Drugging the p53 pathway: understanding the route to

Nature Reviews Drug Discovery 13, 217-236 DOI: 10.1038/nrd4236

Citation Report

#	Article	IF	CITATIONS
1	Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget, 2014, 5, 7988-8013.	0.8	85
2	Protein–protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Expert Opinion on Drug Discovery, 2014, 9, 1393-1404.	2.5	36
3	High glucose dephosphorylates serine 46 and inhibits p53 apoptotic activity. Journal of Experimental and Clinical Cancer Research, 2014, 33, 79.	3.5	42
4	JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death and Disease, 2014, 5, e1484-e1484.	2.7	33
5	Battle Against Cancer: An Everlasting Saga of p53. International Journal of Molecular Sciences, 2014, 15, 22109-22127.	1.8	25
6	cLP: Linear programming with biological constraints and its application in classification problems. , 2014, , .		0
7	p53–MDM2 and MDMX Antagonists. Annual Reports in Medicinal Chemistry, 2014, 49, 167-187.	0.5	10
8	Advancements in Stapled Peptide Drug Discovery & Development. Annual Reports in Medicinal Chemistry, 2014, 49, 331-345.	0.5	10
9	Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. Journal of Inflammation, 2014, 11, 23.	1.5	96
10	Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell and Bioscience, 2014, 4, 46.	2.1	80
11	SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes. Toxicology and Applied Pharmacology, 2014, 277, 288-297.	1.3	19
12	The cytoplasmic side of p53's oncosuppressive activities. FEBS Letters, 2014, 588, 2600-2609.	1.3	104
13	Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Letters, 2014, 588, 2622-2627.	1.3	154
14	Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Letters, 2014, 588, 2616-2621.	1.3	36
16	p53 as a target for the treatment of cancer. Cancer Treatment Reviews, 2014, 40, 1153-1160.	3.4	187
17	Understanding p53: new insights into tumor suppression. Expert Review of Anticancer Therapy, 2014, 14, 1101-1103.	1.1	5
18	Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chemistry and Biology, 2014, 21, 1102-1114.	6.2	865
19	Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Molecular Cancer, 2014, 13, 116.	7.9	28

	Сіт	ation Report	
# 20	ARTICLE Wild type p53 reactivation: From lab bench to clinic. FEBS Letters, 2014, 588, 2628-2638.	IF 1.3	CITATIONS
21	Yin-Yang strands of PCAF/Hedgehog axis in cancer control. Trends in Molecular Medicine, 2014, 20, 416-418.	3.5	13
22	Targeting transcription is no longer a quixotic quest. Nature Chemical Biology, 2015, 11, 891-894.	3.9	23
23	Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions. Angewandte Chemie, 2015, 127, 3003-3008.	1.6	24
25	Signaling pathways in HPVâ€associated cancers and therapeutic implications. Reviews in Medical Virology, 2015, 25, 24-53.	3.9	77
26	Zn(II)-curc targets p53 in thyroid cancer cells. International Journal of Oncology, 2015, 47, 1241-1248.	1.4	24
27	Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity. Oncology Reports, 2015, 34, 1692-1700.	1.2	32
28	Neuroblastoma and the p53 Pathway. Pediatric and Adolescent Medicine, 2015, , 59-80.	0.4	1
29	DDX3, a potential target for cancer treatment. Molecular Cancer, 2015, 14, 188.	7.9	111
30	Targeted therapy in sarcomas other than GIST tumors. Journal of Surgical Oncology, 2015, 111, 632-64	40. 0.8	11
31	Targeting the Checkpoint to Kill Cancer Cells. Biomolecules, 2015, 5, 1912-1937.	1.8	89
32	Mitochondria-Associated Endoplasmic Reticulum Membranes Microenvironment: Targeting Autophagic and Apoptotic Pathways in Cancer Therapy. Frontiers in Oncology, 2015, 5, 173.	1.3	53
33	Targeting Oncogenic Mutant p53 for Cancer Therapy. Frontiers in Oncology, 2015, 5, 288.	1.3	249
34	Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Nec Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE, 2015, 10, e0125322.	k 1.1	30
35	Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2. PLoS Computational Biology, 2015, 11, e1004282.	1.5	19
36	Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget, 2015, 6, 16488-16506.	0.8	30
37	Personalized targeted therapy for esophageal squamous cell carcinoma. World Journal of Gastroenterology, 2015, 21, 7648.	1.4	43
39	p53-regulated autophagy is controlled by glycolysis and determines cell fate. Oncotarget, 2015, 6, 23135-23156.	0.8	38

#	Article	IF	CITATIONS
40	The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget, 2015, 6, 22666-22679.	0.8	62
41	Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nature Communications, 2015, 6, 6456.	5.8	99
42	Splicing function of mitotic regulators links R-loop–mediated DNA damage to tumor cell killing. Journal of Cell Biology, 2015, 209, 235-246.	2.3	57
43	Actinomycin D and nutlin-3a synergistically promote phosphorylation of p53 on serine 46 in cancer cell lines of different origin. Cellular Signalling, 2015, 27, 1677-1687.	1.7	22
44	Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature, 2015, 523, 352-356.	13.7	276
45	p53 checkpoint ablation exacerbates the phenotype of Hinfp dependent histone H4 deficiency. Cell Cycle, 2015, 14, 2501-2508.	1.3	14
46	Vacuolar-ATPase Inhibition Blocks Iron Metabolism to Mediate Therapeutic Effects in Breast Cancer. Cancer Research, 2015, 75, 2863-2874.	0.4	58
47	TP53: an oncogene in disguise. Cell Death and Differentiation, 2015, 22, 1239-1249.	5.0	227
48	Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53. Structure, 2015, 23, 2246-2255.	1.6	45
49	Targeting RING domains of Mdm2–MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Cell Death and Disease, 2015, 6, e2035-e2035.	2.7	22
50	Regulation of the p53 response and its relationship to cancer. Biochemical Journal, 2015, 469, 325-346.	1.7	243
51	Enhanced antigen detection in immunohistochemical staining using a â€~digitized' chimeric antibody. Protein Engineering, Design and Selection, 2015, 29, gzv054.	1.0	0
52	Reversal of Mutant KRAS-Mediated Apoptosis Resistance by Concurrent Noxa/Bik Induction and Bcl-2/Bcl-xL Antagonism in Colon Cancer Cells. Molecular Cancer Research, 2015, 13, 659-669.	1.5	22
53	Pharmacological reactivation of p53 as a strategy to treat cancer. Journal of Internal Medicine, 2015, 277, 248-259.	2.7	71
54	Therapeutic targeting of tumor suppressor genes. Cancer, 2015, 121, 1357-1368.	2.0	132
55	Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions. Angewandte Chemie - International Edition, 2015, 54, 2960-2965.	7.2	82
56	Recent Advances in Cancer Therapeutics. Progress in Medicinal Chemistry, 2015, 54, 1-63.	4.1	32
57	The role of DNA damage responses in p53 biology. Archives of Toxicology, 2015, 89, 501-517.	1.9	138

#	Article	IF	CITATIONS
58	Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers. Chemical Science, 2015, 6, 2434-2443.	3.7	58
59	The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 2015, 14, 111-129.	21.5	1,891
60	Facile synthesis of 11-aryl-6H-isoindolo[2,1-a]indol-6-ones via hypervalent iodine(<scp>iii</scp>)-promoted cascade cyclization. RSC Advances, 2015, 5, 13102-13106.	1.7	26
61	Targeted Therapies in Triple-Negative Breast Cancer: Failure and Future. Women's Health, 2015, 11, 1-5.	0.7	9
62	Therapeutic opportunities within the DNA damage response. Nature Reviews Cancer, 2015, 15, 166-180.	12.8	442
63	In Silico Prescription of Anticancer Drugs to Cohorts of 28 Tumor Types Reveals Targeting Opportunities. Cancer Cell, 2015, 27, 382-396.	7.7	290
64	Other Nonbiological Approaches to Targeted Cancer Chemotherapy. , 2015, , 493-560.		1
65	Helix mimetics: Recent developments. Progress in Biophysics and Molecular Biology, 2015, 119, 33-40.	1.4	27
66	p53 family members – important messengers in cell death signaling in photodynamic therapy of cancer?. Photochemical and Photobiological Sciences, 2015, 14, 1390-1396.	1.6	26
67	p53 regulates cytoskeleton remodeling to suppress tumor progression. Cellular and Molecular Life Sciences, 2015, 72, 4077-4094.	2.4	33
68	AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces. Journal of Chemical Information and Modeling, 2015, 55, 1585-1599.	2.5	47
69	APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death and Disease, 2015, 6, e1794-e1794.	2.7	151
70	Drug-eluting microarrays to identify effective chemotherapeutic combinations targeting patient-derived cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8732-8737.	3.3	27
71	Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3621-3625.	1.0	51
72	Discovery of Novel Isatin-Based p53 Inducers. ACS Medicinal Chemistry Letters, 2015, 6, 856-860.	1.3	40
73	Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation, 2015, 22, 1237-1238.	5.0	41
74	Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology, 2015, 6, 17.	1.6	31
75	Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors. Journal of Medicinal Chemistry, 2015, 58, 6348-6358.	2.9	146

		LPORT	
#	Article	IF	Citations
76	Imaging of cellular aging in human retinal blood vessels. Experimental Eye Research, 2015, 135, 14-25.	1.2	18
77	Precision Therapy for Lung Cancer: Tyrosine Kinase Inhibitors and Beyond. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 36-48.	0.4	8
78	Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 689-711.	2.2	79
79	New perspective on targeting the tumor suppressor p53 pathway in the tumor microenvironment to enhance the efficacy of immunotherapy. , 2015, 3, 9.		35
80	Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine. Cancer Biology and Therapy, 2015, 16, 965-975.	1.5	18
81	Pharmacologically Increasing Mdm2 Inhibits DNA Repair and Cooperates with Genotoxic Agents to Kill p53-Inactivated Ovarian Cancer Cells. Molecular Cancer Research, 2015, 13, 1197-1205.	1.5	25
82	p53 at the Crossroads Between Stress Response Signaling and Tumorigenesis: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 51-73.		0
83	Exploiting replicative stress to treat cancer. Nature Reviews Drug Discovery, 2015, 14, 405-423.	21.5	243
84	Hitting cancers' weak spots: vulnerabilities imposed by p53 mutation. Trends in Cell Biology, 2015, 25, 486-495.	3.6	80
85	Hydrocarbon Stapled Peptides as Modulators of Biological Function. ACS Chemical Biology, 2015, 10, 1362-1375.	1.6	244
86	A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins. Pharmacological Research, 2015, 95-96, 42-52.	3.1	37
87	Development of Lung Adenocarcinomas with Exclusive Dependence on Oncogene Fusions. Cancer Research, 2015, 75, 2264-2271.	0.4	38
88	Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097. Molecular Cancer Therapeutics, 2015, 14, 2249-2259.	1.9	53
89	Enhanced cytotoxicity of prenylated chalcone against tumour cells via disruption of the p53–MDM2 interaction. Life Sciences, 2015, 142, 60-65.	2.0	28
90	Assessing the Efficacy of Mdm2/Mdm4-Inhibiting Stapled Peptides Using Cellular Thermal Shift Assays. Scientific Reports, 2015, 5, 12116.	1.6	33
91	Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure Formation: For the Tumor Suppressor p53 Protein as an Example. Journal of Physical Chemistry B, 2015, 119, 14120-14129.	1.2	20
92	A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation. Journal of Controlled Release, 2015, 218, 29-35.	4.8	51
93	Restoration of tumor suppressor functions by small-molecule inhibitors. Molecular and Cellular Oncology, 2015, 2, e991225.	0.3	0

#	Article	IF	CITATIONS
94	Small Molecule Inhibition of MDM2–p53 Interaction Augments Radiation Response in Human Tumors. Molecular Cancer Therapeutics, 2015, 14, 1994-2003.	1.9	35
95	Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Drug Discovery Today, 2015, 20, 1391-1397.	3.2	74
96	Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death and Disease, 2015, 6, e1821-e1821.	2.7	37
97	The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Molecular and Cellular Biochemistry, 2015, 410, 187-195.	1.4	50
98	Targeting the MDM2/MDM4 Interaction Interface as a Promising Approach for p53 Reactivation Therapy. Cancer Research, 2015, 75, 4560-4572.	0.4	38
99	Small-Molecule Reactivation of Mutant p53 to Wild-Type-like p53 through the p53-Hsp40 Regulatory Axis. Chemistry and Biology, 2015, 22, 1206-1216.	6.2	59
100	Constitutive autophagy contributes to resistance to TP53-mediated apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations. Autophagy, 2015, 11, 2275-2287.	4.3	28
101	Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?. Immunological Reviews, 2015, 263, 279-301.	2.8	42
102	Targeting the ubiquitin pathway for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 50-60.	3.3	99
103	The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 821-829.	0.9	105
104	Small-Molecule Inhibitors of the MDM2–p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment. Journal of Medicinal Chemistry, 2015, 58, 1038-1052.	2.9	390
105	Multivalent helix mimetics for PPI-inhibition. Organic and Biomolecular Chemistry, 2015, 13, 258-264.	1.5	15
106	Phenome Centers and Global Harmonization. , 2016, , 291-315.		3
107	Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8, 603-619.	1.4	1,014
108	Targeting mutant p53 for cancer therapy. Aging, 2016, 8, 1159-1160.	1.4	24
109	MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Oncotarget, 2016, 7, 75328-75338.	0.8	33
110	Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-16.	1.9	225
111	Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis. Stem Cells International, 2016, 2016, 1-13.	1.2	6

		CITATION RE	PORT	
#	ARTICLE		IF	CITATIONS
112	Downregulation of RNF128 Predicts Progression and Poor Prognosis in Patients with Urot Carcinoma of the Upper Tract and Urinary Bladder. Journal of Cancer, 2016, 7, 2187-2196	helial	1.2	17
113	Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to N antagonist nutlin-3. Oncotarget, 2016, 7, 14458-14475.	1DM2	0.8	57
114	Clinical Overview of MDM2/X-Targeted Therapies. Frontiers in Oncology, 2016, 6, 7.		1.3	266
115	Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and Microenvironment. International Journal of Molecular Sciences, 2016, 17, 1942.	the Tumor	1.8	97
116	The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Targ International Journal of Molecular Sciences, 2016, 17, 1975.	jet.	1.8	21
117	Mechanisms of p53 Functional De-Regulation: Role of the ll̂ºB-l̂±/p53 Complex. Internation Molecular Sciences, 2016, 17, 1997.	nal Journal of	1.8	10
118	Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals, 2016, 9, 25.		1.7	28
119	The non-genomic loss of function of tumor suppressors: an essential role in the pathogen chronic myeloid leukemia chronic phase. BMC Cancer, 2016, 16, 314.	esis of	1.1	10
120	Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MI Interaction. PLoS ONE, 2016, 11, e0147806.	ЭМ2-р53	1.1	7
121	Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chemic Reviews, 2016, 45, 4929-4952.	al Society	18.7	150
122	p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication response and chemosensitivity. Nature Medicine, 2016, 22, 861-868.	on stress	15.2	372
123	Probing Protein Surfaces: QSAR Analysis with Helix Mimetics. ChemBioChem, 2016, 17, 7	68-773.	1.3	5
124	How To Design a Successful p53–MDM2/X Interaction Inhibitor: A Thorough Overview I Crystal Structures. ChemMedChem, 2016, 11, 757-772.	Based on	1.6	84
125	Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehy protein–protein interactions by the MDM2 ligand nutlinâ€3. Proteomics, 2016, 16, 232	drogenase 7-2344.	1.3	14
126	Pharmacological activation of wild-type p53 in the therapy of leukemia. Experimental Hem 44, 791-798.	iatology, 2016,	0.2	41
127	Search for Inhibitors of the Ubiquitin–Proteasome System from Natural Sources for Car Chemical and Pharmaceutical Bulletin, 2016, 64, 112-118.	cer Therapy.	0.6	20
128	New Approaches to Managing Liposarcoma: Will Cold Steel Remain the Only Way to Heal Oncology Practice, 2016, 12, 230-231.	?. Journal of	2.5	1
129	Cancerâ€specific mutations in p53 induce the translation of Δ160p53 promoting tumori Reports, 2016, 17, 1542-1551.	genesis. EMBO	2.0	48

#	Article	IF	CITATIONS
130	The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes and Development, 2016, 30, 281-292.	2.7	34
131	USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Reports, 2016, 14, 2528-2537.	2.9	49
132	Molecular Pathways: Targeting DNA Repair Pathway Defects Enriched in Metastasis. Clinical Cancer Research, 2016, 22, 3132-3137.	3.2	28
133	MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene, 2016, 35, 6157-6165.	2.6	15
134	The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annual Review of Biochemistry, 2016, 85, 375-404.	5.0	483
135	Emerging Biomarkers of the Future: Changing Clinical Practice for 2020. Current Breast Cancer Reports, 2016, 8, 60-72.	0.5	1
136	Structural Determinants of p53-Independence in Anticancer Ruthenium-Arene Schiff-Base Complexes. Molecular Pharmaceutics, 2016, 13, 2543-2554.	2.3	47
137	Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 1417-1429.	2.4	14
138	Artificial Macrocycles by Ugi Reaction and Passerini Ring Closure. Journal of Organic Chemistry, 2016, 81, 8789-8795.	1.7	37
139	Conformational Restriction of Peptides Using Dithiol Bis-Alkylation. Methods in Enzymology, 2016, 580, 303-332.	0.4	35
140	Flexibility is important for inhibition of the MDM2/p53 protein–protein interaction by cyclic β-hairpins. Organic and Biomolecular Chemistry, 2016, 14, 10386-10393.	1.5	22
141	The Role of p53/p21/p16 in DNA-Damage Signaling and DNA Repair. , 2016, , 243-256.		15
142	A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chemical Biology, 2016, 11, 3310-3318.	1.6	31
143	Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor – LQFM030. Journal of Pharmacy and Pharmacology, 2016, 68, 1143-1159.	1.2	7
144	Clinical Outcomes of <i>TP53</i> Mutations in Cancers. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026294.	2.9	49
145	Discovery of a novel class of highly potent inhibitors of the p53–MDM2 interaction by structure-based design starting from a conformational argument. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4837-4841.	1.0	59
146	Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Science, 2016, 107, 713-720.	1.7	174
147	Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design. Journal of Physical Chemistry Letters, 2016, 7, 3452-3457.	2.1	45

#	Article	IF	CITATIONS
148	Protein-protein interaction inhibitors: advances in anticancer drug design. Expert Opinion on Drug Discovery, 2016, 11, 957-968.	2.5	25
149	A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leukemia Research, 2016, 48, 92-100.	0.4	45
150	Novel Approaches to Apoptosis-Inducing Therapies. Advances in Experimental Medicine and Biology, 2016, 930, 173-204.	0.8	17
151	53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. Journal of Cell Biology, 2016, 214, 155-166.	2.3	178
152	Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Molecular Therapy, 2016, 24, 1697-1706.	3.7	79
153	Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicology and Applied Pharmacology, 2016, 306, 105-112.	1.3	36
154	A metabolic synthetic lethal strategy with arginine deprivation and chloroquine leads to cell death in ASS1-deficient sarcomas. Cell Death and Disease, 2016, 7, e2406-e2406.	2.7	72
155	Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. Molecular Therapy - Oncolytics, 2016, 3, 16012.	2.0	16
156	p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 2016, 15, 3210-3219.	1.3	56
157	Molecular Pathogenesis of Pancreatic Cancer. Progress in Molecular Biology and Translational Science, 2016, 144, 241-275.	0.9	113
158	Involvement of mitochondrial dysfunction in nefazodone-induced hepatotoxicity. Food and Chemical Toxicology, 2016, 94, 148-158.	1.8	18
159	Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Molecular Cell, 2016, 62, 890-902.	4.5	96
160	MDM2 antagonist nutlinâ€3a sensitizes tumors to Vâ€ATPase inhibition. Molecular Oncology, 2016, 10, 1054-1062.	2.1	16
161	Motif mediated protein-protein interactions as drug targets. Cell Communication and Signaling, 2016, 14, 8.	2.7	76
162	Leveraging protein quaternary structure to identify oncogenic driver mutations. BMC Bioinformatics, 2016, 17, 137.	1.2	8
163	Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Molecular and Cellular Biochemistry, 2016, 418, 91-102.	1.4	12
164	PTD-fused p53 as a potential antiviral agent directly suppresses HBV transcription and expression. Antiviral Research, 2016, 127, 41-49.	1.9	16
165	The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cellular and Molecular Life Sciences, 2016, 73, 2829-2850.	2.4	217

#	Article	IF	CITATIONS
166	Novel therapeutic interventions for p53-altered tumors through manipulation of its family members, p63 and p73. Cell Cycle, 2016, 15, 164-171.	1.3	32
167	Targeting intrinsically disordered proteins in rational drug discovery. Expert Opinion on Drug Discovery, 2016, 11, 65-77.	2.5	74
168	The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annual Review of Pharmacology and Toxicology, 2016, 56, 141-161.	4.2	213
169	The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nature Reviews Cancer, 2016, 16, 251-265.	12.8	131
170	p53 family interactions and yeast: together in anticancer therapy. Drug Discovery Today, 2016, 21, 616-624.	3.2	11
171	Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nature Chemical Biology, 2016, 12, 275-281.	3.9	37
172	AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation. Biochemical and Biophysical Research Communications, 2016, 471, 396-401.	1.0	7
173	p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Molecular and Cellular Biology, 2016, 36, 438-451.	1.1	16
174	Systematic Prioritization of Druggable Mutations in â^1⁄45000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach. Molecular and Cellular Proteomics, 2016, 15, 642-656.	2.5	43
175	The possibility of clinical sequencing in the management of cancer. Japanese Journal of Clinical Oncology, 2016, 46, 399-406.	0.6	26
176	New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. International Journal of Biochemistry and Cell Biology, 2016, 74, 95-108.	1.2	29
177	The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026104.	2.9	777
178	Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma. Cancer Research, 2016, 76, 2254-2264.	0.4	41
179	The Impact of Genomic Profiling for Novel Cancer Therapy – Recent Progress in Non-Small Cell Lung Cancer. Journal of Genetics and Genomics, 2016, 43, 3-10.	1.7	8
180	A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell, 2016, 29, 90-103.	7.7	273
181	Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. European Journal of Medicinal Chemistry, 2016, 109, 187-198.	2.6	29
182	Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53. Cell Cycle, 2016, 15, 394-402.	1.3	27
183	TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Critical Reviews in Oncology/Hematology, 2016, 99, 63-73.	2.0	65

#	Article	IF	CITATIONS
184	The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Cliomas. Journal of Neuropathology and Experimental Neurology, 2016, 75, 4-18.	0.9	81
185	CRISPR-Cas9–based target validation for p53-reactivating model compounds. Nature Chemical Biology, 2016, 12, 22-28.	3.9	74
186	Spirooxadiazoline oxindoles with promising <i>in vitro</i> antitumor activities. MedChemComm, 2016, 7, 420-425.	3.5	24
187	Drug leads for interactive protein targets with unknown structure. Drug Discovery Today, 2016, 21, 531-535.	3.2	1
188	Drugging Undruggable Molecular Cancer Targets. Annual Review of Pharmacology and Toxicology, 2016, 56, 23-40.	4.2	170
189	TP53 dysfunction in diffuse large B-cell lymphoma. Critical Reviews in Oncology/Hematology, 2016, 97, 47-55.	2.0	42
190	Critical review about MDM2 in cancer: Possible role in malignant mesothelioma and implications for treatment. Critical Reviews in Oncology/Hematology, 2016, 97, 220-230.	2.0	43
191	Inactivation of the p53–KLF4–CEBPA Axis in Acute Myeloid Leukemia. Clinical Cancer Research, 2016, 22, 746-756.	3.2	40
192	Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination. Journal of the National Cancer Institute, 2016, 108, djv289.	3.0	53
193	Integrin α5β1 and p53 convergent pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma. Cell Death and Differentiation, 2016, 23, 640-653.	5.0	56
194	Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. International Journal of Peptide Research and Therapeutics, 2016, 22, 67-81.	0.9	8
195	Structural basis of how stress-induced MDMX phosphorylation activates p53. Oncogene, 2016, 35, 1919-1925.	2.6	16
196	Allele-specific wild-type TP53 expression in the unaffected carrier parent of children with Li–Fraumeni syndrome. Cancer Genetics, 2017, 211, 9-17.	0.2	3
197	Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes. Scientific Reports, 2017, 7, 40070.	1.6	27
198	Negative auto-regulators trap p53 in their web. Journal of Molecular Cell Biology, 2017, 9, 62-68.	1.5	34
199	Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell, 2017, 20, 635-647.e7.	5.2	135
200	Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor Immunity. Cancer Research, 2017, 77, 2292-2305.	0.4	111
201	Comprehensive characterization of genes associated with the TP53 signal transduction pathway in various tumors. Molecular and Cellular Biochemistry, 2017, 431, 75-85.	1.4	7

	CITATION	REPORT	
#	Article	IF	CITATIONS
202	Neuroblastoma treatment in the post-genomic era. Journal of Biomedical Science, 2017, 24, 14.	2.6	82
203	p53 gain-of-function mutations promote metastasis via ENTPD5 upregulation and enhanced N-glycoprotein folding. Molecular and Cellular Oncology, 2017, 4, e1288678.	0.3	4
204	Accelerating physical simulations of proteins by leveraging external knowledge. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1309.	6.2	16
205	Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochemical Pharmacology, 2017, 142, 13-20.	2.0	39
206	1,4,5-Trisubstituted Imidazole-Based p53–MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers. Journal of Medicinal Chemistry, 2017, 60, 4234-4244.	2.9	29
207	miR-600 inhibits cell proliferation, migration and invasion by targeting p53 in mutant p53-expressing human colorectal cancer cell lines. Oncology Letters, 2017, 13, 1789-1796.	0.8	28
208	WIP1 phosphatase as pharmacological target in cancer therapy. Journal of Molecular Medicine, 2017, 95, 589-599.	1.7	48
209	Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery. Scientific Reports, 2017, 7, 1763.	1.6	25
210	PRIMA-1 induces caspase-mediated apoptosis in acute promyelocytic leukemia NB4 cells by inhibition of nuclear factor-l [®] B and downregulation of Bcl-2, XIAP, and c-Myc. Anti-Cancer Drugs, 2017, 28, 51-58.	0.7	10
211	Clinical research in small genomically stratified patient populations. European Journal of Cancer, 2017, 80, 73-82.	1.3	2
212	Bioinformatics in translational drug discovery. Bioscience Reports, 2017, 37, .	1.1	68
213	Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nature Structural and Molecular Biology, 2017, 24, 578-587.	3.6	53
214	Mdm2 Is Required for Survival and Growth of p53-Deficient Cancer Cells. Cancer Research, 2017, 77, 3823-3833.	0.4	38
215	Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood, 2017, 130, 699-712.	0.6	128
216	The light subunit of mushroom Agaricus bisporus tyrosinase: Its biological characteristics and implications. International Journal of Biological Macromolecules, 2017, 102, 308-314.	3.6	22
217	Degrons in cancer. Science Signaling, 2017, 10, .	1.6	100
218	A genomeâ€wide si <scp>RNA</scp> screen for regulators of tumor suppressor p53 activity in human nonâ€small cell lung cancer cells identifies components of the <scp>RNA</scp> splicing machinery as targets for anticancer treatment. Molecular Oncology, 2017, 11, 534-551.	2.1	55
219	A single non-synonymous NCOA5 variation in type 2 diabetic patients with hepatocellular carcinoma impairs the function of NCOA5 in cell cycle regulation. Cancer Letters, 2017, 391, 152-161.	3.2	7

#	Article	IF	CITATIONS
220	Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53–MDM2 Interaction Useful in Targeted Cancer Therapy. Topics in Current Chemistry, 2017, 375, 3.	3.0	61
221	Computed Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics. Journal of Chemical Theory and Computation, 2017, 13, 870-876.	2.3	68
222	Molecular Simulations Identify Binding Poses and Approximate Affinities of Stapled \hat{I}_{\pm} -Helical Peptides to MDM2 and MDMX. Journal of Chemical Theory and Computation, 2017, 13, 863-869.	2.3	49
223	Regiospecific Synthesis of Ring A Fused Withaferin A Isoxazoline Analogues: Induction of Premature Senescence by W-2b in Proliferating Cancer Cells. Scientific Reports, 2017, 7, 13749.	1.6	20
224	Protein sensing and discrimination using highly functionalised ruthenium(<scp>ii</scp>) tris(bipyridyl) protein surface mimetics in an array format. Chemical Communications, 2017, 53, 12278-12281.	2.2	13
225	Computational Approaches to Identify Genetic Interactions for Cancer Therapeutics. Journal of Integrative Bioinformatics, 2017, 14, .	1.0	5
226	Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550, 481-486.	13.7	332
227	Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. Biophysical Journal, 2017, 113, 785-793.	0.2	77
228	Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine, 2017, 12, 2137-2148.	1.7	63
229	Computer-Aided Identification and Lead Optimization of Dual Murine Double Minute 2 and 4 Binders: Structure–Activity Relationship Studies and Pharmacological Activity. Journal of Medicinal Chemistry, 2017, 60, 8115-8130.	2.9	19
230	Artificial Macrocycles as Potent p53–MDM2 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1025-1030.	1.3	28
231	Expeditious Synthesis and Biological Characterization of Enantioâ€Enriched (â€) â€Nutlinâ€3. ChemistrySelect, 2017, 2, 8504-8508.	0.7	2
232	Inhibition of post-transcriptional steps in ribosome biogenesis confers cytoprotection against chemotherapeutic agents in a p53-dependent manner. Scientific Reports, 2017, 7, 9041.	1.6	15
233	Long Noncoding RNA PURPL Suppresses Basal p53 Levels and Promotes Tumorigenicity in Colorectal Cancer. Cell Reports, 2017, 20, 2408-2423.	2.9	120
234	Tumor Evolution as a Therapeutic Target. Cancer Discovery, 2017, 7, 805-817.	7.7	158
235	New Phage Display-Isolated Heptapeptide Recognizing the Regulatory Carboxy-Terminal Domain of Human Tumour Protein p53. Protein Journal, 2017, 36, 443-452.	0.7	1
236	The essential role of TAp73 in bortezomib-induced apoptosis in p53-deficient colorectal cancer cells. Scientific Reports, 2017, 7, 5423.	1.6	28
237	p53 loss does not permit escape from BrafV600E-induced senescence in a mouse model of lung cancer. Oncogene, 2017, 36, 6325-6335.	2.6	9

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
238	The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 2017, 20, 1692-1704.	2.9	608
239	Regulation of Apoptosis by Bcl-2 Family Proteins in Liver Injury. , 2017, , 75-85.		2
240	Molecular targets and anticancer potential of sanguinarine—a benzophenanthridine alkaloid. Phytomedicine, 2017, 34, 143-153.	2.3	64
241	Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy. Cancer Cell, 2017, 32, 748-760.e6.	7.7	206
242	Elevated p53 Activities Restrict Differentiation Potential of MicroRNA-Deficient Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1604-1617.	2.3	12
243	Proteasome-associated deubiquitinases and cancer. Cancer and Metastasis Reviews, 2017, 36, 635-653.	2.7	78
244	Mechanism of Competition between Nutlin3 and p53 for Binding with Mdm2. Chinese Physics Letters, 2017, 34, 118701.	1.3	3
245	Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations. Scientific Reports, 2017, 7, 15600.	1.6	14
246	Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Scientific Reports, 2017, 7, 15174.	1.6	37
247	Smallâ€molecule stabilization of the p53 – 14â€3â€3 proteinâ€protein interaction. FEBS Letters, 2017, 591, 2449-2457.	1.3	38
248	Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients. Oncogene, 2017, 36, 6109-6118.	2.6	34
249	Radiosensitization of Adenoid Cystic Carcinoma with MDM2 Inhibition. Clinical Cancer Research, 2017, 23, 6044-6053.	3.2	27
250	PRC1 contributes to tumorigenesis of lung adenocarcinoma in association with the Wnt/ \hat{l}^2 -catenin signaling pathway. Molecular Cancer, 2017, 16, 108.	7.9	81
251	Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy. Frontiers of Physics, 2017, 12, 1.	2.4	6
252	Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2017, 126, 384-407.	2.6	30
253	Molecular genetics of osteosarcoma. Bone, 2017, 102, 69-79.	1.4	180
254	Nutlinâ€3a selects for cells harbouring <scp><i>TP</i></scp> <i>53</i> mutations. International Journal of Cancer, 2017, 140, 877-887.	2.3	22
255	Synthesis and in vitro evaluation of novel triazole/azide chalcones. Medicinal Chemistry Research, 2017, 26, 27-43.	1.1	7

#	Article	IF	CITATIONS
256	Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in Biological Regulation, 2017, 63, 32-48.	1.4	36
257	Systematic Drug Screening Identifies Tractable Targeted Combination Therapies in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 566-578.	0.4	38
258	Biology and evolution of poorly differentiated neuroendocrine tumors. Nature Medicine, 2017, 23, 664-673.	15.2	192
259	Proteome Stability as a Key Factor of Genome Integrity. International Journal of Molecular Sciences, 2017, 18, 2036.	1.8	30
260	Regulation of Metabolic Activity by p53. Metabolites, 2017, 7, 21.	1.3	63
262	FXR1 regulates transcription and is required for growth of human cancer cells with TP53/FXR2 homozygous deletion. ELife, 2017, 6, .	2.8	26
263	Evolution of the p53-MDM2 pathway. BMC Evolutionary Biology, 2017, 17, 177.	3.2	23
265	Targeting Protein Synthesis, Folding, and Degradation Pathways in Cancer. , 2017, , 202-280.		4
266	Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma. Oncotarget, 2017, 8, 57047-57057.	0.8	19
267	Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression. BioMed Research International, 2017, 2017, 1-10.	0.9	26
268	Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget, 2017, 8, 115164-115178.	0.8	127
269	SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. Aging, 2017, 9, 2137-2162.	1.4	76
270	Nutlin-3a Nanodisks Induce p53 Stabilization and Apoptosis in a Subset of Cultured Glioblastoma Cells. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	1.1	1
271	OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncology, 2017, 2017, 1-16.	1.5	1,266
272	Inhibitory effect of black tea pigments, theaflavin-3/3′-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. International Journal of Oncology, 2017, 51, 1508-1520.	1.4	28
273	Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients. Journal of Thoracic Disease, 2017, 9, 2054-2060.	0.6	13
274	FGF1 induces resistance to chemotherapy in ovarian granulosa tumor cells through regulation of p53 mitochondrial localization. Oncogenesis, 2018, 7, 18.	2.1	19
275	Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection. Scientific Reports, 2018, 8, 3746.	1.6	15

	CITATION R	CITATION REPORT	
# 276	ARTICLE APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death and Disease, 2018, 9, 439.	IF 2.7	Citations
277	Seshat: A Web service for accurate annotation, validation, and analysis of <i>TP53</i> variants generated by conventional and next-generation sequencing. Human Mutation, 2018, 39, 925-933.	1.1	21
278	Identification of nonsynonymous TP53 mutations in hydatidiform moles. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 809, 20-23.	0.4	2
279	Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry - A European Journal, 2018, 24, 11245-11254.	1.7	37
280	The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. Journal of Biological Chemistry, 2018, 293, 4262-4276.	1.6	35
281	Activation of p53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c+CD103+ Monocytic Antigen-Presenting Cells in Tumors. Immunity, 2018, 48, 91-106.e6.	6.6	95
282	Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Scientific Reports, 2018, 8, 2410.	1.6	93
283	Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 161-174.	3.3	49
284	Cellular senescence in the aging and diseased kidney. Journal of Cell Communication and Signaling, 2018, 12, 69-82.	1.8	119
285	LQFM030 reduced Ehrlich ascites tumor cell proliferation and VEGF levels. Life Sciences, 2018, 201, 1-8.	2.0	5
286	Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer. Accounts of Chemical Research, 2018, 51, 181-190.	7.6	88
287	Precision Medicine Based on Next-Generation Sequencing and Master Controllers. , 2018, , 1577-1611.		1
288	Modulation of Cell Fate by Tauroursodeoxycholic Acid: All Paths Lead to Mitochondria. , 2018, , 407-421.		0
289	Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 132-142.	5.7	56
290	A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage. Nature Communications, 2018, 9, 1107.	5.8	63
291	Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3376-3387.	2.0	3
292	Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nature Reviews Clinical Oncology, 2018, 15, 13-30.	12.5	337
293	Increased expression of importin-β, exportin-5 and nuclear transportable proteins in Alzheimer's disease aids anatomic pathologists in its diagnosis. Annals of Diagnostic Pathology, 2018, 32, 10-16.	0.6	7

#	Article	IF	CITATIONS
294	Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. British Journal of Cancer, 2018, 118, 495-508.	2.9	47
295	Targeting mutant p53 for efficient cancer therapy. Nature Reviews Cancer, 2018, 18, 89-102.	12.8	655
296	Synthetically lethal nanoparticles for treatment of endometrial cancer. Nature Nanotechnology, 2018, 13, 72-81.	15.6	53
297	APTM, a Thiophene Heterocyclic Compound, Inhibits Human Colon Cancer HCT116 Cell Proliferation Through p53-Dependent Induction of Apoptosis. DNA and Cell Biology, 2018, 37, 70-77.	0.9	5
298	miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 2018, 19, 514.	1.2	59
299	Overexpressing <i>TPTE2</i> (<i>TPIP</i>), a homolog of the human tumor suppressor gene <i>PTEN</i> , rescues the abnormal phenotype of the <i>PTENâ[~]/â[~]</i> mutant. Oncotarget, 2018, 9, 21100-21121.	0.8	11
300	TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biology, 2018, 16, e3000051.	2.6	78
301	Awakening p53 <i>in vivo</i> by D-peptides-functionalized ultra-small nanoparticles: Overcoming biological barriers to D-peptide drug delivery. Theranostics, 2018, 8, 5320-5335.	4.6	35
302	Elucidating Protein-protein Interactions Through Computational Approaches and Designing Small Molecule Inhibitors Against them for Various Diseases. Current Topics in Medicinal Chemistry, 2018, 18, 1719-1736.	1.0	9
303	NVP-BEZ235 synergizes cisplatin sensitivity in osteosarcoma. Oncotarget, 2018, 9, 10483-10496.	0.8	16
304	Lowering Etoposide Doses Shifts Cell Demise From Caspase-Dependent to Differentiation and Caspase-3-Independent Apoptosis via DNA Damage Response, Inducing AML Culture Extinction. Frontiers in Pharmacology, 2018, 9, 1307.	1.6	18
305	Peptide-Induced Self-Assembly of Therapeutics into a Well-Defined Nanoshell with Tumor-Triggered Shape and Charge Switch. Chemistry of Materials, 2018, 30, 7034-7046.	3.2	35
306	C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nature Communications, 2018, 9, 4149.	5.8	76
307	Sensitization of glioblastoma cells to TRAIL-induced apoptosis by IAP- and Bcl-2 antagonism. Cell Death and Disease, 2018, 9, 1112.	2.7	13
308	Individual and combined effect of TP53, MDM2, MDM4, MTHFR, CCR5, and CASP8 gene polymorphisms in lung cancer. Oncotarget, 2018, 9, 3214-3229.	0.8	4
309	Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer Therapy. ACS Nano, 2018, 12, 11664-11677.	7.3	40
310	Molecularly Targeted Therapy for Neuroblastoma. Children, 2018, 5, 142.	0.6	28
311	Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers, 2018, 10, 396.	1.7	49

#	Article	IF	CITATIONS
312	Multifunctional Compounds for Activation of the p53‥220C Mutant in Cancer. Chemistry - A European Journal, 2018, 24, 17734-17742.	1.7	21
313	CDK4 inhibition diminishes p53 activation by MDM2 antagonists. Cell Death and Disease, 2018, 9, 918.	2.7	28
314	Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Molecular Pharmaceutics, 2018, 15, 5217-5226.	2.3	16
315	Generation of ubiquitin-based binder with an inserted active peptide. Biochemical and Biophysical Research Communications, 2018, 503, 3162-3166.	1.0	1
316	The SCFFBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. Journal of Biological Chemistry, 2018, 293, 16291-16306.	1.6	8
317	A novel molecular rotor facilitates detection of p53-DNA interactions using the Fluorescent Intercalator Displacement Assay. Scientific Reports, 2018, 8, 12946.	1.6	6
318	Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. Journal of Medicinal Chemistry, 2018, 61, 4791-4809.	2.9	22
319	Macrocyclic peptides as regulators of protein-protein interactions. Chinese Chemical Letters, 2018, 29, 1067-1073.	4.8	21
320	MECHANISMS OF ENDOCRINOLOGY: Cell cycle regulation in adrenocortical carcinoma. European Journal of Endocrinology, 2018, 179, R95-R110.	1.9	25
321	Highly Potent Clickable Probe for Cellular Imaging of MDM2 and Assessing Dynamic Responses to MDM2-p53 Inhibition. Bioconjugate Chemistry, 2018, 29, 2100-2106.	1.8	3
322	Computational Methods Applicable to the Discovery of Small-Molecule Inhibitors of Protein-Protein Interactions. , 2018, , 73-94.		0
323	Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. International Journal of Oncology, 2018, 52, 967-977.	1.4	4
324	Molecular Treatment of High-Grade Gliomas. , 2018, , 419-437.		0
325	<i>De novo</i> coiled-coil peptides as scaffolds for disrupting protein–protein interactions. Chemical Science, 2018, 9, 7656-7665.	3.7	36
326	Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini-Reviews in Medicinal Chemistry, 2018, 18, 173-183.	1.1	40
327	Elevated miR-182-5p Associates with Renal Cancer Cell Mitotic Arrest through Diminished <i>MALAT-1</i> Expression. Molecular Cancer Research, 2018, 16, 1750-1760.	1.5	41
328	Global gene-expression profiles of intracellular survival of the BruAb2_1031 gene mutated Brucella abortus in professional phagocytes, RAW 264.7 cells. BMC Microbiology, 2018, 18, 82.	1.3	5
329	Macrocycles: MCR synthesis and applications in drug discovery. Drug Discovery Today: Technologies, 2018, 29, 11-17.	4.0	23

#	Article	IF	CITATIONS
330	The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer?. Cancers, 2018, 10, 189.	1.7	52
331	Chemical modulation of transcription factors. MedChemComm, 2018, 9, 1249-1272.	3.5	11
332	Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death and Disease, 2018, 9, 792.	2.7	47
333	DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Research, 2018, 28, 833-854.	5.7	90
334	The MDM2/MDMX-p53 Antagonist PM2 Radiosensitizes Wild-Type p53 Tumors. Cancer Research, 2018, 78, 5084-5093.	0.4	30
335	Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer, 2018, 18, 12.	1.1	25
336	How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resistance Updates, 2018, 38, 27-43.	6.5	91
337	High expression of TMEM40 is associated with the malignant behavior and tumorigenesis in bladder cancer. Journal of Translational Medicine, 2018, 16, 9.	1.8	17
338	The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discovery, 2018, 4, 56.	2.0	23
339	Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53–MDM2 Inhibitor HDM201. Cancer Research, 2018, 78, 6257-6267.	0.4	60
340	In vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3404-3408.	1.0	19
341	TP53., 2018,,.		0
342	Statistical Thermodynamics on the Binding of Biomolecules. , 2018, , 203-227.		0
343	Targeting transcription factors in acute myeloid leukemia. International Journal of Hematology, 2019, 109, 28-34.	0.7	43
344	CDSâ€ʿ1548 induces apoptosis in HeLa cells by activating caspase 3. Oncology Letters, 2019, 18, 1881-1887.	0.8	0
345	The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes and Cancer, 2019, 58, 875-888.	1.5	79
346	The role of ferroptosis in digestive system cancer (Review). Oncology Letters, 2019, 18, 2159-2164.	0.8	17
347	ILâ€1Ra protects hematopoietic cells from chemotoxicity through p53â€induced quiescence. FASEB Journal, 2019, 33, 12135-12145.	0.2	5

# 348	ARTICLE DpdtbA-Induced Growth Inhibition in Human Esophageal Cancer Cells Involved Inactivation of the p53/EGFR/AKT Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	IF 1.9	Citations
349	Inhibition of p53 inhibitors: progress, challenges and perspectives. Journal of Molecular Cell Biology, 2019, 11, 586-599.	1.5	107
350	Genetic profiling as a clinical tool in advanced parathyroid carcinoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1977-1986.	1.2	30
351	Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers, 2019, 11, 1014.	1.7	25
352	The Stapled Peptide PM2 Stabilizes p53 Levels and Radiosensitizes Wild-Type p53 Cancer Cells. Frontiers in Oncology, 2019, 9, 923.	1.3	10
353	Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Applied Microbiology and Biotechnology, 2019, 103, 9037-9055.	1.7	36
354	<p>Fabrication Of Gold Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA</p> . International Journal of Nanomedicine, 2019, Volume 14, 8399-8408.	3.3	12
355	Mutation and immune profiling of metaplastic breast cancer: Correlation with survival. PLoS ONE, 2019, 14, e0224726.	1.1	29
356	Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nature Communications, 2019, 10, 4869.	5.8	36
357	DMPK is a New Candidate Mediator of Tumor Suppressor p53-Dependent Cell Death. Molecules, 2019, 24, 3175.	1.7	7
358	Aberrant activation of RPB1 is critical for cell overgrowth in acute myeloid leukemia. Experimental Cell Research, 2019, 384, 111653.	1.2	8
359	Design of DNA-intercalators based copper(II) complexes, investigation of their potential anti-cancer activity and sub-chronic toxicity. Materials Science and Engineering C, 2019, 105, 110079.	3.8	12
360	Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chemical Science, 2019, 10, 1522-1530.	3.7	43
361	Writing Histone Monoubiquitination in Human Malignancy—The Role of RING Finger E3 Ubiquitin Ligases. Genes, 2019, 10, 67.	1.0	35
362	Near-Comprehensive Resequencing of Cancer-Associated Genes in Surgically Resected Metastatic Liver Tumors of Gastric Cancer. American Journal of Pathology, 2019, 189, 784-796.	1.9	18
363	Mutant p53 enhances leukemia-initiating cell self-renewal to promote leukemia development. Leukemia, 2019, 33, 1535-1539.	3.3	13
364	The antimalarial drug mefloquine enhances TP53 premature termination codon readthrough by aminoglycoside G418. PLoS ONE, 2019, 14, e0216423.	1.1	20
365	Perspectives on drug discovery strategies based on IDPs. , 2019, , 275-327.		9

#	Article	IF	CITATIONS
366	Targeted Genomic Sequencing Reveals Novel TP53 In-frame Deletion Mutations Leading to p53 Overexpression in High-grade Serous Tubo-ovarian Carcinoma. Anticancer Research, 2019, 39, 2883-2889.	0.5	21
367	InÂvitro and computational studies showed that perezone inhibits PARP-1 and induces changes in the redox state of K562â€⁻cells. Archives of Biochemistry and Biophysics, 2019, 671, 225-234.	1.4	7
368	Predicting synthetic lethal interactions using conserved patterns in protein interaction networks. PLoS Computational Biology, 2019, 15, e1006888.	1.5	34
369	Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Scientific Reports, 2019, 9, 6387.	1.6	32
370	The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discovery, 2019, 9, 910-925.	7.7	215
371	The facile and visualizable identification of broad-spectrum inhibitors of MDM2/p53 using co-expressed protein complexes. Analyst, The, 2019, 144, 3773-3781.	1.7	1
372	A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy. Biomaterials, 2019, 204, 1-12.	5.7	30
373	A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 151-170.	2.4	30
374	Small molecule activators of the p53 response. Journal of Molecular Cell Biology, 2019, 11, 245-254.	1.5	34
375	The synthesis and characterization of tetramic acid derivatives as Mdm2-p53 inhibitors. Journal of Molecular Structure, 2019, 1189, 161-174.	1.8	2
376	Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Advances in Biological Regulation, 2019, 72, 22-40.	1.4	10
377	A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Carcinogenesis, 2019, 40, 624-632.	1.3	14
378	Discovering Putative Protein Targets of Small Molecules: A Study of the p53 Activator Nutlin. Journal of Chemical Information and Modeling, 2019, 59, 1529-1546.	2.5	15
379	Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Science Translational Medicine, 2019, 11, .	5.8	51
380	Risk-Based Therapeutic Strategies. Cancer Journal (Sudbury, Mass), 2019, 25, 54-58.	1.0	4
381	Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Frontiers in Physiology, 2019, 10, 139.	1.3	343
382	The Dual Interactions of p53 with MDM2 and p300: Implications for the Design of MDM2 Inhibitors. International Journal of Molecular Sciences, 2019, 20, 5996.	1.8	11
383	A panel of Transcription factors identified by data mining can predict the prognosis of head and neck squamous cell carcinoma. Cancer Cell International, 2019, 19, 297.	1.8	2

#	Article	IF	CITATIONS
384	A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Medicinal Chemistry, 2019, 11, 2491-2504.	1.1	53
385	Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chemical Science, 2019, 10, 10802-10814.	3.7	30
386	G1 phase cell cycle arrest in NSCLC in response to LZ-106, an analog of enoxacin, is orchestrated through ROS overproduction in a P53-dependent manner. Carcinogenesis, 2019, 40, 131-144.	1.3	9
387	Genomic characterization of cervical cancer based on human papillomavirus status. Gynecologic Oncology, 2019, 152, 629-637.	0.6	31
388	Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes and Immunity, 2019, 20, 539-554.	2.2	39
389	The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. European Journal of Medicinal Chemistry, 2019, 163, 610-625.	2.6	14
390	LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Research, 2019, 47, 1505-1522.	6.5	64
391	Regulation of HMGB1 release protects chemoradiotherapy-associated mucositis. Mucosal Immunology, 2019, 12, 1070-1081.	2.7	21
392	Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. European Journal of Nutrition, 2020, 59, 1607-1618.	1.8	36
393	Inactivation of Wild-Type p53 by Asparagine Endopeptidase in Glioblastoma: An Opportunity to Target the "Undruggable― Journal of the National Cancer Institute, 2020, 112, 327-329.	3.0	0
394	Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of human lung cancer cells in vitro and in vivo. Gene Therapy, 2020, 27, 51-61.	2.3	6
395	Long noncoding RNA PiHL regulates p53 protein stability through GRWD1/RPL11/MDM2 axis in colorectal cancer. Theranostics, 2020, 10, 265-280.	4.6	44
396	CDK9 inhibitors reactivate p53 by downregulating iASPP. Cellular Signalling, 2020, 67, 109508.	1.7	18
397	Opposite effects of low intensity light of different wavelengths on the planarian regeneration rate. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111714.	1.7	8
398	Recombinant Dual-target MDM2/MDMX Inhibitor Reverses Doxorubicin Resistance through Activation of the TAB1/TAK1/p38 MAPK Pathway in Wild-type p53 Multidrug-resistant Breast Cancer Cells. Journal of Cancer, 2020, 11, 25-40.	1.2	13
399	Recent treatment progress of triple negative breast cancer. Progress in Biophysics and Molecular Biology, 2020, 151, 40-53.	1.4	88
400	Mutant p53 on the Path to Metastasis. Trends in Cancer, 2020, 6, 62-73.	3.8	85
401	A system-level approach identifies HIF-2α as a critical regulator of chondrosarcoma progression. Nature Communications, 2020, 11, 5023.	5.8	14

#	Article	IF	CITATIONS
402	A mouse model reveals the events and underlying regulatory signals during the gonadotrophin-dependent phase of follicle development. Molecular Human Reproduction, 2020, 26, 920-937.	1.3	12
403	Comparative Oncology: New Insights into an Ancient Disease. IScience, 2020, 23, 101373.	1.9	23
404	Molecular Mechanisms of Ferroptosis and Its Role in Pulmonary Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	35
405	The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17808-17819.	3.3	18
406	Resurrecting a p53 peptide activator - An enabling nanoengineering strategy for peptide therapeutics. Journal of Controlled Release, 2020, 325, 293-303.	4.8	28
407	Risk and Response-Adapted Treatment in Multiple Myeloma. Cancers, 2020, 12, 3497.	1.7	10
408	Synthesis and Biological Evaluation of Novel Dispiro Compounds based on 5-Arylidenehydantoins and Isatins as Inhibitors of p53–MDM2 Protein–Protein Interaction. Chemistry of Heterocyclic Compounds, 2020, 56, 747-755.	0.6	12
409	Metformin Synergistically Enhanced the Antitumor Activity of Celecoxib in Human Non-Small Cell Lung Cancer Cells. Frontiers in Pharmacology, 2020, 11, 1094.	1.6	7
410	m ⁶ A RNA modification modulates PI3K/Akt/mTOR signal pathway in Gastrointestinal Cancer. Theranostics, 2020, 10, 9528-9543.	4.6	62
411	The MDM2 ligand Nutlin-3 differentially alters expression of the immune blockade receptors PD-L1 and CD276. Cellular and Molecular Biology Letters, 2020, 25, 41.	2.7	14
412	Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Molecular Cancer, 2020, 19, 138.	7.9	122
413	Differential mechanisms involved in RG-7388 and Nutlin-3 induced cell death in SJSA-1 osteosarcoma cells. Cellular Signalling, 2020, 75, 109742.	1.7	6
414	Effect of linker on the binding free energy of stapled p53/HDM2 complex. PLoS ONE, 2020, 15, e0232613.	1.1	2
415	The p53–53BP1-Related Survival of A549 and H1299 Human Lung Cancer Cells after Multifractionated Radiotherapy Demonstrated Different Response to Additional Acute X-ray Exposure. International Journal of Molecular Sciences, 2020, 21, 3342.	1.8	18
416	Lectins from the Edible Mushroom Agaricus bisporus and Their Therapeutic Potentials. Molecules, 2020, 25, 2368.	1.7	25
417	Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials, 2020, 255, 120181.	5.7	21
418	Inhibition of p53 DNA binding by a small molecule protects mice from radiation toxicity. Oncogene, 2020, 39, 5187-5200.	2.6	6
419	Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Science Translational Medicine, 2020, 12, .	5.8	24

#	Article	IF	CITATIONS
420	PPIs as therapeutic targets for anticancer drug discovery: the case study of MDM2 and BET bromodomain inhibitors. , 2020, , 267-288.		1
421	Design, Synthesis, and Biological Evaluation of Aromatic Amide-Substituted Benzimidazole-Derived Chalcones. The Effect of Upregulating TP53 Protein Expression. Molecules, 2020, 25, 1162.	1.7	1
422	Interplay between Endoplasmic Reticulum (ER) Stress and Autophagy Induces Mutant p53H273 Degradation. Biomolecules, 2020, 10, 392.	1.8	13
423	Dissenting degradation: Deubiquitinases in cell cycle and cancer. Seminars in Cancer Biology, 2020, 67, 145-158.	4.3	69
424	Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, The, 2020, 395, 1078-1088.	6.3	302
425	Cisplatin binds to the MDM2 RING finger domain and inhibits the ubiquitination activity. Chemical Communications, 2020, 56, 4599-4602.	2.2	8
426	Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their <i>in vivo</i> toxicity study. Nanoscale, 2020, 12, 7604-7621.	2.8	54
427	Competition NMR for Detection of Hit/Lead Inhibitors of Protein–Protein Interactions. Molecules, 2020, 25, 3017.	1.7	11
428	Nutlin-Induced Apoptosis Is Specified by a Translation Program Regulated by PCBP2 and DHX30. Cell Reports, 2020, 30, 4355-4369.e6.	2.9	18
429	The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduction and Targeted Therapy, 2020, 5, 11.	7.1	338
430	Patientâ€specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Molecular Systems Biology, 2020, 16, e8664.	3.2	60
431	The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Cancers, 2020, 12, 536.	1.7	9
432	Involvement of p53 Acetylation in Growth Suppression of Cutaneous T-Cell Lymphomas Induced by HDAC Inhibition. Journal of Investigative Dermatology, 2020, 140, 2009-2022.e4.	0.3	15
433	Ferroptosis in Cancer Cell Biology. Cancers, 2020, 12, 164.	1.7	212
434	The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Scientific Reports, 2020, 10, 1063.	1.6	66
435	Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. ACS Chemical Biology, 2020, 15, 657-668.	1.6	45
436	Identification of Key Biomarkers in Bladder Cancer: Evidence from a Bioinformatics Analysis. Diagnostics, 2020, 10, 66.	1.3	24
437	Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharmaceutica Sinica B, 2020, 10, 1253-1278.	5.7	57

#	Article	IF	CITATIONS
438	Effect of p53 activation through targeting MDM2/MDM4 heterodimer on T regulatory and effector cells in the peripheral blood of Type 1 diabetes patients. PLoS ONE, 2020, 15, e0228296.	1.1	10
439	Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing KLF15 Transcription. Frontiers in Cell and Developmental Biology, 2020, 8, 235.	1.8	36
440	Potency and Selectivity Optimization of Tryptophanolâ€Derived Oxazoloisoindolinones: Novel p53 Activators in Human Colorectal Cancer. ChemMedChem, 2021, 16, 250-258.	1.6	6
441	Immunomodulation by targeted anticancer agents. Cancer Cell, 2021, 39, 310-345.	7.7	131
442	The role of p53/p21/p16 in DNA damage signaling and DNA repair. , 2021, , 257-274.		2
443	Query-guided protein–protein interaction inhibitor discovery. Chemical Science, 2021, 12, 4753-4762.	3.7	5
444	Molecular Landscape Profile of Melanoma. , 2021, , 31-55.		0
445	Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53–R175H mutant aggregation. Physical Chemistry Chemical Physics, 2021, 23, 23032-23041.	1.3	6
446	Identification of an autophagy-related gene expression signature for colorectal cancer. International Journal of Transgender Health, 2021, 14, 91-101.	1.1	1
447	Clobal Analyses to Identify Direct Transcriptional Targets of p53. Methods in Molecular Biology, 2021, 2267, 19-56.	0.4	3
448	P53/miR-154 Pathway Regulates the Epithelial-Mesenchymal Transition in Glioblastoma MultiformeÂCells by Targeting TCF12. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 681-693.	1.0	5
449	The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nature Immunology, 2021, 22, 460-470.	7.0	50
450	Regulation of p53 stability as a therapeutic strategy for cancer. Biochemical Pharmacology, 2021, 185, 114407.	2.0	27
451	Hypothermia Effectively Treats Tumors with Temperature-Sensitive p53 Mutations. Cancer Research, 2021, 81, 3905-3915.	0.4	9
452	Identification of a Catalytic Active but Non-Aggregating MDM2 RING Domain Variant. Journal of Molecular Biology, 2021, 433, 166807.	2.0	1
453	Structure-Based Design of Potent and Orally Active Isoindolinone Inhibitors of MDM2-p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 4071-4088.	2.9	30
454	Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding. Journal of Chemical Theory and Computation, 2021, 17, 2465-2478.	2.3	6
455	Enhanced Suppression of a Protein–Protein Interaction in Cells Using Small-Molecule Covalent Inhibitors Based on an <i>N</i> -Acyl- <i>N</i> alkyl Sulfonamide Warhead. Journal of the American Chemical Society, 2021, 143, 4766-4774.	6.6	37

#	Article	IF	CITATIONS
456	The Nuclear Farnesoid X Receptor Reduces p53 Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Frontiers in Cell and Developmental Biology, 2021, 9, 583146.	1.8	11
457	S100P Interacts with p53 while Pentamidine Inhibits This Interaction. Biomolecules, 2021, 11, 634.	1.8	1
458	Safety and pharmacokinetics of milademetan, a MDM2 inhibitor, in Japanese patients with solid tumors: A phase I study. Cancer Science, 2021, 112, 2361-2370.	1.7	33
459	Role of Ferroptosis in Lung Diseases. Journal of Inflammation Research, 2021, Volume 14, 2079-2090.	1.6	77
460	Upregulation of wild-type p53 by small molecule-induced elevation of NQO1 in non-small cell lung cancer cells. Acta Pharmacologica Sinica, 2022, 43, 692-702.	2.8	4
461	Pharmacokinetic–pharmacodynamic guided optimisation of dose and schedule of CGM097, an HDM2 inhibitor, in preclinical and clinical studies. British Journal of Cancer, 2021, 125, 687-698.	2.9	19
462	The Proteomic Landscape of Growth Factor Signaling Networks Associated with <i>FAT1</i> Mutations in Head and Neck Cancers. Cancer Research, 2021, 81, 4402-4416.	0.4	16
463	A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer. Cancers, 2021, 13, 3089.	1.7	13
464	Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nature Communications, 2021, 12, 3962.	5.8	53
465	Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
466	The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling?. Pharmacological Research, 2021, 169, 105683.	3.1	10
467	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	6.9	105
468	Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein–Protein Interactions. Journal of Medicinal Chemistry, 2021, 64, 10621-10640.	2.9	28
469	Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals, 2021, 14, 848.	1.7	31
470	Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers, 2021, 13, 4363.	1.7	123
471	PARP-1 via regulation of p53 and p16, is involved in the hydroquinone-induced malignant transformation of TK6 cells by decelerating the cell cycle. Toxicology in Vitro, 2021, 74, 105153.	1.1	2
472	p27Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells, 2021, 10, 2254.	1.8	17
473	Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharmaceutica Sinica B, 2021, 11, 2655-2669.	5.7	15

#	Article	IF	CITATIONS
474	Design, synthesis and biological evaluation of novel pyrrolidone-based derivatives as potent p53-MDM2 inhibitors. Bioorganic Chemistry, 2021, 115, 105268.	2.0	6
475	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	5.8	43
476	Cellular Senescence and Tumor Promotion. , 2020, , 55-69.		1
481	Dysfunction of the MDM2/p53 axis is linked to premature aging. Journal of Clinical Investigation, 2017, 127, 3598-3608.	3.9	54
482	Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2. EJNMMI Research, 2020, 10, 38.	1.1	5
483	New Small Molecules Targeting Apoptosis and Cell Viability in Osteosarcoma. PLoS ONE, 2015, 10, e0129058.	1.1	15
484	Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas. PLoS ONE, 2015, 10, e0135101.	1.1	38
485	Comparative Assessment of Vitamin-B12, Folic Acid and Homocysteine Levels in Relation to p53 Expression in Megaloblastic Anemia. PLoS ONE, 2016, 11, e0164559.	1.1	24
486	Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies. PLoS ONE, 2017, 12, e0176642.	1.1	7
487	Apoptosis regulation in adrenocortical carcinoma. Endocrine Connections, 2019, 8, R91-R104.	0.8	10
488	Risk score based on expression of five novel genes predicts survival in soft tissue sarcoma. Aging, 2020, 12, 3807-3827.	1.4	24
489	Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget, 2016, 7, 60245-60269.	0.8	29
490	The pathophysiological significance of PPM1D and therapeutic targeting of PPM1D-mediated signaling by GSK2830371 in mantle cell lymphoma. Oncotarget, 2016, 7, 69625-69637.	0.8	9
491	Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo. Oncotarget, 2016, 7, 77664-77682.	0.8	7
492	<i>TP53</i> mutations, expression and interaction networks in human cancers. Oncotarget, 2017, 8, 624-643.	0.8	105
493	Restoration of p53 using the novel MDM2-p53 antagonist APG115 suppresses dedifferentiated papillary thyroid cancer cells. Oncotarget, 2017, 8, 43008-43022.	0.8	16
494	Up-regulation of CIT promotes the growth of colon cancer cells. Oncotarget, 2017, 8, 71954-71964.	0.8	22
495	Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget, 2017, 8, 69779-69796.	0.8	27

#	Article	IF	CITATIONS
496	NVP-BKM120 inhibits colon cancer growth via FoxO3a-dependent PUMA induction. Oncotarget, 2017, 8, 83052-83062.	0.8	12
497	Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget, 2018, 9, 2304-2319.	0.8	51
498	Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma. Oncotarget, 2015, 6, 10207-10221.	0.8	64
499	Genomic landscape of salivary gland tumors. Oncotarget, 2015, 6, 25631-25645.	0.8	45
500	Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors. Oncotarget, 2015, 6, 19968-19975.	0.8	23
501	Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors. Oncotarget, 2015, 6, 32339-32352.	0.8	10
502	Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule. Oncotarget, 2016, 7, 4326-4343.	0.8	37
503	Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients. Oncotarget, 2016, 7, 12951-12961.	0.8	28
504	Inhibition of the p53/hDM2 protein-protein interaction by cyclometallated iridium(III) compounds. Oncotarget, 2016, 7, 13965-13975.	0.8	23
505	Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. Oncotarget, 2016, 7, 22508-22522.	0.8	27
506	Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget, 2016, 7, 31623-31638.	0.8	33
507	Pre-clinical efficacy and synergistic potential of the MDM2-p53 antagonists, Nutlin-3 and RG7388, as single agents and in combined treatment with cisplatin in ovarian cancer. Oncotarget, 2016, 7, 40115-40134.	0.8	53
508	Intra molecular interactions in the regulation of p53 pathway. Translational Cancer Research, 2016, 5, 639-649.	0.4	4
509	Targeting p53-MDM2 Interaction Using Small Molecule Inhibitors and the Challenges Needed to be Addressed. Current Drug Targets, 2019, 20, 1091-1111.	1.0	18
510	Anticancer Agents Based on Vulnerable Components in a Signalling Pathway. Mini-Reviews in Medicinal Chemistry, 2020, 20, 886-907.	1.1	13
511	Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Current Cancer Drug Targets, 2019, 19, 430-448.	0.8	10
512	An Update on MDMX and Dual MDM2/X Inhibitors. Current Topics in Medicinal Chemistry, 2018, 18, 647-660.	1.0	39
513	Inhibition of Topoisomerase IIα and Induction of Apoptosis in Gastric Cancer Cells by 19-Triisopropyl Andrographolide. Asian Pacific Journal of Cancer Prevention, 2017, 18, 2845-2851.	0.5	7

#	Article	IF	CITATIONS
514	Caffeic acid phenethyl ester (CAPE): pharmacodynamics and potential for therapeutic application. Pharmacia, 2019, 66, 107-114.	0.4	10
515	TP53 Codon 72 Polymorphisms and Lung Cancer Risk in the Bangladeshi Population. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3493-3498.	0.5	10
516	A signature for success. ELife, 2015, 4, .	2.8	3
517	Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. ELife, 2016, 5, .	2.8	38
518	A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Frontiers in Cell and Developmental Biology, 2021, 9, 762651.	1.8	36
519	Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorganic Chemistry, 2021, 117, 105427.	2.0	33
520	The Role of Long Non-coding RNA, Nuclear Enriched Abundant Transcript 1 (NEAT1) in Cancer and Other Pathologies. Biochemical Genetics, 2022, 60, 843-867.	0.8	5
521	Structure-Based Drug Discovery Without Structure: Working Around the Paradox to Disrupt Protein-Protein Associations. Soft and Biological Matter, 2016, , 403-415.	0.3	0
522	Precision Medicine Based on Next Generation Sequencing and Master Controllers. , 2018, , 1-35.		0
523	Cellular Senescence and Tumor Promotion. , 2018, , 1-15.		0
523 524	Cellular Senescence and Tumor Promotion. , 2018, , 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
523 524 527	Cellular Senescence and Tumor Promotion. , 2018, , 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , .	0.4	0 0 0
523 524 527 529	Cellular Senescence and Tumor Promotion. , 2018, , 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , . Neuroprotective Effects of Picroside II on Rats Following Cerebral Ischemia Reperfusion Injury by Inhibiting p53 Signaling Pathway. International Journal of Pharmacology, 2019, 15, 790-800.	0.4 0.4 0.1	0 0 0 1
523 524 527 529	Cellular Senescence and Tumor Promotion., 2018,, 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , . Neuroprotective Effects of Picroside II on Rats Following Cerebral Ischemia Reperfusion Injury by Inhibiting p53 Signaling Pathway. International Journal of Pharmacology, 2019, 15, 790-800. OVER KANSERİ HĜCRELERİNDE PRİMA-1 Met TEDAVİSİNE YANIT OLARAK DEĞİŞEN miRNA EKSPRE Bilimileri Dergisi, 2020, 29, 19-25.	0.4 0.4 0.1 SYON AN	o o 1 ALÄ _o °Zİ. Sag
 523 524 527 529 531 535 	Cellular Senescence and Tumor Promotion., 2018, , 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , . Neuroprotective Effects of Picroside II on Rats Following Cerebral Ischemia Reperfusion Injury by Inhibiting p53 Signaling Pathway. International Journal of Pharmacology, 2019, 15, 790-800. OVER KANSERð HÜCRELERðNDE PRðMA-1 Met TEDAVðSðNE YANIT OLARAK DEĞðŞEN miRNA EKSPRE Bilimleri Dergisi, 2020, 29, 19-25. Discovery of MK-4688 : an Efficient Inhibitor of the HDM2–p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 16213-16241.	0.4 0.4 0.1 SYON AN 2.9	0 0 1 ALİZİ. Sag
 523 524 527 529 531 535 536 	Cellular Senescence and Tumor Promotion., 2018,, 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , . Neuroprotective Effects of Picroside II on Rats Following Cerebral Ischemia Reperfusion Injury by Inhibiting p53 Signaling Pathway. International Journal of Pharmacology, 2019, 15, 790-800. OVER KANSERú HÜCRELERúNDE PRúMA-1 Met TEDAVúSúNE YANIT OLARAK DEĂžÃº ÅžEN miRNA EKSPRE Bilimleri Dergisi, 2020, 29, 19-25. Discovery of MK-4688 : an Efficient Inhibitor of the HDM2â€"p53 Proteinâ€"Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 16213-16241. Cisplatin Chemotherapy and Cochlear Damage: Otoprotective and Chemosensitization Properties of Polyphenols. Antioxidants and Redox Signaling, 2022, 36, 1229-1245.	0.4 0.4 0.1 SYON AN 2.9 2.5	0 0 1 ALİZİ. Sag 14
 523 524 527 529 531 535 536 537 	Cellular Senescence and Tumor Promotion., 2018, , 1-15. Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , . IL-1Ra Protects Hematopoietic Stem Cells from Chemotoxicity Through Quiescence Induction Via p53. SSRN Electronic Journal, 0, , . Neuroprotective Effects of Picroside II on Rats Following Cerebral Ischemia Reperfusion Injury by Inhibiting p53 Signaling Pathway. International Journal of Pharmacology, 2019, 15, 790-800. OVER KANSERã ^o HÅœCRELERÃ ^o NDE PRÃ ^o MA-1 Met TEDAVÃ ^o SÃ ^o NE YANIT OLARAK DEÄžÃ ^o ÅżEN miRNA EKSPRE Bilimleri Dergisi, 2020, 29, 19-25. Discovery of MK-4688 : an Efficient Inhibitor of the HDM2〓p53 Protein〓Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 16213-16241. Cisplatin Chemotherapy and Cochlear Damage: Otoprotective and Chemosensitization Properties of Polyphenols. Antioxidants and Redox Signaling, 2022, 36, 1229-1245. Tanshinone IIA potentiates the efficacy of imatinib by regulating the AKTã€'MDM2ã€'P53 signaling pathway in Philadelphia chromosomeã€'positive acure lymphoblastic leukemia. Oncology Letters, 2021, 23, 7.	0.4 0.4 0.1 SYON AN 2.9 2.5 0.8	0 0 1 ALİZİ. Sag 14 9

		CITATION REI	PORT	
#	Article		IF	CITATIONS
541	PPM1D Is a Therapeutic Target in Childhood Neural Tumors. Cancers, 2021, 13, 6042.		1.7	5
542	Insight into the Double-Edged Role of Ferroptosis in Disease. Biomolecules, 2021, 11, 179	0.	1.8	15
543	Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nature Communications, 2021, 12, 7057.		5.8	39
544	The Discovery of Potential MDM2 Inhibitors: A Combination of Pharmacophore Modeling, Screening, Molecular Docking Studies, and inâ€vitro/inâ€vivo Biological Evaluation. Cl	Virtual nemMedChem, 2021, ,	1.6	1
545	Identification of ZER6 Isoform p52-ZER6 as an Antitumour Therapeutic Response Determi MDM2-p53 Binding Inhibitors. SSRN Electronic Journal, 0, , .	nant for	0.4	0
546	Current strategies and progress for targeting the "undruggable―transcription factor Pharmacologica Sinica, 2022, 43, 2474-2481.	s. Acta	2.8	11
547	Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities Journal of Pharmacology, 2022, 919, 174807.	. European	1.7	17
548	Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers, 2021, 13, 6188		1.7	12
549	Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Bas Inhibitors With Potential Bcl2 Signaling Attenuation. Frontiers in Chemistry, 2021, 9, 735	ed p53-MDM2 236.	1.8	22
550	Protein-Protein Interaction Monitoring and Inhibitors Potency Evaluation Based on Crispr-Sensing Platform. SSRN Electronic Journal, 0, , .	Cas12a	0.4	0
551	Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pon homolog. Cell Death and Disease, 2022, 13, 214.	ıpejana	2.7	10
552	Insights in Post-Translational Modifications: Ubiquitin and SUMO. International Journal of Sciences, 2022, 23, 3281.	Molecular	1.8	35
553	Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironmer Reviews Drug Discovery, 2022, 21, 440-462.	nt. Nature	21.5	58
554	Understanding the interaction of 14â€3â€3 proteins with <i>h</i> DMX and <i>h</i> DM2 biophysical study. FEBS Journal, 2022, 289, 5341-5358.	: a structural and	2.2	3
555	Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. European Journal of M Chemistry, 2022, 236, 114334.	1edicinal	2.6	32
556	Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. C 2022, 39, 110630.	ell Reports,	2.9	5
558	P53-MDM2 interaction monitoring and inhibitors potency evaluation based on CRISPR-Ca platform. Sensors and Actuators B: Chemical, 2022, 361, 131710.	s12a sensing	4.0	1
560	Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 p53WT Uterine Leiomyosarcoma. Cancers, 2022, 14, 14.	Inhibitors in	1.7	5

#	Article	IF	CITATIONS
561	Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells, 2021, 10, 3465.	1.8	27
563	GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Communications Biology, 2022, 5, 373.	2.0	7
564	Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. Journal of Medicinal Chemistry, 2022, 65, 6207-6230.	2.9	7
568	Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes, 2022, 10, 924.	1.3	8
569	Enhanced Expression of p21 Promotes Sensitivity of Melanoma Cells Towards Targeted Therapies. Experimental Dermatology, 2022, , .	1.4	1
571	Recent applications of covalent chemistries in protein–protein interaction inhibitors. RSC Medicinal Chemistry, 2022, 13, 921-928.	1.7	7
572	Platinum(IV) Prodrugs with Cancer Stem Cell Inhibitory Effects on Lung Cancer for Overcoming Drug Resistance. Journal of Medicinal Chemistry, 2022, 65, 7933-7945.	2.9	21
574	AMG-232, a New Inhibitor of MDM-2,Enhance Doxorubicin Efficiency in Pre-B Acute Lymphoblastic Leukemia Cells. Reports of Biochemistry and Molecular Biology, 2022, 11, 111-124.	0.5	4
575	Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Discovery, 2022, 8, .	2.0	8
576	Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochemical Journal, 2022, 479, 1375-1392.	1.7	7
577	Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Frontiers in Oncology, 0, 12, .	1.3	14
578	Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Frontiers in Microbiology, 0, 13, .	1.5	1
579	Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. International Journal of Molecular Sciences, 2022, 23, 7960.	1.8	1
580	Suppressing crucial oncogenes of leukemia initiator cells by major royal jelly protein 2 for mediating apoptosis in myeloid and lymphoid leukemia cells. Food and Function, 2022, 13, 8951-8966.	2.1	4
581	Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery. Nature Communications, 2022, 13, .	5.8	6
582	Discovery of compounds that reactivate p53 mutants inÂvitro and inÂvivo. Cell Chemical Biology, 2022, 29, 1381-1395.e13.	2.5	12
583	p52-ZER6: a determinant of tumor cell sensitivity to MDM2-p53 binding inhibitors. Acta Pharmacologica Sinica, 0, , .	2.8	1
584	The MDM2 Inhibitor Navtemadlin Arrests Mouse Melanoma Growth <i>In Vivo</i> and Potentiates Radiotherapy. Cancer Research Communications, 2022, 2, 1075-1088.	0.7	4

	CITATION	Citation Report	
# 585	ARTICLE Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119343.	IF 1.9	Citations 8
586	Induction of synergistic apoptosis by tetramethoxystilbene and nutlin-3a in human cervical cancer cells. Toxicological Research, 2022, 38, 591-600.	1.1	Ο
587	Extra-Ribosome Functions of Ribosomal Proteins. , 2022, , .		0
588	DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Experimental and Molecular Medicine, 2022, 54, 1658-1669.	3.2	28
589	Drugging p53 in cancer: one protein, many targets. Nature Reviews Drug Discovery, 2023, 22, 127-144.	21.5	151
590	Binary combinatorial scanning reveals potent poly-alanine-substituted inhibitors of protein-protein interactions. Communications Chemistry, 2022, 5, .	2.0	5
591	Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem, 2023, 18, .	1.6	3
592	Anti-inflammatory effects of PRIMA-1MET (mutant p53 reactivator) induced by inhibition of nuclear factor-I⁰B on rheumatoid arthritis fibroblast-like synoviocytes. Inflammopharmacology, 2023, 31, 385-394.	1.9	1
594	Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes, 2022, 13, 2302.	1.0	0
595	The molecular mechanism of ferroptosis and its role in COPD. Frontiers in Medicine, 0, 9, .	1.2	5
596	DRP1 Inhibition Enhances Venetoclax-Induced Mitochondrial Apoptosis in TP53-Mutated Acute Myeloid Leukemia Cells through BAX/BAK Activation. Cancers, 2023, 15, 745.	1.7	2
597	Small-molecule correctors and stabilizers to target p53. Trends in Pharmacological Sciences, 2023, 44, 274-289.	4.0	5
598	Asperolide A induces apoptosis and cell cycle arrest of human hepatoma cells with p53-Y220C mutant through p38 mediating phosphorylation of p53 (S33). Heliyon, 2023, 9, e13843.	1.4	0
599	Targeted MDM2 Degradation Reveals a New Vulnerability for p53-Inactivated Triple-Negative Breast Cancer. Cancer Discovery, 2023, 13, 1210-1229.	7.7	18
600	A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-24.	1.9	10
601	Modern approaches to glioblastoma therapy. South Russian Journal of Cancer, 2023, 4, 52-64.	0.1	0
602	Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharmaceutica Sinica B, 2023, 13, 2680-2700.	5.7	5
603	Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nature Communications, 2023, 14, .	5.8	7

#	Article	IF	CITATIONS
604	Pharmacophore Modeling Guided by Conformational Dynamics Reveals Potent Anticancer Agents. Journal of Natural and Applied Sciences, 2023, 27, 51-63.	0.1	0
605	Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 0, 11, .	1.8	9
606	Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	2.5	0
607	Murine double minute X plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Experimental Hematology, 2023, 122, 10-18.	0.2	1
608	Miscellaneous small- molecule and biological approaches to targeted cancer therapy. , 2023, , 743-822.		0
611	DNA-Encoded Macrocyclic Peptide Libraries Enable the Discovery of a Neutral MDM2–p53 Inhibitor. ACS Medicinal Chemistry Letters, 2023, 14, 820-826.	1.3	0