Prion-like Polymerization Underlies Signal Transduction Inflammasome Activation

Cell 156, 1207-1222

DOI: 10.1016/j.cell.2014.01.063

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines and Immunotherapeutics, 2014, 10, 3270-3285.	3.3	246
2	Peculiarities of Prion Diseases. PLoS Pathogens, 2014, 10, e1004451.	4.7	9
3	Contribution of Specific Residues of the \hat{l}^2 -Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability. PLoS Pathogens, 2014, 10, e1004158.	4.7	45
4	Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Frontiers in Immunology, 2014, 5, 342.	4.8	325
5	Prion-like polymerization as a signaling mechanism. Trends in Immunology, 2014, 35, 622-630.	6.8	31
6	Structural and Dynamics Aspects of ASC Speck Assembly. Structure, 2014, 22, 1722-1734.	3.3	47
7	Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17254-17259.	7.1	98
8	Insights into assembly of the macromolecular inflammasome complex. Inflammasome, 2014, 1, .	0.6	2
9	Diversity and Variability of NOD-Like Receptors in Fungi. Genome Biology and Evolution, 2014, 6, 3137-3158.	2.5	83
10	Engagement of Nucleotide-binding Oligomerization Domain-containing Protein 1 (NOD1) by Receptor-interacting Protein 2 (RIP2) Is Insufficient for Signal Transduction. Journal of Biological Chemistry, 2014, 289, 22900-22914.	3.4	25
11	Inflammasome: Putting the Pieces Together. Cell, 2014, 156, 1127-1129.	28.9	32
12	Polymeric assembly. Nature Reviews Immunology, 2014, 14, 287-287.	22.7	2
13	Prion-like aggregation of mutant p53 in cancer. Trends in Biochemical Sciences, 2014, 39, 260-267.	7.5	167
14	Molecular Regulation of Cell Fate in Cerebral Ischemia: Role of the Inflammasome and Connected Pathways. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1857-1867.	4.3	40
15	Activation and regulation of pathogen sensor RIG-I. Cytokine and Growth Factor Reviews, 2014, 25, 513-523.	7.2	42
16	SMOCs: supramolecular organizing centres that control innate immunity. Nature Reviews Immunology, 2014, 14, 821-826.	22.7	220
17	Molecular Imprinting as a Signal-Activation Mechanism of the Viral RNA Sensor RIG-I. Molecular Cell, 2014, 55, 511-523.	9.7	214
18	Structural mechanisms in NLR inflammasome signaling. Current Opinion in Structural Biology, 2014, 29, 17-25.	5 . 7	90

#	Article	IF	Citations
19	RIG-I Holds the CARDs in a Game of Self versus Nonself. Molecular Cell, 2014, 55, 505-507.	9.7	7
20	The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology, 2014, 15, 738-748.	14.5	668
21	Enhancing the understanding of asthma. Nature Immunology, 2014, 15, 701-703.	14.5	10
22	cASCading specks. Nature Immunology, 2014, 15, 698-700.	14.5	13
23	Peroxisomal MAVS activates IRF1-mediated IFN-λ production. Nature Immunology, 2014, 15, 700-701.	14.5	26
24	The emerging role of human PYHIN proteins in innate immunity: Implications for health and disease. Biochemical Pharmacology, 2014, 92, 405-414.	4.4	71
25	The intricate interplay between RNA viruses and NF-κB. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2754-2764.	4.1	60
26	Mechanisms and Functions of Inflammasomes. Cell, 2014, 157, 1013-1022.	28.9	1,999
27	The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nature Immunology, 2014, 15, 727-737.	14.5	651
28	MITA/STING: A central and multifaceted mediator in innate immune response. Cytokine and Growth Factor Reviews, 2014, 25, 631-639.	7.2	83
29	A ring-like model for ASC self-association via the CARD domain. Inflammasome, 2014, 1, .	0.6	1
30	Prion Protein Signaling in the Nervous Systemâ€"A Review and Perspective. Signal Transduction Insights, 2014, 3, STI.S12319.	2.0	9
31	Emerging Significance of NLRs in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 2412-2432.	1.9	49
32	Supramolecular organizing centers (SMOCs) as signaling machines in innate immune activation. Science China Life Sciences, 2015, 58, 1067-1072.	4.9	14
33	Potassium efflux fires the canon: Potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. European Journal of Immunology, 2015, 45, 2758-2761.	2.9	46
35	Theme and variations: evolutionary diversification of the HET-s functional amyloid motif. Scientific Reports, 2015, 5, 12494.	3.3	29
36	Interleukinâ€1 as a pharmacological target in acute brain injury. Experimental Physiology, 2015, 100, 1488-1494.	2.0	26
37	Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2. Cell Discovery, 2015, 1, .	6.7	83

#	Article	IF	CITATIONS
38	NLRP3 Inflammasome and Pathobiology in AMD. Journal of Clinical Medicine, 2015, 4, 172-192.	2.4	74
39	Functional Amyloid Signaling via the Inflammasome, Necrosome, and Signalosome: New Therapeutic Targets in Heart Failure. Frontiers in Cardiovascular Medicine, 2015, 2, 25.	2.4	33
40	Artificial Loading of ASC Specks with Cytosolic Antigens. PLoS ONE, 2015, 10, e0134912.	2.5	9
41	The Nlrp3 inflammasome admits defeat. Trends in Immunology, 2015, 36, 323-324.	6.8	10
42	Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. Cell, 2015, 163, 1468-1483.	28.9	99
43	Cryoelectron Tomography of the NAIP5/NLRC4 Inflammasome: Implications for NLR Activation. Structure, 2015, 23, 2349-2357.	3.3	104
44	The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. Journal of Biological Chemistry, 2015, 290, 29217-29230.	3.4	69
45	Apoptosis-Associated Speck-like Protein Containing a CARD Forms Specks but Does Not Activate Caspase-1 in the Absence of NLRP3 during Macrophage Swelling. Journal of Immunology, 2015, 194, 1261-1273.	0.8	83
46	Structural Biology of Innate Immunity. Annual Review of Immunology, 2015, 33, 393-416.	21.8	100
47	Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology, 2015, 25, 308-315.	7.9	408
48	Caspases come together over LPS. Trends in Immunology, 2015, 36, 59-61.	6.8	17
49	An updated view on the structure and function of PYRIN domains. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 157-173.	4.9	33
50	K+ Efflux Agonists Induce NLRP3 Inflammasome Activation Independently of Ca2+ Signaling. Journal of Immunology, 2015, 194, 3937-3952.	0.8	222
51	Ataxia Telangiectasia Mutated Kinase Mediates NF-κB Serine 276 Phosphorylation and Interferon Expression via the IRF7-RIG-I Amplification Loop in Paramyxovirus Infection. Journal of Virology, 2015, 89, 2628-2642.	3.4	33
52	Taurine Boosts Cellular Uptake of Small <scp>d</scp> -Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly. Journal of the American Chemical Society, 2015, 137, 10040-10043.	13.7	140
53	Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nature Communications, 2015, 6, 7827.	12.8	126
54	Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold. PLoS Biology, 2015, 13, e1002059.	5.6	73
55	pVHL Negatively Regulates Antiviral Signaling by Targeting MAVS for Proteasomal Degradation. Journal of Immunology, 2015, 195, 1782-1790.	0.8	55

#	ARTICLE	IF	CITATIONS
56	PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation. PLoS Pathogens, 2015, 11, e1004783.	4.7	90
57	As a toxin dies a prion comes to life: A tentative natural history of the [Het-s] prion. Prion, 2015, 9, 184-189.	1.8	17
58	Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 2015, 21, 677-687.	30.7	2,476
59	Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling. Journal of Biological Chemistry, 2015, 290, 20167-20184.	3.4	169
60	Initiation and perpetuation of <scp>NLRP</scp> 3 inflammasome activation and assembly. Immunological Reviews, 2015, 265, 35-52.	6.0	651
61	Inhibiting the inflammasome: one domain at a time. Immunological Reviews, 2015, 265, 205-216.	6.0	50
62	The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Current Opinion in Structural Biology, 2015, 31, 75-83.	5.7	58
63	The nucleic acidâ€sensing inflammasomes. Immunological Reviews, 2015, 265, 103-111.	6.0	63
64	Regulation of inflammasome activation. Immunological Reviews, 2015, 265, 6-21.	6.0	813
65	How RIG-I like receptors activate MAVS. Current Opinion in Virology, 2015, 12, 91-98.	5.4	170
66	Inflammasome control of viral infection. Current Opinion in Virology, 2015, 12, 38-46.	5.4	136
67	Perception of self: distinguishing autoimmunity from autoinflammation. Nature Reviews Rheumatology, 2015, 11, 483-492.	8.0	88
68	A RIG-I 2CARD-MAVS200 Chimeric Protein Reconstitutes IFN-β Induction and Antiviral Response in Models Deficient in Type I IFN Response. Journal of Innate Immunity, 2015, 7, 466-481.	3.8	12
69	Solvent Determines Nature of Effective Interactions between Nanoparticles in Polymer Brushes. Journal of Physical Chemistry B, 2015, 119, 4099-4108.	2.6	11
70	Neurodegenerative Diseases: Expanding the Prion Concept. Annual Review of Neuroscience, 2015, 38, 87-103.	10.7	278
71	RNase L Activates the NLRP3 Inflammasome during Viral Infections. Cell Host and Microbe, 2015, 17, 466-477.	11.0	128
72	Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine, 2015, 74, 181-189.	3.2	344
73	Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480, 146-152.	2.4	197

#	Article	IF	CITATIONS
74	Prions: What Are They Good For?. Annual Review of Cell and Developmental Biology, 2015, 31, 149-169.	9.4	58
75	ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Molecular Immunology, 2015, 67, 294-302.	2.2	53
76	Inflammatory caspases: key regulators of inflammation and cell death. Biological Chemistry, 2015, 396, 193-203.	2.5	74
77	The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease. Immunity, 2015, 43, 264-276.	14.3	99
78	The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nature Communications, 2015, 6, 7910.	12.8	127
79	Structural and biochemical basis for induced self-propagation of NLRC4. Science, 2015, 350, 399-404.	12.6	282
80	Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science, 2015, 350, 404-409.	12.6	347
81	Allosteric Dynamic Control of Binding. Biophysical Journal, 2015, 109, 1190-1201.	0.5	19
82	The Inflammasomes and Autoinflammatory Syndromes. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 395-424.	22.4	241
83	Programmed Necrosis in the Cross Talk of Cell Death and Inflammation. Annual Review of Immunology, 2015, 33, 79-106.	21.8	298
84	Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 151-156.	4.9	15
85	Structural mechanisms of inflammasome assembly. FEBS Journal, 2015, 282, 435-444.	4.7	177
86	Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Current Opinion in Microbiology, 2015, 23, 32-41.	5.1	31
87	The Duality of AIM2 Inflammasome: A Focus on its Role in Autoimmunity and Skin Diseases. American Journal of Pharmacology and Toxicology, 2016, 11, 8-19.	0.7	0
88	Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. International Journal of Molecular Sciences, 2016, 17, 655.	4.1	34
89	Pathogen perception by NLRs in plants and animals: Parallel worlds. BioEssays, 2016, 38, 769-781.	2.5	81
90	Intracellular innate immune surveillance devices in plants and animals. Science, 2016, 354, .	12.6	834
91	Cytoplasmic Sensing in Innate Immunity. , 2016, , 710-726.		0

#	Article	IF	CITATIONS
92	TIFA as a crucial mediator for NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15078-15083.	7.1	43
93	Amyloid Prions in Fungi. Microbiology Spectrum, 2016, 4, .	3.0	17
94	Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity, 2016, 44, 833-846.	14.3	619
95	Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nature Structural and Molecular Biology, 2016, 23, 416-425.	8.2	135
96	Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence. Methods in Molecular Biology, 2016, 1417, 145-158.	0.9	32
97	The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell, 2016, 165, 1055-1066.	28.9	311
98	Inflammasomes as polyvalent cell death platforms. Cellular and Molecular Life Sciences, 2016, 73, 2335-2347.	5.4	52
99	Filament assemblies in foreign nucleic acid sensors. Current Opinion in Structural Biology, 2016, 37, 134-144.	5.7	54
100	The intersection of cell death and inflammasome activation. Cellular and Molecular Life Sciences, 2016, 73, 2349-2367.	5.4	139
101	Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nature Immunology, 2016, 17, 481-489.	14.5	125
102	A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. Journal of Experimental Medicine, 2016, 213, 771-790.	8.5	145
103	Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6065-6070.	7.1	162
104	The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research, 2016, 2, 00002-2016.	2.6	47
105	A glass menagerie of low complexity sequences. Current Opinion in Structural Biology, 2016, 38, 18-25.	5.7	29
106	On the evolutionary trajectories of signal-transducing amyloids in fungi and beyond. Prion, 2016, 10, 362-368.	1.8	6
107	Inflammasomes and its importance in viral infections. Immunologic Research, 2016, 64, 1101-1117.	2.9	110
108	Assessment of Inflammasome Formation by Flow Cytometry. Current Protocols in Immunology, 2016, 114, 14.40.1-14.40.29.	3.6	27
109	Inflammasomes link vascular disease with neuroinflammation and brain disorders. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1668-1685.	4.3	129

#	Article	IF	CITATIONS
110	AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. European Journal of Immunology, 2016, 46, 269-280.	2.9	253
111	AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4671-80.	7.1	106
112	The pathogenic role of the inflammasome in neurodegenerative diseases. Journal of Neurochemistry, 2016, 136, 29-38.	3.9	253
113	Structural Mechanisms in NLR Inflammasome Assembly and Signaling. Current Topics in Microbiology and Immunology, 2016, 397, 23-42.	1.1	30
114	Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Cell Reports, 2016, 16, 1315-1325.	6.4	114
115	Innate recognition of microbial-derived signals in immunity and inflammation. Science China Life Sciences, 2016, 59, 1210-1217.	4.9	50
116	Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity. Immunity, 2016, 45, 106-118.	14.3	38
117	NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K ⁺ efflux and Ca ²⁺ influx. American Journal of Physiology - Cell Physiology, 2016, 311, C83-C100.	4.6	102
118	Post-Translational Modification Control of Innate Immunity. Immunity, 2016, 45, 15-30.	14.3	456
119	ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications, 2016, 7, 11929.	12.8	299
120	Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis. Scientific Reports, 2016, 6, 36214.	3.3	70
121	Neutrophils mediate Salmonella Typhimurium clearance through the GBP4 inflammasome-dependent production of prostaglandins. Nature Communications, 2016, 7, 12077.	12.8	109
122	The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. Journal of Cell Biology, 2016, 213, 617-629.	5.2	536
123	Prions, amyloids, and RNA: Pieces of a puzzle. Prion, 2016, 10, 182-206.	1.8	29
124	The HET-S/s Prion Motif in the Control of Programmed Cell Death. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023515.	5.5	40
125	Crystal Formation in Inflammation. Annual Review of Immunology, 2016, 34, 173-202.	21.8	106
126	Mitochondrial Regulation of Inflammasome Activation in Chronic Obstructive Pulmonary Disease. Journal of Innate Immunity, 2016, 8, 121-128.	3.8	20
127	Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2720-2725.	7.1	116

#	ARTICLE	IF	CITATIONS
128	Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron, 2016, 89, 433-448.	8.1	74
129	Cell biology and immunology lessons taught by Legionella pneumophila. Science China Life Sciences, 2016, 59, 3-10.	4.9	8
130	Prions are affected by evolution at two levels. Cellular and Molecular Life Sciences, 2016, 73, 1131-1144.	5.4	14
131	Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Science Signaling, 2016, 9, ra2.	3.6	83
132	Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular and Molecular Immunology, 2016, 13, 148-159.	10.5	990
133	The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. Journal of Immunology, 2016, 196, 407-415.	0.8	106
134	The deubiquitinating enzyme, ubiquitinâ€specific peptidase 50, regulates inflammasome activation by targeting the <scp>ASC</scp> adaptor protein. FEBS Letters, 2017, 591, 479-490.	2.8	32
135	The mechanism of NLRP3 inflammasome initiation: Trimerization but not dimerization of the NLRP3 pyrin domain induces robust activation of IL- $1\hat{l}^2$. Biochemical and Biophysical Research Communications, 2017, 483, 823-828.	2.1	17
136	Programmed cell death as a defence against infection. Nature Reviews Immunology, 2017, 17, 151-164.	22.7	752
137	A bacterial global regulator forms a prion. Science, 2017, 355, 198-201.	12.6	142
138	Inflammasomes in Myeloid Cells: Warriors Within. Microbiology Spectrum, 2017, 5, .	3.0	21
139	The Canonical Inflammasome: A Macromolecular Complex Driving Inflammation. Sub-Cellular Biochemistry, 2017, 83, 43-73.	2.4	15
140	Prion-like proteins and their computational identification in proteomes. Expert Review of Proteomics, 2017, 14, 335-350.	3.0	24
141	CARD and TM of MAVS of black carp play the key role in its self-association and antiviral ability. Fish and Shellfish Immunology, 2017, 63, 261-269.	3.6	28
142	The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Molecular Immunology, 2017, 86, 23-37.	2.2	95
143	Macromolecular Protein Complexes. Sub-Cellular Biochemistry, 2017, , .	2.4	5
144	Inflammasomes: Key Mediators of Lung Immunity. Annual Review of Physiology, 2017, 79, 471-494.	13.1	52
145	Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2017, 60, 3656-3671.	6.4	131

#	Article	IF	CITATIONS
146	Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nature Communications, 2017, 8, 15138.	12.8	83
147	<scp>TIR</scp> â€domainâ€containing adapterâ€inducing interferonâ€Î² (<scp>TRIF</scp>) forms filamentous structures, whose proâ€apoptotic signalling is terminated by autophagy. FEBS Journal, 2017, 284, 1987-2003.	4.7	22
148	The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nature Communications, 2017, 8, 15556.	12.8	51
149	Viral RNA–Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance. Journal of Immunology, 2017, 199, 119-128.	0.8	8
150	Evolutionary Convergence and Divergence in NLR Function and Structure. Trends in Immunology, 2017, 38, 744-757.	6.8	123
151	Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Nature Communications, 2017, 8, 15676.	12.8	59
152	A to I editing in disease is not fake news. RNA Biology, 2017, 14, 1223-1231.	3.1	21
153	Inflammation in gout: mechanisms and therapeutic targets. Nature Reviews Rheumatology, 2017, 13, 639-647.	8.0	357
154	A noncanonical function of cGAMP in inflammasome priming and activation. Journal of Experimental Medicine, 2017, 214, 3611-3626.	8.5	128
155	Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-I [®] B Signaling. Immunity, 2017, 47, 635-647.e6.	14.3	63
156	A Genetic Tool to Track Protein Aggregates and Control Prion Inheritance. Cell, 2017, 171, 966-979.e18.	28.9	61
157	MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7450-E7459.	7.1	123
158	<scp>RNA</scp> â€virus proteases counteracting host innate immunity. FEBS Letters, 2017, 591, 3190-3210.	2.8	64
159	Molecular mechanisms of inflammasome signaling. Journal of Leukocyte Biology, 2018, 103, 233-257.	3.3	146
160	Dynamics of in vivo ASC speck formation. Journal of Cell Biology, 2017, 216, 2891-2909.	5. 2	60
161	Caspaseâ€11 nonâ€canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophageâ€mediated inflammatory responses. Immunology, 2017, 152, 207-217.	4.4	183
162	Fuzziness enables context dependence of protein interactions. FEBS Letters, 2017, 591, 2682-2695.	2.8	60
163	High-throughput Screening for Protein-based Inheritance in S. cerevisiae . Journal of Visualized Experiments, 2017, , .	0.3	2

#	Article	IF	CITATIONS
164	Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL- $1\hat{1}^2$ release. Cell Death and Disease, 2017, 8, e2984-e2984.	6.3	34
165	Inflammasome activation and assembly at a glance. Journal of Cell Science, 2017, 130, 3955-3963.	2.0	331
166	Mitochondria as Molecular Platforms Integrating Multiple Innate Immune Signalings. Journal of Molecular Biology, 2017, 429, 1-13.	4.2	70
167	Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biology, 2017, 14, 568-586.	3.1	39
168	Assembly and regulation of ASC specks. Cellular and Molecular Life Sciences, 2017, 74, 1211-1229.	5.4	105
169	Optogenetic Immunomodulation: Shedding Light on Antitumor Immunity. Trends in Biotechnology, 2017, 35, 215-226.	9.3	77
170	Cytokine signatures in hereditary fever syndromes (HFS). Cytokine and Growth Factor Reviews, 2017, 33, 19-34.	7.2	12
171	Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023580.	5.5	44
172	Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature, 2017, 552, 355-361.	27.8	664
173	Amyloid Prions in Fungi., 2017,, 673-685.		0
174	Metabolic Regulation of Immunity. , 2017, , 318-326.		1
175	The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases. Frontiers in Immunology, 2017, 8, 43.	4.8	176
176	Diversity of Amyloid Motifs in NLR Signaling in Fungi. Biomolecules, 2017, 7, 38.	4.0	26
177	Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective. Frontiers in Genetics, 2017, 8, 220.	2.3	88
178	Dnase1L3 Regulates Inflammasome-Dependent Cytokine Secretion. Frontiers in Immunology, 2017, 8, 522.	4.8	38
179	Regulated Forms of Cell Death in Fungi. Frontiers in Microbiology, 2017, 8, 1837.	3.5	90
180	Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity. PLoS Pathogens, 2017, 13, e1006785.	4.7	11
181	Predicting Amyloidogenic Proteins in the Proteomes of Plants. International Journal of Molecular Sciences, 2017, 18, 2155.	4.1	30

#	Article	IF	CITATIONS
182	Novel aspects of the assembly and activation of inflammasomes with focus on the NLRC4 inflammasome. International Immunology, 2018, 30, 183-193.	4.0	19
183	Digital signaling network drives the assembly of the AIM2-ASC inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1963-E1972.	7.1	52
184	An update on cell intrinsic negative regulators of the NLRP3 inflammasome. Journal of Leukocyte Biology, 2018, 103, 1165-1177.	3.3	32
185	Inflammasome, Inflammation, and Tissue Homeostasis. Trends in Molecular Medicine, 2018, 24, 304-318.	6.7	137
186	The intra―and extracellular functions of <scp>ASC</scp> specks. Immunological Reviews, 2018, 281, 74-87.	6.0	82
187	The <scp>AIM</scp> 2 inflammasome: Sensor of pathogens and cellular perturbations. Immunological Reviews, 2018, 281, 99-114.	6.0	254
188	Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: Involvement of neutrophil recruitment. Brain Research Bulletin, 2018, 137, 229-240.	3.0	38
189	Functional Implications of Intracellular Phase Transitions. Biochemistry, 2018, 57, 2415-2423.	2.5	189
190	Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns. Pharmacological Research, 2018, 131, 44-50.	7.1	48
191	Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cellular and Molecular Life Sciences, 2018, 75, 1499-1507.	5.4	74
192	Inflammation initiated by stressed organelles. Joint Bone Spine, 2018, 85, 423-428.	1.6	10
193	Expression of PYCARD gene transcript variant mRNA in peripheral blood mononuclear cells of primary gout patients with different Chinese medicine syndromes. Chinese Journal of Integrative Medicine, 2018, 24, 24-31.	1.6	4
194	Caspase-1 Is an Apical Caspase Leading to Caspase-3 Cleavage in the AIM2 Inflammasome Response, Independent of Caspase-8. Journal of Molecular Biology, 2018, 430, 238-247.	4.2	71
195	COPs and POPs Patrol Inflammasome Activation. Journal of Molecular Biology, 2018, 430, 153-173.	4.2	37
196	Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miRâ€⊋23/NLRP3 axis. Journal of Pineal Research, 2018, 64, e12449.	7.4	313
198	Emerging Concepts in Innate Immunity. Methods in Molecular Biology, 2018, 1714, 1-18.	0.9	12
199	Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking. Methods in Molecular Biology, 2018, 1714, 149-165.	0.9	23
200	Regulation of MAVS activation through post-translational modifications. Current Opinion in Immunology, 2018, 50, 75-81.	5.5	83

#	Article	IF	CITATIONS
201	Protein-Based Inheritance: Epigenetics beyond the Chromosome. Molecular Cell, 2018, 69, 195-202.	9.7	138
202	The role of NLRP3 inflammasome in stroke and central poststroke pain. Medicine (United States), 2018, 97, e11861.	1.0	31
204	PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564, 71-76.	27.8	423
205	FAF1 Regulates Antiviral Immunity by Inhibiting MAVS but Is Antagonized by Phosphorylation upon Viral Infection. Cell Host and Microbe, 2018, 24, 776-790.e5.	11.0	38
206	Pharmacological Effects and Mechanisms of Chinese Medicines Modulating NLRP3 Inflammasomes in Ischemic Cardio/Cerebral Vascular Disease. The American Journal of Chinese Medicine, 2018, 46, 1727-1741.	3.8	20
207	Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich–Containing Family, Pyrin) Tj ETQq1 1 0.784314 rgl Vascular Biology, 2018, 38, 2765-2779.	3T /Overlo 2.4	ock 10 Tf 50 48
208	The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell, 2018, 175, 1651-1664.e14.	28.9	195
209	Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 721-737.	17.8	193
210	Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Molecular Cell, 2018, 72, 19-36.e8.	9.7	286
211	Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	124
212	USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Reports, 2018, 19, .	4.5	131
213	Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annual Review of Microbiology, 2018, 72, 447-478.	7.3	336
214	A brief overview of the Swi1 prionâ€"[SWI+]. FEMS Yeast Research, 2018, 18, .	2.3	16
215	Inflammasomes in livestock and wildlife: Insights into the intersection of pathogens and natural host species. Veterinary Immunology and Immunopathology, 2018, 201, 49-56.	1.2	22
216	Quantifying Nucleation InÂVivo Reveals the Physical Basis of Prion-like Phase Behavior. Molecular Cell, 2018, 71, 155-168.e7.	9.7	76
217	Microbial specialization by prions. Prion, 2018, 12, 157-161.	1.8	10
218	Immunomodulation of the NLRP3 Inflammasome through Structure-Based Activator Design and Functional Regulation via Lysosomal Rupture. ACS Central Science, 2018, 4, 982-995.	11.3	42
219	Sera from Septic Patients Contain the Inhibiting Activity of the Extracellular ATP-Dependent Inflammasome Pathway. Tohoku Journal of Experimental Medicine, 2018, 245, 193-204.	1.2	4

#	Article	IF	CITATIONS
220	Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Frontiers in Physiology, 2018, 9, 114.	2.8	150
221	More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. Journal of Molecular Biology, 2018, 430, 4607-4618.	4.2	42
222	A Split Transcriptional Repressor That Links Protein Solubility to an Orthogonal Genetic Circuit. ACS Synthetic Biology, 2018, 7, 2126-2138.	3.8	21
223	Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Frontiers in Microbiology, 2018, 9, 1737.	3.5	42
224	NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circulation Research, 2018, 122, 1722-1740.	4.5	564
225	mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell, 2018, 174, 338-349.e20.	28.9	330
226	<scp>TRAF</scp> 3 <scp>IP</scp> 3 mediates the recruitment of <scp>TRAF</scp> 3 to <scp>MAVS</scp> for antiviral innate immunity. EMBO Journal, 2019, 38, e102075.	7.8	33
227	Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nature Communications, 2019, 10, 3493.	12.8	86
228	Detecting and Characterizing Protein Self-Assembly In Vivo by Flow Cytometry. Journal of Visualized Experiments, 2019, , .	0.3	11
229	Charge-Mediated Pyrin Oligomerization Nucleates Antiviral IFI16 Sensing of Herpesvirus DNA. MBio, 2019, 10, .	4.1	25
230	The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science, 2019, 365, .	12.6	81
231	Serum Amyloid A-Mediated Inflammasome Activation of Microglial Cells in Cerebral Ischemia. Journal of Neuroscience, 2019, 39, 9465-9476.	3.6	34
233	Structural Immunology. Advances in Experimental Medicine and Biology, 2019, , .	1.6	4
234	Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Molecular Cell, 2019, 76, 243-254.	9.7	18
235	Identifying Anti-prion Chemical Compounds Using a Newly Established Yeast High-Throughput Screening System. Cell Chemical Biology, 2019, 26, 1664-1680.e4.	5.2	9
236	Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends in Immunology, 2019, 40, 1120-1133.	6.8	76
237	Tracking DNA sensor and inflammasome complexes in cells using confocal microscopy. Methods in Enzymology, 2019, 625, 253-267.	1.0	0
238	A tandem death effector domain-containing protein inhibits the IMD signaling pathway via forming amyloid-like aggregates with the caspase-8 homolog DREDD. Insect Biochemistry and Molecular Biology, 2019, 114, 103225.	2.7	2

#	Article	IF	CITATIONS
239	Amyloid-like Assembly Activates a Phosphatase in the Developing Drosophila Embryo. Cell, 2019, 178, 1403-1420.e21.	28.9	9
240	Inflammasomes: Threat-Assessment Organelles of the Innate Immune System. Immunity, 2019, 51, 609-624.	14.3	118
241	A viral expression factor behaves as a prion. Nature Communications, 2019, 10, 359.	12.8	29
242	SERPINB1-mediated checkpoint of inflammatory caspase activation. Nature Immunology, 2019, 20, 276-287.	14.5	87
243	Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. Journal of Leukocyte Biology, 2019, 105, 377-399.	3.3	75
244	Targeting intrinsic cell death pathways to control fungal pathogens. Biochemical Pharmacology, 2019, 162, 71-78.	4.4	22
245	Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease. FEBS Journal, 2019, 286, 2628-2644.	4.7	49
246	The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 1-10.	7.4	98
247	A resistosome-activated â€~death switch'. Nature Plants, 2019, 5, 457-458.	9.3	20
248	The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019, 19, 477-489.	22.7	2,601
249	The zebrafish: A research model to understand the evolution of vertebrate immunity. Fish and Shellfish Immunology, 2019, 90, 215-222.	3.6	24
250	NLRP3 inflammasome mediates angiotensin II-induced islet <roman><bold>β</bold></roman> cell apoptosis. Acta Biochimica Et Biophysica Sinica, 2019, 51, 501-508.	2.0	15
251	The Otubain YOD1 Suppresses Aggregation and Activation of the Signaling Adaptor MAVS through Lys63-Linked Deubiquitination. Journal of Immunology, 2019, 202, 2957-2970.	0.8	34
252	O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Immunity, 2019, 50, 576-590.e6.	14.3	111
253	Human immunodeficiency virus Type‹ singleâ€stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia, 2019, 67, 802-824.	4.9	58
254	ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination. EMBO Journal, 2019, 38, .	7.8	91
255	NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Archives of Biochemistry and Biophysics, 2019, 670, 4-14.	3.0	250
256	Hidden Aspects of Valency in Immune System Regulation. Trends in Immunology, 2019, 40, 1082-1094.	6.8	13

#	Article	IF	Citations
257	Myricetin inhibits NLRP3 inflammasome activation via reduction of ROS-dependent ubiquitination of ASC and promotion of ROS-independent NLRP3 ubiquitination. Toxicology and Applied Pharmacology, 2019, 365, 19-29.	2.8	41
258	Inflammasome and Caspase-1 Activity Characterization and Evaluation: An Imaging Flow Cytometer–Based Detection and Assessment of Inflammasome Specks and Caspase-1 Activation. Journal of Immunology, 2019, 202, 1003-1015.	0.8	29
259	Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiological Reviews, 2019, 99, 893-948.	28.8	57
260	Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Research, 2019, 29, 67-79.	12.0	76
261	CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nature Reviews Immunology, 2019, 19, 118-134.	22.7	137
262	The Crohn's Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy. Molecular Cell, 2019, 73, 429-445.e7.	9.7	145
263	Exogenous nanoparticles and endogenous crystalline molecules as danger signals for theÂNLRP3 inflammasomes. Journal of Cellular Physiology, 2019, 234, 5436-5450.	4.1	46
264	Immunoinflammatory Nature of Gout. , 2019, , 29-35.		0
265	<i>In vivo</i> evidence of inflammasome activation during spontaneous labor at term. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 1978-1991.	1.5	30
266	A sticky situation: Aberrant protein–protein interactions in Parkinson's disease. Seminars in Cell and Developmental Biology, 2020, 99, 65-77.	5.0	6
267	Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Seminars in Cell and Developmental Biology, 2020, 99, 96-114.	5.0	16
268	Protein-based inheritance. Seminars in Cell and Developmental Biology, 2020, 97, 138-155.	5.0	5
269	Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nature Immunology, 2020, 21, 30-41.	14.5	169
270	Multiscale simulation unravel the kinetic mechanisms of inflammasome assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118612.	4.1	5
271	Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes. Journal of Molecular Biology, 2020, 432, 6005-6027.	4.2	19
272	Interplay Between NLRP3 Inflammasome and Autophagy. Frontiers in Immunology, 2020, 11, 591803.	4.8	264
273	ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules, 2020, 25, 4572.	3.8	43
274	Acetylation-Dependent Deubiquitinase OTUD3 Controls MAVS Activation in Innate Antiviral Immunity. Molecular Cell, 2020, 79, 304-319.e7.	9.7	57

#	ARTICLE	IF	CITATIONS
275	Innate Immune Sensing of Influenza A Virus. Viruses, 2020, 12, 755.	3.3	47
276	Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics, 2020, 12, 663.	4.5	24
277	Selective inhibition of NLRP3 inflammasome by designed peptide originating from ASC. FASEB Journal, 2020, 34, 11068-11086.	0.5	13
278	Molecular characterization of a fungal gasdermin-like protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18600-18607.	7.1	50
279	Amyloid Signaling in Filamentous Fungi and Bacteria. Annual Review of Microbiology, 2020, 74, 673-691.	7.3	18
280	Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Science of the Total Environment, 2020, 745, 141049.	8.0	88
281	Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method. Biophysical Journal, 2020, 119, 2116-2126.	0.5	7
282	The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer's Disease. Frontiers in Neurology, 2020, 11, 570711.	2.4	120
283	An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. International Journal of Molecular Sciences, 2020, 21, 6901.	4.1	14
284	The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Molecular Aspects of Medicine, 2020, 76, 100889.	6.4	195
285	Altered DNA methylation profiles in blood from patients with sporadic Creutzfeldt–Jakob disease. Acta Neuropathologica, 2020, 140, 863-879.	7.7	18
286	Elucidating the regulatory mechanism of Swi1 prion in global transcription and stress responses. Scientific Reports, 2020, 10, 21838.	3.3	5
287	NLRP6 inflammasome. Molecular Aspects of Medicine, 2020, 76, 100859.	6.4	48
288	<i>SIRT5</i> impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation. EMBO Journal, 2020, 39, e103285.	7.8	35
289	DDX3X Sits at the Crossroads of Liquid–Liquid and Prionoid Phase Transitions Arbitrating Life and Death Cell Fate Decisions in Stressed Cells. DNA and Cell Biology, 2020, 39, 1091-1095.	1.9	12
290	NLRP3 inflammasome is involved in nerve recovery after sciatic nerve injury. International Immunopharmacology, 2020, 84, 106492.	3.8	14
291	Targeting RIPK3 oligomerization blocks necroptosis without inducing apoptosis. FEBS Letters, 2020, 594, 2294-2302.	2.8	9
292	Protein Phase Separation during Stress Adaptation and Cellular Memory. Cells, 2020, 9, 1302.	4.1	20

#	Article	IF	CITATIONS
293	The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 238.	3.9	201
294	Role of the NLRP3 Inflammasome in Preeclampsia. Frontiers in Endocrinology, 2020, 11, 80.	3. 5	68
295	Molecular actions of NLR immune receptors in plants and animals. Science China Life Sciences, 2020, 63, 1303-1316.	4.9	31
296	miRâ€382â€5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type I interferon. FASEB Journal, 2020, 34, 4497-4511.	0.5	15
297	The NLRP6 inflammasome in health and disease. Mucosal Immunology, 2020, 13, 388-398.	6.0	72
298	Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology. Current Opinion in Cell Biology, 2020, 63, 194-203.	5.4	24
299	Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 237.	3.9	235
300	Protein assembly systems in natural and synthetic biology. BMC Biology, 2020, 18, 35.	3.8	44
301	Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y12 signaling pathway. Cellular and Molecular Immunology, 2021, 18, 1278-1289.	10.5	41
302	Genetics of autoimmunity in plants: an evolutionary genetics perspective. New Phytologist, 2021, 229, 1215-1233.	7.3	32
303	The diagnostic role of AlM2 in Kawasaki disease. Clinical and Experimental Medicine, 2021, 21, 41-47.	3.6	1
304	NLRP9 in innate immunity and inflammation. Immunology, 2021, 162, 262-267.	4.4	13
305	The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer's disease. Current Opinion in Immunology, 2021, 68, 116-124.	5.5	91
306	Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. International Immunopharmacology, 2021, 90, 107216.	3.8	22
307	The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS Journal, 2021, 288, 3094-3107.	4.7	30
308	The expanding scope of amyloid signalling. Prion, 2021, 15, 21-28.	1.8	5
309	Can NLRP3 inhibitors improve on dexamethasone for the treatment of COVID-19?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100048.	3.6	6
310	SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics, 2021, 11, 3981-3995.	10.0	34

#	Article	IF	CITATIONS
311	The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders. Clinical and Translational Immunology, 2021, 10, e1247.	3.8	30
312	Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs. MBio, 2021, 12, .	4.1	5
313	Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Frontiers in Endocrinology, 2021, 12, 630536.	3.5	37
314	Hyperglycemia accelerates inflammaging in the gingival epithelium through inflammasomes activation. Journal of Periodontal Research, 2021, 56, 667-678.	2.7	14
315	Memantine Alleviates Acute Lung Injury Via Inhibiting Macrophage Pyroptosis. Shock, 2021, 56, 1040-1048.	2.1	10
316	Mechanics of a molecular mousetrapâ€"nucleation-limited innate immune signaling. Biophysical Journal, 2021, 120, 1150-1160.	0.5	9
317	Assembling the right type of switch: Protein condensation to signal cell death. Current Opinion in Cell Biology, 2021, 69, 55-61.	5.4	0
318	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	3.3	14
319	Distinct axial and lateral interactions within homologous filaments dictate the signaling specificity and order of the AIM2-ASC inflammasome. Nature Communications, 2021, 12, 2735.	12.8	15
320	Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes?. Journal of Developmental Biology, 2021, 9, 20.	1.7	6
321	Death domain fold proteins in immune signaling and transcriptional regulation. FEBS Journal, 2021, , .	4.7	8
323	Defining Key Residues of the Swi1 Prion Domain in Prion Formation and Maintenance. Molecular and Cellular Biology, 2021, 41, e0004421.	2.3	3
324	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	10.3	94
325	Emodin ameliorates acute pancreatitisâ€'inducedÂlung injury by suppressing NLRP3 inflammasomeâ€'mediated neutrophil recruitment. Experimental and Therapeutic Medicine, 2021, 22, 857.	1.8	10
326	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	18.7	56
327	Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. Journal of Molecular Biology, 2021, 433, 166848.	4.2	20
328	Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Frontiers in Molecular Neuroscience, 2021, 14, 670513.	2.9	18
329	Genome-encoded cytoplasmic double-stranded RNAs, found in <i>C9ORF72</i> ALS-FTD brain, propagate neuronal loss. Science Translational Medicine, 2021, 13, .	12.4	27

#	Article	IF	CITATIONS
330	Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Molecular Cell, 2021, 81, 3171-3186.e8.	9.7	30
331	RIPK3 collaborates with RIPK1 to inhibit MAVS-mediated signaling during black carp antiviral innate immunity. Fish and Shellfish Immunology, 2021, 115, 142-149.	3.6	3
332	Elevated S100A9 in preeclampsia induces soluble endoglin and IL- \hat{l}^2 secretion and hypertension via the NLRP3 inflammasome. Journal of Hypertension, 2022, 40, 84-93.	0.5	11
333	Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Current Opinion in Cell Biology, 2021, 71, 29-37.	5.4	25
335	A Bibliometric Analysis of Pyroptosis From 2001 to 2021. Frontiers in Immunology, 2021, 12, 731933.	4.8	117
337	Imaging Approaches to Monitor Inflammasome Activation. Journal of Molecular Biology, 2022, 434, 167251.	4.2	11
339	The molecular mechanism of RIGâ€l activation and signaling. Immunological Reviews, 2021, 304, 154-168.	6.0	93
340	Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking. Annals of Translational Medicine, 2021, 9, 164-164.	1.7	23
341	NLR Function in Fungi as Revealed by the Study of Self/Non-self Recognition Systems. , 2020, , 123-141.		8
342	Structural Biology of NOD-Like Receptors. Advances in Experimental Medicine and Biology, 2019, 1172, 119-141.	1.6	26
343	Expanding spectrum of prion diseases. Emerging Topics in Life Sciences, 2020, 4, 155-167.	2.6	30
344	Mitochondria as intracellular signaling platforms in health and disease. Journal of Cell Biology, 2020, 219, .	5.2	72
350	Hallmarks of NLRP3 inflammasome activation are observed in organotypic hippocampal slice culture. Immunology, 2020, 161, 39-52.	4.4	12
351	Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation. Journal of Clinical Investigation, 2016, 126, 2425-2436.	8.2	60
352	Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genetics, 2016, 12, e1006417.	3.5	10
353	Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathogens, 2017, 13, e1006578.	4.7	59
354	The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. Microbial Cell, 2017, 4, 16-28.	3.2	16
355	Inflammasome Signaling and Other Factors Implicated in Atherosclerosis Development and Progression. Current Pharmaceutical Design, 2020, 26, 2583-2590.	1.9	6

#	ARTICLE	IF	Citations
356	ASC-particle-induced Peritonitis. Bio-protocol, 2016, 6, .	0.4	1
357	Prions, prionoid complexes and amyloids: the bad, the good and something in between. Swiss Medical Weekly, 2017, 147, w14424.	1.6	12
358	Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. ELife, $2019,8,.$	6.0	7
359	Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. ELife, 2020, 9, .	6.0	30
360	Zebrafish <i>prmt2</i> Attenuates Antiviral Innate Immunity by Targeting traf6. Journal of Immunology, 2021, 207, 2570-2580.	0.8	8
361	The IFNâ€inducible GTPase IRGB10 regulates viral replication and inflammasome activation during influenza A virus infection in mice. European Journal of Immunology, 2022, 52, 285-296.	2.9	1
362	Neuroprotective Strategies via Modulation of Innate Immune Receptors. Springer Series in Translational Stroke Research, 2017, , 285-292.	0.1	0
363	Inflammasomes in Myeloid Cells: Warriors Within. , 0, , 305-324.		0
366	Amyloid-Like Assembly During Embryogenesis Activates Herzog, a Novel Prion-Like Phosphatase. SSRN Electronic Journal, 0, , .	0.4	0
367	Pattern Recognition Molecules. , 2020, , 13-65.		0
369	Apoptosis, necroptosis, and pyroptosis in health and disease. , 2022, , 1-46.		0
372	Antiviral system of innate immunity: COVID-19 pathogenesis and treatment. Bulletin of Russian State Medical University, 2020, , .	0.2	4
375	A new way to detect the danger: Lysosomal cell death induced by a bacterial ribosomal protein. Journal of Nature and Science, 2015, 1, .	1.1	1
376	Necroptosis: MLKL Polymerization. Journal of Nature and Science, 2018, 4, .	1.1	13
377	Molecular Mechanisms and Evolutionary Consequences of Spore Killers in Ascomycetes. Microbiology and Molecular Biology Reviews, 2021, 85, e0001621.	6.6	20
379	N4BP3 Regulates RIG-I-Like Receptor Antiviral Signaling Positively by Targeting Mitochondrial Antiviral Signaling Protein. Frontiers in Microbiology, 2021, 12, 770600.	3.5	4
380	The NLRP3 inflammasome pathway in autoimmune diseases: a chronotherapeutic perspective?., 2022,, 149-178.		0
381	Cytoplasmic Sensing in Innate Immunity. , 2022, , .		0

#	Article	IF	Citations
382	The structure of NLRP9 reveals a unique Câ€terminal region with putative regulatory function. FEBS Letters, 2022, 596, 876-885.	2.8	4
383	Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules, 2022, 27, 705.	3.8	14
384	Exosomes Regulate NLRP3 Inflammasome in Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 802509.	3.7	11
386	Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	4.0	13
387	Mitochondria and Viral Infection: Advances and Emerging Battlefronts. MBio, 2022, 13, e0209621.	4.1	10
388	Crosstalk Between the NLRP3 Inflammasome/ASC Speck and Amyloid Protein Aggregates Drives Disease Progression in Alzheimer's and Parkinson's Disease. Frontiers in Molecular Neuroscience, 2022, 15, 805169.	2.9	15
389	Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annual Review of Immunology, 2022, 40, 469-498.	21.8	51
391	Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. Journal of Biological Chemistry, 2022, 298, 101677.	3.4	44
392	Interaction of Mycobacteria With Host Cell Inflammasomes. Frontiers in Immunology, 2022, 13, 791136.	4.8	20
394	The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Liver Disorders. International Journal of Molecular Sciences, 2022, 23, 3528.	4.1	10
395	5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Frontiers in Cell and Developmental Biology, 2021, 9, 782427.	3.7	13
396	Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. Journal of Inflammation Research, 2021, Volume 14, 7143-7172.	3.5	19
397	Nanobodies dismantle postâ€pyroptotic ASC specks and counteract inflammation <i>inÂvivo</i> i>. EMBO Molecular Medicine, 2022, 14, e15415.	6.9	18
406	Comparative evaluation of the levels of nod-like receptor family pyrin domain-containing protein (NLRP) 3 in saliva of subjects with chronic periodontitis and healthy controls. Journal of Indian Society of Periodontology, 2022, 26, 230.	0.7	3
407	It's All in the PAN: Crosstalk, Plasticity, Redundancies, Switches, and Interconnectedness Encompassed by PANoptosis Underlying the Totality of Cell Death-Associated Biological Effects. Cells, 2022, 11, 1495.	4.1	37
408	$GSK3\hat{I}^2$ mediates the spatiotemporal dynamics of NLRP3 inflammasome activation. Cell Death and Differentiation, 2022, 29, 2060-2069.	11.2	17
409	Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens, 2022, 11, 522.	2.8	5
410	The Role of H2S Regulating NLRP3 Inflammasome in Diabetes. International Journal of Molecular Sciences, 2022, 23, 4818.	4.1	11

#	Article	IF	Citations
411	Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Science Advances, 2022, 8, eabn7583.	10.3	24
412	TRIM25 and ZAP target the Ebola virus ribonucleoprotein complex to mediate interferon-induced restriction. PLoS Pathogens, 2022, 18, e1010530.	4.7	14
413	NLRP3 licenses NLRP11 for inflammasome activation in human macrophages. Nature Immunology, 2022, 23, 892-903.	14.5	20
414	The RHIM of the Immune Adaptor Protein TRIF Forms Hybrid Amyloids with Other Necroptosis-Associated Proteins. Molecules, 2022, 27, 3382.	3.8	3
415	NLRP1 Inflammasomes: A Potential Target for the Treatment of Several Types of Brain Injury. Frontiers in Immunology, 2022, 13, .	4.8	13
416	A nucleation barrier spring-loads the CBM signalosome for binary activation. ELife, 0, 11 , .	6.0	6
417	Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. Journal of Biological Chemistry, 2022, 298, 102198.	3.4	12
418	Activation and Pharmacological Regulation of Inflammasomes. Biomolecules, 2022, 12, 1005.	4.0	17
419	Nanoscale Organization of the Endogenous ASC Speck. SSRN Electronic Journal, 0, , .	0.4	1
420	DES-Amyloidoses "Amyloidoses through the looking-glass― A knowledgebase developed for exploring and linking information related to human amyloid-related diseases. PLoS ONE, 2022, 17, e0271737.	2.5	0
421	Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Reports, 2022, 40, 111167.	6.4	8
422	Role of pyroptosis in inflammation and cancer. , 2022, 19, 971-992.		155
423	Baicalin Ameliorates DSS-Induced Colitis by Protecting Goblet Cells through Activating NLRP6 Inflammasomes. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-11.	1.2	2
424	Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses, 2022, 14, 1808.	3.3	10
426	Macrophages in gouty inflammation. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2022, 25, 7-22.	0.4	0
427	Ubiquitination as a key regulatory mechanism for O3-induced cutaneous redox inflammasome activation. Redox Biology, 2022, 56, 102440.	9.0	5
429	POP1 inhibits MSU-induced inflammasome activation and ameliorates gout. Frontiers in Immunology, 0, 13, .	4.8	7
430	The Inflammasome Activity of NLRP3 Is Independent of NEK7 in HEK293 Cells Co-Expressing ASC. International Journal of Molecular Sciences, 2022, 23, 10269.	4.1	4

#	Article	IF	CITATIONS
431	Effect of Berberine on Activation of TLR4-NFÎB Signaling Pathway and NLRP3 Inflammasome in Patients with Gout. Chinese Journal of Integrative Medicine, 2023, 29, 10-18.	1.6	4
432	<scp>TRIM50</scp> promotes <scp>NLRP3</scp> inflammasome activation by directly inducing <scp>NLRP3</scp> oligomerization. EMBO Reports, 2022, 23, .	4.5	6
433	PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. Journal of Immunology, 2022, 209, 1625-1633.	0.8	51
434	Selective autophagy of <scp>RIPosomes</scp> maintains innate immune homeostasis during bacterial infection. EMBO Journal, 2022, 41, .	7.8	9
435	Identification and expression profile of novel STAND gene Nwd2 in the mouse central nervous system. Gene Expression Patterns, 2022, 46, 119284.	0.8	2
436	An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 Inflammasome complex. Biomedicine and Pharmacotherapy, 2022, 156, 113890.	5.6	5
437	Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Communications Biology, 2022, 5, .	4.4	1
438	Inflammasome effector functions: a Tale of Fire and Ice. , 2023, , 179-204.		0
439	LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Frontiers in Pharmacology, 0, 13 , .	3.5	6
440	Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens, 2022, 11, 1400.	2.8	4
442	The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	7
443	Nanoreporter for Realâ€Time Monitoring of Inflammasome Activity and Targeted Therapy. Advanced Science, 2023, 10, .	11.2	4
444	OASL phase condensation induces amyloid-like fibrillation of RIPK3 to promote virus-induced necroptosis. Nature Cell Biology, 2023, 25, 92-107.	10.3	15
445	Protein aggregates thermodynamically order regardless of sequence. Proteins: Structure, Function and Bioinformatics, 2023, 91, 705-711.	2.6	1
446	The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Frontiers in lmmunology, 0, 13 , .	4.8	17
447	ASC specks exacerbate α‑synuclein pathology via amplifying NLRP3 inflammasome activities. Journal of Neuroinflammation, 2023, 20, .	7.2	2
448	Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology, 2023, 41, 301-316.	21.8	88
449	Glabridin Inhibits <i>Aspergillus fumigatus</i> Growth and Alleviate Inflammation Mediated by Dectin-2 and NLRP3 Inflammasome. Current Eye Research, 2023, 48, 348-356.	1.5	0

#	Article	IF	CITATIONS
450	CARD-only proteins regulate inÂvivo inflammasome responses and ameliorate gout. Cell Reports, 2023, 42, 112265.	6.4	3
451	Involvement of inflammasomes in tumor microenvironment and tumor therapies. Journal of Hematology and Oncology, 2023, 16, .	17.0	13
453	Zebrafish <i>mavs</i> Is Essential for Antiviral Innate Immunity. Journal of Immunology, 2023, 210, 1314-1323.	0.8	2
454	Antiretrovirals Promote Insulin Resistance in HepG2 Liver Cells through miRNA Regulation and Transcriptional Activation of the NLRP3 Inflammasome. International Journal of Molecular Sciences, 2023, 24, 6267.	4.1	O
455	The NLR gene family: from discovery to present day. Nature Reviews Immunology, 2023, 23, 635-654.	22.7	23
456	Uncoupled pyroptosis and IL- $1\hat{l}^2$ secretion downstream of inflammasome signaling. Frontiers in Immunology, 0, 14, .	4.8	9
457	A new acid isolated from V. negundo L. inhibits NLRP3 inflammasome activation and protects against inflammatory diseases. Frontiers in Immunology, 0, 14 , .	4.8	0
458	The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Frontiers in Immunology, 0, 14, .	4.8	7
459	ADAR1-mediated RNA editing promotes B cell lymphomagenesis. IScience, 2023, 26, 106864.	4.1	5
460	A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nature Communications, 2023, 14 , .	12.8	1
461	IF116 phase separation via multi-phosphorylation drives innate immune signaling. Nucleic Acids Research, 2023, 51, 6819-6840.	14.5	6
462	A Streamlined Method for Detecting Inflammasome-Induced ASC Oligomerization Using Chemical Crosslinking. Methods in Molecular Biology, 2023, , 155-164.	0.9	0
463	Inflammasome elements in epilepsy and seizures. , 2023, , 449-474.		0
464	MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Nature Structural and Molecular Biology, 2023, 30, 785-799.	8.2	6
465	ASC oligomer favors caspase-1CARD domain recruitment after intracellular potassium efflux. Journal of Cell Biology, 2023, 222, .	5.2	2
466	NLRP3 inflammasome activation after ischemic stroke. Behavioural Brain Research, 2023, 452, 114578.	2.2	4
467	A patent review of NLRP3 inhibitors to treat autoimmune diseases. Expert Opinion on Therapeutic Patents, 2023, 33, 455-470.	5.0	4
468	What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research. Frontiers in Immunology, 0, 14, .	4.8	0

#	Article	IF	CITATIONS
469	Application of pyroptosis in tumor research (Review). Oncology Letters, 2023, 26, .	1.8	0
470	Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Communication and Signaling, 2023, 21, .	6.5	5
472	Cellular Stress: Modulator of Regulated Cell Death. Biology, 2023, 12, 1172.	2.8	0
473	WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response. Nature Communications, 2023, 14 , .	12.8	0
474	Hepatitis C Virus Nonstructural Protein 3 Increases Secretion of Interleukin-1beta in HEK293T Cells with a Reconstructed NLRP3 Inflammasome. Molecular Biology, 2023, 57, 876-884.	1.3	0
475	A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochemistry International, 2023, 170, 105610.	3.8	1
476	Revealing the Salmo salar NLRP3 Inflammasome: Insights from Structural Modeling and Transcriptome Analysis. International Journal of Molecular Sciences, 2023, 24, 14556.	4.1	0
477	The role of pyroptosis in incomplete immune reconstitution among people living with HIVi¼šPotential therapeutic targets. Pharmacological Research, 2023, 197, 106969.	7.1	0
478	NLRP3 inflammasome in cognitive impairment and pharmacological propertiesÂofÂits inhibitors. Translational Neurodegeneration, 2023, 12, .	8.0	1
479	Nanoscale organization of the endogenous ASC speck. IScience, 2023, 26, 108382.	4.1	0
480	SMALL-MOLECULE INTERACTIONS WITH BIOMOLECULAR CONDENSATES. Medicinal Chemistry Reviews, 0, , 419-443.	0.1	0
481	Tau seeding without tauopathy. Journal of Biological Chemistry, 2023, , 105545.	3.4	0
482	Nucleic acid-induced inflammation on hematopoietic stem cells. Experimental Hematology, 2024, 131, 104148.	0.4	0
483	Alleviation of Splenic Injury by CB001 after Low-Dose Irradiation Mediated by NLRP3/Caspase-1-BAX/Caspase-3 Axis. Radiation Research, 2023, 201, .	1.5	0
484	Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	0
485	Design principles for inflammasome inhibition by pyrin-only-proteins. ELife, 0, 13, .	6.0	0
486	SERTAD1 initiates NLRP3-mediated inflammasome activation through restricting NLRP3 polyubiquitination. Cell Reports, 2024, 43, 113752.	6.4	0
487	Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. International Journal of Molecular Sciences, 2024, 25, 2144.	4.1	1

ARTICLE IF CITATIONS

The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer.
International Journal of Molecular Sciences, 2024, 25, 2750.

4.1 0