Selective Methylation of Histone H3 Variant H3.1 Regula

Science 343, 1249-1253

DOI: 10.1126/science.1248357

Citation Report

#	Article	IF	CITATIONS
1	Looking at plant cell cycle from the chromatin window. Frontiers in Plant Science, 2014, 5, 369.	1.7	37
2	Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell, 2014, 157, 95-109.	13.5	1,393
3	Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1404-1415.	0.9	58
4	Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide. Molecular Cell, 2014, 55, 347-360.	4.5	358
6	The interplay of histone modifications – writers that read. EMBO Reports, 2015, 16, 1467-1481.	2.0	604
7	Timeâ€dependent stabilization of the +1 nucleosome is an early step in the transition to stable coldâ€induced repression of <i>FLC</i> . Plant Journal, 2015, 84, 875-885.	2.8	9
8	Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 1049.	1.7	56
9	Crystallography-Based Mechanistic Insights into Epigenetic Regulation. , 2015, , 125-147.		O
10	Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. ELife, 2015, 4, .	2.8	92
11	Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Annual Review of Genetics, 2015, 49, 439-459.	3.2	58
12	Trans-Homolog Interactions Facilitating Paramutation in Maize. Plant Physiology, 2015, 168, 1226-1236.	2.3	15
13	Histone H3.3 and cancer: A potential reader connection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6814-6819.	3.3	25
14	Links between genome replication and chromatin landscapes. Plant Journal, 2015, 83, 38-51.	2.8	20
15	Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis). Aging Cell, 2015, 14, 322-333.	3.0	13
16	Replicating nucleosomes. Science Advances, 2015, 1, .	4.7	67
17	Paramutation in maize and related behaviors in metazoans. Seminars in Cell and Developmental Biology, 2015, 44, 11-21.	2.3	8
18	Homologyâ€dependent repair is involved in 45 <scp>S rDNA</scp> loss in plant <scp>CAF</scp> â€1 mutants. Plant Journal, 2015, 81, 198-209.	2.8	42
19	Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006092.	1.5	30

#	Article	IF	CITATIONS
20	Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes. Frontiers in Plant Science, 2016, 7, 979.	1.7	5
21	The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants. Plant Physiology, 2016, 171, 62-70.	2.3	26
22	H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum. Scientific Reports, 2016, 6, 31965.	1.6	27
23	Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root. Plant Cell, 2016, 28, 1361-1371.	3.1	71
24	Tug of war: adding and removing histone lysine methylation in Arabidopsis. Current Opinion in Plant Biology, 2016, 34, 41-53.	3.5	121
25	Preparation, Biochemical Analysis, and Structure Determination of SET Domain Histone Methyltransferases. Methods in Enzymology, 2016, 573, 209-240.	0.4	5
26	Evolution of developmental signalling in Dictyostelid social amoebas. Current Opinion in Genetics and Development, 2016, 39, 29-34.	1.5	25
27	Epigenetics, cellular memory and gene regulation. Current Biology, 2016, 26, R644-R648.	1.8	148
28	Chromatin and Epigenetics at the Forefront: Finding Clues among Peaks. Molecular and Cellular Biology, 2016, 36, 2432-2439.	1.1	4
29	The H3 chaperone function of NASP is conserved in Arabidopsis. Plant Journal, 2016, 88, 425-436.	2.8	19
30	Links of genome replication, transcriptional silencing and chromatin dynamics. Current Opinion in Plant Biology, 2016, 34, 92-99.	3.5	9
31	Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Scientific Reports, 2016, 6, 23505.	1.6	113
32	DNA Replication and Histone Modification. , 2016, , 469-488.		2
33	Epigenetic processes in flowering plant reproduction. Journal of Experimental Botany, 2017, 68, erw486.	2.4	57
34	Replication of ribosomal DNA in <i>Arabidopsis</i> occurs both inside and outside of the nucleolus during S-phase progression. Journal of Cell Science, 2018, 131, .	1.2	23
35	Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Research, 2017, 45, 6375-6387.	6.5	22
36	Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biology, 2017, 18, 96.	3.8	69
37	Genetic and epigenetic variation of transposable elements in Arabidopsis. Current Opinion in Plant Biology, 2017, 36, 135-141.	3.5	79

#	ARTICLE	IF	CITATIONS
38	Histone variants on the move: substrates for chromatin dynamics. Nature Reviews Molecular Cell Biology, 2017, 18, 115-126.	16.1	268
39	Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 406-411.	3.3	33
40	Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Scientific Reports, 2017, 7, 39406.	1.6	5
41	Heterochromatin and DNA damage repair: Use different histone variants and relax. Nucleus, 2017, 8, 583-588.	0.6	18
42	The Microbiome. Toxicologic Pathology, 2017, 45, 190-194.	0.9	24
43	Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Research, 2017, 45, 9272-9289.	6.5	98
44	DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science, 2017, 357, 1146-1149.	6.0	144
45	Shaping Chromatin in the Nucleus: The Bricks and the Architects. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 1-14.	2.0	19
46	Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Science China Life Sciences, 2017, 60, 264-270.	2.3	30
47	Histone variants in plant transcriptional regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 123-130.	0.9	57
48	H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Research, 2017, 45, 169-180.	6.5	53
49	Vernalization and Epigenetic Inheritance: A Game of Histones. Current Biology, 2017, 27, R1324-R1326.	1.8	4
50	The Gut Microbiota and Inflammation in Rheumatoid Arthritis. , 2017, , .		0
51	Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech, 2018, 8, 172.	1.1	43
52	Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in <i>Caenorhabditis elegans </i>	1.2	39
53	The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution. Nature Communications, 2018, 9, 630.	5.8	27
54	Functional Redundancy of Variant and Canonical Histone H3 Lysine 9 Modification in <i>Drosophila</i> . Genetics, 2018, 208, 229-244.	1.2	21
55	Profiling Developmentally and Environmentally Controlled Chromatin Reprogramming. Methods in Molecular Biology, 2018, 1675, 3-30.	0.4	1

#	Article	IF	CITATIONS
56	In Vitro Assays to Measure Histone Methyltransferase Activity Using Different Chromatin Substrates. Methods in Molecular Biology, 2018, 1675, 345-360.	0.4	8
57	Structure and mechanism of plant histone mark readers. Science China Life Sciences, 2018, 61, 170-177.	2.3	13
58	Computational characterization of substrate and product specificities, and functionality of Sâ€adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Proteins: Structure, Function and Bioinformatics, 2018, 86, 21-34.	1.5	8
59	A Role for Monomethylation of Histone H3-K27 in Gene Activity in <i>Drosophila</i> . Genetics, 2018, 208, 1023-1036.	1.2	11
60	The Regulation and Function of Histone Methylation. Journal of Plant Biology, 2018, 61, 347-357.	0.9	10
61	The Chromatin Remodelers PKL and PIE1 Act in an Epigenetic Pathway That Determines H3K27me3 Homeostasis in Arabidopsis. Plant Cell, 2018, 30, 1337-1352.	3.1	97
62	On the Origin of the Non-brittle Rachis Trait of Domesticated Einkorn Wheat. Frontiers in Plant Science, 2017, 8, 2031.	1.7	58
63	Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression. Developmental Cell, 2018, 45, 769-784.e6.	3.1	50
64	Replicationâ€coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. New Phytologist, 2019, 221, 385-398.	3.5	32
65	Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination. Chromosoma, 2019, 128, 279-296.	1.0	28
66	Gene modification by fastâ€track recombineering for cellular localization and isolation of components of plant protein complexes. Plant Journal, 2019, 100, 411-429.	2.8	5
67	Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. International Journal of Molecular Sciences, 2019, 20, 4093.	1.8	43
68	Molecular Insights on the Domestication of Barley (<i>Hordeum vulgare</i> L.). Critical Reviews in Plant Sciences, 2019, 38, 280-294.	2.7	10
69	Histone tales: lysine methylation, a protagonist in Arabidopsis development. Journal of Experimental Botany, 2020, 71, 793-807.	2.4	40
70	Canonical Histones and Their Variants in Plants: Evolution and Functions., 2019,, 185-222.		3
71	Epigenetic Mechanisms of Abiotic Stress Response and Memory in Plants. , 2019, , 1-64.		24
72	Gap 2 phase: making the fundamental decision to divide or not. Current Opinion in Plant Biology, 2019, 51, 1-6.	3.5	11
73	iTRAQ protein profiling reveals candidate proteins regulating ovary and ovule differentiation in pistillate inflorescences after pollination in hazel. Tree Genetics and Genomes, 2019, 15, 1.	0.6	4

#	ARTICLE	IF	CITATIONS
74	ATXR5/6 Forms Alternative Protein Complexes with PCNA and the Nucleosome Core Particle. Journal of Molecular Biology, 2019, 431, 1370-1379.	2.0	15
75	Our recent progress in epigenetic research using the model ciliate, Tetrahymena thermophila. Marine Life Science and Technology, 2019, 1, 4-14.	1.8	32
76	Epigenetics Regulates Reproductive Development in Plants. Plants, 2019, 8, 564.	1.6	18
77	<scp>EFFECTOR OF TRANSCRIPTION</scp> factors are novel plantâ€specific regulators associated with genomic <scp>DNA</scp> methylation in Arabidopsis. New Phytologist, 2019, 221, 261-278.	3.5	20
78	H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. Plant Communications, 2020, 1, 100015.	3.6	40
79	Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. Journal of Integrative Plant Biology, 2020, 62, 104-117.	4.1	90
80	The roles of histone variants in fine-tuning chromatin organization and function. Nature Reviews Molecular Cell Biology, 2020, 21, 522-541.	16.1	231
81	Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 8685.	1.8	13
82	Histone Variants: The Nexus of Developmental Decisions and Epigenetic Memory. Annual Review of Genetics, 2020, 54, 121-149.	3.2	35
83	DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. Journal of Experimental Botany, 2020, 71, 6262-6272.	2.4	13
84	Microbiome Composition and Its Impact on the Development of Allergic Diseases. Frontiers in Immunology, 2020, 11, 700.	2.2	78
85	Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology, 2020, 22, 621-629.	4.6	149
86	Similar yet critically different: the distribution, dynamics and function of histone variants. Journal of Experimental Botany, 2020, 71, 5191-5204.	2.4	39
87	Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nature Communications, 2020, 11, 1256.	5.8	38
88	Mitotic Inheritance of PRC2-Mediated Silencing: Mechanistic Insights and Developmental Perspectives. Frontiers in Plant Science, 2020, 11, 262.	1.7	33
89	Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC Plant Biology, 2020, 20, 40.	1.6	25
90	A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. Trends in Plant Science, 2020, 25, 744-764.	4.3	30
91	H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. Plant Cell, 2021, 33, 961-979.	3.1	22

#	Article	IF	CITATIONS
92	Disruption of <i>NAP1</i> genes in <i>Arabidopsis thaliana</i> suppresses the <i>fas1</i> mutant phenotype, enhances genome stability and changes chromatin compaction. Plant Journal, 2021, 106, 56-73.	2.8	11
93	Histone variants at a glance. Journal of Cell Science, 2021, 134, .	1.2	101
94	The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. Plant Physiology, 2021, 186, 2051-2063.	2.3	21
95	G2/M-checkpoint activation in <i>fasciata1</i> rescues an aberrant S-phase checkpoint but causes genome instability. Plant Physiology, 2021, 186, 1893-1907.	2.3	11
96	Small RNAs guide histone methylation in <i>Arabidopsis</i> embryos. Genes and Development, 2021, 35, 841-846.	2.7	31
97	Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges. Journal of Experimental Botany, 2021, , .	2.4	9
98	Crosstalk between H2A variant-specific modifications impacts vital cell functions. PLoS Genetics, 2021, 17, e1009601.	1.5	7
99	Histone variants take center stage in shaping the epigenome. Current Opinion in Plant Biology, 2021, 61, 101991.	3.5	42
100	Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Annual Review of Plant Biology, 2021, 72, 273-296.	8.6	63
101	PRC2 activity, recruitment, and silencing: a comparative perspective. Trends in Plant Science, 2021, 26, 1186-1198.	4.3	42
102	The epigenetic origin of life history transitions in plants and algae. Plant Reproduction, 2021, 34, 267-285.	1.3	16
103	Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB Journal, 2021, 35, e21790.	0.2	5
105	Current understanding of plant Polycomb group proteins and the repressive histone H3 Lysine 27 trimethylation. Biochemical Society Transactions, 2020, 48, 1697-1706.	1.6	8
107	The atypical histone variant H3.15 promotes callus formation in <i>Arabidopsis thaliana</i> Development (Cambridge), 2020, 147, .	1.2	27
108	Histone modifications and a choice of variant: a language that helps the genome express itself. F1000prime Reports, 2014, 6, 76.	5.9	42
109	The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging, 2017, 9, 602-614.	1.4	26
110	In Search of Regulators of <i>LeSPL-CNR</i> by South-Western Blotting and Yeast One-Hybrid Library Screening System. American Journal of Plant Sciences, 2018, 09, 1037-1050.	0.3	1
111	A new role for histone demethylases in the maintenance of plant genome integrity. ELife, 2020, 9, .	2.8	33

#	Article	IF	CITATIONS
112	Epigenetic repression and resetting of a floral repressor, FLC, in the life cycle of winter-annual Arabidopsis. Plant Biotechnology Reports, 2022, 16, 133.	0.9	0
120	Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes and Genetic Systems, 2021, 96, 217-228.	0.2	4
121	The role of ATXR6 expression in modulating genome stability and transposable element repression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3. 3	11
122	Epigenetic Regulation of Megaspore Mother Cell Formation. Frontiers in Plant Science, 2021, 12, 826871.	1.7	6
123	Histone Variants in the Specialization of Plant Chromatin. Annual Review of Plant Biology, 2022, 73, 149-172.	8.6	20
124	The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science, 2022, 375, 1281-1286.	6.0	33
125	Histone variant-specific post-translational modifications. Seminars in Cell and Developmental Biology, 2023, 135, 73-84.	2.3	9
126	Structure and mechanism of histone methylation dynamics in Arabidopsis. Current Opinion in Plant Biology, 2022, 67, 102211.	3.5	15
133	Direct assessment of histone function using histone replacement. Trends in Biochemical Sciences, 2023, 48, 53-70.	3.7	3
134	The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. International Journal of Molecular Sciences, 2022, 23, 9029.	1.8	2
135	Deposition and eviction of histone variants define functional chromatin states in plants. Current Opinion in Plant Biology, 2022, 69, 102266.	3. 5	11
136	Glucose-driven TOR–FIE–PRC2 signalling controls plant development. Nature, 2022, 609, 986-993.	13.7	47
137	Integrated platform of oxygen self-enriched nanovesicles: SP94 peptide-directed chemo/sonodynamic therapy for liver cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 179, 206-220.	2.0	4
138	Plant Epigenomics. , 2023, , 263-286.		3
139	Variations of wheat (Triticum aestivum L.) chromosomes caused by the 5A chromosomes with complex cytological structure. Frontiers in Plant Science, 0, 13, .	1.7	1
142	Epigenetic nature of <i>Arabidopsis thaliana</i> telomeres. Plant Physiology, 2023, 191, 47-55.	2.3	4
143	DNA polymerase epsilon binds histone H3.1-H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
144	Plant Epigenomics. , 2022, , 97-107.		0

CITATION REPORT

#	Article	IF	CITATIONS
145	Maintenance and dynamic reprogramming of chromatin organization during development. Plant Journal, $0, \dots$	2.8	3
147	Genome-wide characterization, phylogenetic and expression analysis of Histone gene family in cucumber (Cucumis sativus L.). International Journal of Biological Macromolecules, 2023, 230, 123401.	3.6	3
148	Lysine 27 of histone <scp>H3</scp> .3 is a fine modulator of developmental gene expression and stands as an epigenetic checkpoint for lignin biosynthesis in Arabidopsis. New Phytologist, 2023, 238, 1085-1100.	3. 5	4
159	Regulation of gene editing using T-DNA concatenation. Nature Plants, 2023, 9, 1398-1408.	4.7	2