Lateâ€Stage Functionalization of Biologically Active He Catalysis

Angewandte Chemie - International Edition 53, 4802-4806

DOI: 10.1002/anie.201402023

Citation Report

#	Article	IF	CITATIONS
1	Visibleâ€Light Promoted Catalystâ€Free Imidation of Arenes and Heteroarenes. Chemistry - A European Journal, 2014, 20, 14231-14234.	1.7	124
2	Photoredox Catalysis in a Complex Pharmaceutical Setting: Toward the Preparation of JAK2 Inhibitor LY2784544. Journal of Organic Chemistry, 2014, 79, 11631-11643.	1.7	78
3	Nitrogen-centered radical-mediated C–H imidation of arenes and heteroarenes <i>via</i> visible light induced photocatalysis. Chemical Communications, 2014, 50, 9273-9276.	2.2	145
4	Contemporary screening approaches to reaction discovery and development. Nature Chemistry, 2014, 6, 859-871.	6.6	196
5	Diâ€∢i>tert Butyl Peroxideâ€Promoted Sequential Methylation and Intramolecular Aromatization of Isonitriles. Advanced Synthesis and Catalysis, 2014, 356, 3341-3346.	2.1	63
6	Dioxygenâ€Mediated Decarbonylative CH Alkylation of Heteroaromatic Bases with Aldehydes. Chemistry - A European Journal, 2015, 21, 17618-17622.	1.7	94
7	Finalâ€Stage Siteâ€Selective Acylation for the Total Syntheses of Multifidosidesâ€A–C. Angewandte Chemie - International Edition, 2015, 54, 11966-11970.	7.2	44
9	Palladiumâ€Catalyzed Direct Cyclopropylation of Heterocycles. Angewandte Chemie - International Edition, 2015, 54, 9601-9605.	7.2	33
10	Metalâ€Free Oxidative Decarbonylative Coupling of Aliphatic Aldehydes with Azaarenes: Successful Minisciâ€Type Alkylation of Various Heterocycles. Advanced Synthesis and Catalysis, 2015, 357, 2055-2060.	2.1	106
13	Minisci alkylations of electron-deficient pyrimidines with alkyl carboxylic acids. Tetrahedron Letters, 2015, 56, 4063-4066.	0.7	25
14	Recent synthetic additions to the visible light photoredox catalysis toolbox. Organic and Biomolecular Chemistry, 2015, 13, 9152-9167.	1.5	187
15	Automatic discovery and optimization of chemical processes. Current Opinion in Chemical Engineering, 2015, 9, 1-7.	3.8	92
16	Characterizing chain processes in visible light photoredox catalysis. Chemical Science, 2015, 6, 5426-5434.	3.7	791
17	SAMDI Mass Spectrometry-Enabled High-Throughput Optimization of a Traceless Petasis Reaction. ACS Combinatorial Science, 2015, 17, 658-662.	3.8	26
18	Development of a Direct Photocatalytic Câ€"H Fluorination for the Preparative Synthesis of Odanacatib. Organic Letters, 2015, 17, 5200-5203.	2.4	147
19	Metal-free methylation of a pyridine N-oxide C–H bond by using peroxides. Organic and Biomolecular Chemistry, 2015, 13, 11184-11188.	1.5	44
20	DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis. Organometallics, 2015, 34, 4218-4228.	1.1	57
21	Alcohols as alkylating agents in heteroarene C–H functionalization. Nature, 2015, 525, 87-90.	13.7	581

#	Article	IF	CITATIONS
22	Direct αâ€Arylation of Ethers through the Combination of Photoredoxâ€Mediated CH Functionalization and the Minisci Reaction. Angewandte Chemie - International Edition, 2015, 54, 1565-1569.	7.2	383
23	Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science, 2015, 347, 49-53.	6.0	454
24	Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6407-6412.	3.7	272
26	Palladium-Catalyzed Allylic Amidation with N-Heterocycles via sp ³ C–H Oxidation. ACS Catalysis, 2016, 6, 5295-5301.	5.5	50
27	Intermolecular Hydropyridylation of Unactivated Alkenes. Journal of the American Chemical Society, 2016, 138, 8718-8721.	6.6	153
28	Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of <i>N</i> -(Acetoxy)phthalimides. Organic Letters, 2016, 18, 6400-6403.	2.4	82
29	A new era for homolytic aromatic substitution: replacing Bu ₃ SnH with efficient light-induced chain reactions. Organic and Biomolecular Chemistry, 2016, 14, 3849-3862.	1.5	49
30	Visible-Light-Promoted (Phenylsulfonyl)methylation of Electron-Rich Heteroarenes and <i>N</i> -Arylacrylamides. Journal of Organic Chemistry, 2016, 81, 6972-6979.	1.7	32
31	The emergence of low-cost compact mass spectrometry detectors for chromatographic analysis. TrAC - Trends in Analytical Chemistry, 2016, 82, 22-34.	5.8	39
32	KO <i>t</i> Bu: A Privileged Reagent for Electron Transfer Reactions?. Journal of the American Chemical Society, 2016, 138, 7402-7410.	6.6	260
33	Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 2016, 116, 9850-9913.	23.0	867
34	Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis. Chemical Science, 2016, 7, 4754-4758.	3.7	174
35	Visible-Light Photoredox Synthesis of Chiral α-Selenoamino Acids. Organic Letters, 2016, 18, 1968-1971.	2.4	79
36	Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Topics in Current Chemistry, 2016, 374, 30.	3.0	114
37	Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Central Science, 2016, 2, 281-292.	5.3	614
38	Synthesis of Complex Druglike Molecules by the Use of Highly Functionalized Benchâ€Stable Organozinc Reagents. Angewandte Chemie - International Edition, 2016, 55, 13714-13718.	7.2	53
39	A practical metal-free homolytic aromatic alkylation protocol for the synthesis of 3-(pyrazin-2-yl)bicyclo[1.1.1]pentane-1-carboxylic acid. Organic and Biomolecular Chemistry, 2016, 14, 9485-9489.	1.5	20
40	Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry, 2016, 81, 6898-6926.	1.7	2,156

#	ARTICLE	IF	CITATIONS
41	Aromatic "Redox Tag―assisted Diels–Alder reactions by electrocatalysis. Chemical Science, 2016, 7, 6387-6393.	3.7	83
42	Fast colorimetric screening for visible light photocatalytic oxidation and reduction reactions. Reaction Chemistry and Engineering, 2016, 1 , 494-500.	1.9	9
43	Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254.	5.2	128
44	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> â€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie - International Edition, 2016, 55, 9690-9694.	7.2	169
45	Decarboxylative Anti-Michael Addition to Olefins Mediated by Photoredox Catalysis. Organic Letters, 2016, 18, 3494-3497.	2.4	43
46	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> à€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie, 2016, 128, 9842-9846.	1.6	63
47	Synthesis of Complex Druglike Molecules by the Use of Highly Functionalized Benchâ€Stable Organozinc Reagents. Angewandte Chemie, 2016, 128, 13918-13922.	1.6	22
48	Direct Assembly of Prenylated Heteroarenes through a Cascade Minisci Reaction/Dehydration Sequence. ChemistryOpen, 2016, 5, 535-539.	0.9	9
49	Visible-light-induced phenylchalcogenyl-oxygenation of allenes having aryl or electron withdrawing substituents with ambient air as a sole oxidant. Organic and Biomolecular Chemistry, 2016, 14, 11415-11425.	1.5	12
50	Hydroalkylation of terminal aryl alkynes with alkyl diacyl peroxides. Tetrahedron Letters, 2016, 57, 5677-5680.	0.7	31
51	Installing amino acids and peptides on N-heterocycles under visible-light assistance. Scientific Reports, 2016, 6, 20068.	1.6	70
52	Schnelles Entdecken photokatalytischer Reaktionen durch mechanismusbasiertes Screening. Angewandte Chemie, 2016, 128, 4434-4439.	1.6	28
53	Accelerated Discovery in Photocatalysis using a Mechanismâ€Based Screening Method. Angewandte Chemie - International Edition, 2016, 55, 4361-4366.	7.2	71
54	Visible Lightâ€Promoted Decarboxylative Di―and Trifluoromethylthiolation of Alkyl Carboxylic Acids. Chemistry - A European Journal, 2016, 22, 4753-4756.	1.7	115
55	Visible Light Photocatalysis: Applications and New Disconnections in the Synthesis of Pharmaceutical Agents. Organic Process Research and Development, 2016, 20, 1134-1147.	1.3	293
56	Modern advances in heterocyclic chemistry in drug discovery. Organic and Biomolecular Chemistry, 2016, 14, 6611-6637.	1.5	540
57	Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds. Chemical Communications, 2016, 52, 8862-8864.	2.2	47
58	Photoredox-Catalyzed Hydroxymethylation of Heteroaromatic Bases. Journal of Organic Chemistry, 2016, 81, 6980-6987.	1.7	115

#	ARTICLE	IF	Citations
59	Synergy between experimental and computational approaches to homogeneous photoredox catalysis. Dalton Transactions, 2016, 45, 10878-10882.	1.6	5
60	Preparative Scale Demonstration and Mechanistic Investigation of a Visible Light-Mediated Radical Smiles Rearrangement. Organic Process Research and Development, 2016, 20, 1148-1155.	1.3	29
61	Mechanism and Site Selectivity in Visible-Light Photocatalyzed Câ \in "H Functionalization: Insights from DFT Calculations. Journal of Organic Chemistry, 2016, 81, 7110-7120.	1.7	14
62	Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Organic Process Research and Development, 2016, 20, 1156-1163.	1.3	342
63	The mechanism of palladium(II)-mediated C–H cleavage with mono- <i>N</i> -protected amino acid (MPAA) ligands: origins of rate acceleration. Pure and Applied Chemistry, 2016, 88, 119-138.	0.9	72
64	Cross-Coupling Hydrogen Evolution by Visible Light Photocatalysis Toward C(sp ²)–P Formation: Metal-Free C–H Functionalization of Thiazole Derivatives with Diarylphosphine Oxides. Organic Letters, 2016, 18, 452-455.	2.4	140
65	Nickel-Catalyzed Asymmetric Alkene Hydrogenation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. Journal of the American Chemical Society, 2016, 138, 3562-3569.	6.6	165
66	Unsymmetrical Aryl(2,4,6-trimethoxyphenyl)iodonium Salts: One-Pot Synthesis, Scope, Stability, and Synthetic Studies. Journal of Organic Chemistry, 2016, 81, 1998-2009.	1.7	95
67	Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chemical Science, 2016, 7, 2066-2073.	3.7	103
68	The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chemical Society Reviews, 2016, 45, 546-576.	18.7	1,243
69	Visible-Light-Induced C2 Alkylation of Pyridine <i>N</i> Oxides. Journal of Organic Chemistry, 2017, 82, 2059-2066.	1.7	65
70	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.	2.9	78
71	Organocatalyzed, Photoredox Heteroarylation of 2-Trifluoroboratochromanones via C–H Functionalization. Organic Letters, 2017, 19, 950-953.	2.4	71
72	Photoredoxâ€Catalysed Decarboxylative Alkylation of Nâ€Heteroarenes with <i>N</i> â€(Acyloxy)phthalimides. Chemistry - A European Journal, 2017, 23, 2537-2541.	1.7	176
73	Photoredoxâ€Catalyzed Cyclopropanation of Michael Acceptors. European Journal of Organic Chemistry, 2017, 2017, 2122-2125.	1.2	34
74	Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chemical Communications, 2017, 53, 2335-2338.	2.2	125
75	Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie, 2017, 129, 3704-3708.	1.6	26
76	Iron atalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie - International Edition, 2017, 56, 3650-3654.	7.2	112

#	ARTICLE	IF	CITATIONS
77	Hydroxyl Radicals via Collision-Induced Dissociation of Trimethylammonium Benzyl Alcohols. Australian Journal of Chemistry, 2017, 70, 397.	0.5	5
78	Photoredoxâ€Induced Radical 6â€ <i>exo</i> à€ <i>trig</i> Cyclizations onto the Indole Nucleus: Aromative versus Dearomative Pathways. European Journal of Organic Chemistry, 2017, 2017, 2186-2193.	1.2	9
79	Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. European Journal of Organic Chemistry, 2017, 2017, 2072-2084.	1.2	49
80	Advances in Radical Oxidative Câ€"H Alkylation of <i>N</i> â€Heteroarenes. Chinese Journal of Chemistry, 2017, 35, 271-279.	2.6	39
81	Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1 <i>H</i> -benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 3594-3605.	2.9	65
82	Metal-free C–H alkylation of heteroarenes with alkyltrifluoroborates: a general protocol for 1°, 2° and 3° alkylation. Chemical Science, 2017, 8, 3512-3522.	3.7	239
83	Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of \hat{l}_{\pm} -Amino Acid Derivatives. Organic Letters, 2017, 19, 1016-1019.	2.4	88
84	Potassium <i>tert</i> -Butoxide-Catalyzed Dehydrogenative Câ€"H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. Journal of the American Chemical Society, 2017, 139, 6867-6879.	6.6	160
85	High-Throughput Automation in Chemical Process Development. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 525-547.	3.3	79
86	Visible Light-Mediated Direct Decarboxylative C–H Functionalization of Heteroarenes. ACS Catalysis, 2017, 7, 4057-4061.	5. 5	224
87	Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH. CheM, 2017, 2, 688-702.	5.8	153
88	C–H Functionalization of Azines. Chemical Reviews, 2017, 117, 9302-9332.	23.0	406
89	Iron catalyzed methylation and ethylation of vinyl arenes. Chemical Science, 2017, 8, 2081-2085.	3.7	80
90	Silver-catalyzed C2-selective direct alkylation of heteroarenes with tertiary cycloalkanols. Organic and Biomolecular Chemistry, 2017, 15, 324-327.	1.5	60
91	Practical High-Throughput Experimentation for Chemists. ACS Medicinal Chemistry Letters, 2017, 8, 601-607.	1.3	233
92	Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Advances, 2017, 7, 26256-26321.	1.7	37
93	Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature, 2017, 547, 79-83.	13.7	396
94	Base-promoted, deborylative secondary alkylation of N-heteroaromatic N-oxides with internal gem-bis[(pinacolato)boryl]alkanes: a facile derivatization of 2,2′-bipyridyl analogues. Chemical Communications, 2017, 53, 7573-7576.	2.2	65

#	Article	IF	Citations
95	Enabling Chemistry Technologies and Parallel Synthesis—Accelerators of Drug Discovery Programmes. Progress in Medicinal Chemistry, 2017, 56, 1-35.	4.1	13
96	Radical-Based Late Stage C–H Functionalization of Heteroaromatics in Drug Discovery. , 2017, , 103-120.		6
97	Hydroheteroarylation of Unactivated Alkenes Using $\langle i \rangle N \langle i \rangle$ -Methoxyheteroarenium Salts. Journal of the American Chemical Society, 2017, 139, 5998-6007.	6.6	133
99	Photoredox/BrÃ,nsted Acid Co-Catalysis Enabling Decarboxylative Coupling of Amino Acid and Peptide Redox-Active Esters with N-Heteroarenes. ACS Catalysis, 2017, 7, 907-911.	5.5	233
100	Iron-Catalyzed C–H Alkylation of Heterocyclic C–H Bonds. Organic Letters, 2017, 19, 46-49.	2.4	71
101	Visibleâ€Light Photoredox Decarboxylative Couplings. Asian Journal of Organic Chemistry, 2017, 6, 368-385.	1.3	171
102	A Robust and Broadly Applicable Cobaltâ€Catalyzed Crossâ€Coupling of Functionalized Benchâ€Stable Organozinc Pivalates with Unsaturated Halides. Angewandte Chemie, 2017, 129, 1102-1106.	1.6	17
103	A Robust and Broadly Applicable Cobaltâ€Catalyzed Crossâ€Coupling of Functionalized Benchâ€Stable Organozinc Pivalates with Unsaturated Halides. Angewandte Chemie - International Edition, 2017, 56, 1082-1086.	7.2	41
104	An Intermolecular Azidoheteroarylation of Simple Alkenes via Free-Radical Multicomponent Cascade Reactions. Organic Letters, 2017, 19, 5649-5652.	2.4	74
105	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie - International Edition, 2017, 56, 14948-14952.	7.2	107
106	Visibleâ€Lightâ€Initiated Manganese Catalysis for Câ^'H Alkylation of Heteroarenes: Applications and Mechanistic Studies. Angewandte Chemie, 2017, 129, 15511-15515.	1.6	30
107	Visibleâ€Lightâ€Initiated Manganese Catalysis for Câ°'H Alkylation of Heteroarenes: Applications and Mechanistic Studies. Angewandte Chemie - International Edition, 2017, 56, 15309-15313.	7.2	157
108	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> â€Oxides with Vinylarenes. Angewandte Chemie, 2017, 129, 16112-16116.	1.6	19
109	Oxyfunctionalization of the Remote Câ^'H Bonds of Aliphatic Amines by Decatungstate Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 15274-15278.	7.2	109
110	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> â€Oxides with Vinylarenes. Angewandte Chemie - International Edition, 2017, 56, 15896-15900.	7.2	61
111	Oxyfunctionalization of the Remote Câ^'H Bonds of Aliphatic Amines by Decatungstate Photocatalysis. Angewandte Chemie, 2017, 129, 15476-15480.	1.6	25
112	Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions. Science, 2017, 357, 175-181.	6.0	79
113	Late-Stage C–H Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. Journal of the American Chemical Society, 2017, 139, 12251-12258.	6.6	218

#	Article	IF	Citations
114	The photochemical alkylation and reduction of heteroarenes. Chemical Science, 2017, 8, 7412-7418.	3.7	77
115	Durch sichtbares Licht vermittelte Deaminierung zur Erzeugung von Alkylradikalen. Angewandte Chemie, 2017, 129, 12505-12509.	1.6	82
116	Deaminative Strategy for the Visibleâ€Lightâ€Mediated Generation of Alkyl Radicals. Angewandte Chemie - International Edition, 2017, 56, 12336-12339.	7.2	295
117	The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. Accounts of Chemical Research, 2017, 50, 2976-2985.	7.6	200
118	Free Radicals in Heterocycle Functionalization. Topics in Heterocyclic Chemistry, 2017, , 93-149.	0.2	4
119	A Fe(III)/NaBH ₄ -Promoted Free-Radical Hydroheteroarylation of Alkenes. Organic Letters, 2017, 19, 6463-6465.	2.4	36
120	Molecular Oxygen-Mediated Minisci-Type Radical Alkylation of Heteroarenes with Boronic Acids. Organic Letters, 2017, 19, 6594-6597.	2.4	80
121	Radical-Mediated Dearomatization of Indoles with Sulfinate Reagents for the Synthesis of Fluorinated Spirocyclic Indolines. Organic Letters, 2017, 19, 6336-6339.	2.4	62
122	Recent Progress on Radical Decarboxylative Alkylation for Csp3–C Bond Formation. Synthesis, 2017, 49, 5263-5284.	1.2	77
123	Direct Câ€"H Functionalization of Heteroarenes via Redox-Neutral Radical Process: A Facile Route to Câ€"C Bonds Formation. Synthesis, 2017, 49, 3407-3421.	1.2	32
124	Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 139-149.	3.2	11
125	Transition metal-free, visible-light mediated synthesis of 1,10-phenanthroline derived ligand systems. Chemical Communications, 2017, 53, 8160-8163.	2.2	18
126	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(<scp>iii</scp>) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. Chemical Science, 2017, 8, 1613-1620.	3.7	45
127	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie, 2018, 130, 5233-5236.	1.6	28
128	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie - International Edition, 2018, 57, 5139-5142.	7.2	75
130	Photocatalytic alkoxy radical-mediated transformations. Tetrahedron Letters, 2018, 59, 2103-2111.	0.7	103
131	Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes. Organic and Biomolecular Chemistry, 2018, 16, 3568-3571.	1.5	9
132	Inexpensive Radical Methylation and Related Alkylations of Heteroarenes. Organic Letters, 2018, 20, 1413-1416.	2.4	35

#	Article	IF	CITATIONS
133	Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via <i>N</i> -(Acyloxy)phthalimides. Journal of Organic Chemistry, 2018, 83, 3000-3012.	1.7	121
134	The Acid-Free Cyclopropanol-Minisci Reaction Reveals the Catalytic Role of Silver–Pyridine Complexes. Organic Letters, 2018, 20, 796-799.	2.4	44
135	Photoredox-Catalyzed Decarboxylative Alkylation of Silyl Enol Ethers To Synthesize Functionalized Aryl Alkyl Ketones. Organic Letters, 2018, 20, 349-352.	2.4	82
136	Lateâ€Stage Functionalization of Drugâ€Like Molecules Using Diversinates. ChemMedChem, 2018, 13, 983-987.	1.6	32
137	Recent Advances in Direct C–H Functionalization of Pyrimidines. Synthesis, 2018, 50, 193-210.	1.2	37
138	Metal-free synthesis of aminomethylated imidazoheterocycles: dual role of <i>tert</i> -butyl hydroperoxide as both an oxidant and a methylene source. Organic and Biomolecular Chemistry, 2018, 16, 8620-8628.	1.5	26
139	Functionalization of C(sp2) $\hat{a}\in H$ Bonds of Arenes and Heteroarenes Assisted by Photoredox Catalysts for the C $\hat{a}\in G$ Bond Formation. Topics in Organometallic Chemistry, 2018, , 225-265.	0.7	3
140	Late-Stage Aromatic C–H Oxygenation. Journal of the American Chemical Society, 2018, 140, 16026-16031.	6.6	78
141	Photoredox-Mediated Minisci-type Alkylation of $\langle i \rangle N \langle i \rangle$ -Heteroarenes with Alkanes with High Methylene Selectivity. ACS Catalysis, 2018, 8, 11847-11853.	5.5	97
142	A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor–Acceptor Cyanoarenes. Journal of the American Chemical Society, 2018, 140, 15353-15365.	6.6	435
143	Minisci-Photoredox-Mediated α-Heteroarylation of N-Protected Secondary Amines: Remarkable Selectivity of Azetidines. Organic Letters, 2018, 20, 6003-6006.	2.4	56
144	Metal-, Photocatalyst-, and Light-Free, Late-Stage C–H Alkylation of Heteroarenes and 1,4-Quinones Using Carboxylic Acids. Organic Letters, 2018, 20, 6863-6867.	2.4	94
145	Photoredox-Mediated Direct Cross-Dehydrogenative Coupling of Heteroarenes and Amines. Organic Letters, 2018, 20, 5661-5665.	2.4	79
146	Photoredox-Catalyzed C _α â€"H Cyanation of Unactivated Secondary and Tertiary Aliphatic Amines: Late-Stage Functionalization and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 11089-11100.	1.7	35
147	Visible Light-Mediated Decarboxylative Alkylation of Pharmaceutically Relevant Heterocycles. Organic Letters, 2018, 20, 3487-3490.	2.4	92
148	Ironâ€Catalyzed Vinylic Câ^'H Alkylation with Alkyl Peroxides. Chemistry - an Asian Journal, 2018, 13, 2522-2528.	1.7	9
149	Quantum chemical calculation of free radical substitution reaction mechanism of camptothecin. Journal of Molecular Graphics and Modelling, 2018, 84, 174-181.	1.3	5
150	Metal-Free-Visible Light C–H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation. Organic Letters, 2018, 20, 3229-3232.	2.4	102

#	Article	IF	CITATIONS
151	Reaction miniaturization in eco-friendly solvents. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 91-98.	3.2	21
152	Employing Photoredox Catalysis for DNAâ€Encoded Chemistry: Decarboxylative Alkylation of αâ€Amino Acids. ChemMedChem, 2018, 13, 2159-2165.	1.6	86
153	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie - International Edition, 2018, 57, 12737-12740.	7.2	69
154	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie, 2018, 130, 11448-11452.	1.6	12
155	Visible-Light-Initiated, Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with <i>N</i> Heterocycles. Organic Letters, 2018, 20, 4686-4690.	2.4	105
156	A Visible Light-Driven Minisci-Type Reaction with N-Hydroxyphthalimide Esters. Molecules, 2018, 23, 764.	1.7	43
157	Photoredox Catalysis for Building C–C Bonds from C(sp ²)–H Bonds. Chemical Reviews, 2018, 118, 7532-7585.	23.0	591
158	Selective Methylation of Arenes: A Radical Câ^'H Functionalization/Crossâ€Coupling Sequence. Angewandte Chemie, 2018, 130, 10857-10861.	1.6	9
159	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie - International Edition, 2018, 57, 11278-11282.	7.2	73
160	Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews, 2018, 47, 5038-5060.	18.7	63
161	DMSO as a Switchable Alkylating Agent in Heteroarene Câ^'H Functionalization. Chemistry - A European Journal, 2018, 24, 10064-10068.	1.7	47
162	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie, 2018, 130, 12919-12922.	1.6	9
163	Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 2018, 17, 709-727.	21,5	391
164	Xanthate-mediated intermolecular alkylation of pyrazines. Tetrahedron, 2018, 74, 5804-5817.	1.0	7
165	C–H Functionalization of Heteroarenes Using Unactivated Alkyl Halides through Visible-Light Photoredox Catalysis under Basic Conditions. Journal of Organic Chemistry, 2018, 83, 10933-10940.	1.7	32
166	Selective Methylation of Arenes: A Radical Câ^'H Functionalization/Crossâ€Coupling Sequence. Angewandte Chemie - International Edition, 2018, 57, 10697-10701.	7.2	30
167	A High-Throughput Approach to Discovery: Heck-Type Reactivity with Aldehydes. Synlett, 2018, 29, 2081-2086.	1.0	14
168	Redox-Neutral Photocatalytic Cyclopropanation via Radical/Polar Crossover. Journal of the American Chemical Society, 2018, 140, 8037-8047.	6.6	177

#	Article	IF	CITATIONS
169	Beyond Friedel and Crafts: Innate Alkylation of Câ^'H Bonds in Arenes. Angewandte Chemie - International Edition, 2019, 58, 7558-7598.	7.2	82
170	Surgical Cleavage of Unstrained C(sp 3)â^'C(sp 3) Bonds in General Alcohols for Heteroaryl Câ^'H Alkylation and Acylation. Advanced Synthesis and Catalysis, 2019, 361, 4568-4574.	2.1	24
171	A Pyridine–Pyridine Crossâ€Coupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie - International Edition, 2019, 58, 14882-14886.	7.2	61
172	Benzaldehyde- and Nickel-Catalyzed Photoredox C(sp ³)–H Alkylation/Arylation with Amides and Thioethers. Organic Letters, 2019, 21, 6329-6332.	2.4	40
173	Transition metal-free \hat{l}_{\pm} -methylation of 1,8-naphthyridine derivatives using DMSO as methylation reagent. Organic and Biomolecular Chemistry, 2019, 17, 7416-7424.	1.5	39
174	Green oxidant H ₂ O ₂ as a hydrogen atom transfer reagent for visible light-mediated Minisci reaction. New Journal of Chemistry, 2019, 43, 12533-12537.	1.4	37
175	Visible-Light-Induced Copper-Catalyzed Decarboxylative Coupling of Redox-Active Esters with <i>N</i> -Heteroarenes. Organic Letters, 2019, 21, 5728-5732.	2.4	60
176	Metal-, photocatalyst-, and light-free late-stage C–H alkylation of N-heteroarenes with organotrimethylsilanes using persulfate as a stoichiometric oxidant. Organic Chemistry Frontiers, 2019, 6, 2902-2906.	2.3	12
177	LiBrâ€Promoted Photoredox Minisciâ€Type Alkylations of Quinolines with Ethers. Advanced Synthesis and Catalysis, 2019, 361, 5643-5647.	2.1	50
178	Photochemical Câ^'H Hydroxyalkylation of Quinolines and Isoquinolines. Angewandte Chemie - International Edition, 2019, 58, 16878-16883.	7.2	77
179	Photochemical Câ^'H Hydroxyalkylation of Quinolines and Isoquinolines. Angewandte Chemie, 2019, 131, 17034-17039.	1.6	17
180	Nickelâ€Catalyzed <i>Ortho</i> C–H Methylation of Aromatic Amides with Diâ€ <i>tert</i> â€butyl Peroxide as Methylation Reagent. European Journal of Organic Chemistry, 2019, 2019, 6930-6934.	1.2	14
181	Visible-light-promoted sulfonylmethylation of imidazopyridines. Chinese Chemical Letters, 2019, 30, 2295-2298.	4.8	51
182	Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols via Alkoxy Radicals. Organic Letters, 2019, 21, 9241-9246.	2.4	75
183	A Pyridine–Pyridine Crossâ€Coupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie, 2019, 131, 15024-15028.	1.6	10
184	Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Organic Letters, 2019, 21, 6930-6935.	2.4	59
185	Modular Dual-Tasked C–H Methylation via the Catellani Strategy. Journal of the American Chemical Society, 2019, 141, 15986-15993.	6.6	77
186	Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions, 2019, 48, 15338-15357.	1.6	13

#	Article	IF	CITATIONS
187	Visible-light-mediated Minisci C–H alkylation of heteroarenes with unactivated alkyl halides using O ₂ as an oxidant. Chemical Science, 2019, 10, 976-982.	3.7	109
188	Advancements in Visible-Light-Enabled Radical C(sp)2–H Alkylation of (Hetero)arenes. Synthesis, 2019, 51, 1063-1072.	1.2	69
189	Jenseits von Friedel und Crafts: immanente Alkylierung von Câ€Hâ€Bindungen in Arenen. Angewandte Chemie, 2019, 131, 7638-7680.	1.6	24
190	Copper-catalyzed borylation of cycloalkylsilyl peroxides <i>via</i> radical C–C bond cleavage. Organic Chemistry Frontiers, 2019, 6, 2792-2795.	2.3	36
191	Benzylation of Arenes with Benzyl Halides under Promoterâ€Free and Additiveâ€Free Conditions. European Journal of Organic Chemistry, 2019, 2019, 4404-4410.	1.2	7
192	Copper-catalyzed regioselective alkylation of heteroarenes with functionalized alkyl halides. Tetrahedron Letters, 2019, 60, 1792-1795.	0.7	23
193	Visible Light-Promoted Aliphatic C–H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent. Organic Letters, 2019, 21, 6179-6184.	2.4	87
194	Direct C-3 alkylation of coumarins <i>via</i> decarboxylative coupling with carboxylic acids. New Journal of Chemistry, 2019, 43, 9328-9332.	1.4	11
195	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Organic Process Research and Development, 2019, 23, 1213-1242.	1.3	279
196	Metal-, Photocatalyst-, and Light-Free Minisci C–H Alkylation of <i>N</i> -Heteroarenes with Oxalates. Journal of Organic Chemistry, 2019, 84, 7532-7540.	1.7	27
197	Ligand-Accelerated Iron Photocatalysis Enabling Decarboxylative Alkylation of Heteroarenes. Organic Letters, 2019, 21, 4259-4265.	2.4	103
198	Intermolecular Reactions of Pyridyl Radicals with Olefins via Photoredox Catalysis. Synlett, 2019, 30, 1607-1614.	1.0	8
199	Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts. ACS Catalysis, 2019, 9, 4862-4866.	5 . 5	70
200	C–H γ,γ,γ-Trifluoroalkylation of Quinolines via Visible-Light-Induced Sequential Radical Additions. Organic Letters, 2019, 21, 3600-3605.	2.4	19
201	Heteroarene Phosphinylalkylation via a Catalytic, Polarity-Reversing Radical Cascade. ACS Catalysis, 2019, 9, 5330-5335.	5 . 5	73
202	Engineering Chemistry Innovation. ACS Medicinal Chemistry Letters, 2019, 10, 703-707.	1.3	14
203	Neue Entwicklungen auf dem Gebiet der Minisciâ€Reaktion. Angewandte Chemie, 2019, 131, 13802-13837.	1.6	73
204	Recent Advances in Minisciâ€Type Reactions. Angewandte Chemie - International Edition, 2019, 58, 13666-13699.	7.2	468

#	Article	IF	CITATIONS
205	Illuminating Photoredox Catalysis. Trends in Chemistry, 2019, 1, 111-125.	4.4	333
206	Metal-Free C-2-H Alkylation of Quinazolin-4-ones with Alkanes via Cross-Dehydrogenative Coupling. Organic Letters, 2019, 21, 2365-2368.	2.4	12
207	Development of BODIPY dyes with versatile functional groups at 3,5-positions from diacyl peroxides via Cu(ii)-catalyzed radical alkylation. Chemical Communications, 2019, 55, 4691-4694.	2.2	17
208	Visible-Light-Induced C(sp ³)–H Oxidative Arylation with Heteroarenes. Organic Letters, 2019, 21, 2441-2444.	2.4	89
209	Desulfonative photoredox alkylation of <i>N</i> heteroaryl sulfones – an acid-free approach for substituted heteroarene synthesis. Chemical Science, 2019, 10, 4389-4393.	3.7	38
210	Synthesis of quinazolin-4($1 < i > H < /i >$)-ones $< i > via < /i >$ amination and annulation of amidines and benzamides. Organic and Biomolecular Chemistry, 2019, 17, 2356-2360.	1.5	8
211	Acoustic Droplet Ejection Enabled Automated Reaction Scouting. ACS Central Science, 2019, 5, 451-457.	5.3	40
212	Palladium-Catalyzed Methylation of Aryl, Heteroaryl, and Vinyl Boronate Esters. Organic Letters, 2019, 21, 1337-1341.	2.4	24
213	Visible-light-mediated photoredox decarbonylative Minisci-type alkylation with aldehydes under ambient air conditions. Green Chemistry, 2019, 21, 5512-5516.	4.6	72
214	Photoredox-Mediated Minisci C–H Alkylation Reactions between N-Heteroarenes and Alkyl Iodides with Peroxyacetate as a Radical Relay Initiator. Journal of Organic Chemistry, 2019, 84, 16245-16253.	1.7	12
215	A Direct Approach to Decoration of Bioactive Compounds via C–H Amination Reaction. Organic Letters, 2019, 21, 9852-9855.	2.4	11
216	Iron-Catalyzed Oxyalkylation of Terminal Alkynes with Alkyl Iodides. Organic Letters, 2019, 21, 261-265.	2.4	16
217	Late Stage Functionalization of Secondary Amines via a Cobalt-Catalyzed Electrophilic Amination of Organozinc Reagents. Organic Letters, 2019, 21, 494-497.	2.4	35
218	Direct Câ^'H Carbamoylation of Nitrogenâ€Containing Heterocycles. Chemistry - A European Journal, 2019, 25, 2217-2221.	1.7	37
219	Benzaldehyd in Nickelâ€katalysierten Photoredoxâ€sp 3 â€Hâ€Alkylierungen/Arylierungen. Angewandte Chemie, 2019, 131, 1837-1841.	1.6	20
220	The Combination of Benzaldehyde and Nickelâ€Catalyzed Photoredox C(sp ³)â^'H Alkylation/Arylation. Angewandte Chemie - International Edition, 2019, 58, 1823-1827.	7.2	98
221	The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363, .	6.0	312
222	Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 2019, 131, 3768-3786.	1.6	115

#	Article	IF	CITATIONS
223	Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry - A European Journal, 2019, 25, 3405-3439.	1.7	169
224	Mechanistic Studies in Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 3730-3747.	7.2	559
225	Photoredox Catalysis for Silylâ€Mediated C–H Alkylation of Heterocycles with Nonâ€Activated Alkyl Bromides. European Journal of Organic Chemistry, 2020, 2020, 1515-1522.	1.2	21
226	Minisciâ€Type C–H Cyanoalkylation of Heteroarenes Through N–O/C–C Bonds Cleavage. European Journal of Organic Chemistry, 2020, 2020, 1439-1442.	1.2	14
227	The Alkylation and Reduction of Heteroarenes with Alcohols Using Photoredox Catalyzed Hydrogen Atom Transfer via Chlorine Atom Generation. European Journal of Organic Chemistry, 2020, 2020, 1453-1458.	1.2	27
228	Advances in the Synthesis of Methylated Products through Indirect Approaches. Advanced Synthesis and Catalysis, 2020, 362, 998-1014.	2.1	5
229	Covalent Organic Frameworks: A Sustainable Photocatalyst toward Visibleâ€Lightâ€Accelerated C3 Arylation and Alkylation of Quinoxalinâ€2(1 <i>H</i>)â€ones. Chemistry - A European Journal, 2020, 26, 369-373.	1.7	82
230	Dearomative Photocatalytic Construction of Bridged 1,3â€Diazepanes. Angewandte Chemie - International Edition, 2020, 59, 4121-4130.	7.2	53
231	Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 987-998.	6.6	83
232	Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 468-478.	6.6	86
233	A Retrosynthetic Approach for Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 1193-1244.	1.2	43
234	General Access to <i>C</i> Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catalysis, 2020, 10, 12727-12737.	5.5	47
235	Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Medicinal Chemistry Letters, 2020, 11, 2120-2130.	1.3	63
236	Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Central Science, 2020, 6, 2053-2059.	5.3	95
237	Radical coupling of \hat{l}^2 -ketoesters and amides promoted by Br \tilde{A} ,nsted/Lewis acids. Green Synthesis and Catalysis, 2020, 1, 70-74.	3.7	7
238	Terminal-oxidant-free photocatalytic C–H alkylations of heteroarenes with alkylsilicates as alkyl radical precursors. Chemical Communications, 2020, 56, 10006-10009.	2.2	31
239	Tertiary Amines Acting as Alkyl Radical Equivalents Enabled by a P/N Heteroleptic Cu(I) Photosensitizer. Organic Letters, 2020, 22, 8888-8893.	2.4	34
240	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	23.0	241

#	Article	IF	Citations
241	Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chemical Science, 2020, 11, 8595-8599.	3.7	30
242	Visible light photocatalysis – from racemic to asymmetric activation strategies. Chemical Communications, 2020, 56, 11169-11190.	2.2	71
243	Late-Stage Functionalization. CheM, 2020, 6, 1877-1887.	5.8	172
244	Digitising chemical synthesis in automated and robotic flow. Chemical Science, 2020, 11, 11973-11988.	3.7	26
245	Deliberately Losing Control of Câ^'H Activation Processes in the Design of Smallâ€Moleculeâ€Fragment Arrays Targeting Peroxisomal Metabolism. ChemMedChem, 2020, 15, 2513-2520.	1.6	1
246	Regioselective Câ^'H Functionalization of Heteroarene <i>N</i> à€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie - International Edition, 2020, 59, 22675-22683.	7.2	24
247	Regioselective Câ^'H Functionalization of Heteroarene N â€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie, 2020, 132, 22864-22872.	1.6	2
248	Regioselective Amidomethylation of 4-Chloro-3-fluoropyridine by Metalation and Minisci-Type Reactions. Journal of Organic Chemistry, 2020, 85, 12067-12079.	1.7	5
249	A droplet microfluidic platform for high-throughput photochemical reaction discovery. Nature Communications, 2020, 11 , 6202.	5.8	96
250	Photochemical Câ€"H Silylation and Hydroxymethylation of Pyridines and Related Structures: Synthetic Scope and Mechanisms. ACS Catalysis, 2020, 10, 13710-13717.	5 . 5	60
251	From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules, 2020, 25, 4949.	1.7	13
252	Visibleâ€Lightâ€Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angewandte Chemie - International Edition, 2020, 59, 13379-13384.	7.2	67
253	Visibleâ€Lightâ€Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angewandte Chemie, 2020, 132, 13481-13486.	1.6	22
254	Protecting Group-Controlled Remote Regioselective Electrophilic Aromatic Halogenation Reactions. Journal of Organic Chemistry, 2020, 85, 6862-6871.	1.7	9
255	Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Lateâ€Stage Functionalization. ChemBioChem, 2020, 21, 2890-2897.	1.3	29
256	Late-Stage Lead Diversification Coupled with Quantitative Nuclear Magnetic Resonance Spectroscopy to Identify New Structure–Activity Relationship Vectors at Nanomole-Scale Synthesis: Application to Loratadine, a Human Histamine H ₁ Receptor Inverse Agonist. Journal of Medicinal Chemistry. 2020. 63, 7268-7292.	2.9	21
257	High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides. ACS Catalysis, 2020, 10, 6977-6987.	5 . 5	28
258	Visible-Light-Driven C4-Selective Alkylation of Pyridinium Derivatives with Alkyl Bromides. Journal of the American Chemical Society, 2020, 142, 11370-11375.	6.6	102

#	Article	IF	CITATIONS
259	Chemical reactions for building small molecules. , 2020, , 35-82.		2
260	Metalâ€Free Direct C–H βâ€Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K ₂ S ₂ O ₈ . European Journal of Organic Chemistry, 2020, 2020, 2600-2604.	1.2	17
261	Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic Câ^'N Crossâ€Coupling from Lab Scale to Multikilogram Scale. Angewandte Chemie - International Edition, 2020, 59, 11964-11968.	7.2	87
262	The Chemistry of Peresters. European Journal of Organic Chemistry, 2020, 2020, 4814-4840.	1.2	12
263	Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes. Journal of the American Chemical Society, 2020, 142, 5461-5476.	6.6	617
264	ZnMe ₂ -Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. Journal of the American Chemical Society, 2020, 142, 13235-13245.	6.6	34
265	Minisci Câ^'H Alkylation of Heteroarenes Enabled by Dual Photoredox/Bromide Catalysis in Micellar Solutions**. Chemistry - A European Journal, 2020, 26, 15323-15329.	1.7	23
266	Chemistry glows green with photoredox catalysis. Nature Communications, 2020, 11, 803.	5.8	231
267	Preparation of Tertiary Amines from Tris(2-cyanoethyl)amine Using Three Successive Cobalt-Catalyzed Electrophilic Aminations with Organozinc Halides. Organic Letters, 2020, 22, 1947-1950.	2.4	9
268	Metal–Organic Layers for Synergistic Lewis Acid and Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 1746-1751.	6.6	57
269	Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. Journal of the American Chemical Society, 2020, 142, 2093-2099.	6.6	224
270	Rhodium(III)â€Catalyzed Alkynylation of 4â€Arylphthalazinâ€1 (2 <i>H</i>)â€one Scaffolds via Câ€H Bond Activation. European Journal of Organic Chemistry, 2020, 2020, 1100-1107.	1.2	3
271	Dearomative Photocatalytic Construction of Bridged 1,3â€Diazepanes. Angewandte Chemie, 2020, 132, 4150-4159.	1.6	10
272	Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides Using Trimethyl Orthoformate as a Methyl Radical Source. Journal of the American Chemical Society, 2020, 142, 7683-7689.	6.6	95
273	Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. Journal of Medicinal Chemistry, 2020, 63, 8956-8976.	2.9	30
274	Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic Câ^'N Crossâ€Coupling from Lab Scale to Multikilogram Scale. Angewandte Chemie, 2020, 132, 12062-12066.	1.6	8
275	Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chemical Reviews, 2021, 121, 506-561.	23.0	638
276	Lateâ€Stage C(sp ²)â^'H Functionalization: A Powerful Toolkit To Arm Natural Products for In Situ Proteome Profiling?. Chemistry - A European Journal, 2021, 27, 3575-3580.	1.7	7

#	Article	IF	Citations
277	Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chemical Society Reviews, 2021, 50, 766-897.	18.7	227
278	Mechanistic Studies on Propargyl <scp>Alcoholâ€√ethered</scp> Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. Chinese Journal of Chemistry, 2021, 39, 295-300.	2.6	7
279	Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)â€Catalyzed Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2021, 10, 202-209.	1.3	12
280	DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Advances, 2021, 11, 2359-2376.	1.7	67
281	Installing the "magic methyl―– C–H methylation in synthesis. Chemical Society Reviews, 2021, 50, 5517-5563.	18.7	130
282	An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catalysis Science and Technology, 2021, 11, 4272-4279.	2.1	32
283	Phosphoric Acid Mediated Lightâ€Induced Minisci Câ^'H Alkylation of <i>N</i> â€Heteroarenes. European Journal of Organic Chemistry, 2021, 2021, 969-972.	1.2	8
284	Recent Advances in Visible-Light-Mediated Minisci Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 3771.	0.6	27
285	Co(III), Rh(III) & Catalyzed Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	1.7	62
286	Development of Organosilicon Peroxides as Practical Alkyl Radical Precursors and Their Applications to Transition Metal Catalysis. Bulletin of the Chemical Society of Japan, 2021, 94, 513-524.	2.0	24
287	Photocatalytic Gieseâ€Type Reaction with Alkylsilicates Bearing C,Oâ€Bidentate Ligands. Chemistry - A European Journal, 2021, 27, 6713-6718.	1.7	17
288	Lateâ€Stage Alkylation of Heterocycles Using <i>N</i> â€(Acyloxy)phthalimides. Chemistry - an Asian Journal, 2021, 16, 879-889.	1.7	29
289	Pd-Catalyzed <i>ipso</i> , <i>meta</i> -Dimethylation of <i>ortho</i> -Substituted Iodoarenes via a Base-Controlled Câ€"H Activation Cascade with Dimethyl Carbonate as the Methyl Source. Journal of the American Chemical Society, 2021, 143, 4524-4530.	6.6	24
290	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	1.9	109
291	Automation and computer-assisted planning for chemical synthesis. Nature Reviews Methods Primers, 2021, 1, .	11.8	83
292	C(sp ³)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science, 2021, 372, 398-403.	6.0	107
294	Synthesis of New Triazolopyrazine Antimalarial Compounds. Molecules, 2021, 26, 2421.	1.7	3
295	lridium-catalyzed Câ^'H methylation and d3-methylation of benzoic acids with application to late-stage functionalizations. IScience, 2021, 24, 102467.	1.9	31

#	ARTICLE	IF	CITATIONS
296	Rheniumâ€Catalyzed Arylation–Acyl Cyclization between Enol Lactones and Organomagnesium Halides: Facile Synthesis of Indenones. Angewandte Chemie - International Edition, 2021, 60, 15497-15502.	7.2	16
297	Recent Advances in Visibleâ€Lightâ€Driven Photocatalyzed γâ€Cyanoalkylation Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1595-1618.	1.3	14
298	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Central Science, 2021, 7, 1126-1134.	5.3	52
299	Rheniumâ€Catalyzed Arylation–Acyl Cyclization between Enol Lactones and Organomagnesium Halides: Facile Synthesis of Indenones. Angewandte Chemie, 2021, 133, 15625-15630.	1.6	1
300	Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides. Journal of Catalysis, 2021, 399, 111-120.	3.1	5
301	Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	13.8	341
302	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie, 2021, 133, 21588-21595.	1.6	14
303	Fourâ€Selective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angewandte Chemie, 2021, 133, 21453-21458.	1.6	3
304	C-Methylation Of Organic Substrates. A Comprehensive Overview. Part IV ^a . Methylating Agents Other Than Methane, Methanol, and Methyl Metals. Current Chinese Chemistry, 2022, 2, .	0.3	0
305	<i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> ꀙ, <i>N</i> ꀙ. <i>N</i> Heteroarenes. Journal of Organic Chemistry, 2021, 86, 11905-11914.	1.7	13
306	Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor. ACS Central Science, 2021, 7, 1347-1355.	5.3	59
307	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie - International Edition, 2021, 60, 21418-21425.	7.2	72
308	Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catalysis, 2021, 11, 10713-10732.	5.5	22
309	Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. Journal of the American Chemical Society, 2021, 143, 13022-13028.	6.6	71
310	Modern strategies for C–H functionalization of heteroarenes with alternative coupling partners. CheM, 2021, 7, 2585-2634.	5.8	63
311	Fourâ€Selective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angewandte Chemie - International Edition, 2021, 60, 21283-21288.	7.2	14
312	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
313	Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016.	23.0	388

#	Article	IF	CITATIONS
314	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
315	Recent advances in reactions using diacyl peroxides as sources of O- and C-functional groups. Organic and Biomolecular Chemistry, 2021, 19, 2096-2109.	1.5	23
316	Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes. Chinese Journal of Organic Chemistry, 2021, 41, 2707.	0.6	3
317	Decarboxylative C(sp ³)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Organic Letters, 2021, 23, 1000-1004.	2.4	20
318	Recent developments in catalytic cross-couplings with unsaturated carboxylates. Organic and Biomolecular Chemistry, 2021, 19, 7754-7767.	1.5	4
319	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie, 2017, 129, 15144-15148.	1.6	29
320	Visible-light-mediated photoredox minisci C–H alkylation with alkyl boronic acids using molecular oxygen as an oxidant. Chemical Communications, 2020, 56, 12652-12655.	2.2	43
321	Visible-light-mediated minisci C–H alkylation of heteroarenes with 4-alkyl-1,4-dihydropyridines using O ₂ as an oxidant. Green Chemistry, 2020, 22, 5599-5604.	4.6	32
322	Current status and future prospects for enabling chemistry technology in the drug discovery process. F1000Research, 2016, 5, 2426.	0.8	6
323	Microwave-assisted Amination Reactions: An Overview. Current Organic Chemistry, 2020, 24, 2235-2255.	0.9	7
324	Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Organic and Biomolecular Chemistry, 2021, 19, 9177-9181.	1.5	8
325	Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chemical Reviews, 2022, 122, 2429-2486.	23.0	182
326	Remote Câ€"H Pyridylation of Hydroxamates through Direct Photoexcitation of Oâ€Aryl Oxime Pyridinium Intermediates**. Angewandte Chemie, 2021, 133, 27017.	1.6	0
327	Remote Câ€"H Pyridylation of Hydroxamates through Direct Photoexcitation of Oâ€Aryl Oxime Pyridinium Intermediates**. Angewandte Chemie - International Edition, 2021, 60, 26813-26821.	7.2	13
328	Introducing a Methyl Group into Pyridines and Quinolines: A Mini-Review. Heterocycles, 2019, 99, 766.	0.4	1
329	Pyridines and Their Benzo Derivatives: Reactivity at the Ring. , 2020, , .		0
330	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings <i>via</i> H ₂ Release. ACS Catalysis, 2021, 11, 14148-14158.	5.5	33
331	Lateâ€Stage Functionalization and Characterization of Drugs by Highâ€Throughput Desorption Electrospray Ionization Mass Spectrometry. ChemPlusChem, 2022, 87, e202100449.	1.3	16

#	Article	IF	Citations
332	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
333	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
334	Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. Frontiers in Chemical Engineering, 2022, 3, .	1.3	1
336	Recent advances of visible-light photocatalysis in the functionalization of organic compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 50, 100488.	5.6	64
337	Violetâ€blue Light Induces "Natural―Photodynamic Plasma Disinfection with Endogenous Sensitizers. Photochemistry and Photobiology, 2022, , .	1.3	1
338	Photoredox Neutral Decarboxylative Hydroxyalkylations of Heteroarenes with α-Keto Acids. Journal of Organic Chemistry, 2022, 87, 4168-4182.	1.7	6
339	Reaction Optimization: A High-Throughput Experimentation Approach. Methods in Pharmacology and Toxicology, 2022, , 527-552.	0.1	1
340	Visible-light-mediated amidation from carboxylic acids and tertiary amines ⟨i⟩via⟨ i⟩ C–N cleavage. Chemical Communications, 2022, 58, 5873-5876.	2.2	8
341	Photocatalytic C(sp ³) radical generation <i>via</i> C–H, C–C, and C–X bond cleavage. Chemical Science, 2022, 13, 5465-5504.	3.7	45
342	A Compact, Practical Photoreactor for Multi-Reaction Arrays. Reaction Chemistry and Engineering, 0, ,	1.9	6
343	General electrochemical Minisci alkylation of <i>N</i> -heteroarenes with alkyl halides. Chemical Science, 2022, 13, 6512-6518.	3.7	14
344	Câ^'H Methylation Using Sustainable Approaches. Catalysts, 2022, 12, 510.	1.6	4
345	Late-Stage Functionalization for the Optimization of Reversible BTK Inhibitors. Synlett, 2022, 33, 1259-1265.	1.0	2
346	Electrochemical Deconstructive Functionalization of Cycloalkanols via Alkoxy Radicals Enabled by Proton-Coupled Electron Transfer. Organic Letters, 2022, 24, 3890-3895.	2.4	16
347	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.3	1
348	Site-selective desaturation of C(sp ³)â€"C(sp ³) bonds <i>via</i> photoinduced ruthenium catalysis. Organic Chemistry Frontiers, 2022, 9, 4316-4327.	2.3	1
349	Electrochemical Synthesis of \hat{I}^2 -Functionalized Ketones via Ring-Opening of Cycloalkanols. Organic Letters, 2022, 24, 4421-4426.	2.4	21
350	Organic acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Organic and Biomolecular Chemistry, 2022, 20, 6619-6629.	1.5	3

#	Article	IF	CITATIONS
351	Copper-Catalyzed Cross-Coupling of Alkyl and Phosphorus Radicals for C(sp ³)–P Bond Formation. Organic Letters, 2022, 24, 6083-6087.	2.4	16
352	The interplay of polar effects in controlling the selectivity of radical reactions. , 2022, 1, 682-695.		38
354	Copper-Catalyzed C(sp3)–H Methylation via Radical Relay. ACS Catalysis, 2022, 12, 11854-11859.	5.5	9
356	Ionic Liquid Mediated Triple Catalysis for Alkylation and Methylation of Acyl Chlorides with Mechanistic Insight. Journal of Catalysis, 2022, 416, 58-67.	3.1	1
357	Applications of High Throughput Chemistry to Medicinal Chemistry. ACS Symposium Series, 0, , 3-21.	0.5	0
358	High-Throughput Experimentation for Electrochemistry. ACS Symposium Series, 0, , 167-187.	0.5	5
359	High-Throughput Photochemistry Using Droplet Microfluidics. ACS Symposium Series, 0, , 131-143.	0.5	0
360	Development of Advanced High Throughput Experimentation Platforms for Photocatalytic Reactions. ACS Symposium Series, 0, , 145-165.	0.5	2
361	Di(2-picolyl)amines as Modular and Robust Ligands for Nickel-Catalyzed C(sp ^{)a€"C(sp³) Cross-Electrophile Coupling. Organic Letters, 2022, 24, 8487-8492.}	2.4	6
362	Inventing and Building HTE Technology for End-Users: The Merck/Analytical Sales and Services Collaboration — An Interview. ACS Symposium Series, 0, , 87-104.	0.5	0
363	Bromine radical enhanced stoichiometric pyridylation of alkylarenes and diarylmethanes at room temperature. Organic Chemistry Frontiers, 2023, 10, 890-897.	2.3	6
364	Regioselective C(sp ²)–H imidation of arenes by redox neutral visible-light photocatalysis. Organic and Biomolecular Chemistry, 0, , .	1.5	1
366	Feâ€Catalyzed Aliphatic Câ€H Methylation of Glycine Derivatives and Peptides. Chemistry - A European Journal, 0, , .	1.7	2
367	The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catalysis, 2023, 13, 475-503.	5. 5	7
368	Recent progress in homogeneous molecular photoredox catalysis towards hydrogen evolution reaction and future perspective. Applied Catalysis A: General, 2023, 651, 119010.	2.2	4
369	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	23.0	112
370	Iron-mediated divergent reductive coupling reactions of heteroarenes with alkenes. Organic Chemistry Frontiers, 2023, 10, 2318-2323.	2.3	5
371	Visible light-promoted synthesis of $4,6 < i > a < i> dihydropyrrolo[3,4-< i> c < i> pyrrole-1,3(2 < i> H < i> ,3 < i> aH < i>)-diones < i> via < i> [3+2] cycloaddition reaction of 2 < i> H < i> -azirines with maleimides. New Journal of Chemistry, 2023, 47, 5634-5638.$	1.4	0

#	Article	IF	CITATIONS
372	Arylative Methylation of 2,3-Dihydropyrazines and Pyrazinones Using Dimethyl Sulfoxide as a C1 Source. Journal of Organic Chemistry, 2023, 88, 2931-2941.	1.7	5
373	Pursuing high efficiency in photocatalytic oxidative couplings of heteroarenes and aliphatic C–H bonds. Organic Chemistry Frontiers, 2023, 10, 1651-1659.	2.3	0
374	Lateâ€Stage Functionalisation of Pyridineâ€Containing Bioactive Molecules: Recent Strategies and Perspectives. European Journal of Organic Chemistry, 2023, 26, .	1.2	12
375	A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews, 2023, 123, 3089-3126.	23.0	58
376	A DFT study on the scavenging activity of curcumin toward methyl and ethyl radicals. Molecular Simulation, 2023, 49, 589-598.	0.9	2
377	Fluorosulfonamide-Directed Heteroarylation of Aliphatic C(sp ³)–H Bonds. Journal of Organic Chemistry, 2023, 88, 4757-4760.	1.7	2
378	ChemBeads-Enabled Photoredox High-Throughput Experimentation Platform to Improve C(sp ²)–C(sp ³) Decarboxylative Couplings. ACS Medicinal Chemistry Letters, 2023, 14, 521-529.	1.3	8
379	Highâ€Throughput Optimization of Photochemical Reactions using Segmentedâ€Flow Nanoelectrospray <i>â€</i> lonization Mass Spectrometry**. Angewandte Chemie, 2023, 135, .	1.6	0
380	Highâ€Throughput Optimization of Photochemical Reactions using Segmentedâ€Flow Nanoelectrospray <i>â€</i> lonization Mass Spectrometry**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
381	Highâ€Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
382	Highâ€Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets. Angewandte Chemie, 0, , .	1.6	0
383	Electrochemical Thiocyanation/Cyclization Cascade to Access Thiocyanato-Containing Benzoxazines. Catalysts, 2023, 13, 631.	1.6	3
384	Sulfonium Salts as Acceptors in Electron Donorâ€Acceptor Complexes. Angewandte Chemie, 0, , .	1.6	1
385	Sulfonium Salts as Acceptors in Electron Donorâ€Acceptor Complexes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
387	Nanomaterials in photocatalysed organic transformations: development, prospects and challenges. Chemical Communications, 2023, 59, 5987-6003.	2.2	5
395	Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes. Journal of the American Chemical Society, 2023, 145, 14573-14580.	6.6	5
397	Recent advances in porous molecular cages for photocatalytic organic conversions. Dalton Transactions, 2023, 52, 15216-15232.	1.6	1
405	Development and application of decatungstate catalyzed Câ€"H ¹⁸ F- and ¹⁹ F-fluorination, fluoroalkylation and beyond. Chemical Science, 2023, 14, 12883-12897.	3.7	1

Article IF Citations