18.7	1,140
562	An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity. Chemical Engineering Journal, 2017, 326, 603-611.	6.6	73
563	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
564	3D nanostructured WO ₃ /BiVO ₄ heterojunction derived from Papilio paris for efficient water splitting. RSC Advances, 2017, 7, 27354-27360.	1.7	27
565	Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes. Applied Catalysis B: Environmental, 2017, 217, 615-621.	10.8	17
566	Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI. Journal of Alloys and Compounds, 2017, 721, 784-794.	2.8	32
567	Insight into Charge Separation in WO ₃ /BiVO ₄ Heterojunction for Solar Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 19780-19790.	4.0	142
568	Interfacial defect engineering over fusiform bismuth vanadate photocatalyst enables to excellent solar-to-chemical energy coupling. RSC Advances, 2017, 7, 26717-26721.	1.7	16
569	Ultrathin CoOx-modified hematite with low onset potential for solar water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 14178-14184.	1.3	24
570	Hydrogen and electricity production in a light-assisted microbial photoelectrochemical cell with CaFe ₂ O ₄ photocathode. Journal of Photonics for Energy, 2017, 7, 026501.	0.8	7
571	Temperature-controlled evolution of microstructures that promote charge separation in a TaON photoanode for enhanced solar energy conversion. Journal of Materials Chemistry A, 2017, 5, 12848-12855.	5.2	24
572	Se doping: an effective strategy toward Fe ₂ O ₃ nanorod arrays for greatly enhanced solar water oxidation. Journal of Materials Chemistry A, 2017, 5, 12086-12090.	5.2	78

#	Article	IF	CITATIONS
573	Recent Advances in Surfactantâ€Free, Surfaceâ€Charged, and Defectâ€Rich Catalysts Developed by Laser Ablation and Processing in Liquids. ChemNanoMat, 2017, 3, 512-533.	1.5	103
574	Near-complete suppression of surface losses and total internal quantum efficiency in BiVO ₄ photoanodes. Energy and Environmental Science, 2017, 10, 1517-1529.	15.6	159
575	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€/Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	11.1	79
576	Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO ₂ –SrTiO ₃ Core–Shell Nanowire Photoelectrochemical System. Advanced Materials, 2017, 29, 1701432.	11.1	165
577	Insight into the origin of the limited activity and stability of p-Cu2O films in photoelectrochemical proton reduction. Electrochimica Acta, 2017, 245, 259-267.	2.6	26
578	Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Applied Catalysis B: Environmental, 2017, 217, 21-29.	10.8	134
579	Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. Journal of Catalysis, 2017, 352, 113-119.	3.1	35
580	Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes. Langmuir, 2017, 33, 9262-9270.	1.6	47
581	Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chemical Engineering Journal, 2017, 326, 411-418.	6.6	106
582	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1700555.	10.2	455
583	Recent Advances in Bismuthâ€Based Nanomaterials for Photoelectrochemical Water Splitting. ChemSusChem, 2017, 10, 3001-3018.	3.6	117
584	Doping strategy to promote the charge separation in BiVO4 photoanodes. Applied Catalysis B: Environmental, 2017, 211, 258-265.	10.8	156
585	A Scheelite-type semiconductor InBi3(MoO6)2 nanoparticles: Preparation, structural and optical properties. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 263-271.	2.7	5
586	Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30} _{<i>n</i>} Based Soft Oxometalate. Journal of Molecular and Engineering Materials, 2017, 05, 1750001.	0.9	7
587	Photoelectrochemical Hydrogen Peroxide Production from Water on a WO ₃ /BiVO ₄ Photoanode and from O ₂ on an Au Cathode Without External Bias. Chemistry - an Asian Journal, 2017, 12, 1111-1119.	1.7	128
588	Emerging Earth-abundant materials for scalable solar water splitting. Current Opinion in Electrochemistry, 2017, 2, 120-127.	2.5	17
589	Photoanode with Enhanced Performance Achieved by Coating BiVO4 onto ZnO-Templated Sb-Doped SnO2 Nanotube Scaffold. ACS Applied Materials & amp; Interfaces, 2017, 9, 11356-11362.	4.0	33
590	Spontaneous phase transition of hexagonal wurtzite CoO: application to electrochemical and photoelectrochemical water splitting. Chemical Communications, 2017, 53, 4120-4123.	2.2	16

#	Article	IF	CITATIONS
591	Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting. Nano Energy, 2017, 35, 171-178.	8.2	93
592	Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu ₃ V ₂ O ₈ Thin Films. Chemistry of Materials, 2017, 29, 3334-3345.	3.2	60
593	Direct Liquid Injection Chemical Vapor Deposition of Molybdenum-Doped Bismuth Vanadate Photoelectrodes for Efficient Solar Water Splitting. Journal of Physical Chemistry C, 2017, 121, 5914-5924.	1.5	27
594	Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy, 2017, 2, .	19.8	217
595	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	5.2	137
596	Self-surface-passivation of titanium doped hematite photoanode for efficient solar water and formaldehyde oxidation. Materials Research Bulletin, 2017, 96, 354-359.	2.7	14
597	Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 11078-11109.	3.8	129
598	Solarâ€Waterâ€Splitting BiVO ₄ Thinâ€Film Photoanodes Prepared By Using a Sol–Gel Dipâ€Coati Technique. ChemPhotoChem, 2017, 1, 273-280.	ng 1.5	31
599	Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 2017, 210, 235-254.	10.8	359
600	Efficient Charge Separation of Inâ€5itu Nbâ€Doped TiO ₂ Nanowires for Photoelectrochemical Water–splitting. ChemistrySelect, 2017, 2, 2822-2827.	0.7	12
601	Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nature Materials, 2017, 16, 646-651.	13.3	418
602	Effects of a SnO ₂ hole blocking layer in a BiVO ₄ -based photoanode on photoelectrocatalytic water oxidation. Journal of Materials Chemistry A, 2017, 5, 6905-6913.	5.2	107
603	Three-Dimensional FTO/TiO ₂ /BiVO ₄ Composite Inverse Opals Photoanode with Excellent Photoelectrochemical Performance. ACS Energy Letters, 2017, 2, 813-821.	8.8	143
604	Microwave-assisted synthesis of a nanoamorphous (Ni _{0.8} ,Fe _{0.2}) oxide oxygen-evolving electrocatalyst containing only "fast―sites. Journal of Materials Chemistry A, 2017, 5, 11661-11670.	5.2	36
605	Artificial Photosynthesis of Alcohols by Multiâ€Functionalized Semiconductor Photocathodes. ChemSusChem, 2017, 10, 1742-1748.	3.6	19
606	Enhanced Photoelectrochemical Performance of Porous Bi ₂ MoO ₆ Photoanode by an Electrochemical Treatment. Journal of the Electrochemical Society, 2017, 164, H299-H306.	1.3	15
607	Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13, 23-39.	6.2	266
608	WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4. NPG Asia Materials, 2017, 9,	3.8	52

#	Article	IF	CITATIONS
609	Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy, 2017, 35, 92-100.	8.2	67
610	Simple preparation of highly active water splitting FTO/BiVO ₄ photoanode modified with tri-layer water oxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 6825-6831.	5.2	36
611	PlasmonicAuâ€TiO ₂ /ZnOCore–Shell Nanorod Array Photoanode for Visibleâ€Lightâ€Driven Photoelectrochemical Water Splitting. Energy Technology, 2017, 5, 1599-1605.	1.8	15
612	Topochemical synthesis and photocatalytic activity of 3D hierarchical BaTiO ₃ microspheres constructed from crystal-axis-oriented nanosheets. Dalton Transactions, 2017, 46, 5017-5024.	1.6	27
613	Nitrogen-doped carbon encapsulating Î ³ -MoC/Ni heterostructures for efficient oxygen evolution electrocatalysts. Nanoscale, 2017, 9, 5583-5588.	2.8	66
614	Pd-decorated m-BiVO ₄ /BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 529-534.	5.2	72
615	Investigating the behavior of various cocatalysts on LaTaON ₂ photoanode for visible light water splitting. Physical Chemistry Chemical Physics, 2017, 19, 656-662.	1.3	33
616	Photoelectrochemical Properties and Behavior of α-SnWO ₄ Photoanodes Synthesized by Hydrothermal Conversion of WO ₃ Films. ACS Applied Materials & Interfaces, 2017, 9, 1459-1470.	4.0	42
617	Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. Advanced Materials, 2017, 29, 1605308.	11.1	189
618	Facile synthesis of Fe ³⁺ /Fe ²⁺ self-doped nanoporous FeVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 2478-2482.	5.2	43
619	Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2017, 7, 675-688.	5.5	488
620	Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes. ACS Energy Letters, 2017, 2, 139-150.	8.8	105
621	Ultrathin graphitic C3N4 nanosheets as highly efficient metal-free cocatalyst for water oxidation. Applied Catalysis B: Environmental, 2017, 205, 19-23.	10.8	105
622	Mechanism of enhancing visible-light photocatalytic activity of BiVO ₄ via hybridization of graphene based on a first-principles study. RSC Advances, 2017, 7, 4395-4401.	1.7	26
623	Controlled synthesis of Fe 2 O 3 modified Ag- 010 BiVO 4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation. Applied Surface Science, 2017, 399, 1-9.	3.1	32
624	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8407-8411.	7.2	421
625	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie, 2017, 129, 8527-8531.	1.6	44
626	Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH) ₂ Annihilation and Oxygen Vacancy Generation by Vacuum Annealing. ACS Applied Materials & Interfaces, 2017, 9, 2317-2325.	4.0	100

#	Article	IF	CITATIONS
627	N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4, 537-540.	3.0	86
628	MgTi2O5 thin films from single molecular precursor for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 161, 328-337.	3.0	30
629	Assessing the Suitability of Iron Tungstate (Fe ₂ WO ₆) as a Photoelectrode Material for Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 153-160.	1.5	49
630	BiVO ₄ /WO ₃ /SnO ₂ Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 1479-1487.	4.0	158
631	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalystÂregeneration. Nature Energy, 2017, 2, .	19.8	298
632	A Flexible Webâ€Based Approach to Modeling Tandem Photocatalytic Devices. Solar Rrl, 2017, 1, e201600013.	3.1	22
633	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	13.3	1,163
634	Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028.	5.2	140
635	A CoOx-modified SnNb2O6photoelectrode for highly efficient oxygen evolution from water. Chemical Communications, 2017, 53, 629-632.	2.2	33
636	Stable organic-inorganic hybrid multilayered photoelectrochemical cells. Journal of Power Sources, 2017, 341, 411-418.	4.0	17
637	Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes. ChemSusChem, 2017, 10, 4552-4560.	3.6	33
638	Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters, 2017, 17, 6735-6741.	4.5	164
639	Conductive layer protected and oxide catalyst-coated thin-film silicon solar cell as an efficient photoanode. Catalysis Science and Technology, 2017, 7, 5608-5613.	2.1	7
640	Surface and Interface Engineering for Photoelectrochemical Water Oxidation. Joule, 2017, 1, 290-305.	11.7	156
641	Plasmonically-assisted nanoarchitectures for solar water splitting: Obstacles and breakthroughs. Nano Today, 2017, 16, 61-81.	6.2	57
642	Cobalt Hexacyanoferrate on BiVO ₄ Photoanodes for Robust Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 37671-37681.	4.0	109
643	Mechanistic understanding on oxygen evolution reaction on Î ³ -FeOOH (010) under alkaline condition based on DFT computational study. Chinese Journal of Catalysis, 2017, 38, 1621-1628.	6.9	17
644	Mo6+ Doped BiVO4 with improved Charge Separation and Oxidation Kinetics for Photoelectrochemical Water Splitting. Electrochimica Acta, 2017, 256, 268-277.	2.6	58

#	Article	IF	CITATIONS
645	Electrospun BiVO ₄ nanobelts with tailored structures and their enhanced photocatalytic/photoelectrocatalytic activities. CrystEngComm, 2017, 19, 6252-6258.	1.3	23
646	Reverse Electrodialysis-Assisted Solar Water Splitting. Scientific Reports, 2017, 7, 12281.	1.6	7
647	Enhancement of photoelectrochemical oxidation by an amorphous nickel boride catalyst on porous BiVO ₄ . Nanoscale, 2017, 9, 16133-16137.	2.8	50
648	Improved Surface Charge Transfer in MoO3/BiVO4 Heterojunction Film for Photoelectrochemical Water Oxidation. Electrochimica Acta, 2017, 257, 181-191.	2.6	53
649	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	4.0	40
650	WO ₃ /BiVO ₄ photoanode coated with mesoporous Al ₂ O ₃ layer for oxidative production of hydrogen peroxide from water with high selectivity. RSC Advances, 2017, 7, 47619-47623.	1.7	72
651	Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 54-82.	5.6	101
652	Three-Dimensional Lupinus-like TiO ₂ Nanorod@Sn ₃ O ₄ Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. ACS Applied Materials & Interfaces, 2017, 9, 38537-38544.	4.0	59
653	Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy, 2017, 42, 90-97.	8.2	33
654	Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment. Advanced Energy Materials, 2017, 7, 1701536.	10.2	104
655	In Situ Structural Study of MnP _i -Modified BiVO ₄ Photoanodes by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 19668-19676.	1.5	26
656	Metal–Organic-Framework-Derived Yolk–Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 31777-31785.	4.0	58
657	Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 30696-30702.	4.0	34
658	High-efficient TiO ₂ NRs/BiOI NSs heterojunction photoanodes for photoelectrochemical water splitting. Materials Technology, 2017, 32, 823-828.	1.5	4
659	Roadmap on solar water splitting: current status and future prospects. Nano Futures, 2017, 1, 022001.	1.0	159
660	Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy, 2017, 40, 308-316.	8.2	346
661	Recent Advances in Nanostructured Vanadium Oxides and Composites for Energy Conversion. Advanced Energy Materials, 2017, 7, 1700885.	10.2	196
662	Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO ₄ by Shapeâ€Controlled Au Nanoparticles. Small, 2017, 13, 1701644.	5.2	52
#	Article	IF	CITATIONS
-----	---	------	-----------
663	Significantly improved charge collection and interface injection in 3D BiVO ₄ based multilayered core–shell nanowire photocatalysts. Nanoscale, 2017, 9, 14015-14022.	2.8	23
664	Giant Incident Photonâ€to urrent Conversion with Photoconductivity Gain on Nanostructured Bismuth Oxysulfide Photoelectrodes under Visible‣ight Illumination. Advanced Materials, 2017, 29, 1702387.	11.1	29
665	Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy. Materials Chemistry and Physics, 2017, 201, 189-193.	2.0	31
666	Enhancing Photoelectrochemical Water Oxidation Efficiency of BiVO ₄ Photoanodes by a Hybrid Structure of Layered Double Hydroxide and Graphene. Industrial & Engineering Chemistry Research, 2017, 56, 10711-10719.	1.8	67
667	Design and Fabrication of a Precious Metalâ€Free Tandem Core–Shell p ⁺ n Si/Wâ€Doped BiVO ₄ Photoanode for Unassisted Water Splitting. Advanced Energy Materials, 2017, 7, 1701515.	10.2	79
668	The solution-phase process of a g-C ₃ N ₄ /BiVO ₄ dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. Chemical Communications, 2017, 53, 10544-10547.	2.2	19
669	In situ growth of a TiO ₂ layer on a flexible Ti substrate targeting the interface recombination issue of BiVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 20195-20201.	5.2	22
670	Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. Journal of Physical Chemistry C, 2017, 121, 19044-19052.	1.5	39
671	Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution. Small, 2017, 13, 1701875.	5.2	66
672	Enhanced Photoactivity from Singleâ€Crystalline SrTaO ₂ N Nanoplates Synthesized by Topotactic Nitridation. Angewandte Chemie - International Edition, 2017, 56, 14169-14173.	7.2	31
673	BiVO ₄ hollow microplates: controlled synthesis and enhanced photocatalytic activity achieved through one-step boron doping and Co(OH) ₂ loading. CrystEngComm, 2017, 19, 6305-6313.	1.3	21
674	Earth-abundant elements doping for robust and stable solar-driven water splitting by FeOOH. Journal of Materials Chemistry A, 2017, 5, 21478-21485.	5.2	54
675	Mo-doped BiVO ₄ thin films – high photoelectrochemical water splitting performance achieved by a tailored structure and morphology. Sustainable Energy and Fuels, 2017, 1, 1830-1846.	2.5	72
676	Aerobic oxidation of benzyl alcohols to benzaldehydes using monoclinic bismuth vanadate nanoparticles under visible light irradiation: Photocatalysis selectivity and inhibition. Journal of Catalysis, 2017, 354, 152-159.	3.1	36
677	Balsam-pear-like rutile/anatase core/shell titania nanorod arrays for photoelectrochemical water splitting. Nanotechnology, 2017, 28, 465602.	1.3	12
678	Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano, 2017, 11, 10303-10312.	7.3	187
679	Phosphorus and Fluorine Coâ€Doping Induced Enhancement of Oxygen Evolution Reaction in Bimetallic Nitride Nanorods Arrays: Ionic Liquidâ€Driven and Mechanism Clarification. Chemistry - A European Journal, 2017, 23, 16862-16870.	1.7	41
680	Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 78-84.	3.2	50

#	Article	IF	CITATIONS
681	Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo:BiVO ₄ photoelectrodes. Catalysis Science and Technology, 2017, 7, 4971-4976.	2.1	41
682	One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation. Scientific Reports, 2017, 7, 8404.	1.6	78
683	Enhanced photocatalytic activity of nanoporous BiVO 4 /MCM-41 co-joined nanocomposites for solar energy conversion and environmental pollution abatement. Journal of Environmental Chemical Engineering, 2017, 5, 4524-4530.	3.3	10
684	One-Pot Synthesis of Nickel-Modified Carbon Nitride Layers Toward Efficient Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2017, 9, 32667-32677.	4.0	66
685	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron oupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	1.7	19
686	Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. Semiconductors and Semimetals, 2017, , 3-46.	0.4	16
687	Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy and Environmental Science, 2017, 10, 2124-2136.	15.6	185
688	One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 17056-17063.	5.2	55
689	New Understanding on Photocatalytic Mechanism of Nitrogen-Doped Graphene Quantum Dots-Decorated BiVO ₄ Nanojunction Photocatalysts. ACS Omega, 2017, 2, 3766-3773.	1.6	36
690	Laser-Induced Surface Modification at Anatase TiO ₂ Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 17121-17128.	1.5	34
691	Light-Driven Catalytic Upgrading of Butanol in a Biohybrid Photoelectrochemical System. ACS Sustainable Chemistry and Engineering, 2017, 5, 8199-8204.	3.2	16
692	Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes. Electrochemistry Communications, 2017, 82, 47-51.	2.3	42
693	Nanodome Structured BiVO ₄ /GaO <i>_x</i> N _{1â^'} <i>_x</i> Photoanode for Solar Water Oxidation. Advanced Materials Interfaces, 2017, 4, 1700323.	1.9	25
694	Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO ₄ Photoanode for Solar-Assisted Water Electrolysis. Journal of Physical Chemistry C, 2017, 121, 17150-17159.	1.5	39
695	Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting. Nanotechnology, 2017, 28, 395403.	1.3	11
696	Optical and photoelectrochemical characterization of pulsed laser deposited Bi4V2O11, BICUVOX, and BIZNVOX. Thin Solid Films, 2017, 638, 251-257.	0.8	11
697	Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe ₂ . Chemistry of Materials, 2017, 29, 6863-6875.	3.2	45
698	Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-B i Co-Catalyst for a Hematite Photoanode. Engineering, 2017, 3, 285-289.	3.2	44

#	Article	IF	CITATIONS
699	Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting. Journal of Alloys and Compounds, 2017, 726, 1138-1146.	2.8	23
700	Vastly Enhanced BiVO ₄ Photocatalytic OER Performance by NiCoO ₂ as Cocatalyst. Advanced Materials Interfaces, 2017, 4, 1700540.	1.9	92
701	Interfaceâ€Engineered Ni(OH) ₂ ∫î²â€like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2720-2726.	1.7	43
702	Bifuntional petaloid nickel manganese layered double hydroxides decorated on a freestanding carbon foam for flexible asymmetric supercapacitor and oxygen evolution. Electrochimica Acta, 2017, 252, 275-285.	2.6	30
703	Interface Control of Photoelectrochemical Water Oxidation Performance with Ni _{1–<i>x</i>} Fe _{<i>x</i>} O _{<i>y</i>} Modified Hematite Photoanodes. Chemistry of Materials, 2017, 29, 6674-6683.	3.2	61
704	Theoretical Insight into the Mechanism of Photoelectrochemical Oxygen Evolution Reaction on BiVO ₄ Anode with Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 18702-18709.	1.5	89
705	Enhanced Photoelectrochemical Water Oxidation Performance of Fe ₂ O ₃ Nanorods Array by S Doping. ACS Sustainable Chemistry and Engineering, 2017, 5, 7502-7506.	3.2	120
706	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	5.2	55
707	Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 30654-30661.	4.0	52
708	Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite. ACS Central Science, 2017, 3, 1015-1025.	5.3	61
709	Compact carbon nitride based copolymer films with controllable thickness for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 19062-19071.	5.2	43
710	An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting. Nano Letters, 2017, 17, 5416-5422.	4.5	46
711	Transformation of homobimetallic MOFs into nickel–cobalt phosphide/nitrogen-doped carbon polyhedral nanocages for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 18839-18844.	5.2	99
712	Scalable Low-Band-Cap Sb ₂ Se ₃ Thin-Film Photocathodes for Efficient Visible–Near-Infrared Solar Hydrogen Evolution. ACS Nano, 2017, 11, 12753-12763.	7.3	127
713	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
714	Significant photoelectrochemical enhancement of TiO2 photoanodes from Ni(OH)2 electrocatalyst overcoating. Materials Research Express, 2017, 4, 126202.	0.8	4
715	Enhanced Photoactivity from Singleâ€Crystalline SrTaO ₂ N Nanoplates Synthesized by Topotactic Nitridation. Angewandte Chemie, 2017, 129, 14357-14361.	1.6	10
716	Facile Preparation of Porous WO3 Film for Photoelectrochemical Splitting of Natural Seawater. Journal of Electronic Materials, 2017, 46, 6878-6883.	1.0	10

#	Article	IF	CITATIONS
717	Efficient Photoelectrochemical O ₂ and CO Production Using BiVO ₄ Water Oxidation Photoanode and CO ₂ Reduction Au Nanoparticle Cathode Prepared by In Situ Deposition from Au ³⁺ Containing Solution. Advanced Sustainable Systems, 2017, 1, 1700111.	2.7	11
718	Chlorophyll sensitized BiVO 4 as photoanode for solar water splitting and CO 2 conversion. Chinese Chemical Letters, 2017, 28, 2254-2258.	4.8	26
719	Up-conversion luminescence coupled to plasmonic gold nanorods for light harvesting and hydrogen production. Chemical Communications, 2017, 53, 13051-13054.	2.2	9
720	Photochemical metal organic deposition of FeO x catalyst on BiVO 4 for improving solar-driven water oxidation efficiency. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 1014-1021.	2.7	13
721	Investigation of Pristine and (Mo, W)-Doped Cu ₁₁ V ₆ O ₂₆ for Use as Photoanodes for Solar Water Splitting. Chemistry of Materials, 2017, 29, 9472-9479.	3.2	42
722	Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. ChemSusChem, 2017, 10, 4277-4305.	3.6	75
723	Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS Applied Materials & Interfaces, 2017, 9, 40151-40161.	4.0	61
724	Why is surface diffusion the same in ultrastable, ordinary, aged, and ultrathin molecular glasses?. Physical Chemistry Chemical Physics, 2017, 19, 29905-29912.	1.3	17
725	Understanding Photocharging Effects on Bismuth Vanadate. ACS Applied Materials & Interfaces, 2017, 9, 22083-22087.	4.0	47
726	CoO _x nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chemical Science, 2017, 8, 6111-6116.	3.7	59
727	Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO ₄ : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.	5.2	364
728	Sputtering gold nanoparticles on nanoporous bismuth vanadate for sensitive and selective photoelectrochemical aptasensing of thrombin. Chemical Communications, 2017, 53, 8898-8901.	2.2	32
729	Controlling the amount of co-catalyst as a critical factor in determining the efficiency of photoelectrodes: The case of nickel (II) hydroxide on vanadate photoanodes. Applied Catalysis B: Environmental, 2017, 217, 437-447.	10.8	24
730	A newly designed porous oxynitride photoanode with enhanced charge carrier mobility. Nano Energy, 2017, 39, 172-182.	8.2	21
731	Heterostructured bismuth vanadate multi-shell hollow spheres with high visible-light-driven photocatalytic activity. Materials Research Bulletin, 2017, 86, 44-50.	2.7	48
732	Improved photoelectrochemical performance of bismuth vanadate by partial O/F-substitution. Solid State Sciences, 2017, 63, 1-8.	1.5	19
733	Chromium doped copper vanadate photoanodes for water splitting. Catalysis Today, 2017, 290, 65-72.	2.2	32
734	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176

#		IE	CITATIONS
#	The charge transfer mechanism of Bi modified TiO 2 nanotube arrays: TiO 2 serving as a	IF	CHATIONS
735	"charge-transfer-bridge― Nano Energy, 2017, 31, 96-104.	8.2	103
736	Surface modification of NiCdO barrier layer in complex photoanodes and TiO2 protective coating for efficient and stabile water dissociation. Journal of Solid State Electrochemistry, 2017, 21, 803-812.	1.2	Ο
737	Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2â^'x heterojunction. Applied Catalysis B: Environmental, 2017, 203, 526-532.	10.8	82
738	New insight into the roles of oxygen vacancies in hematite for solar water splitting. Physical Chemistry Chemical Physics, 2017, 19, 1074-1082.	1.3	69
739	A Nonâ€enzymatic Hydrogen Peroxide Photoelectrochemical Sensor Based on a BiVO ₄ Electrode. Electroanalysis, 2017, 29, 305-311.	1.5	33
740	Comparative study between pristine and Nb-modified BiVO 4 films employed for photoelectrocatalytic production of H 2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light. Catalysis Today, 2017, 280, 51-57.	2.2	50
741	Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Advanced Energy Materials, 2017, 7, 1600923.	10.2	61
742	BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications. Nano-Micro Letters, 2017, 9, 14.	14.4	66
743	Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes. Chemistry of Materials, 2017, 29, 355-370.	3.2	112
744	Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co _{3–<i>x</i>} Cr _{<i>x</i>} O ₄ Spinel Catalysts. ACS Catalysis, 2017, 7, 443-451.	5.5	92
745	Broadband <scp>NIR</scp> photoelectronic performance for sunlightâ€induced photocurrent from (Na <scp>YF</scp> ₄ :Ybâ€Er)/Bi <scp>OI</scp> hybrid films. Journal of the American Ceramic Society, 2017, 100, 697-704.	1.9	12
746	Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. International Journal of Hydrogen Energy, 2017, 42, 5496-5504.	3.8	67
747	Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance. Journal of Hazardous Materials, 2017, 321, 464-472.	6.5	80
748	Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for photoelectrocatalytic overall water splitting. Chinese Journal of Catalysis, 2017, 38, 2132-2140.	6.9	37
749	A Green Desulfurization Technique: Utilization of Flue Gas SO2 to Produce H2 via a Photoelectrochemical Process Based on Mo-Doped BiVO4. Frontiers in Chemistry, 2017, 5, 114.	1.8	12
750	Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts, 2017, 7, 13.	1.6	202
751	Hydrothermal Carbonation Carbon-Coated CdS Nanocomposite with Enhanced Photocatalytic Activity and Stability. Catalysts, 2017, 7, 194.	1.6	19
752	Characteristics of NixFe1â^'xOy Electrocatalyst on Hematite as Photoanode for Solar Hydrogen Production. Catalysts, 2017, 7, 350.	1.6	4

#	Article	IF	CITATIONS
753	Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. Advances in Catalysis, 2017, 60, 1-57.	0.1	72
754	Photoelectrochemical oxidation of organic substrates in organic media. Nature Communications, 2017, 8, 390.	5.8	123
755	Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO ₄ with W doping. Beilstein Journal of Nanotechnology, 2017, 8, 2640-2647.	1.5	19
756	Water Splitting and CO ₂ Reduction using Metal Oxide and Sulfide Photocatalyst Materials. Hyomen Kagaku, 2017, 38, 268-273.	0.0	0
757	Unassisted Water Splitting Using a GaSb x P (1â^' x) Photoanode. Advanced Energy Materials, 2018, 8, 1703247.	10.2	17
758	Photoelectrochemical overall water splitting with textured CuBi ₂ O ₄ as a photocathode. Chemical Communications, 2018, 54, 3331-3334.	2.2	72
759	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	4.0	38
760	Challenges and Prospects in Solar Water Splitting and CO ₂ Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis, 2018, 8, 3602-3635.	5.5	365
761	pH-Dependent Catalytic Reaction Pathway for Water Splitting at the BiVO ₄ –Water Interface from the Band Alignment. ACS Energy Letters, 2018, 3, 829-834.	8.8	41
762	Anomalous Conductivity Tailored by Domain-Boundary Transport in Crystalline Bismuth Vanadate Photoanodes. Chemistry of Materials, 2018, 30, 1677-1685.	3.2	35
763	Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. Journal of Catalysis, 2018, 360, 240-249.	3.1	114
764	Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy, 2018, 47, 463-473.	8.2	189
765	Surface- and interface-engineered heterostructures for solar hydrogen generation. Journal Physics D: Applied Physics, 2018, 51, 163002.	1.3	16
766	Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Applied Materials & Interfaces, 2018, 10, 10627-10633.	4.0	65
767	pH-Dependent Surface Chemistry from First Principles: Application to the BiVO ₄ (010)–Water Interface. ACS Applied Materials & Interfaces, 2018, 10, 10011-10021.	4.0	46
768	A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 234, 19-25.	10.8	61
769	MoS ₂ nanosheet/ZnO nanowire hybrid nanostructures for photoelectrochemical water splitting. Journal of the American Ceramic Society, 2018, 101, 3989-3996.	1.9	32
772	Probing the Performance Limitations in Thin-Film FeVO ₄ Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2018, 122, 9773-9782.	1.5	32

ARTICLE IF CITATIONS An investigation on the role of W doping in BiVO₄ photoanodes used for solar water 773 1.3 38 splitting. Physical Chemistry Chemical Physics, 2018, 20, 13637-13645. Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today, 774 6.2 2018, 20, 33-57. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating 775 1.5 15 with MoS2 nanosheets. Applied Physics Letters, 2018, 112, . Chapter 4. Unravelling the Charge Transfer Mechanism in Water Splitting Hematite Photoanodes. RSC 0.2 Energy and Environment Series, 2018, , 100-127. Chapter 6. Emerging Semiconductor Oxides for Direct Solar Water Splitting. RSC Energy and 777 0.2 3 Environment Series, 2018, , 163-182. Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes. Journal of Power Sources, 2018, 391, 34-40. 778 4.0 The "Midas Touch―Transformation of TiO₂ Nanowire Arrays during Visible Light 779 Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation. Advanced Energy Materials, 10.2 77 2018, 8, 1800165. Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS₂/BiVO₄ p–n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting. ACS Sustainable 3.2 Chemistry and Engineering, 2018, 6, 6378-6387 Photoactivity and Stability of WO₃/BiVO₄ Photoanodes: Effects of the 781 Contact Electrolyte and of Ni/Fe Oxyhydroxide Protection. Journal of Physical Chemistry C, 2018, 122, 22 1.5 13969-13978. Two-step electrodeposition to fabricate the p–n heterojunction of a Cu₂O/BiVO₄ photoanode for the enhancement of photoelectrochemical water splitting. Dalton Transactions, 2018, 47, 6763-6771. 1.6 Tracking the Dynamic Folding and Unfolding of RNA Gâ€Quadruplexes in Live Cells. Angewandte Chemie, 783 1.6 27 2018, 130, 4792-4796. Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the 784 10.8 enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 202-212. Artificial Photosynthesis of Methanol by Mn:CdS and CdSeTe Quantum Dot Cosensitized Titania 785 1.8 15 Photocathode in Imineâ€Based Ionic Liquid Aqueous Solution. ChemCatChem, 2018, 10, 3342-3350. Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust 15.6 114 CIGS photocathodes for solar water splitting. Energy and Environmental Science, 2018, 11, 2025-2034. Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene 787 15.6 56 as photocathode at high pH in a full-cell setup. Energy and Environmental Science, 2018, 11, 1335-1342. Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179. 182 In situ synthesis of a novel organic-inorganic composite as a non-noble metal electrocatalyst for the 789 3.8 12 oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 8267-8277. n-Type Cu₂O/α-Fe₂O₃ Heterojunctions by Electrochemical 790 Deposition: Tuning of Cu₂O Thickness for Maximum Photoelectrochemical Performance. 1.4 Zeitschrift Fur Physikalische Chemie, 2018, 232, 1551-1566.

#	Article	IF	CITATIONS
791	Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2557-2563.	1.0	14
792	Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 1873-1879.	3.6	33
793	Enhancing the photoelectrochemical performance of BiVO4 by decorating only its (040) facet with self-assembled Ag@AgCl QDs. Journal of Solid State Electrochemistry, 2018, 22, 2425-2434.	1.2	8
794	Photoelectrode for water splitting: Materials, fabrication and characterization. Science China Materials, 2018, 61, 806-821.	3.5	44
795	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China Materials, 2018, 61, 771-805.	3.5	172
796	Efficient photocatalytic degradation of gaseous acetaldehyde over ground Rh–Sb co-doped SrTiO ₃ under visible light irradiation. RSC Advances, 2018, 8, 5331-5337.	1.7	23
797	A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Science China Materials, 2018, 61, 887-894.	3.5	69
798	Insight into the influence of high temperature annealing on the onset potential of Ti-doped hematite photoanodes for solar water splitting. Chinese Chemical Letters, 2018, 29, 791-794.	4.8	6
799	Enhanced Photoelectrochemical Water Splitting of Photoelectrode Simultaneous Decorated with Cocatalysts Based on Spatial Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 3565-3574.	3.2	80
800	Enhanced Charge Injection and Collection of Niobium-Doped TiO ₂ /Gradient Tungsten-Doped BiVO ₄ Nanowires for Efficient Solar Water Splitting. ACS Applied Energy Materials, 2018, 1, 1218-1225.	2.5	17
801	Operando Investigation of Mn ₃ O _{4+δ} Co-catalyst on Fe ₂ O ₃ Photoanode: Manganese-Valency-Determined Enhancement at Varied Potentials. ACS Applied Energy Materials, 2018, 1, 814-821.	2.5	21
802	Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 6228-6234.	4.0	87
803	Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Frontiers of Chemical Science and Engineering, 2018, 12, 409-416.	2.3	15
804	Strongly Coupled Metal Oxide/Reassembled Carbon Nitride/Co–Pi Heterostructures for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 6424-6432.	4.0	50
805	Recent Progress on Photoâ€Electrocatalytic Reduction of Carbon Dioxide. Particle and Particle Systems Characterization, 2018, 35, 1700371.	1.2	79
806	Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting. Journal of the American Chemical Society, 2018, 140, 3250-3256.	6.6	224
807	A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation. Nanoscale, 2018, 10, 3225-3234.	2.8	25
808	Concentrated solar light for rapid crystallization of nanomaterials and extreme enhancement of photoelectrochemical performance. Chemical Communications, 2018, 54, 2373-2376.	2.2	4

		CITATION RE	EPORT	
#	Article		IF	Citations
809	Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanosca an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem, 2018, 2, 332-339.	e Porosity as	1.5	4
810	Anisotropic Electronic Characteristics, Adsorption, and Stability of Low-Index BiVO <sub Surfaces for Photoelectrochemical Applications. ACS Applied Materials & amp; Interfaces 5475-5484.</sub 	>4 s, 2018, 10,	4.0	93
811	VISIBLE-LIGHT-DRIVEN PHOTOCATALYSIS., 2018, , 109-173.			0
812	Enhanced charge separation and transfer by Bi 2 MoO 6 @Bi 2 Mo 2 O 9 compound usi photoelectrochemical water oxidation. Electrochimica Acta, 2018, 264, 26-35.	ng SILAR for	2.6	32
813	Adjusting the Anisotropy of 1D Sb ₂ Se ₃ Nanostructures for H Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1702888.	ighly Efficient	10.2	89
814	Rapid Formation of a Disordered Layer on Monoclinic BiVO ₄ : Coâ€Catalyst Photoelectrochemical Solar Water Splitting. ChemSusChem, 2018, 11, 933-940.	â€Free	3.6	34
815	Fuelâ€Free Bioâ€photoelectrochemical Cells Based on a Water/Oxygen Circulation Syst Ni:FeOOH/BiVO ₄ Photoanode. Angewandte Chemie, 2018, 130, 1563-156	em with a 7.	1.6	10
816	Fuelâ€Free Bioâ€photoelectrochemical Cells Based on a Water/Oxygen Circulation Syst Ni:FeOOH/BiVO ₄ Photoanode. Angewandte Chemie - International Edition	em with a , 2018, 57, 1547-1551.	7.2	47
817	Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 226, 4	n-efficient 121-428.	10.8	54
818	FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical j for water splitting. Chemical Engineering Journal, 2018, 337, 506-514.	performance	6.6	86
819	Design and fabrication of BiV(O, N)4 p-n homojunction solid solutions for enhanced me degradation via LED light irradiation. Solar Energy, 2018, 160, 298-302.	thylene blue	2.9	5
820	Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passiva Chemistry of Materials, 2018, 30, 324-335.	tion.	3.2	29
821	Preparation of a BiVO ₄ nanoporous photoanode based on peroxovanadate conversion for efficient photoelectrochemical performance. Nanoscale, 2018, 10, 2848	e reduction and 2855.	2.8	28
822	Photoelectrochemical Stripping Analysis. Analytical Chemistry, 2018, 90, 1068-1071.		3.2	21
823	Atomically Thin Mesoporous In ₂ O _{3–} <i>_x</i> /In ₂ S _{3Heterostructures Enabling Robust Broadband‣ight Photoâ€Electrochemical Water Sp Energy Materials, 2018, 8, 1701114.}	b> Lateral Jlitting. Advanced	10.2	106
824	Visibleâ€Lightâ€Responsive Photoanodes for Highly Active, Stable Water Oxidation. An International Edition, 2018, 57, 8396-8415.	gewandte Chemie -	7.2	145
825	Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrock hydrogen generation. Applied Surface Science, 2018, 436, 125-133.	nemical	3.1	22
826	Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by t electrolyte composition. Nature Energy, 2018, 3, 53-60.	uning	19.8	492

#	Article	IF	CITATIONS
827	Auf sichtbares Licht ansprechende Photoanoden für hochaktive, dauerhafte Wasseroxidation. Angewandte Chemie, 2018, 130, 8530-8550.	1.6	22
828	Synthesis of Silicateâ€Bridged Heterojunctional SnO ₂ /BiVO ₄ Nanoplates as Efficient Photocatalysts to Convert CO ₂ and Degrade 2,4â€Dichlorophenol. Particle and Particle Systems Characterization, 2018, 35, 1700320.	1.2	13
829	Tunable Electrodeposition of Ni Electrocatalysts onto Si Microwires Array for Photoelectrochemical Water Oxidation. Particle and Particle Systems Characterization, 2018, 35, 1700321.	1.2	10
830	Extended Light Harvesting with Dual Cu ₂ Oâ€Based Photocathodes for High Efficiency Water Splitting. Advanced Energy Materials, 2018, 8, 1702323.	10.2	93
831	Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Applied Surface Science, 2018, 439, 1065-1071.	3.1	62
832	Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO ₄ Photoanodes for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 2248-2252.	7.2	558
833	Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO ₄ Photoanodes for Efficient Water Oxidation. Angewandte Chemie, 2018, 130, 2270-2274.	1.6	57
834	Ultrathin Lutetium Oxide Film as an Epitaxial Holeâ€Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes. Advanced Functional Materials, 2018, 28, 1705512.	7.8	40
835	Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 3624-3633.	4.0	56
836	Designing Novel Nonsymmetric Ag/AgI Nanoplates for Superior Photocatalytic Activity. Small, 2018, 14, 1702948.	5.2	18
837	Solution-processed yolk–shell-shaped WO ₃ /BiVO ₄ heterojunction photoelectrodes for efficient solar water splitting. Journal of Materials Chemistry A, 2018, 6, 2585-2592.	5.2	95
838	Enriched Photoelectrochemical Performance of Phosphate Doped BiVO ₄ Photoelectrode by Coupling FeOOH and rGO. Journal of the Electrochemical Society, 2018, 165, H3018-H3027.	1.3	19
839	Three-dimensional red phosphorus: A promising photocatalyst with excellent adsorption and reduction performance. Catalysis Today, 2018, 314, 42-51.	2.2	39
840	Molecular cobalt salophen catalyst-integrated BiVO ₄ as stable and robust photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 10761-10768.	5.2	54
841	Phase-segregated NiP _x @FeP _y O _z core@shell nanoparticles: ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through <i>in situ</i> activation by structural transformation and spontaneous ligand removal. Chemical Science, 2018, 9, 4830-4836.	3.7	21
842	Preparation of plasmonic porous Au@AgVO ₃ belt-like nanocomposites with enhanced visible light photocatalytic activity. Nanotechnology, 2018, 29, 295706.	1.3	11
843	Fabrication of CuO x thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy and Environment, 2018, 3, 239-246.	4.7	9
844	Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 7789-7798.	3.2	31

	CITATION REP	PORT	
# 845	ARTICLE Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale, 2018, 10, 10721-10730.	IF 2.8	CITATIONS
846	Ultrasonic-assisted preparation of a pinhole-free BiVO ₄ photoanode for enhanced photoelectrochemical water oxidation. Chemical Communications, 2018, 54, 5570-5573.	2.2	18
847	Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Progress in Materials Science, 2018, 97, 123-169.	16.0	105
848	Photoelectrochemical Performance for Water Oxidation Improved by Molecular Nickel Porphyrinâ€Integrated WO ₃ /TiO ₂ Photoanode. ChemSusChem, 2018, 11, 1746-1750.	3.6	25
849	ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting. Catalysis Science and Technology, 2018, 8, 2789-2793.	2.1	23
850	Carbon quantum dot sensitized integrated Fe ₂ O ₃ @g-C ₃ N ₄ core–shell nanoarray photoanode towards highly efficient water oxidation. Journal of Materials Chemistry A, 2018, 6, 9839-9845.	5.2	110
851	Electrodeposition of CdS onto BiVO4 films with high photoelectrochemical performance. Journal of Solid State Electrochemistry, 2018, 22, 2569-2577.	1.2	19
852	Decoupling the charge collecting and screening effects in piezotronics-regulated photoelectrochemical systems by using graphene as the charge collector. Nano Energy, 2018, 48, 377-382.	8.2	14
853	New BiVO ₄ Dual Photoanodes with Enriched Oxygen Vacancies for Efficient Solarâ€Đriven Water Splitting. Advanced Materials, 2018, 30, e1800486.	11.1	414
854	The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation. Solid State Sciences, 2018, 78, 95-106.	1.5	33
855	Boosting the solar water oxidation performance of a BiVO ₄ photoanode by crystallographic orientation control. Energy and Environmental Science, 2018, 11, 1299-1306.	15.6	330
856	Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water–Ethanol–Acetic Acid Solution for Enhanced Charge Transport and Separation. ACS Applied Materials & Interfaces, 2018, 10, 12594-12602.	4.0	25
857	Heteroporous MoS ₂ /Ni ₃ S ₂ towards superior electrocatalytic overall urea splitting. Chemical Communications, 2018, 54, 5181-5184.	2.2	92
858	Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance. Chinese Journal of Catalysis, 2018, 39, 438-445.	6.9	30
859	Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology. ACS Energy Letters, 2018, 3, 961-969.	8.8	47
860	WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation. Applied Surface Science, 2018, 447, 331-337.	3.1	18
861	Powder-based (CuGa _{1â^'y} In _y 1â^'xZn _{2x} S ₂ solid solution photocathodes with a largely positive onset potential for solar water splitting. Sustainable Energy and Fuels, 2018, 2, 2016-2024.	2.5	28
862	Progress in designing effective photoelectrodes for solar water splitting. Chinese Journal of Catalysis, 2018, 39, 369-378.	6.9	49

#	Article	IF	CITATIONS
863	Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel. Nano Research, 2018, 11, 3499-3508.	5.8	31
864	Hierarchical nanosheet-based Bi2MoO6 microboxes for efficient photocatalytic performance. Dalton Transactions, 2018, 47, 5542-5547.	1.6	34
865	Boosting photocatalytic overall water splitting by Co doping into Mn ₃ O ₄ nanoparticles as oxygen evolution cocatalysts. Nanoscale, 2018, 10, 10420-10427.	2.8	56
866	Enhanced solar water-splitting activity of novel nanostructured Fe ₂ TiO ₅ photoanode by electrospray and surface F-modification. Nanoscale, 2018, 10, 6678-6683.	2.8	23
867	Harvesting light with semiconductor: Role of interface in the processes of charge transfer. Materials Science in Semiconductor Processing, 2018, 73, 2-12.	1.9	5
868	Heteroatomâ€Doped Carbonaceous Photocatalysts for Solar Fuel Production and Environmental Remediation. ChemCatChem, 2018, 10, 62-123.	1.8	39
869	Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science, 2018, 430, 2-17.	3.1	211
870	WO ₃ Mesoporous Nanobelts towards Efficient Photoelectrocatalysts for Water Splitting. ChemElectroChem, 2018, 5, 322-327.	1.7	25
871	Comparison of Synthetic Routes for Large-scale Synthesis of Spherical BiVO ₄ with Photocatalytic and Superhydrophobic Properties. Chemistry Letters, 2018, 47, 148-151.	0.7	5
872	Promoted photoelectrochemical activity of BiVO4 coupled with LaFeO3 and LaCoO3. Research on Chemical Intermediates, 2018, 44, 1013-1024.	1.3	10
873	Evaluating spinel ferrites MFe ₂ O ₄ (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustainable Energy and Fuels, 2018, 2, 103-117.	2.5	119
874	A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance. Journal of Alloys and Compounds, 2018, 732, 593-602.	2.8	18
875	Electrosprayed BiVO4 nanopillars coated with atomic-layer-deposited ZnO/TiO2 as highly efficient photoanodes for solar water splitting. Chemical Engineering Journal, 2018, 333, 721-729.	6.6	63
876	Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B. Journal of Physics and Chemistry of Solids, 2018, 113, 86-93.	1.9	38
877	The iron oxyhydroxide role in the mediation of charge transfer for water splitting using bismuth vanadate photoanodes. Journal of Solid State Electrochemistry, 2018, 22, 1539-1548.	1.2	11
878	Synthesis of butterfly-like BiVO 4 /RGO nanocomposites and their photocatalytic activities. Chinese Journal of Chemical Engineering, 2018, 26, 667-674.	1.7	16
879	Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration. Applied Surface Science, 2018, 427, 553-560.	3.1	23
880	Improved photoelectrocatalytic hydrogen generation through BiVO4 quantum-dots loaded on nano-structured SnO2 and modified with carbon quantum-dots. Chemical Engineering Journal, 2018, 331, 48-53.	6.6	39

#	Article	IF	CITATIONS
881	A novel WO3/MoS2 photocatalyst applied to the decolorization of the textile dye Reactive Blue 198. Journal of Solid State Electrochemistry, 2018, 22, 1449-1458.	1.2	6
882	Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Applied Catalysis B: Environmental, 2018, 221, 187-195.	10.8	180
883	Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 810-817.	1.2	18
884	Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation. Nano Energy, 2018, 43, 244-252.	8.2	57
885	Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy, 2018, 43, 236-243.	8.2	58
886	Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER). Nano-Micro Letters, 2018, 10, 15.	14.4	124
887	THE PRINCIPLE OF PHOTOELECTROCHEMICAL WATER SPLITTING., 2018, , 1-61.		4
888	Nanostructured bismuth vanadate (BiVO4) thin films for efficient visible light photocatalysis. Materials Chemistry and Physics, 2018, 205, 325-333.	2.0	50
889	Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting. ChemSusChem, 2018, 11, 589-597.	3.6	33
890	A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Applied Catalysis B: Environmental, 2018, 225, 504-511.	10.8	40
891	Photoelectrochemical Performance of BiVO ₄ Photoanodes Integrated with [NiFe]‣ayered Double Hydroxide Nanocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 1060-1067.	1.0	19
892	<i>In situ</i> electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 1425-1428.	2.2	88
893	Highly ordered ZnO/ZnFe ₂ O ₄ inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 1210-1218.	5.2	73
894	PHOTOANODIC AND PHOTOCATHODIC MATERIALS APPLIED FOR FREE-RUNNING SOLAR WATER SPLITTING DEVICES. , 2018, , 251-289.		0
895	Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation. Applied Surface Science, 2018, 436, 319-326.	3.1	53
896	A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode. Journal of Materials Chemistry A, 2018, 6, 1266-1274.	5.2	51
897	Improving solar water-splitting performance of LaTaON2 by bulk defect control and interface engineering. Applied Catalysis B: Environmental, 2018, 226, 111-116.	10.8	26
898	Enhancing photoelectrochemical water oxidation efficiency via self-catalyzed oxygen evolution: A case study on TiO2. Nano Energy, 2018, 44, 411-418.	8.2	43

#	Articie	IF	CITATIONS
899	Elucidation of the opto-electronic and photoelectrochemical properties of FeVO ₄ photoanodes for solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 548-555.	5.2	50
900	Carbon Nanotube–Graphitic Carbon Nitride Hybrid Films for Flavoenzymeâ€Catalyzed Photoelectrochemical Cells. Advanced Functional Materials, 2018, 28, 1705232.	7.8	64
901	Calcium containing iron oxide as an efficient and robust catalyst in (photo-)electrocatalytic water oxidation at neutral pH. Sustainable Energy and Fuels, 2018, 2, 271-279.	2.5	14
902	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. ChemPhotoChem, 2018, 2, 121-135.	1.5	29
903	Significant Enhancement of the Photoelectrochemical Activity of CuWO ₄ by using a Cobalt Phosphate Nanoscale Thin Film. ChemElectroChem, 2018, 5, 523-530.	1.7	25
904	Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. ACS Catalysis, 2018, 8, 466-473.	5.5	20
905	Emerging Postsynthetic Improvements of BiVO ₄ Photoanodes for Solar Water Splitting. ACS Energy Letters, 2018, 3, 112-124.	8.8	97
906	Screening Commercial Semiconductors for Visible Light Driven Asymmetric Catalysis. Particle and Particle Systems Characterization, 2018, 35, 1700280.	1.2	11
907	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	2.5	84
908	Visible light Bi2S3/BiFeO3 photocatalyst for effective removal of Rhodamine B. MATEC Web of Conferences, 2018, 238, 03007.	0.1	4
909	<i>In situ</i> sulfuration synthesis of flexible PAN-CuS "flowering branch―heterostructures as recyclable catalysts for dye degradation. RSC Advances, 2018, 8, 40589-40594.	1.7	5
910	Efficient photoelectrochemical water oxidation using a TiO ₂ nanosphere-decorated BiVO ₄ heterojunction photoanode. RSC Advances, 2018, 8, 41439-41444.	1.7	17
911	A bright outlook on organic photoelectrochemical cells for water splitting. Journal of Materials Chemistry A, 2018, 6, 21809-21826.	5.2	53
912	Transforming bulk alloys into nanoporous lanthanum-based perovskite oxides with high specific surface areas and enhanced electrocatalytic activities. Journal of Materials Chemistry A, 2018, 6, 19979-19988.	5.2	19
913	Water oxidation catalysed by quantum-sized BiVO ₄ . Journal of Materials Chemistry A, 2018, 6, 24965-24970.	5.2	10
914	Organic heterojunction photocathodes for optimized photoelectrochemical hydrogen peroxide production. Journal of Materials Chemistry A, 2018, 6, 24709-24716.	5.2	35
915	Atomically manipulated proton transfer energizes water oxidation on silicon carbide photoanodes. Journal of Materials Chemistry A, 2018, 6, 24358-24366.	5.2	17
916	Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability. Nanoscale, 2018, 10, 19621-19627.	2.8	16

#	Article	IF	CITATIONS
917	Cooperation effect of heterojunction and co-catalyst in BiVO ₄ /Bi ₂ S ₃ /NiOOH photoanode for improving photoelectrochemical performances. New Journal of Chemistry, 2018, 42, 19415-19422.	1.4	24
918	Expansion of the photoresponse window of a BiVO ₄ photocatalyst by doping with chromium(<scp>vi</scp>). RSC Advances, 2018, 8, 38140-38145.	1.7	13
919	Enhanced Photoelectrochemical Water Oxidation Performance on BiVO ₄ by Coupling of CoMoO ₄ as a Hole-Transfer and Conversion Cocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 42207-42216.	4.0	33
920	Boron Doping of Metal-Doped Hematite for Reduced Surface Recombination in Water Splitting. ACS Catalysis, 2018, 8, 11932-11939.	5.5	80
921	Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials, 2018, 1, 6657-6693.	2.5	370
922	Tandem photoelectrochemical cells for solar water splitting. Advances in Physics: X, 2018, 3, 1487267.	1.5	25
923	Controlled Synthesis of Vertically Aligned SnO ₂ Nanograss-Structured Thin Films for SnO ₂ /BiVO ₄ Core–Shell Heterostructures with Highly Enhanced Photoelectrochemical Properties. Chemistry of Materials, 2018, 30, 8501-8509.	3.2	40
924	A Compact Constant On-time Buck Converter with Analog Transient-optimized On-time Control and Body Diode Control. , 2018, , .		3
925	Hydrogen Generation from Photoelectrochemical Water Splitting. , 2018, , 121-157.		0
927	Boosted Water Oxidation Activity and Kinetics on BiVO4 Photoanodes with Multihigh-Index Crystal Facets. Inorganic Chemistry, 2018, 57, 15280-15288.	1.9	22
928	Energy band engineering of metal oxide for enhanced visible light absorption. , 2018, , 49-78.		16
929	Hierarchical Ta-Doped TiO2 Nanorod Arrays with Improved Charge Separation for Photoelectrochemical Water Oxidation under FTO Side Illumination. Nanomaterials, 2018, 8, 983.	1.9	12
930	Singleâ€Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO ₄ Photoanodes. Advanced Materials, 2018, 30, e1804033.	11.1	47
931	Improved H ₂ Evolution in Quaternary SCIGS Chalcopyrite Semiconductors. Journal of Physical Chemistry C, 2018, 122, 24512-24519.	1.5	7
932	Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1â^'xSx. Materials, 2018, 11, 791.	1.3	5
933	Enhanced Photocatalytic Water Splitting on Very Thin WO ₃ Films Activated by High-Temperature Annealing. ACS Catalysis, 2018, 8, 10573-10580.	5.5	56
934	Photoinduced Charge-Transfer Dynamics in WO ₃ /BiVO ₄ Photoanodes Probed through Midinfrared Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2018, 140, 14042-14045.	6.6	74
935	Nanotube Array-Like WO ₃ Photoanode with Dual-Layer Oxygen-Evolution Cocatalysts for Photoelectrocatalytic Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 6871-6880.	2.5	60

#	Article	IF	Citations
936	Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe–Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, 2018, , .	2.5	2
937	Dip-coating synthesis of P-doped BiVO4 photoanodes with enhanced photoelectrochemical performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 582-589.	2.7	29
938	Three-Dimensional Bicontinuous BiVO ₄ /ZnO Photoanodes for High Solar Water-Splitting Performance at Low Bias Potential. ACS Applied Materials & Interfaces, 2018, 10, 34238-34244.	4.0	35
939	Photoelectrochemical Reduction of CO ₂ to CO Using a CuGaS ₂ Thin-film Photocathode Prepared by a Spray Pyrolysis Method. Chemistry Letters, 2018, 47, 1424-1427.	0.7	15
940	InSe Monolayer: Promising Cocatalyst of g-C ₃ N ₄ for Water Splitting under Visible Light. ACS Applied Energy Materials, 0, , .	2.5	8
941	Twin Structure in BiVO ₄ Photoanodes Boosting Water Oxidation Performance through Enhanced Charge Separation and Transport. Advanced Energy Materials, 2018, 8, 1802198.	10.2	61
942	Delafossite CuFeO ₂ Photocathodes Grown by Direct Liquid Injection Chemical Vapor Deposition for Efficient Photoelectrochemical Water Reduction. Journal of the Electrochemical Society, 2018, 165, H831-H837.	1.3	10
943	Synergistic doping effects of a ZnO:N/BiVO ₄ :Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems. Nanoscale, 2018, 10, 20256-20265.	2.8	42
944	Modeling the Impact of Metallic Plasmonic Resonators on the Solar Conversion Efficiencies of Semiconductor Photoelectrodes: When Does Introducing Buried Plasmonic Nanostructures Make Sense?. Journal of Physical Chemistry C, 2018, 122, 24279-24286.	1.5	5
945	Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO4/perovskite tandem structure. Nature Communications, 2018, 9, 4208.	5.8	83
946	Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion Scheelite structure. Nature Communications, 2018, 9, 4484.	5.8	85
947	Synergistic Effects of Boron and Sulfur Co-doping into Graphitic Carbon Nitride Framework for Enhanced Photocatalytic Activity in Visible Light Driven Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 5936-5947.	2.5	162
948	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Journal of the American Chemical Society, 2018, 140, 16168-16177.	6.6	105
949	Fe ₂ TiO ₅ as an Efficient Co-catalyst To Improve the Photoelectrochemical Water Splitting Performance of BiVO ₄ . ACS Applied Materials & Interfaces, 2018, 10, 39713-39722.	4.0	41
950	Facet-Dependent Enhancement in the Activity of Bismuth Vanadate Microcrystals for the Photocatalytic Conversion of Methane to Methanol. ACS Applied Nano Materials, 2018, 1, 6683-6691.	2.4	79
951	Plasma-Induced Vacancy Defects in Oxygen Evolution Cocatalysts on Ta ₃ N ₅ Photoanodes Promoting Solar Water Splitting. ACS Catalysis, 2018, 8, 10564-10572.	5.5	52
952	Preparation of nanoporous BiVO ₄ /TiO ₂ /Ti film through electrodeposition for photoelectrochemical water splitting. Royal Society Open Science, 2018, 5, 180728.	1.1	12
953	All-Bismuth-Based Oxide Tandem Cell for Solar Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 6694-6699.	2.5	22

#	Article	IF	CITATIONS
954	A Tandem Water Splitting Cell Based on Nanoporous BiVO ₄ Photoanode Cocatalyzed by Ultrasmall Cobalt Borate Sandwiched with Conformal TiO ₂ Layers. ACS Sustainable Chemistry and Engineering, 2018, 6, 16228-16234.	3.2	25
955	Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorineâ€Doped FeOOH and FeNiOOH as Dual Cocatalysts. ChemSusChem, 2018, 11, 3783-3789.	3.6	54
956	BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity. Frontiers of Optoelectronics, 2018, 11, 367-374.	1.9	9
957	Ternary WO ₃ /Porousâ€BiVO ₄ /FeOOH Hierarchical Architectures: Towards Highly Efficient Photoelectrochemical Performance. ChemElectroChem, 2018, 5, 3660-3667.	1.7	22
958	Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar Mo-doped BiVO ₄ photoanode. Chemical Science, 2018, 9, 8860-8870.	3.7	37
959	Recent progress in iron oxide based photoanodes for solar water splitting. Journal Physics D: Applied Physics, 2018, 51, 473002.	1.3	44
960	Disentangling the Role of Surface Chemical Interactions on Interfacial Charge Transport at BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2018, 10, 35129-35136.	4.0	9
961	Constructing a hexagonal copper-coin-shaped NiCoSe ₂ @NiO@CoNi ₂ 4@CoS ₂ hybrid nanoarray on nickel foam as a robust oxygen evolution reaction electrocatalyst. Journal of Materials Chemistry A, 2018. 6. 18641-18648.	5.2	65
962	Green fabrication of nanoporous BiVO ₄ films on ITO substrates for photoelectrochemical water-oxidation. RSC Advances, 2018, 8, 31575-31580.	1.7	4
963	Recent Advances in BiVO4- and Bi2Te3-Based Materials for High Efficiency-Energy Applications. , 0, , .		1
964	Template Electro-Etching-Mediated FeOOH Nanotubes as Highly Efficient Photoactive Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	5
965	A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 24149-24156.	5.2	38
966			
	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374.	2.8	15
967	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374. Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences (Switzerland), 2018, 8, 1526.	2.8	15 27
967 968	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374. Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences (Switzerland), 2018, 8, 1526. In Situ Vertical Growth of Fe–Ni Layered Double-Hydroxide Arrays on Fe–Ni Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2357-2365.	2.8 1.3 8.8	15 27 150
967 968 969	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374. Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences (Switzerland), 2018, 8, 1526. In Situ Vertical Growth of Fe–Ni Layered Double-Hydroxide Arrays on Fe–Ni Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2357-2365. A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting. Journal of Catalysis, 2018, 366, 275-281.	2.8 1.3 8.8 3.1	15 27 150 38
967 968 969 970	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374.Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences (Switzerland), 2018, 8, 1526.In Situ Vertical Growth of Fe–Ni Layered Double-Hydroxide Arrays on Fe–Ni Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2357-2365.A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting. Journal of Catalysis, 2018, 366, 275-281.Serial hole transfer layers for a BiVO ₄ photoanode with enhanced photoelectrochemical water splitting. Nanoscale, 2018, 10, 18378-18386.	2.8 1.3 8.8 3.1 2.8	15 27 150 38 44

#	Article	IF	CITATIONS
972	Remarkable enhancement on photoelectrochemical water splitting derived from well-crystallized Bi2WO6 and Co(OH)x with tunable oxidation state. Journal of Catalysis, 2018, 366, 258-265.	3.1	46
973	Potential-Sensing Electrochemical AFM Shows CoPi as a Hole Collector and Oxygen Evolution Catalyst on BiVO ₄ Water-Splitting Photoanodes. ACS Energy Letters, 2018, 3, 2286-2291.	8.8	96
974	Boosting Water Splitting Performance of BiVO ₄ Photoanode through Selective Surface Decoration of Ag ₂ S. ChemCatChem, 2018, 10, 4927-4933.	1.8	35
975	Manipulation of Charge Transfer in FeP@Fe ₂ O ₃ Core–Shell Photoanode by Directed Built-In Electric Field. ACS Applied Energy Materials, 2018, 1, 4591-4598.	2.5	20
976	The n-butanol gas-sensing properties of monoclinic scheelite BiVO4 nanoplates. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 71-75.	1.3	39
977	Direct observation of anisotropic small-hole polarons in an orthorhombic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiV</mml:mi><mml:msub><mml:m mathvariant="normal">>O<mml:mn>4</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> films.	^{າi} 1.1	7
978	Chemical transformations at the nanoscale: nanocrystal-seeded synthesis of β-Cu ₂ V ₂ O ₇ with enhanced photoconversion efficiencies. Chemical Science, 2018, 9, 5658-5665.	3.7	27
979	Defective Bi ₂ WO ₆ â€6upported Cu Nanoparticles as Efficient and Stable Photoelectrocatalytic for Water Splitting in Nearâ€Neutral Media. Energy Technology, 2018, 6, 2247-2255.	1.8	16
980	One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2018, 349, 368-375.	6.6	114
981	Tailoring Crystallographic Orientations to Substantially Enhance Charge Separation Efficiency in Anisotropic BiVO ₄ Photoanodes. ACS Catalysis, 2018, 8, 5952-5962.	5.5	85
982	Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation. Nano Energy, 2018, 50, 331-338.	8.2	25
983	Self-Improvement of Ti:Fe ₂ O ₃ Photoanodes: Photoelectrocatalysis Improvement after Long-Term Stability Testing in Alkaline Electrolyte. ACS Applied Energy Materials, 2018, 1, 2769-2775.	2.5	44
984	Fabrication of Porous Cu-Doped BiVO ₄ Nanotubes as Efficient Oxygen-Evolving Photocatalysts. ACS Applied Nano Materials, 2018, 1, 2589-2599.	2.4	63
985	Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chemical Society Reviews, 2018, 47, 5423-5443.	18.7	181
986	A hybrid molecular photoanode for efficient light-induced water oxidation. Sustainable Energy and Fuels, 2018, 2, 1979-1985.	2.5	20
987	Efficient Approaches on Photochemical CO2 Reduction to Alcohol by Solar Light with Functional Multi-layered Membrane Catalysts. MRS Advances, 2018, 3, 3271-3280.	0.5	7
988	High Water Oxidation Performance of Wâ€Đoped BiVO ₄ Photoanodes Coupled to V ₂ O ₅ Rods as a Photoabsorber and Hole Carrier. Solar Rrl, 2018, 2, 1800089.	3.1	22
989	Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Applied Catalysis B: Environmental, 2018, 237, 273-287.	10.8	95

	Сітаті	on Report	
#	Article	IF	CITATIONS
990	Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111). ACS Applied Materials & Interfaces, 2018, 10, 21365-21371.	4.0	12
991	Performance improvement of photoelectrochemical NO2 gas sensing at room temperature by BiVO4-polyoxometalate nanocomposite photoanode. Sensors and Actuators B: Chemical, 2018, 272, 289-295.	4.0	36
992	A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting. Journal of Materials Chemistry A, 2018, 6, 12506-12514.	5.2	102
993	Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting. Journal of Alloys and Compounds, 2018, 753, 601-606.	2.8	38
994	Significant Enhancement of Photoactivity in Hybrid TiO ₂ /g-C ₃ N ₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. ACS Applied Nano Materials, 2018, 1, 2526-2535.	2.4	40
995	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	2.2	24
996	A Cobaltâ€Based Metal–Organic Framework as Cocatalyst on BiVO ₄ Photoanode for Enhanced Photoelectrochemical Water Oxidation. ChemSusChem, 2018, 11, 2710-2716.	3.6	70
997	Simultaneously improving solar water oxidation kinetics and passivating surface states of hematite by loading an amorphous Ni doped cobalt phosphate layer. International Journal of Hydrogen Energy, 2018, 43, 14172-14182.	3.8	6
998	Turnip-inspired BiVO4/CuSCN nanostructure with close to 100% suppression of surface recombination for solar water splitting. Solar Energy Materials and Solar Cells, 2018, 185, 415-424.	3.0	16
999	Clarifying the Roles of Oxygen Vacancy in W-Doped BiVO ₄ for Solar Water Splitting. ACS Applied Energy Materials, 2018, 1, 3410-3419.	2.5	77
1000	New Iron obalt Oxide Catalysts Promoting BiVO ₄ Films for Photoelectrochemical Water Splitting. Advanced Functional Materials, 2018, 28, 1802685.	7.8	248
1001	Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochimica Acta, 2018, 283, 497-508.	2.6	36
1002	Substantially enhanced front illumination photocurrent in porous SnO ₂ nanorods/networked BiVO ₄ heterojunction photoanodes. Journal of Materials Chemistry A, 2018, 6, 14633-14643.	5.2	30
1003	FeCoW multimetal oxide-coatedÂW:BiVO ₄ photoanode for efficient oxygen evolution. Sustainable Energy and Fuels, 2018, 2, 2053-2059.	2.5	9
1004	Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy, 2018, 51, 457-480.	8.2	140
1005	Efficient Solarâ€Driven Water Oxidation over Perovskiteâ€Type BaNbO ₂ N Photoanodes Absorbing Visible Light up to 740 nm. Advanced Energy Materials, 2018, 8, 1800094.	10.2	56
1006	Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of a Single Atom to a Crystalline Nanoparticle. ACS Nano, 2018, 12, 7388-7396.	7.3	74
1007	Effective catalytic reduction of aromatic nitrocompounds using mineral beyerite, CaBi2O2(CO3)2. Journal of Environmental Chemical Engineering, 2018, 6, 4755-4763.	3.3	2

#	Article	IF	CITATIONS
1008	BiVO ₄ quantum dot-decorated BiPO ₄ nanorods 0D/1D heterojunction for enhanced visible-light-driven photocatalysis. Dalton Transactions, 2018, 47, 10288-10298.	1.6	37
1009	Scalable Triple Cation Mixed Halide Perovskite–BiVO ₄ Tandems for Biasâ€Free Water Splitting. Advanced Energy Materials, 2018, 8, 1801403.	10.2	128
1010	Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Communications, 2018, 8, 809-822.	0.8	8
1011	Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chemical Society Reviews, 2018, 47, 8238-8262.	18.7	343
1012	A core–satellite structured Z-scheme catalyst Cd _{0.5} Zn _{0.5} S/BiVO ₄ for highly efficient and stable photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 16932-16942.	5.2	154
1013	Determination and optimization of material parameters of particle-based LaTiO ₂ N photoelectrodes. Journal of Materials Chemistry A, 2018, 6, 17337-17352.	5.2	13
1014	Development of highly efficient CuIn _{0.5} Ga _{0.5} Se ₂ -based photocathode and application to overall solar driven water splitting. Energy and Environmental Science, 2018, 11, 3003-3009.	15.6	122
1015	A Polyimide Nanolayer as a Metalâ€Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 12563-12566.	7.2	36
1016	Nanoscale Phase Measurement for the Shale Challenge: Multicomponent Fluids in Multiscale Volumes. Langmuir, 2018, 34, 9927-9935.	1.6	45
1017	Photoactive Bismuth Vanadate Structure for Lightâ€Triggered Dissociation of Alzheimer's βâ€Amyloid Aggregates. Advanced Functional Materials, 2018, 28, 1802813.	7.8	34
1018	Superhydrophilic Heteroporous MoS ₂ /Ni ₃ S ₂ for Highly Efficient Electrocatalytic Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 3929-3936.	2.5	74
1019	MOFâ€Derived Bifunctional Iron Oxide and Iron Phosphide Nanoarchitecture Photoelectrode for Neutral Water Splitting. ChemElectroChem, 2018, 5, 2842-2849.	1.7	33
1020	Unique photoelectrochemical behavior of TiO2 nanorods wrapped with novel titanium Oxy-Nitride (TiOxNy) nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 16458-16467.	3.8	15
1021	Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO ₄ photoanode by W–Ti codoping. Journal of Materials Chemistry A, 2018, 6, 16965-16974.	5.2	27
1022	Enabling Solar Water Oxidation by BiVO ₄ Photoanodes in Basic Media. Chemistry of Materials, 2018, 30, 4704-4712.	3.2	65
1023	Non-noble-metal bismuth nanoparticle-decorated bismuth vanadate nanoarray photoanode for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 1799-1804.	3.2	13
1024	Semiconducting Synthetic Melaninâ€Based Organic/Inorganic Hybrid Photoanodes for Solar Water Oxidation. ChemSusChem, 2018, 11, 3534-3541.	3.6	17
1025	Activation of Kagome lattice-structured Cu ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O volborthite <i>via</i> hydrothermal crystallization for boosting visible light-driven water oxidation. Physical Chemistry Chemical Physics. 2018. 20. 24561-24569.	1.3	9

#	Article	IF	CITATIONS
1026	Piezotronics in Photoâ€Electrochemistry. Advanced Materials, 2018, 30, e1800154.	11.1	44
1027	Mn(TCNQ)2 nanorod array on copper foam: A high-performance and conductive electrocatalyst for oxygen evolution reaction. Materials Letters, 2018, 230, 53-56.	1.3	13
1028	Nanoscale imaging of charge carrier transport in water splitting photoanodes. Nature Communications, 2018, 9, 2597.	5.8	76
1029	Fabrication of BiVO4 photoanode consisted of mesoporous nanoparticles with improved bulk charge separation efficiency. Applied Catalysis B: Environmental, 2018, 238, 586-591.	10.8	47
1030	Over 1% Efficient Unbiased Stable Solar Water Splitting Based on a Sprayed Cu ₂ ZnSnS ₄ Photocathode Protected by a HfO ₂ Photocorrosion-Resistant Film. ACS Energy Letters, 2018, 3, 1875-1881.	8.8	82
1031	CdS/Au/Ti/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 photocatalysts and biphotoelectrodes with ferroelectric polarization in single domain for efficient water splitting. Applied Catalysis B: Environmental, 2018, 238, 248-254.	10.8	19
1032	Hierarchical CdS Nanorod@SnO ₂ Nanobowl Arrays for Efficient and Stable Photoelectrochemical Hydrogen Generation. Small, 2018, 14, e1801352.	5.2	42
1033	Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2283-2294.	2.5	24
1034	Photoelectrochemical hydrogen generation employing a Cu ₂ O-based photocathode with improved stability and activity by using Ni _x P _y as the cocatalyst. Physical Chemistry Chemical Physics, 2018, 20, 15300-15306.	1.3	24
1035	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
1036	Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photoâ€Electrochemical Water Splitting. Advanced Materials, 2018, 30, e1707502.	11.1	248
1037	Enhancing the Optical Absorption and Interfacial Properties of BiVO ₄ with Ag ₃ PO ₄ Nanoparticles for Efficient Water Splitting. Journal of Physical Chemistry C, 2018, 122, 11608-11615.	1.5	44
1038	Development of Sunlight Driven Water Splitting Devices towards Future Artificial Photosynthetic Industry. ChemEngineering, 2018, 2, 36.	1.0	27
1039	A template-free method to synthesize porous C-C3N4 with efficient visible light photodegradation of organic pollutants in water. Advanced Powder Technology, 2018, 29, 2785-2791.	2.0	11
1040	Synthesis of monoclinic BiVO4 nanorod array for photoelectrochemical water oxidation: Seed layer effects on growth of BiVO4 nanorod array. Electrochimica Acta, 2018, 285, 164-171.	2.6	42
1041	Efficient Nanoporous Hematite Photoanodes Prepared by Electron Beam Evaporation and Au Modification. ChemCatChem, 2018, 10, 4665-4675.	1.8	10
1042	pH Controlled Excellent Photocatalytic Activity of a Composite Designed from CuBi-Based Metal Organic Oxide and Graphene. Crystal Growth and Design, 2018, 18, 5045-5053.	1.4	16
1043	Influence of annealing temperature on visible-light photocatalytic activities of Ag3PO4 particulates synthesized using CH3COOAg as a precursor. Optoelectronics Letters, 2018, 14, 291-295.	0.4	0

#	Article	IF	CITATIONS
1044	Vertically Aligned Porous Organic Semiconductor Nanorod Array Photoanodes for Efficient Charge Utilization. Nano Letters, 2018, 18, 5954-5960.	4.5	52
1045	Bimetallic MOFâ€Derived FeCoâ€₽/C Nanocomposites as Efficient Catalysts for Oxygen Evolution Reaction. Small Methods, 2018, 2, 1800214.	4.6	147
1046	Nanospikes-mediated Anomalous Dispersities of Hydropobic Micro-objects and their Application for Oil Emulsion Cleaning. Scientific Reports, 2018, 8, 12600.	1.6	6
1047	Coupling Energy Capture and Storage – Endeavoring to make a solar battery. Scientific Reports, 2018, 8, 12752.	1.6	2
1048	Photoelectrochemical Device Designs toward Practical Solar Water Splitting: A Review on the Recent Progress of BiVO4 and BiFeO3 Photoanodes. Applied Sciences (Switzerland), 2018, 8, 1388.	1.3	32
1049	Experimental and Computational Investigation of Lanthanide Ion Doping on BiVO ₄ Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2018, 122, 19416-19424.	1.5	42
1050	A Polyimide Nanolayer as a Metalâ€Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. Angewandte Chemie, 2018, 130, 12743-12746.	1.6	9
1051	Colloidal Synthesis of Ultrathin Monoclinic BiVO ₄ Nanosheets for Z-Scheme Overall Water Splitting under Visible Light. ACS Catalysis, 2018, 8, 8649-8658.	5.5	151
1052	Efficient Water Splitting Cascade Photoanodes with Ligandâ€Engineered MnO Cocatalysts. Advanced Science, 2018, 5, 1800727.	5.6	30
1053	Energy-Band Alignment of BiVO ₄ from Photoelectron Spectroscopy of Solid-State Interfaces. Journal of Physical Chemistry C, 2018, 122, 20861-20870.	1.5	38
1054	Molten salt-assisted <i>a</i> -axis-oriented growth of Ta ₃ N ₅ nanorod arrays with enhanced charge transport for efficient photoelectrochemical water oxidation. CrystEngComm, 2018, 20, 5364-5369.	1.3	16
1055	Dual Modification of a BiVO ₄ Photoanode for Enhanced Photoelectrochemical Performance. ChemSusChem, 2018, 11, 2502-2509.	3.6	84
1056	Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes. Electrochimica Acta, 2018, 282, 48-55.	2.6	20
1057	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie, 2018, 130, 10755-10759.	1.6	16
1058	Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions. Advanced Materials, 2018, 30, e1802294.	11.1	43
1059	Highly nanotextured β-Bi2O3 pillars by electrostatic spray deposition as photoanodes for solar water splitting. Journal of Alloys and Compounds, 2018, 764, 881-889.	2.8	26
1060	Combinatorial alloying improves bismuth vanadate photoanodes <i>via</i> reduced monoclinic distortion. Energy and Environmental Science, 2018, 11, 2444-2457.	15.6	21
1061	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	7.2	93

#	Article	IF	CITATIONS
1062	Fully solution-processable Cu ₂ O–BiVO ₄ photoelectrochemical cells for bias-free solar water splitting. Green Chemistry, 2018, 20, 3732-3742.	4.6	54
1063	Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials, 2018, 8, 1800210.	10.2	364
1064	Activating Kläi-Type Organometallic Precursors at Metal Oxide Surfaces for Enhanced Solar Water Oxidation. ACS Energy Letters, 2018, 3, 1613-1619.	8.8	33
1065	Photoelectrochemical Water Splitting of CuInS ₂ Photocathode Collaborative Modified with Separated Catalysts Based on Efficient Photogenerated Electron–Hole Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 10289-10294.	3.2	60
1066	Defectâ€Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes. Advanced Materials, 2018, 30, e1801773.	11.1	81
1067	An antenna/spacer/reflector based Au/BiVO4/WO3/Au nanopatterned photoanode for plasmon-enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2018, 237, 763-771.	10.8	70
1068	Bismuth Vanadate with Electrostatically Anchored 3D Carbon Nitride Nanoâ€networks as Efficient Photoanodes for Water Oxidation. ChemSusChem, 2018, 11, 2510-2516.	3.6	25
1069	Selective Deposition of Ag ₃ PO ₄ on Specific Facet of BiVO ₄ Nanoplate for Enhanced Photoelectrochemical Performance. Solar Rrl, 2018, 2, 1800102.	3.1	44
1070	Fabrication of B doped g-C3N4/TiO2 heterojunction for efficient photoelectrochemical water oxidation. Electrochimica Acta, 2018, 282, 767-774.	2.6	47
1071	TiO ₂ -Photoanode-Assisted Direct-Solar-Energy Harvesting and Storage in a Solar-Powered Redox Cell Using Halides as Active Materials. ACS Applied Materials & Interfaces, 2018, 10, 23048-23054.	4.0	22
1072	Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO ₄ through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy Letters, 2018, 3, 1648-1654.	8.8	116
1073	Electrochemical surface charge-inversion from semi-insulating Sb ₂ Se ₃ photoanodes and abrupt photocurrent generation for water splitting. Energy and Environmental Science, 2018, 11, 2540-2549.	15.6	24
1074	Organic chemistry at anodes and photoanodes. Sustainable Energy and Fuels, 2018, 2, 1905-1927.	2.5	76
1075	Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale, 2018, 10, 12991-12996.	2.8	55
1076	Porous LiMn2O4 Microspheres With Different Pore Size: Preparation and Application as Cathode Materials for Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	1.1	8
1077	Calcium manganese oxides as biomimetic catalysts in energy applications: A short review. Chemical Engineering Science, 2019, 194, 116-126.	1.9	8
1078	Alcoholic Compounds as an Efficient Energy Carrier. Nanostructure Science and Technology, 2019, , 387-417.	0.1	1
1079	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506

#	Article	IF	CITATIONS
1080	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	1.6	19
1081	Conformal BiVO ₄ -Layer/WO ₃ -Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances. ACS Applied Materials & Interfaces, 2019, 11, 5623-5631.	4.0	91
1082	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	7.2	205
1083	In Operando Photoelectrochemical Femtosecond Transient Absorption Spectroscopy of WO ₃ /BiVO ₄ Heterojunctions. ACS Energy Letters, 2019, 4, 2213-2219.	8.8	42
1084	BiVO ₄ optimized to nano-worm morphology for enhanced activity towards photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 21207-21221.	5.2	60
1085	Seawater-Mediated Solar-to-Sodium Conversion by Bismuth Vanadate Photoanode- Photovoltaic Tandem Cell: Solar Rechargeable Seawater Battery. IScience, 2019, 19, 232-243.	1.9	16
1086	Highly conformal deposition of ultrathin cobalt acetate on a bismuth vanadate nanostructure for solar water splitting. Catalysis Science and Technology, 2019, 9, 4588-4597.	2.1	4
1087	Mechanistic Insights into Defect-Assisted Carrier Transport in Bismuth Vanadate Photoanodes. Journal of Physical Chemistry C, 2019, 123, 20730-20736.	1.5	32
1088	Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10, 3687.	5.8	300
1089	Enhanced Photoelectrochemical Performance of WO ₃ â€Based Composite Photoanode Coupled with Carbon Quantum Dots and NiFe Layered Double Hydroxide. ChemSusChem, 2019, 12, 4685-4692.	3.6	27
1090	Photoelectrochemical-voltaic cells consisting of particulate Zn _x Cd _{1â^x} Se photoanodes with photovoltages exceeding 1.23 V. Sustainable Energy and Fuels, 2019, 3, 2733-2741.	2.5	2
1091	High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Functional Composites and Structures, 2019, 1, 032002.	1.6	27
1092	Construction of 2D Bi2S3/CdS Nanosheet Arrays for Enhanced Photoelectrochemical Hydrogen Evolution. Journal of Electronic Materials, 2019, 48, 6397-6405.	1.0	8
1093	High Quantum Efficiency Achieved on BiVO ₄ Photoanode for Efficient Solar Water Oxidation. Solar Rrl, 2019, 3, 1900301.	3.1	13
1094	Engineering Interfaces to Steer Hole Dynamics of BiVO ₄ Photoanodes for Solar Water Oxidation. Solar Rrl, 2019, 3, 1900115.	3.1	23
1095	Ultrathin Nanotubes of Bi ₅ O ₇ I with a Reduced Band Gap as a High-Performance Photocatalyst. Inorganic Chemistry, 2019, 58, 9833-9843.	1.9	45
1096	High photoelectrochemical activity of CuO nanoflakes grown on Cu foil. Electrochimica Acta, 2019, 319, 390-399.	2.6	32
1097	Super-resolution imaging of non-fluorescent reactions via competition. Nature Chemistry, 2019, 11, 687-694.	6.6	78

#	Article	IF	CITATIONS
1098	Characterization of MFe ₂ O ₄ (M = Mg, Zn) Thin Films Prepared by Pulsed Laser Deposition for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2019, 123, 18240-18247.	1.5	31
1099	Suppressing Photoinduced Charge Recombination via the Lorentz Force in a Photocatalytic System. Advanced Science, 2019, 6, 1901244.	5.6	101
1100	Excellent performance of water oxidation at low bias potential achieved by transparent WO3/BiVO4 photoanode integrated with molecular nickel porphyrin. Inorganic Chemistry Communication, 2019, 107, 107480.	1.8	6
1101	Enhanced photocatalytic and photoelectrochemical performance of g-C3N4/BiVO4 heterojunction: A combined experimental and theoretical study. AIP Advances, 2019, 9, .	0.6	19
1102	Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction. Frontiers of Physics, 2019, 14, 1.	2.4	16
1103	Significant tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT photocathode. Electrochimica Acta, 2019, 320, 134617.	2.6	52
1104	High photocatalytic degradation efficiency of oxytetracycline hydrochloride over Ag/AgCl/BiVO4 plasmonic photocatalyst. Solid State Sciences, 2019, 96, 105946.	1.5	42
1105	Ultrafast probes at the interfaces of solar energy conversion materials. Physical Chemistry Chemical Physics, 2019, 21, 16399-16407.	1.3	31
1106	Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chemical Engineering Journal, 2019, 375, 122093.	6.6	82
1107	High-efficiency photoelectrochemical water splitting with heterojunction photoanode of In2O3-x nanorods/black Ti–Si–O nanotubes. International Journal of Hydrogen Energy, 2019, 44, 17611-17621.	3.8	20
1108	Understanding and improving photoelectrochemical performance of Bi ₂ O ₃ /Bi ₂ S ₃ composite. New Journal of Chemistry, 2019, 43, 11893-11902.	1.4	10
1109	Construction and characterization of Ag/AgI/Ag ₃ BiO ₃ heterojunction and its photocatalytic mechanism. Journal of Experimental Nanoscience, 2019, 14, 56-68.	1.3	9
1110	The controllable synthesis of novel heterojunction CoO/BiVO4 composite catalysts for enhancing visible-light photocatalytic property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123608.	2.3	28
1111	Demonstration of a 50 cm ² BiVO ₄ tandem photoelectrochemical-photovoltaic water splitting device. Sustainable Energy and Fuels, 2019, 3, 2366-2379.	2.5	84
1112	Bias-Free In Situ H ₂ 0 ₂ Generation in a Photovoltaic-Photoelectrochemical Tandem Cell for Biocatalytic Oxyfunctionalization. ACS Catalysis, 2019, 9, 10562-10566.	5.5	40
1113	Modular Layerâ€byâ€Layer Assembly of Polyelectrolytes, Nanoparticles, and Molecular Catalysts into Solarâ€toâ€Chemical Energy Conversion Devices. Advanced Functional Materials, 2019, 29, 1906407.	7.8	13
1114	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
1115	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie -	7.2	108

#	Article	IF	Citations
1116	Freeing the Polarons to Facilitate Charge Transport in BiVO ₄ from Oxygen Vacancies with an Oxidative 2D Precursor, Angewandte Chemie - International Edition, 2019, 58, 19087-19095	7.2	64
1117	Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. ChemSusChem, 2019, 12, 4337-4352.	3.6	15
1118	In Situ Growth of Nanostructured BiVO ₄ –Bi ₂ O ₃ Mixed-Phase via Nonequilibrium Deposition Involving Metal Exsolution for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 44069-44076.	4.0	18
1119	Simultaneous Improvement of Absorption and Separation Efficiencies of Mo:BiVO ₄ Photoanodes via Nanopatterned SnO ₂ /Au Hybrid Layers. ACS Sustainable Chemistry and Engineering, 2019, 7, 17000-17007.	3.2	7
1120	Deposition of heterojunction of ZnO on hydrogenated TiO2 nanotube arrays by atomic layer deposition for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 28685-28697.	3.8	38
1121	A portable non-enzyme photoelectrochemical ascorbic acid sensor based on BiVO4 electrode under 20†W LED light. Journal of Electroanalytical Chemistry, 2019, 855, 113573.	1.9	9
1122	Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Journal of Power Sources, 2019, 444, 227300.	4.0	34
1123	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nature Communications, 2019, 10, 4767.	5.8	199
1124	Surface chemistry and photoelectrochemistry—Case study on tantalum nitride. Journal of Chemical Physics, 2019, 151, 130902.	1.2	17
1125	Enhanced photoelectrochemical water oxidation activity of BiVO4 by coating of Co-phenolic networks as hole-transfer and co-catalyst. Journal of Catalysis, 2019, 377, 684-691.	3.1	43
1126	Copper Tungstate (CuWO4) Nanoflakes Coupled with Cobalt Phosphate (Co-Pi) for Effective Photoelectrochemical Water Splitting. International Journal of Electrochemical Science, 2019, , 9017-9029.	0.5	7
1127	A Boolean OR gate implemented with an optoelectronic switching memristor. Applied Physics Letters, 2019, 115, .	1.5	20
1128	Periodic table of elements and nanotechnology. Mendeleev Communications, 2019, 29, 479-485.	0.6	15
1129	Amorphous Co–Cu–Al mixed metal oxide nanoparticles modified BiVO ₄ to improve photocatalytic desulfurization. Materials Research Express, 2019, 6, 096205.	0.8	1
1130	Cu2O photocathodes for unassisted solar water-splitting devices enabled by noble-metal cocatalysts simultaneously as hydrogen evolution catalysts and protection layers. Nanotechnology, 2019, 30, 495407.	1.3	13
1131	Photoinduced Carrier Dynamics at the Interface of Black Phosphorus and Bismuth Vanadate. Journal of Physical Chemistry A, 2019, 123, 10019-10029.	1.1	5
1132	Growth of Doped SrTiO ₃ Ferroelectric Nanoporous Thin Films and Tuning of Photoelectrochemical Properties with Switchable Ferroelectric Polarization. ACS Applied Materials & Interfaces, 2019, 11, 45683-45691.	4.0	32
1133	Upscaling of Temperature-Sensitive Particle Photocatalyst Electrodes: Fully Ambient and Scalable Roll-Press Fabrication of Ta3N5 Photoelectrodes on Metal Substrate. ACS Sustainable Chemistry and Engineering, 2019, 7, 19407-19414.	3.2	10

#	Article	IF	CITATIONS
1134	Cobalt–Phosphate Catalysts with Reduced Bivalent Co-Ion States and Doped Nitrogen Atoms Playing as Active Sites for Facile Adsorption, Fast Charge Transfer, and Robust Stability in Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 44366-44374.	4.0	13
1135	Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nature Communications, 2019, 10, 5208.	5.8	118
1136	Synthesis of Bismuth Vanadate by a Novel Process and Its Enhanced Photoelectrochemical Performance. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012097.	0.3	1
1138	An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as Interfacial Charge Mediators. Angewandte Chemie, 2019, 131, 16956-16961.	1.6	8
1139	Anionic Dopant Delocalization through pâ€Band Modulation to Endow Metal Oxides with Enhanced Visibleâ€Light Photoactivity. Angewandte Chemie, 2019, 131, 16813-16820.	1.6	7
1140	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie, 2019, 131, 19203-19209.	1.6	35
1141	Freeing the Polarons to Facilitate Charge Transport in BiVO ₄ from Oxygen Vacancies with an Oxidative 2D Precursor. Angewandte Chemie, 2019, 131, 19263-19271.	1.6	21
1142	An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as Interfacial Charge Mediators. Angewandte Chemie - International Edition, 2019, 58, 16800-16805.	7.2	80
1143	Anionic Dopant Delocalization through pâ€Band Modulation to Endow Metal Oxides with Enhanced Visibleâ€Light Photoactivity. Angewandte Chemie - International Edition, 2019, 58, 16660-16667.	7.2	20
1144	Visible-light-driven photocatalytic removal of Cr(VI) and rhodamine B by monoclinic BiVO ₄ -diatomite composite. Materials Research Express, 2019, 6, 115904.	0.8	3
1145	Multilayered Fluorine Doped SnO2 Inverse Opal/WO3/BiVO4 Film for Solar Water Oxidation: Systematic Development and Defined Role of Each Layer. Journal of the Electrochemical Society, 2019, 166, H750-H763.	1.3	4
1146	Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell. Electrochimica Acta, 2019, 322, 134725.	2.6	42
1147	Triple Layer Heterojunction WO ₃ /BiVO ₄ /BiFeO ₃ Porous Photoanode for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2019, 2, 6428-6439.	2.5	57
1148	Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48, 4979-5015.	18.7	429
1149	Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces. Inorganic Chemistry, 2019, 58, 12025-12039.	1.9	6
1150	Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies. ACS Applied Materials & Interfaces, 2019, 11, 34922-34929.	4.0	30
1151	Impact of lattice defects on water oxidation properties in SnNb2O6 photoanode prepared by pulsed-laser deposition method. Journal of Applied Physics, 2019, 126, .	1.1	5
1152	Self-improvement of solar water oxidation for the continuously-irradiated hematite photoanode. Dalton Transactions, 2019, 48, 15151-15159.	1.6	15

#	Article	IF	CITATIONS
1153	Covalent Triazine-Based Polymers with Controllable Band Alignment Matched with BiVO ₄ To Boost Photogeneration of Holes for Water Splitting. Chemistry of Materials, 2019, 31, 8062-8068.	3.2	33
1154	NiFe layered double hydroxide/BiVO4 photoanode based dual-photoelectrode photocatalytic fuel cell for enhancing degradation of azo dye and electricity generation. Energy Procedia, 2019, 158, 2188-2195.	1.8	16
1155	The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode. IScience, 2019, 19, 976-985.	1.9	40
1156	State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today, 2019, 28, 100763.	6.2	67
1157	Preparation of Helical BiVO ₄ /Ag/C ₃ N ₄ for Selective Oxidation of C–H Bond under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17500-17506.	3.2	36
1158	NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell. Applied Energy, 2019, 255, 113770.	5.1	36
1159	Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency. International Journal of Hydrogen Energy, 2019, 44, 24642-24652.	3.8	46
1160	Understanding Reaction Kinetics by Tailoring Metal Co-catalysts of the BiVO ₄ Photocatalyst. ACS Omega, 2019, 4, 16597-16602.	1.6	24
1161	Two-Dimensional CuTe ₂ X (X = Cl, Br, and I): Potential Photocatalysts for Water Splitting under the Visible/Infrared Light. Journal of Physical Chemistry C, 2019, 123, 25543-25548.	1.5	6
1162	Nanotechnology Facets of the Periodic Table of Elements. ACS Nano, 2019, 13, 10879-10886.	7.3	26
1163	Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews, 2019, 48, 2126-2157.	18.7	296
1164	In situ growth of triazine–heptazine based carbon nitride film for efficient (photo)electrochemical performance. Catalysis Science and Technology, 2019, 9, 425-435.	2.1	23
1165	Photoelectrochemical CO ₂ reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO ₂ /Au photocathodes with low onset potentials. Energy and Environmental Science, 2019, 12, 923-928.	15.6	114
1166	Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215, 205-215.	1.6	32
1167	A tandem photoelectrochemical water splitting cell consisting of CuBi ₂ O ₄ and BiVO ₄ synthesized from a single Bi ₄ O ₅ I ₂ nanosheet template. Faraday Discussions, 2019, 215, 297-312.	1.6	22
1168	Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well. Nanoscale, 2019, 11, 3827-3836.	2.8	6
1169	Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO ₄ overlayers. Sustainable Energy and Fuels, 2019, 3, 127-135.	2.5	28
1170	Enhanced water oxidation reaction kinetics on a BiVO ₄ photoanode by surface modification with Ni ₄ O ₄ cubane. Journal of Materials Chemistry A, 2019, 7,	5.2	51

#	Article	IF	CITATIONS
1171	Charge carrier transport dynamics in W/Mo-doped BiVO ₄ : first principles-based mesoscale characterization. Journal of Materials Chemistry A, 2019, 7, 3054-3065.	5.2	51
1172	Thin film photoelectrodes for solar water splitting. Chemical Society Reviews, 2019, 48, 2182-2215.	18.7	221
1173	Beyond band bending in the WO ₃ /BiVO ₄ heterojunction: insight from DFT and experiment. Sustainable Energy and Fuels, 2019, 3, 264-271.	2.5	17
1174	Unraveling the impact of the Pd nanoparticle@BiVO ₄ /S-CN heterostructure on the photo-physical & opto-electronic properties for enhanced catalytic activity in water splitting and one-pot three-step tandem reaction. Nanoscale Advances, 2019, 1, 1395-1412.	2.2	15
1175	Growth of BiVO ₄ nanoparticles on a WO ₃ porous scaffold: improved water-splitting by high band-edge light harvesting. Journal of Materials Chemistry A, 2019, 7, 4480-4485.	5.2	16
1176	Design of an amorphous TaO _x multifunctional interfacial layer on photocathodes for photoelectrochemical H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 2041-2047.	5.2	15
1177	Defect Engineering in Semiconductors: Manipulating Nonstoichiometric Defects and Understanding Their Impact in Oxynitrides for Solar Energy Conversion. Advanced Functional Materials, 2019, 29, 1808389.	7.8	56
1178	Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 681-690.	2.7	85
1179	Enhanced photocatalytic activity of BiVO4 coupled with iron-based complexes for water oxidation under visible light irradiation. Chemical Communications, 2019, 55, 2529-2532.	2.2	18
1180	Solution-processed TiO2/BiVO4/SnO2 triple-layer photoanode with enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2019, 785, 1245-1252.	2.8	27
1181	Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catalysis Today, 2019, 335, 31-38.	2.2	54
1182	A nanostructured NiO/cubic SiC p–n heterojunction photoanode for enhanced solar water splitting. Journal of Materials Chemistry A, 2019, 7, 4721-4728.	5.2	50
1183	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	3.7	59
1184	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	5.6	224
1185	A Type II n-n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chemical Engineering Journal, 2019, 364, 177-185.	6.6	81
1186	Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 4415-4419.	5.2	55
1187	Analysis of the interfacial characteristics of BiVO ₄ /metal oxide heterostructures and its implication on their junction properties. Physical Chemistry Chemical Physics, 2019, 21, 5086-5096.	1.3	56
1188	Dual Quantum Dotâ€Decorated Bismuth Vanadate Photoanodes for Highly Efficient Solar Water Oxidation. ChemSusChem, 2019, 12, 1240-1245.	3.6	19

#	Article	IF	CITATIONS
1189	Alkali Treatment for Enhanced Photoelectrochemical Water Oxidation on Hematite Photoanode. ACS Sustainable Chemistry and Engineering, 2019, 7, 5420-5429.	3.2	26
1190	Reducing the surface recombination during light-driven water oxidation by core-shell BiVO4@Ni:FeOOH. Electrochimica Acta, 2019, 300, 77-84.	2.6	25
1191	Immobilization of a molecular cobalt cubane catalyst on porous BiVO ₄ <i>via</i> electrochemical polymerization for efficient and stable photoelectrochemical water oxidation. Chemical Communications, 2019, 55, 1414-1417.	2.2	23
1192	Enhancing photoelectrochemical hydrogen production of a n ⁺ p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorganic Chemistry Frontiers, 2019, 6, 527-532.	3.0	10
1193	Converting benzene into Î ³ -graphyne and its enhanced electrochemical oxygen evolution performance. Journal of Materials Chemistry A, 2019, 7, 5981-5990.	5.2	86
1194	Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renewable and Sustainable Energy Reviews, 2019, 111, 332-343.	8.2	179
1195	ZnS–CdS–TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. Journal of Sol-Gel Science and Technology, 2019, 91, 82-91.	1.1	18
1196	Structural Monitoring of NiB _i Modified BiVO ₄ Photoanodes Using in Situ Soft and Hard X-ray Absorption Spectroscopies. ACS Applied Energy Materials, 2019, 2, 4126-4134.	2.5	6
1197	MOF-derived Co3O4 thin film decorated BiVO4 for enhancement of photoelectrochemical water splitting. Applied Surface Science, 2019, 491, 497-504.	3.1	77
1198	Ni-Doped BiVO4 with V4+ Species and Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Transactions of Tianjin University, 2019, 25, 340-347.	3.3	49
1199	The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Frontiers of Physics, 2019, 14, 1.	2.4	10
1200	BiVO ₄ @TiO ₂ core–shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production. Journal of Materials Chemistry C, 2019, 7, 7858-7864.	2.7	55
1201	Boosting the performance of visible lightâ€driven WO ₃ /gâ€C ₃ N ₄ anchored with BiVO ₄ nanoparticles for photocatalytic hydrogen evolution. International Journal of Energy Research, 2019, 43, 5747-5758.	2.2	76
1202	Organic Dye Solution Nanofiltration by 2D Zn-TCPP(Fe) Membrane – leverage of chemical and fluid dynamic effects. Journal of Industrial and Engineering Chemistry, 2019, 78, 410-420.	2.9	14
1203	Novel tetrahedral Ag3PO4@N-rGO for photocatalytic detoxification of sulfamethoxazole: Process optimization, transformation pathways and biotoxicity assessment. Chemical Engineering Journal, 2019, 375, 122035.	6.6	63
1204	Highly Efficient Photoelectrochemical Reduction of CO ₂ at Low Applied Voltage Using 3D Co-Pi/BiVO ₄ /SnO ₂ Nanosheet Array Photoanodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 26024-26031.	4.0	41
1205	Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale, 2019, 11, 18968-18994.	2.8	168
1206	Improvement of BiVO ₄ Photoanode Performance During Water Photoâ€Oxidation Using Rhâ€Đoped SrTiO ₃ Perovskite as a Coâ€Catalyst. Advanced Functional Materials, 2019, 29, 1902101.	7.8	113

#	Article	IF	CITATIONS
1207	Facile fabrication of BiVO4 modified TiO2 nanotube film photoanode and its photocathodic protection effect on stainless steel. Corrosion Science, 2019, 157, 247-255.	3.0	68
1208	Assembly of large-area reduced graphene oxide films for the construction of Z-scheme over single-crystal porous Bi5O7I nanosheets. Journal of Colloid and Interface Science, 2019, 552, 651-658.	5.0	14
1209	Fabrication of Zinc pyrovanadate (Zn3(OH)2V2O7·2H2O) nanosheet spheres as an ethanol gas sensor. Journal of Alloys and Compounds, 2019, 801, 581-588.	2.8	18
1210	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
1211	Synergistic enhancement of charge management and surface reaction kinetics by spatially separated cocatalysts and p-n heterojunctions in Pt/CuWO4/Co3O4 photoanode. Chemical Engineering Journal, 2019, 374, 554-563.	6.6	82
1212	Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPOâ€Mediated Oxidation of 5â€Hydroxymethylfurfural. ChemElectroChem, 2019, 6, 3387-3392.	1.7	39
1213	A Cocrystal Precursor Strategy for Carbon-Rich Graphitic Carbon Nitride toward High-Efficiency Photocatalytic Overall Water Splitting. IScience, 2019, 16, 22-30.	1.9	54
1214	The effect of silver doping on photoelectrochemical (PEC) properties of bismuth vanadate for hydrogen production. Solar Energy Materials and Solar Cells, 2019, 200, 109943.	3.0	29
1215	Rational Design of Branched WO ₃ Nanorods Decorated with BiVO ₄ Nanoparticles by All-Solution Processing for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2019, 2, 4535-4543.	2.5	36
1216	Novel Black BiVO ₄ /TiO _{2â~`} <i>_x</i> Photoanode with Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting. Advanced Energy Materials, 2019, 9, 1901287.	10.2	161
1217	3D Brochosomesâ€Like TiO ₂ /WO ₃ /BiVO ₄ Arrays as Photoanode for Photoelectrochemical Hydrogen Production. Small, 2019, 15, e1900924.	5.2	64
1218	Selective Alcohol on Dark Cathodes by Photoelectrochemical CO ₂ Valorization and Their In Situ Characterization. ACS Energy Letters, 2019, 4, 1549-1555.	8.8	15
1219	Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nature Communications, 2019, 10, 2609.	5.8	140
1220	Energy band edge alignment of anisotropic BiVO4 to drive photoelectrochemical hydrogen evolution. Materials Today Energy, 2019, 13, 205-213.	2.5	12
1221	Toward Efficient Charge Collection and Light Absorption: A Perspective of Light Trapping for Advanced Photoelectrodes. Journal of Physical Chemistry C, 2019, 123, 18753-18770.	1.5	12
1222	A Co(OH) _x nanolayer integrated planar WO ₃ /Fe ₂ O ₃ photoanode for efficient photoelectrochemical water splitting. Sustainable Energy and Fuels, 2019, 3, 2135-2141.	2.5	12
1223	Bimetallic phosphide decorated Mo–BiVO ₄ for significantly improved photoelectrochemical activity and stability. RSC Advances, 2019, 9, 15629-15634.	1.7	15
1224	Nanostructured bismuth vanadate/tungsten oxide photoanode for chlorine production with hydrogen generation at the dark cathode. Communications Chemistry, 2019, 2, .	2.0	15

#	Article	IF	CITATIONS
1225	A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem, 2019, 11, 3688-3715.	1.8	27
1226	Fast Surface Charge Transfer with Reduced Band Gap Energy of FeVO4/Graphene Nanocomposite and Study of Its Electrochemical Property and Enhanced Photocatalytic Activity. Arabian Journal for Science and Engineering, 2019, 44, 6659-6667.	1.7	21
1227	Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe ₂ Photoelectrodes. ACS Applied Materials & Interfaces, 2019, 11, 19207-19217.	4.0	29
1228	Adsorption and Diffusion of H Atoms on β-PtO ₂ Surface: The Role of Nuclear Quantum Effects. Journal of Physical Chemistry C, 2019, 123, 13804-13811.	1.5	9
1229	All-Solution-Processed WO ₃ /BiVO ₄ Core–Shell Nanorod Arrays for Highly Stable Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 20004-20012.	4.0	57
1230	pH-Dependent photocatalytic performance of modified bismuth vanadate by bismuth ferrite. New Journal of Chemistry, 2019, 43, 9106-9115.	1.4	27
1231	Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency. Coatings, 2019, 9, 309.	1.2	13
1232	Solar Water Splitting under Neutral Conditions Using Zâ€5cheme Systems with Moâ€Doped BiVO ₄ as an O ₂ â€Evolving Photocatalyst. Energy Technology, 2019, 7, 1900358.	1.8	13
1233	Cobalt–phosphate-modified Mo:BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting. Journal of Materials Science, 2019, 54, 10670-10683.	1.7	31
1234	Sandwich-type cobalt-polyoxometalate as an effective hole extraction layer for enhancing BiVO4-based photoelectrochemical oxidation. Journal of Alloys and Compounds, 2019, 797, 140-147.	2.8	39
1235	Continuous 3D Titanium Nitride Nanoshell Structure for Solarâ€Driven Unbiased Biocatalytic CO ₂ Reduction. Advanced Energy Materials, 2019, 9, 1900029.	10.2	81
1236	Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 549, 80-88.	5.0	36
1237	Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO ₄ and Mo:BiVO ₄ Thin Film Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 16430-16442.	4.0	52
1238	BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting. Chemical Engineering Journal, 2019, 372, 399-407.	6.6	102
1239	Reduced graphene oxide modified CuBi ₂ O ₄ as an efficient and noble metal free photocathode for superior photoelectrochemical hydrogen production. Sustainable Energy and Fuels, 2019, 3, 1554-1561.	2.5	40
1240	Hydrogenated TiO ₂ Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 19167-19175.	4.0	122
1241	The Role of Underlayers and Overlayers in Thin Film BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900299.	1.9	28
1242	In Situ Decorating Coordinatively Unsaturated Fe Sites for Boosting Water Oxidation Performance of TiO 2 Photoanode. Energy Technology, 2019, 7, 1801128.	1.8	20

#	Article	IF	CITATIONS
1243	p-Type NiO modified BiVO4 photoanodes with enhanced charge separation and solar water oxidation kinetics. Materials Letters, 2019, 249, 128-131.	1.3	17
1244	Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes. ChemElectroChem, 2019, 6, 3227-3243.	1.7	42
1245	Atomic Layer Deposition of Bismuth Vanadate Core–Shell Nanowire Photoanodes. Chemistry of Materials, 2019, 31, 3221-3227.	3.2	27
1246	Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10, 2001.	5.8	222
1247	Solvothermal synthesis of BiVO4/WO3 heterostructures and their applicability towards electrochemical water oxidation reactions. European Physical Journal Plus, 2019, 134, 1.	1.2	3
1248	GeSe@SnS: stacked Janus structures for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 12060-12067.	5.2	66
1249	Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 2019, 10, 1779.	5.8	185
1250	A Zn:BiVO ₄ /Mo:BiVO ₄ homojunction as an efficient photoanode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 9019-9024.	5.2	86
1251	Epitaxial growth of Heteropolyacid-WO3 vertical heterostructures with photo-induced charge modulation for enhanced water oxidation. Electrochimica Acta, 2019, 306, 96-105.	2.6	7
1252	Modulating Carrier Transport via Defect Engineering in Solar Water Splitting Devices. ACS Energy Letters, 2019, 4, 834-843.	8.8	23
1253	Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell. Nano Energy, 2019, 59, 683-688.	8.2	52
1254	Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. Studies in Surface Science and Catalysis, 2019, 178, 65-84.	1.5	11
1255	Scaling Up the Process of Photo-Electrochemical Water Splitting. PoliTO Springer Series, 2019, , 93-114.	0.3	2
1256	Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Applied Catalysis B: Environmental, 2019, 251, 94-101.	10.8	82
1257	Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Applied Surface Science, 2019, 480, 1078-1088.	3.1	56
1258	Photoelectrochemical properties of ZnO/BiVO4 nanorod arrays prepared through a facile spin-coating deposition route. Materials Science in Semiconductor Processing, 2019, 97, 106-111.	1.9	11
1259	Band Positions and Photoelectrochemical Properties of Solution-Processed Silver-Substituted Cu ₂ ZnSnS ₄ Photocathode. ACS Applied Energy Materials, 2019, 2, 2779-2785.	2.5	44
1260	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	5.8	424

#	Article	IF	Citations
1261	Eosin Y sensitized BiPO4 nanorods for bi-functionally enhanced visible-light-driven photocatalysis. Photochemical and Photobiological Sciences, 2019, 18, 1408-1418.	1.6	10
1262	Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Materials, 2019, 19, 446-463.	9.5	89
1263	Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries. Chemical Engineering Journal, 2019, 368, 959-967.	6.6	54
1264	Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2, 387-399.	16.1	985
1265	Photoelectrochemical properties of BiVO4 thin films with NaOH chemical treatment. Rare Metals, 2019, 38, 446-452.	3.6	4
1266	Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48, 1908-1971.	18.7	781
1267	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews, 2019, 119, 5192-5247.	23.0	551
1268	Single-crystal TiO2/SrTiO3 core–shell heterostructured nanowire arrays for enhanced photoelectrochemical performance. Rare Metals, 2019, 38, 369-378.	3.6	18
1269	A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light. Sensors and Actuators B: Chemical, 2019, 291, 34-41.	4.0	67
1270	Ultrathin TiO2/BiVO4 nanosheet heterojunction arrays modified with NiFe-LDH nanoparticles for enhanced photoelectrochemical oxidation of water. Journal of Colloid and Interface Science, 2019, 549, 42-49.	5.0	36
1271	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie - International Edition, 2019, 58, 6891-6895.	7.2	36
1272	Guiding charge transfer kinetics into cocatalyst for efficient solar water splitting. Electrochimica Acta, 2019, 307, 43-50.	2.6	8
1273	1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 790, 493-501.	2.8	115
1274	Light Management with Patterned Micro―and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Advanced Functional Materials, 2019, 29, 1807275.	7.8	115
1275	A Semitransparent Nitride Photoanode Responsive up to <i>λ</i> =600â€nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem, 2019, 3, 521-524.	1.5	13
1276	TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting. Journal of Materials Science and Technology, 2019, 35, 1740-1746.	5.6	40
1277	Bi ₂ Fe ₄ O ₉ thin films as novel visible-light-active photoanodes for solar water splitting. Journal of Materials Chemistry A, 2019, 7, 9537-9541.	5.2	35
1278	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie, 2019, 131, 6965-6969.	1.6	4

#	Article	IF	CITATIONS
1279	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	5.2	59
1280	Elaborately Modified BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials, 2019, 31, e1806938.	11.1	333
1281	NiFeOx nanosheets tight-coupled with Bi2WO6 nanosheets to improve the electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2019, 478, 969-980.	3.1	17
1282	Integration of Molybdenum-Doped, Hydrogen-Annealed BiVO ₄ with Silicon Microwires for Photoelectrochemical Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5034-5044.	3.2	8
1283	Synthesis of Ag/BiVO4/rGO composite with enhanced photocatalytic degradation of triclosan. Science of the Total Environment, 2019, 664, 230-239.	3.9	75
1284	Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification. Journal of Electronic Materials, 2019, 48, 2501-2508.	1.0	7
1285	Strong-coupled CoOx nanoparticles/Bi2WO6 nanosheets hybrid as electrocatalyst for water oxidation under alkaline conditions. Materials Research Bulletin, 2019, 113, 152-160.	2.7	18
1286	Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 7990-7999.	4.0	35
1287	An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science, 2019, 5, 558-568.	5.3	263
1288	Spatial engineering of a Co(OH) _x encapsulated p-Cu ₂ S/n-BiVO ₄ photoanode: simultaneously promoting charge separation and surface reaction kinetics in solar water splitting. Journal of Materials Chemistry A, 2019, 7, 6747-6752.	5.2	43
1289	Boosting solar water oxidation activity and stability of BiVO4 photoanode through the Co-catalytic effect of CuCoO2. Electrochimica Acta, 2019, 304, 301-311.	2.6	30
1290	Uncovering Photo-Excited Charge Carrier Dynamics in Hematite (α-Fe ₂ O ₃) Hidden in the Nanosecond Range by the Heterodyne Transient Grating Technique Combined with the Randomly Interleaved Pulse-Train Method. Journal of Physical Chemistry C, 2019, 123, 6693-6700.	1.5	25
1291	Photoelectrochemical Water Splitting. , 2019, , 585-606.		3
1292	Photocatalytic behaviors of epitaxial BiVO4 (010) thin films. Applied Catalysis B: Environmental, 2019, 248, 115-119.	10.8	43
1293	Application of carbon microfiber felts as three-dimensional conductive substrate for efficient photoanodes of tungsten(VI) oxide. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 54-63.	2.0	6
1294	Mannitol-assisted synthesis of ultrathin Bi2MoO6 architectures: excellent selective adsorption and photocatalytic performance. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	13
1295	Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting. Journal of Materials Chemistry A, 2019, 7, 5258-5265.	5.2	17
1296	High-efficiency visible-light-driven Ag3PO4 photocatalysts modified by conjugated polyvinyl alcohol derivatives. Materials Research Express, 2019, 6, 125558.	0.8	4

#	Article	IF	CITATIONS
1297	Plasmon-assisted partially reduced TiO ₂ nanotube arrays for photoelectrochemical water splitting. Materials Research Express, 2019, 6, 1250h9.	0.8	2
1298	Cooperative Catalytic Behavior of SnO2 and NiWO4 over BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting Performance. Catalysts, 2019, 9, 879.	1.6	13
1299	Reasonable regulation of kinetics over BiVO4 photoanode by Fe–CoP catalysts for boosting photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 28184-28193.	3.8	33
1300	Single nanoparticle photoelectrochemistry: What is next?. Journal of Chemical Physics, 2019, 151, 180901.	1.2	10
1301	Sandwich structured WO ₃ nanoplatelets for highly efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 26077-26088.	5.2	76
1302	Synthesis of BiVO ₄ photocatalyst via cyclic microwave irradiation method. Ferroelectrics, 2019, 552, 42-52.	0.3	1
1303	Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano, 2019, 6, 3185-3214.	2.2	124
1304	Honeycomb-shaped carbon nanotube supports for BiVO4 based solar water splitting. Nanoscale, 2019, 11, 22964-22970.	2.8	15
1305	Unveiling the role of tetragonal BiVO ₄ as a mediator for dual phase BiVO ₄ /g-C ₃ N ₄ composite photocatalysts enabling highly efficient water oxidation <i>via Z</i> -scheme charge transfer. Journal of Materials Chemistry A, 2019, 7, 26279-26284.	5.2	22
1306	An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2019, 44, 30160-30170.	3.8	37
1307	From One to Two: In Situ Construction of an Ultrathin 2D-2D Closely Bonded Heterojunction from a Single-Phase Monolayer Nanosheet. Journal of the American Chemical Society, 2019, 141, 19715-19727.	6.6	148
1308	A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells. RSC Advances, 2019, 9, 30112-30124.	1.7	24
1309	Facile synthesis of a novel WO ₃ /Ag ₂ MoO ₄ particles-on-plate staggered type II heterojunction with improved visible-light photocatalytic activity in removing environmental pollutants. RSC Advances, 2019, 9, 34804-34813.	1.7	21
1310	Electrocatalytic water oxidation by a Ni(<scp>ii</scp>) salophen-type complex. RSC Advances, 2019, 9, 40424-40436.	1.7	26
1311	Insight into the PEC and interfacial charge transfer kinetics at the Mo doped BiVO ₄ photoanodes. RSC Advances, 2019, 9, 41368-41382.	1.7	37
1312	Ultrathin NiCo ₂ O ₄ nanosheets with dual-metal active sites for enhanced solar water splitting of a BiVO ₄ photoanode. Journal of Materials Chemistry A, 2019, 7, 22274-22278.	5.2	26
1313	MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation. Journal of Materials Science, 2019, 54, 671-682.	1.7	20
1314	Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting. Applied Surface Science, 2019, 464, 544-551.	3.1	33
#	Article	IF	CITATIONS
------	--	-----	-----------
1315	In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 534, 338-342.	5.0	50
1316	Enhancement in the photocatalytic antifouling efficiency over cherimoya-like InVO4/BiVO4 with a new vanadium source. Journal of Colloid and Interface Science, 2019, 533, 358-368.	5.0	50
1317	The synergistic effect of non-metal doping or defect engineering and interface coupling on the photocatalytic property of g-C3N4: First-principle investigations. Applied Surface Science, 2019, 473, 386-392.	3.1	64
1318	Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on bismuth vanadate photoanode. Journal of Catalysis, 2019, 370, 1-10.	3.1	21
1319	A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 361, 853-861.	6.6	67
1320	Selectivity of H2O2 and O2 by water oxidation on metal oxide surfaces. Journal of Chemical Physics, 2019, 150, 041712.	1.2	11
1321	Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H2 production. Applied Surface Science, 2019, 473, 91-101.	3.1	59
1322	Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 2704-2710.	3.8	72
1323	Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays. Nano Energy, 2019, 57, 542-548.	8.2	57
1324	Introduction of oxygen vacancies into hematite in local reducing atmosphere for solar water oxidation. Solar Energy, 2019, 179, 99-105.	2.9	14
1325	Synergistic Effect Between WO3/Activated Carbon and BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 869-875.	1.9	6
1326	Electrospun nanostructured Co3O4/BiVO4 composite films for photoelectrochemical applications. Journal of Colloid and Interface Science, 2019, 539, 442-447.	5.0	26
1327	Atomic Layer Deposition of Space‣fficient SnO 2 Underlayers for BiVO 4 Host–Guest Architectures for Photoassisted Water Splitting. ChemSusChem, 2019, 12, 1916-1924.	3.6	10
1328	WO ₃ /BiVO ₄ Type-II Heterojunction Arrays Decorated with Oxygen-Deficient ZnO Passivation Layer: A Highly Efficient and Stable Photoanode. ACS Applied Materials & Interfaces, 2019, 11, 889-897.	4.0	86
1329	Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation. Journal of Energy Chemistry, 2019, 35, 30-36.	7.1	42
1330	Dynamic Mechanical and Electric Behaviors of La-Doped BiVO ₄ . Crystal Growth and Design, 2019, 19, 275-284.	1.4	3
1331	Compositionally graded SnO2/TiO2 bi-layered compounds with dramatically enhanced charge transport efficiency for self-driven water purification applications. Journal of Alloys and Compounds, 2019, 776, 839-849.	2.8	9
1332	Surface Engineering of Nanomaterials for Photoâ€Electrochemical Water Splitting. Small, 2019, 15, e1803746.	5.2	72

ARTICLE IF CITATIONS BiVO4(010)/rGO Nanocomposite and Its Photocatalysis Application. Journal of Inorganic and 1333 1.9 7 Organometallic Polymers and Materials, 2019, 29, 1000-1009. Rational Design and Construction of Cocatalysts for Semiconductorâ€Based Photoâ€Electrochemical 1334 5.6 Oxygen Evolution: A Comprehensive Review. Advanced Science, 2019, 6, 1801505. Synthesis of TiO2-based nanocomposites by anodizing and hydrogen annealing for efficient 1335 4.0 16 photoelectrochemical water oxidation. Journal of Power Sources, 2019, 410-411, 59-68. Fabrication of photoactive CaTiO3–TiO2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route. Journal of Materials Science: Materials in Electronics, 2019, 1336 30, 1411-1424. NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water 1337 10.8 131 splitting. Applied Catalysis B: Environmental, 2019, 244, 511-518. Acid-treated Ti4+ doped hematite photoanode for efficient solar water oxidationâ€"Insight into surface states and charge separation. Journal of Alloys and Compounds, 2019, 782, 943-951. 1338 2.8 Facile in situ synthesis of Ag and Bi co-decorated BiOCl heterojunction with high photocatalytic 1339 1.5 26 performance over the full solar spectrum. Solid State Sciences, 2019, 89, 74-84. Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox 1340 6.6 685 Catalysis. Journal of the American Chemical Society, 2019, 141, 2508-2515. Nanoporous Fe-doped BiVO4 Modified with MIL-53 (Fe) for Enhanced Photoelectrochemical Stability 1341 1.4 17 and Water Splitting Perfromances. Catalysis Letters, 2019, 149, 870-875. Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO₂ 1342 8.8 for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298. Manipulation of Charge Transport by Metallic V₁₃O₁₆ Decorated on Bismuth 1343 11.1 57 Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial 1.0 28 Photosynthesis. Éuropean Journal of Inorganic Chemistry, 2019, 2019, 2040-2057. Highâ€Temperature Oneâ€Step Synthesis of Efficient Nanostructured Bismuth Vanadate Photoanodes for 1345 1.8 23 Water Oxidation. Energy Technology, 2019, 7, 1801052. Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode 1346 5.8 for solar water-splitting. Nano Research, 2019, 12, 643-650. Hydrogen generation with acid/alkaline amphoteric water electrolysis. Journal of Energy Chemistry, 1347 103 7.1 2019, 38, 162-169. Hierarchical architectures of wrinkle-like ZnFe2O4 nanosheet-enwrapped ZnO nanotube arrays for remarkably photoelectrochemical water splitting to produce hydrogen. Journal of Colloid and 1348 5.0 39 Interface Ścience, 2019, 536, 408-413. The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active 1349 2.6 15 photoanodes for photoelectrochemical water oxidation. Electrochimica Acta, 2019, 295, 410-417. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Applied Catalysis B: Environmental, 2019, 243, 657-666.

#	Article	IF	CITATIONS
1351	Improved photoelectrochemical performance of molybdenum (Mo)-doped monoclinic bismuth vanadate with increasing donor concentration. Catalysis Today, 2019, 328, 35-42.	2.2	38
1352	Boosting the Performance of BiVO4Prepared through Alkaline Electrodeposition with an Amorphous Fe Coâ€Catalyst. ChemElectroChem, 2019, 6, 613-617.	1.7	7
1353	Improving the photoelectrochemical catalytic ability of bismuth vanadate electrodes by depositing efficient Co-catalysts. Electrochimica Acta, 2019, 295, 507-513.	2.6	27
1354	Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. Journal of Alloys and Compounds, 2019, 775, 542-548.	2.8	77
1355	Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. Journal of the American Chemical Society, 2019, 141, 1394-1405.	6.6	128
1356	Microstructure and photocatalytic performance of BiVO4 prepared by hydrothermal method. Journal of Alloys and Compounds, 2019, 781, 56-63.	2.8	78
1357	Three-Dimensional Decoupling Co-Catalyst from a Photoabsorbing Semiconductor as a New Strategy To Boost Photoelectrochemical Water Splitting. Nano Letters, 2019, 19, 455-460.	4.5	52
1358	Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Research, 2019, 12, 575-580.	5.8	21
1359	Boosting Photoelectrochemical Water Oxidation with Cobalt Phosphide Nanosheets on Porous BiVO ₄ . ACS Sustainable Chemistry and Engineering, 2019, 7, 769-778.	3.2	36
1360	Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chemistry, 2019, 11, 146-153.	6.6	132
1361	Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting. Applied Catalysis B: Environmental, 2019, 244, 863-870.	10.8	40
1362	Charge transportation at cascade energy structure interfaces of CulnxGa1-xSeyS2-y/CdS/ZnS for spontaneous water splitting. Electrochimica Acta, 2019, 297, 633-640.	2.6	11
1363	An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting. International Journal of Hydrogen Energy, 2019, 44, 594-604.	3.8	41
1364	Rationally Designed Copperâ€Modified Polymeric Carbon Nitride as a Photocathode for Solar Water Splitting. ChemSusChem, 2019, 12, 866-872.	3.6	26
1365	Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination. Catalysis Today, 2019, 335, 365-371.	2.2	21
1366	Photocatalytic Nanoheterostructures and Chemically Bonded Junctions Made by Solution-Based Approaches. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 239-263.	6.8	13
1367	Understanding the Roles of NiO _{<i>x</i>} in Enhancing the Photoelectrochemical Performance of BiVO ₄ Photoanodes for Solar Water Splitting. ChemSusChem, 2019, 12, 2022-2028.	3.6	31
1368	Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2019, 241, 506-513.	10.8	84

#	Article	IF	Citations
1369	Novel Ag2CrO4/Bi2O2CO3 heterojunction: Simple preparation, wide visible-light absorption band and excellent photocatalytic activity. Chemical Physics, 2019, 517, 60-66.	0.9	26
1370	In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode. Chemical Engineering Journal, 2019, 358, 658-665.	6.6	81
1371	Dynamic behavior of BiVO4 material under mechanical studies. Journal of Alloys and Compounds, 2019, 774, 651-655.	2.8	4
1372	Synthesis and characterization of Ag-ligand modified polyoxovanadates with three-dimensional structures. Journal of Solid State Chemistry, 2019, 269, 278-284.	1.4	11
1373	Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. Catalysis Today, 2019, 321-322, 59-66.	2.2	28
1374	Hydrogen treatment and FeOOH overlayer: Effective approaches for enhancing the photoelectrochemical water oxidation performance of bismuth vanadate thin films. Catalysis Today, 2019, 321-322, 87-93.	2.2	7
1375	Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience (Switzerland), 2019, 9, 1017-1024.	1.6	24
1376	Photocatalytic H2 production over inverse opal TiO2 catalysts. Catalysis Today, 2019, 321-322, 113-119.	2.2	29
1377	Sensitizing effects of BiVO4 and visible light induced production of highly reductive electrons in the TiO2/BiVO4 heterojunction. Catalysis Today, 2020, 340, 19-25.	2.2	30
1378	Aging of a Vanadium Precursor Solution: Influencing Material Properties and Photoelectrochemical Water Oxidation Performance of Solutionâ€Processed BiVO ₄ Photoanodes. Advanced Functional Materials, 2020, 30, 1806662.	7.8	16
1379	Fabrication of large size nanoporous BiVO4 photoanode by a printing-like method for efficient solar water splitting application. Catalysis Today, 2020, 340, 145-151.	2.2	18
1380	Recent Development of Ni/Feâ€Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Advanced Energy Materials, 2020, 10, 1900954.	10.2	358
1381	Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2TX MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381, 122001.	6.6	57
1382	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	5.2	132
1383	3D CQDs-{001}TiO2/Ti photoelectrode with dominant {001} facets: Efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight. Applied Catalysis B: Environmental, 2020, 261, 118229.	10.8	40
1384	Investigation of the structural, optical, and photoelectrochemical properties of α-Fe2O3 nanorods synthesized via a facile chemical bath deposition. Optik, 2020, 200, 163454.	1.4	14
1385	Photoelectrochemical evaluation of SILAR-deposited nanoporous BiVO4 photoanodes for solar-driven water splitting. Nano Materials Science, 2020, 2, 227-234.	3.9	14
1386	Photoelectrochemical sewage treatment by a multifunctional g-C3N4/Ag/AgCl/BiVO4 photoanode for the simultaneous degradation of emerging pollutants and hydrogen production, and the disinfection of E.Âcoli. Water Research, 2020, 168, 115166.	5.3	58

#	Article	IF	CITATIONS
1387	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	4.6	157
1388	Cubic SiC Photoanode Coupling with Ni:FeOOH Oxygenâ€Evolution Cocatalyst for Sustainable Photoelectrochemical Water Oxidation. Solar Rrl, 2020, 4, 1900364.	3.1	16
1389	Increasing Charge Separation Property and Water Oxidation Activity of BiVO ₄ Photoanodes via a Postsynthetic Treatment. Journal of Physical Chemistry C, 2020, 124, 1337-1345.	1.5	12
1390	Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. Small, 2020, 16, e1903398.	5.2	120
1391	Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate. Journal of Hazardous Materials, 2020, 394, 121105.	6.5	55
1392	Hierarchical WO3@ BiVO4 nanostructures for improved green energy production. Applied Nanoscience (Switzerland), 2020, 10, 1183-1190.	1.6	15
1393	Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets. Journal of Materials Science, 2020, 55, 2118-2128.	1.7	14
1394	Tuning surface electronegativity of BiVO4 photoanodes toward high-performance water splitting. Applied Catalysis B: Environmental, 2020, 262, 118267.	10.8	77
1395	Synergistic effects of dual-electrocatalyst FeOOH/NiOOH thin films as effective surface photogenerated hole extractors on a novel hierarchical heterojunction photoanode structure for solar-driven photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 380, 122501.	6.6	30
1396	Rationally designed/assembled hybrid BiVO4-based photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020, 260, 118136.	10.8	69
1397	Green Photocatalysts for Energy and Environmental Process. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	8
1398	Fully blossomed WO3/BiVO4 structure obtained via active facet engineering of patterned FTO for highly efficient Water splitting. Applied Catalysis B: Environmental, 2020, 263, 118362.	10.8	44
1399	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie - International Edition, 2020, 59, 935-942.	7.2	89
1400	Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting. Chemical Engineering Journal, 2020, 384, 123323.	6.6	30
1401	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie, 2020, 132, 945-952.	1.6	22
1402	BiVO4 plate with Fe and Ni oxyhydroxide cocatalysts for the photodegradation of sulfadimethoxine antibiotics under visible-light irradiation. Chemical Engineering Journal, 2020, 389, 123426.	6.6	45
1403	Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Applied Catalysis B: Environmental, 2020, 263, 118280.	10.8	139
1404	Highâ€yield synthesis of pure ZnO nanoparticles by oneâ€step solidâ€state reaction approach for enhanced photocatalytic activity. Journal of the Chinese Chemical Society, 2020, 67, 1045-1053.	0.8	7

#	Article	IF	CITATIONS
1405	Excellent stability of molecular catalyst/BiVO4 photoanode in borate buffer solution. Nano Energy, 2020, 70, 104487.	8.2	23
1406	Efficient hydrogen peroxide synthesis by metal-free polyterthiophene <i>via</i> photoelectrocatalytic dioxygen reduction. Energy and Environmental Science, 2020, 13, 238-245.	15.6	146
1407	Ultrasensitive photoelectrochemical immunosensor for procalcitonin detection with porous nanoarray BiVO4/CuxS platform as advanced signal amplification under anodic bias. Sensors and Actuators B: Chemical, 2020, 308, 127685.	4.0	19
1408	An atomic insight into BiOBr/La ₂ Ti ₂ O ₇ p–n heterojunctions: interfacial charge transfer pathway and photocatalysis mechanism. Catalysis Science and Technology, 2020, 10, 826-834.	2.1	28
1409	Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Nanoscale, 2020, 12, 316-325.	2.8	12
1410	Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Research, 2020, 13, 231-237.	5.8	15
1411	Porous β-Bi2O3 with multiple vacancy associates on highly exposed active {220} facets for enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 265, 118563.	10.8	62
1412	Synthesis and Doping Strategies to Improve the Photoelectrochemical Water Oxidation Activity of BiVO ₄ Photoanodes. Zeitschrift Fur Physikalische Chemie, 2020, 234, 655-682.	1.4	6
1413	A photoelectrochemical supercapacitor based on a single BiVO4-RGO bilayer photocapacitive electrode. Electrochimica Acta, 2020, 329, 135170.	2.6	22
1414	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	4.2	107
1415	Activating a hematite nanorod photoanode <i>via</i> fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale, 2020, 12, 3259-3266.	2.8	40
1416	Novel highly active and self-healing Co(CO ₃) _x OH _y cocatalysts on BiVO ₄ photoanodes for effective solar water oxidation. Journal of Materials Chemistry A, 2020, 8, 2563-2570.	5.2	40
1417	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115
1418	High performance bulk photovoltaics in narrow-bandgap centrosymmetric ultrathin films. Materials Horizons, 2020, 7, 898-904.	6.4	6
1419	Effects of yttrium, ytterbium with tungsten co-doping on the light absorption and charge transport properties of bismuth vanadate photoanodes to achieve superior photoelectrochemical water splitting. Sustainable Energy and Fuels, 2020, 4, 1496-1506.	2.5	15
1420	Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. Journal of Materials Chemistry A, 2020, 8, 2171-2206.	5.2	94
1421	Cooperative effects of surface and interface treatments in a hematite (α-Fe ₂ O ₃) photo-anode on its photo-electrochemical performance. Sustainable Energy and Fuels, 2020, 4, 2174-2183.	2.5	15
1422	Self-assembled carbon nitride/cobalt (III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101, 107648.	1.8	36

ARTICLE IF CITATIONS # Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb₂Se₃ Photocathodes for Photoelectrochemical Water Splitting. ACS 1423 58 8.8 Energy Letters, 2020, 5, 136-145. Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting. 1424 1.5 Electrocatalysis, 2020, 11, 180-187. Design Guidelines of Insulator for Improving Stability and Performance of 1425 Nanoelectrocatalyst/Insulator/Semiconductor Photoelectrochemical Cells. ACS Applied Energy 2.510 Materials, 2020, 3, 1046-1053. FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in 1426 Materials Science, 2020, 110, 100632. Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via polymer-mediated self-assembly of CoOx nanoparticles. Solar Energy Materials and Solar Cells, 2020, 1427 3.0 26 207, 110349. Rational Design of 3D Hierarchical Ternary SnO₂/TiO₂/BiVO₄ Arrays Photoanode toward Efficient Photoelectrochemical Performance. Advanced Science, 2020, 7, 5.6 1902235. Gradient Ti-doping in hematite photoanodes for enhanced photoelectrochemical performance. 1429 4.0 34 Journal of Power Sources, 2020, 449, 227473. One-step hydrothermal deposition of F:FeOOH onto BiVO4 photoanode for enhanced water oxidation. 1430 6.6 60 Chemical Engineering Journal, 2020, 392, 123703. Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of 1431 6.6 57 BiVO4. Chémical Engineering Journal, 2020, 392, 123744. A novel resource utilization type 3-dimensional flower spheroidal Fe3O4@C@(BiO)2CO3: 1432 High-efficiency degradation of tetracycline under visible light. Inorganic Chemistry Communication, 1.8 2020, 111, 107630. The Role of Surface Hydroxylation, Lattice Vacancies and Bond Covalency in the Electrochemical Oxidation of Water (ÓER) on Ni-Depleted Iridium Oxide Catalysts. Zeitschrift Fur Physikalische Chemie, 1433 12 1.4 2020, 234, 787-812. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for 3.1 photoelectrochemical solar energy conversion. Applied Surface Science, 2020, 509, 144703. A rational design of CdS/ZnFe2O4/Cu2O core-shell nanorod array photoanode with stair-like type-II band alignment for highly efficient bias-free visible-light-driven H2 generation. Applied Catalysis B: 1435 10.8 48 Environmental, 2020, 268, 118460. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge 1436 7.2 169 Separation. Angewandte Chemie - International Edition, 2020, 59, 2044-2048. Construction and photoelectrocatalytic performance of TiO2/BiVO4 heterojunction modified with 1437 23 2.8 cobalt phosphate. Journal of Alloys and Compounds, 2020, 821, 153225. 3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 1438 2020, 10, 1902494. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge 1439 1.6 41 Separation. Angewandte Chemie, 2020, 132, 2060-2064. Synergistic cocatalytic effect of ultra-thin metal-organic framework and Mo-dopant for efficient 1440 photoelectrochemical water oxidation on BiVO4 photoanode. Chemical Engineering Journal, 2020, 6.6

CITATION REPORT

384, 123333.

#	Article	IF	CITATIONS
1441	Optimization of BiVO4 photoelectrodes made by electrodeposition for sun-driven water oxidation. International Journal of Hydrogen Energy, 2020, 45, 605-618.	3.8	45
1442	Modulating Charge Separation Efficiency of Water Oxidation Photoanodes with Polyelectrolyteâ€Assembled Interfacial Dipole Layers. Advanced Functional Materials, 2020, 30, 1908492.	7.8	21
1443	A BiVO4 photoanode grown on porous and conductive SnO2 ceramics for water splitting driven by solar energy. Ceramics International, 2020, 46, 9040-9049.	2.3	14
1444	BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2020, 45, 31902-31912.	3.8	26
1445	Morphology control of the hematite photoanodes for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 31667-31677.	3.8	9
1446	Planar and Nanostructured nâ€Si/Metalâ€Oxide/WO ₃ /BiVO ₄ Monolithic Tandem Devices for Unassisted Solar Water Splitting. Advanced Energy and Sustainability Research, 2020, 1, 2000037.	2.8	9
1447	Co3O4/reduced graphene oxide/BiVO4 nanorod as high performance photoanode for water oxidation. Electrochimica Acta, 2020, 364, 137283.	2.6	26
1448	A highly efficient photocatalytic methanol fuel cell based on non-noble metal photoelectrodes: Study on its energy band engineering via experimental and density functional theory method. Journal of Power Sources, 2020, 478, 228756.	4.0	19
1449	Atomic Layer Deposition Seeded Growth of Rutile SnO ₂ Nanowires on Versatile Conducting Substrates. ACS Applied Materials & Interfaces, 2020, 12, 48486-48494.	4.0	16
1450	Photosynthesis Z-Scheme biomimicry: Photosystem I/BiVO4 photo-bioelectrochemical cell for donor-free bias-free electrical power generation. Biosensors and Bioelectronics, 2020, 168, 112517.	5.3	12
1451	Direct growth of duel-faceted BiVO4 microcrystals on FTO-coated glass for photoelectrochemical water oxidation. Optik, 2020, 224, 165516.	1.4	6
1452	Solarâ€Driven Electrochemical CO ₂ Reduction with Heterogeneous Catalysts. Advanced Energy Materials, 2021, 11, 2002652.	10.2	67
1453	Interface modulation of BiVO4 based photoanode with Bi(III)Bi(V)O4 for enhanced solar water splitting. Journal of Catalysis, 2020, 391, 513-521.	3.1	12
1454	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	2.8	9
1455	Unveiling the Activity and Stability Origin of BiVO ₄ Photoanodes with FeNi Oxyhydroxides for Oxygen Evolution. Angewandte Chemie, 2020, 132, 19152-19157.	1.6	11
1456	Molybdenum defect complexes in bismuth vanadate. Physical Chemistry Chemical Physics, 2020, 22, 16277-16285.	1.3	2
1457	Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting. Applied Catalysis B: Environmental, 2020, 267, 118723.	10.8	47
1458	Improved hole extraction and durability of BiVO4 photoanode for solar water splitting under extreme pH condition. Chemical Engineering Journal, 2020, 402, 126227.	6.6	18

#	Article	IF	CITATIONS
1459	Constructing multifunctional â€~Nanoplatelet-on-Nanoarray' electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Applied Catalysis B: Environmental, 2020, 278, 119339.	10.8	93
1460	Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A, 2020, 8, 14863-14894.	5.2	115
1461	Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2020, 4, 2000130.	2.7	120
1462	Unveiling the Activity and Stability Origin of BiVO ₄ Photoanodes with FeNi Oxyhydroxides for Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 18990-18995.	7.2	129
1463	Sunlight Selective Photodeposition of CoO _{<i>x</i>} (OH) _{<i>y</i>} and NiO _{<i>x</i>} (OH) _{<i>y</i>} on Truncated Bipyramidal BiVO ₄ for Highly Efficient Photocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 53910-53920.	4.0	16
1464	Structured BiVO ₄ Photoanode Fabricated via Sputtering for Large Areas and Enhanced Photoelectrochemical Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 17923-17932.	3.2	15
1465	Manganese-based oxygen evolution catalysts boosting stable solar-driven water splitting: MnSe as an intermetallic phase. Journal of Materials Chemistry A, 2020, 8, 25298-25305.	5.2	28
1466	Enhancing Solar Water Splitting of Textured BiVO4 by Dual Effect of a Plasmonic Silver Nanoshell: Plasmon-Induced Light Absorption and Enhanced Hole Transport. ACS Applied Energy Materials, 2020, 3, 11886-11892.	2.5	6
1467	Tracking the Local Structure Change during the Photoabsorption Processes of Photocatalysts by the Ultrafast Pump-Probe XAFS Method. Applied Sciences (Switzerland), 2020, 10, 7818.	1.3	4
1468	Decoupling Strategy for Enhanced Syngas Generation from Photoelectrochemical CO2 Reduction. IScience, 2020, 23, 101390.	1.9	19
1469	A simple flame strategy for constructing Wâ€doped BiVO ₄ photoanodes with enhanced photoelectrochemical water splitting. International Journal of Energy Research, 2020, 44, 10821-10831.	2.2	8
1470	Cobalt doped BiVO ₄ with rich oxygen vacancies for efficient photoelectrochemical water oxidation. RSC Advances, 2020, 10, 28523-28526.	1.7	22
1471	Selfâ€assembly synthesis of monodisperse BiVO ₄ nanosphere via a hybrid strategy for photoelectrochemical water splitting. ChemCatChem, 2020, 12, 5269-5275.	1.8	2
1472	Separating bulk and surface processes in NiO _x electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	2.5	26
1473	Surface Modification of Hematite Photoanodes with CeO _{<i>x</i>} Cocatalyst for Improved Photoelectrochemical Water Oxidation Kinetics. ChemSusChem, 2020, 13, 5489-5496.	3.6	16
1474	Solar-enhanced hybrid lithium–oxygen batteries with a low voltage and superior long-life stability. Chemical Communications, 2020, 56, 13642-13645.	2.2	15
1475	Metallic Woodpile Nanostructures for Femtomolar Sensing of Alzheimer's Neurofilament Lights. ACS Nano, 2020, 14, 10376-10384.	7.3	10
1476	Improved water oxidation performance of ultra-thin planar hematite photoanode: Synergistic effect of In/Sn doping and an overlayer of metal oxyhydroxides. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112781.	2.0	2

#	Article	IF	CITATIONS
1477	Synergizing hole accumulation and transfer on composite Ni/CoO _x for photoelectrochemical water oxidation. Chemical Communications, 2020, 56, 10179-10182.	2.2	3
1478	Nanostructured Ni:BiVO4 photoanode in photoelectrochemical water splitting for hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 26746-26757.	3.8	22
1479	Remarkable Influence of α-SnWO ₄ Exposed Facets on Their Photocatalytic Performance for H ₂ and O ₂ Evolution Reactions. Journal of Physical Chemistry C, 2020, 124, 18684-18689.	1.5	11
1480	Ligand Effects of Penta- and Hexacyanidoferrate-Derived Water Oxidation Catalysts on BiVO ₄ Photoanodes. ACS Applied Energy Materials, 2020, 3, 8448-8456.	2.5	13
1481	Nitrate Radical Facilitates Indirect Benzyl Alcohol Oxidation on Bismuth(III) Vanadate Photoelectrodes. ChemElectroChem, 2020, 7, 3776-3782.	1.7	10
1482	Energy-Inexpensive Galvanic Deposition of BiOI on Electrodes and Its Conversion to 3D Porous BiVO ₄ -Based Photoanode. Journal of Physical Chemistry C, 2020, 124, 18930-18945.	1.5	9
1483	Preparation and photoelectrochemical properties of BiFeO ₃ /BiOI composites. RSC Advances, 2020, 10, 26658-26663.	1.7	12
1484	Hydroxyl Radical Suppression during Photoelectrocatalytic Water Oxidation on WO ₃ FeOOH. Journal of Physical Chemistry C, 2020, 124, 17957-17963.	1.5	11
1485	Vertically aligned ZnO/In2S3 core/shell heterostructures with enhanced photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 15773-15784.	1.1	5
1486	Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes. ACS Applied Materials & Interfaces, 2020, 12, 39092-39097.	4.0	10
1487	Can a PbCrO4 Photoanode Perform as Well as Isoelectronic BiVO4?. ACS Applied Energy Materials, 2020, 3, 8658-8666.	2.5	10
1488	Synthesis of narrow-band curled carbon nitride nanosheets with high specific surface area for hydrogen evolution from water splitting by low-temperature aqueous copolymerization to form copolymers. RSC Advances, 2020, 10, 28848-28855.	1.7	13
1489	High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 2020, 11, 5509.	5.8	103
1490	Functions of MnOx in NaCl Aqueous Solution for Artificial Photosynthesis. IScience, 2020, 23, 101540.	1.9	12
1491	Cu ₂ O/ZnO p–n Junction Decorated with NiO _{<i>x</i>} as a Protective Layer and Cocatalyst for Enhanced Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 10408-10414.	2.5	40
1492	Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 49705-49712.	4.0	76
1493	pâ€CuInS ₂ /nâ€Polymer Semiconductor Heterojunction for Photoelectrochemical Hydrogen Evolution. ChemSusChem, 2020, 13, 6651-6659.	3.6	8
1494	Surface metal valence state regulating on hematite to weaken dependence of charge transport to catalyst loading. Nano Energy, 2020, 78, 105396.	8.2	5

#	Article	IF	CITATIONS
1495	BiVO4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine. Water Research, 2020, 187, 116464.	5.3	24
1496	Charge-Carrier Dynamics at the CuWO ₄ /Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 50592-50599.	4.0	10
1497	Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 24307-24352.	5.2	200
1498	Direct growth of m-BiVO4@carbon fibers for highly efficient and recyclable photocatalytic and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112070.	1.7	19
1499	Evaluation of Photocatalysts for Water Splitting through Combined Analysis of Surface Coverage and Energy-Level Alignment. ACS Catalysis, 2020, 10, 13186-13195.	5.5	19
1500	Surface Recombination Passivation of the BiVO ₄ Photoanode by the Synergistic Effect of the Cobalt/Nickel Sulfide Cocatalyst. ACS Applied Energy Materials, 2020, 3, 9089-9097.	2.5	26
1501	Yttrium-Induced Regulation of Electron Density in NiFe Layered Double Hydroxides Yields Stable Solar Water Splitting. ACS Catalysis, 2020, 10, 10570-10576.	5.5	66
1502	Stable Cocatalystâ€Free BiVO ₄ Photoanodes with Passivated Surface States for Photocorrosion Inhibition. Angewandte Chemie - International Edition, 2020, 59, 23094-23099.	7.2	154
1503	Stable Cocatalystâ€Free BiVO ₄ Photoanodes with Passivated Surface States for Photocorrosion Inhibition. Angewandte Chemie, 2020, 132, 23294-23299.	1.6	19
1504	Modulating Surface/Interface Structure of Emerging InGaN Nanowires for Efficient Photoelectrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2005677.	7.8	51
1505	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	5.8	87
1506	Cu ₃ Mo ₂ O ₉ /BiVO ₄ Heterojunction Films with Integrated Thermodynamic and Kinetic Advantages for Solar Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 14082-14090.	3.2	21
1507	Facile fabrication of fibrous Bi4Ti3O12/Bi2S3/MoS2 with enhanced photocatalytic activities towards pollutant degradation under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2020, 31, 17688-17702.	1.1	7
1508	Tailoring the Surface Properties of Bi ₂ O ₂ NCN by <i>in Situ</i> Activation for Augmented Photoelectrochemical Water Oxidation on WO ₃ and CuWO ₄ Heterojunction Photoanodes. Inorganic Chemistry, 2020, 59, 13589-13597.	1.9	7
1509	Direct Identification of Antisite Cation Intermixing and Correlation with Electronic Conduction in CuBi ₂ O ₄ for Photocathodes. ACS Applied Materials & Interfaces, 2020, 12, 43720-43727.	4.0	10
1510	Identifying Performance-Limiting Deep Traps in Ta ₃ N ₅ for Solar Water Splitting. ACS Catalysis, 2020, 10, 10316-10324.	5.5	68
1511	Facet-Heterojunction-Based Z-Scheme BiVO ₄ {010} Microplates Decorated with AgBr-Ag Nanoparticles for the Photocatalytic Inactivation of Bacteria and the Decomposition of Organic Contaminants. ACS Applied Nano Materials, 2020, 3, 8604-8617.	2.4	33
1512	Selective CO Production by Photoelectrochemical CO ₂ Reduction in an Aqueous Solution with Cobalt-Based Molecular Redox Catalysts. ACS Applied Materials & amp; Interfaces, 2020, 12, 41644-41648.	4.0	13

		15	C
#		IF	CITATIONS
1513	and Photoelectrochemical Water Oxidation. Frontiers in Chemistry, 2020, 8, 604239.	1.8	12
1514	Highly efficient hamburger-like nanostructure of a triadic Ag/Co ₃ O ₄ /BiVO ₄ photoanode for enhanced photoelectrochemical water oxidation. RSC Advances, 2020, 10, 45067-45075.	1.7	11
1515	All-in-One, Solid-State, Solar-Powered Electrochemical Cell. ACS Applied Materials & Interfaces, 2020, 12, 57182-57189.	4.0	6
1516	Lignin-controlled photocatalyst of porous BiVO4-C nanocomposite for enhancing photocatalytic activity toward pollutant under visible-light. Applied Surface Science, 2020, 523, 146401.	3.1	17
1517	Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting. Inorganic Chemistry, 2020, 59, 6988-6999.	1.9	35
1518	Unveiling the Effects of Nanostructures and Core Materials on Charge-Transport Dynamics in Heterojunction Electrodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 21894-21902.	4.0	9
1519	Surface Engineering of WO3/BiVO4 to Boost Solar Water-Splitting. Catalysts, 2020, 10, 556.	1.6	3
1520	An <i>in situ</i> combustion method for scale-up fabrication of BiVO ₄ photoanodes with enhanced long-term photostability for unassisted solar water splitting. Journal of Materials Chemistry A, 2020, 8, 10989-10997.	5.2	25
1521	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
1522	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
1523	Photoelectrochemical Decomposition of Lignin Model Compound on a BiVO ₄ Photoanode. ChemSusChem, 2020, 13, 3622-3626.	3.6	17
1524	All-Solution-Processed BiVO ₄ /TiO ₂ Photoanode with NiCo ₂ O ₄ Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials, 2020, 3, 5646-5656.	2.5	23
1525	Integration of Oxygenâ€Vacancyâ€Rich NiFe‣ayered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation. ChemSusChem, 2020, 13, 3893-3900.	3.6	17
1526	Generalized Synthesis to Produce Transparent Thin Films of Ternary Metal Oxide Photoelectrodes. ChemSusChem, 2020, 13, 3645-3653.	3.6	10
1527	A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Applied Catalysis B: Environmental, 2020, 277, 119189.	10.8	67
1528	Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode. Chemical Engineering Journal, 2020, 399, 125088.	6.6	64
1529	Modification of BiVO4 with partially covered α-Fe2O3 spindles serving as hole-transport channels for significantly improved photoelectrochemical performance. Chemical Engineering Journal, 2020, 398, 125662.	6.6	35
1530	Ex-situ flame co-doping of tin and tungsten ions in TiO2 nanorod arrays for synergistic promotion of solar water splitting. Chemical Engineering Science, 2020, 226, 115843.	1.9	44

#	Article	IF	CITATIONS
1531	Effects of molecular modifications for water splitting enhancement of BiVO4. International Journal of Hydrogen Energy, 2020, 45, 15129-15141.	3.8	5
1532	Tuning the oxygen evolution reaction activity of Ni- and Co-modified Fe(OH)2 electrodes through structure and composition control. International Journal of Hydrogen Energy, 2020, 45, 17076-17087.	3.8	11
1533	A Macroporous-Structured WO ₃ /Mo-Doped BiVO ₄ Photoanode for Vapor-Fed Water Splitting under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9456-9463.	3.2	29
1534	Degradation of organics with simultaneous recovery of silver in a simple visible-light responsive dual photoelectrode photocatalytic fuel cell. Environmental Science: Water Research and Technology, 2020, 6, 1869-1879.	1.2	4
1535	In Situ Formation of Oxygen Vacancies Achieving Nearâ€Complete Charge Separation in Planar BiVO ₄ Photoanodes. Advanced Materials, 2020, 32, e2001385.	11.1	236
1536	Reversible electron storage in tandem photoelectrochemical cell for light driven unassisted overall water splitting. Applied Catalysis B: Environmental, 2020, 275, 119094.	10.8	37
1537	Highly Durable Oxygen Evolution Reaction Catalyst: Amorphous Oxyhydroxide Derived from Brownmillerite-Type Ca ₂ FeCoO ₅ . ACS Applied Energy Materials, 2020, 3, 5269-5276.	2.5	10
1538	Formation of Mo2C/hollow tubular g-C3N4 hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Applied Surface Science, 2020, 527, 146757.	3.1	56
1539	Yolk–shell structured Bi ₂ SiO ₅ :Yb ³⁺ ,Ln ³⁺ (Ln = Er, Ho,) Tj E 2020, 22, 4438-4448.	TQq0 0 0 1.3	rgBT /Overlo 31
1540	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	5.2	25
1541	Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light. Journal of Colloid and Interface Science, 2020, 576, 385-393.	5.0	23
1542	Well-Crystallized α-FeOOH Cocatalysts Modified BiVO ₄ Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 5927-5936.	2.5	47
1543	Photoelectrochemical hydrogen production (PEC H2). , 2020, , 255-289.		2
1544	Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49, 4926-4952.	18.7	157
1545	Physical Insights into Band Bending in Pristine and Co-Pi-Modified BiVO ₄ Photoanodes with Dramatically Enhanced Solar Water Splitting Efficiency. Journal of Physical Chemistry Letters, 2020, 11, 5015-5020.	2.1	16
1546	Photothermal effect-enhanced photoelectrochemical water splitting of a BiVO ₄ photoanode modified with dual-functional polyaniline. Journal of Materials Chemistry A, 2020, 8, 15976-15983.	5.2	81
1547	Identifying dual functions of rGO in a BiVO ₄ /rGO/NiFe-layered double hydroxide photoanode for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2020, 8, 13231-13240.	5.2	48
1548	Solarâ€Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angewandte Chemie - International Edition, 2020, 59, 15886-15890.	7.2	26

#	Article	IF	CITATIONS
1549	Ultrafine SnO ₂ /010 Facet-Exposed BiVO ₄ Nanocomposites as Efficient Photoanodes for Controllable Conversion of 2,4-Dichlorophenol via a Preferential Dechlorination Path. ACS Applied Materials & Interfaces, 2020, 12, 28264-28272.	4.0	19
1550	<i>In situ</i> growth of Fe2WO6 on WO3 nanosheets to fabricate heterojunction arrays for boosting solar water splitting. Journal of Chemical Physics, 2020, 152, 214704.	1.2	19
1551	MoS2/NiS heterostructure grown on Nickel Foam as highly efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 17329-17338.	3.8	26
1552	Solarâ€Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angewandte Chemie, 2020, 132, 16020-16024.	1.6	6
1553	Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chemical Engineering Journal, 2020, 399, 125836.	6.6	41
1554	BiVO ₄ Photoanode Modification by In-Doping and Anoxic Annealing by Synergistic Regulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9184-9194.	3.2	18
1555	Mildly regulated intrinsic faradaic layer at the oxide/water interface for improved photoelectrochemical performance. Chemical Science, 2020, 11, 6297-6304.	3.7	15
1556	Can the phase-pure BiVO4 (010) epitaxial film be fabricated with a stoichiometric target?. Journal Physics D: Applied Physics, 2020, 53, 225103.	1.3	4
1557	Expanded light-absorption and efficient charge-separation: bilayered thin film nano-hetero-structures, CuO/Cu–ZnO, make efficient photoanode in photoelectrochemical water splitting. Journal of Applied Electrochemistry, 2020, 50, 887-906.	1.5	10
1558	Photoelectrochemical water splitting with black Ni/Si-doped TiO2 nanostructures. International Journal of Hydrogen Energy, 2020, 45, 20983-20992.	3.8	23
1559	Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal, 2020, 393, 124766.	6.6	86
1560	Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions. IScience, 2020, 23, 100949.	1.9	17
1561	Enhanced photoelectrocatalytic performance from size effects in pure and La-doped BiFeO3 nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	6
1562	Pure CuBi ₂ O ₄ Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi ₂ O ₃ /CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 2020, 30, 1910832.	7.8	54
1563	Fabrication of novel fibrous BiVO4/CdS heterostructures by electrospinning method for efficient visible light photodegradation. Materials Chemistry and Physics, 2020, 247, 122858.	2.0	15
1564	The Role of Surface Oxygen Vacancies in BiVO ₄ . Chemistry of Materials, 2020, 32, 2899-2909.	3.2	108
1565	Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H ₂ O Oxidative H ₂ O ₂ Synthesis. Journal of the American Chemical Society, 2020, 142, 8641-8648.	6.6	168
1566	Direct Growth of Bismuth Vanadate Thin Film Arrays on FTO via Galvanic Deposition Mediated by BiOI Nanosheets for Fabrication of Photoelectrochemical Non-Enzymatic Dopamine Sensing Platform. Journal of the Electrochemical Society, 2020, 167, 047513.	1.3	5

#	Article	IF	CITATIONS
1567	Promoting hole transfer for photoelectrochemical water oxidation through a manganese cluster catalyst bioinspired by natural photosystem II. Chemical Communications, 2020, 56, 4244-4247.	2.2	9
1568	A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. Nanoscale, 2020, 12, 8277-8284.	2.8	6
1569	Patterning of BiVO ₄ Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 18065-18073.	4.0	11
1570	Zinc and Molybdenum Co-Doped BiVO ₄ Nanoarray for Photoelectrochemical Diethylstilbestrol Analysis Based on the Dual-Competitive System of Manganese Hexacyanoferrate Hydrate Nanocubes. ACS Applied Materials & Interfaces, 2020, 12, 16662-16669.	4.0	27
1571	Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: a review. Journal of Materials Chemistry A, 2020, 8, 15302-15318.	5.2	76
1572	Spray-processed nanoporous BiVO4 photoanodes with high charge separation efficiency for oxygen evolution. APL Materials, 2020, 8, .	2.2	6
1573	Fabrication of double-sided comb-like F/Ce co-doped BiVO4 micro/nanostructures for enhanced photocatalytic degradation and water oxidation. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	14
1574	Electrodeposited Co-Substituted LaFeO ₃ for Enhancing the Photoelectrochemical Activity of BiVO ₄ . ACS Applied Materials & Interfaces, 2020, 12, 17364-17375.	4.0	50
1575	Photoelectrochemical oxygen evolution with cobalt phosphate and BiVO4 modified 1-D WO3 prepared by flame vapor deposition. Journal of Industrial and Engineering Chemistry, 2020, 85, 240-248.	2.9	12
1576	A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO ₄ . Nanoscale, 2020, 12, 8875-8882.	2.8	21
1577	Ta ₃ N ₅ -Nanorods enabling highly efficient water oxidation <i>via</i> advantageous light harvesting and charge collection. Energy and Environmental Science, 2020, 13, 1519-1530.	15.6	80
1578	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO ₄ for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2577-2588.	3.6	34
1579	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	18.7	1,466
1580	A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system. Nano Energy, 2020, 76, 105089.	8.2	29
1581	Simultaneous enhancement in charge separation and interfacial charge transfer of BiVO4 photoanode for photoelectrochemical water oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 80-89.	2.7	12
1582	Photocatalytic activity and photocorrosion of oriented BiVO ₄ single crystal thin films. Catalysis Science and Technology, 2020, 10, 5091-5099.	2.1	13
1583	Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chemistry, 2020, 22, 5151-5160.	4.6	24
1584	Hybrid FeNiOOH/αâ€Fe ₂ O ₃ /Graphene Photoelectrodes with Advanced Water Oxidation Performance. Advanced Functional Materials, 2020, 30, 2002124.	7.8	41

#	Article	IF	CITATIONS
1585	Ultrasonically controlled growth of monodispersed octahedral BiVO4 microcrystals for improved photoelectrochemical water oxidation. Ultrasonics Sonochemistry, 2020, 68, 105233.	3.8	18
1586	Improving Uniformity and Reproducibility of Photoelectrochemical Water Oxidation Performance of BiVO ₄ Photoanodes via Selective Removal of Excess V ₂ O ₅ by Electrochemical Etching. ACS Applied Energy Materials, 2020, 3, 7756-7763.	2.5	4
1587	Defect engineering of the protection layer for photoelectrochemical devices. EnergyChem, 2020, 2, 100039.	10.1	15
1588	In-situ and synchronous generation of oxygen vacancies and FeOx OECs on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical performance. Chemical Engineering Journal, 2020, 401, 126134.	6.6	34
1589	Immobilization of Metal–Organic Framework MIL-100(Fe) on the Surface of BiVO ₄ : A New Platform for Enhanced Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 10410-10419.	4.0	42
1590	TiO ₂ Nanorods Coâ€decorated with Metalâ€Free Carbon Materials for Boosted Photoelectrochemical Water Oxidation. ChemElectroChem, 2020, 7, 792-799.	1.7	11
1591	Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. Journal of Colloid and Interface Science, 2020, 568, 255-263.	5.0	25
1592	Multiâ€Metal Nanocluster Assisted Cuâ€Gaâ€Sn Triâ€Doping for Enhanced Photoelectrochemical Water Splitting of BiVO ₄ Film. Advanced Materials Interfaces, 2020, 7, 2000016.	1.9	16
1593	The role of ultra-thin MnO _x co-catalysts on the photoelectrochemical properties of BiVO ₄ photoanodes. Journal of Materials Chemistry A, 2020, 8, 5508-5516.	5.2	23
1594	Bismuth Vanadate/Bilirubin Oxidase Photo(bio)electrochemical Cells for Unbiased, Lightâ€Triggered Electrical Power Generation. ChemSusChem, 2020, 13, 2684-2692.	3.6	13
1595	Nanoporous BiVO ₄ nanoflake array photoanode for efficient photoelectrochemical water splitting. CrystEngComm, 2020, 22, 1914-1921.	1.3	12
1596	Systematic Material Study Reveals TiNb ₂ O ₇ as a Model Wideâ€Bandgap Photoanode Material for Solar Water Splitting. Chemistry - A European Journal, 2020, 26, 7065-7073.	1.7	4
1597	Thermodynamic, lattice dynamical, and elastic properties of ironâ€vanadium oxides from experiments and first principles. Journal of the American Ceramic Society, 2020, 103, 3797-3811.	1.9	7
1598	Transparent Zirconium-doped Hematite Nanocoral Photoanode via In-Situ Diluted Hydrothermal Approach for Efficient Solar Water Splitting. Chemical Engineering Journal, 2020, 390, 124504.	6.6	27
1599	Efficient organic pollutants conversion and electricity generation for carbonate-containing wastewater based on carbonate radical reactions initiated by BiVO4-Au/PVC system. Journal of Hazardous Materials, 2020, 389, 122140.	6.5	14
1600	Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters, 2020, 5, 975-993.	8.8	52
1601	Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020, 269, 118776.	10.8	132
1602	An efficient g-C3N4-decorated CdS-nanoparticle-doped Fe3O4 hybrid catalyst for an enhanced H2 evolution through photoelectrochemical water splitting. Applied Surface Science, 2020, 513, 145836.	3.1	35

#	Article	IF	CITATIONS
1603	Evaluation of Copper Vanadate (β-Cu ₂ V ₂ O ₇) as a Photoanode Material for Photoelectrochemical Water Oxidation. Chemistry of Materials, 2020, 32, 2408-2419.	3.2	42
1604	Constructing ordered paths to improve the charge separation and light harvesting capacity towards efficient solar water oxidation performance. Applied Catalysis B: Environmental, 2020, 269, 118761.	10.8	30
1605	An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems. Solar Energy Materials and Solar Cells, 2020, 208, 110378.	3.0	31
1606	A graphene oxide–molecular Cu porphyrin-integrated BiVO ₄ photoanode for improved photoelectrochemical water oxidation performance. Journal of Materials Chemistry A, 2020, 8, 4062-4072.	5.2	66
1607	Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni–FeOOH Nanorods for Zero-Onset-Potential Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 7038-7046.	4.0	17
1608	Towards Longâ€Term Photostability of Nickel Hydroxide/BiVO ₄ Photoanodes for Oxygen Evolution Catalysts via Inâ€Situ Catalyst Tuning. Angewandte Chemie, 2020, 132, 6272-6277.	1.6	52
1609	Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting. Catalysis Letters, 2020, 150, 1878-1889.	1.4	13
1610	Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Separation and Purification Technology, 2020, 239, 116562.	3.9	99
1611	Construction of Z-scheme heterojunction of PANI-Ag-CN sandwich structure with efficient photocatalytic hydrogen evolution. Applied Surface Science, 2020, 509, 145296.	3.1	14
1612	Interface passivation to overcome shunting in semiconductor–catalyst junctions. Chemical Communications, 2020, 56, 2570-2573.	2.2	10
1613	Room Temperature Surface Modification of Ultrathin FeOOH Cocatalysts on Fe ₂ O ₃ Photoanodes for High Photoelectrochemical Water Splitting. Journal of Nanomaterials, 2020, 2020, 1-7.	1.5	13
1614	Large area high-performance bismuth vanadate photoanode for efficient solar water splitting. Journal of Materials Chemistry A, 2020, 8, 3845-3850.	5.2	30
1615	Tracking Compression Changes in an Aqueous Electrolyte for Real-Time H ₂ and O ₂ Gas Evolution Quantification during Total Water Splitting Using BARDS. ACS Applied Energy Materials, 2020, 3, 2000-2009.	2.5	1
1616	Towards Longâ€Term Photostability of Nickel Hydroxide/BiVO ₄ Photoanodes for Oxygen Evolution Catalysts via Inâ€Situ Catalyst Tuning. Angewandte Chemie - International Edition, 2020, 59, 6213-6218.	7.2	169
1617	Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567, 37-44.	5.0	29
1618	Luminescent Solar Concentrators for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 1665-1671.	2.5	12
1619	Anion-induced morphological regulation of cupric oxide nanostructures and their application as co-catalysts for solar water splitting. Dalton Transactions, 2020, 49, 1765-1775.	1.6	9
1620	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH) ₂ Characteristic. Solar Rrl, 2020, 4, 1900538.	3.1	28

#	Article	IF	CITATIONS
1621	Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer. Applied Energy, 2020, 261, 114414.	5.1	2
1622	The optimization of surface morphology of Au nanoparticles on WO ₃ nanoflakes for plasmonic photoanode. Nanotechnology, 2020, 31, 204003.	1.3	9
1623	Strategies for Semiconductor/Electrocatalyst Coupling toward Solarâ€Driven Water Splitting. Advanced Science, 2020, 7, 1902102.	5.6	110
1624	Femtomolar sensing of Alzheimer's tau proteins by water oxidation-coupled photoelectrochemical platform. Biosensors and Bioelectronics, 2020, 154, 112075.	5.3	23
1625	Bifunctional Photoelectrode Driven by Charged Domain Walls in Ferroelectric Bi ₂ WO ₆ . ACS Applied Energy Materials, 2020, 3, 4149-4154.	2.5	19
1626	Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. Chinese Journal of Catalysis, 2020, 41, 1522-1534.	6.9	20
1627	Luminescence Amplification at BiVO 4 Photoanodes by Photoinduced Electrochemiluminescence. Angewandte Chemie, 2020, 132, 15269-15272.	1.6	7
1628	Homogeneously mixed heterostructures of BiVO4/MoS2/RGO with improved photoelectrochemical performances. Solid State Sciences, 2020, 104, 106200.	1.5	8
1629	Colloidal metal Ag nanowire as an efficient co-catalyst for enhancing the solar water oxidation of fluorinated BiVO4 photoelectrode. Chemical Engineering Journal, 2020, 394, 125016.	6.6	16
1630	Enhanced Photoelectrochemical Performance by Interface Engineering in Ternary g ₃ N ₄ /TiO ₂ /PbTiO ₃ Films. Advanced Materials Interfaces, 2020, 7, 2000185.	1.9	11
1631	Structure, morphology and photocatalytic performance of BiVO4 nanoislands covered with ITO thin film. Journal of Materials Science: Materials in Electronics, 2020, 31, 7035-7043.	1.1	3
1632	Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2020, 271, 118917.	10.8	72
1633	Photoinduced electron transfer in WO ₃ /BiVO ₄ heterojunction photoanodes: effects of the WO ₃ layer thickness. Journal of Physics Condensed Matter, 2020, 32, 014001.	0.7	12
1634	Tuning the Charge Carriers Migration in Epitaxial BaTiO ₃ Thin-Film Photoanodes. Journal of Physical Chemistry C, 2020, 124, 10315-10323.	1.5	10
1635	Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO ₂ nanorods for solar hydrogen production. Journal of Materials Chemistry A, 2020, 8, 13971-13979.	5.2	47
1636	Luminescence Amplification at BiVO ₄ Photoanodes by Photoinduced Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 15157-15160.	7.2	23
1637	In-situ generation of g-C3N4 on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. Applied Surface Science, 2020, 523, 146441.	3.1	15
1638	Cu2O/InGaN heterojunction thin films with enhanced photoelectrochemical activity for solar water splitting. Renewable Energy, 2020, 156, 602-609.	4.3	25

#	Article	IF	CITATIONS
1639	KCl flux suppresses surface recombinations of hematite photoanode for water oxidation. Surface Innovations, 2020, 8, 130-137.	1.4	3
1640	Single-Crystal Integrated Photoanodes Based on 4 <i>H</i> -SiC Nanohole Arrays for Boosting Photoelectrochemical Water Splitting Activity. ACS Applied Materials & Interfaces, 2020, 12, 20469-20478.	4.0	13
1641	Direct Zâ€5cheme Heterojunction of SnS ₂ /Sulfurâ€Bridged Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Photoreduction. ChemSusChem, 2020, 13, 6278-6283.	3.6	48
1642	Synthesis of ternary spinel MCo2O4 (MÂ=ÂMn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting. Chemical Engineering Journal, 2020, 392, 124838.	6.6	77
1643	Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue. Materials Today: Proceedings, 2021, 36, 328-335.	0.9	12
1644	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie, 2021, 133, 2004-2013.	1.6	18
1645	Insight into the Transitionâ€Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation. Angewandte Chemie, 2021, 133, 3546-3551.	1.6	3
1646	A novel photoelectrochemical approach for efficient assessment of TiO2 pigments weatherability. Powder Technology, 2021, 380, 334-340.	2.1	7
1647	Enhancement of mass transfer efficiency and photoelectrochemical activity for TiO2 nanorod arrays by decorating Ni3+-states functional NiO water oxidation cocatalyst. Chinese Chemical Letters, 2021, 32, 1993-1997.	4.8	18
1648	Efficient WO3â^'x nanoplates photoanode based on bidentate hydrogen bonds and thermal reduction of ethylene glycol. Chemical Engineering Journal, 2021, 404, 127089.	6.6	11
1649	Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chemical Engineering Journal, 2021, 403, 126350.	6.6	82
1650	CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting. Chemical Engineering Journal, 2021, 405, 126231.	6.6	41
1651	Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. Journal of Energy Chemistry, 2021, 55, 154-161.	7.1	50
1652	Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation. Materials Today: Proceedings, 2021, 35, 258-262.	0.9	14
1653	Activity and Stability Boosting of an Oxygenâ€Vacancyâ€Rich BiVO ₄ Photoanode by NiFeâ€MOFs Thin Layer for Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 1433-1440.	7.2	205
1654	Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 407, 127180.	6.6	86
1655	Porous and visible-light-driven p–n heterojunction constructed by Bi2O3 nanosheets and WO3 microspheres with enhanced photocatalytic performance. Separation and Purification Technology, 2021, 256, 117815.	3.9	26
1656	Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes. Applied Catalysis B: Environmental, 2021, 281, 119477.	10.8	116

ARTICLE IF CITATIONS N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation. Journal of Colloid and 1657 5.0 12 Interface Science, 2021, 585, 660-667. Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A. Chemosphere, 2021, 263, 128279. 4.2 Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance. Chemical Engineering 1659 6.6 50 ournal, 2021, 404, 127054. Activity and Stability Boosting of an Oxygenâ€Vacancyâ€Rich BiVO₄ Photoanode by NiFeâ€MOFs 1660 1.6 33 Thin Layer for Water Oxidation. Angewandte Chemie, 2021, 133, 1453-1460. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 1661 7.2 55 1976-1985. Simultaneous Preparation and Functionalization of Ultrathin Fewâ[^]layer Black Phosphorus Nanosheets and Their Electrocatalytic OER and HER Performance. ChemCatChem, 2021, 13, 592-602. 1662 1.8 Energy Transferâ€Induced Photoelectrochemical Improvement from Porous Zeolitic Imidazolate 1663 4.6 14 Frameworkâ€Decorated BiVO₄ Photoelectrodes. Small Methods, 2021, 5, e2000753. The significance of the local structure of cobalt-based catalysts on the photoelectrochemical water 1664 2.6 oxidation activity of BiVO4. Electrochimica Acta, 2021, 366, 137467. Molten-based defect engineering polymeric carbon nitride quantum dots with enhanced hole 1665 5.4 15 extraction: An efficient photoelectrochemical cell for water oxidation. Carbon, 2021, 173, 339-349. Biasâ€Free Solar Water Splitting by Tetragonal Zircon BiVO₄ Nanocrystal Photocathode and Monoclinic Scheelite BiVO₄ Nanoporous Photoanode. Advanced Functional Materials, 2021, 31, 2008656. Photoelectrochemistry of Au Nanocluster-Sensitized TiO₂: Intricacy Arising from the 1667 8.8 22 Light-Induced Transformation of Nanoclusters into Nanoparticles. ACS Energy Letters, 2021, 6, 24-32. Engineering BiVO4@Bi2S3 heterojunction by cosharing bismuth atoms toward boosted photocatalytic 1668 6.5 Cr(VI) reduction. Journal of Hazardous Materials, 2021, 406, 124705. Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline. Materials 1669 2.7 80 Research Bulletin, 2021, 135, 111161. Investigation of bulk carrier diffusion dynamics using β-Mn2V2â^xMoxO7 photoanodes in solar water splitting. Applied Surface Science, 2021, 540, 148376. 1670 3.1 Elucidating the role of surface states of BiVO4 with Mo doping and a CoOOH co-catalyst for 1671 4.0 46 photoelectrochemical water splitting. Journal of Power Sources, 2021, 483, 229080. Understanding the dehydrogenation mechanism over iron nanoparticles catalysts based on density functional theory. Chinese Chemical Letters, 2021, 32, 286-290. Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water 1673 6.9 23 splitting. Chinese Journal of Catalysis, 2021, 42, 904-919. Ferroelectric polarization-enhanced charge separation in quantum dots sensitized semiconductor 1674 8.2 hybrid for photoelectrochemical hydrogen production. Nano Energy, 2021, 81, 105626.

#	Article	IF	CITATIONS
1675	BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater. Journal of Colloid and Interface Science, 2021, 587, 633-643.	5.0	45
1676	New heterojunctions of CN/TiO2 with different band structure as highly efficient catalysts for artificial photosynthesis. Applied Catalysis B: Environmental, 2021, 285, 119781.	10.8	25
1677	Evaluating the promotional effects of WO3 underlayers in BiVO4 water splitting photoanodes. Chemical Engineering Journal, 2021, 417, 128095.	6.6	27
1678	Investigation of interfacial charge transfer kinetics of photocharged Co-Bi modified BiVO4 using scanning electrochemical microscopy (SECM). Electrochimica Acta, 2021, 368, 137565.	2.6	16
1679	Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting. Journal of Materials Science and Technology, 2021, 79, 21-28.	5.6	18
1680	A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy, 2021, 81, 105651.	8.2	43
1681	Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chinese Chemical Letters, 2021, 32, 1869-1878.	4.8	75
1682	Bifunctional Perovskiteâ€BiVO ₄ Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Advanced Functional Materials, 2021, 31, 2008182.	7.8	36
1683	Facet-selective construction of Cu2O/Pt/BiVO4 heterojunction arrays for photocatalytic H2 production from water. New Journal of Chemistry, 2021, 45, 517-521.	1.4	9
1684	Construction of a TiO2 heterostructure nanowire with a sulfurized shell via a simple sulfurization process for enhanced photoelectrochemical water oxidation. Journal of Alloys and Compounds, 2021, 858, 158375.	2.8	5
1685	Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2021, 585, 72-84.	5.0	44
1686	Photoassisted chemical energy conversion into electricity using a sulfite‑iron photocatalytic fuel cell. Journal of Electroanalytical Chemistry, 2021, 881, 114940.	1.9	10
1687	Synthesis and optoelectronic properties of a promising quaternary metal oxide light absorber CuBiW ₂ O ₈ . Journal of Materials Chemistry A, 2021, 9, 1643-1654.	5.2	8
1688	Insight into the Transitionâ€Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 3504-3509.	7.2	44
1689	Efficient Improved Charge Separation of FeP Decorated Worm-Like Nanoporous BiVO4 Photoanodes for Solar-Driven Water Splitting. Catalysis Letters, 2021, 151, 1231-1238.	1.4	6
1690	A facile one-step hydrothermal preparation of Mn(VO3)2 under different pH conditions and their photocatalytic performance. Journal of the Iranian Chemical Society, 2021, 18, 567-571.	1.2	2
1691	Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable and Sustainable Energy Reviews, 2021, 138, 110503.	8.2	57
1692	A bifunctional lead–iron oxyfluoride, PbFeO ₂ F, that functions as a visible-light-responsive photoanode and an electrocatalyst for water oxidation. RSC Advances, 2021, 11, 25616-25623.	1.7	2

#	Article	IF	CITATIONS
1693	A nano-surface monocrystalline BiVO ₄ nanoplate photoanode for enhanced photoelectrochemical performance. New Journal of Chemistry, 2021, 45, 7069-7073.	1.4	2
1694	Photoelectrochemical processes for energy applications. , 2021, , 169-194.		Ο
1695	A silicon-based hybrid photocathode modified with an N ₅ -chelated nickel catalyst in a noble-metal-free biomimetic photoelectrochemical cell for solar-driven unbiased overall water splitting. Journal of Materials Chemistry A, 2021, 9, 12140-12151.	5.2	4
1696	Indirect bandgap, optoelectronic properties, and photoelectrochemical characteristics of high-purity Ta ₃ N ₅ photoelectrodes. Journal of Materials Chemistry A, 2021, 9, 20653-20663.	5.2	11
1697	Reinforcement of a BiVO ₄ anode with an Fe ₂ O ₃ underlayer for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 3102-3114.	2.5	17
1698	Influence of Oxygen Vacancies on the Structure of BiVO ₄ . Journal of Physical Chemistry C, 2021, 125, 1200-1207.	1.5	28
1699	Siliconâ€Based Photocatalysis for Green Chemical Fuels and Carbon Negative Technologies. Advanced Sustainable Systems, 2021, 5, 2000242.	2.7	12
1700	Boosting the quantum efficiency of the BiVO ₄ photoanode by increasing the oxygen vacancies for highly-efficient solar water oxidation. Dalton Transactions, 2021, 50, 12957-12962.	1.6	6
1701	Surface treatment of titanium by in-situ anodizination and NiO photodeposition: enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1702	Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials. Accounts of Chemical Research, 2021, 54, 754-764.	7.6	11
1703	Boosting the stability and photoelectrochemical activity of a BiVO ₄ photoanode through a bifunctional polymer coating. Journal of Materials Chemistry A, 2021, 9, 3309-3313.	5.2	19
1704	Artificial Z-scheme-based photocatalysts: design strategies and approaches. , 2021, , 165-186.		0
1705	Photoelectrochemical oxidation of water and degradation of pollutants using simple Bi-based metal oxide semiconductors under visible light irradiation. , 2021, , 279-303.		0
1706	Crystal size-controlled growth of bismuth vanadate for highly efficient solar water oxidation. Sustainable Energy and Fuels, 2021, 5, 1129-1133.	2.5	3
1707	Efficient charge separation and transfer of a TaON/BiVO ₄ heterojunction for photoelectrochemical water splitting. RSC Advances, 2021, 11, 13269-13273.	1.7	12
1708	Rational design of interface refining through Ti ⁴⁺ /Zr ⁴⁺ diffusion/doping and TiO ₂ /ZrO ₂ surface crowning of ZnFe ₂ O ₄ nanocorals for photoelectrochemical water splitting. Catalysis Science and Technology, 2021, 11, 3141-3152.	2.1	13
1709	Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis, 2021, 11, 1242-1247.	5.5	41
1710	The n-type and p-type conductivity mechanisms of the bulk BiOCl photocatalyst from hybrid density functional theory calculations. Physical Chemistry Chemical Physics, 2021, 23, 19841-19853.	1.3	18

#	Article	IF	CITATIONS
1711	Nanomaterials for Photocatalytic Energy Conversion. Materials Horizons, 2021, , 43-84.	0.3	0
1712	Preparation of Nanoparticle Porous-Structured BiVO4 Photoanodes by a New Two-Step Electrochemical Deposition Method for Water Splitting. Catalysts, 2021, 11, 136.	1.6	8
1713	A systematic study of post-activation temperature dependence on photoelectrochemical water splitting of one-step synthesized FeOOH CF photoanodes with erratically loaded ZrO ₂ . Sustainable Energy and Fuels, 2021, 5, 3414-3427.	2.5	18
1714	Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorganic Chemistry Frontiers, 2021, 8, 4107-4148.	3.0	18
1715	Bifunctional citrate-Ni _{0.9} Co _{0.1} (OH) _{<i>x</i>} layer coated fluorine-doped hematite for simultaneous hole extraction and injection towards efficient photoelectrochemical water oxidation. Nanoscale, 2021, 13, 14197-14206.	2.8	16
1716	Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat, 2021, 3, e12075.	6.8	65
1717	Tetragonal tungsten bronze type Sn(<scp>ii</scp>)-based quaternary oxides: a new class of visible-light-absorbing semiconductors for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2021, 9, 21085-21093.	5.2	5
1718	Solar-driven valorisation of glycerol on BiVO ₄ photoanodes: effect of co-catalyst and reaction media on reaction selectivity. Journal of Materials Chemistry A, 2021, 9, 6252-6260.	5.2	34
1719	Inorganic nanotubes with permanent wall polarization as dual photo-reactors for wastewater treatment with simultaneous fuel production. Environmental Science: Nano, 2021, 8, 2523-2541.	2.2	2
1720	Chemical insights into electrophilic fluorination of SnO ₂ for photoelectrochemical applications. Journal of Materials Chemistry A, 2021, 9, 19965-19974.	5.2	14
1721	In Situ Induced Crystalline–Amorphous Heterophase Junction by K+ to Improve Photoelectrochemical Water Oxidation of BiVO4. ACS Applied Materials & Interfaces, 2021, 13, 2723-2733.	4.0	10
1722	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58
1723	Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting. Dalton Transactions, 2021, 50, 2936-2944.	1.6	10
1724	Interfacial Oxide Formation Limits the Photovoltage of αâ€5nWO ₄ /NiO <i>_x</i> Photoanodes Prepared by Pulsed Laser Deposition. Advanced Energy Materials, 2021, 11, 2003183.	10.2	23
1725	Enhanced Photoelectrochemical Water Splitting on Nickelâ€Doped Cobalt Phosphate by Modulating both Charge Transfer and Oxygen Evolution Efficiencies. ChemSusChem, 2021, 14, 1414-1422.	3.6	5
1726	The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nature Energy, 2021, 6, 287-294.	19.8	108
1727	Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. ACS Nano, 2021, 15, 5502-5512.	7.3	34
1728	Surface polarization enables high charge separation in TiO2 nanorod photoanode. Nano Research, 2021, 14, 4056-4062.	5.8	20

#	Δρτιςι ε	IF	CITATIONS
" 1729	Newly emerging borate-based nonlinear optical materials for organic pollutant degradation: A	6.6	10
	review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2227-2269.		
1730	Water Splitting. Advanced Energy Materials, 2021, 11, 2003111.	10.2	51
1731	Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation. International Journal of Hydrogen Energy, 2021, 46, 7954-7963.	3.8	19
1732	Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity. Chemical Physics, 2021, 542, 111053.	0.9	17
1733	Flexible polypyrrole activated micro-porous paper-based photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 8444-8453.	3.8	10
1734	A Review of Inorganic Photoelectrode Developments and Reactor Scaleâ€Up Challenges for Solar Hydrogen Production. Advanced Energy Materials, 2021, 11, 2003286.	10.2	51
1735	Local Structural Disorder in Metavanadates MV ₂ O ₆ (M = Zn and Cu) Synthesized by the Deep Eutectic Solvent Route: Photoactive Oxides with Oxygen Vacancies. Chemistry of Materials, 2021, 33, 1667-1682.	3.2	21
1736	Oxygen Vacancies Enhanced WO ₃ /BiVO ₄ Photoanodes Modified by Cobalt Phosphate for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 2864-2872.	2.5	42
1738	General and Robust Photothermalâ€Heatingâ€Enabled Highâ€Efficiency Photoelectrochemical Water Splitting. Advanced Materials, 2021, 33, e2004406.	11.1	104
1739	Gold Nanoparticle-Decorated Bi2S3 Nanorods and Nanoflowers for Photocatalytic Wastewater Treatment. Catalysts, 2021, 11, 355.	1.6	22
1740	Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials, 2021, 33, e2005389.	11.1	100
1741	Ultrafast Charge Carrier Dynamics in CuWO ₄ Photoanodes. Journal of Physical Chemistry C, 2021, 125, 5692-5699.	1.5	8
1742	Stable Unbiased Photoâ€Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. Advanced Materials, 2021, 33, e2008264.	11.1	74
1743	Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS. Journal of Materials Science, 2021, 56, 11059-11070.	1.7	7
1746	Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar Rrl, 2021, 5, 2100100.	3.1	33
1747	Reusability and stability of a novel ternary (Co–Cd–Fe)-LDH/Pbl2 photoelectrocatalytst for solar hydrogen production. Scientific Reports, 2021, 11, 5618.	1.6	13
1748	Hierarchical Nanoporous BiVO ₄ Photoanodes with High Charge Separation and Transport Efficiency for Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 14291-14301.	4.0	22
1749	Photoelectrochemical behaviour of CuBi2O4@MoS2 photocathode for solar water splitting. Materials Chemistry and Physics, 2021, 261, 124245.	2.0	15

#	Article	IF	CITATIONS
1750	Plasmonâ€Enhanced Charge Separation and Surface Reactions Based on Agâ€Loaded Transitionâ€Metal Hydroxide for Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2021, 11, 2100405.	10.2	49
1751	Organic-inorganic photoelectrochemical sensor based on aza-cope rearrangement reaction for for formaldehyde. Sensors and Actuators B: Chemical, 2021, 330, 129342.	4.0	7
1752	Handy Protocol of Nitrogen-Doped BiVO ₄ Photoanode for Visible Light-Driven Water Oxidation. ACS Applied Energy Materials, 2021, 4, 2983-2989.	2.5	20
1753	Elegant Construction of ZnIn ₂ S ₄ /BiVO ₄ Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO ₂ Photoreduction. ACS Applied Materials & amp; Interfaces, 2021, 13, 15092-15100.	4.0	115
1754	Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: An attempt towards enhancing photoelectrochemical water splitting. Applied Surface Science, 2021, 546, 149033.	3.1	39
1755	Periodic Micropillarâ€Patterned FTO/BiVO ₄ with Superior Light Absorption and Separation Efficiency for Efficient PEC Performance. Small, 2021, 17, e2006558.	5.2	19
1756	Chloride Oxidation as an Alternative to the Oxygen-Evolution Reaction on H <i>_x</i> WO ₃ Photoelectrodes. Journal of Physical Chemistry C, 2021, 125, 8543-8550.	1.5	9
1757	Nanoarray Structures for Artificial Photosynthesis. Small, 2021, 17, e2006530.	5.2	32
1758	Water Splitting with a Single-Atom Cu/TiO ₂ Photocatalyst: Atomistic Origin of High Efficiency and Proposed Enhancement by Spin Selection. Jacs Au, 2021, 1, 550-559.	3.6	58
1759	Enhancing the Hydrogen Evolution Properties of Kesterite Absorber by Siâ€Doping in the Surface of CZTS Thin Film. Advanced Materials Interfaces, 2021, 8, 2002124.	1.9	8
1760	Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-Based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113179.	2.0	37
1761	An Inorganic–Organic Hybrid Polymer Cocatalyst for Photoelectrochemical Water Oxidation with Dual Functions of Accelerating Kinetics and Improving Charge Transfer. CCS Chemistry, 2022, 4, 889-898.	4.6	6
1762	In-situ preparation of double Z-scheme Bi2S3/BiVO4/TiO2 ternary photocatalysts for enhanced photoelectrochemical and photocatalytic performance. Applied Surface Science, 2021, 545, 148986.	3.1	36
1763	TiO2@PCN core-shell nanoarrays decorated with Au nanoparticles for enhanced photoelectrochemical performance. Electrochimica Acta, 2021, 376, 138036.	2.6	6
1764	Passivation of ZnSe nanoparticles in sandwiched CdSe/ZnSe/ZnO nanotube array photoanode to substantially enhance solar photoelectrochemical water splitting for hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126206.	2.3	14
1765	Evolution of Surface Oxidation on Ta ₃ N ₅ as Probed by a Photoelectrochemical Method. ACS Applied Materials & Interfaces, 2021, 13, 17420-17428.	4.0	12
1766	Need for Rationally Designed SnWO ₄ Photo(electro)catalysts to Overcome the Performance Limitations for O ₂ and H ₂ Evolution Reactions. Journal of Physical Chemistry C, 2021, 125, 8488-8496.	1.5	7
1767	Surface Passivation Effect of Ferrihydrite with Hole-Storage Ability in Water Oxidation on BiVO ₄ Photoanode. Journal of Physical Chemistry C, 2021, 125, 8369-8375.	1.5	15

#	Article	IF	CITATIONS
1768	Flexible BiVO ₄ /WO ₃ /ITO/Muscovite Heterostructure for Visible-Light Photoelectrochemical Photoelectrode. ACS Applied Materials & Interfaces, 2021, 13, 21186-21193.	4.0	9
1769	Controlling Charge Carrier Trapping and Recombination in BiVO ₄ with the Oxygen Vacancy Oxidation State. Journal of Physical Chemistry Letters, 2021, 12, 3514-3521.	2.1	33
1770	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	3.2	54
1771	Decoration of AgOx hole collector to boost photocatalytic water oxidation activity of BiVO4 photoanode. Materials Today Energy, 2021, 21, 100762.	2.5	4
1772	Hot electron injection and electron relay integrated into PbS/Au/ZnO sandwich nanotube arrays boost visible-light responsive photoelectric property. Optical Materials, 2021, 114, 110944.	1.7	2
1773	Bendable BiVO ₄ -Based Photoanodes on a Metal Substrate Realized through Template Engineering for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 16478-16484.	4.0	3
1774	Insight into interface charge regulation through the change of the electrolyte temperature toward enhancing photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2021, 588, 31-39.	5.0	13
1775	A Generalized Method for Highâ€Speed Fluorination of Metal Oxides by Spark Plasma Sintering Yields Ta ₃ O ₇ F and TaO ₂ F with High Photocatalytic Activity for Oxygen Evolution from Water. Advanced Materials, 2021, 33, e2007434.	11.1	24
1776	Fabrication of a Facet-Oriented BiVO ₄ Photoanode by Particle Engineering for Promotion of Charge Separation Efficiency. ACS Applied Energy Materials, 2021, 4, 4259-4268.	2.5	16
1777	Efficient suppression of surface charge recombination by CoP-Modified nanoporous BiVO4 for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 15517-15525.	3.8	27
1778	Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Science Bulletin, 2021, 66, 1013-1021.	4.3	7
1779	Ferro-photocatalytic Enhancement of Photoelectrochemical Water Splitting Using the WO ₃ /BiFeO ₃ Heterojunction. Energy & Fuels, 2021, 35, 9623-9634.	2.5	21
1780	Ultrathin g-C3N4 as a hole extraction layer to boost sunlight-driven water oxidation of BiVO4-Based photoanode. Journal of Power Sources, 2021, 494, 229701.	4.0	26
1781	Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2021, 143, 7402-7413.	6.6	76
1782	Photoelectrochemical stability of WO3/Mo-doped BiVO4 heterojunctions on different conductive substrates in acidic and neutral media. Applied Surface Science, 2021, 548, 149251.	3.1	22
1783	Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO ₃ /NiFe-Layered Double Hydroxide Photoanodes. Langmuir, 2021, 37, 6490-6497.	1.6	25
1784	Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting. Chinese Science Bulletin, 2021, , .	0.4	2
1785	The significant role of the chemically bonded interfaces in BiVO4/ZnO heterostructures for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 285, 119833.	10.8	50

#	Article	IF	CITATIONS
1786	A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nature Catalysis, 2021, 4, 431-438.	16.1	48
1787	Nanoscale Assembly of BiVO4/CdS/CoOx Core–Shell Heterojunction for Enhanced Photoelectrochemical Water Splitting. Catalysts, 2021, 11, 682.	1.6	7
1788	Bi N V bond: A hole-transfer bridge for high-efficient separation and transfer of carriers. Journal of Colloid and Interface Science, 2021, 590, 144-153.	5.0	5
1789	Electron Spin Polarization-Enhanced Photoinduced Charge Separation in Ferromagnetic ZnFe ₂ O ₄ . ACS Energy Letters, 2021, 6, 2129-2137.	8.8	51
1790	Amorphous iron (III)-borate decorated electrochemically treated-BiVO4 photoanode for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2021, 411, 128480.	6.6	37
1791	One-step synthesis of two dimensional Bi2VxW1â^'xO6â^'Î′ solid solution for photocatalytic hydrogen evolution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 267, 115097.	1.7	2
1793	Extraterrestrial artificial photosynthetic materials for <i>in-situ</i> resource utilization. National Science Review, 2021, 8, nwab104.	4.6	17
1794	Exciton-plasmon interactions gated self-checking functional photoelectrochemical system for adenosine monitoring. Sensors and Actuators B: Chemical, 2021, 336, 129746.	4.0	7
1795	Visible Light Enhanced Electrocatalysis of Methanol Oxidation and Hydrogen Evolution on Nanoporous Nickel Hydroxide Film. Journal of the Electrochemical Society, 0, , .	1.3	1
1796	Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Applied Catalysis B: Environmental, 2021, 286, 119875.	10.8	119
1797	Facile Surface Laser Modification of Nickel Foams for Efficient Water Oxidation Electrocatalysis. ChemElectroChem, 2021, 8, 2124-2128.	1.7	2
1798	A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting Agl/Ag/BiOI Z-scheme heterojunction arrays. Biosensors and Bioelectronics, 2021, 181, 113158.	5.3	118
1799	Communication—Preparation of a Porous β-Cu ₃ V ₂ O ₈ Film for Photoelectrochemical Water Oxidation. Journal of the Electrochemical Society, 2021, 168, 066509.	1.3	2
1800	MWCNTs incorporated nanostructured Bismuth Vanadate for solar energy induced water splitting for hydrogen generation. Materials Today: Proceedings, 2021, , .	0.9	0
1802	Role of Copper Doping in Heavy Metalâ€Free InP/ZnSe Core/Shell Quantum Dots for Highly Efficient and Stable Photoelectrochemical Cell. Advanced Energy Materials, 2021, 11, 2101230.	10.2	61
1803	Photoelectrochemical response of non-enzymatic glucose biosensing for graphene, carbon nanotubes and BiVO4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 17741-17751.	1.1	3
1804	Zr–W Co-doping in BiVO4 – Synergistic effect in photoelectrochemical water splitting. Materials Chemistry and Physics, 2021, 267, 124675.	2.0	9
1805	Recent Progress in LDH@Graphene and Analogous Heterostructures for Highly Active and Stable Photocatalytic and Photoelectrochemical Water Splitting. Chemistry - an Asian Journal, 2021, 16, 2211-2248.	1.7	51

#	Article	IF	CITATIONS
1806	Facile synthesis of heterojunctions by hydrothermal decoration of CdS on electrospun BiVO4 nanofibers with boosted photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 20891-20902.	1.1	1
1807	Fabrication of fibrous BiVO4/Bi2S3/MoS2 heterojunction and synergetic enhancement of photocatalytic activity towards pollutant degradation. Journal of Solid State Chemistry, 2021, 299, 122195.	1.4	18
1808	Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia. Journal of Alloys and Compounds, 2021, 870, 159298.	2.8	28
1809	Geometric Optimization of Bismuth Vanadate Core–Shell Nanowire Photoanodes using Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2021, 13, 52063-52072.	4.0	6
1810	Role of Gd in Enhancing the Charge Carrier Mobility of Spray–Deposited BiVO ₄ Photoanodes. Solar Rrl, 2021, 5, 2100268.	3.1	16
1811	Modulation of photo-generated solvated electrons for ammonia synthesis via facet-dependent engineering of heterojunctions. Applied Catalysis B: Environmental, 2021, 288, 119990.	10.8	40
1812	Cu ₂ S/BiVO ₄ Heterostructure Photoanode with Extended Wavelength Range for Efficient Water Splitting. Journal of Physical Chemistry C, 2021, 125, 15890-15898.	1.5	9
1813	Construction of a Bioinspired Hierarchical BiVO ₄ /BiOCl Heterojunction and Its Enhanced Photocatalytic Activity for Phenol Degradation. ACS Applied Materials & Interfaces, 2021, 13, 32906-32915.	4.0	73
1814	Improvement of a Pb2Ti2O5.4F1.2 Photoanode for Solar Water Splitting by Refining the Cocatalyst and Electrolyte. Bulletin of the Chemical Society of Japan, 2021, 94, 1869-1874.	2.0	4
1815	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
1816	Hybrid ZnO/MoS2 Core/Sheath Heterostructures for Photoelectrochemical Water Splitting. Applied Nano, 2021, 2, 148-161.	0.9	5
1817	Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. Nature Communications, 2021, 12, 4296.	5.8	23
1818	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
1819	Anatase-Wrapped Rutile Nanorods as an Effective Electron Collector in Hybrid Photoanodes for Visible Light-Driven Oxygen Evolution. Frontiers in Chemistry, 2021, 9, 709903.	1.8	2
1820	Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 39282-39290.	4.0	18
1821	Gallium phosphide photoanodes coated with nickel oxyhydroxide cocatalyst for stable photoelectrochemical water splitting reactions. Applied Surface Science, 2021, 558, 149873.	3.1	10
1822	Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. Journal of the American Chemical Society, 2021, 143, 12499-12508.	6.6	157
1823	FeOOH Modified H-TiO2 Nanorods Array (NRA) for Stable and Improved Low-Bias Photoelectrochemical Water Splitting, Journal of the Electrochemical Society, 2021, 168, 086505.	1.3	1

#	Article	IF	CITATIONS
1824	Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. Chinese Journal of Catalysis, 2021, 42, 1387-1394.	6.9	8
1825	Experimental and theoretical realization of an advanced bifunctional 2D Î^MnO2 electrode for supercapacitor and oxygen evolution reaction via defect engineering. International Journal of Hydrogen Energy, 2021, 46, 28028-28042.	3.8	20
1826	Rationally designed ternary CdSe/WS2/g-C3N4 hybrid photocatalysts with significantly enhanced hydrogen evolution activity and mechanism insight. International Journal of Hydrogen Energy, 2021, 46, 30344-30354.	3.8	24
1827	Activation of Ni2V2O7 to nonstoichiometric NiV3O8 for solar-driven photoelectrochemical water oxidation. Journal of Environmental Chemical Engineering, 2021, 9, 105526.	3.3	8
1828	2D/3D WO3/BiVO4 heterostructures for efficient photoelectrocatalytic water splitting. International Journal of Hydrogen Energy, 2021, 46, 27506-27515.	3.8	21
1829	WO ₃ /BiVO ₄ Photoanodes: Facets Matching at the Heterojunction and BiVO ₄ Layer Thickness Effects. ACS Applied Energy Materials, 2021, 4, 8421-8431.	2.5	22
1830	Type-II GeC/ZnTe heterostructure with high-efficiency of photoelectrochemical water splitting. Applied Physics Letters, 2021, 119, .	1.5	17
1831	TiO2 Nanotubes Architectures for Solar Energy Conversion. Coatings, 2021, 11, 931.	1.2	15
1832	Unravelling the bulk and interfacial charge transfer effects of molybdenum doping in BiVO4 photoanodes. Applied Surface Science, 2021, 556, 149759.	3.1	12
1833	Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 12221-12229.	3.2	17
1834	Recent progress in production and usage of hydrogen peroxide. Chinese Journal of Catalysis, 2021, 42, 1241-1252.	6.9	51
1835	Fluorine-surface-modified tin-doped hematite nanorod array photoelectrodes with enhanced water oxidation activity. Applied Surface Science, 2021, 558, 149898.	3.1	16
1836	Dual modification with Ag and FeOOH significantly increased the photoelectrochemical water splitting activity of BiVO4 photoanodes. Surfaces and Interfaces, 2021, 25, 101224.	1.5	4
1837	The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials, 2021, 6, 1136-1155.	23.3	161
1838	Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi2Fe4O9 and Perovskite-BiFeO3 as Highly Efficient Photocatalysts for O2 Production from H2O Splitting. Energies, 2021, 14, 5235.	1.6	11
1839	Fe2O3 hierarchical tubular structure decorated with cobalt phosphide (CoP) nanoparticles for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2021, 417, 129278.	6.6	41
1840	Highâ€Quality Coating of Conformal and Oriented Metal–Organic Framework Cocatalyst Layer for Efficient Photoelectrocatalysis. Advanced Materials Interfaces, 2021, 8, 2101069.	1.9	8
1841	Ruâ€Pincer Complexâ€Bridged Cuâ€Porphyrin Polymer for Robust (Photo)Electrocatalytic H ₂ Evolution via Singleâ€Atom Active Sites. Advanced Functional Materials, 2021, 31, 2107290.	7.8	30

#	Article	IF	CITATIONS
1842	Electronâ€Rich Pincer Ligandâ€Coupled Cobalt Porphyrin Polymer with Singleâ€Atom Sites for Efficient (Photo)Electrocatalytic CO ₂ Reduction at Ultralow Overpotential. Small, 2021, 17, e2102957.	5.2	22
1843	Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review. Journal of Hazardous Materials, 2021, 418, 126280.	6.5	82
1844	Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293, 120217.	10.8	57
1845	Fabrication of ZnxCo1-xO4/BiVO4 photoelectrodes by electrostatic attraction from bimetallic Zn-Co-MOF for PEC activity. Applied Surface Science, 2021, 561, 150057.	3.1	21
1846	Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. Journal of Catalysis, 2021, 401, 262-270.	3.1	18
1847	Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis, 2021, 11, 12324-12335.	5.5	18
1848	Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification. FlatChem, 2021, 30, 100294.	2.8	9
1849	Uniformly citrate-assisted deposition of small-sized FeOOH on BiVO4 photoanode for efficient solar water oxidation. Electrochimica Acta, 2021, 389, 138795.	2.6	23
1850	Rational Design of Photoelectrodes for the Fully Integrated Polymer Electrode Membrane–Photoelectrochemical Water-Splitting System: A Case Study of Bismuth Vanadate. ACS Applied Energy Materials, 2021, 4, 9600-9610.	2.5	10
1851	Photoelectrochemical sewage treatment by sulfite activation over an optimized BiVO4 photoanode to simultaneously promote PPCPs degradation, H2 evolution and E. coli disinfection. Chemical Engineering Journal, 2021, 419, 129418.	6.6	31
1852	Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 66, 657-665.	7.1	4
1853	Additive-free synthesis of BiVO4 microspheres as an electrochemical sensor for determination of antituberculosis drug rifampicin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126849.	2.3	20
1854	Photoelectrochemical water splitting by a novel design of photo-anode: inverse opal-like UiO-66 sensitized by Pd and decorated with S,N graphene QDs. Electrochimica Acta, 2021, 391, 138926.	2.6	11
1855	New insights into the role of sulfite in BiOX photocatalytic pollutants elimination: In-operando generation of plasmonic Bi metal and oxygen vacancies. Journal of Hazardous Materials, 2021, 418, 126207.	6.5	30
1856	In situ construction of hybrid Co(OH)2 nanowires for promoting long-term water splitting. Applied Catalysis B: Environmental, 2021, 292, 120063.	10.8	58
1857	Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. Applied Catalysis B: Environmental, 2021, 295, 120267.	10.8	11
1858	Influence of Bi–Cu microstructure on the photoelectrochemical performance of BiVO4 photoanode for efficient water splitting. Solar Energy Materials and Solar Cells, 2021, 232, 111354.	3.0	16
1859	Surface restructuring of hematite photoanodes through ultrathin NiFeOx Catalyst: Amplified charge collection for solar water splitting and pollutant degradation. Chemical Engineering Journal, 2021, 422, 130137.	6.6	31

#	Article	IF	CITATIONS
1860	Borate and iron hydroxide co-modified BiVO4 photoanodes for high-performance photoelectrochemical water oxidation. Chemical Engineering Journal, 2021, 421, 129819.	6.6	36
1861	Cactus shaped FeOOH/Au/BiVO4 photoanodes for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 35280-35289.	3.8	19
1862	Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2021, 599, 453-466.	5.0	32
1863	Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite. Materials Chemistry and Physics, 2021, 271, 124871.	2.0	40
1864	H2O2-assisted photocatalysis induced by SPR of BiQDs anchored on BiVO4 for the production of hydroxyl radicals in seawater. Journal of Environmental Chemical Engineering, 2021, 9, 105973.	3.3	5
1865	The design of high performance photoanode of CQDs/TiO2/WO3 based on DFT alignment of lattice parameter and energy band, and charge distribution. Journal of Colloid and Interface Science, 2021, 600, 828-837.	5.0	27
1866	Efficient solar water splitting using a CdS quantum dot decorated TiO2/Ag2Se photoanode. International Journal of Hydrogen Energy, 2021, 46, 34079-34088.	3.8	21
1867	Efficient photoelectrochemical water oxidation of cobalt phthalocyanine decorated BiVO4 photoanode by improving kinetics. Applied Surface Science, 2021, 564, 150463.	3.1	27
1868	Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 517-530.	7.1	47
1869	Effects of Bi:V ratio and oxygen pressure on BiVO4(010) epitaxial thin film preparation. Physica B: Condensed Matter, 2021, 618, 413174.	1.3	2
1870	Design and synthesis of BiVO4@CuOx as a photo assisted Fenton-like catalyst for efficient degradation of tetracycline. Surfaces and Interfaces, 2021, 26, 101380.	1.5	5
1871	Preparation and photocatalytic activity of novel PPy/GO/BiVO4 nanocomposites. Surface Review and Letters, 0, , .	0.5	1
1872	Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials. Journal of Energy Chemistry, 2021, 61, 469-488.	7.1	27
1873	Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. Chinese Journal of Catalysis, 2021, 42, 1843-1864.	6.9	19
1874	Bismuth oxyhalide based photo-enhanced triboelectric nanogenerators. Nano Energy, 2021, 89, 106419.	8.2	21
1875	Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system. Journal of Power Sources, 2021, 512, 230532.	4.0	21
1876	The ClO· generation and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO4 photoanodes. Applied Catalysis B: Environmental, 2021, 296, 120387.	10.8	24
1877	Localized surface plasmon-enhanced photoelectrochemical water oxidation by inorganic/organic nano-heterostructure comprising NDI-based D-A-D type small molecule. Journal of Colloid and Interface Science, 2021, 601, 803-815.	5.0	11

#	Article	IF	CITATIONS
1878	A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators. Applied Catalysis B: Environmental, 2021, 297, 120268.	10.8	35
1879	Cascaded multiple-step hole transfer for enhancing photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 296, 120313.	10.8	14
1880	Patch-like, two dimensional WSe2-based hetero-structures activated by a healing catalyst for H2 photocatalytic generation. Chemical Engineering Journal, 2021, 424, 130433.	6.6	7
1881	Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Applied Catalysis B: Environmental, 2021, 296, 120351.	10.8	41
1882	Steering electron transfer using interface engineering on front-illuminated robust BiVO4 photoanodes. Nano Energy, 2021, 89, 106360.	8.2	53
1883	Solar-harvesting lead halide perovskite for artificial photosynthesis. Journal of Energy Chemistry, 2021, 62, 11-26.	7.1	14
1884	Triple-layer ITO/BiVO4/Fe2TiO5 heterojunction photoanode coated with iron silicate for highly efficient solar water splitting. Chemical Engineering Journal, 2021, 426, 131290.	6.6	19
1885	Enhanced catalytic activity and stability of bismuth nanosheets decorated by 3-aminopropyltriethoxysilane for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2021, 298, 120602.	10.8	19
1886	Tungsten induced defects control on BiVO4 photoanodes for enhanced solar water splitting performance and photocorrosion resistance. Applied Catalysis B: Environmental, 2021, 298, 120610.	10.8	32
1887	Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chemical Engineering Journal, 2021, 425, 131770.	6.6	53
1888	Nonmetal plasmonic TiN nanoparticles significantly boost photoelectrochemical performance for hydrogen evolution of CdS nanoroad array photoanode. Renewable Energy, 2021, 180, 1290-1299.	4.3	12
1889	Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity. Applied Catalysis B: Environmental, 2021, 298, 120573.	10.8	43
1890	Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances. Chemical Engineering Journal, 2021, 425, 131496.	6.6	27
1891	CoFe prussian blue decorated BiVO4 as novel photoanode for continuous photocathodic protection of 304 stainless steel. Journal of Alloys and Compounds, 2021, 887, 161279.	2.8	14
1892	A bridging coordination of urea tailoring metal hydroxides oxygen evolution catalysts promotes stable solar water splitting. Chemical Engineering Journal, 2021, 426, 131062.	6.6	21
1893	Yolk-shell ZnO@C-CeO2 ternary heterostructures with conductive N-doped carbon mediated electron transfer for highly efficient water splitting. Journal of Colloid and Interface Science, 2022, 605, 23-32.	5.0	9
1894	Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery. Chemical Engineering Journal, 2022, 428, 131817.	6.6	31
1895	Construction 0D/2D heterojunction by highly dispersed Ag2S quantum dots (QDs) loaded on the g-C3N4 nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 662-675.	5.0	46

#	Article	IF	CITATIONS
1896	Conformal coating of superhydrophilic metal-organic complex toward substantially improved photoelectrochemical water oxidation. Chemical Engineering Journal, 2022, 427, 131004.	6.6	25
1897	Amorphous NiSn and FeOOH as bifunctional co-catalysts for oxygen reduction and phenol (water) oxidation over BiVO4 under visible light. Journal of Hazardous Materials, 2022, 421, 126650.	6.5	7
1898	The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate. Journal of Colloid and Interface Science, 2022, 607, 219-228.	5.0	35
1899	Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chemical Engineering Journal, 2022, 428, 131027.	6.6	204
1900	Strain Controlling Catalytic Efficiency of Water Oxidation for Ni1â^'xFexOOH Alloy. Molecular Modeling and Simulation, 2021, , 1-23.	0.2	1
1901	A self-supported FeNi layered double hydroxide anode with high activity and long-term stability for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3205-3212.	2.5	3
1902	Improvement of photoelectrochemical HClO production under visible light irradiation by loading cobalt oxide onto a BiVO ₄ photoanode. Catalysis Science and Technology, 2021, 11, 5467-5471.	2.1	13
1903	Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge separation, hole storage, and catalytic activity of water-oxidation photoanodes. Journal of Materials Chemistry A, 2021, 9, 13874-13882.	5.2	11
1904	Remarkable synergy of borate and interfacial hole transporter on BiVO ₄ photoanodes for photoelectrochemical water oxidation. Materials Advances, 2021, 2, 4323-4332.	2.6	12
1905	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	10.2	94
1906	Boosting the stability of BiVO ₄ photoanodes: <i>in situ</i> cocatalyst passivation and immobilization by functional fluorine anions. Journal of Materials Chemistry A, 2021, 9, 6298-6305.	5.2	28
1907	A semitransparent particulate photoanode composed of SrTiO ₃ powder anchored on titania nanosheets. Sustainable Energy and Fuels, 2021, 5, 4850-4857.	2.5	0
1908	Water oxidation kinetics of nanoporous BiVO ₄ photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science, 2021, 12, 7442-7452.	3.7	32
1909	Chemical reduction-induced surface oxygen vacancies of BiVO ₄ photoanodes with enhanced photoelectrochemical performance. Sustainable Energy and Fuels, 2021, 5, 2284-2293.	2.5	21
1910	A significant enhancement of bulk charge separation in photoelectrocatalysis by ferroelectric polarization induced in CdS/BaTiO ₃ nanowires. RSC Advances, 2021, 11, 26534-26545.	1.7	4
1911	The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ₄ â€based resistive switching memory. InformaÄnÃ-Materiály, 2020, 2, 960-967.	8.5	21
1912	Highly efficient photoelectrochemical water splitting from P-doped α-Fe2O3 nanorod/BiVO4 heterojunction array. Journal of Materials Science: Materials in Electronics, 2020, 31, 10981-10988.	1.1	7
1913	Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties. Brazilian Journal of Physics, 2020, 50, 185-191.	0.7	7

#	Article	IF	CITATIONS
1914	Effect of Mo-doping in SnO2 thin film photoanodes for water oxidation. International Journal of Hydrogen Energy, 2020, 45, 33448-33456.	3.8	14
1915	Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5253-5258.	2.1	16
1916	Chapter 8. Degradation of Semiconductor Electrodes in Photoelectrochemical Devices: Principles and Case Studies. RSC Energy and Environment Series, 2018, , 281-303.	0.2	4
1917	Electrochemical and photoelectrochemical water splitting with a CoOx catalyst prepared by flame assisted deposition. Dalton Transactions, 2020, 49, 588-592.	1.6	3
1918	Direct Z-scheme CdS-CdS nanorod arrays photoanode: Synthesis, characterization and photoelectrochemical performance. Chinese Journal of Chemical Physics, 2019, 32, 715-720.	0.6	5
1919	Enhanced Photoelectrochemical Water Splitting Performance of Ni/Si-doped TiO ₂ Photoanode Fabricated through Electrochemical Reduction in Aqueous Solutions. Journal of the Electrochemical Society, 2020, 167, 066514.	1.3	4
1920	Plasmonic Au Nanopraticles Modified Nanopyramid-Arrays BiVO ₄ with Enhanced Photoelectrochemical Activity. Journal of the Electrochemical Society, 2019, 166, H3138-H3145.	1.3	7
1921	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
1922	Nanoworm BiVO4 Photoelectrochemical Sensor Prepared by a Cyanuric-Chloride-Assisted Sol-Gel Process and Its Sensing Property for Ascorbic Acid. International Journal of Electrochemical Science, 2019, 14, 1684-1697.	0.5	5
1923	Photoelectrochemical solar water splitting: From basic principles to advanced devices. , 2018, 2, BDJOC3.		53
1924	Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation. Journal of Electrochemical Science and Technology, 2019, 10, 424-432.	0.9	5
1925	Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting. Korean Journal of Materials Research, 2017, 27, 631-635.	0.1	4
1926	Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review. Journal of the Korean Ceramic Society, 2018, 55, 185-202.	1.1	35
1927	NiFeO _x co-catalyzed BiVO ₄ photoanode for improved photoelectrochemical water splitting. Rapid Communication in Photoscience, 2014, 3, 35-37.	0.1	2
1928	Photodriven water oxidation initiated by a surface bound chromophore-donor-catalyst assembly. Chemical Science, 2021, 12, 14441-14450.	3.7	16
1929	Vacancy defect engineering of BiVO ₄ photoanodes for photoelectrochemical water splitting. Nanoscale, 2021, 13, 17989-18009.	2.8	61
1930	The effect of Fe(<scp>iii</scp>) ions on oxygen-vacancy-rich BiVO ₄ on the photocatalytic oxygen evolution reaction. Catalysis Science and Technology, 2021, 11, 7598-7607.	2.1	7
1931	Synthesis and Applications of ZnV ₂ O ₆ Nanomaterials. Ferroelectrics, 2021, 581, 125-143.	0.3	9

#	Article	IF	CITATIONS
1932	Ptâ€Induced Defects Curing on BiVO ₄ Photoanodes for Nearâ€Threshold Charge Separation. Advanced Energy Materials, 2021, 11, 2102384.	10.2	76
1933	Decoration of BiVO ₄ Photoanodes with Near-Infrared Quantum Dots for Boosted Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 50046-50056.	4.0	15
1934	Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale. Accounts of Chemical Research, 2021, 54, 3863-3872.	7.6	7
1935	Suppressing photoinduced charge recombination at the BiVO4 NiOOH junction by sandwiching an oxygen vacancy layer for efficient photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 608, 1116-1125.	5.0	19
1936	Fabrication of WO3 based nanocomposites for the excellent photocatalytic energy production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46, 39058-39066.	3.8	13
1937	Investigation of n-GaAs Photoanode Corrosion in Acidic Media with Various Thin Ir Cocatalyst Layers. ACS Applied Energy Materials, 2021, 4, 10799-10809.	2.5	2
1938	Spinel-Oxide-Integrated BiVO ₄ Photoanodes with Photothermal Effect for Efficient Solar Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 48901-48912.	4.0	21
1939	Phaseâ€Controllable Growth Ni <i>_x</i> P <i>_y</i> Modified CdS@Ni ₃ S ₂ Electrodes for Efficient Electrocatalytic and Enhanced Photoassisted Electrocatalytic Overall Water Splitting. Small Methods, 2021, 5, e2100878.	4.6	37
1940	In-situ stirring assisted hydrothermal synthesis of Bi2S3 nanowires on BiVO4 nanostructures for improving photocatalytic performances. Inorganic Chemistry Communication, 2021, 134, 109012.	1.8	6
1941	Chlorine-enhanced photocatalytic degradation of PPCPs over Bi2MoO6/(BiO)2CO3 heterostructures. Journal of Environmental Chemical Engineering, 2021, 9, 106597.	3.3	4
1942	Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights. , 2015, , 1-48.		0
1943	Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4Photoanode. Rapid Communication in Photoscience, 2015, 4, 82-85.	0.1	0
1944	A Multi-haem Flavoenzyme as a Solar Conversion Catalyst. Springer Theses, 2017, , 193-206.	0.0	1
1946	2 Devices for Solar-Driven Water Splitting to Hydrogen Fuel and Their Technical and Economic Assessments. , 2016, , 9-46.		0
1948	Photochemical Energy Storage. Issues in Environmental Science and Technology, 2018, , 184-209.	0.4	0
1949	Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy. , 2019, , 1-34.		0
1950	The Self-Passivation Mechanism in Degradation of BiVO ₄ Photoanode. SSRN Electronic Journal, 0, , .	0.4	0
1951	Photocatalysts and Photoelectrocatalysts in Fuel Cells and Photofuel Cells. Environmental Chemistry for A Sustainable World, 2020, , 19-55.	0.3	1

#	Article	IF	CITATIONS
1952	Carbon Quantum Dot Conjugated Copper(II) Phthalocyanine Integrating BiVO ₄ Semiconductor for Photocatalytic Water Oxidation. Journal of Physical Chemistry C, 2021, 125, 24413-24421.	1.5	11
1953	Defective Metal–Organic Framework Assisted with Nitrogen Doping Enhances the Photoelectrochemical Performance of BiVO ₄ . ACS Applied Energy Materials, 2021, 4, 13199-13207.	2.5	17
1954	Awakening the Photoelectrochemical Activity of α‧nWO ₄ Photoanodes with Extraordinary Crystallinity Induced by Reductive Annealing. Advanced Energy and Sustainability Research, 2022, 3, 2100146.	2.8	11
1955	General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications. Small, 2021, 17, e2104307.	5.2	7
1956	Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy. , 2020, , 1335-1368.		0
1957	A Waterâ€Splitting System with a Cobalt (II,III) Oxide Coâ€Catalystâ€Loaded Bismuth Vanadate Photoanode Along with an Organoâ€Photocathode. ChemElectroChem, 2020, 7, 5029-5035.	1.7	8
1958	Atomic layer deposition assisted surface passivation on bismuth vanadate photoanodes for enhanced solar water oxidation. Applied Surface Science, 2022, 573, 151492.	3.1	5
1959	Facile morphology control strategy to enhance charge separation efficiency of Mo:BiVO4 photoanodes for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2022, 430, 133061.	6.6	40
1960	Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2022, 301, 120792.	10.8	51
1961	Chemically Bonded N-PDI-P/WO3 Organic-Inorganic Heterojunction with Improved Photoelectrochemical Performance. Catalysts, 2020, 10, 122.	1.6	4
1962	Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 987.	0.6	0
1963	High-Throughput Computational Studies in Catalysis and Materials Research, and Their Impact on Rational Design. , 2020, , 1-44.		1
1964	Dual Roles of MoO3 Thin Film in Improving the Performance of Copper Bismuth Oxide Photocathode for Solar Water Splitting. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	0
1965	Anisotropic d–d Transition in Rutile TiO ₂ . Journal of Physical Chemistry Letters, 2021, 12, 10515-10520.	2.1	5
1966	Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineering Journal, 2022, 431, 133414.	6.6	36
1967	Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 53829-53840.	4.0	4
1968	Dual functions of heterometallic FeCo oxyhydroxides in borate-treated BiVO4 photoanodes toward boosted activity and photostability in photoelectrochemical water oxidation. Chemical Engineering Journal, 2022, 431, 133379.	6.6	19
1969	Strengthened absorption of ultra-thin film bismuth vanadate using a motheye-structured triple-deck photoanode. Journal of Catalysis, 2020, 389, 38-46.	3.1	1
#	Article	IF	CITATIONS
------	---	------	-----------
1970	Freeing the surface-bound excitons to facilitate water oxidation catalysis in BiVO4 photoanode. Applied Surface Science, 2022, 578, 151914.	3.1	5
1971	Interstitial M ⁺ (M ⁺ = Li ⁺ or Sn ⁴⁺) Doping at Interfacial BiVO ₄ /WO ₃ to Promote Photoelectrochemical Hydrogen Production. ACS Applied Energy Materials, 2021, 4, 13636-13645.	2.5	4
1972	Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes. Nature Communications, 2021, 12, 6969.	5.8	109
1973	Engineering Single-Atomic Ni-N ₄ -O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2021, 143, 20657-20669.	6.6	114
1974	BiVO ₄ Microparticles Decorated with Cu@Au Core-Shell Nanostructures for Photocatalytic H ₂ O ₂ Production. ACS Applied Nano Materials, 2021, 4, 13158-13166.	2.4	21
1975	Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin. Science of the Total Environment, 2022, 808, 152083.	3.9	24
1976	Emerging materials for plasmon-assisted photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100472.	5.6	44
1977	Boosting solar water oxidation activity of BiVO4 photoanode through an efficient in-situ selective surface cation exchange strategy. Journal of Energy Chemistry, 2022, 68, 49-59.	7.1	32
1978	Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nature Communications, 2021, 12, 6698.	5.8	68
1979	Constructing NiFe-metal-organic frameworks from NiFe-layered double hydroxide as a highly efficient cocatalyst for BiVO4 photoanode PEC water splitting. Chemical Engineering Journal, 2022, 433, 133592.	6.6	43
1980	Constructing two-dimensional heterojunction through decorating covalent organic framework with MoS2 for enhanced photoelectrochemical water oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 106900.	3.3	6
1981	Integrated and Unassisted Solar Waterâ€&plitting System by Monolithic Perovskite/Silicon Tandem Solar Cell. Solar Rrl, 2022, 6, 2100748.	3.1	8
1982	Ultrastable and high-performance seawater-based photoelectrolysis system for solar hydrogen generation. Applied Catalysis B: Environmental, 2022, 304, 120883.	10.8	39
1983	A Novel Strategy for Enhancing Photoelectrochemical Performance of Ca ₂ Fe ₂ O ₅ Photocathodes: An Integrated Experimental and DFT-Based Approach. SSRN Electronic Journal, 0, , .	0.4	0
1984	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
1985	Recent advances in photo-assisted electrocatalysts for energy conversion. Journal of Materials Chemistry A, 2021, 9, 27193-27214.	5.2	19
1986	SILAR deposition of bismuth vanadate photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 25641-25650.	5.2	5
1987	Metal Oxide Co-catalyst Nanolayers on Photoelectrodes. RSC Energy and Environment Series, 2022, , 135-166.	0.2	0

#	Article	IF	CITATIONS
1988	A highly enhanced photoelectrochemical performance of BiVO ₄ photoanodes modified with CoPi groups by increasing energy band bending, accelerating hole separation and improving water oxidation kinetics. Sustainable Energy and Fuels, 2022, 6, 1075-1083.	2.5	9
1989	Understanding the selectivity trend of water and sulfate (SO42â^') oxidation on metal oxides: On-site synthesis of persulfate, H2O2 for wastewater treatment. Chemical Engineering Journal, 2022, 431, 134332.	6.6	12
1990	Effect of surface-deposited Ti3C2Tx MXene on the photoelectrochemical water-oxidation performance of iron-doped titania nanorod array. Chemical Engineering Journal, 2022, 431, 134124.	6.6	20
1991	Construction of MXene–BiVO4–FeOOH composite photoanode with ultra-low onset potential: performance, DFT calculation and mechanism. Materials Today Chemistry, 2022, 23, 100747.	1.7	2
1992	Optimization of photogenerated charge transport using type-II heterojunction structure of CoP/BiVO4:WO3 for high efficient solar-driver water splitting. Journal of Alloys and Compounds, 2022, 899, 163292.	2.8	29
1993	Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113753.	2.0	4
1994	Interface-Confined Surface Engineering via Photoelectrochemical Etching toward Solar Neutral Water Splitting. ACS Catalysis, 2022, 12, 1686-1696.	5.5	42
1995	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	5.8	156
1997	Design Guidelines for Enhanced Activity of Water Splitting Photoelectrodes with Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 1701-1710.	1.5	0
1998	Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO ₅ . Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 58.	0.6	3
1999	Enhancing the photocatalytic hydrogen production activity of BiVO ₄ [110] facets using oxygen vacancies. RSC Advances, 2021, 12, 540-545.	1.7	4
2000	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
2001	A two-photon tandem black phosphorus quantum dot-sensitized BiVO ₄ photoanode for solar water splitting. Energy and Environmental Science, 2022, 15, 672-679.	15.6	64
2003	Enhanced Surface Kinetics and Charge Transfer of BiVO ₄ Photoanodes by Rh ₂ O ₃ Cocatalyst Loading for Improved Solar Water Oxidation. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
2004	Facet-dependent nanostructures for visible light photocatalysis. , 2022, , 351-374.		1
2005	NiMoO _{<i>x</i>} as a highly protective layer against photocorrosion for solar seawater splitting. Journal of Materials Chemistry A, 2022, 10, 1270-1277.	5.2	20
2006	A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation. Journal of Energy Chemistry, 2022, 69, 497-505.	7.1	17
2007	Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Letters, 2022, 14, 48.	14.4	44

#	Article	IF	Citations
2008	Interfacial repairing of semiconductor-electrocatalyst interfaces for efficient photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 615, 318-326.	5.0	7
2009	Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode. Chinese Journal of Catalysis, 2022, 43, 433-441.	6.9	39
2010	High Refractive Index Dielectric Nanoparticles for Opticallyâ€Enhanced Activity of Waterâ€Splitting Photoanodes. ChemPhotoChem, 0, , .	1.5	0
2011	Ferroelectric-enhanced BiVO4-BiFeO3 photoelectrocatalysis for efficient, stable and large-current-density oxygen evolution. Applied Materials Today, 2022, 26, 101374.	2.3	4
2012	Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution. Chemical Engineering Science, 2022, 251, 117435.	1.9	34
2013	Ultra-efficient post-treatment flame method to introduce abundant oxygen vacancies in BiVO4 photoanode toward solar water splitting. Chemical Engineering Science, 2022, 251, 117433.	1.9	5
2014	W:BiVO4-WO3-V2O5 heterostructures increase light absorption and charge transport in photoanodes for water splitting. Journal of Environmental Chemical Engineering, 2022, 10, 107278.	3.3	5
2015	Bridging electrocatalyst and cocatalyst studies for solar hydrogen production <i>via</i> water splitting. Chemical Science, 2022, 13, 2824-2840.	3.7	15
2016	In situ localization of BiVO4 onto two-dimensional MXene promoting photoelectrochemical nitrogen reduction to ammonia. Chinese Chemical Letters, 2022, 33, 4669-4674.	4.8	18
2017	Charge Localization in Defective BiVO ₄ . Journal of Physical Chemistry C, 2022, 126, 2960-2970.	1.5	14
2018	Engineering MoO _{<i>x</i>} /MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation. Angewandte Chemie, 2022, 134, .	1.6	9
2019	pH-Dependent Stability of α-SnWO ₄ Photoelectrodes. Chemistry of Materials, 2022, 34, 1590-1598.	3.2	8
2020	Engineering MoO _{<i>x</i>} /MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
2021	Dual textured BiVO4/Sb:SnO2 heterostructure for enhanced photoelectrochemical Water-splitting. Chemical Engineering Journal, 2022, 435, 135183.	6.6	13
2022	Cu2O/CuO heterojunction formed by thermal oxidation and decorated with Pt co-catalyst as an efficient photocathode for photoelectrochemical water splitting. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	22
2023	Preparation of double-layered Coâ ^{~°} Ci/NiFeOOH co-catalyst for highly meliorated PEC performance in water splitting. , 2022, 1, 100024.		46
2024	Synthesis of diketopyrrolopyrrole and anthraquinone-based polymers of D–A1–D–A2 architecture by direct arylation polycondensation and designing inorganic/organic nano-heterostructured photoanodes for visible light water splitting. Sustainable Energy and Fuels, 2022, 6, 2343-2357.	2.5	7
2025	Influences of pulverization and annealing treatment on the photocatalytic activity of BiVO ₄ for oxygen evolution. Sustainable Energy and Fuels, 2022, 6, 1698-1707.	2.5	3

#	Article	IF	CITATIONS
2026	Interface Engineering Âof GeP/Graphene/BiVO4ÂHeterostructureÂforÂPhotocatalyticÂApplication: A ComputationalÂstudy. SSRN Electronic Journal, 0, , .	0.4	0
2027	Synergistic defect- and interfacial-engineering of a Bi ₂ S ₃ -based nanoplate network for high-performance photoelectrochemical solar water splitting. Journal of Materials Chemistry A, 2022, 10, 7830-7840.	5.2	13
2028	Bifacial Modulation of Carrier Transport in BiVO ₄ Photoanode for Stable Photoelectrochemical Water Splitting via Interface Engineering. Advanced Sustainable Systems, 2022, 6, .	2.7	3
2029	Edge modified phosphorene nanoribbon heterojunctions: promising metal-free photocatalysts for direct overall water splitting. Journal of Materials Science, 2022, 57, 5482-5496.	1.7	6
2030	Synergistic Effect of Ni ²⁺ and Fe ³⁺ of Bimetallic Oxyhydroxide NiFeOOH as OER Cocatalyst for Fe ₂ O ₃ Photoanode with Enhanced Photoelectrochemical Water Splitting. Energy & Fuels, 2022, 36, 2890-2900.	2.5	9
2031	Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. Journal of Nanostructure in Chemistry, 2023, 13, 361-375.	5.3	11
2032	Wrapping BiVO4 with chlorophyll for greatly improved photoelectrochemical performance and stability. Science China Materials, 2022, 65, 1512-1521.	3.5	3
2033	Toward stable photoelectrochemical water splitting using NiOOH coated hierarchical nitrogen-doped ZnO-Si nanowires photoanodes. Journal of Energy Chemistry, 2022, 71, 45-55.	7.1	24
2034	Application of Halide Perovskite Nanocrystals in Solarâ€Driven Photo(electro)Catalysis. Solar Rrl, 2022, 6, .	3.1	5
2035	Magnetiteâ€free Snâ€doped hematite nanoflake layers for enhanced photoelectrochemical water splitting. ChemElectroChem, 0, , .	1.7	2
2036	Wavelength-Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures. ACS Nano, 2022, 16, 6813-6824.	7.3	23
2037	Polyoxovanadates as Precursors for the Synthesis of Colloidal Multi-Metal Oxide Nanocrystals. Chemistry of Materials, 0, , .	3.2	4
2038	Operando Photo-Electrochemical Catalysts Synchrotron Studies. Nanomaterials, 2022, 12, 839.	1.9	4
2039	Co-precipitation assisted preparation of Ag2O, CuO and Ag2O/CuO nanocomposite: Characterization and improved solar irradiated degradation of colored and colourless organic effluents. Ceramics International, 2022, 48, 19056-19067.	2.3	11
2040	Mitigation of Edge and Surface States Effects in Twoâ€Dimensional WS ₂ for Photocatalytic H ₂ Generation. ChemSusChem, 2022, 15, .	3.6	3
2041	Photoelectrochemical and electrochemical urea oxidation with microwave-assisted synthesized Co-Fe2O3@NiO core–shell nanocomposites. Carbon Letters, 2022, 32, 999-1015.	3.3	3
2042	Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation. ACS Applied Energy Materials, 2022, 5, 3409-3416.	2.5	7
2043	Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials Today Energy, 2022, 26, 100986.	2.5	6

#	Article	IF	CITATIONS
2044	Unravelling a new many-body large-hole polaron in a transition metal oxide that promotes high photocatalytic activity. NPG Asia Materials, 2022, 14, .	3.8	5
2045	Strain Adjustment Realizes the Photocatalytic Overall Water Splitting on Tetragonal Zircon BiVO ₄ . Advanced Science, 2022, 9, e2105299.	5.6	37
2046	State-of-the-art advancements of transition metal oxides as photoelectrode materials for solar water splitting. Rare Metals, 2022, 41, 2370-2386.	3.6	20
2047	Dual co-catalysts decorated Zn-WO3 nanorod arrays with highly efficient photoelectrocatalytic performance. International Journal of Hydrogen Energy, 2022, 47, 13641-13653.	3.8	9
2048	Activating a Semiconductor–Liquid Junction via Laserâ€Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2201140.	11.1	34
2049	Universal Deposition Strategy of Nanoporous Complex Oxide Thin Films for Photoelectrochemical Applications. ACS Applied Energy Materials, 2022, 5, 5127-5135.	2.5	3
2050	Boosting the solar water oxidation performance of BiVO4 photoanode via non-stoichiometric ratio drived surface reconstruction. Journal of Power Sources, 2022, 528, 231242.	4.0	10
2051	A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection. Electrochimica Acta, 2022, 414, 140207.	2.6	18
2052	Built-in electron transport channels and interfacial ions doping in BiVO4 modified with isolated Ni atoms anchored on carbon hollow matrix for boosting charge separation and transport efficiency. Chemical Engineering Journal, 2022, 437, 135272.	6.6	9
2053	Rational construction of S-doped FeOOH onto Fe2O3 nanorods for enhanced water oxidation. Journal of Colloid and Interface Science, 2022, 616, 749-758.	5.0	35
2054	Carbon hollow matrix anchored by isolated transition metal atoms serving as a single atom cocatalyst to facilitate the water oxidation kinetics of bismuth vanadate. Journal of Colloid and Interface Science, 2022, 616, 631-640.	5.0	6
2055	A novel strategy for enhancing photoelectrochemical performance of Ca2Fe2O5 photocathodes: An integrated experimental and DFT-based approach. Applied Surface Science, 2022, 589, 153012.	3.1	2
2056	High-performance BiVO4 photoanodes cocatalyzed with bilayer metal–organic frameworks for photoelectrochemical application. Journal of Colloid and Interface Science, 2022, 619, 257-266.	5.0	13
2057	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€toâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
2058	Barrierless Self-Trapping of Photocarriers in Co ₃ O ₄ . Journal of Physical Chemistry Letters, 2021, 12, 12033-12039.	2.1	10
2059	Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2021, 13, 61227-61236.	4.0	21
2060	Modifying the Electron-Trapping Process at the BiVO ₄ Surface States via the TiO ₂ Overlayer for Enhanced Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 60602-60611.	4.0	18
2061	Inter-facet junction effects on particulate photoelectrodes. Nature Materials, 2022, 21, 331-337.	13.3	32

#	Article	IF	CITATIONS
2062	Mesoporous FeMoV Oxide Nanosheets Supported on Nickel Foam as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 14059-14067.	2.5	1
2063	High-Valent Iron Redox-Mediated Photoelectrochemical Water Oxidation. ACS Energy Letters, 2022, 7, 59-66.	8.8	10
2064	Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nature Catalysis, 2022, 5, 37-44.	16.1	58
2065	Oxide-ion conductivity optimization in BiVO ₄ scheelite by an acceptor doping strategy. Inorganic Chemistry Frontiers, 2022, 9, 2644-2658.	3.0	3
2066	Construction of organic–inorganic hybrid photoanodes with metal phthalocyanine complexes to improve photoelectrochemical water splitting performance. New Journal of Chemistry, 2022, 46, 9111-9118.	1.4	6
2067	A portable solar light-driven biophotoelectrocatalytic system for pollutant removal powered by photovoltaic cells. Journal of Hazardous Materials, 2022, 435, 128989.	6.5	8
2068	Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorganic Chemistry, 2022, 61, 6223-6233.	1.9	4
2069	Multijunction Photoanode of Mo:BiVO ₄ Layered with TiO ₂ Inverse Opal and NiB _i Oxygen Evolution Catalyst to Trap Light and Enhance Water Splitting. Journal of Physical Chemistry C, 2022, 126, 6960-6972.	1.5	4
2070	Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 624, 60-69.	5.0	17
2071	Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption. Journal of Energy Chemistry, 2022, 72, 326-332.	7.1	4
2072	Tuning the surface states of TiO2 using Cu5 atomic clusters. Applied Surface Science, 2022, 594, 153455.	3.1	7
2073	Mass-transfer control for selective deposition of well-dispersed AuPd cocatalysts to boost photocatalytic H2O2 production of BiVO4. Chemical Engineering Journal, 2022, 443, 136429.	6.6	26
2075	Azide Molecule Mediated Electrolyte Engineering for Selective Photoelectrochemical Azo Coupling and Efficient and Stable Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
2076	Effect of nickel doping on the structure, morphology and oxygen evolution reaction performance of Cu-BTC derived CuCoO ₂ . Dalton Transactions, 2022, 51, 8757-8765.	1.6	9
2077	Solution-based synthesis of wafer-scale epitaxial BiVO ₄ thin films exhibiting high structural and optoelectronic quality. Journal of Materials Chemistry A, 2022, 10, 12026-12034.	5.2	6
2078	Boosting H ₂ Production from a BiVO ₄ Photoelectrochemical Biomass Fuel Cell by the Construction of a Bridge for Charge and Energy Transfer. Advanced Materials, 2022, 34, e2201594.	11.1	24
2079	Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. Energy & Fuels, 2022, 36, 11404-11427.	2.5	28
2080	Improving PEC Performance of BiVO ₄ by Introducing Bulk Oxygen Vacancies by He ⁺ Ion Irradiation. Journal of Physical Chemistry C, 2022, 126, 7688-7695.	1.5	4

# 2081	ARTICLE Hierarchical mesoporous SnO2/BiVO4 photoanode decorated with Ag nanorods for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2022, 47, 18992-19004.	IF 3.8	CITATIONS
2082	Nanoporous MoO3â^'x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Research, 2022, 15, 7026-7033.	5.8	30
2083	Electronic defects in metal oxide photocatalysts. Nature Reviews Materials, 2022, 7, 503-521.	23.3	129
2084	Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science, 2022, 376, 609-615.	6.0	37
2085	Efficient Solar Water Splitting via Enhanced Charge Separation of the BiVO ₄ Photoanode. ACS Applied Energy Materials, 2022, 5, 6383-6392.	2.5	13
2086	Oxidation state modulation of CoMOF with Zn for accelerating photoelectrochemical water oxidation of borate-irradiation treated BiVO4. Electrochimica Acta, 2022, 421, 140483.	2.6	5
2087	Pt nanoparticles coupled with perylene-based small molecule deposited on Ti3+ self-doped TiO2 nanorods—An inorganic/organic type-II nanoheterostructure for efficient visible-light photoelectrochemical water oxidation. Chemosphere, 2022, 301, 134696.	4.2	9
2088	Growth of nano-branches on 1-D WO3 nanotrees by flame process and its photoelectrochemical performances. Journal of Alloys and Compounds, 2022, 912, 165202.	2.8	3
2089	Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214602.	9.5	71
2090	Two-Step Process of a Crystal Facet-Modulated BiVO ₄ Photoanode for Efficiency Improvement in Photoelectrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 24919-24928.	4.0	11
2091	High-performance and stable BiVO ₄ photoanodes for solar water splitting <i>via</i> phosphorus–oxygen bonded FeNi catalysts. Energy and Environmental Science, 2022, 15, 2867-2873.	15.6	56
2092	Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 73, 189-213.	7.1	40
2093	Long-term solar water and CO2 splitting with photoelectrochemical BiOl–BiVO4 tandems. Nature Materials, 2022, 21, 864-868.	13.3	41
2094	Elucidating the Role of Hypophosphite Treatment in Enhancing the Performance of BiVO ₄ Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 26642-26652.	4.0	26
2095	Versatile Gold Telluride Iodide Monolayer as a Potential Photocatalyst for Water Splitting. Nanomaterials, 2022, 12, 1915.	1.9	4
2096	Insights into the Enhanced Photoelectrochemical Performance through Construction of the Z-Scheme and Type II Heterojunctions. Analytical Chemistry, 2022, 94, 8539-8546.	3.2	13
2097	BiVO4 Photoanode Modification by Synergic Dual-Conjugated Organic Materials. Journal of Alloys and Compounds, 2022, , 165605.	2.8	5
2098	Mo-doped BiVO4 modified with NH2-MIL-88B(Fe) cocatalyst overlayer for enhanced photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114049.	2.0	12

#	Article	IF	CITATIONS
2099	C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. Journal of Colloid and Interface Science, 2022, 624, 168-180.	5.0	26
2100	Bivo4/Bi2s3 Heterojunction Decorated by Feooh and Pt Double Cocatalysts to Enhance Photoelectrochemical Degradation of Rhodamine B. SSRN Electronic Journal, 0, , .	0.4	0
2102	Enhancement of Photoelectrochemical Performance of Bismuth Vanadate (Bivo4)-Based Photoanode by Building Phase-Junction Configurations. SSRN Electronic Journal, 0, , .	0.4	0
2103	Enhancement of metal ion-induced hole transfer on the water oxidation performance of a BiVO ₄ photoanode. Chemical Communications, 2022, 58, 8101-8104.	2.2	1
2105	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. Springer Handbooks, 2022, , 365-398.	0.3	2
2106	Promoting effects of Y doping and FeOOH loading for efficient photoelectrochemical activity on BiVO ₄ electrodes. New Journal of Chemistry, 0, , .	1.4	2
2108	Mesoporous BiVO4/TiO2 heterojunction: enhanced photoabsorption and photocatalytic ability through promoted charge transfer. Environmental Science and Pollution Research, 2022, 29, 78472-78482.	2.7	8
2109	Efficient Oxygen Evolution Reaction on Polyethylene Glycolâ€Modified BiVO ₄ Photoanode by Speeding up Proton Transfer. Small, 2022, 18, .	5.2	8
2110	Optimizing Oxygen and Intermediate HOO [*] Adsorption of Cu–Pd Alloy Cocatalyst for Boosting Photocatalytic H ₂ O ₂ Production of BiVO ₄ . Advanced Sustainable Systems, 2022, 6, .	2.7	16
2111	Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes. Journal of Energy Chemistry, 2022, 73, 88-113.	7.1	35
2112	Roles of Cocatalysts on BiVO ₄ Photoanodes for Photoelectrochemical Water Oxidation: A Minireview. Energy & Fuels, 2022, 36, 11394-11403.	2.5	14
2113	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
2114	Templated synthesis of crystalline mesoporous CeO ₂ with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity. Materials Futures, 2022, 1, 025302.	3.1	7
2115	A novel split-type photoelectrochemical biosensor based on double-strand specific nuclease-assisted cycle amplification coupled with plasmonic Ag enhanced BiVO4 performance for sensitive detection of microRNA-155. Sensors and Actuators B: Chemical, 2022, 369, 132251.	4.0	7
2116	Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated. Applied Catalysis B: Environmental, 2022, 315, 121606.	10.8	46
2117	Accelerated oxygen evolution kinetics on hematite by Zn2+ for boosting the photoelectrochemical water oxidation. Journal of Alloys and Compounds, 2022, 919, 165853.	2.8	2
2118	Turning off the "shunt channel―by coating with CoFe layered double hydroxide nanocrystals for efficient photoelectrocatalytic water splitting. Inorganic Chemistry Frontiers, 2022, 9, 4685-4694.	3.0	6
2119	Label-Free and Homogenous Photoelectrochemical Aptasensor for Pollutant Assay: Using Surface Oxygen Vacancies Enriched Bismuth Vanadate as Photoanode. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2120	Azide molecule mediated electrolyte engineering for selective photoelectrochemical azo coupling and efficient and stable water splitting. Journal of Materials Chemistry A, 2022, 10, 16646-16654.	5.2	3
2121	Feooh Nanolayers Decorated on Oxygen-Vacancy-Containing Bivo4 for Efficient Photoelectrochemical Degradation of Rhodamine B. SSRN Electronic Journal, 0, , .	0.4	0
2122	A Novel Bivo4/P3ht Photoanode for Highly Efficient Water Oxidation and its Hole Energy Offset Effect with Cupc Derivative. SSRN Electronic Journal, 0, , .	0.4	0
2123	Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. , 2022, 1, e9120020.		87
2124	Boosting Photoelectrochemical Water Oxidation Performance of Nanoporous BiVO ₄ via Dual Cocatalysts Cobaloxime and Ni-OEC Modification. Journal of Physical Chemistry C, 2022, 126, 11042-11050.	1.5	5
2125	2D/2D Interface Engineering Promotes Charge Separation of Mo ₂ C/g-C ₃ N ₄ Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 31782-31791.	4.0	30
2126	Decorating <scp> Cu ₂ O </scp> photocathode with cu/Al bimetallic layer for enhanced photoelectrochemical water splitting. International Journal of Energy Research, 2022, 46, 16991-17002.	2.2	3
2127	Surface Modulation Inducing Bismuth-Rich Surface Composition in BiVO ₄ for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 8419-8427.	2.5	14
2128	Rational design of W-doped BiVO4 photoanode coupled with FeOOH for highly efficient photoelectrochemical catalyzing water oxidation. International Journal of Hydrogen Energy, 2022, 47, 27012-27022.	3.8	22
2129	Photoelectrochemical Catalysis of Waste Polyethylene Terephthalate Plastic to Coproduce Formic Acid and Hydrogen. ACS Sustainable Chemistry and Engineering, 2022, 10, 9546-9552.	3.2	27
2130	Controlling the selectivity of solar O ₂ /HClO production from seawater by simple surface modification of visible-light responsible photoelectrodes. Journal of the Ceramic Society of Japan, 2022, 130, 395-402.	0.5	5
2131	Laser-Reduced BiVO ₄ for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 33200-33210.	4.0	15
2132	Kinetics investigation of the oxygen evolution reaction on the characteristic facets of Î ³ -Cu3V2O8. Molecular Catalysis, 2022, 528, 112493.	1.0	1
2133	Mono- and bimetallic oxides as photo-electrocatalysts for the oxygen evolution reaction – A review. Journal of Physics and Chemistry of Solids, 2022, 169, 110868.	1.9	4
2134	Enhanced visible light response of Ag/SnO2 nanostructure enables high-efficiency photocatalytic hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129577.	2.3	11
2135	Resorcinol-formaldehyde resin nanoparticles as surface charge transfer and separation sites for the improvement of BiVO4 film photoanodes' performance in solar water oxidation. Applied Surface Science, 2022, 601, 154236.	3.1	6
2136	Interface engineering of GeP/Graphene/BiVO4 heterostructure for photocatalytic Application: A computational study. Applied Surface Science, 2022, 601, 154243.	3.1	5
2137	Influence of the Solvent Used for Microwaveâ€Assisted Synthesis of Wâ^'BiVO ₄ on Properties and Photoelectroactivity of Wâ^'BiVO ₄ /WO ₃ . ChemElectroChem, 2022_9	1.7	1

#	Article	IF	CITATIONS
2138	A self-adaptive semiconductor–liquid junction for highly active and stable solar water splitting. Journal of Materials Chemistry A, 2022, 10, 20414-20423.	5.2	13
2139	Sustainable photoanodes for water oxidation reactions: from metal-based to metal-free materials. Chemical Communications, 2022, 58, 10469-10479.	2.2	9
2140	Assessing the Suitability of Copper Vanadate (Cu ₁₁ V ₆ O ₂₆) for Use as a Photoanode Material for Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2022, 5, 9512-9519.	2.5	5
2141	All-solution-processed BiVO4/SnO2 nanorods-axial-heterostructure with improved charge collection properties for solar water-splitting. Ceramics International, 2022, 48, 33101-33107.	2.3	4
2142	Sb2S3/Sb2Se3 heterojunction for high-performance photodetection and hydrogen production. Journal of Colloid and Interface Science, 2022, 628, 886-895.	5.0	11
2143	Efficient Strategy for Boosting the Solar-Driven Water Oxidation of the BiVO ₄ Photoanode by Using a CuPc Derivative as a Hole Transport Highway. ACS Applied Energy Materials, 2022, 5, 11271-11282.	2.5	6
2144	Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nature Communications, 2022, 13, .	5.8	18
2145	Sun, heat and electricity. A comprehensive study of nonâ€pollutant alternatives to produce green hydrogen. International Journal of Energy Research, 2022, 46, 17999-18028.	2.2	5
2146	Photo/Thermal Dualâ€Activation Improves the Photocurrent of Bismuth Vanadate for PEC Water Splitting. ChemElectroChem, 2022, 9, .	1.7	2
2147	Metal Complex/ZnS-Modified Ni Foam as Magnetically Stirrable Photocatalysts: Roles of Redox Mediators and Carrier Dynamics Monitored by Operando Synchrotron X-ray Spectroscopy. ACS Applied Materials & Interfaces, 0, , .	4.0	3
2148	Decoration of BiVO ₄ /ZnO Photoanodes with Feâ€ZIFâ€8 to Simultaneously Enhance Charge Separation and Hole Transportation for Efficient Solar Water Splitting. ChemPhotoChem, 2022, 6, .	1.5	2
2149	Synergistic effect of titanium oxide underlayer and interlayer on zirconium-doped zinc ferrite photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2022, 47, 32015-32030.	3.8	9
2150	Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature, 2022, 608, 518-522.	13.7	94
2152	Boosting the Performance of BiVO ₄ Photoanodes by the Simultaneous Introduction of Oxygen Vacancies and Cocatalyst via Photoelectrodeposition. ACS Applied Materials & amp; Interfaces, 2022, 14, 37833-37842.	4.0	14
2153	BiVO ₄ Photoanodes for TEMPOâ€Mediated Benzyl Alcohol Oxidation in Organic Media. ChemPlusChem, 2022, 87, .	1.3	4
2154	Review on BiVO ₄ -Based Photoanodes for Photoelectrochemical Water Oxidation: The Main Influencing Factors. Energy & Fuels, 2022, 36, 9932-9949.	2.5	28
2155	Improved Charge Separation and Injection Efficiencies of Bismuth Vanadate Photoanode by Depositing Composite CoO _x /CuO Cocatalyst. ChemistrySelect, 2022, 7, .	0.7	1
2156	Porous BiVO4/Boron-Doped Diamond Heterojunction Photoanode with Enhanced Photoelectrochemical Activity. Molecules, 2022, 27, 5218.	1.7	2

#	Article	IF	CITATIONS
2157	Tuning the Surface Wettability of a BiVO ₄ Photoanode for Kinetically Modulating Water Oxidative H ₂ O ₂ Accumulation. ACS Energy Letters, 2022, 7, 3024-3031.	8.8	24
2158	Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting. Chinese Journal of Catalysis, 2022, 43, 2321-2331.	6.9	17
2159	Recent advancements in bismuth vanadate photoanodes for photoelectrochemical water splitting. Materials Today Chemistry, 2022, 26, 101060.	1.7	11
2160	A novel BiVO4/P3HT photoanode for highly efficient water oxidation and its hole energy offset effect with CuPc derivative. Applied Catalysis B: Environmental, 2022, 318, 121865.	10.8	10
2161	Multifunctional polymer coating cooperated with γ-Fe2O3 for boosting photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2022, 318, 121869.	10.8	11
2162	A novel synergy of Co/La co-doped porous BiVO4 photoanodes with enhanced photoelectrochemical solar water splitting performance. Journal of Alloys and Compounds, 2022, 925, 166667.	2.8	11
2163	Enhancement in the photoelectrochemical performance of BiVO4 photoanode with high (0 4 0) facet exposure. Journal of Colloid and Interface Science, 2022, 628, 726-735.	5.0	7
2164	2D Bismuthene as a Functional Interlayer between BiVO ₄ and NiFeOOH for Enhanced Oxygenâ€Evolution Photoanodes. Advanced Functional Materials, 2022, 32, .	7.8	30
2165	Effective Charge Carrier Utilization of BiVO ₄ for Solar Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	3
2166	Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation. Renewable Energy, 2022, 199, 132-139.	4.3	11
2167	Laccase-coupled photoelectrocatalytic system for highly efficient degradation of bisphenol A. Chemosphere, 2022, 308, 136245.	4.2	6
2168	Direct light-driven electrodeposition of Bi and Cu without external voltage: Light-induced metal recovery and energy conversion. Materials Science in Semiconductor Processing, 2022, 152, 107083.	1.9	0
2169	NiFe-bimetal-organic framework grafting oxygen-vacancy-rich BiVO4 photoanode for highly efficient solar-driven water splitting. Journal of Colloid and Interface Science, 2023, 629, 487-495.	5.0	12
2170	Enhancement of photoelectrochemical performance of Bismuth vanadate (BiVO4)-Based photoanode by building phase-junction configurations. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114252.	2.0	7
2171	Nitrogen-doped cobalt-iron oxide cocatalyst boosting photoelectrochemical water splitting of BiVO4 photoanodes. Applied Catalysis B: Environmental, 2023, 320, 121947.	10.8	30
2172	Orderly Decoupled Dynamics Modulation in Nanoporous Bivo4 Photoanodes for Solar Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
2173	Surface engineering of nanoporous silicon photocathodes for enhanced photoelectrochemical hydrogen production. Catalysis Science and Technology, 2022, 12, 5640-5648.	2.1	7
2174	Photoelectrochemical glycerol oxidation on Mo-BiVO ₄ photoanodes shows high photocharging current density and enhanced H ₂ evolution. Energy Advances, 2022, 1, 715-728.	1.4	8

		CITATION RE	EPORT	
#	Article		IF	Citations
2175	The role of crystal facets and disorder on photo-electrosynthesis. Nanoscale, 2022, 14	, 15596-15606.	2.8	4
2176	Two-dimensional \hat{l}^2 -PdSeO3 monolayer as a high-efficiency photocatalyst for solar-to-h conversion. Catalysis Science and Technology, 0, , .	ydrogen	2.1	0
2177	Enhanced solar water splitting of BiVO ₄ photoanodes by <i>in situ</i> surf modulation. Journal of Materials Chemistry A, 2022, 10, 22561-22570.	ace band edge	5.2	18
2178	In-situ corrosion induced Zr-doped Ni/Fe (oxy)hydroxide layer on Ni-Fe foam realizing e electrocatalysis for oxygen evolution reaction. Applied Surface Science, 2023, 607, 15	fficient 5043.	3.1	4
2179	Graphene oxide as a hole extraction layer loaded on BiVO4 photoanode for highly effic photoelectrochemical water splitting. Rare Metals, 2022, 41, 3795-3802.	ient	3.6	17
2180	Supramolecular assembly-derived carbon-nitrogen-based functional materials for photo/electrochemical applications: progress and challenges. , 2023, 2, 20220032.			4
2181	Type-II Heterojunction CdIn ₂ S ₄ /BiVO ₄ Couplin Improve PEC Water Splitting Performance Synergistically. ACS Applied Materials & 14, 45392-45402.	g with CQDs to); Interfaces, 2022,	4.0	32
2182	Control of crystal growth to obtain needle-shaped violet phosphorus with excellent ph degradation performance. Nano Research, 2023, 16, 3320-3325.	otocatalytic	5.8	4
2183	Defect Engineering and Surface Polarization of TiO2 Nanorod Arrays toward Efficient Photoelectrochemical Oxygen Evolution. Catalysts, 2022, 12, 1021.		1.6	5
2184	Influence of Excess Charge on Water Adsorption on the BiVO ₄ (010) Surf the American Chemical Society, 2022, 144, 17173-17185.	ace. Journal of	6.6	17
2185	Toward Excellence in Photocathode Engineering for Photoelectrochemical CO _{2< Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022,}	/sub> 12, .	10.2	30
2186	Efficient and Stable MoO _{<i>X</i>(i>} @Mo-BiVO ₄ Photoanodes Photoelectrochemical Water Oxidation: Optimization and Understanding. ACS Applied Materials, 2022, 5, 11568-11580.	for Energy	2.5	7
2187	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17	7072.	23.0	45
2188	Radical Activation of N–H and O–H Bonds at Bismuth(II). Journal of the American (2022, 144, 16535-16544.	Chemical Society,	6.6	26
2189	Conferring BiVO ₄ Nanorods with Oxygen Vacancies to Realize Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	Sonodynamic	7.2	48
2190	Crystal Reconstruction of Mo:BiVO ₄ : Improved Charge Transport for Effic Water Splitting. Advanced Functional Materials, 2022, 32, .	ient Solar	7.8	20
2191	Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located to boost photocatalysis. Science China Materials, 2023, 66, 664-671.	ted on g-C3N4	3.5	33
2192	Orderly decoupled dynamics modulation in nanoporous BiVO4 photoanodes for solar Journal of Alloys and Compounds, 2023, 931, 167428.	water splitting.	2.8	8

#	Article	IF	CITATIONS
2193	Conferring BiVO ₄ Nanorods with Oxygen Vacancies to Realize Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	4
2194	A facile synthesis route and photo-catalytic properties of mixed-phase bismuth molybdate. Journal of Luminescence, 2022, 252, 119341.	1.5	3
2195	Kinetics of Active Oxide Species Derived from a Metallic Nickel Surface for Efficient Electrocatalytic Water Oxidation. ACS Energy Letters, 2022, 7, 3276-3285.	8.8	6
2196	MOF derived NiO thin film formed p-n heterojunction with BiVO4 photoelectrode for enhancement of PEC performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130282.	2.3	18
2197	Mechanistic insight into photochemical and photoelectrochemical degradation of organic pollutants with the use of BiVO4 and BiVO4/Co-Pi. Electrochimica Acta, 2022, 434, 141292.	2.6	10
2198	Bias-free solar hydrogen production at 19.8 mA cmâ^'2 using perovskite photocathode and lignocellulosic biomass. Nature Communications, 2022, 13, .	5.8	33
2199	Insights into the Charge Transfer Kinetics in BiVO4 Photoanodes Modified with Transition Metal-Based Oxygen Evolution Electrocatalysts. Catalysis Today, 2022, , .	2.2	3
2200	Rational Design of Black Phosphorus-Based Direct Z-Scheme Photocatalysts for Overall Water Splitting: The Role of Defects. Journal of Physical Chemistry Letters, 2022, 13, 9363-9371.	2.1	17
2201	Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynthesis Research, 2022, 154, 329-352.	1.6	3
2202	In-situ construction of platy LaTaON2 by CsCl flux for remarkably promoted solar hydrogen production. Journal of Catalysis, 2022, 415, 19-27.	3.1	1
2203	MXene with controlled surface termination groups for boosting photoelectrochemical water splitting. Journal of Materials Chemistry A, 2022, 10, 24793-24801.	5.2	7
2204	Vacancy defect engineered BiVO ₄ with low-index surfaces for photocatalytic application: a first principles study. RSC Advances, 2022, 12, 31317-31325.	1.7	1
2205	MoSSe/Hf(Zr)S ₂ heterostructures used for efficient Z-scheme photocatalytic water-splitting. Physical Chemistry Chemical Physics, 2022, 24, 25287-25297.	1.3	13
2206	Oriented growth of stacking α-cobalt hydroxide salt continuous films and their topotactic-like transformation to oriented mesoporous films of Co ₃ O ₄ and CoO. Nanoscale Advances, 2022, 5, 96-105.	2.2	1
2207	Fabricating BiVO ₄ /FeOOH/ZnFe-LDH hierarchical core–shell nanorod arrays for visible-light-driven photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 6431-6440.	3.0	5
2208	Electrocatalytic NAD ⁺ reduction <i>via</i> hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13, 13361-13367.	3.7	6
2209	Band gap modulation of nanostructured WO3 nanoplate film by Ti doping for enhanced photoelectrochemical performance. Journal of Central South University, 2022, 29, 2968-2979.	1.2	4
2210	Enhanced Charge Carrier Separation in WO ₃ /BiVO ₄ Photoanodes Achieved via Light Absorption in the BiVO ₄ Layer. ACS Applied Energy Materials, 2022, 5, 13142-13148.	2.5	6

#	Article	IF	CITATIONS
2211	Bromide-Mediated Photoelectrochemical Epoxidation of Alkenes Using Water as an Oxygen Source with Conversion Efficiency and Selectivity up to 100%. Journal of the American Chemical Society, 2022, 144, 19770-19777.	6.6	23
2212	Multi-Function of the Ni Interlayer in the Design of a BiVO ₄ -Based Photoanode for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 48682-48693.	4.0	6
2213	Effect of Ag-Decorated BiVO4 on Photoelectrochemical Water Splitting: An X-ray Absorption Spectroscopic Investigation. Nanomaterials, 2022, 12, 3659.	1.9	9
2214	Photoelectrocatalytic hydrogen generation coupled with reforming of glucose into valuable chemicals using a nanostructured WO3 photoanode. Communications Chemistry, 2022, 5, .	2.0	7
2215	Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nature Communications, 2022, 13, .	5.8	48
2216	Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective. Energies, 2022, 15, 7399.	1.6	19
2217	New Views on Carrier Diffusion and Recombination by Combining Small Perturbation Techniques: Application to BiVO ₄ Photoelectrodes. Solar Rrl, 2022, 6, .	3.1	3
2218	Chemical Vapor Deposition of Crystalized Nanoscale α-SnWO ₄ Thin Films and Their Photoelectrocatalytic Properties. ACS Applied Energy Materials, 2022, 5, 14372-14380.	2.5	4
2219	Photocatalytic and photoelectrochemical production of hydrogen peroxide under acidic conditions in organic p-n bilayer/bismuth vanadate system. International Journal of Electrochemical Science, 0, , ArticleID:221143.	0.5	2
2220	BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy, 2022, 104, 107925.	8.2	21
2221	Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Materials Science in Semiconductor Processing, 2023, 153, 107184.	1.9	6
2222	Enhancing Low–Bias performance of n–type Cu2O photoanode for solar water splitting via simultaneously accelerated charge transfer kinetics at back contact and liquid junction. Solar Energy Materials and Solar Cells, 2023, 249, 112049.	3.0	1
2223	Carbon-based hole storage engineering toward ultralow onset potential and high photocurrent density of integrated SiC photoanodes. Carbon, 2023, 202, 41-50.	5.4	2
2224	Nonlinear optical properties of porous monoclinic BiVO4 at 2.3µm for the passively Q-switching laser. Optics and Laser Technology, 2023, 157, 108753.	2.2	2
2225	Anchored Ni nanocrystals boosting BiVO4 photoanode for highly efficient water oxidation via in-situ generation of Ni@NiOOH co-catalyst. Chemical Engineering Journal, 2023, 454, 139983.	6.6	17
2226	In vitro biocompatibility evaluations of pH-sensitive Bi2MoO6/NH2-GO conjugated polyethylene glycol for release of daunorubicin in cancer therapy. Colloids and Surfaces B: Biointerfaces, 2023, 221, 113006.	2.5	6
2227	Modulating negative magnetoresistance via inducing vacancy for regulates electron transport under magnetic ambient conditions. Applied Catalysis B: Environmental, 2023, 322, 122096.	10.8	0
2228	BiVO4/Rh–Ci/HCO3â^' hetero-/homogeneous dual co-catalyst-decorated photoanode system for photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114414.	2.0	1

#	Article	IF	CITATIONS
2229	Dual modification of BiVO4 photoanode by enriching bulk and surface oxygen vacancies for enhanced photoelectrochemical performance. Journal of Colloid and Interface Science, 2023, 631, 35-45.	5.0	5
2230	Quantum Dots, Passivation Layer and Cocatalysts for Enhanced Photoelectrochemical Hydrogen Production. ChemSusChem, 2023, 16, .	3.6	6
2231	Elucidating the Role of Surface Energetics on Charge Separation during Photoelectrochemical Water Splitting. ACS Catalysis, 2022, 12, 14727-14734.	5.5	8
2232	Boosting charge separation of BiVO4 photoanode modified with 2D metal-organic frameworks nanosheets for high-performance photoelectrochemical water splitting. Chinese Chemical Letters, 2023, 34, 108007.	4.8	11
2233	Simultaneous Photoelectrocatalytic Oxidation and Nitriteâ€Ammonia Conversion with Artificial Photoelectrochemistry Cells. Advanced Energy Materials, 2022, 12, .	10.2	7
2234	Improved Photoelectrochemical Performance of BiVO4 for Water Oxidation Enabled by the Integration of the Ni@NiO Core–Shell Structure. Catalysts, 2022, 12, 1456.	1.6	2
2235	Thiacalixarene-based {Co/Fe} ₁₆ coordination clusters: bimetallic synergistic effect for an enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 926-933.	3.0	6
2236	Visible-light-responsive BiVO4/NH2-MIL-125(Ti) Z-scheme heterojunctions with enhanced photoelectrocatalytic degradation of phenol. Journal of Alloys and Compounds, 2023, 936, 168345.	2.8	18
2237	The development of cobalt phosphide co-catalysts on BiVO4 photoanodes to improve H2O2 production. Journal of Colloid and Interface Science, 2023, 633, 323-332.	5.0	6
2238	Mg modified LaTiO2N with ameliorated photocarrier separation for solar water splitting. Applied Catalysis B: Environmental, 2023, 324, 122258.	10.8	6
2239	Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4 - MoNiCuOx/Cu. Applied Catalysis B: Environmental, 2023, 324, 122229.	10.8	14
2240	Enabling high low-bias performance of Fe2O3 photoanode for photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2023, 633, 555-565.	5.0	15
2241	Nanomaterials design for photoelectrochemical water oxidation. , 2023, , 515-532.		1
2242	Polyimide stabilized Cu2O photocathode for efficient PEC water reduction. Ionics, 0, , .	1.2	0
2243	CeO _x as Surface Passivation and Hole Transfer Catalyst Layer Boosting Solar Water Oxidation of ZnFe ₂ O ₄ Nanorods Photoanode. Advanced Materials Interfaces, 0, , 2201645.	1.9	0
2244	Tailoring the Exciton Binding Energy of 2D Conjugated Polymers for Powering Metal-Free CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 16182-16188.	3.2	5
2245	Fabrication of Novel g-C3N4@Bi/Bi2O2CO3 Z-Scheme Heterojunction with Meliorated Light Absorption and Efficient Charge Separation for Superior Photocatalytic Performance. Molecules, 2022, 27, 8336.	1.7	3
2246	A Conformal Carbon Nanolayer Coated Fe2O3 Cocatalyst for the Promoted Activity of Plasmaâ€6puttered BiVO4 Photoanode. Chemistry - A European Journal, 0, , .	1.7	0

#	Article	IF	CITATIONS
2247	Beyond Photosynthesis: H ₂ 0/H ₂ 0 ₂ /O ₂ Self-Circulation-Based Biohybrid Photoelectrochemical Cells for Direct and Sustainable Solar-to-Fuel-to-Electric Power Conversion. Journal of the American Chemical Society, 2022, 144, 23073-23080.	6.6	8
2248	Hybrid CuFe–CoFe Prussian Blue Catalysts on BiVO ₄ for Enhanced Charge Separation and Injection for Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2022, 5, 15434-15441.	2.5	3
2249	Hydrothermal Synthesized CoS2 as Efficient Co-Catalyst to Improve the Interfacial Charge Transfer Efficiency in BiVO4. Inorganics, 2022, 10, 264.	1.2	0
2250	Plasmonic Copper activated ZnO Microarrays for Efficient Photoelectrocatalytic Applications. Chemistry - an Asian Journal, 0, , .	1.7	0
2251	Multifunctional Ultrathin Amorphous CoFe-Prussian Blue Analogue Catalysts for Efficiently Boosting the Oxygen Evolution Activity of Antimony-Doped TiO ₂ Nanorods Photoanode. ACS Applied Energy Materials, 2022, 5, 15000-15009.	2.5	5
2252	Amineâ€Rich Hydrogels Enhance Solar Water Oxidation via Boosting Protonâ€Coupled Electron Transfer. Advanced Materials Interfaces, 2023, 10, .	1.9	4
2253	Engineering the Interfacial Structure of Heavy Metalâ€Free Colloidal Heterostructured Quantum Dots for Highâ€Efficiency Photoelectrochemical Water Oxidation without Coâ€Catalyst. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	5
2254	Synthesis of α-Fe ₂ O ₃ rhombus nanoplates for photocatalytic investigation of cationic and anionic dyes and antibacterial aspect. Journal of Taibah University for Science, 2022, 16, 1192-1201.	1.1	4
2255	Photoelectrocatalytic synthesis of aromatic azo compounds over porous nanoarrays of bismuth vanadate. Chem Catalysis, 2023, 3, 100472.	2.9	3
2256	Alloy Metal Nanocluster: A Robust and Stable Photosensitizer for Steering Solar Water Oxidation. Inorganic Chemistry, 2023, 62, 520-529.	1.9	4
2257	Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. Catalysis Communications, 2023, 174, 106599.	1.6	4
2258	Porphyrinsâ€Assisted Cocatalyst Engineering with CoOV Bond in BiVO ₄ Photoanode for Efficient Oxygen Evolution Reaction. Advanced Science, 2023, 10, .	5.6	14
2259	Local charge distribution manipulation by oxyhydroxide heterojunction toward urea photoelectrolysis. Materials Today Energy, 2023, 31, 101212.	2.5	2
2260	Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Science Advances, 2023, 9, .	4.7	54
2261	A large size BiVO ₄ photoanode with high stability for efficient water oxidation and wastewater treatment coupled with H ₂ evolution. Journal of Materials Chemistry A, 2023, 11, 1756-1765.	5.2	11
2262	A BiVO ₄ Photoanode with a VO _x Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2023, 62, .	7.2	35
2263	Efficient photoelectrochemical Kolbe C–C coupling at BiVO ₄ electrodes under visible light irradiation. Green Chemistry, 2023, 25, 1067-1077.	4.6	2
2264	Photoelectrochemical performance of bismuth vanadate photoanode for water splitting under concentrated light irradiation. International Journal of Hydrogen Energy, 2023, 48, 13479-13488.	3.8	4

#	Article	IF	CITATIONS
2265	A BiVO ₄ Photoanode with a VO _x Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting. Angewandte Chemie, 2023, 135, .	1.6	1
2266	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	16.0	15
2267	Bimetallic FeO _{<i>x</i>} –MO _{<i>x</i>} Loaded TiO ₂ (M = Cu, Co) Nanocomposite Photocatalysts for Complete Mineralization of Herbicides. Journal of Physical Chemistry C, 2023, 127, 1388-1396.	1.5	3
2268	Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. Journal of Materials Chemistry A, 2023, 11, 3888-3903.	5.2	40
2269	Thermally Accelerated Surface Polaron Hopping in Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2023, 14, 413-419.	2.1	5
2270	Facile fabrication of heterostructured BiPS4-Bi2S3-BiVO4 photoanode for enhanced stability and photoelectrochemical water splitting performance. Journal of Catalysis, 2023, 418, 51-63.	3.1	7
2271	BiVO4 charge transfer control by a water-insoluble iron complex for solar water oxidation. Applied Catalysis A: General, 2023, 652, 119035.	2.2	1
2272	Bulk and surface modified polycrystalline CuWO4 films for photoelectrochemical water oxidation. Renewable Energy, 2023, 203, 779-787.	4.3	5
2273	Hematite-based photoanodes for photoelectrochemical water splitting: Performance, understanding, and possibilities. Journal of Environmental Chemical Engineering, 2023, 11, 109224.	3.3	5
2274	Multi-strategy preparation of BiVO4 photoanode with abundant oxygen vacancies for efficient water oxidation. Applied Surface Science, 2023, 614, 156164.	3.1	4
2275	Boosting photoelectrochemical water splitting of bismuth vanadate photoanode via novel co-catalysts of amorphous manganese oxide with variable valence states. Journal of Colloid and Interface Science, 2023, 636, 103-112.	5.0	3
2276	One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+. Separation and Purification Technology, 2023, 310, 123143.	3.9	10
2277	Different behaviors on the external and inner surface of hollow CdS/VS-MoS2 heterojunctions in photoelectrocatalytic CO2 reduction via SH-assisted mechanism. Applied Catalysis B: Environmental, 2023, 325, 122394.	10.8	10
2278	Metal–organic Framework-Derived CoS _x /NiS Co-Decorated Heterostructures: Toward Simultaneous Acceleration of Charge Carrier Separation and Catalytic Kinetics. ACS Applied Energy Materials, 2023, 6, 278-284.	2.5	3
2279	Study on inactivation of marine microorganisms by Agl/ Bi2O2CO3 composite photocatalyst. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136, 535-548.	0.8	4
2280	Enhanced photoelectrochemical hydrogen production by a composite photoanode constructed with TiO2 nanorods and Cu-modified NH2-MIL-125. International Journal of Hydrogen Energy, 2023, 48, 14697-14706.	3.8	4
2281	Manipulating the surface states of BiVO ₄ through electrochemical reduction for enhanced PEC water oxidation. Nanoscale, 2023, 15, 4536-4545.	2.8	6
2282	BiVO4/Bi2S3 heterojunction decorated by Pt and FeOOH double cocatalysts to enhance photoelectrochemical degradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0

#	Article	IF	CITATIONS
2283	Optimizing Surface Composition and Structure of FeWO ₄ Photoanodes for Enhanced Water Photooxidation. Advanced Materials Technologies, 2023, 8, .	3.0	6
2284	The coupling effect of carbon spheres and cobalt-involved carbon nitrides stacked on TiO2 nanorod arrays for promoted solar water oxidation. International Journal of Hydrogen Energy, 2023, 48, 16690-16703.	3.8	1
2285	Tailored BiVO ₄ /In ₂ O ₃ nanostructures with boosted charge separation ability toward unassisted water splitting. , 2023, 5, .		20
2286	Photoâ€Electrochemical Glycerol Conversion over a Mie Scattering Effect Enhanced Porous BiVO ₄ Photoanode. Advanced Materials, 0, , 2209955.	11.1	27
2287	Horseradish Peroxidaseâ€Coupled Ag ₃ PO ₄ /BiVO ₄ Photoanode for Biophotoelectrocatalytic Degradation of Organic Contaminants. ChemSusChem, 2023, 16, .	3.6	1
2288	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
2289	Photoelectrocatalysis for hydrogen production devices. , 2023, , 307-334.		0
2290	Scalable synthesis of BiVO4 thin films via anodic plating and thermal calcination. Nanoscale Research Letters, 2023, 18, .	3.1	0
2291	PbS Quantum Dots-Decorated BiVO4 Photoanodes for Highly Efficient Photoelectrochemical Hydrogen Production. Nanomaterials, 2023, 13, 799.	1.9	3
2292	Hierarchically arranged γ-NiOOH/β-FeOOH layer supported on modified Molybdenum-BiVO4 thin film for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 26133-26147.	3.8	3
2293	Electrodeposited copper oxides with a suppressed interfacial amorphous phase using mixed-crystalline ITO and their enhanced photoelectrochemical performances. Journal of Energy Chemistry, 2023, 82, 277-286.	7.1	3
2294	Photo-electrocatalytic based removal of acetaminophen: Application of visible light driven heterojunction based BiVO4/BiOI photoanode. Chemosphere, 2023, 324, 138322.	4.2	7
2295	Promoting photoelectrochemical water oxidation of BiVO4 photoanode via Co-MOF-derived heterostructural cocatalyst. Applied Surface Science, 2023, 619, 156710.	3.1	13
2296	Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy, 2023, 109, 108296.	8.2	10
2297	Boosting charge separation and transfer at the boron-triggered BiVO4 interface for efficient and stable solar water splitting. Chemical Engineering Journal, 2023, 465, 142571.	6.6	3
2298	Photoelectrodeposition of Ag3PO4 nanoparticles on BiVO4 photoanode for enhancing its photoelectrochemical water oxidation performance. Journal of Science: Advanced Materials and Devices, 2023, 8, 100547.	1.5	0
2299	CoP-loaded BiVO4 for highly active and robust photocathodic protection of 304 stainless steel. Materials Today Communications, 2023, 35, 105848.	0.9	1
2300	Ni-Doped BiVO4 photoanode for efficient photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2023, 640, 162-169.	5.0	12

#	Article	IF	CITATIONS
2301	Coupling of self-healing atomic layer CoAl-LDH onto Mo:BiVO4 photoanode for fast surface charge transfer toward stable and high-performance water splitting. Chemical Engineering Journal, 2023, 465, 142893.	6.6	13
2302	BiVO4 photoelectrodes for unbiased solar water splitting devices enabled by electrodepositing of Cu2O simultaneously as photoanode and photocathode. Journal of Alloys and Compounds, 2023, 945, 169336.	2.8	6
2303	Solar-driven upgrading of 5-hydroxymethylfurfural on BiVO4 photoanodes: Effect of TEMPO mediator and cocatalyst on reaction kinetics. Applied Catalysis B: Environmental, 2023, 331, 122679.	10.8	3
2304	Photoanodic H2O2 synthesis and in-situ tetracycline degradation using transition-metal phosphide co-catalysts. Applied Catalysis B: Environmental, 2023, 331, 122701.	10.8	7
2305	Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering, 2023, 11, 109356.	3.3	5
2306	Charge separation at BiVO4/Co3O4 and BiVO4/CoOOH interfaces: Differences between dense and permeable cocatalysts. Applied Surface Science, 2023, 624, 156965.	3.1	3
2307	Photoelectrochemical activity of visible light-responsive BiVO4@La1-xSrxFeO3-l̂´ (xÂ=Â0, 0.2, 0.4) heterojunction architectures – Optimizing activity by tuning Fe O bond in perovskites. Applied Surface Science, 2023, 616, 156513.	3.1	1
2308	Highly efficient GeSe micro-air-brick-based thin film standalone solar water-splitting photoelectrode with solar-light-soaking accumulation process. Energy and Environmental Science, 2023, 16, 1155-1165.	15.6	4
2309	Synergistic role of hydrogen treatment and heterojunction in H-WO3-x/TiO2-x NT/Ti foil-based photoanodes for photoelectrochemical wastewater detoxification and antibacterial activity. Chemosphere, 2023, 318, 137973.	4.2	3
2310	Surface passivation decoration of amorphous cobalt silicate on molybdenum-doped bismuth vanadate for efficient photoelectrochemical water oxidation. Chemical Physics Letters, 2023, 814, 140330.	1.2	1
2311	p-n Heterostructured BiVO ₄ /g-C ₃ N ₄ Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 87.	0.6	0
2312	A novel BiVO4/DLC heterojunction for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 459, 141637.	6.6	8
2313	Modification of BiVO4 nanoporous films with FeOOH for photoelectrochemical water oxidation and determination of glutathione. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
2314	Polypyrrole modification on BiVO4 for photothermal-assisted photoelectrochemical water oxidation. Journal of Chemical Physics, 2023, 158, .	1.2	2
2315	Simultaneous Improvement in Hole Storage and Interfacial Catalysis over Ni–Fe Oxyhydroxide-Modified Tantalum Nitride Photoanodes. ACS Catalysis, 2023, 13, 2647-2656.	5.5	5
2316	Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) <i>_x</i> Co-Catalyzed Hematite. ACS Applied Materials & Interfaces, 2023, 15, 9341-9349.	4.0	9
2317	Enhanced Photoelectrochemical Water Oxidation on BiVO4 Photoanodes Functionalized by Bimetallic Dicyanamide Molecular Catalysts. Sustainability, 2023, 15, 3129.	1.6	1
2318	Directional Charge Transfer Channels in a Monolithically Integrated Electrode for Photoassisted Overall Water Splitting. ACS Nano, 2023, 17, 3465-3482.	7.3	26

#	Article	IF	CITATIONS
2319	Roles of Surface States in Cocatalyst-Loaded Hematite Photoanodes for Water Oxidation. Journal of Physical Chemistry C, 2023, 127, 3904-3909.	1.5	7
2320	Cobalt Pyrophosphate Nanosheets Effectively Boost Photoelectrochemical Water Splitting Efficiency of BiVO4 Photoanodes. Catalysis Letters, 2024, 154, 23-33.	1.4	1
2321	Surface oxygen vacancy engineering on TiO ₂ (101) <i>via</i> ALD technology for simultaneously enhancing charge separation and transfer. Chemical Communications, 2023, 59, 3237-3240.	2.2	3
2322	Defect-rich spinel ferrites with improved charge collection properties for efficient solar water splitting. Journal of Advanced Ceramics, 2023, 12, 612-624.	8.9	7
2323	Selective Valorization of Glycerol to Formic Acid on a BiVO ₄ Photoanode through NiFe Phenolic Networks. ACS Applied Materials & Interfaces, 2023, 15, 11678-11690.	4.0	10
2324	Development of Transition Metal Incorporated Bismuthâ€Based Oxide Semiconductors as Potential Candidates for Solar Assisted Water Splitting Applications. ChemElectroChem, 2023, 10, .	1.7	2
2325	Decoupled Artificial Photosynthesis. Angewandte Chemie, 2023, 135, .	1.6	0
2326	Decoupled Artificial Photosynthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
2327	Enhancement in Photoelectrochemical Efficiency and Modulation of Surface States in BiVO ₄ through the TiO ₂ Outer Layer Using the Atomic Layer Deposition Technique. Journal of Physical Chemistry C, 2023, 127, 4395-4406.	1.5	3
2328	Non-quantum nanostructure-enabled hot carrier generation for enhancive photoelectrocatalytic oxidation of bio-alcohol in water coupled with hydrogen evolution. Green Chemistry, 2023, 25, 2771-2781.	4.6	6
2329	Unconventional Substitution for BiVO ₄ to Enhance Photoelectrocatalytic Performance by Accelerating Polaron Hopping. ACS Applied Materials & Interfaces, 0, , .	4.0	2
2330	Facile preparation of nickel phosphide for enhancing the photoelectrochemical water splitting performance of BiVO ₄ photoanodes. RSC Advances, 2023, 13, 8374-8382.	1.7	3
2331	Au Nanoparticles-Decorated BiOI Nanosheet Arrays for Cathodic Photoelectrochemical Dopamine Sensors. ACS Applied Nano Materials, 2023, 6, 5664-5674.	2.4	6
2332	Bias-free visible light-driven photoelectrochemical water splitting of type II ZnO/CuS core/shell heterojunction nanotube arrays. International Journal of Hydrogen Energy, 2023, 48, 21996-22008.	3.8	4
2333	Promoting Plasmonic Hot Hole Extraction and Photothermal Effect for the Oxygen Evolution Reactions. Chemistry - A European Journal, 2023, 29, .	1.7	1
2334	Fabrication of Fe2O3/BiVO4 heterojunction by doping method to improve the solar water splitting performance of BiVO4. Journal of Alloys and Compounds, 2023, 949, 169822.	2.8	10
2335	Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO4. Journal of Colloid and Interface Science, 2023, 644, 509-518.	5.0	9
2336	NdCo ₃ Molecular Catalyst Coupled with a BiVO ₄ Photoanode for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2023, 6, 4027-4034.	2.5	4

#	Article	IF	Citations
2337	Tailored BiVO ₄ Photoanode Hydrophobic Microenvironment Enables Water Oxidative H ₂ O ₂ Accumulation. Advanced Science, 2023, 10, .	5.6	7
2338	Effect of polymer additives on photocatalytic and photoelectrochemical properties of BiVO ₄ prepared from aqueous metal-chelate solution. Japanese Journal of Applied Physics, 2023, 62, SK1030.	0.8	2
2339	5.7% Efficiency Si Photoanodes for Solar Water Splitting Catalyzed by Vertically Grown and Oxygenâ€Vacancyâ€Rich NiFe Hydroxides. Advanced Sustainable Systems, 2023, 7, .	2.7	1
2340	Coupling surface modification with cocatalyst deposition on BiVO4 photoanode to enhance charge transfer for efficient solar-driven water splitting. International Journal of Hydrogen Energy, 2023, 48, 24320-24327.	3.8	3
2341	Atomically dispersed Ru oxide catalyst with lattice oxygen participation for efficient acidic water oxidation. CheM, 2023, 9, 1882-1896.	5.8	32
2342	Cobalt-Modified Amorphous Nickel–Iron–Molybdate Cocatalysts to Enhance the Photoelectrochemical Water Splitting Performance of BiVO ₄ Photoanodes. ACS Applied Energy Materials, 0, , .	2.5	0
2343	Thin Zinc Oxide Layer Passivating Bismuth Vanadate for Selective Photoelectrochemical Water Oxidation to Hydrogen Peroxide. Small, 2023, 19, .	5.2	9
2344	Construction of WO ₃ quantum dots/TiO ₂ nanowire arrays type II heterojunction <i>via</i> electrostatic self-assembly for efficient solar-driven photoelectrochemical water splitting. Dalton Transactions, 2023, 52, 6284-6289.	1.6	5
2345	Ultrafast Deposition of NiFe Metalâ€organic Framework Catalysts Boosts BiVO4 Photoanode for Efficient Solar Water Splitting. Chemistry - an Asian Journal, 0, , .	1.7	0
2346	Efficient CuO/Ag ₂ WO ₄ photoelectrodes for photoelectrochemical water splitting using solar visible radiation. RSC Advances, 2023, 13, 11297-11310.	1.7	6
2347	Polaron-Mediated Transport in BiVO ₄ Photoanodes for Solar Water Oxidation. ACS Energy Letters, 2023, 8, 2177-2184.	8.8	11
2348	Evolution of Intermediates on Metal Oxide Photoanodes in a Full pH Range. ACS Catalysis, 2023, 13, 5841-5849.	5.5	2
2349	Engineering BiVO ₄ and Oxygen Evolution Cocatalyst Interfaces with Rapid Hole Extraction for Photoelectrochemical Water Splitting. ACS Catalysis, 2023, 13, 5938-5948.	5.5	26
2350	Size-Specific Infrared Spectroscopic Study of the Reactions between Water Molecules and Neutral Vanadium Dimer: Evidence for Water Splitting. Journal of Physical Chemistry Letters, 2023, 14, 3878-3883.	2.1	2
2351	Heterogeneous doping via charge carrier transport improves Photoelectrochemical H2O oxidative H2O2 synthesis. Chemical Engineering Journal, 2023, 466, 142984.	6.6	2
2352	Analysis and characterization of BiVO4/FeOOH and BiVO4/α-Fe2O3 nanostructures photoanodes for photoelectrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
2353	Rapid Synthesis of Ultrathin Ni:FeOOH with In Situ-Induced Oxygen Vacancies for Enhanced Water Oxidation Activity and Stability of BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2023, 15, 21123-21133.	4.0	11
2364	Strategies for reducing the overpotential of one-dimensional Si nanostructured photoelectrodes for solar hydrogen production. , 0, , .		0

#	Article	IF	CITATIONS
2371	Photochemical Diodes for Simultaneous Bias-Free Glycerol Valorization and Hydrogen Evolution. Journal of the American Chemical Society, 2023, 145, 12987-12991.	6.6	8
2379	Tandem cells for unbiased photoelectrochemical water splitting. Chemical Society Reviews, 2023, 52, 4644-4671.	18.7	17
2391	Nanowire photochemical diodes for artificial photosynthesis. Science Advances, 2023, 9, .	4.7	13
2421	Semiconductor-based artificial photosynthesis for water-splitting and CO2 reduction. , 2023, , 377-405.		0
2438	A chemist's guide to photoelectrode development for water splitting – the importance of molecular precursor design. , 2023, 1, 832-873.		2
2446	Photoelectrochemical Flow Cells for Solar Fuels and Chemicals. Green Energy and Technology, 2023, , 43-67.	0.4	0
2468	Origin of the switchable photocurrent direction in BiFeO ₃ thin films. Materials Horizons, 0, , .	6.4	1
2493	Revisiting the Underlying Chemistry Enhancing the Activity of Photoelectro- and Photo-Catalysts Concerning H2 Production. Engineering Materials, 2024, , 119-150.	0.3	0
2501	Perovskite and Layered Perovskite Oxynitrides for Efficient Sunlight-driven Artificial Synthesis. Materials Chemistry Frontiers, 0, , .	3.2	0
2533	A heterogeneous cobalt cubane polymer co-catalyst for cooperative water oxidation. Dalton Transactions, 2024, 53, 3975-3979.	1.6	0
2546	Ceramic-membrane cells for electrocatalytic ammonia synthesis. , 2024, , 65-109.		0