Biodegradable metals

Materials Science and Engineering Reports 77, 1-34 DOI: 10.1016/j.mser.2014.01.001

Citation Report

#	Article	IF	CITATIONS
1	Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment. PLoS ONE, 2014, 9, e110420.	1.1	31
2	Microstructure and biocorrosion behaviors of solution treated and as-extruded Mg–2.2Nd–xSr–0.3Zr alloys. Transactions of Nonferrous Metals Society of China, 2014, 24, 3797-3803.	1.7	8
3	Degradation behaviors of surface modified magnesium alloy wires in different simulated physiological environments. Frontiers of Materials Science, 2014, 8, 281-294.	1.1	12
4	Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents. Materials, 2014, 7, 5866-5882.	1.3	17
5	Formation of stacking faults for improving the performance of biodegradable Mg–Ho–Zn alloy. Materials Letters, 2014, 133, 158-162.	1.3	33
6	Progress of biodegradable metals. Progress in Natural Science: Materials International, 2014, 24, 414-422.	1.8	317
7	Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires. Progress in Natural Science: Materials International, 2014, 24, 523-530.	1.8	44
8	The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys. International Journal of Molecular Sciences, 2014, 15, 11456-11472.	1.8	16
9	Dissolution Control of Mg by Cellulose Acetate–Polyelectrolyte Membranes. ACS Applied Materials & Interfaces, 2014, 6, 22393-22399.	4.0	11
10	Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires. Progress in Natural Science: Materials International, 2014, 24, 472-478.	1.8	36
11	Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg–Zn–Ca alloy in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 2014, 122, 746-751.	2.5	28
12	Degradation behavior of novel Fe/ß-TCP composites produced by powder injection molding for cortical bone replacement. Journal of Materials Science, 2014, 49, 8234-8243.	1.7	26
13	Microstructure and <i>In Vitro</i> Biodegradable Properties of Fe-Zn Alloys Prepared by Electroforming. Advanced Materials Research, 0, 1033-1034, 1200-1206.	0.3	7
14	Magnesium based degradable biomaterials: A review. Frontiers of Materials Science, 2014, 8, 200-218.	1.1	133
15	Self-dissolution assisted coating on magnesium metal for biodegradable bone fixation devices. Materials Research Express, 2014, 1, 045406.	0.8	10
16	Effect of corrosion on mechanical behaviors of Mg-Zn-Zr alloy in simulated body fluid. Frontiers of Materials Science, 2014, 8, 264-270.	1.1	26
17	Biodegradable intestinal stents: A review. Progress in Natural Science: Materials International, 2014, 24, 423-432.	1.8	41
18	Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corrosion Science, 2014, 88, 1-5.	3.0	84

#	Article	IF	Citations
19	Spectrophotometric analysis to monitor the corrosion behaviour of magnesium during immersion corrosion testing: A suitable alternative to pH measurement?. Corrosion Science, 2014, 89, 338-342.	3.0	4
20	Microstructure, mechanical property and inÂvitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy. Journal of Magnesium and Alloys, 2014, 2, 181-189.	5.5	25
21	Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014, 10, 4561-4573.	4.1	924
22	Electroless iron plating on pure magnesium for biomedical applications. Materials Letters, 2014, 130, 154-156.	1.3	17
23	Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy. Progress in Natural Science: Materials International, 2014, 24, 452-457.	1.8	24
24	Electrochemical Activity and Electrical Properties of Optimized Polypyrrole Coatings on Iron. Journal of the Electrochemical Society, 2015, 162, E307-E313.	1.3	17
25	Cytocompatibility of Fe-O Thin Film Prepared by Unbalanced Magnetron Sputtering. Materials Science Forum, 0, 815, 390-395.	0.3	0
26	Influence of solution treatment on microstructure, mechanical and corrosion properties of Mg-4Zn alloy. Journal of Magnesium and Alloys, 2015, 3, 247-252.	5.5	31
27	Combined effect of pulse electron beam treatment and thin hydroxyapatite film on mechanical features of biodegradable AZ31 magnesium alloy. IOP Conference Series: Materials Science and Engineering, 2015, 98, 012030.	0.3	2
30	Hydroxyapatite coating on biodegradable AZ31 and Mg-Ca alloys prepared by RF-magnetron sputtering. AlP Conference Proceedings, 2015, , .	0.3	6
31	Thin hydroxyapatite coating on AZ91D magnesium alloy fabricated via RF-magnetron sputtering. IOP Conference Series: Materials Science and Engineering, 2015, 98, 012027.	0.3	1
34	A Biodegradable Coating Based on Self-Assembled Hybrid Nanoparticles to Control the Performance of Magnesium. Macromolecular Chemistry and Physics, 2015, 216, 1952-1962.	1.1	8
35	Enhancement of the Mechanical Properties of an Mg–Zn–Ca Alloy Using Highâ€Pressure Torsion. Advanced Engineering Materials, 2015, 17, 1738-1741.	1.6	39
36	3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials, 2015, 4, 1742-1762.	3.9	692
37	Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals, 2015, 5, 1-39.	1.0	164
38	Magnetron Sputtering a New Fabrication Method of Iron Based Biodegradable Implant Materials. Advances in Materials Science and Engineering, 2015, 2015, 1-9.	1.0	18
39	Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology, 2015, 26, 175102.	1.3	34
40	Biodegradable polymeric coatings for surface modification of magnesium-based biomaterials. , 2015, , 355-376.		8

#	Article	IF	CITATIONS
41	Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomaterialia, 2015, 23, 347-353.	4.1	67
42	Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification. Materials Science and Engineering C, 2015, 54, 245-251.	3.8	66
43	Improvement of corrosion resistance of magnesium alloys for biomedical applications. Corrosion Reviews, 2015, 33, 101-117.	1.0	67
44	Novel Trends in the Development of Metallic Materials for Medical Implants. Key Engineering Materials, 0, 647, 59-65.	0.4	0
45	Corrosion degradation behavior of Mg–Ca alloy with high Ca content in SBF. Transactions of Nonferrous Metals Society of China, 2015, 25, 3339-3347.	1.7	27
46	Comparative XRD and Microstructure Analysis on Biodegradable Mg-Si-Ca Alloys. Key Engineering Materials, 0, 660, 51-56.	0.4	1
47	Effect of Gd/Nd ratio on mechanical and biocorrosion properties of as-extruded Mg–Nd–Gd–Sr–Zn–Zr alloys. Materials Research Innovations, 2015, 19, S236-S239.	1.0	7
48	Enhancing the performance of Mg-based implant materials by introducing basal plane stacking faults. Journal of Materials Chemistry B, 2015, 3, 7386-7400.	2.9	21
49	In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium, with and without zinc. Journal of Materials Chemistry B, 2015, 3, 8874-8883.	2.9	29
50	Microstructure, mechanical and corrosion properties of Mg–Nd–Zn–Sr–Zr alloy as a biodegradable material. Materials Science and Technology, 2015, 31, 866-873.	0.8	16
51	Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen. Materials Chemistry and Physics, 2015, 163, 394-401.	2.0	35
52	Fabrication of Mg foams for biomedical applications by means of a replica method based upon spherical carbon particles. Biomedical Physics and Engineering Express, 2015, 1, 045002.	0.6	7
53	Relation between LPSO structure and biocorrosion behavior of biodegradable GZ51K alloy. Materials Letters, 2015, 138, 212-215.	1.3	43
54	Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials, 2015, 49, 135-144.	5.7	86
55	Phosphate treatment of magnesium alloy implants forÂbiomedical applications. , 2015, , 23-57.		5
56	Study on microstructure and properties of extruded Mg–2Nd–0.2Zn alloy as potential biodegradable implant material. Materials Science and Engineering C, 2015, 49, 422-429.	3.8	35
57	Composition-Dependent Structural and Electronic Properties of Mg95–xZnxCa5Metallic Glasses: An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 3608-3618.	1.2	9
58		2.8	47

ARTICLE IF CITATIONS Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and 59 1.7 27 antimicrobial peptide. Journal of Materials Science: Materials in Medicine, 2015, 26, 66. Engineering and functionalization of biomaterials via surface modification. Journal of Materials 138 Chemistry B, 2015, 3, 2024-2042. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomaterialia, 62 280 4.1 2015, 18, 262-269. Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Materials Science and Engineering C, 2015, 49, 560-566. InÂvitro and inÂvivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral 5.7 190 64 intracondylar fractured rabbit model. Biomaterials, 2015, 64, 57-69. In vivo degradation behavior and biological activity of some new Mg–Ca alloys with concentration's gradient of Si for bone grafts. Applied Surface Science, 2015, 352, 140-150. 3.1 Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials 66 3.8 192 Science and Engineering C, 2015, 56, 467-472. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg–1Ca alloy treated with MEVVA. Colloids and Surfaces B: Biointerfaces, 2015, 2.5 133, 99-107. Effect of annealing on the microstructures and properties of cold drawn Mg alloy wires. Materials 68 Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 2.6 26 645, 181-187. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for 1.6 use as temporary medical implants. Scientific Reports, 2015, 5, 11194 In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity 70 3.1 38 of pure Mg. Applied Surface Science, 2015, 355, 832-841. Microstructure Characterization and Mechanical Properties of a Zn and Rare Earth Modified Mg Alloy. Applied Mechanics and Materials, 2015, 727-728, 111-114. Effect of Calcium Content on the Microstructure and Degradation of Mg-Ca Binary Alloys Potentially 72 0.4 7 Used as Orthopedic Biomaterials. Key Engineering Materials, 2015, 638, 104-108. Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Materials and Design, 2015, 83, 468-482. 3.3 65 Sintering of Mg-Ca-Zn Alloy Metallic Foam Based on Mg-Zn-CaH<sub>2</sub> System. 74 0.3 1 Advanced Materials Research, 0, 1112, 474-477. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Materials Letters, 2015, 161, 53-56. Enhancing the corrosion resistance and surface bioactivity of a calcium-phosphate coating on a biodegradable AZ60 magnesium alloy via a simple fluorine post-treatment method. RSC Advances, 2015, 76 1.7 41 5, 56001-56010. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO. Journal of Materials Science: Materials in Medicine, 2015, 26, 184.

#	Article	IF	CITATIONS
78	Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomaterialia, 2015, 21, 237-249.	4.1	338
79	In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1394-1404.	1.1	34
80	A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications. Jom, 2015, 67, 1143-1153.	0.9	102
81	Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants. Applied Surface Science, 2015, 345, 387-393.	3.1	29
82	Corrosion and Mechanical Behavior of Biodegradable Metallic Biomaterials. Solid State Phenomena, 0, 227, 431-434.	0.3	5
83	Fast formation of a novel bilayer coating with enhanced corrosion resistance and cytocompatibility on magnesium. RSC Advances, 2015, 5, 46109-46118.	1.7	11
84	Protein interactions with corroding metal surfaces: comparison of Mg and Fe. Faraday Discussions, 2015, 180, 347-360.	1.6	52
85	In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corrosion Science, 2015, 96, 23-31.	3.0	147
86	Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region. Materials Science and Engineering C, 2015, 52, 144-150.	3.8	16
87	A new Fe–Mn–Si alloplastic biomaterial as bone grafting material: In vivo study. Applied Surface Science, 2015, 352, 129-139.	3.1	24
88	Applications of dynamic electrochemical impedance spectroscopy (DEIS) to evaluate protective coatings formed on AZ31 magnesium alloy. RSC Advances, 2015, 5, 29589-29593.	1.7	9
89	Microstructure, Mechanical Properties and InÂVitro Degradation Behavior of a Novel Biodegradable Mg–1.5Zn–0.6Zr–0.2Sc Alloy. Journal of Materials Science and Technology, 2015, 31, 744-750.	5.6	38
90	Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Materials Letters, 2015, 152, 280-282.	1.3	59
91	Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96, 67-73.	3.0	91
92	Multifunctional Properties of Bulk Nanostructured Metallic Materials. SpringerBriefs in Materials, 2015, , 27-100.	0.1	4
93	Exploring Mg-Zn-Ca-Based Bulk Metallic Classes for Biomedical Applications Based on Thermodynamic Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5962-5971.	1.1	12
94	Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Materials and Design, 2015, 86, 829-835.	3.3	45
95	A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Advanced Materials, 2015, 27, 6954-6961.	11.1	544

#	Article	IF	Citations
96	Bulk Nanostructured Metals for Innovative Applications. SpringerBriefs in Materials, 2015, , 101-113.	0.1	4
97	Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Materials Letters, 2015, 160, 359-362.	1.3	21
98	Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. International Journal of Energy Production and Management, 2015, 2, 59-69.	1.9	37
99	Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys. Acta Materialia, 2015, 98, 423-432.	3.8	126
100	FIB-TEM Study of Magnesium Corrosion Products after 14 Days in the Murine Artery. ACS Biomaterials Science and Engineering, 2015, 1, 919-926.	2.6	17
101	In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. Journal of Non-Crystalline Solids, 2015, 427, 134-138.	1.5	32
102	The processing of Mg alloy micro-tubes for biodegradable vascular stents. Materials Science and Engineering C, 2015, 48, 400-407.	3.8	54
103	Thein vitrobiocompatibility and macrophage phagocytosis of Mg17Al12phase in Mg-Al-Zn alloys. Journal of Biomedical Materials Research - Part A, 2015, 103, 2405-2415.	2.1	12
104	The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys. Journal of Materials Engineering and Performance, 2015, 24, 598-608.	1.2	28
105	Fracture Healing Using Degradable Magnesium Fixation Plates and Screws. Journal of Oral and Maxillofacial Surgery, 2015, 73, 295-305.	0.5	55
106	Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomaterialia, 2015, 12, 298-321.	4.1	71
107	<i>In vivo</i> study of nanostructured akermanite/ <scp>PEO</scp> coating on biodegradable magnesium alloy for biomedical applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 1798-1808.	2.1	35
108	In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Materials Science and Engineering C, 2015, 48, 21-27.	3.8	96
109	In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications. Materials Science and Engineering C, 2015, 47, 85-96.	3.8	67
110	Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review. Materials Science and Engineering C, 2015, 47, 97-104.	3.8	115
111	Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomaterialia, 2015, 11, 554-562.	4.1	184
112	The effects of pulse electrodeposition parameters on morphology and formation of dual-layer Si-doped calcium phosphate coating on AZ31 alloy. Ceramics International, 2015, 41, 787-796.	2.3	32
113	In Vitro Corrosion Study of Friction Stir Processed WE43 Magnesium Alloy in a Simulated Body Fluid. Materials, 2016, 9, 542.	1.3	18

		KLFORT	
#	Article	IF	CITATIONS
114	µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone. Materials, 2016, 9, 811.	1.3	12
115	Influence of Alloying Treatment and Rapid Solidification on the Degradation Behavior and Mechanical Properties of Mg. Metals, 2016, 6, 259.	1.0	13
116	Material Biodegradation (Metals). , 2016, , .		1
117	The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2016, 25, 3890-3895.	1.2	44
118	Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (XÂ=ÂPd, Ag and C) alloys. Materials Chemistry and Physics, 2016, 181, 501-511.	2.0	42
119	Nanoporous metals for biodegradable implants: Initial bone mesenchymal stem cell adhesion and degradation behavior. Journal of Biomedical Materials Research - Part A, 2016, 104, 1747-1758.	2.1	19
120	An <i>in vitro</i> study on the biocompatibility of WE magnesium alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 482-487.	1.6	8
121	Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6, 63107-63116.	1.7	56
122	Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Materials Science and Engineering C, 2016, 69, 407-413.	3.8	204
123	Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. Materials Science and Engineering C, 2016, 69, 522-531.	3.8	9
124	The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process. AIP Conference Proceedings, 2016, , .	0.3	14
125	Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy. Biointerphases, 2016, 11, 031006.	0.6	7
126	Processing of porous Mg-Zn-Ca alloy via powder metallurgy. AIP Conference Proceedings, 2016, , .	0.3	6
127	Magnesium alloy transfected BMSCs-BMP-2 composite in repair of femoral head necrosis with assessment of visceral organs. SpringerPlus, 2016, 5, 1857.	1.2	12
128	Bioresorbable Ca-phosphate-polymer/metal and Fe-Ag nanocomposites for macro-porous scaffolds with tunable degradation and drug release. AIP Conference Proceedings, 2016, , .	0.3	4
129	Enhanced corrosion protection and biocompatibility of a PLGA–silane coating on AZ31 Mg alloy for orthopaedic applications. RSC Advances, 2016, 6, 113871-113883.	1.7	27
130	Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn. Scientific Reports, 2016, 6, 21736.	1.6	38
131	Inorganic dissolvable electronics: materials and devices for biomedicine and environment. Journal of Materials Research, 2016, 31, 2549-2570.	1.2	28

#	Article	IF	CITATIONS
132	The rise of plastic bioelectronics. Nature, 2016, 540, 379-385.	13.7	1,280
133	Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties. Jom, 2016, 68, 1183-1190.	0.9	22
134	Overview: Magnesium-Based Biodegradable Implants. Jom, 2016, 68, 1175-1176.	0.9	6
135	Effect of Mn addition on grain refinement of biodegradable Mg 4Zn 0.5Ca alloy. Journal of Alloys and Compounds, 2016, 676, 461-468.	2.8	37
136	Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. Journal of Alloys and Compounds, 2016, 685, 222-230.	2.8	76
137	Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy. Materials Science and Engineering C, 2016, 68, 198-204.	3.8	48
138	Influence of surface condition on the corrosion of ultra-high-purity Mg alloy wire. Corrosion Science, 2016, 108, 66-75.	3.0	36
139	Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary. Materials Letters, 2016, 179, 100-103.	1.3	26
140	Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics, 2016, 73, 31-39.	1.8	18
141	Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with <i>de novo</i> coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. European Heart Journal, 2016, 37, 2701-2709.	1.0	149
142	Mechanical, electrochemical and biocompatibility evaluation ofÂAZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds, 2016, 687, 906-919.	2.8	49
143	Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia, 2016, 41, 351-360.	4.1	95
144	Spark Plasma Sintering of Load-Bearing Iron–Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications. Jom, 2016, 68, 1134-1142.	0.9	8
145	Improvement of the Biodegradation Property and Biomineralization Ability of Magnesium–Hydroxyapatite Composites with Dicalcium Phosphate Dihydrate and Hydroxyapatite Coatings. ACS Biomaterials Science and Engineering, 2016, 2, 818-828.	2.6	66
146	Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia, 2016, 36, 1-20.	4.1	314
147	Glass-ceramic coated Mg-Ca alloys for biomedical implant applications. Materials Science and Engineering C, 2016, 64, 362-369.	3.8	64
148	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(<scp>l</scp> -lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Applied Materials & Interfaces, 2016, 8, 10014-10028.	4.0	256
149	In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Materials Science and Engineering C, 2016, 65, 59-69.	3.8	39

#	Article	IF	CITATIONS
150	Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits. Journal of Materials Science and Technology, 2016, 32, 883-888.	5.6	16
151	Adhesion evaluation of different bioceramic coatings on Mg–Ca alloys for biomedical applications. Journal of Adhesion Science and Technology, 2016, 30, 1968-1983.	1.4	31
152	Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016, 83, 191-235.	16.0	120
153	Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomaterials Science and Engineering, 2016, 2, 1067-1083.	2.6	155
154	Influence of bicarbonate concentration on the conversion layer formation onto AZ31 magnesium alloy and its electrochemical corrosion behaviour in simulated body fluid. RSC Advances, 2016, 6, 49910-49922.	1.7	20
155	Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corrosion Science, 2016, 112, 495-506.	3.0	44
156	Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomaterialia, 2016, 45, 2-30.	4.1	306
157	Effects of external stress on biodegradable orthopedic materials: A review. Bioactive Materials, 2016, 1, 77-84.	8.6	25
158	Strengthened corrosion control of poly (lactic acid) (PLA) and poly (Îμ-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corrosion Science, 2016, 112, 327-337.	3.0	59
159	Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content on the mechanical and corrosion properties. Materials and Design, 2016, 110, 188-195.	3.3	41
160	Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Materials and Design, 2016, 109, 556-569.	3.3	37
161	Development of high performance MgFe alloy as potential biodegradable materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 671, 48-53.	2.6	25
162	Processing of a Novel Zn Alloy Micro-Tube for Biodegradable Vascular Stent Application. Journal of Materials Science and Technology, 2016, 32, 925-929.	5.6	53
163	Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomaterialia, 2016, 45, 375-386.	4.1	166
164	Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn–1.2Mg alloy for biodegradable implants. RSC Advances, 2016, 6, 86410-86419.	1.7	108
165	Advances in Fe-based biodegradable metallic materials. RSC Advances, 2016, 6, 112819-112838.	1.7	83
166	Recent advances on the development of biodegradable magnesium alloys: a review. Materials Technology, 2016, 31, 681-688.	1.5	44
167	Biodegradable resistive switching memory based on magnesium difluoride. Nanoscale, 2016, 8, 15048-15055.	2.8	20

#	Article	IF	CITATIONS
168	Study of the electrochemical stability of polypyrrole coating on iron in sodium salicylate aqueous solution. Synthetic Metals, 2016, 221, 1-7.	2.1	13
169	Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy. Corrosion Science, 2016, 113, 104-115.	3.0	155
170	Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure. Scientific Reports, 2016, 6, 26341.	1.6	24
171	The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results. Corrosion Science, 2016, 113, 183-187.	3.0	65
172	Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films. Journal of Magnesium and Alloys, 2016, 4, 278-285.	5.5	47
173	Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Scientific Reports, 2016, 6, 27374.	1.6	144
174	The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy. Journal of Materials Engineering and Performance, 2016, 25, 4469-4477.	1.2	17
175	Nanostructured self assembled monolayers on magnesium for improved biological performance. Materials Technology, 2016, 31, 818-827.	1.5	31
176	Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications. Scientific Reports, 2016, 6, 31990.	1.6	36
177	Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Scientific Reports, 2016, 6, 26661.	1.6	91
178	Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Scientific Reports, 2016, 6, 32323.	1.6	58
179	Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy. IOP Conference Series: Materials Science and Engineering, 2016, 147, 012033.	0.3	12
180	Static Corrosion Test of Porous Iron Material with Polymer Coating. Powder Metallurgy Progress, 2016, 16, 99-106.	0.6	5
181	Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Znâ€Alloys. Advanced Healthcare Materials, 2016, 5, 1121-1140.	3.9	326
182	Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering C, 2016, 68, 948-963.	3.8	674
183	Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline. Corrosion Science, 2016, 111, 541-555.	3.0	110
184	Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy. Frontiers of Materials Science, 2016, 10, 281-289.	1.1	27
185	In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals. Journal of Materials Science and Technology, 2016, 32, 909-918.	5.6	91

#	Article	IF	CITATIONS
186	Protective layer formation on magnesium in cell culture medium. Materials Science and Engineering C, 2016, 63, 341-351.	3.8	54
187	The formation of hydroxyapatite layer onto hopeite coating on stainless steel substrate. Corrosion Science, 2016, 111, 216-229.	3.0	9
188	In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Materials Science and Engineering C, 2016, 68, 632-641.	3.8	21
189	The chitosan coating and processing effect on the physiological corrosion behaviour of porous magnesium monoliths. Progress in Organic Coatings, 2016, 99, 147-156.	1.9	39
190	Improved Corrosion Resistance of As-Extruded GZ51K Biomagnesium Alloy with High Mechanical Properties by Aging Treatment. Journal of Materials Engineering and Performance, 2016, 25, 719-725.	1.2	15
191	Degradation of zinc in saline solutions, plasma, and whole blood. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1141-1151.	1.6	89
192	Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Materials and Design, 2016, 91, 72-79.	3.3	79
193	Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 716-721.	3.3	337
194	Metallic glass matrix composites. Materials Science and Engineering Reports, 2016, 100, 1-69.	14.8	424
195	Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film. RSC Advances, 2016, 6, 15247-15259.	1.7	28
196	High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 2016, 81, 14-26.	5.7	136
197	Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Materials Characterization, 2016, 112, 1-10.	1.9	47
198	Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte. ACS Biomaterials Science and Engineering, 2016, 2, 56-64.	2.6	24
199	Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials, 2016, 76, 250-260.	5.7	73
200	On the surface properties of biodegrading magnesium and its alloys: a survey and discussion. Surface Topography: Metrology and Properties, 2016, 4, 014005.	0.9	2
201	Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10, 134-146.	1.1	27
202	In vitro analysis of Mg scaffolds coated with polymer/hydrogel/ceramic composite layers. Surface and Coatings Technology, 2016, 301, 126-132.	2.2	10
203	<i>In vitro</i> corrosion of pure magnesium and AZ91 alloy—the influence of thin electrolyte layer thickness. International Journal of Energy Production and Management, 2016, 3, 49-56.	1.9	10

#	Article	IF	CITATIONS
204	Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 208, 39-46.	1.7	75
205	Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy. Applied Surface Science, 2016, 388, 148-154.	3.1	15
206	Degradable Biomaterials for Temporary Medical Implants. Advanced Structured Materials, 2016, , 127-160.	0.3	10
207	Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles. Acta Biomaterialia, 2016, 35, 341-356.	4.1	63
208	Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation. Applied Surface Science, 2016, 388, 114-119.	3.1	39
209	Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design. Journal of Materials Chemistry B, 2016, 4, 2498-2511.	2.9	79
210	Improvement of corrosion resistance and biocompatibility of biodegradable metallic vascular stent via plasma allylamine polymerized coating. Materials and Design, 2016, 96, 341-349.	3.3	28
211	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
212	Enhanced osteoblast differentiation and osseointegration of a bio-inspired HA nanorod patterned pore-sealed MgO bilayer coating on magnesium. Journal of Materials Chemistry B, 2016, 4, 683-693.	2.9	28
213	Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corrosion Science, 2016, 104, 277-289.	3.0	79
214	Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83, 127-141.	5.7	1,492
215	Microstructures and corrosion behavior of biodegradable Mg–6Gd–xZn–0.4Zr alloys with and without long period stacking ordered structure. Corrosion Science, 2016, 105, 68-77.	3.0	64
216	Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Materials and Design, 2016, 94, 95-104.	3.3	214
217	Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Materials Science and Engineering C, 2016, 59, 1100-1109.	3.8	64
218	Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surface and Coatings Technology, 2016, 301, 36-41.	2.2	54
219	Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review. Journal of Materials Science and Technology, 2016, 32, 815-826.	5.6	64
220	Influence of homogenization treatment on the degradation behavior of Zn–3 Mg alloy in simulated body fluid solution. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 615-619.	0.7	0
221	Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy. Materials Science and Engineering C, 2016, 58, 900-908.	3.8	59

#	Article	IF	CITATIONS
222	The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. Journal of Orthopaedic Translation, 2016, 5, 9-15.	1.9	102
223	Surface modifications through dealloying of Fe–Mn and Fe–Mn–Zn alloys developed to create tailorable, nanoporous, bioresorbable surfaces. Acta Materialia, 2016, 103, 115-127.	3.8	19
224	Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and inÂvitro corrosion behavior of biodegradable Zn–1.5Mg alloy. Journal of Alloys and Compounds, 2016, 664, 444-452.	2.8	162
225	Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corrosion Science, 2016, 102, 209-221.	3.0	86
226	Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Materials Science and Engineering C, 2016, 58, 24-35.	3.8	245
227	A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents. Annals of Biomedical Engineering, 2016, 44, 341-356.	1.3	64
228	Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Materials Letters, 2016, 162, 242-245.	1.3	141
229	Mg-based porous metals as cancellous bone analogous material: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231, 544-556.	0.7	5
230	Comprehensive study on the roles of released ions from biodegradable Mg-5Âwt% Ca-1Âwt% Zn alloy in bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2710-2724.	1.3	33
231	Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials. Journal of Biomaterials Applications, 2017, 31, 878-900.	1.2	61
232	The influence of buffer system and biological fluids on the degradation of magnesium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1490-1502.	1.6	15
233	Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation. Applied Surface Science, 2017, 403, 168-176.	3.1	24
234	In vitro corrosion behavior and cytocompatibility of pure Fe implanted with Ta. Surface and Coatings Technology, 2017, 320, 201-205.	2.2	31
235	Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Materials Science and Engineering C, 2017, 73, 736-742.	3.8	44
236	Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca 3 (PO 4) 2 /Mg-Zn composites prepared by powder metallurgy: the adding β-Ca 3 (PO 4) 2, hot extrusion and aging treatment. Materials Science and Engineering C, 2017, 74, 582-596.	3.8	46
237	Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 203-212.	1.5	70
238	Biological effect and molecular mechanism study of biomaterials based on proteomic research. Journal of Materials Science and Technology, 2017, 33, 607-615.	5.6	9
239	Low temperature thermal oxidation towards hafnium-coated magnesium alloy for biomedical application. Materials Letters, 2017, 190, 181-184.	1.3	10

#	Article	IF	CITATIONS
240	Biodegradable Metals as Bioactive Materials. Series in Bioengineering, 2017, , 77-98.	0.3	3
241	Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. International Materials Reviews, 2017, 62, 415-440.	9.4	124
242	A Comparison Study on the Degradation and Cytocompatibility of Mg-4Zn- <i>x</i> Sr Alloys in Direct Culture. ACS Biomaterials Science and Engineering, 2017, 3, 540-550.	2.6	20
243	Effects of MgO modified Î ² -TCP nanoparticles on the microstructure and properties of Î ² -TCP/Mg-Zn-Zr composites. Bioactive Materials, 2017, 2, 1-9.	8.6	31
244	The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone. Materials and Design, 2017, 122, 268-279.	3.3	34
245	Effects of calcium salts on microstructure and corrosion behavior of micro-arc oxidation coatings on Mg-2Zn-1Ca-0.8 Mn alloy. Materials Letters, 2017, 196, 42-45.	1.3	27
246	Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 219, 28-36.	1.7	11
247	Computational Modeling of the Mechanical Performance of a Magnesium Stent Undergoing Uniform and Pitting Corrosion in a Remodeling Artery. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.4	9
248	Bio-inspired immobilization of strontium substituted hydroxyapatite nanocrystals and alendronate on the surface of AZ31 magnesium alloy for osteoporotic fracture repair. Surface and Coatings Technology, 2017, 313, 381-390.	2.2	15
249	Macrophage phagocytosis of biomedical Mg alloy degradation products prepared by electrochemical method. Materials Science and Engineering C, 2017, 75, 1178-1183.	3.8	19
250	A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Materials Science and Engineering C, 2017, 75, 95-103.	3.8	61
251	The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application. Materials Science and Engineering C, 2017, 77, 690-697.	3.8	23
252	Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications. Materials Science and Engineering C, 2017, 77, 1170-1181.	3.8	197
253	Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Materials Science and Engineering C, 2017, 78, 88-95.	3.8	20
254	Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs. Materials Science and Engineering C, 2017, 78, 1155-1163.	3.8	40
255	Cytocompatibility, biofilm assembly and corrosion behavior of Mg-HAP composites processed by extrusion. Materials Science and Engineering C, 2017, 78, 667-673.	3.8	11
257	Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012004.	0.3	33
258	Continuously Grooved Stent Struts for Enhanced Endothelial Cell Seeding. CardioVascular and Interventional Radiology, 2017, 40, 1237-1245.	0.9	2

# 259	ARTICLE Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 182-191.	IF 1.5	CITATIONS
260	Understanding the influence of HEPES buffer concentration on the biodegradation of pure magnesium: An electrochemical study. Materials Chemistry and Physics, 2017, 197, 47-56.	2.0	20
261	Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017, 89, 92-193.	16.0	1,321
262	Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioactive Materials, 2017, 2, 53-62.	8.6	41
263	High-performance green semiconductor devices: materials, designs, and fabrication. Semiconductor Science and Technology, 2017, 32, 063002.	1.0	18
264	In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties. Journal of Materials Chemistry B, 2017, 5, 4162-4176.	2.9	24
265	Bioresorbable Fe–Mn and Fe–Mn–HA Materials for Orthopedic Implantation: Enhancing Degradation through Porosity Control. Advanced Healthcare Materials, 2017, 6, 1700120.	3.9	33
266	Borate's effects on coatings by PEO on AZ91D alloy. Surface Engineering, 2017, 33, 773-778.	1.1	10
267	Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys. Materials Technology, 2017, 32, 399-408.	1.5	24
268	Materials for 3D printing in medicine. , 2017, , 43-71.		23
269	In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2017, 27, 1081-1086.	1.7	47
270	Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). Journal of Manufacturing Processes, 2017, 28, 197-208.	2.8	49
271	Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition. Materials Letters, 2017, 205, 87-89.	1.3	29
272	Degradable, absorbable or resorbable—what is the best grammatical modifier for an implant that is eventually absorbed by the body?. Science China Materials, 2017, 60, 377-391.	3.5	51
273	Preparation and characterization of a calcium–phosphate–silicon coating on a Mg–Zn–Ca alloy via two-step micro-arc oxidation. Physical Chemistry Chemical Physics, 2017, 19, 15110-15119.	1.3	22
274	Characterisation and thermodynamic calculations of biodegradable Mg–2.2Zn–3.7Ce and Mg–Ca–2.2Zn–3.7Ce alloys. Materials Science and Technology, 2017, 33, 1333-1345.	0.8	7
275	Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 2017, 58, 515-526.	4.1	80
276	Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy. Materials Science and Engineering C, 2017, 80, 335-345.	3.8	62

#	Article	IF	CITATIONS
277	Tailoring the electrochemical degradation of iron protected with polypyrrole films for biodegradable cardiovascular stents. Electrochimica Acta, 2017, 245, 327-336.	2.6	15
278	Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic proteinâ€⊋ on magnesium alloys for enhanced corrosion resistance and bone regeneration. Journal of Biomedical Materials Research - Part A, 2017, 105, 2750-2761.	2.1	30
279	Preparation and characterization of iron/β-tricalcium phosphate bio-cermets for load-bearing bone substitutes. Ceramics International, 2017, 43, 8348-8355.	2.3	16
280	Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Materials Science and Engineering C, 2017, 76, 301-312.	3.8	171
281	Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Materials Science and Engineering C, 2017, 77, 1135-1144.	3.8	31
282	Microstructure and corrosion study of porous Mg–Zn–Ca alloy in simulated body fluid. Materials Research Express, 2017, 4, 034006.	0.8	15
283	Osteosynthesis of partial rib osteotomy in a miniature pig model using human standard-sized magnesium plate/screw systems: Effect of cyclic deformation on implant integrity and bone healing. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 862-871.	0.7	20
287	Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomaterialia, 2017, 54, 454-468.	4.1	110
288	Selective laser melting of pure Zn with high density for biodegradable implant manufacturing. Additive Manufacturing, 2017, 15, 20-28.	1.7	69
289	Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing. Rapid Prototyping Journal, 2017, 23, 514-523.	1.6	87
290	Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Composites Science and Technology, 2017, 142, 180-188.	3.8	34
291	Effects of Load on Dry Sliding Wear Behavior of Mg–Gd–Zn–Zr Alloys. Journal of Materials Science and Technology, 2017, 33, 645-651.	5.6	39
292	Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration. Journal of Materials Science: Materials in Medicine, 2017, 28, 19.	1.7	21
293	Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomaterialia, 2017, 50, 546-555.	4.1	39
294	Rapamycin-loaded nanoporous α-Fe ₂ O ₃ as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. Journal of Materials Chemistry B, 2017, 5, 1182-1194.	2.9	19
295	Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants. Materials and Design, 2017, 117, 84-94.	3.3	164
296	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	3.9	385
297	Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance. Corrosion Science, 2017, 129, 214-225.	3.0	37

#	Article	IF	CITATIONS
298	The Effects of Static and Dynamic Loading on Biodegradable Magnesium Pins In Vitro and In Vivo. Scientific Reports, 2017, 7, 14710.	1.6	23
299	Apatite formation and weight loss study in EDMed perforated AZ31 Mg-alloy. Journal of Magnesium and Alloys, 2017, 5, 362-367.	5.5	18
300	Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. Journal of Materials Science: Materials in Medicine, 2017, 28, 174.	1.7	45
301	Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia, 2017, 64, 421-436.	4.1	81
302	Microfabricated Drug Delivery Devices: Design, Fabrication, and Applications. Advanced Functional Materials, 2017, 27, 1703606.	7.8	43
303	Biodegradability and antibacterial properties of MAO coatings formed on Mg-Sr-Ca alloys in an electrolyte containing Ag doped hydroxyapatite. Thin Solid Films, 2017, 644, 92-98.	0.8	36
304	Degradation and Corrosion Behavior of Electrospun PHBV Coated AZ-31 Magnesium Alloy for Biodegradable Implant Applications. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	1.2	6
305	Fabrication and characterisation of novel ZnO/MWCNT duplex coating deposited on Mg alloy by PVD coupled with dip-coating techniques. Journal of Alloys and Compounds, 2017, 728, 159-168.	2.8	27
306	In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 1228-1236.	0.8	25
307	Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid. Journal of Alloys and Compounds, 2017, 728, 37-46.	2.8	52
308	Influence of electropolymerization temperature on corrosion, morphological and electrical properties of PPy doped with salicylate on iron. Surface and Coatings Technology, 2017, 328, 248-255.	2.2	13
309	Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants. Materials Science and Engineering C, 2017, 81, 97-103.	3.8	30
310	Pseudoelastic and corrosion behaviors of Mg ZEK100 alloy under cyclic loading. International Journal of Fatigue, 2017, 103, 466-477.	2.8	9
311	Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 214-226.	2.6	24
312	Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants. Journal of Materials Science: Materials in Medicine, 2017, 28, 130.	1.7	25
313	Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. Journal of Alloys and Compounds, 2017, 724, 1046-1056.	2.8	37
314	Synthesis of a novel nanostructured zinc oxide/baghdadite coating on Mg alloy for biomedical application: In-vitro degradation behavior and antibacterial activities. Ceramics International, 2017, 43, 14842-14850.	2.3	46
315	Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. Journal of King Saud University - Science, 2017, 29, 455-461.	1.6	58

#	Article	IF	CITATIONS
316	Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications. Materials Science and Engineering C, 2017, 81, 511-521.	3.8	24
317	<scp>S</scp> hort and long gap peripheral nerve repair with magnesium metal filaments. Journal of Biomedical Materials Research - Part A, 2017, 105, 3148-3158.	2.1	30
318	Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomaterialia, 2017, 64, 269-278.	4.1	23
319	Anodization of magnesium for biomedical applications – Processing, characterization, degradation and cytocompatibility. Acta Biomaterialia, 2017, 62, 397-417.	4.1	57
320	Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 2017, 145, 92-105.	5.7	257
321	Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomaterialia, 2017, 62, 418-433.	4.1	65
322	Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. Journal of Alloys and Compounds, 2017, 726, 1072-1084.	2.8	42
323	Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Applied Materials & Interfaces, 2017, 9, 27453-27461.	4.0	162
324	Characterization of the protective layer formed on zinc in whole blood. Electrochimica Acta, 2017, 258, 1476-1483.	2.6	24
325	Degradation of Bioresorbable Mg–4Zn–1Sr Intramedullary Pins and Associated Biological Responses in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 44332-44355.	4.0	34
326	High performance transient organic solar cells on biodegradable polyvinyl alcohol composite substrates. RSC Advances, 2017, 7, 52930-52937.	1.7	22
327	Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications. Scientific Reports, 2017, 7, 15605.	1.6	50
328	In vivo study of microarc oxidation coated biodegradable magnesium plate to heal bone fracture defect of 3 mm width. Colloids and Surfaces B: Biointerfaces, 2017, 158, 147-156.	2.5	30
329	Bioceramic Coatings on Magnesium Alloys. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	1.2	8
330	Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. International Journal of Energy Production and Management, 2017, 4, 129-137.	1.9	94
331	Mechanical characteristics of biodegradable magnesium matrix composites: A review. Journal of Magnesium and Alloys, 2017, 5, 189-201.	5.5	143
332	In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress. Acta Biomaterialia, 2017, 48, 468-478.	4.1	57
333	Microstructure and mechanical characterization of cast Mg-Ca-Si alloys. Journal of Alloys and Compounds, 2017, 694, 767-776.	2.8	11

#	Article	IF	CITATIONS
334	Dissolvable tattoo sensors: from science fiction to a viable technology. Physica Scripta, 2017, 92, 013001.	1.2	20
335	Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. Materials Science and Engineering C, 2017, 72, 18-25.	3.8	41
336	The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys – ZK40xSr. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 187-200.	1.5	31
337	Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys. Acta Biomaterialia, 2017, 48, 499-520.	4.1	74
338	Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Acta Biomaterialia, 2017, 48, 541-550.	4.1	74
339	Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. Corrosion Science, 2017, 114, 45-56.	3.0	106
340	Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties. Materials Letters, 2017, 186, 330-333.	1.3	58
341	Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy. Colloids and Surfaces B: Biointerfaces, 2017, 150, 288-296.	2.5	12
342	Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 117-126.	1.5	7
343	Effect of Solution Pretreatment on Homogeneity and Corrosion Resistance of Biomedical Mg–Zn–Ca Alloy Processed by High Pressure Torsion. Advanced Engineering Materials, 2017, 19, 1600326.	1.6	9
344	Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112, 287-302.	5.7	674
345	Effect of high repetition laser shock peening on biocompatibility and corrosion resistance of magnesium. Optics and Laser Technology, 2017, 88, 75-84.	2.2	39
346	Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. Materials Science and Engineering C, 2017, 71, 25-34.	3.8	37
347	Resorbable bone fixation alloys, forming, and post-fabrication treatments. Materials Science and Engineering C, 2017, 70, 870-888.	3.8	85
348	Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. Journal of Alloys and Compounds, 2017, 693, 1277-1289.	2.8	82
349	Microwave aqueous synthesis of hydroxyapatite bilayer coating on magnesium alloy for orthopedic application. Chemical Engineering Journal, 2017, 309, 278-287.	6.6	62
350	Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 2017, 312, 79-98.	6.6	514
351	Preparation of Mg/Nanoâ€HA Composites by Spark Plasma Sintering Method and Evaluation of Different Milling Time Effects on Their Microhardness, Corrosion Resistance, and Biocompatibility. Advanced Engineering Materials, 2017, 19, 1600294.	1.6	11

#		IF	CITATIONS
352	Preparation of poly(lactic acid)/sintered hydroxyapatite composite biomaterial by supercritical CO2. Bio-Medical Materials and Engineering, 2017, 29, 67-79.	0.4	10
353	Wear behaviour of hot rolled AZ31B magnesium alloy as candidate for biodegradable implant material. Transactions of Nonferrous Metals Society of China, 2017, 27, 2598-2606.	1.7	25
354	Bone biomaterials and interactions with stem cells. Bone Research, 2017, 5, 17059.	5.4	503
355	Development of Biodegradable Zn-Based Medical Implants. , 2017, , 311-329.		2
356	Finite element modeling and analysis of implant scaffolds. , 2017, , .		5
357	Biodegradable Metals for Orthopedic Applications. , 2017, , 275-309.		5
358	Calcium Phosphate Coatings for Metallic Orthopedic Biomaterials. , 2017, , 167-183.		3
359	Biodegradation of Pure Magnesium and Bone Tissue Reaction in Rabbit Femur 1 Year Results of 3D Micro-CT Monitoring and Histological Observation. Materials Transactions, 2017, 58, 118-122.	0.4	2
360	Biodegradable Mg/HA/TiO2 Nanocomposites Coated with MgO and Si/MgO for Orthopedic Applications: A Study on the Corrosion, Surface Characterization, and Biocompatability. Coatings, 2017, 7, 154.	1.2	14
361	Monitoring degradation products and metal ions inÂvivo. , 2017, , 19-44.		9
362	Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy. Materials, 2017, 10, 55.	1.3	23
363	The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals, 2017, 7, 402.	1.0	208
364	Rapid Degradation of Azo Dyes by Melt-Spun Mg-Zn-Ca Metallic Glass in Artificial Seawater. Metals, 2017, 7, 485.	1.0	12
365	Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs. Nanomaterials, 2017, 7, 155.	1.9	2
366	Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical Failure. Metals, 2017, 7, 252.	1.0	93
367	Influence of Electrolyte Composition (Simulated Body Fluid vs. Dulbecco's Modified Eagle's Medium), Temperature, and Solution Flow on the Biocorrosion Behavior of Commercially Pure Mg. Corrosion, 2017, 73, 1413-1422.	0.5	20
368	Titanium dioxide coatings on magnesium alloys for biomaterials: A review. DYNA (Colombia), 2017, 84, 261-270.	0.2	17
369	Influence of Zn Content on Microstructure and Tensile Properties of Mg–Zn–Y–Nd Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 351-361.	1.5	26

#	Article	IF	CITATIONS
370	Regulating Degradation Behavior by Incorporating Mesoporous Silica for Mg Bone Implants. ACS Biomaterials Science and Engineering, 2018, 4, 1046-1054.	2.6	67
371	Microstructure and enhanced corrosion resistance of biodegradable Mg–Gd–Cu–Zr alloy by solution treatment. Materials Technology, 2018, 33, 301-310.	1.5	13
372	Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies. Journal of Materials Science and Technology, 2018, 34, 1618-1627.	5.6	137
373	Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method. , 2018, , 1-26.		Ο
374	Improving the Degradation Resistance and Surface Biomineralization Ability of Calcium Phosphate Coatings on a Biodegradable Magnesium Alloy via a Sol-Gel Spin Coating Method. Journal of the Electrochemical Society, 2018, 165, C155-C161.	1.3	26
375	Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1374-1388.	1.3	18
376	Review of magnesium-based biomaterials and their applications. Journal of Magnesium and Alloys, 2018, 6, 23-43.	5.5	478
377	Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials. Journal of Materials Science: Materials in Medicine, 2018, 29, 44.	1.7	20
378	Fabrication of biodegradable materials with high strength by grain refinement of Mg–0.3â€ ⁻ at.% Ca alloys. Materials Letters, 2018, 223, 65-68.	1.3	44
379	Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 285-292.	1.5	27
380	Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 246-257.	1.5	36
381	The effects of laser shock peening on the mechanical properties and biomedical behavior of AZ31B magnesium alloy. Surface and Coatings Technology, 2018, 339, 48-56.	2.2	78
382	Synthesis of biodegradable Zn-based scaffolds using NaCl templates: Relationship between porosity, compressive properties and degradation behavior. Materials Characterization, 2018, 137, 162-169.	1.9	56
383	Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering. Biomedical Materials (Bristol), 2018, 13, 035013.	1.7	30
384	Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. Journal of Alloys and Compounds, 2018, 745, 111-120.	2.8	37
385	3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 608-616.	2.6	105
386	Design of Fe–Mn–Ag Alloys as Potential Candidates for Biodegradable Metals. Acta Metallurgica Sinica (English Letters), 2018, 31, 584-590.	1.5	36
387	In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal. Science China Materials, 2018, 61, 619-628.	3.5	27

#	Article	IF	CITATIONS
388	Initial organ distribution and biological safety of Mg ²⁺ released from a Mg alloy implant. Biomedical Materials (Bristol), 2018, 13, 035006.	1.7	5
389	Properties of ultrafine-grained Mg-based composites modified by addition of silver and hydroxyapatite. Materials Science and Technology, 2018, 34, 1096-1103.	0.8	9
390	Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6Âwt.% Zn Scaffolds for Bone Tissue Engineering. Journal of Materials Engineering and Performance, 2018, 27, 970-984.	1.2	25
391	High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Acta Biomaterialia, 2018, 70, 293-303.	4.1	28
392	Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Science China Materials, 2018, 61, 475-500.	3.5	50
393	Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys. Biointerphases, 2018, 13, 011003.	0.6	10
394	Effects of scandium addition on biocompatibility of biodegradable Mg–1.5Zn–0.6Zr alloy. Materials Letters, 2018, 215, 200-202.	1.3	27
395	Features of in vitro and in vivo behaviour of magnesium alloy WE43. Materials Letters, 2018, 215, 308-311.	1.3	25
396	In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Science China Materials, 2018, 61, 501-515.	3.5	28
397	S and B microalloying of biodegradable Fe-30Mn-1C - Effects on microstructure, tensile properties, in vitro degradation and cytotoxicity. Materials and Design, 2018, 142, 22-35.	3.3	28
398	Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02Âwt%Mg alloy wires during room-temperature drawing process. Journal of Alloys and Compounds, 2018, 740, 949-957.	2.8	68
399	In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Interfaces, 2018, 10, 4394-4408.	4.0	82
400	Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1006-1013.	1.1	39
401	Processing and properties of magnesium alloy micro-tubes for biodegradable vascular stents. Materials Science and Engineering C, 2018, 90, 504-513.	3.8	49
402	Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications. Archives of Civil and Mechanical Engineering, 2018, 18, 1288-1299.	1.9	17
403	Biofunctionization of biodegradable magnesium alloy to improve the in vitro corrosion resistance and biocompatibility. Applied Surface Science, 2018, 451, 20-31.	3.1	38
404	Effects of Li addition on the corrosion behaviour and biocompatibility of Mg(Li)–Zn–Ca metallic glasses. Journal of Materials Science, 2018, 53, 9928-9942.	1.7	7
405	Effect of Sr on the microstructure and biodegradable behavior of Mg–Zn–Ca-Mn alloys for implant application. Materials and Design, 2018, 153, 308-316.	3.3	52

#	ARTICLE Mechanical and corrosion properties of partially degradable bone screws made of pure iron and	IF	Citations
400	stainless steel 316L by friction welding. Science China Materials, 2018, 61, 593-606. Zinc-based alloys for degradable vascular stent applications. Acta Biomaterialia, 2018, 71, 1-23.	4.1	324
408	Biomimetic fluoridated hydroxyapatite coating with micron/nano-topography on magnesium alloy for orthopaedic application. Chemical Engineering Journal, 2018, 339, 7-13.	6.6	32
409	Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. Journal of Materials Processing Technology, 2018, 258, 128-137.	3.1	98
410	A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 51-60.	1.5	103
411	Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy. Materials Letters, 2018, 217, 227-230.	1.3	25
412	In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomaterialia, 2018, 71, 200-214.	4.1	197
413	Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1887-1895.	2.1	23
414	Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Materials Science and Engineering C, 2018, 88, 88-94.	3.8	64
415	Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt % Al) through mechanical and <i>in vivo</i> testing for stent applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 245-258.	1.6	93
416	In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robotics and Computer-Integrated Manufacturing, 2018, 49, 229-239.	6.1	168
417	Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials. , 2018, , 225-280.		9
418	Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold. Materials and Design, 2018, 139, 212-221.	3.3	40
419	Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study. Bioactive Materials, 2018, 3, 110-117.	8.6	25
420	Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: An in vitro and in vivo study. Acta Biomaterialia, 2018, 65, 486-500.	4.1	99
421	Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg-Zn-Mn-xNd in Kokubo's solution. Journal of Alloys and Compounds, 2018, 730, 458-470.	2.8	32
422	In vitro characterization of ZM21 mini-tube used for biodegradable metallic stent. Materials Letters, 2018, 211, 261-265.	1.3	7
423	Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Materials Chemistry and Physics, 2018, 203, 249-258.	2.0	46

#	Article	IF	CITATIONS
424	Bio-corrosion behavior and mechanical characteristics of magnesium-titania-hydroxyapatite nanocomposites coated by magnesium-oxide flakes and silicon for use as resorbable bone fixation material. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 360-374.	1.5	16
425	Corrosion studies on Feâ€30Mnâ€1C alloy in chlorideâ€containing solutions with view to biomedical application. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 167-177.	0.8	20
426	An <i>in vitro</i> and <i>in vivo</i> characterization of fine <scp>WE43B</scp> magnesium wire with varied thermomechanical processing conditions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1987-1997.	1.6	18
427	Challenges and opportunities for biodegradable magnesium alloy implants. Materials Technology, 2018, 33, 153-172.	1.5	108
428	Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 90-105.	1.5	146
429	The influence of two common sterilization techniques on the corrosion of Mg and its alloys for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1907-1917.	1.6	16
430	A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties. Surface and Coatings Technology, 2018, 334, 84-89.	2.2	31
431	Additively manufactured biodegradable porous magnesium. Acta Biomaterialia, 2018, 67, 378-392.	4.1	273
432	Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment. Materials Science and Engineering C, 2018, 84, 263-270.	3.8	29
433	Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials, 2018, 157, 86-97.	5.7	79
434	In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surface and Coatings Technology, 2018, 334, 450-460.	2.2	101
435	Biodegradation mechanisms of selective laser-melted Mg– <i>x</i> Al–Zn alloy: grain size and intermetallic phase. Virtual and Physical Prototyping, 2018, 13, 59-69.	5.3	30
436	SYNERGISTIC EFFECTS OF WEAR AND CORROSION ON MASS LOSS OF GZ62K ALLOY IN SIMULATED BODY FLUID FOR ORTHOPEDIC APPLICATION. Surface Review and Letters, 2018, 25, 1950021.	0.5	3
437	Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys. Journal of Materials Science and Technology, 2018, 34, 1008-1015.	5.6	77
438	Porous Metals in Orthopedics. , 2018, , 281-301.		3
439	Review of Existing Biomaterials—Method of Material Selection for Specific Applications in Orthopedics. , 2018, , 47-99.		12
440	A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 1101-1111.	3.1	65
441	Titania-carbon nanotubes nanocomposite coating on Mg alloy: Microstructural characterisation and mechanical properties. Materials Science and Technology, 2018, 34, 378-387.	0.8	5

#	Article	IF	CITATIONS
442	Study of dynamic degradation behaviour of porous magnesium under physiological environment of human cancellous bone. Corrosion Science, 2018, 131, 45-56.	3.0	27
443	Surface functionalization of biomaterials by plasma and ion beam. Surface and Coatings Technology, 2018, 336, 2-8.	2.2	22
444	In vitro degradation and biocompatibility of Mg-Li-Ca alloys—the influence of Li content. Science China Materials, 2018, 61, 607-618.	3.5	38
445	Structural Characterization of Mg-0.5Ca-xY Biodegradable Alloys. Key Engineering Materials, 2018, 782, 129-135.	0.4	7
446	Investigation on the Anticorrosion Property of the MnCaP Coating on a Mg-Zn-Ca Alloy. Materials Science Forum, 0, 939, 83-88.	0.3	0
447	Study of the Structure Formation during Compression for Selecting Multiaxial Deformation Conditions for an Mg–Ca Alloy. Russian Metallurgy (Metally), 2018, 2018, 1046-1058.	0.1	2
448	Mechanical Properties and Microstructure Evolution of Mg-6 wt % Zn Alloy during Equal-Channel Angular Pressing. Metals, 2018, 8, 841.	1.0	14
449	Osteoimmunomodulation, osseointegration, and <i>in vivo</i> mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomaterials Science, 2018, 6, 3202-3218.	2.6	68
450	Protecting electrochemical degradation of pure iron using zinc phosphate coating for biodegradable implant applications. New Journal of Chemistry, 2018, 42, 18458-18468.	1.4	18
451	Activation of persulfates by ferrocene–MIL-101(Fe) heterogeneous catalyst for degradation of bisphenol A. RSC Advances, 2018, 8, 36477-36483.	1.7	33
452	Strontium-doped Hydroxyapatite Coatings Deposited on Mg-4Zn Alloy: Physical-chemical Properties and in vitro Cell Response. Rare Metal Materials and Engineering, 2018, 47, 2371-2380.	0.8	10
453	Bioactivity, in-vitro corrosion behavior, and antibacterial activity of silver–zeolites doped hydroxyapatite coating on magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 1553-1562.	1.7	24
454	Study on Corrosion of Iron-Zinc Oxide Particulate Composites Produced by a Spark Plasma Sintering in Hanks' Solution. International Journal of Electrochemical Science, 2018, 13, 11839-11852.	0.5	3
455	Preparation and corrosion resistance of superhydrophobic coatings on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 2287-2293.	1.7	30
456	Microstructure and Properties of Mg-3Zn-0.2Ca Alloy for Biomedical Application. Rare Metal Materials and Engineering, 2018, 47, 93-98.	0.8	18
457	The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings. Materials Today: Proceedings, 2018, 5, 15677-15685.	0.9	25
458	Large strain extrusion machining of magnesium alloys for biomedical applications. Procedia CIRP, 2018, 71, 105-110.	1.0	15
459	Corrosion and Biocompatibility Improvement of HA-Coated Magnesium-Based Alloys as Bone Implant Materials. , 2018, , .		1

#	Article	IF	CITATIONS
460	Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties. Journal of the Electrochemical Society, 2018, 165, C962-C972.	1.3	38
461	Study on the in Vitro Degradation Behavior of Commercial Zn–4%Al–Sr Alloy for Biomedical Applications. International Journal of Electrochemical Science, 2018, 13, 1640-1655.	0.5	10
462	Effects of the Intermetallic Phases on Microstructure and Properties of Biodegradable Magnesium Matrix and Zinc Matrix Prepared by Powder Metallurgy. Materials Transactions, 2018, 59, 1837-1844.	0.4	8
463	Biodegradable Metal Heart Stent: Characteristics, Material Options and Preliminary Testing Method. , 2018, , .		0
464	Influence of cold rolling on inÂvitro cytotoxicity and electrochemical behaviour of an Fe-Mn-C biodegradable alloy in physiological solutions. Heliyon, 2018, 4, e00926.	1.4	9
465	Some Tribological Aspects of Mg-0.5Ca-xY Biodegradable Materials. Key Engineering Materials, 0, 782, 136-141.	0.4	1
466	Corrosion protection of AZ91D magnesium alloy by a cerium-molybdenum coating-The effect of citric acid as an additive. Journal of Magnesium and Alloys, 2018, 6, 356-365.	5.5	34
467	Predicting the Biodegradation of Magnesium Alloy Implants: Modeling, Parameter Identification, and Validation. Bioengineering, 2018, 5, 105.	1.6	24
468	Effects of Ag, Nd, and Yb on the Microstructures and Mechanical Properties of Mg‒Zn‒Ca Metallic Glasses. Metals, 2018, 8, 856.	1.0	7
469	Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6553-6560.	1.1	11
470	In-situ odd random phase electrochemical impedance spectroscopy study on the electropolymerization of pyrrole on iron in the presence of sodium salicylate – The influence of the monomer concentration. Electrochimica Acta, 2018, 290, 520-532.	2.6	8
471	Modeling and Experimental Studies of Coating Delamination of Biodegradable Magnesium Alloy Cardiovascular Stents. ACS Biomaterials Science and Engineering, 2018, 4, 3864-3873.	2.6	31
472	Degradation and In Vivo Response of Hydroxyapatite-Coated Mg Alloy. Coatings, 2018, 8, 375.	1.2	25
473	Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloy. Metals, 2018, 8, 541.	1.0	15
474	The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications. Bioactive Materials, 2018, 3, 448-454.	8.6	19
475	Transgenic zebrafish model for quantification and visualization of tissue toxicity caused by alloying elements in newly developed biodegradable metal. Scientific Reports, 2018, 8, 13818.	1.6	7
476	Zirconium ions integrated in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a metalorganic-like complex coating on biodegradable magnesium for corrosion control. Corrosion Science, 2018, 144, 277-287.	3.0	29
477	Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: The effects of PLGA. Materials and Design, 2018, 160, 203-217.	3.3	23

#	Article	IF	CITATIONS
478	Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Materials and Design, 2018, 160, 442-454.	3.3	48
479	Nanostructure coated AZ31 magnesium cylindrical mesh cage for potential long bone segmental defect repair applications. Colloids and Surfaces B: Biointerfaces, 2018, 172, 690-698.	2.5	15
480	Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections. Metals, 2018, 8, 532.	1.0	60
481	In Vitro Corrosion and Antibacterial Performance of Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy: Effects of Tannic Acid. Journal of the Electrochemical Society, 2018, 165, C821-C829.	1.3	38
482	Ab – initio study of rare earth magnesium alloy: TbMg. AIP Conference Proceedings, 2018, , .	0.3	0
483	Improved biodegradability of Fe–Mn alloy after modification of surface chemistry and topography by a laser ablation. Applied Surface Science, 2018, 453, 383-393.	3.1	35
484	Updates on the research and development of absorbable metals for biomedical applications. Progress in Biomaterials, 2018, 7, 93-110.	1.8	182
485	Effect of zirconium microaddition on the microstructure and mechanical properties of Zn-Zr alloys. Materials Characterization, 2018, 142, 187-194.	1.9	59
486	Viewpoint - Understanding Mg corrosion in the body for biodegradable medical implants. Scripta Materialia, 2018, 154, 92-100.	2.6	156
487	Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology. Thin Solid Films, 2018, 660, 120-160.	0.8	27
488	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1, 314-321.	13.1	469
489	Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties. Materials and Design, 2018, 155, 36-45.	3.3	114
490	In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457, 49-58.	3.1	57
491	Microstructure and mechanical property of biodegradable Mg–1.5Zn–0.6Zr alloy with varying contents of scandium. Materials Letters, 2018, 229, 60-63.	1.3	6
492	Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. Advanced Materials, 2018, 30, e1707624.	11.1	133
493	Structure and Corrosion-Electrochemical Behavior of Bioresorbable Alloys Based on the Fe–Mn System. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 469-476.	0.3	6
494	Self-repairing capability of magnesium alloy during the plasma electrolytic oxidation process. Journal of Alloys and Compounds, 2018, 766, 88-94.	2.8	14
495	In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy. Scanning, 2018, 2018, 1-9	0.7	4

#	Article	IF	CITATIONS
496	Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy. Journal of Materials Science, 2018, 53, 14075-14086.	1.7	14
497	Evolution of the microstructure and fracture characteristics of a Mg-Nd-Zn-Zr-Mn alloy through heat treatment and extrusion. Journal of Alloys and Compounds, 2018, 765, 470-479.	2.8	18
498	Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 240-249.	1.5	21
499	Tantalum nitride films for corrosion protection of biomedical Mg-Y-RE alloy. Journal of Alloys and Compounds, 2018, 764, 947-958.	2.8	19
500	Degradable metallic biomaterials for cardiovascular applications. , 2018, , 285-298.		6
501	Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.%Mn alloy. Journal of Alloys and Compounds, 2018, 768, 166-175.	2.8	15
502	Additively manufactured biodegradable porous iron. Acta Biomaterialia, 2018, 77, 380-393.	4.1	185
503	Study of sintering on Mg-Zn-Ca alloy system. AIP Conference Proceedings, 2018, , .	0.3	2
504	Structure, Mechanical Properties and Corrosion Resistance of MgCa5 and MgCa5Zn1 Alloys after Plastic Deformation. Solid State Phenomena, 0, 275, 124-133.	0.3	0
505	Characterization of Hydroxyapatite Coated Mg for Biomedical Applications. MRS Advances, 2018, 3, 2385-2389.	0.5	3
506	Bio-Functional Design, Application and Trends in Metallic Biomaterials. International Journal of Molecular Sciences, 2018, 19, 24.	1.8	46
507	Mechanical Characteristics, In Vitro Degradation, Cytotoxicity, and Antibacterial Evaluation of Zn-4.0Ag Alloy as a Biodegradable Material. International Journal of Molecular Sciences, 2018, 19, 755.	1.8	88
508	Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys. Materials, 2018, 11, 227.	1.3	11
509	Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys. Materials, 2018, 11, 551.	1.3	19
510	The Work Softening Behavior of Pure Mg Wire during Cold Drawing. Materials, 2018, 11, 602.	1.3	11
511	Biodegradable Metallic Wires in Dental and Orthopedic Applications: A Review. Metals, 2018, 8, 212.	1.0	33
512	An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications. Metals, 2018, 8, 499.	1.0	30
513	Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite. Bioelectrochemistry, 2018, 124, 93-104.	2.4	9

#	Article	IF	CITATIONS
514	Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys. Virtual and Physical Prototyping, 2018, 13, 292-300.	5.3	17
515	Bioabsorbable metallic stents. , 2018, , 99-134.		6
516	In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris. Frontiers of Materials Science, 2018, 12, 184-197.	1.1	32
517	Machining-induced surface transformations of magnesium alloys to enhance corrosion resistance in human-like environment. CIRP Annals - Manufacturing Technology, 2018, 67, 579-582.	1.7	26
518	In vitro degradation behavior and cytocompatibility of Mg-6Zn-Mn alloy. Materials Letters, 2018, 228, 77-80.	1.3	30
519	Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. Materials Science and Engineering C, 2018, 91, 163-178.	3.8	116
520	Corrosion protection of AZ31 alloy and constrained bacterial adhesion mediated by a polymeric coating obtained from a phytocompound. Colloids and Surfaces B: Biointerfaces, 2018, 172, 187-196.	2.5	22
521	Numerical simulation of the tissue differentiation and corrosion process of biodegradable magnesium implants during bone fracture healing. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 2223-2238.	0.9	11
522	Understanding the Corrosion of Mg and Mg Alloys. , 2018, , 515-534.		27
523	Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Annals of Biomedical Engineering, 2018, 46, 1229-1240.	1.3	25
524	Additively manufactured metals for medical applications. , 2018, , 261-309.		21
525	Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 201-208.	1.5	3
526	Corrosion in Biomedical Applications. , 2018, , 128-133.		2
527	Current status and outlook on the clinical translation of biodegradable metals. Materials Today, 2019, 23, 57-71.	8.3	271
528	Iron-Based Degradable Implants. , 2019, , 374-385.		4
529	Zinc-Based Degradable Implants. , 2019, , 478-487.		3
530	Hybrid fracture fixation systems developed for orthopaedic applications: A general review. Journal of Orthopaedic Translation, 2019, 16, 1-13.	1.9	72
531	Design of tailored biodegradable implants: The effect of voltage on electrodeposited calcium phosphate coatings on pure magnesium. Journal of the American Ceramic Society, 2019, 102, 123-135.	1.9	23

#	Article	IF	Citations
532	Enhanced Strength and Corrosion Resistance of Mg–2Zn–0.6Zr Alloy with Extrusion. Acta Metallurgica Sinica (English Letters), 2019, 32, 10-22.	1.5	16
533	Design Principles in Biomaterials and Scaffolds. , 2019, , 505-522.		6
534	Orthopedic Implants. , 2019, , 425-439.		47
535	In vitro and in vivo biocompatibility of Mg–Zn–Ca alloy operative clip. Bioactive Materials, 2019, 4, 236-244.	8.6	40
536	Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials, 2019, 12, 1775.	1.3	17
537	A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Acta Biomaterialia, 2019, 97, 671-680.	4.1	21
538	The Influence of the Co-Dopant Dexamethasone Phosphate on the Electrodeposition Process and Drug-Release Properties of Polypyrrole-Salicylate on Iron. Journal of the Electrochemical Society, 2019, 166, G148-G155.	1.3	1
539	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	3.2	94
540	Synthesis of new glassy Mg-Ca-Zn alloys with exceptionally low Young's Modulus: Exploring near eutectic compositions. Scripta Materialia, 2019, 173, 139-143.	2.6	7
541	Accelerated discovery and mechanical property characterization of bioresorbable amorphous alloys in the Mg–Zn–Ca and the Fe–Mg–Zn systems using high-throughput methods. Journal of Materials Chemistry B, 2019, 7, 5392-5400.	2.9	18
542	In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomaterialia, 2019, 97, 623-636.	4.1	17
543	In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials, 2019, 221, 119414.	5.7	81
544	Development of magnesium implants by application of conjointâ€based quality function deployment. Journal of Biomedical Materials Research - Part A, 2019, 107, 2814-2834.	2.1	6
545	Fabrication and properties of a biodegradable <i>β</i> -TCP/Zn–Mg bio-composite. Materials Research Express, 2019, 6, 0865i1.	0.8	6
546	Applications of Amorphous Alloy/Metallic Glass for Environmental and Energy Engineering, Electronics Engineering, and Biomedical Engineering Fields. , 2019, , 23-59.		0
547	Microstructure, corrosion behavior, and surface mechanical properties of Fe oxide coatings on biomedical ZK60 Mg alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 2292-2302.	0.8	7
548	Ultrasonic aqueous synthesis of corrosion resistant hydroxyapatite coating on magnesium alloys for the application of long-term implant. Ultrasonics Sonochemistry, 2019, 58, 104677.	3.8	17
549	Biodegradable nanocomposite Fe–Ag load-bearing scaffolds for bone healing. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 246-254.	1.5	13

#	Article	IF	CITATIONS
550	Surface and in vitro properties of Ag-deposited antibacterial and bioactive coatings on AZ31 Mg alloy. Surface and Coatings Technology, 2019, 375, 46-53.	2.2	37
551	Controlling magnesium corrosion and degradation-regulating mineralization using matrix GLA protein. Acta Biomaterialia, 2019, 98, 142-151.	4.1	8
552	Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomaterialia, 2019, 97, 1-22.	4.1	179
553	Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 2019, 97, 23-45.	4.1	170
554	Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts. Acta Biomaterialia, 2019, 98, 186-195.	4.1	12
555	A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials, 2019, 219, 119372.	5.7	84
556	Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Applied Surface Science, 2019, 494, 259-265.	3.1	26
557	Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability. Journal of Materials Science and Technology, 2019, 35, 2608-2617.	5.6	80
558	In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia, 2019, 97, 608-622.	4.1	86
559	3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. Journal of Drug Delivery Science and Technology, 2019, 53, 101131.	1.4	87
560	Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga. Materials Science and Engineering C, 2019, 104, 109926.	3.8	42
561	The Prospects for Biodegradable Zinc in Wound Closure Applications. Advanced Healthcare Materials, 2019, 8, e1900408.	3.9	53
562	Micro/Nanomaterialsâ€Augmented Hydrogen Therapy. Advanced Healthcare Materials, 2019, 8, e1900463.	3.9	59
563	Metallic Glasses for Biomedical Applications. , 2019, , 421-433.		2
564	In Vitro Biodegradation and Biocompatibility of Mg–HA-Based Composites for Orthopaedic Applications: A Review. Journal of the Indian Institute of Science, 2019, 99, 303-327.	0.9	19
565	Bioceramic enhances the degradation and bioactivity of iron bone implant. Materials Research Express, 2019, 6, 115401.	0.8	13
566	Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomaterials Science and Engineering, 2019, 5, 6541-6556.	2.6	15
567	The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers, 2019, 11, 1830.	2.0	19

#	Article	IF	CITATIONS
568	Bisphosphonateâ€Functionalized Scaffolds for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2019, 8, e1901073.	3.9	46
569	Systematical evolution on a Zn–Mg alloy potentially developed for biodegradable cardiovascular stents. Journal of Materials Science: Materials in Medicine, 2019, 30, 122.	1.7	17
570	Electrochemical characterization of ZnMg-Ca biodegradable alloy. Materials Today: Proceedings, 2019, 19, 1026-1031.	0.9	0
571	Corrosion degradation behavior of Mg–Zn–Zr bone screw in vitro and vivo. Materials Research Express, 2019, 6, 1165g2.	0.8	0
572	Optimization of ball-burnishing process parameters on surface roughness, micro hardness of Mg–Zn–Ca alloy and investigation of corrosion behavior. Materials Research Express, 2019, 6, 1065e8.	0.8	17
573	Compressive properties of biomedical open-cell Zn foam. Materials Research Express, 2019, 6, 115406.	0.8	3
574	Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material. Materials and Design, 2019, 183, 108154.	3.3	60
575	Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6Mg (wt.%) alloys. Journal of Alloys and Compounds, 2019, 811, 151987.	2.8	50
576	Review on nanocomposites fabricated by mechanical alloying. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 1047-1058.	2.4	38
577	Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials, 2019, 12, 2460.	1.3	26
578	Effect of Extrusion Temperature and Extrusion Ratio on Microstructure and Biodegradation Behavior of Mg-4.5Zn Binary Alloy. Jom, 2019, 71, 4705-4714.	0.9	5
579	Mechanical Properties of Magnetron Sputtered Free Standing Mg-Ag Alloy Films. Frontiers in Materials, 2019, 6, .	1.2	5
580	Ultrasonic Vibration Turning to Increase the Deposition Efficiency of a silica-based Sol-Gel Coating. Procedia Manufacturing, 2019, 34, 101-109.	1.9	5
581	Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank's solution. Corrosion Science, 2019, 161, 108185.	3.0	38
582	Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. Journal of Materials Chemistry B, 2019, 7, 7439-7459.	2.9	33
583	Mg-3Zn/HA Biodegradable Composites Synthesized via Spark Plasma Sintering for Temporary Orthopedic Implants. Journal of Materials Engineering and Performance, 2019, 28, 5702-5715.	1.2	22
584	A study on the impact behaviors of Mg wires/PLA composite for orthopedic implants. Journal of Materials Science, 2019, 54, 14545-14553.	1.7	5
585	Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-Ã¥kermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface and Coatings Technology, 2019, 377, 124898.	2.2	71

		CITATION RE	PORT	
#	Article		IF	CITATIONS
586	Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corros and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry and Engineering, 2019, 7	sion Resistance , 18114-18124.	3.2	50
587	Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaf containing silver for bone tissue engineering. Transactions of Nonferrous Metals Societ 2019, 29, 984-996.	folds y of China,	1.7	27
588	Bioactive glass coatings on metallic implants for biomedical applications. Bioactive Mar 261-270.	terials, 2019, 4,	8.6	130
589	Microstructure and mechanical properties of directionally solidified Mg–Zn alloy as a Materials Science and Technology, 2019, 35, 2165-2172.	biomaterial.	0.8	3
591	The influence of alloying and fabrication techniques on the mechanical properties, biod and biocompatibility of zinc: A comprehensive review. Acta Biomaterialia, 2019, 87, 1-4	egradability 10.	4.1	336
592	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Bi ACS Applied Materials & Interfaces, 2019, 11, 6809-6819.	omaterials.	4.0	111
593	Corrosion of Metallic Biomaterials: A Review. Materials, 2019, 12, 407.		1.3	497
594	Improved bio-acceptability of thermomechanically processed ZM21 magnesium alloy. N Research Express, 2019, 6, 056524.	Naterials	0.8	6
595	Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octaca Phosphate Nanowhiskers for Bone Regeneration. ACS Biomaterials Science and Engine 509-518.	lcium ering, 2019, 5,	2.6	31
596	Microstructure, mechanical properties and deformation mechanisms of an as-cast Mgâ alloy for stent applications. Journal of Materials Science and Technology, 2019, 35, 121	€"Zn–Y–Nd–Zr 1-1217.	5.6	34
597	Enhanced angiogenesis of biodegradable iron-doped octacalcium phosphate/poly(laction	z-co-glycolic) Tj ETQq0 0 0	rgßJ /Ove	rlgçk 10 Tf 5
598	Biodegradable metallic bone implants. Materials Chemistry Frontiers, 2019, 3, 544-562	÷	3.2	150
599	Preclinical Evaluation of a NovelÂSirolimus-Eluting Iron Bioresorbable Coronary Scaffold Coronary Artery at 6 Months. JACC: Cardiovascular Interventions, 2019, 12, 245-255.	in Porcine	1.1	31
600	Evaluation of Magnesium-based Medical Devices in Preclinical Studies: Challenges and Consider. Toxicologic Pathology, 2019, 47, 390-400.	Points to	0.9	16
601	Magnesium-Based Bioresorbable Stent Materials: Review of Reviews. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1	1.2	24
602	Absorbable metals for cardiovascular applications. , 2019, , 523-543.			1
603	Degradation and bioactivity studies of Mg membranes for dental surgery. Materials Let 100007.	ters: X, 2019, 2,	0.3	1
604	Degradation and biocompatibility of a series of strontium substituted hydroxyapatite c magnesium alloys. RSC Advances, 2019, 9, 15013-15021.	oatings on	1.7	20

ARTICLE IF CITATIONS Overview of metals and applications., 2019,, 3-29. 605 14 Biodegradable magnesium alloys., 2019, , 265-289. 606 Crevice corrosion – A newly observed mechanism of degradation in biomedical magnesium. Acta 607 4.1 28 Biomaterialia, 2019, 98, 152-159. <i>In vivo</i> clearable inorganic nanophotonic materials: designs, materials and applications. 608 Nanoscale, 2019, 11, 12742-12754. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, 609 3.3 45 microstructure and mechanical properties. Materials and Design, 2019, 181, 107937. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Additive Manufacturing, 2019, 28, 565-584. 1.7 The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta 611 4.1 101 Biomaterialia, 2019, 98, 246-255. Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and 2.8 93 properties. Journal of Alloys and Compounds, 2019, 798, 606-615. Absorbable Mg surgical tack: Proof of concept & amp; in situ fixation strength. Journal of the 613 1.5 16 Mechanical Behavior of Biomedical Materials, 2019, 97, 321-329. Degradation behaviors of Mg alloy wires/PLA composite in the consistent and staged dynamic 614 3.8 environments. Materials Science and Engineering C, 2019, 103, 109765. In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Colloids and Surfaces B: 615 2.5 29 Biointerfaces, 2019, 181, 349-359. Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank's solution. Corrosion 616 3.0 Science, 2019, 157, 284-294. Magnetron sputtered freestanding MgAg films with ultra-low corrosion rate. Acta Biomaterialia, 617 4.1 9 2019, 98, 81-87. Investigation of zinc†copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Materials Science and Engineering C, 2019, 103, 109826. 3.8 Experimental comparison of corrosion behavior of pure magnesium, iron coated magnesium and 619 hydroxyapatite coated magnesium in Hanks Basic salt solution for cardiovascular application. 0.8 3 Materials Research Express, 2019, 6, 085413. In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing. Acta Biomaterialia, 2019, 98, 125-141. Effects of the rolling strain rate-induced microstructure on bio-corrosion behavior of the 621 0.8 5 Mg–5Zn–1Mn alloy sheet. Materials Research Express, 2019, 6, 0865c5. Evaluation of a magnesium ring device for mechanical augmentation of a ruptured ACL: Finite element analysis. Clinical Biomechanics, 2019, 68, 122-127.

#	Article	IF	CITATIONS
623	Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corrosion Science, 2019, 157, 205-219.	3.0	54
624	Influence of laser surface remelting on microstructure and degradation mechanism in simulated body fluid of Zn-0.5Zr alloy. Journal of Materials Science and Technology, 2019, 35, 2705-2713.	5.6	16
625	Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Materials Science and Engineering C, 2019, 103, 109776.	3.8	26
626	Biocompatibility and Osteogenic Capacity of Mg-Zn-Ca Bulk Metallic Glass for Rabbit Tendon-Bone Interference Fixation. International Journal of Molecular Sciences, 2019, 20, 2191.	1.8	23
627	Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused magnesium-aluminium (0, 3, 6, 9wt%) powder mixture. Rapid Prototyping Journal, 2019, 25, 744-751.	1.6	7
628	Effect of Surface Pre-Treatments on the Formation and Degradation Behaviour of a Calcium Phosphate Coating on Pure Magnesium. Coatings, 2019, 9, 259.	1.2	8
629	Processing and properties of a new biodegradable Mgâ^'Znâ^'Caâ^'Zr alloy. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 553-564.	0.5	5
630	Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review. Metals and Materials International, 2019, 25, 1341-1359.	1.8	29
631	Tensile Properties and Fracture Behaviour of Biodegradable Iron–Manganese Scaffolds Produced by Powder Sintering. Materials, 2019, 12, 1572.	1.3	6
632	Interfacial Zinc Phosphate is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Advanced Science, 2019, 6, 1900112.	5.6	95
633	Effects of solid diffusion zinc treatment on corrosion behavior, antibacterial ability, and cytocompatibility of AZ31B magnesium alloy. Materials Letters, 2019, 251, 30-33.	1.3	14
634	Effect of Ag on the Microstructure, Mechanical and Bio-corrosion Properties of Fe–30Mn Alloy. Acta Metallurgica Sinica (English Letters), 2019, 32, 1337-1345.	1.5	11
635	Surface degradation–enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement. Journal of Orthopaedic Translation, 2019, 17, 121-132.	1.9	23
636	Research on AZ80 + 0.4%Ce (wt %) Ultra-Thin-Walled Tubes of Magnesium Alloys: The Forming Process, Microstructure Evolution and Mechanical Properties. Metals, 2019, 9, 563.	1.0	10
637	Inhibition Effect of Phthalocyaninatocopper(II) and 4-Tetranitro(phthalocyaninato)copper(II) Inhibitors for Protection of Aluminium in Acidic Media. International Journal of Electrochemical Science, 2019, 14, 137-149.	0.5	8
638	Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Additive Manufacturing, 2019, 28, 299-311.	1.7	34
640	Electrochemical polymerization of dopamine with/without subsequent PLLA coating on Mg-Zn-Y-Nd alloy. Materials Letters, 2019, 252, 202-206.	1.3	19
641	Corrosion fatigue behavior of additively manufactured biodegradable porous iron. Corrosion Science, 2019, 156, 106-116.	3.0	51
#	Article	IF	CITATIONS
-----	---	-----	-----------
642	Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 45-52.	1.5	48
643	Coatings for biodegradable magnesium-based supports for therapy of vascular disease: A general view. Materials Science and Engineering C, 2019, 102, 150-163.	3.8	63
644	In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments. Rare Metals, 2019, 38, 620-628.	3.6	15
645	Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys. Journal of Alloys and Compounds, 2019, 793, 202-211.	2.8	46
646	Antibacterial properties and biocompatibility in vivo and vitro of composite coating of pure magnesium ultrasonic micro-arc oxidation phytic acid copper loaded. Journal of Materials Science: Materials in Medicine, 2019, 30, 49.	1.7	21
647	The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents. Acta Biomaterialia, 2019, 98, 103-113.	4.1	13
648	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23
649	Comparative Study of Pure Iron Manufactured by Selective Laser Melting, Laser Metal Deposition, and Casting Processes. Advanced Engineering Materials, 2019, 21, 1900049.	1.6	39
650	Study on the preparation and corrosion resistance of hydroxyapatite/stearic acid superhydrophobic composite coating on magnesium alloy surface. AIP Advances, 2019, 9, .	0.6	17
651	In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants. Coatings, 2019, 9, 282.	1.2	26
652	Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomaterialia, 2019, 98, 3-22.	4.1	176
653	Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation. Acta Biomaterialia, 2019, 91, 99-111.	4.1	48
654	The Potential of Magnesium Based Materials in Mandibular Reconstruction. Metals, 2019, 9, 302.	1.0	41
655	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	2.6	62
656	Improved antibacterial properties of an Mgâ€Znâ€Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polymers for Advanced Technologies, 2019, 30, 1333-1339.	1.6	42
657	Selection of extraction medium influences cytotoxicity of zinc and its alloys. Acta Biomaterialia, 2019, 98, 235-245.	4.1	60
658	Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. Journal of Materials Science and Technology, 2019, 35, 1393-1402.	5.6	23
659	Development of Fe-based bulk metallic glass composite as biodegradable metal. Materials Letters, 2019, 247, 185-188.	1.3	8

#	Article	IF	CITATIONS
660	Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomaterialia, 2019, 98, 174-185.	4.1	148
661	In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomaterialia, 2019, 98, 50-66.	4.1	62
662	Formation Quality, Mechanical Properties, and Processing Behavior of Pure Zinc Parts Produced by Laser-Based Manufacturing for Biodegradable Implants. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2019, 164, 133-140.	0.4	6
663	Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceramics International, 2019, 45, 11883-11892.	2.3	73
664	Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application. Journal of Materials Science and Technology, 2019, 35, 1662-1670.	5.6	40
665	Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Journal of Biomaterials Applications, 2019, 33, 1348-1372.	1.2	61
666	Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Advanced Healthcare Materials, 2019, 8, e1801660.	3.9	86
667	Control of magnesium alloy corrosion by bioactive calcium phosphate coating: Implications for resorbable orthopaedic implants. Materialia, 2019, 6, 100291.	1.3	22
668	A Wearable Iron-Based Implant as an Intramedullary Nail in Tibial Shaft Fracture of Sheep. International Journal of Biomaterials, 2019, 2019, 1-10.	1.1	7
669	Corrosion properties of Mg-Zn-Ca-(Cu,Au) metallic glasses in artificial physiological fluid. Archives of Civil and Mechanical Engineering, 2019, 19, 716-723.	1.9	11
670	Laser additive manufacturing of Zn metal parts for biodegradable implants: Effect of gas flow on evaporation and formation quality. Journal of Laser Applications, 2019, 31, .	0.8	14
671	Biomaterials and Applications. , 2019, , 199-287.		22
672	The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. Applied Surface Science, 2019, 484, 511-523.	3.1	35
673	Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds, 2019, 792, 1162-1190.	2.8	184
674	The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective. Corrosion Science, 2019, 153, 258-271.	3.0	76
675	The influence of laser processing parameters on the densification and surface morphology of pure Fe and Fe-35Mn scaffolds produced by selective laser melting. Journal of Manufacturing Processes, 2019, 40, 113-121.	2.8	40
676	Surface stabilization treatment enhances initial cell viability and adhesion for biodegradable zinc alloys. Materials Letters, 2019, 248, 130-133.	1.3	33
677	Influences of albumin on in vitro corrosion of pure Zn in artificial plasma. Corrosion Science, 2019, 153, 341-356.	3.0	70

#	Article	IF	CITATIONS
678	Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Materials Science and Engineering C, 2019, 102, 53-65.	3.8	51
679	Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids. Jom, 2019, 71, 1414-1425.	0.9	56
680	A novel magnesium alloy with enhanced mechanical property, degradation behavior and cytocompatibility. Materials Letters, 2019, 244, 70-73.	1.3	6
681	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
682	In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis. Bioactive Materials, 2019, 4, 114-119.	8.6	25
683	Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. Advanced Biology, 2019, 3, e1800212.	3.0	66
684	Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy. Materials Science and Engineering C, 2019, 99, 969-978.	3.8	86
685	Corrosion and bone healing of Mg-Y-Zn-Zr-Ca alloy implants: Comparative in vivo study in a non-immobilized rat femoral fracture model. Journal of Biomaterials Applications, 2019, 33, 1178-1194.	1.2	16
686	Investigation of Biodegradable Zn–Li–Cu Alloys for Orthopaedic and Cardiovascular Applications. Minerals, Metals and Materials Series, 2019, , 809-818.	0.3	1
687	Cerium Oxides for Corrosion Protection of AZ91D Mg Alloy. , 0, , .		2
688	Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application. Materials Science and Engineering C, 2019, 99, 838-852.	3.8	55
689	Corrosion Bending Fatigue of RESOLOY® and WE43 Magnesium Alloy Wires. Minerals, Metals and Materials Series, 2019, , 175-181.	0.3	7
690	Evolution of the structure and mechanical properties of the Mg-1%Zn-0.2%Ca alloy during ECAP. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012035.	0.3	1
691	Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0.8-Ca0.2. Procedia Structural Integrity, 2019, 23, 21-26.	0.3	6
692	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148
693	The Fundamental Comparison of Zn–2Mg and Mg–4Y–3RE Alloys as a Perspective Biodegradable Materials. Materials, 2019, 12, 3745.	1.3	22
694	Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties. Materials, 2019, 12, 3930.	1.3	20
695	The Effect of Equal-Channel Angular Pressing on the Microstructure, the Mechanical and Corrosion Properties and the Anti-Tumor Activity of Magnesium Alloyed with Silver. Materials, 2019, 12, 3832.	1.3	20

#	Article	IF	CITATIONS
696	Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE43. Materials, 2019, 12, 3627.	1.3	25
697	Biocompatibility of bioabsorbable Mg–Ca alloys with rare earth elements addition. Journal of Materials Science: Materials in Medicine, 2019, 30, 134.	1.7	4
698	Multi-walled Carbon Nanotubes Reinforced-Based Magnesium Metal Matrix Composites Prepared by Powder Metallurgy. IOP Conference Series: Materials Science and Engineering, 2019, 578, 012041.	0.3	4
699	Effect of Mn Element Addition on the Microstructure, Mechanical Properties, and Corrosion Properties of Mg-3Zn-0.2Ca Alloy. Frontiers in Materials, 2019, 6, .	1.2	14
700	Bone marrow derived mesenchymal stem cell response to the RF magnetron sputter deposited hydroxyapatite coating on AZ91 magnesium alloy. Materials Chemistry and Physics, 2019, 221, 89-98.	2.0	44
701	Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants. Materials Letters, 2019, 234, 294-297.	1.3	31
702	Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. Journal of Materials Science and Technology, 2019, 35, 6-18.	5.6	51
703	Protein adsorption on magnesium and its alloys: A review. Applied Surface Science, 2019, 464, 212-219.	3.1	107
704	Synthesis and in-vitro performance of nanostructured monticellite coating on magnesium alloy for biomedical applications. Journal of Alloys and Compounds, 2019, 773, 180-193.	2.8	38
705	Influence of solution heat treatment on microstructure and hardness of as-cast biodegradable Zn–Mn alloys. Journal of Materials Science, 2019, 54, 1728-1740.	1.7	18
706	Nanotechnologies for Medical Devices: Potentialities and Risks. ACS Applied Bio Materials, 2019, 2, 1-13.	2.3	22
707	Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. ACS Biomaterials Science and Engineering, 2019, 5, 453-467.	2.6	70
708	Processing Magnesium and Its Alloys by Highâ€Pressure Torsion: An Overview. Advanced Engineering Materials, 2019, 21, 1801039.	1.6	51
709	Powder metallurgical Ti-Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application. Bioactive Materials, 2019, 4, 37-42.	8.6	31
710	Degradation behaviors of PLA-matrix composite with 20Âvol% magnesium alloy wires under static loading conditions. Journal of Materials Science, 2019, 54, 4701-4709.	1.7	9
711	Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioactive Materials, 2019, 4, 8-16.	8.6	70
712	Effect of zeolite on the corrosion behavior, biocompatibility and antibacterial activity of porous magnesium/zeolite composite scaffolds. Materials Technology, 2019, 34, 258-269.	1.5	19
714	Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 2019, 4, 56-70.	8.6	348

#	Article	IF	CITATIONS
715	Magnesium matrix composites for biomedical applications: A review. Journal of Magnesium and Alloys, 2019, 7, 72-79.	5.5	243
716	Mechanical Integrity of Biodegradable Mg–HA Composite During In Vitro Exposure. Journal of Materials Engineering and Performance, 2019, 28, 800-809.	1.2	30
717	Normal trabecular vertebral bone is formed via rapid transformation of mineralized spicules: A high-resolution 3D ex-vivo murine study. Acta Biomaterialia, 2019, 86, 429-440.	4.1	5
718	Formation Mechanism, Corrosion Behavior, and Cytocompatibility of Microarc Oxidation Coating on Absorbable High-Purity Zinc. ACS Biomaterials Science and Engineering, 2019, 5, 487-497.	2.6	52
719	Fabrication and Characterizations of Metallic Mg Containing PMMA-Based Partially Degradable Composite Bone Cements. Acta Metallurgica Sinica (English Letters), 2019, 32, 808-816.	1.5	6
720	Understanding the effect of the reinforcement addition on corrosion behavior of Fe/Mg2Si composites for biodegradable implant applications. Materials Chemistry and Physics, 2019, 223, 771-778.	2.0	20
721	The corrosion behavior of cold drawn pure magnesium mini-tube for biomedical application. Materials Research Express, 2019, 6, 026539.	0.8	4
722	Corrosion behavior and biocompatibility evaluation of a novel zincâ€based alloy stent in rabbit carotid artery model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1814-1823.	1.6	24
723	Enhanced corrosion resistance and bonding strength of Mg substituted β-tricalcium phosphate/Mg(OH)2 composite coating on magnesium alloys via one-step hydrothermal method. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 547-555.	1.5	26
724	Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting. Materials Letters, 2019, 237, 253-257.	1.3	57
725	Responses of human urothelial cells to magnesium-zinc-strontium alloys and associated insoluble degradation products for urological stent applications. Materials Science and Engineering C, 2019, 96, 248-262.	3.8	23
726	The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corrosion Science, 2019, 147, 81-93.	3.0	97
727	Zinc-Based Biomaterials for Regeneration and Therapy. Trends in Biotechnology, 2019, 37, 428-441.	4.9	243
728	Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 145-168.	1.5	74
729	Strategic design of a Mussel-inspired in situ reduced Ag/Au-Nanoparticle Coated Magnesium Alloy for enhanced viability, antibacterial property and decelerated corrosion rates for degradable implant Applications. Scientific Reports, 2019, 9, 117.	1.6	27
730	In vitro degradation and mineralization of high-purity magnesium in three physiological fluids. Materials Letters, 2019, 240, 279-283.	1.3	15
732	Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomechanics and Modeling in Mechanobiology, 2019, 18, 797-811.	1.4	22
733	Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering, 2019, 3, 47-57.	11.6	580

ARTICLE IF CITATIONS Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic 734 2.2 23 physiological environments. Surface and Coatings Technology, 2019, 361, 240-248. Investigating Mg Biocorrosion In Vitro: Lessons Learned and Recommendations. Jom, 2019, 71, 1406-1413. 34 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and 736 5.9 124 mechanical properties. Composites Part B: Engineering, 2019, 162, 611-620. Bioresorbable Scaffold-Based Controlled Drug Delivery for Restenosis. Journal of Cardiovascular 1.1 Translational Research, 2019, 12, 193-203. A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and 738 1.1 10 Materials Science, 2019, 50, 311-325. Effect of annealing temperature on the corrosion resistance of MgO coatings on Mg alloy. Surface and Coatings Technology, 2019, 357, 691-697. 2.2 Recent advancements in Fe-based biodegradable materials for bone repair. Journal of Materials 740 1.7 92 Science, 2019, 54, 1913-1947. Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS Applied Materials & amp; 4.0 66 Interfaces, 2019, 11, 202-218. Influence of a MAO + PLGA coating on biocorrosion and stress corrosion cracking behavior of a 742 3.0 82 magnesium alloy in a physiological environment. Corrosion Science, 2019, 148, 134-143. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical 743 properties with those of powder extruded and as-cast WE43. Materials Characterization, 2019, 147, 384-397. Corrosion mechanism of the as-cast and as-extruded biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn alloys. 744 3.8 29 Materials Science and Engineering C, 2019, 96, 831-840. A statistical learning method for image-based monitoring of the plume signature in laser powder bed 745 6.1 fusion. Robotics and Computer-Integrated Manufacturing, 2019, 57, 103-115. Corrosion studies and microstructure of Mgâ⁻Znâ⁻Ca alloys for biomedical applications. Surfaces and 746 1.5 75 Interfaces, 2019, 14, 108-116. Corrosion protection and enhanced biocompatibility of biomedical Mg-Y-RE alloy coated with tin dioxide. Surface and Coatings Technology, 2019, 357, 78-82. 747 2.2 Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. 748 171 5.6 Journal of Materials Science and Technology, 2019, 35, 535-544. Control of degradation rate of Mg alloys using silica sol–gel coatings for biodegradable implant 749 materials. Journal of Sol-Gel Science and Technology, 2019, 90, 198-208. Degradation behavior of metastable l² Ti-15-3 alloy for fastener applications. Journal of Alloys and 750 2.8 20 Compounds, 2019, 775, 518-523. Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure 3.1 magnesium. Applied Surface Science, 2019, 465, 1066-1077.

#	Article	IF	CITATIONS
752	Degradation behaviour of Mg-4Ag and Mg-5Gd alloys under in-vitro conditions and different time-frames. Journal of Alloys and Compounds, 2019, 774, 980-987.	2.8	11
753	Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material. Materials Letters, 2019, 235, 220-223.	1.3	43
754	Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification. Journal of Materials Science and Technology, 2019, 35, 368-376.	5.6	77
755	Corrosion behavior and mechanical degradation of asâ€extruded Mg–Gd–Zn–Zr alloys for orthopedic application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 698-708.	1.6	31
756	An introduction to bone tissue engineering. International Journal of Artificial Organs, 2020, 43, 69-86.	0.7	107
757	Microstructure, tensile properties, and corrosion resistance of extruded Mg-1Bi-1Zn alloy: The influence of minor Ca addition. Journal of Alloys and Compounds, 2020, 815, 152414.	2.8	39
758	In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering. Materials Science and Engineering C, 2020, 106, 110247.	3.8	37
759	Elucidating the role of microstructural modification on stress corrosion cracking of biodegradable Mg 4Zn alloy in simulated body fluid. Materials Science and Engineering C, 2020, 106, 110164.	3.8	22
760	Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science, 2020, 163, 108303.	3.0	62
761	Mg bone implant: Features, developments and perspectives. Materials and Design, 2020, 185, 108259.	3.3	251
762	Effect of polymer coating characteristics on the biodegradation and biocompatibility behavior of magnesium alloy. Polymer-Plastics Technology and Materials, 2020, 59, 301-310.	0.6	2
763	Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science and Technology, 2020, 36, 190-208.	5.6	133
764	Evaluation of mechanical properties and hemocompatibility of open cell iron foams with polyethylene glycol coating. Applied Surface Science, 2020, 505, 144634.	3.1	21
765	Biointegration of three-dimensional–printed biomaterials and biomedical devices. , 2020, , 433-482.		3
766	Effect of composition on in vitro degradability of Ti–Mg metal-metal composites. Materials Science and Engineering C, 2020, 107, 110327.	3.8	20
767	The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Materials Science and Engineering C, 2020, 108, 110397.	3.8	36
768	Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomaterialia, 2020, 102, 508-528.	4.1	135
769	Improved biodegradable magnesium alloys through advanced solidification processing. Scripta Materialia, 2020, 177, 234-240.	2.6	20

#	Article	IF	CITATIONS
770	Local intragranular misorientation accelerates corrosion in biodegradable Mg. Acta Biomaterialia, 2020, 101, 575-585.	4.1	43
771	Preparation of Biodegradable Mg/l ² -TCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition. Acta Metallurgica Sinica (English Letters), 2020, 33, 103-114.	1.5	6
772	Additively manufactured biodegradable porous zinc. Acta Biomaterialia, 2020, 101, 609-623.	4.1	95
773	Collagen Coating Effects on Fe–Mn Bioresorbable Alloys. Journal of Orthopaedic Research, 2020, 38, 523-535.	1.2	12
774	Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications. Journal of Alloys and Compounds, 2020, 817, 152782.	2.8	37
775	A 3Dâ€Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. Advanced Science, 2020, 7, 1901878.	5.6	61
776	Effect of Alloyed Mo on Mechanical Properties, Biocorrosion and Cytocompatibility of As-Cast Mg–Zn–Y–Mn Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 500-513.	1.5	33
777	New approach to improve polymer-Mg interface in biodegradable PLA/Mg composites through particle surface modification. Surface and Coatings Technology, 2020, 383, 125285.	2.2	28
778	Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta Biomaterialia, 2020, 103, 1-23.	4.1	95
779	Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. Journal of Alloys and Compounds, 2020, 821, 153462.	2.8	55
780	Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Materials Science and Engineering C, 2020, 109, 110607.	3.8	83
781	Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys. Corrosion Science, 2020, 166, 108419.	3.0	170
782	Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response. Materials Research Express, 2020, 7, 015404.	0.8	50
783	Antimicrobial Bioresorbable Mg–Zn–Ca Alloy for Bone Repair in a Comparison Study with Mg–Zn–Sr Alloy and Pure Mg. ACS Biomaterials Science and Engineering, 2020, 6, 517-538.	2.6	31
784	Effects of Minor Sr Addition on Biocorrosion and Stress Corrosion Cracking of As-Cast Mg-4Zn Alloys. Corrosion, 2020, 76, 71-81.	0.5	8
785	Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure. Journal of Materials Science and Technology, 2020, 42, 130-142.	5.6	9
786	Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomaterialia, 2020, 103, 346-360.	4.1	111
787	Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties. Journal of Alloys and Compounds, 2020, 821, 153379.	2.8	60

#	Article	IF	CITATIONS
788	Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103584.	1.5	50
789	Response of inflammatory cells to biodegradable ultra-fine grained Mg-based composites. Micron, 2020, 129, 102796.	1.1	1
790	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	23.3	440
791	Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230, 119641.	5.7	113
792	A study of bio and tribo modifier on degradation of magnesium-calcium carbonate biomaterial. Materials Today: Proceedings, 2020, 27, 691-695.	0.9	3
793	Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia, 2020, 102, 493-507.	4.1	93
794	Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility. Materials Science and Engineering C, 2020, 108, 110487.	3.8	17
795	Selective laser melting Fe and Fe-35Mn for biodegradable implants. International Journal of Modern Physics B, 2020, 34, 2040034.	1.0	5
796	Improving the corrosion resistance of MgZn1.2Gd Zr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions. Corrosion Science, 2020, 177, 108962.	3.0	80
797	Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104061.	1.5	27
798	A study of a biodegradable braided Mg stent for biliary reconstruction. Journal of Materials Science, 2020, 55, 17170-17182.	1.7	24
799	Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review. Precision Engineering, 2020, 66, 531-549.	1.8	26
800	Calcium phosphate coating on biomedical WE43 magnesium alloy pretreated with a magnesium phosphate layer for corrosion protection. Surface and Coatings Technology, 2020, 401, 126248.	2.2	26
801	Micro-patterned hydroxyapatite/silk fibroin coatings on Mg-Zn-Y-Nd-Zr alloys for better corrosion resistance and cell behavior guidance. Frontiers of Materials Science, 2020, 14, 413-425.	1.1	7
802	Zeroâ€valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1815-1826.	1.3	7
803	Additively manufactured biodegradable porous metals. Acta Biomaterialia, 2020, 115, 29-50.	4.1	113
804	Ecoresorbable smart fluids with controlled electroresponsive properties by various metal doping. Journal of Materials Chemistry C, 2020, 8, 15751-15758.	2.7	8
805	Powder mixed-EDM for potential biomedical applications: A critical review. Materials and Manufacturing Processes, 2020, 35, 1789-1811.	2.7	73

ARTICLE IF CITATIONS Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended 806 4.1 62 vascular stenting. Acta Biomaterialia, 2020, 105, 319-335. Mechanical performance and biocompatibility assessment of <scp>Zn</scp>â€0.05wt%<scp>Mg</scp>â€(0.5, 1 wt%) <scp>Ag</scp> alloys. Journal of Biomedical 1.6 9 Materials Research - Part B Applied Biomaterials, 2020, 108, 2925-2936. Characteristics Investigation of the Initial Development of Miniplate Made from Composite of Magnesium/Carbonate Apatite Fabricated by Powder Metallurgy Method for Biodegradable Implant 808 0.4 1 Applications. Key Engineering Materials, 2020, 833, 194-198. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics, 2020, 5, 34. 809 The stress corrosion cracking behaviour of biomedical Mg-1Zn alloy in synthetic or natural 810 3.0 27 biological media. Corrosion Science, 2020, 175, 108876. Biodegradable Metals., 2020, , 271-287. 812 Powder metallurgy in manufacturing of medical devices., 2020, , 159-190. 2 Improvements of Corrosion Resistance and Antibacterial Properties of Hydroxyapatite/Cupric Oxide 1.6 19 Doped Titania Composite Coatings on Degradable Magnesium Alloys. Langmuir, 2020, 36, 13937-13948. Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted sintering. Advanced Powder Technology, 814 2.0 9 2020, 31, 4577-4584. Nano-tribological behavior of graphene nanoplateletâ€"reinforced magnesium matrix nanocomposites. 5.5 Journal of Magnesium and Alloys, 2020, 9, 895-895. Natural polymer-based bioabsorbable conducting wires for implantable bioelectronic devices. Journal 816 17 5.2 of Materials Chemistry A, 2020, 8, 25323-25335. Influence of Strontium phosphate Coating on the Degradation of Physical Vapor Deposition Sprayed 1.2 Mg Coating on Ti6Al4V Substrate to Promote Bone Tissue Healing. Frontiers in Materials, 2020, 7, . 818 Introduction to biomedical manufacturing., 2020, , 3-29. 2 Manufacturing of cardiovascular stents., 2020, , 317-340. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn 820 alloys fabricated by sponge impregnation and sintering techniques. Acta Biomaterialia, 2020, 114, 29 4.1 485-496. InÂvivo corrosion behavior of pure magnesium in femur bone of rabbit. Journal of Alloys and Compounds, 2020, 848, 156506. Zirconium-based nanostructured coating on the Mg-4Y-3RE alloy for corrosion retardation. Chemical 822 1.2 10 Physics Letters, 2020, 756, 137824. Squeeze Cast Mg-Zn Alloys for Bioapplications: Tensile Properties and Microstructure. Key 0.4 Engineering Materials, 2020, 834, 169-176.

#	Article	IF	CITATIONS
824	Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments. Materialia, 2020, 13, 100841.	1.3	20
825	<i>In vitro</i> and <i>in vivo</i> studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomaterials Science, 2020, 8, 5071-5087.	2.6	35
826	Effect of Multiwalled Carbon Nanotubes (MWCNTs) on the Micro-Hardness and Corrosion Behaviour Mg-Zn Alloy Prepared by Powder Metallurgy. Materials Science Forum, 0, 1000, 115-122.	0.3	3
827	Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT. Journal of Materials Science and Technology, 2020, 51, 111-118.	5.6	19
828	Pure magnesium laser surface modification using Nd:YAG laser. Materials Technology, 2021, 36, 811-815.	1.5	5
829	Corrosion and Biocompatibility Behavior of the Micro-Arc Oxidized AZ31B Alloy in Simulated Body Fluid. International Journal of Electrochemical Science, 2020, 15, 6405-6424.	0.5	5
830	Biocompatibility of a novel heat-treated and ceramic-coated magnesium alloy (Mg–1.2Zn–0.5Ca–0.5Mn) for resorbable skeletal fixation devices. MRS Communications, 2020, 10, 467-474.	0.8	6
831	Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6784-6796.	1.1	45
832	Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating. Surface and Coatings Technology, 2020, 401, 126318.	2.2	59
833	Study of Corrosion Behavior and In Vitro Bioactivity of Single NbSi2 and Duplex NbSi2/Nb5Si3 Coatings on Nb Substrates for Biomedical Applications. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 628-637.	0.3	3
834	Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review. Coatings, 2020, 10, 828.	1.2	19
835	Influence of Heat Treatment on the Microstructure and Corrosion Behavior of Thixo-cast Mg-Y-Nd-Zr. Journal of Materials Engineering and Performance, 2020, 29, 6181-6195.	1.2	6
836	Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review. Metals, 2020, 10, 1002.	1.0	39
837	Microstructure of Biodegradable Zn-Fe Alloys and Mechanical and Corrosion Properties. Jom, 2020, 72, 3661-3671.	0.9	10
838	Effect of Twin-Induced Texture Evolution on Corrosion Resistance of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2020, 29, 5710-5717.	1.2	9
839	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
840	Global trends in the development of complex, personalized, biomedical, surgical implant devices using 3D printing/additive manufacturing: A review. Medical Devices & Sensors, 2020, 3, e10126.	2.7	4
841	Abnormal Blood Glucose Concentration on Degradation Behavior of AZ31 Magnesium Alloy. Chemical Research in Chinese Universities, 2020, 36, 1217-1226.	1.3	1

#	Article	IF	CITATIONS
842	Corrosion Resistance of Mg72Zn24Ca4 and Zn87Mg9Ca4 Alloys for Application in Medicine. Materials, 2020, 13, 3515.	1.3	4
843	Mechanical properties, corrosion behavior and biocompatibility of orthopedic pure titaniumâ^'magnesium alloy screw prepared by friction welding. Transactions of Nonferrous Metals Society of China, 2020, 30, 2952-2966.	1.7	17
844	Mechanical Degradation Model of Porous Fe Scaffold: Simulation Approach. Journal of Physics: Conference Series, 2020, 1500, 012023.	0.3	2
845	3D-cubic interconnected porous Mg-based scaffolds for bone repair. Journal of Magnesium and Alloys, 2020, 9, 1329-1329.	5.5	31
846	A fully biodegradable and self-electrified device for neuroregenerative medicine. Science Advances, 2020, 6, .	4.7	88
847	The Effect of Zirconium Addition on Corrosion Behavior of Zn-Zr Alloys as Biodegradable Orthopedic Implant Application. IOP Conference Series: Materials Science and Engineering, 2020, 833, 012085.	0.3	2
848	The Effect of Equal-Channel Angular Pressing on Microstructure, Mechanical Properties, and Biodegradation Behavior of Magnesium Alloyed with Silver and Gadolinium. Crystals, 2020, 10, 918.	1.0	10
849	Microstructure, Mechanical Properties, and in Vitro Corrosion Behavior of Biodegradable Zn-1Fe-xMg Alloy. Materials, 2020, 13, 4835.	1.3	10
850	An asymmetric surface coating strategy for improved corrosion resistance and vascular compatibility of magnesium alloy stents. Materials and Design, 2020, 196, 109182.	3.3	39
851	Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review. Corrosion Science, 2020, 171, 108722.	3.0	152
852	Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals, 2020, 10, 584.	1.0	10
853	Effect of Selective Laser Melting on Microstructure, Mechanical, and Corrosion Properties of Biodegradable FeMnCS for Implant Applications. Advanced Engineering Materials, 2020, 22, 2000182.	1.6	25
854	Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method. Journal of Asian Ceramic Societies, 2020, 8, 510-518.	1.0	30
855	Challenges and Opportunities in the Selective Laser Melting of Biodegradable Metals for Load-Bearing Bone Scaffold Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3311-3334.	1.1	35
856	Microstructure and mechanical properties of zinc matrix composites reinforced with copper coated multiwall carbon nanotubes. Materials Research Express, 2020, 7, 066516.	0.8	4
857	Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy. Journal of Magnesium and Alloys, 2020, 8, 883-898.	5.5	47
858	Microstructural Precipitation Evolution and In Vitro Degradation Behavior of a Novel Chill-Cast Zn-Based Absorbable Alloy for Medical Applications. Metals, 2020, 10, 586.	1.0	4
859	Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends. Current Opinion in Solid State and Materials Science, 2020, 24, 100822.	5.6	49

#	Article	IF	CITATIONS
860	Interface mechanism of catalytic ozonation in an α-Fe0.9Mn0.1OOH aqueous suspension for the removal of iohexol. Applied Catalysis B: Environmental, 2020, 277, 119055.	10.8	38
861	Influence of Zirconium (Zr) on the microstructure, mechanical properties and corrosion behavior of biodegradable zinc-magnesium alloys. Journal of Alloys and Compounds, 2020, 840, 155792.	2.8	18
862	Bio-inspired biomaterial Mg–Zn–Ca: a review of the main mechanical and biological properties of Mg-based alloys. Biomedical Physics and Engineering Express, 2020, 6, 042001.	0.6	6
863	Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102232.	1.7	15
864	A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants. Applied Sciences (Switzerland), 2020, 10, 3141.	1.3	22
865	Design of a biodegradable plate for femoral shaft fracture fixation. Medical Engineering and Physics, 2020, 81, 86-96.	0.8	17
866	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
867	Proteins and medium-flow conditions: how they influence the degradation of magnesium. Surface Innovations, 2020, 8, 224-233.	1.4	8
868	Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy. Journal of Magnesium and Alloys, 2020, 8, 601-613.	5.5	58
869	A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111186.	2.5	38
870	Covalentlyâ€Attached, Surfaceâ€Eroding Polymer Coatings on Magnesium Alloys for Corrosion Control and Temporally Varying Support of Cell Adhesion. Advanced Materials Interfaces, 2020, 7, 2000356.	1.9	10
871	Biodegradable Magnesium Bone Implants Coated with a Novel Bioceramic Nanocomposite. Materials, 2020, 13, 1315.	1.3	36
872	Effect of Lithium and Aluminum on the Mechanical Properties, <i>In Vivo</i> and <i>In Vitro</i> Degradation, and Toxicity of Multiphase Ultrahigh Ductility Mg–Li–Al–Zn Quaternary Alloys for Vascular Stent Application. ACS Biomaterials Science and Engineering, 2020, 6, 1950-1964.	2.6	10
873	Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents. Jom, 2020, 72, 1892-1901.	0.9	8
874	Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Materials Science and Engineering C, 2020, 111, 110812.	3.8	78
875	An experimental investigation of the fabrication of biodegradable zinc–hydroxyapatite composite material using microwave sintering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2863-2880.	1.1	15
876	In vitro and in vivo degradation behavior of Mg–2Sr–Ca and Mg–2Sr–Zn alloys. Bioactive Materials, 2020, 5, 275-285.	8.6	58
877	Tailoring the Mechanical and Degradation Performance of Mg-2.0Zn-0.5Ca-0.4Mn Alloy Through Microstructure Design. Jom, 2020, 72, 1880-1891.	0.9	6

#	Article	IF	CITATIONS
878	Cathodic electrodeposition of zinc–zinc phosphate–calcium phosphate composite coatings on pure iron for biodegradable implant applications. New Journal of Chemistry, 2020, 44, 6475-6489.	1.4	5
879	In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomaterialia, 2020, 108, 358-372.	4.1	117
880	Microstructure controls the corrosion behavior of a lean biodegradable Mg–2Zn alloy. Acta Biomaterialia, 2020, 107, 349-361.	4.1	32
881	Effect of extrusion process on the mechanical and in vitro degradation performance of a biomedical Mg-Zn-Y-Nd alloy. Bioactive Materials, 2020, 5, 219-227.	8.6	44
882	Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold. Bioactive Materials, 2020, 5, 260-274.	8.6	18
883	Realization and characterization of double-layer Ca-P coating on WE43 Mg alloy for biomedical applications. Surface and Coatings Technology, 2020, 398, 126091.	2.2	28
884	Stabilisation of a Segment of Autologous Vascularised Stomach as a Patch for Myocardial Reconstruction with Degradable Magnesium Alloy Scaffolds in a Swine Model. Crystals, 2020, 10, 438.	1.0	2
885	Effect of Interlayer Interval Time on the Microstructure and Mechanical Behavior of Additively Manufactured WE43 Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4390-4405.	1.1	4
886	The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics, 2020, 12, 602.	2.0	81
887	Microstructure and microhardness of carbonate apatite particle-reinforced Mg composite consolidated by warm compaction for biodegradable implant application. Materials Research Express, 2020, 7, 056526.	0.8	4
888	Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Advanced Materials Technologies, 2020, 5, 2000100.	3.0	37
889	Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy. Journal of Materials Engineering and Performance, 2020, 29, 4117-4129.	1.2	32
890	Effect of strain on degradation behaviors of WE43, Fe and Zn wires. Acta Biomaterialia, 2020, 113, 627-645.	4.1	52
891	Synthesis, mechanical properties, and inÂvitro corrosion behavior of biodegradable Zn–Li–Cu alloys. Journal of Alloys and Compounds, 2020, 844, 156257.	2.8	35
892	Biodegradation ZK50 magnesium alloy compression screws: Mechanical properties, biodegradable characteristics and implant test. Journal of Orthopaedic Science, 2020, 25, 1107-1115.	0.5	16
893	Formation and <i>In Vitro</i> Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable Magnesium Alloy. ACS Applied Materials & Interfaces, 2020, 12, 33315-33324.	4.0	13
894	Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139082.	2.6	41
895	Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology, 2020, 31, 252001.	1.3	42

#	Article	IF	CITATIONS
896	Preparation of poly(ε aprolactone)â€hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Material Design and Processing Communications, 2020, 2, e170.	0.5	5
897	Effect of melting method on the bio-corrosion resistance of Mg ₆₇ Zn ₂₈ Ca ₅ cast magnesium alloy in simulated body fluid. Materials Research Express, 2020, 7, 015409.	0.8	3
898	In situ decomposition of Ti ₂ AlN promoted interfacial bonding in ZnAl-Ti ₂ AlN biocomposites for bone repair. Materials Research Express, 2020, 7, 025402.	0.8	4
899	Fabrication and characterization of silk fibroin coating on APTES pretreated Mg-Zn-Ca alloy. Materials Science and Engineering C, 2020, 110, 110742.	3.8	23
900	Effects of Annealing on Mechanical and Corrosion Properties of As-Extruded NQZ310K Alloy. Journal of Materials Engineering and Performance, 2020, 29, 925-932.	1.2	6
901	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5.5	274
902	One-step in situ synthesis of nano silver-hydrotalcite coating for enhanced antibacterial and degradation property of magnesium alloys. Materials Letters, 2020, 265, 127349.	1.3	13
903	A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: In vitro and in vivo studies. Acta Biomaterialia, 2020, 106, 396-409.	4.1	97
904	Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn. Additive Manufacturing, 2020, 33, 101134.	1.7	13
905	A study on Mg wires/poly-lactic acid composite degradation under dynamic compression and bending load for implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103707.	1.5	12
906	In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 47, 52-67.	5.6	55
907	Biodegradable Magnesiumâ€Based Implants in Orthopedics—A General Review and Perspectives. Advanced Science, 2020, 7, 1902443.	5.6	267
908	Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys. Journal of Materials Science and Technology, 2020, 47, 190-201.	5.6	59
909	ZnMg0.8Ca0.2 (wt%) biodegradable alloy – The influence of thermal treatment and extrusion on microstructural and mechanical characteristics. Materials Characterization, 2020, 162, 110230.	1.9	21
910	New approach for improving anticorrosion and biocompatibility of magnesium alloys via polydopamine intermediate layer-induced hydroxyapatite coating. Surfaces and Interfaces, 2020, 19, 100501.	1.5	35
911	Corrosion fatigue behavior of additively manufactured biodegradable porous zinc. Acta Biomaterialia, 2020, 106, 439-449.	4.1	38
912	Molybdenum – A biodegradable implant material for structural applications?. Acta Biomaterialia, 2020, 104, 241-251.	4.1	30
913	Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation. Corrosion Science, 2020, 168, 108466.	3.0	36

#	Article	IF	CITATIONS
914	Zinc-doped hydroxyapatite—zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Transactions of Nonferrous Metals Society of China, 2020, 30, 123-133.	1.7	36
915	Additively manufactured functionally graded biodegradable porous zinc. Biomaterials Science, 2020, 8, 2404-2419.	2.6	50
916	Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 2020, 364, 189-204.	2.1	55
917	Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surfaces and Interfaces, 2020, 18, 100441.	1.5	41
918	Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, 11, 401.	5.8	290
919	Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomaterialia, 2020, 105, 290-303.	4.1	47
920	High-purity weight-bearing magnesium screw: Translational application in the healing of femoral neck fracture. Biomaterials, 2020, 238, 119829.	5.7	57
921	Atorvastatin Eluting Coating for Magnesiumâ€Based Stents: Control of Degradation and Endothelialization in a Microfluidic Assay and In Vivo. Advanced Materials Technologies, 2020, 5, 1900947.	3.0	14
922	Degradation and Biocompatibility of AZ31 Magnesium Alloy Implants In Vitro and In Vivo: A Micro-Computed Tomography Study in Rats. Materials, 2020, 13, 473.	1.3	25
923	Opportunities and challenges of biodegradable Zn-based alloys. Journal of Materials Science and Technology, 2020, 46, 136-138.	5.6	60
924	Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Acta Biomaterialia, 2020, 110, 289-302.	4.1	28
925	Degradation, Bone Regeneration and Tissue Response of an Innovative Volume Stable Magnesium-Supported GBR/GTR Barrier Membrane. International Journal of Molecular Sciences, 2020, 21, 3098.	1.8	38
926	In vitro crevice corrosion of biodegradable magnesium in different solutions. Journal of Materials Science and Technology, 2020, 52, 83-88.	5.6	10
927	Progress in Research on Biodegradable Magnesium Alloys: A Review. Advanced Engineering Materials, 2020, 22, 2000213.	1.6	27
928	Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. Materials, 2020, 13, 1740.	1.3	10
929	Influence of Solution Heat Treatment on the Microstructure, Hardness and Stress Corrosion Behavior of Extruded Resoloy®. Jom, 2020, 72, 1870-1879.	0.9	11
930	Controllable Macroscopic Architecture of Subtractive Manufactured Porous Iron for Cancellous Bone Analogue: Computational to Experimental Validation. Journal of Bionic Engineering, 2020, 17, 357-369.	2.7	5
931	Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomaterialia, 2020, 109, 1-20.	4.1	125

ARTICLE IF CITATIONS Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling 932 2.6 111 pathways: current progress and challenges. Biomaterials Science, 2020, 8, 2714-2733. Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual 5.3 and Physical Prototyping, 2020, 15, 278-293. Clinoenstatite/Tantalum Coating for Enhancement of Biocompatibility and Corrosion Protection of 934 1.8 12 Mg Alloy. Journal of Functional Biomaterials, 2020, 11, 26. Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals, 2020, 10, 372. Effect of sintering parameters on the microstructure and compressive mechanical properties of porous Fe scaffold fabricated using 3D printing and pressure less microwave sintering. Proceedings 936 1.1 4 of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 4305-4320. Degradable silverâ€based alloys. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 517-530. In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel 938 3.9 24 angular pressing. Nano Materials Science, 2020, 2, 96-108. Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioactive 939 8.6 48 Materials, 2020, 5, 410-422. Properties and in vitro assessment of ZrO2-based coatings obtained by atmospheric plasma jet spraying 940 2.3 36 on biodegradable Mg-Ca and Mg-Ca-Zr alloys. Ceramics International, 2020, 46, 15897-15906. Preparation and microstructure of MAO/CS composite coatings on Mg alloy. Materials Letters, 2020, 941 1.3 271, 127729. Characterization of Newly Developed Zinc Composite with the Content of 8 wt.% of Hydroxyapatite 942 1.3 16 Particles Processed by Extrusion. Materials, 2020, 13, 1716. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polymers and 943 1.0 Polymer Composites, 2021, 29, 246-258. Fabrication of biodegradable MgXCu(X=0, 0.1, 0.4, 0.7) coating on Ti6Al4V alloy with enhanced 944 1.5 7 antibacterial property. Materials Technology, 2021, 36, 179-188. Biocompatibility of Metal Matrix Composites Used for Biomedical Applications., 2021, , 474-501. 945 Microstructure, fracture behavior, in vitro corrosion resistance, and cytotoxicity of 946 Zn–Mg/Mg–Zn–HAp laminated composites produced by spark plasma sintering. Rare Metals, 2021, 40, 3.6 5 939-951. Improved wear resistance of biodegradable Mg–1.5Zn–0.6Zr alloy by Sc addition. Rare Metals, 2021, 40, 947 3.6 2206-2212. Effects of Ca, Cu concentration on degradation behavior of Zn alloys in Hank's solution. Metal 948 0.3 6 Powder Report, 2021, 76, 40-42. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioactive Materials, 949 2021, 6, 1028-1039.

#	Article	IF	CITATIONS
950	In Vivo Evaluation of Bioabsorbable Feâ€35Mnâ€1Ag: First Reports on In Vivo Hydrogen Gas Evolution in Feâ€Based Implants. Advanced Healthcare Materials, 2021, 10, e2000667.	3.9	22
951	Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioactive Materials, 2021, 6, 91-105.	8.6	71
952	A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration. Chemical Engineering Journal, 2021, 403, 126323.	6.6	40
953	Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. Journal of Materials Science and Technology, 2021, 60, 44-55.	5.6	85
954	Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 2021, 6, 836-879.	8.6	192
955	Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo. Materials Science and Engineering C, 2021, 118, 111391.	3.8	36
956	Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light. Bioactive Materials, 2021, 6, 568-578.	8.6	30
957	Zn-contained mussel-inspired film on Mg alloy for inhibiting bacterial infection and promoting bone regeneration. International Journal of Energy Production and Management, 2021, 8, rbaa044.	1.9	21
958	Study of the influence of microwave sintering parameters on the mechanical behaviour of magnesium-based metal matrix composite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2416-2425.	1.1	7
959	Alloying and brushite coating improve corrosion resistance of magnesium in a simulated physiological environment. Materials Today Communications, 2021, 26, 101750.	0.9	3
960	Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioactive Materials, 2021, 6, 158-168.	8.6	46
961	Effects of Yttrium on the Microstructure and Corrosion Behavior of Pb-39Mg-10Al-1B-Y Alloys. Journal of Materials Engineering and Performance, 2021, 30, 77-88.	1.2	8
962	Improved biodegradability of zinc and its alloys by sandblasting treatment. Surface and Coatings Technology, 2021, 405, 126678.	2.2	23
963	Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioactive Materials, 2021, 6, 1588-1604.	8.6	104
964	Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioactive Materials, 2021, 6, 1230-1241.	8.6	132
965	Synthesis and characterization of iron oxide-hydroxyapatite-chitosan composite coating and its biological assessment for biomedical applications. Progress in Organic Coatings, 2021, 150, 106011.	1.9	26
966	Extrusion-based 3D printed biodegradable porous iron. Acta Biomaterialia, 2021, 121, 741-756.	4.1	52
967	Experimental and numerical analysis of cyclic deformation and fatigue behavior of a Mg-RE alloy. International Journal of Plasticity, 2021, 139, 102885.	4.1	17

#	Article	IF	CITATIONS
968	Evaluation of in vitro corrosion resistance and in vivo osseointegration properties of a FeMnSiCa alloy as potential degradable implant biomaterial. Materials Science and Engineering C, 2021, 118, 111436.	3.8	19
969	Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomaterialia, 2021, 121, 665-681.	4.1	32
970	The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioactive Materials, 2021, 6, 1436-1451.	8.6	42
971	Mechanism of Mn on inhibiting Fe-caused magnesium corrosion. Journal of Magnesium and Alloys, 2021, 9, 676-685.	5.5	29
972	Dynamic corrosion behavior of AZ80 magnesium alloy with different orientations in simulated body fluid. Materials Chemistry and Physics, 2021, 259, 124039.	2.0	13
973	Calcium phosphate coatings enhance biocompatibility and degradation resistance of magnesium alloy: Correlating in vitro and in vivo studies. Bioactive Materials, 2021, 6, 1223-1229.	8.6	59
974	Biodegradable metals for bone fracture repair in animal models: a systematic review. International Journal of Energy Production and Management, 2021, 8, rbaa047.	1.9	27
975	Revealing anti-corrosion behavior of magnesium alloy in simulated concrete pore solution. Materials Letters, 2021, 285, 129047.	1.3	19
976	Becoming Sustainable, The New Frontier in Soft Robotics. Advanced Materials, 2021, 33, e2004413.	11.1	107
977	A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case. Journal of Magnesium and Alloys, 2021, 9, 225-240	5.5	23
978	In vitro degradation behavior and biocompatibility of Mg–5.8 Zn–2.0 Yb–0.5 Zr alloy during aging treatment. Materials Letters, 2021, 282, 128682.	1.3	6
979	In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds. Acta Biomaterialia, 2021, 121, 724-740.	4.1	28
980	Retardation and self-repair of erosion pits by a two-stage barrier on bioactive-glass/layered double hydroxide coating of biomedical magnesium alloys. Surface and Coatings Technology, 2021, 405, 126562.	2.2	13
981	Synthesis and degradation behaviour of Zn-modified coating on Mg alloy. Surface Engineering, 2021, 37, 963-971.	1.1	8
982	Binary Zn–Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science and Technology, 2021, 74, 216-229.	5.6	46
983	In vitro corrosion resistance, antibacterial activity and cytocompatibility of a layer-by-layer assembled DNA coating on magnesium alloy. Journal of Magnesium and Alloys, 2021, 9, 266-280.	5.5	37
984	Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioactive Materials, 2021, 6, 975-989.	8.6	37
985	Evaluation of in vitro corrosion behavior of zinc–hydroxyapatite and zinc–hydroxyapatite–iron as biodegradable composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 436-450.	1.6	13

#	Article	IF	CITATIONS
986	Effect of the Content and Morphology of βâ€Compounds and Precipitation on the Corrosion Behavior of Biodegradable Magnesium Alloys. Advanced Engineering Materials, 2021, 23, .	1.6	4
987	Design Solutions from Material Selection for Rib Fixators. Materials Science Forum, 0, 1016, 303-308.	0.3	4
988	In Vivo Assessment of Synthetic and Biological-Derived Calcium Phosphate-Based Coatings Fabricated by Pulsed Laser Deposition: A Review. Coatings, 2021, 11, 99.	1.2	17
989	3D printing of polymeric Coatings on AZ31 Mg alloy Substrate for Corrosion Protection of biomedical implants. Medical Devices & Sensors, 2021, 4, e10167.	2.7	10
990	Future Directions and Requirements for Tissue Engineering Biomaterials. , 2022, , 195-218.		8
991	Microstructural, cytotoxicity and antibacterial properties of bio-degradable Zn-2Cu-Ti alloy. Materials Today: Proceedings, 2021, 37, 3554-3556.	0.9	1
992	Biodegradable alloys. , 2021, , 189-228.		0
993	Microstructural, Electrochemical and In Vitro Analysis of Mg-0.5Ca-xGd Biodegradable Alloys. Applied Sciences (Switzerland), 2021, 11, 981.	1.3	15
994	Estimation of degradation velocity of biocompatible damaged stents due to blood flow. IEEE Transactions on Biomedical Engineering, 2021, 68, 1-1.	2.5	0
995	Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants $\hat{a} \in$ " A review. Journal of Magnesium and Alloys, 2021, , .	5.5	88
996	Improved Corrosion Resistance of AZ91D Mg Alloy by Cerium-Based Films. Formation of a Duplex Coating with Polypyrrole. Russian Journal of Electrochemistry, 2021, 57, 62-73.	0.3	3
998	In Vitro Corrosion Resistance and Antibacterial Performance of Novel Fe– <i>x</i> Cu Biomedical Alloys Prepared by Selective Laser Melting. Advanced Engineering Materials, 2021, 23, 2001000.	1.6	15
999	Effects of multiscale porosity and pore interconnectivity on <i>in vitro</i> and <i>in vivo</i> degradation and biocompatibility of Fe–Mn–Cu scaffolds. Journal of Materials Chemistry B, 2021, 9, 4340-4354.	2.9	12
1000	Tailoring the Properties of Biodegradable Mg–Ca Alloy by Groove Pressing Technique. Transactions of the Indian Institute of Metals, 2021, 74, 791-798.	0.7	3
1001	The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. Journal of Magnesium and Alloys, 2021, 9, 1349-1362.	5.5	18
1002	Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002236.	3.9	35
1003	The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem Cell Research and Therapy, 2021, 12, 123.	2.4	31
1004	Chemical and structural analyze of experimental biodegradable ZnMgY alloy. IOP Conference Series: Materials Science and Engineering, 2021, 1037, 012034.	0.3	1

#	Article	IF	CITATIONS
1005	Assessment of Ion Release for Ni-Cr Dental Alloy with Monolithic and Multilayer Coatings in Different pH Level. Surfaces and Interfaces, 2021, 22, 100904.	1.5	5
1006	Effects of morphological characteristics on the mechanical behavior of 3D printed ordered pore topological Fe scaffold. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140759.	2.6	11
1007	Femtosecond laser-mediated anchoring of polymer layers on the surface of a biodegradable metal. Journal of Magnesium and Alloys, 2021, 9, 1373-1373.	5.5	11
1008	Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses. Corrosion Engineering Science and Technology, 2021, 56, 310-326.	0.7	14
1009	Surface Characteristics and Corrosion Behavior of Wire Electrical Discharge Machining Processed Mg-4Zn Alloy. Journal of Materials Engineering and Performance, 2021, 30, 2955-2966.	1.2	16
1010	Long-Term Corrosion Behavior of AZ80 Magnesium Alloy along Different Crystallographic Orientations in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2021, 30, 2124-2135.	1.2	1
1011	Optimization of Manufacturing Titanium-Magnesium alloy for Biomaterial Applications using Grey Relational Analyses. IOP Conference Series: Materials Science and Engineering, 2021, 1094, 012148.	0.3	2
1012	In vitro study of the PLLA-Mg65Zn30Ca5 composites as potential biodegradable materials for bone implants. Journal of Magnesium and Alloys, 2021, 9, 2009-2018.	5.5	9
1013	Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. Materials Science and Engineering C, 2021, 122, 111897.	3.8	8
1014	Laserâ€Guided Corrosion Control: A New Approach to Tailor the Degradation of Mgâ€Alloys. Small, 2021, 17, 2100924.	5.2	3
1015	Titania-zinc phosphate/nanocrystalline zinc composite coatings for corrosion protection of biomedical WE43 magnesium alloy. Surface and Coatings Technology, 2021, 410, 126940.	2.2	18
1016	Surface Modification of Biomedical MgCa4.5 and MgCa4.5Gd0.5 Alloys by Micro-Arc Oxidation. Materials, 2021, 14, 1360.	1.3	6
1017	Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Materials Science and Engineering C, 2021, 122, 111924.	3.8	24
1018	New Approaches for Hydrogen Therapy of Various Diseases. Current Pharmaceutical Design, 2021, 27, 636-649.	0.9	16
1019	Test conditions can significantly affect the results of in vitro cytotoxicity testing of degradable metallic biomaterials. Scientific Reports, 2021, 11, 6628.	1.6	43
1020	The Potential of Calcium/Phosphate Containing MAO Implanted in Bone Tissue Regeneration and Biological Characteristics. International Journal of Molecular Sciences, 2021, 22, 4706.	1.8	7
1021	Heat treatment of Hexa-Methylene Diamine Tetra-Methylene Phosphonic Acid (HMDTMPA) coating on biodegradable Mg to improve corrosion resistance and bioactivity. Surface Engineering, 2021, 37, 1032-1042.	1.1	1
1022	Early electrochemical characteristics and corrosion behaviors of pure zinc in simulated body fluid. Journal of Electroanalytical Chemistry, 2021, 886, 115145.	1.9	13

#	Article	IF	CITATIONS
1023	Effect of Equal Channel Angular Pressing on Properties Evaluation of Biodegradable Mg-Zn-Mn Alloy. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	6
1024	Development of Magnesium Anodeâ€Based Transient Primary Batteries. ChemistryOpen, 2021, 10, 471-476.	0.9	5
1025	Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Scientific Reports, 2021, 11, 7330.	1.6	12
1026	Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. Journal of Magnesium and Alloys, 2021, 9, 779-804.	5.5	151
1027	Computational Modeling of the Corrosion Process and Mechanical Performance of Biodegradable Stent. Journal of Physics: Conference Series, 2021, 1888, 012019.	0.3	1
1028	Anodic ZnO Microsheet Coating on Zn with Sub-Surface Microtrenched Zn Layer Reduces Risk of Localized Corrosion and Improves Bioactivity of Pure Zn. Coatings, 2021, 11, 486.	1.2	2
1029	A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement. Surface and Coatings Technology, 2021, 412, 127078.	2.2	22
1030	An in-vitro evaluation study on the effects of surface modification via physical vapor deposition on the degradation rates of magnesium-based biomaterials. Surface and Coatings Technology, 2021, 411, 126972.	2.2	8
1031	Biodegradable magnesiumâ€based biomaterials: An overview of challenges and opportunities. MedComm, 2021, 2, 123-144.	3.1	77
1032	Effects of Cu on the corrosion behavior and microstructure of Mg–Zn–Ca bulk metallic glass. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1547-1554.	0.8	6
1033	Atomic structure of the Mg66Zn30Ca4 metallic glass. Journal of Non-Crystalline Solids, 2021, 558, 120660.	1.5	1
1034	Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science, 2021, 182, 109254.	3.0	46
1035	The Role of Recrystallization and Local Misorientation on the Biodegradation Behavior of Mg. Jom, 2021, 73, 1754-1764.	0.9	2
1036	Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. Acta Biomaterialia, 2021, 124, 382-397.	4.1	18
1037	Fe-Zn supersaturated solid solution prepared by mechanical alloying and laser sintering to accelerate degradation. Journal of Central South University, 2021, 28, 1170-1182.	1.2	1
1038	Additively Manufactured Absorbable Porous Metal Implants – Processing, Alloying and Corrosion Behavior. Frontiers in Materials, 2021, 8, .	1.2	7
1039	Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid. Journal of Materials Science, 2021, 56, 12394-12411.	1.7	9
1040	Corrosion Behavior and Biocompatibility of Diamond-like Carbon-Coated Zinc: An In Vitro Study. ACS Omega, 2021, 6, 9843-9851.	1.6	25

#	Article	IF	CITATIONS
1041	Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe. Corrosion Science, 2021, 182, 109278.	3.0	63
1042	In Vitro Degradation Behavior and Biocompatibility of Bioresorbable Molybdenum. Metals, 2021, 11, 761.	1.0	15
1043	Microstructure, mechanical properties and corrosion fatigue behaviour of biodegradable Mg–Zn–Y–Nd alloy prepared by double extrusion. Corrosion Engineering Science and Technology, 2021, 56, 584-593.	0.7	5
1044	Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. Materials, 2021, 14, 2677.	1.3	9
1045	A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. Advanced Science, 2021, 8, 2005010.	5.6	56
1046	Corrosion and degradation decelerating alendronate embedded zinc phosphate hybrid coating on biodegradable Zn biomaterials. Corrosion Science, 2021, 184, 109398.	3.0	24
1047	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	5.6	44
1048	New Zn3Mg-xY Alloys: Characteristics, Microstructural Evolution and Corrosion Behavior. Materials, 2021, 14, 2505.	1.3	8
1049	Tailoring surface characteristics of bioabsorbable Mg-Zn-Dy alloy using friction stir processing for improved wettability and degradation behavior. Journal of Materials Research and Technology, 2021, 12, 1530-1542.	2.6	22
1050	Laser-modified Fe–30Mn surfaces with promoted biodegradability and biocompatibility toward biological applications. Journal of Materials Science, 2021, 56, 13772-13784.	1.7	10
1051	Role of calcium phosphate and bioactive glass coating on in vivo bone healing of new Mg–Zn–Ca implant. Journal of Materials Science: Materials in Medicine, 2021, 32, 55.	1.7	8
1052	Influence of the Microstructure of the Initial Material on the Zn Wires Prepared by Direct Extrusion with a Huge Extrusion Ratio. Metals, 2021, 11, 787.	1.0	3
1053	Technical research on vacuum distillation to purify magnesium to 99.99% purity. Materials Research Express, 2021, 8, 056506.	0.8	7
1054	Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology, 2021, 9, 665813.	1.8	82
1055	Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: A review. FlatChem, 2021, 27, 100241.	2.8	64
1056	Design and analysis of biodegradable buttress threaded screws for fracture fixation in orthopedics: a finite element analysis. Biomedical Physics and Engineering Express, 2021, 7, 045010.	0.6	7
1057	Corrosion inhibition of Schiff bases for Mg-Zn-Y-Nd alloy in normal saline: Experimental and theoretical investigations. Corrosion Science, 2021, 184, 109268.	3.0	42
1058	Topology optimization of degradable composite structures with timeâ€changeable stiffness. International Journal for Numerical Methods in Engineering, 2021, 122, 4751-4773.	1.5	4

# 1059	ARTICLE Post-corrosion mechanical properties of absorbable open cell iron foams with hollow struts. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104413.	IF 1.5	CITATIONS 2
1060	Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. Journal of Magnesium and Alloys, 2022, 10, 3143-3155.	5.5	12
1061	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
1062	Bio-corrosion impacts on mechanical integrity of ZM21 Mg for orthopaedic implant application processed by equal channel angular pressing. Journal of Materials Science: Materials in Medicine, 2021, 32, 65.	1.7	13
1063	Zn–0.8Mg–0.2Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. Materials, 2021, 14, 3271.	1.3	10
1064	Fabrication of Ag containing antibacterial PEO coatings on pure Mg. Materials Letters, 2021, 293, 129731.	1.3	19
1065	Mechanical and degradation behavior of three Fe-Mn-C alloys for potential biomedical applications. Materials Today Communications, 2021, 27, 102250.	0.9	8
1066	Mg-Ti composites fabricated by a novel one-step high-pressure sintering: The correlationâ€,between microstructures andâ€,mechanical properties. Composites Part B: Engineering, 2021, 215, 108743.	5.9	13
1067	The role and significance of Magnesium in modern day research-A review. Journal of Magnesium and Alloys, 2022, 10, 1-61.	5.5	222
1068	Additive manufacturing of Mg alloys for biomedical applications: Current status and challenges. Current Opinion in Biomedical Engineering, 2021, 18, 100276.	1.8	17
1069	Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Materials and Design, 2021, 204, 109676.	3.3	27
1070	Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomaterialia, 2021, 127, 338-352.	4.1	17
1071	Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. Journal of Molecular Liquids, 2021, 332, 115755.	2.3	85
1072	Effect of Thermomechanical Treatment on Structure and Functional Fatigue Characteristics of Biodegradable Fe-30Mn-5Si (wt %) Shape Memory Alloy. Materials, 2021, 14, 3327.	1.3	5
1073	The effect of Si addition and thermomechanical processing in an Fe-Mn alloy for biodegradable implants: Mechanical performance and degradation behavior. Materials Today Communications, 2021, 27, 102447.	0.9	4
1074	Toward a Better Regeneration through Implantâ€Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 2021, 8, e2100446.	5.6	71
1075	Recent advances in tribological and wear properties of biomedical metallic materials. Rare Metals, 2021, 40, 3091-3106.	3.6	22
1076	Modifications on porous absorbable Feâ€based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 18-44.	1.6	19

#	Article	IF	CITATIONS
1077	Effect of Build Orientation on the Microstructure, Mechanical and Corrosion Properties of a Biodegradable High Manganese Steel Processed by Laser Powder Bed Fusion. Metals, 2021, 11, 944.	1.0	16
1078	Microstructure and mechanical properties of the sub-rapidly solidified Mg―Zn―Y―Nd alloy prepared by step-copper mold casting. Materials Today Communications, 2021, 27, 102308.	0.9	4
1079	In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing. Journal of Magnesium and Alloys, 2023, 11, 629-640.	5.5	36
1080	Metal hybrids processed by high-pressure torsion: synthesis, microstructure, mechanical properties and developing trends. International Materials Reviews, 2022, 67, 231-265.	9.4	16
1081	Design approaches and challenges for biodegradable bone implants: a review. Expert Review of Medical Devices, 2021, 18, 629-647.	1.4	19
1082	Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomaterialia, 2021, 127, 1-23.	4.1	55
1083	Six-Month Long <i>In Vitro</i> Degradation Tests of Biodegradable Twinning-Induced Plasticity Steels Alloyed with Ag for Stent Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3669-3682.	2.6	7
1084	In Vivo Imaging of Biodegradable Implants and Related Tissue Biomarkers. Polymers, 2021, 13, 2348.	2.0	5
1085	Femtosecond laser-induced nanostructures on Fe-30Mn surfaces for biomedical applications. Optics and Laser Technology, 2021, 139, 106986.	2.2	11
1086	Biodegradable Mg alloys for orthopedic implants – A review. Journal of Magnesium and Alloys, 2021, 9, 1884-1905.	5.5	208
1087	Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys. Corrosion Science, 2021, 187, 109520.	3.0	20
1088	Degradable magnesium implants inhibit gallbladder cancer. Acta Biomaterialia, 2021, 128, 514-522.	4.1	25
1089	Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Frontiers in Cellular and Infection Microbiology, 2021, 11, 693939.	1.8	37
1090	Insights into corrosion behaviour of uncoated Mg alloys for biomedical applications in different aqueous media. Journal of Materials Research and Technology, 2021, 13, 1908-1922.	2.6	8
1091	Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature. Journal of Magnesium and Alloys, 2023, 11, 869-881.	5.5	6
1092	Origin of high tension-compression yield asymmetry in as-extruded pure zinc. Scripta Materialia, 2021, 200, 113922.	2.6	12
1093	Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 2021, 134, 774-790.	4.1	20
1094	Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioactive Materials, 2022, 9, 239-250.	8.6	21

#	Article	IF	CITATIONS
1095	3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography. Acta Biomaterialia, 2021, 134, 804-817.	4.1	14
1096	Microstructure evolution of as-extruded Zn–0.62Mn alloys during room temperature compression. Materials Science and Technology, 2021, 37, 930-934.	0.8	3
1097	Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chemical Engineering Journal, 2021, 417, 129317.	6.6	25
1098	Effect of multiaxial deformation on structure, mechanical properties, and corrosion resistance of a Mg-Ca alloy. Journal of Magnesium and Alloys, 2022, 10, 266-280.	5.5	12
1099	Zn0.8Li0.1Sr—a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: In vitro and in vivo studies. Biomaterials, 2021, 275, 120905.	5.7	46
1100	Sacrificial protection of Mg-based resorbable implant alloy by magnetron sputtered Mg5Gd alloy coating: A short-term study. Corrosion Science, 2021, 189, 109590.	3.0	9
1101	Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Advanced Functional Materials, 2021, 31, 2104149.	7.8	53
1102	Mg-Ca0.3 Electrochemical Activity Exposed to Hank's Physiological Solution and Properties of Ag-Nano-Particles Deposits. Metals, 2021, 11, 1357.	1.0	3
1103	Corrosion behavior of Mg wires for ureteral stent in artificial urine solution. Corrosion Science, 2021, 189, 109567.	3.0	27
1104	Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials, 2021, 275, 120950.	5.7	60
1105	Exploring the biodegradation of pure Zn under simulated inflammatory condition. Corrosion Science, 2021, 189, 109606.	3.0	16
1106	Exploring the corrosion behavior of Mn-implanted biomedical Mg. Journal of Alloys and Compounds, 2021, 873, 159739.	2.8	27
1107	Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere, 2021, 276, 130177.	4.2	182
1108	Enhanced mechanical properties and corrosion resistance of rolled Mg-1.5Sn-0.5Ca alloy by Ce microalloying. Materials Characterization, 2021, 179, 111325.	1.9	27
1109	Longitudinally centered embossed structure in the locking compression plate for biodegradable bone implant plate: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 603-618.	0.9	5
1110	Tailoring microstructure and tensile properties of Mg-Si alloys varying solidification cooling rate and Si content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141905.	2.6	6
1111	Behavioral Characteristics of Magnesium as a Biomaterial for Surface Engineering Application. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	4
1112	Effect of biodegradable Zn screw on bone tunnel enlargement after anterior cruciate ligament reconstruction in rabbits. Materials and Design, 2021, 207, 109834.	3.3	7

#	Article	IF	CITATIONS
1113	Insight into the bioabsorption of Feâ€based materials and their current developments in bone applications. Biotechnology Journal, 2021, 16, e2100255.	1.8	13
1114	A pH-response chemotherapy synergistic photothermal therapy for tumor suppression and bone regeneration by mussel-inspired Mg implant. International Journal of Energy Production and Management, 2021, 8, rbab053.	1.9	13
1115	In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy. Journal of Materials Science and Technology, 2021, 84, 159-172.	5.6	23
1116	Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Materials Today Communications, 2021, 28, 102689.	0.9	9
1117	Effects of alloying elements on performance of biodegradable magnesium alloy. Materials Today: Proceedings, 2022, 56, 2443-2450.	0.9	15
1118	Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering. Surface and Coatings Technology, 2021, 422, 127508.	2.2	26
1119	Computational modeling of degradation process of biodegradable magnesium biomaterials. Corrosion Science, 2021, 190, 109674.	3.0	24
1120	Evolution of the ε and γ phases in biodegradable Fe–Mn alloys produced using laser powder-bed fusion. Scientific Reports, 2021, 11, 19506.	1.6	8
1121	Effects of strontium-substitution in sputter deposited calcium phosphate coatings on the rate of corrosion of magnesium alloys. Surface and Coatings Technology, 2021, 421, 127446.	2.2	14
1122	Tribological Performance Evaluation of Ball Burnished Magnesium Alloy for Bioresorbable Implant Applications. Journal of Materials Engineering and Performance, 2022, 31, 1170-1186.	1.2	9
1123	Influence of the pre-exposure of a Zn-0.8Mg-0.2Sr absorbable alloy in bovine serum albumin containing media on its surface changes and their impact on the cytocompatibility of the material. Materials Today Communications, 2021, 28, 102556.	0.9	4
1124	Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141809.	2.6	17
1125	Evaluation of the biodegradation product layer on Mg-1Zn alloy during dynamical strain. Journal of Magnesium and Alloys, 2021, 9, 1820-1833.	5.5	8
1126	Electroresponsive Performances of Ecoresorbable Smart Fluids Consisting of Various Plantâ€Derived Carrier Liquids. Chemistry - A European Journal, 2021, 27, 13739-13747.	1.7	4
1127	Effects of MgF2 coating on the biodegradation and biological properties of magnesium. Surface and Coatings Technology, 2021, 422, 127552.	2.2	14
1128	Thin film metallic glasses for bioimplants and surgical tools: A review. Journal of Alloys and Compounds, 2021, 876, 159939.	2.8	26
1129	Recent Advances on Development of Hydroxyapatite Coating on Biodegradable Magnesium Alloys: A Review. Materials, 2021, 14, 5550.	1.3	14
1130	A multi-dimensional non-uniform corrosion model for bioabsorbable metallic vascular stents. Acta Biomaterialia, 2021, 131, 572-580.	4.1	11

#	Article	IF	CITATIONS
1131	Influence of substrate microstructure on hydroxyapatite coating and corrosion behavior of coated Mg Zn alloys. Surface and Coatings Technology, 2021, 421, 127414.	2.2	11
1132	3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Materials Science and Engineering C, 2021, 129, 112372.	3.8	61
1133	In vitro investigation on microstructure, bio-corrosion properties and cytotoxicity of as-extruded Mg–5Sn–xIn alloys. Journal of Alloys and Compounds, 2021, 877, 160294.	2.8	12
1134	Galvanic corrosion induced by heterogeneous bimodal grain structures in Fe-Mn implant. Materials Characterization, 2021, 180, 111445.	1.9	3
1135	Micro-galvanic corrosion behavior and mechanical properties of extruded Mg–2Y–1Zn-0.4Zr-0.3Sr alloys with different extrusion temperament immersed in simulated body fluids. Materials Chemistry and Physics, 2021, 271, 124928.	2.0	13
1136	Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioactive Materials, 2021, 6, 3231-3243.	8.6	28
1137	Mechanical characteristics and in vitro degradation of biodegradable Zn-Al alloy. Materials Letters, 2021, 300, 130181.	1.3	9
1138	Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. Journal of Alloys and Compounds, 2021, 877, 160268.	2.8	16
1139	The use of bioabsorbable materials in orthopaedics. Orthopaedics and Trauma, 2021, 35, 289-296.	0.2	3
1140	Evolution and performance of a MgO/HA/DCPD gradient coating on pure magnesium. Journal of Alloys and Compounds, 2021, 883, 160793.	2.8	11
1141	Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioactive Materials, 2021, 6, 3999-4013.	8.6	40
1142	Ductile behavior and excellent corrosion resistance of Mg-Zn-Yb-Ag metallic glasses. Materials and Design, 2021, 210, 110027.	3.3	12
1143	Core-shell Mg66Zn30Ca4 bulk metallic glasses composites reinforced by Fe with high strength and controllable degradation. Intermetallics, 2021, 138, 107334.	1.8	12
1144	A primary study of the corrosion behavior and superior structure stability of Mg–Ti composites fabricated by high-pressure solid-state sintering. Journal of Materials Research and Technology, 2021, 15, 1705-1715.	2.6	6
1145	Bi-material microstructural design of biodegradable composites using topology optimization. Materials and Design, 2021, 209, 109973.	3.3	9
1146	Fabrication and characterization of biodegradable zinc matrix composites reinforced by uniformly dispersed beta-tricalcium phosphate via graphene oxide-assisted hetero-agglomeration. Materials Science and Engineering C, 2021, 130, 112431.	3.8	9
1147	Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioactive Materials, 2021, 6, 4027-4052.	8.6	50
1148	Improved corrosion resistance and cytocompatibility of Mg–Zn–Y–Nd alloy by the electrografted polycaprolactone coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127471.	2.3	12

#	Article	IF	CITATIONS
1149	Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioactive Materials, 2021, 6, 4186-4208.	8.6	51
1150	Fluid-induced corrosion behavior of degradable zinc for stent application. Journal of Materials Science and Technology, 2021, 91, 134-147.	5.6	12
1151	The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104759.	1.5	15
1152	Microstructure, mechanical properties, and biodegradation response of the grain-refined Zn alloys for potential medical materials. Journal of Materials Research and Technology, 2021, 15, 226-240.	2.6	24
1153	Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. Materials Science and Engineering C, 2021, 130, 112430.	3.8	7
1154	Investigation on microstructures, mechanical properties and in vitro corrosion behavior of novel biodegradable Zn-2Cu-0.01Ti-xLi alloys. Journal of Alloys and Compounds, 2021, 888, 161529.	2.8	17
1155	Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. Biomaterials and Biosystems, 2021, 4, 100027.	1.0	3
1156	Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: a review. Applied Surface Science Advances, 2021, 6, 100131.	2.9	44
1157	Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications. Journal of Alloys and Compounds, 2021, 887, 161379.	2.8	14
1158	Advances in coatings on magnesium alloys for cardiovascular stents – A review. Bioactive Materials, 2021, 6, 4729-4757.	8.6	93
1159	Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials, 2021, 6, 4430-4446.	8.6	53
1160	Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioactive Materials, 2021, 6, 4607-4624.	8.6	51
1161	Preparation of photo-crosslinked aliphatic polycarbonate coatings with predictable degradation behavior on magnesium-alloy stents by electrophoretic deposition. Chemical Engineering Journal, 2022, 427, 131596.	6.6	22
1162	In vivo biocompatibility and degradability of a Zn–Mg–Fe alloy osteosynthesis system. Bioactive Materials, 2022, 7, 154-166.	8.6	18
1163	Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements. Journal of Materials Science and Technology, 2022, 103, 244-260.	5.6	17
1164	Biodegradable materials for medical applications. , 2022, , 307-346.		2
1165	The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid. Bioactive Materials, 2022, 7, 217-226.	8.6	29
1166	A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials, 2022, 7, 192-216.	8.6	72

ARTICLE IF CITATIONS Corrosion of Mg Alloys., 2022, , 46-74. 3 1167 The influence of alternating cyclic dynamic loads with different low frequencies on the 8.6 24 bio-corrosion behaviors of AZ31B magnesium alloy in vitro. Bioactive Materials, 2022, 7, 263-274. Absorbable Wire Radiopacity: Influence of Composition and Size on X-ray Visibility. Minerals, Metals 1169 0.3 0 and Materials Series, 2021, , 109-113. A review on the corrosion process in magnesium. AIP Conference Proceedings, 2021, , . 1170 0.3 Additive manufacturing of biomaterials. Advances in Chemical Engineering, 2021, , 233-260. 1171 0.5 0 Lattice structures made by laser powder bed fusion., 2021, , 423-465. Influence of Thermal Processing on Resoloy Wire Microstructure and Properties. Advanced 1173 1.6 6 Engineering Materials, 2021, 23, 2001278. Effect of the topology on the mechanical properties of porous iron immersed in body fluids. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and 1174 Applications, 2021, 235, 1066-1076. 1175 Multifunctional Batteries: Flexible, Transient, and Transparent. ACS Central Science, 2021, 7, 231-244. 5.3 45 Study of biodegradable magnesium metal matrix composite A review. Materials Today: Proceedings, 1176 2021, 46, 6592-6595. Electrochemical Pourbaix diagrams of Mgâ€"Zn alloys from first-principles calculations and 1178 7 1.3 experimental thermodynamic data. Physical Chemistry Chemical Physics, 2021, 23, 19602-19610. Microstructure and Mechanical Properties of the UFG Magnesium Alloy Mg-1%Ca. Materials Science 0.3 Forum, 0, 1016, 768-773. Absorbable Filament Technologies: Wire-Drawing to Enable Next-Generation Medical Devices., 2016, 1181 1 323-327. Fatigue and Corrosion Fatigue of Cold Drawn WE43 Wires., 2015, , 303-307. Voltammetric Studies of Extruded Pure Magnesium in Different Electrolytes and Its Corrosion 1183 0.3 3 Morphology. Minerals, Metals and Materials Series, 2017, , 429-437. Investigation of a cyanine dye assay for the evaluation of the biocompatibility of magnesium alloys by 1184 direct and indirect methods. Bioactive Materials, 2020, 5, 26-33. Effects of ytterbium addition and heat treatment on the mechanical properties and biocorrosion 1185 5.538 behaviors of Mg–Zn–Zr alloy. Journal of Magnesium and Alloys, 2020, 8, 499-509. In vitro degradation and cytocompatibility of magnesium alloy coated with Hf/PLLA duplex coating. 1.3 Materials Letters, 2018, 213, 249-252.

#	ARTICLE In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with	IF	CITATIONS
1187	the carotid artery of SD rat model. Materials Science and Engineering C, 2020, 115, 111093.	3.8	29
1189	A review on the exploitation of biodegradable magnesium-based composites for medical applications.	1.7	52
1190	Sustained release from biodegradable metallic matrix—The entrapment of drugs within iron. Materials Research Express, 2020, 7, 065404.	0.8	1
1191	Quantifying the influence of calcium ion concentration on the corrosion of high-purity magnesium, AZ91, WE43 in modified Hanks' solutions. Materials Research Express, 2020, 7, 096501.	0.8	3
1192	First-principles analysis of precipitation in Mg-Zn alloys. Physical Review Materials, 2020, 4, .	0.9	7
1193	Evaluation of the degradation behavior of resorbable metal implants for in vivo osteosynthesis by synchrotron radiation based x-ray tomography and histology. Proceedings of SPIE, 2016, , .	0.8	3
1194	Thermodynamic and Kinetic Properties of Mg(II) in LiCl-KCl Melt and the Formation of Zn-Mg Alloy on Liquid Zn Electrode. Journal of the Electrochemical Society, 2020, 167, 146508.	1.3	2
1195	Selected Properties of ZnO Coating on Mg-Based Alloy for Biomedical Application. Acta Physica Polonica A, 2018, 133, 222-224.	0.2	5
1196	Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system. PLoS ONE, 2017, 12, e0182914.	1.1	17
1197	Short review of the biomedical properties and application of magnesium alloys for bone tissue bioengineering. Bulletin of Siberian Medicine, 2019, 18, 274-286.	0.1	4
1198	Influence of Processing on the Microstructure and the Mechanical Properties of Zn/HA8 wt.% Biodegradable Composite. Manufacturing Technology, 2019, 19, 836-841.	0.2	3
1199	Preparation of WE43 Using Powder Metallurgy Route. Manufacturing Technology, 2016, 16, 680-687.	0.2	15
1200	Structure and Mechanical Properties of WE43 Prepared by Powder Metallurgy Route. Manufacturing Technology, 2016, 16, 896-902.	0.2	14
1201	Degradation Behavior, Transport Mechanism and Osteogenic Activity of Mg–Zn–RE Alloy Membranes in Critical-Sized Rat Calvarial Defects. Coatings, 2020, 10, 496.	1.2	9
1202	Effect of Hydrothermal (Sr)-Hydroxyapatite Coatings on the Corrosion Resistance and Mg2+ Ion Release to Enhance Osteoblastic Cell Responses of AZ91D Alloy. Materials, 2020, 13, 591.	1.3	20
1203	Influences of Zinc Content and Solution Heat Treatment on Microstructure and Corrosion Behavior of Mg-Zn Binary Alloys. Corrosion, 2021, 77, 323-338.	0.5	7
1204	Amorphous and Crystalline Magnesium Alloys for Biomedical Applications. , 0, , .		2

#	Article	IF	CITATIONS
1205	Degradation behaviour of magnesium alloy and its composite used as a biomaterial. E3S Web of Conferences, 2021, 309, 01085.	0.2	4
1206	Construction of bio-functional Mg/HA composite layered coating for orthopedic application. Science China Technological Sciences, 2021, 64, 2541-2550.	2.0	0
1207	Pre-oxidation induced in situ interface strengthening in biodegradable Zn/nano-SiC composites prepared by selective laser melting. Journal of Advanced Research, 2022, 38, 143-155.	4.4	33
1208	Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioactive Materials, 2022, 11, 140-153.	8.6	21
1209	Magnesium based implants for functional bone tissue regeneration – A review. Journal of Magnesium and Alloys, 2022, 10, 356-386.	5.5	67
1210	A Review on Surface Engineering Perspective of Metallic Implants for Orthopaedic Applications. Jom, 2021, 73, 4349-4364.	0.9	17
1211	Improving the Mechanical Properties of Additively Manufactured Micro-Architected Biodegradable Metals. Jom, 2021, 73, 4188-4198.	0.9	6
1212	Highly scalable numerical simulation of coupled reaction–Diffusion systems with moving interfaces. International Journal of High Performance Computing Applications, 2022, 36, 198-213.	2.4	4
1213	Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy. Materials, 2021, 14, 6027.	1.3	2
1214	Microstructure, corrosion rate, and mechanical properties of unidirectionally and crossâ€rolled Mgâ€0. <scp>375Ga</scp> and Mgâ€0. <scp>750Ga</scp> alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 646-659.	1.6	3
1215	Effect of silver in thermal treatments of Fe-Mn-C degradable metals: Implications for stent processing. Bioactive Materials, 2022, 12, 30-41.	8.6	3
1217	Correlation between Mechanical Behaviour and Microstructure in the Mg-Ca-Si-Sr System for Degradable Biomaterials Based on Thermodynamic Calculations. , 2015, , 431-436.		0
1218	Investigation on Solid Solution Treatment and Corrosion Resistance of Mg-4.0Zn-0.2Ca-1.0Gd Alloy for Biomedical Application. Material Sciences, 2016, 06, 300-307.	0.0	0
1219	Flow Induced Biodegradation Behavior of Magnesium Metal: From Bioreactors to In Vivo Models. , 2016, , 337-339.		0
1220	Dielectric Barrier Discharge: Biomaterials. , 2016, , 367-380.		0
1221	A Statistical Forecasting of Mechanical Properties of Mg-Ca Alloys Using Taguchi Design. Acta Physica Polonica A, 2017, 131, 592-595.	0.2	0
1222	Comparative Study on Corrosion Behavior of WE33 in Immersion and Polarization Influenced by Heat Treatment. Minerals, Metals and Materials Series, 2018, , 227-237.	0.3	0
1223	Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method. , 2019, , 331-356.		0

#	Article	IF	CITATIONS
	Bioresorbable Nano-Hydroxyapatite Reinforced Magnesium Alloplastic Bone Substitute for Biomedical		
1224	Applications: A Study. Minerals, Metals and Materials Series, 2019, , 71-82.	0.3	2
1225	Zinc-based Degradable Biomaterials - Limitations and Enhancements. Manufacturing Technology, 2019, 19, 632-636.	0.2	1
1227	Static corrosion tests of iron-based biomaterials in the environment of simulated body fluids. Koroze A Ochrana Materialu, 2019, 63, 113-120.	0.4	0
1228	MODELING OF THE ELECTROLYZER ELECTRIC FIELD FOR PEO OF MAGNESIUM FOR THE STUDY OF SPECIAL CHAPTERS OF ELECTRICAL ENGINEERING. , 2019, , .		0
1229	Corrosion of metallic biomaterials. , 2020, , 469-515.		4
1230	Porous hematite nanostructures as drug carriers for biodegradable implants. AIP Conference Proceedings, 2020, , .	0.3	2
1231	Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials, 2022, 12, 42-63.	8.6	42
1232	Novel Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5555-5572.	2.6	5
1233	Biodegradable shape memory alloys: Progress and prospects. Biomaterials, 2021, 279, 121215.	5.7	19
1234	In Vitro Biocompatibility of Surface Corrosion Films upon Magnesium. Corrosion, 2021, 77, 218-227.	0.5	1
1235	Tunable Microstructure and Morphology of the Self-Assembly Hydroxyapatite Coatings on ZK60 Magnesium Alloy Substrates Using Hydrothermal Methods. Coatings, 2021, 11, 8.	1.2	4
1236	Microstructural characterization and optimization of the ZnMg0.8(CaO)0.26 alloy processed by ball milling and subsequent extrusion. Manufacturing Technology, 2020, 20, 484-491.	0.2	3
1237	Microstructure and mechanical properties of magnesium alloy Mgâ^'Ca after deformation. AIP Conference Proceedings, 2020, , .	0.3	0
1238	Inorganic Dissolvable Bioelectronics. , 2020, , 73-100.		0
1239	Implants and grafts used in fractures for early healing. Journal of Orthopaedics and Spine, 2020, 8, 6.	0.1	0
1240	Tribological aspects of some biodegradable magnesium alloys. INCAS Bulletin, 2020, 12, 83-89.	0.3	1
1241	Mechanical and corrosion properties of iron-mangan materials sintered in the presence of plasma. Koroze A Ochrana Materialu, 2020, 64, 1-10.	0.4	0
1242	Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties. Journal of Materials Research and Technology, 2021, 15, 6034-6066.	2.6	56

#	Article	IF	CITATIONS
1243	The effect of simulated inflammatory conditions on the corrosion of Mg, Fe and CoCrMo. Materials Letters, 2022, 308, 131197.	1.3	4
1244	Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioactive Materials, 2022, 13, 53-63.	8.6	15
1246	Corrosion characteristics of sintered heterogeneous materials composed of iron and iron oxides. Koroze A Ochrana Materialu, 2020, 64, 72-78.	0.4	0
1247	Shear testing and failure modelling of calcium phosphate coated AZ31 magnesium alloys for orthopaedic applications. Surface and Coatings Technology, 2022, 429, 127944.	2.2	10
1248	Investigating machining characteristics and degradation rate of biodegradable ZM21 magnesium alloy in end milling process. International Journal of Lightweight Materials and Manufacture, 2022, 5, 102-112.	1.3	4
1249	Influence of microstructural characteristics on corrosion behavior of Mg–5Sn–3In alloy in Hank's solution. Transactions of Nonferrous Metals Society of China, 2021, 31, 2999-3011.	1.7	6
1250	Competitive Effect of Grain Size and Second Phase on Corrosion Behavior of Biodegradable Mg-3Zn-1Mn-xSr Alloys. Journal of Materials Engineering and Performance, 2022, 31, 3136-3150.	1.2	2
1251	Semicoherent strengthens graphene/zinc scaffolds. Materials Today Nano, 2022, 17, 100163.	2.3	18
1252	Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided Bone Regeneration (GBR). International Journal of Molecular Sciences, 2021, 22, 12567.	1.8	12
1253	Biomechanical evaluation of magnesium plates for management of mandibular angle fracture. British Journal of Oral and Maxillofacial Surgery, 2021, , .	0.4	1
1254	Factors affecting biocompatibility and biodegradation of magnesium based alloys. Materials Today: Proceedings, 2022, 52, 1092-1107.	0.9	6
1255	Evaluation of corrosion resistance, mechanical integrity loss and biocompatibility of PCL/HA/TiO2 hybrid coated biodegradable ZM21 Mg alloy. Journal of Magnesium and Alloys, 2022, 10, 3179-3204.	5.5	15
1257	Investigation on tribological behaviors of biodegradable pure Zn and Zn-X (Li, Cu, Ge) binary alloys. Journal of Materials Science: Materials in Medicine, 2021, 32, 149.	1.7	4
1258	Effect of equal-channel angular pressing on structure and properties of Fe-Mn-Đi alloys for biomedical applications. Materials Today Communications, 2021, 30, 103048.	0.9	10
1259	Design of the double-layer biocompatible coating on AZ31 magnesium alloy for highly effective corrosion resistance. Surface and Coatings Technology, 2021, 428, 127897.	2.2	13
1260	Long-term in vitro corrosion behavior of Zn-3Ag and Zn-3Ag-0.5Mg alloys considered for biodegradable implant applications. Materials and Design, 2022, 213, 110289.	3.3	23
1261	Effects of Magnesium on Microstructural Properties and Degradation Behaviors of Zinc-Based Alloys Prepared by Selective Laser Melting. SSRN Electronic Journal, 0, , .	0.4	0
1262	Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopaedic Applications Via Gallium-Strontium Phosphate Conversion Coatings. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1263	Advances on biodegradable zinc-silver-based alloys for biomedical applications. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002110624.	0.7	14
1264	Stress Corrosion Analysis and Direct Cell Viability of Biodegradable Zn-Fe-Ca Alloy in In-Vitro Conditions. Metals, 2022, 12, 76.	1.0	6
1265	3D-Printed PCL/Zn scaffolds for bone regeneration with a dose-dependent effect on osteogenesis and osteoclastogenesis. Materials Today Bio, 2022, 13, 100202.	2.6	28
1266	Improving the corrosion resistance and biocompatibility of magnesium alloy via composite coatings of calcium phosphate/carbonate induced by silane. Progress in Organic Coatings, 2022, 163, 106653.	1.9	12
1267	Degradability and in vivo biocompatibility of micro-alloyed Mg-Ca-La alloys as orthopedic implants. Materials Letters, 2022, 310, 131510.	1.3	5
1268	Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion. Journal of Alloys and Compounds, 2022, 897, 163247.	2.8	27
1269	Local pH and oxygen concentration at the interface of Zn alloys in Tris-HCl or HEPES buffered Hanks' balanced salt solution. Corrosion Science, 2022, 197, 110061.	3.0	12
1270	Low interfacial pH discloses the favorable biodegradability of several Mg alloys. Corrosion Science, 2022, 197, 110059.	3.0	9
1271	Degradation and Corrosion of Biodegradable Metal Zn-xCa. Indonesian Applied Physics Letters, 2020, 1, 38.	0.1	0
1272	Modelling the Electromagnetic Field of an Electrolyzer during Plasma Electrolytic Oxidation. , 2021, , .		1
1273	Corrosion Resistance and Cytocompatibility of Magnesium–Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. ACS Applied Materials & Interfaces, 2022, 14, 104-122.	4.0	14
1274	Plasma electrolytic oxidation (PEO) coating to enhance in vitro corrosion resistance of AZ91 magnesium alloy coated with polydimethylsiloxane (PDMS). Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
1275	Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials, 2022, 280, 121301.	5.7	33
1276	Effect of Magnesium Addition and High Energy Processing on the Degradation Behavior of Iron Powder in Modified Hanks' Solution for Bioabsorbable Implant Applications. Metals, 2022, 12, 78.	1.0	2
1277	New resorbable Ca-Mg-Zn-Yb-B-Au alloys: Structural and corrosion resistance characterization. Materials and Design, 2022, 213, 110327.	3.3	8
1278	Processing, Characterization, and In Vitro Corrosion Behavior of Mg-TiB2 Composite for Orthopedic Applications. Jom, 2022, 74, 981-989.	0.9	7
1279	Compositional Tailoring of Mg–2Zn–1Ca Alloy Using Manganese to Enhance Compression Response and In-Vitro Degradation. Materials, 2022, 15, 810.	1.3	7
1280	Formation of Structural, Physical and Adhesion Properties in Calcium-Phosphate Biocoatings in the Course of Microarc Oxidation Using Fe–Cu Nanocomposite Particles. Russian Physics Journal, 2021, 64, 1435-1442.	0.2	0

#	Article	IF	CITATIONS	
1281	Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg-xZn-Zr-Ca Alloy. Metals, 2022, 12, 132.	1.0	6	
1282	MAO-Based Composite Coatings. , 2022, , 489-508.		1	
1283	Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Acta Biomaterialia, 2022, 142, 388-401.	4.1	26	
1284	The Improvement in Surface Properties of Metallic Implant via Magnetron Sputtering: Recent Progress and Remaining Challenges. Frontiers in Materials, 2022, 8, .	1.2	9	
1285	Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery. Bioactive Materials, 2022, 17, 496-505.	8.6	16	
1286	Fabrication and Properties of Zn-3Mg-1Ti Alloy as a Potential Biodegradable Implant Material. Materials, 2022, 15, 940.	1.3	3	
1287	Investigation of the Effect of Pressureless Microwave Sintering Parameters on the Corrosion Behavior of Pure Iron Biodegradable Scaffolds. Journal of Materials Engineering and Performance, 0, , 1.	1.2	1	
1288	The Effect of Co-Encapsulated GO-Cu Nanofillers on Mechanical Properties, Cell Response, and Antibacterial Activities of Mg-Zn Composite. Metals, 2022, 12, 207.	1.0	12	
1289	Internal Morphology Evolution of Mg Wire/Poly(Lactic Acid) Composites during Degradation Process Characterized by X-Ray Computed Tomography. Journal of Materials Engineering and Performance, 2022, 31, 4507-4518.	1.2	2	
1290	Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Materials in Medicine, 2022, 3, 117-127.	3.7	12	
1291	Engineering surgical stitches to prevent bacterial infection. Scientific Reports, 2022, 12, 834.	1.6	9	
1292	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24	
1293	Investigation on the Mechanical and Corrosion Properties of ZnMnSr Alloys for Biodegradable Orthopedic Implants. Advanced Engineering Materials, 2022, 24, .	1.6	4	
1294	Partially biodegradable Ti Mg composites prepared by microwave sintering for biomedical application. Materials Characterization, 2022, 185, 111748.	1.9	6	
1295	Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology, 2022, 17, 244-269.	2.6	46	
1296	Corrosion and wear performance of La2O3 doped plasma electrolytic oxidation coating on pure Mg. Surface and Coatings Technology, 2022, 433, 128112.	2.2	16	
1297	Study on energy release characteristics and penetration effects to concrete targets of Hf-based amorphous alloys. Journal of Non-Crystalline Solids, 2022, 581, 121438.	1.5	0	
1298	Corrosion behavior and degradation mechanism of microâ€extruded <scp>3D</scp> printed ordered pore topological Fe scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1439-1459.	1.6	2	
		CITATION REPO	ORT	
------	--	--------------------------	-------------------	-------------------
#	Article		IF	CITATIONS
1299	Magnesium-Based Alloys Used in Orthopedic Surgery. Materials, 2022, 15, 1148.		1.3	47
1300	Influence of hydrogel coatings on corrosion and fatigue of iron in simulated body fluid. Mate and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1034-1044.	rials	0.8	1
1301	Fabrication, in Vitro and in Vivo Properties of $\hat{\mathbf{l}}$ -Tcp/Zn Composites. SSRN Electronic Journal,	0, , .	0.4	0
1302	Microstructure and Properties of Cu2o-Go/Zn Biocomposites Fabricated by a Novel in Situ W Strategy. SSRN Electronic Journal, 0, , .	/etting	0.4	0
1303	Mechanical properties, degradation behavior and cytocompatibility of biodegradable 3vol%	. (X =) Tj ETQq0 0 0 rgE	3T /Overlo 3.8	ock 10 Tf 50 7
1304	Surface integrity of ball burnished bioresorbable magnesium alloy. Advances in Manufacturir 11, 342-362.	ıg, 2023,	3.2	3
1305	Facile In Situ Growth of Zif-8 Nanosheets with Enhanced Anti-Corrosion Performance for Car Steel in Seawater. Coatings, 2022, 12, 318.	bon	1.2	3
1306	Electrochemical Corrosion Behaviour Analysis of Mg-Alloys Used for Orthopaedics and Vascu Implants. IOP Conference Series: Materials Science and Engineering, 2022, 1225, 012063.	lar	0.3	1
1307	Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tiss Regeneration: A Review. Polymers, 2022, 14, 871.	ue	2.0	25
1308	Recent developments in nonferrous metals and related materials for biomedical applications a review. Rare Metals, 2022, 41, 1410-1433.	in China:	3.6	14
1309	Corrosion behavior of hydroxyapatite coated AZ31 and AZ91 Mg alloys by electrostatic spra International Journal of Materials Research, 2022, 113, 93-100.	y coating.	0.1	4
1310	Current Status and Outlook of Porous Zn-based Scaffolds for Bone Applications: A Review. Jo Bionic Engineering, 2022, 19, 737-751.	burnal of	2.7	7
1311	Interaction of thin polyethyleneimine layer with the iron surface and its effect on the electrochemical behavior. Scientific Reports, 2022, 12, 3460.		1.6	2
1312	Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials, 2022, 15, 2172.		1.3	15
1313	Corrosion Resistance and Biocompatibility of Calcium Phosphate Coatings with a Micro–N Porous Structure on Biodegradable Magnesium Alloys. ACS Applied Bio Materials, 2022, 5, 1	anofibrous 528-1537.	2.3	13
1314	Biodegradable Magnesium Biomaterials—Road to the Clinic. Bioengineering, 2022, 9, 107.		1.6	31
1315	Corrosion fatigue behavior of electron beam melted iron in simulated body fluid. Npj Materia Degradation, 2022, 6, .	ls	2.6	4
1316	A Review of 3D Printed Bone Implants. Micromachines, 2022, 13, 528.		1.4	22

#	Article	IF	CITATIONS
1317	Critical review of Mg matrix composite for bio-implants through powder metallurgy. Materials Today: Proceedings, 2022, 57, 902-907.	0.9	4
1318	In Vitro Corrosion Behavior of Zn3Mg0.7Y Biodegradable Alloy in Simulated Body Fluid (SBF). Applied Sciences (Switzerland), 2022, 12, 2727.	1.3	4
1319	Biodegradable Zn–2Ag–0.04Mg Alloy for Bone Regeneration In Vivo. Molecular Biotechnology, 2022, 64, 928-935.	1.3	3
1320	Fluoride Coatings on Magnesium Alloy Implants. Bioinorganic Chemistry and Applications, 2022, 2022, 1-21.	1.8	6
1321	Ultrashort Laser Texturing for Tuning Surface Morphology and Degradation Behavior of the Biodegradable Fe–20Mn Alloy for Temporary Implants. Advanced Engineering Materials, 2022, 24, .	1.6	4
1322	A review on design characteristics and fabrication methods of metallic cardiovascular stents. Materials Today Communications, 2022, 31, 103467.	0.9	19
1323	The effect of near-infrared light-assisted photothermal therapy combined with polymer materials on promoting bone regeneration: A systematic review. Materials and Design, 2022, 217, 110621.	3.3	15
1324	The role of rare earth elements in bone tissue engineering scaffolds - A review. Composites Part B: Engineering, 2022, 235, 109758.	5.9	27
1325	Investigation on microstructure, mechanical, biocorrosion and biocompatibility behavior of nano-sized TiO2@Al2O3 reinforced Mg-HAp composites. Journal of Alloys and Compounds, 2022, 910, 164866.	2.8	12
1326	Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Acta Biomaterialia, 2022, 145, 403-415.	4.1	46
1327	Titanium versus magnesium plates for unilateral mandibular angle fracture fixation: biomechanical evaluation using 3-dimensional finite element analysis. Journal of Materials Research and Technology, 2022, 18, 2064-2076.	2.6	5
1328	Enhanced corrosion resistance and cytocompatibility of zinc by Zn-Al layered double hydroxide films. Materials Letters, 2022, 314, 131873.	1.3	4
1329	Dual self-healing inorganic-organic hybrid coating on biomedical Mg. Corrosion Science, 2022, 200, 110230.	3.0	31
1330	Electrochemical techniques for monitoring the biodegradability of nanocomposite Mg-alloy/HA for repairing bone fracture. Journal of Materials Research and Technology, 2022, 18, 1669-1681.	2.6	4
1331	Influence of proteins on the corrosion of a conventional and selective laser beam melted FeMn alloy in physiological electrolytes. Corrosion Science, 2022, 200, 110186.	3.0	6
1332	Mechanical properties and in vitro biodegradation behavior of GASAR porous Mg-Ag alloy. Materials Letters, 2022, 315, 131920.	1.3	5
1333	Advances in degradation behavior of biomedical magnesium alloys: A review. Journal of Alloys and Compounds, 2022, 908, 164600.	2.8	44
1334	Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioactive Materials, 2022, 16, 301-319.	8.6	38

#	Article	IF	CITATIONS
1335	Improved mechanical, degradation, and biological performances of Zn–Fe alloys as bioresorbable implants. Bioactive Materials, 2022, 17, 334-343.	8.6	7
1336	Electrochemical impedance and morphological studies into of initial stages of Plasma Electrolytic Oxidation of magnesium alloy. , 2021, , .		0
1337	The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions. Journal of Magnesium and Alloys, 2022, 10, 1326-1350.	5.5	40
1338	Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 305-319.	2.4	11
1339	MATHEMATICAL MODELS OF COATING PROPERTIES UNDER DIFFERENT TECHNOLOGICAL MODES OF PEO. , 2021, , .		0
1340	Mechanical Properties and Degradation Behaviors of Zn-xMg Alloy Fine Wires for Biomedical Applications. Scanning, 2021, 2021, 1-12.	0.7	3
1341	A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. International Journal of Molecular Sciences, 2021, 22, 13444.	1.8	7
1342	Cell–Material Interactions in Direct Contact Culture of Endothelial Cells on Biodegradable Iron-Based Stents Fabricated by Laser Powder Bed Fusion and Impact of Ion Release. ACS Applied Materials & Interfaces, 2022, 14, 439-451.	4.0	17
1343	Reduced graphene oxide (RGO) reinforced Mg biocomposites for use as orthopedic applications: Mechanical properties, cytocompatibility and antibacterial activity. Journal of Magnesium and Alloys, 2022, 10, 3612-3627.	5.5	15
1344	Effect of Galvanic Corrosion on the Degradability of Biomedical Magnesium. Frontiers in Materials, 2021, 8, .	1.2	5
1345	Severe plastic deformation (SPD) of biodegradable magnesium alloys and composites: A review of developments and prospects. Journal of Magnesium and Alloys, 2022, 10, 938-955.	5.5	64
1346	Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. Materials Science and Engineering C, 2022, 133, 112617.	3.8	7
1347	Biocompatibility and Degradation Behavior of Molybdenum in an In Vivo Rat Model. Materials, 2021, 14, 7776.	1.3	19
1348	Experimental investigation and empirical modeling for corrosion rate prediction of biodegradable zinc based composite considering the effect of constituent materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110556.	1.1	0
1349	Feasibility and Efficacy of a Degradable Magnesium-Alloy GBR Membrane for Bone Augmentation in a Distal Bone-Defect Model in Beagle Dogs. Bioinorganic Chemistry and Applications, 2022, 2022, 1-12.	1.8	12
1350	Interaction of Mg Alloy with PLA Electrospun Nanofibers Coating in Understanding Changes of Corrosion, Wettability, and pH. Nanomaterials, 2022, 12, 1369.	1.9	9
1351	Robust topology optimization of biodegradable composite structures under uncertain degradation rates. Composite Structures, 2022, 291, 115593.	3.1	2
1352	Micro and nano materials and processing techniques for printed biodegradable electronics. Materials Today Nano, 2022, 18, 100201.	2.3	11

#	Article	IF	CITATIONS
1353	Design, Simulation and Performance Research of New Biomaterial Mg30Zn30Sn30Sr5Bi5. Coatings, 2022, 12, 531.	1.2	3
1354	Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors, 2022, 22, 3062.	2.1	12
1355	Biyobozunur Mg-Ag Döküm Alaşımlarının Mikroyapı Mekanik ve İn Vitro Korozyon Özelliklerinin İncelenmesi. Journal of Natural and Applied Sciences, 2022, 26, 47-51.	0.1	0
1356	Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition. Journal of Materials Science and Technology, 2022, 125, 1-14.	5.6	17
1357	Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioactive Materials, 2023, 19, 12-23.	8.6	31
1358	State-of-art of biomaterial coatings for enhanced biofunctionality of metallic implants. AIP Conference Proceedings, 2022, , .	0.3	1
1359	Effect of severe plastic deformation on structure and mechanical properties of magnesium alloy Mg–Ca. AIP Conference Proceedings, 2022, , .	0.3	1
1360	Microstructure and Corrosion Behavior of Iron Based Biocomposites Prepared by Laser Additive Manufacturing. Micromachines, 2022, 13, 712.	1.4	3
1361	The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.	3.9	10
1362	Effect of Solution Temperature on Microstructure and Properties of Mg-2Zn-0.5Zr-1.5Dy Alloy. Solid State Phenomena, 0, 331, 47-51.	0.3	0
1363	Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. Journal of Magnesium and Alloys, 2022, 10, 1428-1456.	5.5	59
1364	Effect of reaction time on the microstructure and properties of in-situ hopeite chemical conversion coatings formed by self-corrosion on zinc alloy. Journal of Materials Research and Technology, 2022, 18, 4445-4455.	2.6	8
1365	A review on properties of magnesium-based alloys for biomedical applications. Biomedical Physics and Engineering Express, 2022, 8, 042002.	0.6	7
1366	Exosomes derived from magnesium ion—stimulated macrophages inhibit angiogenesis. Biomedical Materials (Bristol), 2022, 17, 045008.	1.7	2
1367	Recent progress and perspectives in additive manufacturing of magnesium alloys. Journal of Magnesium and Alloys, 2022, 10, 1511-1541.	5.5	75
1368	Oxyhydroxide-Coated PEO–Treated Mg Alloy for Enhanced Corrosion Resistance and Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 50.	1.8	4
1369	The effects of initial temperature and pressure on the mechanical properties of reinforced calcium phosphate cement with magnesium nanoparticles: A molecular dynamics approach. International Communications in Heat and Mass Transfer, 2022, 135, 106067.	2.9	11
1370	Enhancing controlled and uniform degradation of Fe by incorporating Mg and Zn aimed for bio-degradable material applications. Materials Chemistry and Physics, 2022, 285, 126171.	2.0	8

#	Article	IF	CITATIONS
1371	Fabrication, in vitro and in vivo properties of Î ² -TCP/Zn composites. Journal of Alloys and Compounds, 2022, 913, 165223.	2.8	6
1372	Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties. Annual Review of Materials Research, 2022, 52, 357-382.	4.3	34
1373	Microstructural evolution and mechanical properties of pure Zn fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143276.	2.6	10
1374	Gallium–Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2709-2723.	2.6	3
1375	pH Stimuliâ€Responsive, Rapidly Selfâ€healable Coatings Enhanced the Corrosion Resistance and Osteogenic Differentiation of Mgâ€1Ca Osteoimplant. Small, 2022, 18, e2106056.	5.2	3
1376	Progress in manufacturing and processing of degradable Fe-based implants: a review. Progress in Biomaterials, 2022, 11, 163-191.	1.8	19
1377	Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A mechanistic study. Bioactive Materials, 2023, 19, 406-417.	8.6	4
1378	In vitro cytotoxicity and osteogenic potential of quaternary Mg-2Zn-1Ca/X-Mn alloys for craniofacial reconstruction. Scientific Reports, 2022, 12, 8259.	1.6	7
1379	A Repeater Antenna System Utilizing Genetically Modified Bacteria for Multiscale Communications. , 2022, , .		2
1380	Investigation of in-vitro biocompatibility and in-vivo biodegradability of AM series Mg alloys. Materials Technology, 2022, 37, 2819-2831.	1.5	10
1381	Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	5
1382	The growth and corrosion mechanism of Zn-based coating on AZ31 magnesium alloys by novel hot-dip process. Materials Characterization, 2022, 189, 111988.	1.9	7
1383	Novel Zn-2Cu-0.2Mn-xLi (xÂ=Â0, 0.1 and 0.38) alloys developed for potential biodegradable implant applications. Journal of Alloys and Compounds, 2022, 916, 165478.	2.8	18
1384	Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants. Corrosion Reviews, 2022, 40, 289-333.	1.0	12
1385	Combining Mg–Zn–Ca Bulk Metallic Glass with a Mesoporous Silica Nanocomposite for Bone Tissue Engineering. Pharmaceutics, 2022, 14, 1078.	2.0	6
1386	A biodegradable 3D woven magnesium-based scaffold for orthopedic implants. Biofabrication, 2022, 14, 034107.	3.7	8
1387	Fabrication and characterization of A Zn-0.5Fe alloy membrane by powder metallurgy route for guided bone regeneration. Materials Research Express, 2022, 9, 065401.	0.8	2
1388	Influence of anodization and bovine serum albumin on the degradation of new AXJ-magnesium alloy system as a bioabsorbable orthopedic implant. Journal of Electroanalytical Chemistry, 2022, 918,	1.9	5

ARTICLE IF CITATIONS # Effect of Rolling Treatment on Microstructure, Mechanical Properties, and Corrosion Properties of 1389 1.3 5 WE43 Alloy. Materials, 2022, 15, 3985. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for 1390 bone repair., 2022, 138, 212968. Ultra-stretchable yet tough, healable, and biodegradable triboelectric devices with microstructured 1391 8.2 16 and ionically crosslinked biogel. Nano Energy, 2022, 100, 107438. Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing 1392 1.8 Routes and Biomedical Applications. Journal of Functional Biomaterials, 2022, 13, 72. Biodegradable metallic suture anchors: A review., 2023, 1, 100005. 1393 4 Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. 1394 1.3 Materials, 2022, 15, 3991. Layered double hydroxide/hydroxyapatite-ciprofloxacin composite coating on AZ31 magnesium alloy: 1395 1.2 1 Corrosion resistance, antibacterial, osteogenesis. Journal of Materials Research, 2022, 37, 1810-1824. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone 1396 4.1 19 regeneration. Acta Biomaterialia, 2022, 148, 355-373. Current Status and Outlook of Temporary Implants (Magnesium/Zinc) in Cardiovascular Applications. 1397 1.0 11 Metals, 2022, 12, 999. Influence of Sc on the microstructure, degradation behavior, biocompatibility in vitro and 1398 3.3 mechanical property of Mg-2Zn-0.2Zr alloy. Materials and Design, 2022, 221, 110863. Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture design. 1400 4 2.6 Npj Materials Degradation, 2022, 6, . Additive manufacturing of biodegradable Zn-xMg alloys: Effect of Mg content on manufacturability, 0.9 microstructure and mechanical properties. Materials Íoday Communications, 2022, 32, 103805. BioDeg: A finite element software for the simulation of the corrosion and biodegradation process in 1402 2.0 0 metallic biomaterials. Journal of Open Source Software, 2022, 7, 4281. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, 1403 11.1 Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, . Biodegradable Mg-based alloys: biological implications and restorative opportunities. International 1404 9.4 16 Materials Reviews, 2023, 68, 365-403. Improving the corrosion behavior of magnesium alloys with a focus on AZ_{91} Mg alloy intended for 1405 biomedical application by microstructure modification and coating. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Ö, , 095441192211057. Formation of insoluble silver-phases in an iron-manganese matrix for bioresorbable implants using varying laser beam melting strategies. Journal of Materials Research and Technology, 2022, 19, 2369-2387. 1406 2.6 3 Additively manufactured Fe-35Mn-1Ag lattice structures for biomedical applications. Journal of 1407 2.8 Manufacturing Processes, 2022, 80, 642-650.

#	Article	IF	CITATIONS
1408	Microstructure and properties of Cu2O-GO/Zn biocomposites fabricated by a novel in situ wetting strategy. Materials and Design, 2022, 220, 110870.	3.3	1
1409	Mechanical properties and corrosion resistance of large-size biodegradable Ca–Mg–Zn bulk metallic glasses fabricated via powder metallurgy. Intermetallics, 2022, 148, 107633.	1.8	5
1410	Microstructure, Mechanical Properties and in Vitro Degradation Properties of Zn-Fe Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1411	Dilemmas and countermeasures of Fe-based biomaterials for next-generation bone implants. Journal of Materials Research and Technology, 2022, 20, 2034-2050.	2.6	9
1412	The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
1413	Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behavior – a review. Journal of Materials Research and Technology, 2022, 20, 650-670.	2.6	42
1414	Effects of hydroxyapatite coatings on enhanced corrosion protection and cytocompatibility of high-purity magnesium. Journal of Coatings Technology Research, 2022, 19, 1757-1771.	1.2	2
1415	Preparation and Properties of Iron Nanoparticle-Based Macroporous Scaffolds for Biodegradable Implants. Materials, 2022, 15, 4900.	1.3	2
1416	Preparation and mechanical optimization of a twoâ€layer silk/magnesium wires braided porous artificial nerve guidance conduit. Journal of Biomedical Materials Research - Part A, 2022, 110, 1801-1812.	2.1	3
1417	MAGNESIUM BASED ALLOYS FOR BIODEGRADABLE IMPLANTS APPLICATIONS USING ADDITIVE MANUFACTURING TECHNIQUE: A REVIEW. Journal of Mechanics in Medicine and Biology, 2022, 22, .	0.3	3
1418	Preliminary Investigation of Magnesium-Silver Nanocomposite for Feasibility as Degradable Biomaterial. Journal of Testing and Evaluation, 2022, 50, 2676-2684.	0.4	0
1419	Improving hydroxyapatite coating ability on biodegradable metal through laser-induced hydrothermal coating in liquid precursor: Application in orthopedic implants. Bioactive Materials, 2023, 25, 796-806.	8.6	10
1420	High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials, 2022, 287, 121663.	5.7	36
1421	Novel Mg-Ca-La alloys for guided bone regeneration: Mechanical performance, stress corrosion behavior and biocompatibility. Materials Today Communications, 2022, 32, 103949.	0.9	4
1422	Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioactive Materials, 2023, 19, 717-757.	8.6	46
1423	Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior. Acta Biomaterialia, 2022, 151, 647-660.	4.1	17
1424	The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy. Metals, 2022, 12, 1291.	1.0	5
1425	Utilizing biodegradable alloys as guided bone regeneration (GBR) membrane: Feasibility and challenges. Science China Materials, 2022, 65, 2627-2646.	3.5	12

#	Article	IF	CITATIONS
1426	In-situ AFM and quasi-in-situ studies for localized corrosion in Mg-9Al-1Fe-(Gd) alloys under 3.5Âwt.% NaCl environment. Journal of Magnesium and Alloys, 2022, , .	5.5	3
1427	The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys: In vitro and in vivo studies. Journal of Magnesium and Alloys, 2022, , .	5.5	5
1428	A review on magnesium alloys for biomedical applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	21
1429	Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomaterialia, 2022, 152, 1-18.	4.1	26
1430	Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials, 2022, 15, 5457.	1.3	31
1431	Biodegradable ring-shaped implantable device for intravesical therapy of bladder disorders. Biomaterials, 2022, 288, 121703.	5.7	6
1432	Effects of magnesium on microstructure, properties and degradation behaviors of zinc-based alloys prepared by selective laser melting. Materials Research Express, 2022, 9, 086511.	0.8	6
1433	Experimental and numerical investigation on ZnP coated Mg-Mn based composite materials for internal fixation of tibia midshaft fracture: A comprehensive study. Surface and Coatings Technology, 2022, 447, 128785.	2.2	5
1434	Electroless Deposits of ZnO and Hybrid ZnO/Ag Nanoparticles on Mg-Ca0.3 Alloy Surface: Multiscale Characterization. Coatings, 2022, 12, 1109.	1.2	2
1435	Adjustment of AgCaLa Phases in a FeMn Matrix via LBM for Implants with Adapted Degradation. Crystals, 2022, 12, 1146.	1.0	1
1436	Effect of Blasting Treatments on the Surface Topography and Cell Adhesion on Biodegradable FeMnâ€Based Stents Processed by Laser Powder Bed Fusion. Advanced Engineering Materials, 2022, 24, .	1.6	4
1437	Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1438	Significance of Alloying Elements on the Mechanical Characteristics of Mg-Based Materials for Biomedical Applications. Crystals, 2022, 12, 1138.	1.0	50
1439	Microstructure, mechanical properties and corrosion behavior of additively-manufactured Fe–Mn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 852, 143585.	2.6	2
1440	Controlled magnesium ion delivery system for in situ bone tissue engineering. Journal of Controlled Release, 2022, 350, 360-376.	4.8	27
1441	Microstructure, mechanical properties and in vitro degradation properties of Zn Fe alloys. Materials Characterization, 2022, 192, 112220.	1.9	3
1442	In situ growth of Ca-Zn-P coatings on the Zn-pretreated WE43 Mg alloy to mitigate corrosion and enhance cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112798.	2.5	6
1443	Finite Element Analysis of the Non-Uniform Degradation of Biodegradable Vascular Stents. Journal of Functional Biomaterials, 2022, 13, 152.	1.8	4

#	Article	IF	CITATIONS
1444	Bioresorbable Vascular Metallic Scaffolds: Current Status and Research Trends. Current Opinion in Biomedical Engineering, 2022, , 100411.	1.8	4
1445	A meta-analysis review of the effect of Zn-doped synthetic polymer materials on bone regeneration. Journal of Drug Delivery Science and Technology, 2022, 76, 103792.	1.4	2
1446	Effect of friction stir processing on the corrosion behavior of an Mg-Zn-Ca composite containing 1.0Âwt% MgO. Materials Characterization, 2022, 192, 112249.	1.9	7
1447	Effect of grain size on the mechanical properties of Fe-30Mn-6Si biodegradable alloy. Materials Characterization, 2022, 193, 112272.	1.9	3
1448	Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP. Journal of Alloys and Compounds, 2022, 926, 166906.	2.8	20
1449	Recent progress in equal channel angular pressing of magnesium alloys starting from Segal's idea to advancements till date – A review. International Journal of Lightweight Materials and Manufacture, 2023, 6, 82-107.	1.3	1
1450	Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection. Bioactive Materials, 2023, 21, 436-449.	8.6	5
1451	Evolution of Degradation Mechanism and Fixation Strength of Biodegradable Zn-Cu Wire as Sternum Closure Suture: An in Vitro Study. SSRN Electronic Journal, 0, , .	0.4	0
1452	Influence of the Gastrointestinal Environment on the Corrosion Mechanism of a Biodegradable Zn–0.4li Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1453	The Effect of Strontium Content on the Corrosion Behavior of New Biodegradable Mg–1Ca–1Y Composite for Implant Application. Powder Metallurgy and Metal Ceramics, 2022, 61, 107-118.	0.4	0
1454	Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof. Bioactive Materials, 2023, 22, 180-200.	8.6	3
1455	Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review. Molecules, 2022, 27, 5529.	1.7	14
1456	Microstructure and properties of Nb2O5/Mg gradient coating on AZ31 magnesium alloy by magnetron sputtering. Ceramics International, 2023, 49, 154-167.	2.3	11
1457	Effect of Cu and Mg addition on the mechanical and degradation properties of Zn alloy wires. Journal of Biomaterials Applications, 2022, 37, 891-902.	1.2	2
1458	A review on recent advancements in biodegradable Mg-Ca alloys. Journal of Magnesium and Alloys, 2022, 10, 2094-2117.	5.5	26
1459	Developing Mg Based Composites for Degradable Orthopedic Implant Applications: A Review. Advances in Science and Technology, 0, , .	0.2	0
1460	A promoting nitric oxideâ€releasing coating containing copper ion on ZE21B alloy for potential vascular stent application. Journal of Magnesium and Alloys, 2023, 11, 4542-4561.	5.5	2
1461	Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. Journal of Functional Biomaterials, 2022, 13, 164.	1.8	20

#	ARTICLE Hydrothermal pre-treatment fortified binding strength and corrosion resistance of phenolic-amine	IF	CITATIONS
1462	crosslinking coating on biomedical magnesium alloy. Materials Today Communications, 2022, 33, 104359.	0.9	1
1463	Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate. Advanced Engineering Materials, 2023, 25, .	1.6	2
1464	Electrodeposition of F-doped hydroxyapatite-TiO2 coating on AZ31 magnesium alloy for enhancing corrosion protection and biocompatibility. Journal of Materials Science, 2022, 57, 17188-17202.	1.7	2
1466	Prediction of electronic work function of the second phase in binary magnesium alloy based on machine learning method. Journal of Materials Research, 2022, 37, 3792-3802.	1.2	2
1467	300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn-Mn-Mg alloys: An in vitro study. Journal of Materials Science and Technology, 2023, 138, 233-244.	5.6	10
1469	Evaluation of the performance of Ca-deficient hydroxyapatite (CDHA)/MgF2 bilayer coating on biodegradable high-purity magnesium in a femoral condyle defect model in rabbits. International Journal of Energy Production and Management, 2022, 9, .	1.9	2
1470	Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion. Journal of Magnesium and Alloys, 2022, , .	5.5	2
1471	Microstructural basis for improved corrosion resistance and mechanical properties of fabricated ultra-fine grained Mg-Akermanite composites. Materials Chemistry and Physics, 2022, 292, 126765.	2.0	15
1472	Challenges in the use of Fe-based materials for bone scaffolds applications: Perspective from in vivo biocorrosion. Materials Today Communications, 2022, 33, 104564.	0.9	6
1473	Biodegradable Mg Alloys for Orthopedic Implant Materials. , 2022, , 1-29.		0
1474	Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces. Metals, 2022, 12, 1644.	1.0	8
1475	Effect of extrusion parameters on degradation of magnesium alloys for bioimplant applications: A review. Transactions of Nonferrous Metals Society of China, 2022, 32, 2787-2813.	1.7	6
1476	Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). Journal of Orthopaedic Translation, 2022, 36, 184-193.	1.9	18
1477	Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants—Review. Crystals, 2022, 12, 1468.	1.0	31
1478	Experimental Characterization and Numerical Modeling of the Corrosion Effect on the Mechanical Properties of the Biodegradable Magnesium Alloy WE43 for Orthopedic Applications. Materials, 2022, 15, 7164.	1.3	1
1479	Corrosion behavior of severely plastically deformed Mg and Mg alloys. Journal of Magnesium and Alloys, 2022, 10, 2607-2648.	5.5	45
1480	Carbon Nanotube (CNT) Encapsulated Magnesium-Based Nanocomposites to Improve Mechanical, Degradation and Antibacterial Performances for Biomedical Device Applications. Coatings, 2022, 12, 1589.	1.2	9
1481	Investigation of mechanical properties and antibacterial behavior of WE43 magnesium-based nanocomposite. Materials Chemistry and Physics, 2023, 293, 126864.	2.0	6

#	Article	IF	CITATIONS
1482	Functionalized Coatings on Degradable Magnesium Alloys for Orthopedic Implants: A Review. Transactions of the Indian Institute of Metals, 2023, 76, 613-627.	0.7	2
1483	Immunomodulatory Biomaterials and Emerging Analytical Techniques for Probing the Immune Micro-Environment. Tissue Engineering and Regenerative Medicine, 2023, 20, 11-24.	1.6	7
1484	Influence of High Rotational Speeds on the Microstructure and Properties of Friction Stir Manufactured ZK61 Magnesium Alloy-Hydroxyapatite Composites. Transactions of the Indian Institute of Metals, 2023, 76, 729-739.	0.7	3
1485	Modulation of Osteogenesis and Angiogenesis Activities Based on Ionic Release from Zn–Mg Alloys. Materials, 2022, 15, 7117.	1.3	3
1486	In Vitro Degradation Behavior and Microstructural Evolution of a Novel Biodegradable Zn-Mg-Sr Alloy during Homogenization. Journal of Materials Engineering and Performance, 0, , .	1.2	1
1487	Microstructure and Properties of Micro-Alloyed Mg–2.0Nd–0.2Sr by Heat Treatment and Extrusion. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	1
1488	Effect of pH fluctuations on the biodegradability of nanocomposite Mg-alloy in simulated bodily fluids. Chemical Papers, 2023, 77, 1317-1337.	1.0	14
1489	Microstructure and biodegradation performance of Mg–4Ca–1Zn based alloys after ultrasonic treatment and doping with nanodiamonds for biomedical applications. Materials Chemistry and Physics, 2023, 295, 126959.	2.0	1
1490	Self-assembled hybrid silane/ZnO coatings for corrosion protection of resorbable magnesium alloy. International Journal of Adhesion and Adhesives, 2023, 120, 103281.	1.4	4
1491	Wire Arc Additive Manufacturing of Zinc as a Degradable Metallic Biomaterial. Journal of Functional Biomaterials, 2022, 13, 212.	1.8	1
1492	Towards a fully biodegradable oxygen reducing electrocatalyst. Journal of Electroanalytical Chemistry, 2022, 925, 116883.	1.9	1
1493	Effect of Mn content on the microstructure and mechanical properties of as-extruded Zn-0.2Mg-Mn (wt%) alloys. Materials Characterization, 2022, 194, 112400.	1.9	3
1494	Inhibition of Mg corrosion in physiological fluids by carbonate coating. Corrosion Science, 2022, 209, 110775.	3.0	9
1495	Direct ink writing of porous Fe-HA metal-matrix composites (MMCs) with independently adjustable porosity and degradation rate for bone implant applications. Materials and Design, 2022, 224, 111319.	3.3	5
1496	Multiscale topology optimization of biodegradable metal matrix composite structures for additive manufacturing. Applied Mathematical Modelling, 2023, 114, 799-822.	2.2	5
1497	A biodegradable magnesium surgical staple for colonic anastomosis: In vitro and in vivo evaluation. Bioactive Materials, 2023, 22, 225-238.	8.6	11
1498	Recent Developments of Bioactive Glass Electrophoretically Coated Cobalt-Chromium Metallic Implants. Johnson Matthey Technology Review, 2024, 68, 161-180.	0.5	1
1499	Enhancing the corrodibility of biodegradable iron and zinc using poly(lactic) acid (PLA) coating for temporary medical implant applications. Progress in Organic Coatings, 2023, 174, 107301.	1.9	4

#	Article	IF	CITATIONS
1500	Evolutions of microstructure and texture of Mg-Gd alloy wires processed by cold drawing. Journal of Materials Research and Technology, 2022, 21, 3961-3969.	2.6	9
1501	Mechanical and Corrosion Behavior of a Biomedical Mg–6Zn–0.5Zr Alloy Containing a Large Number of Twins. Acta Metallurgica Sinica (English Letters), 2023, 36, 439-455.	1.5	4
1502	In silico studies of magnesium-based implants: A review of the current stage and challenges. Journal of Magnesium and Alloys, 2022, 10, 2968-2996.	5.5	6
1503	The Cytotoxic and Genotoxic Assays of Mg-Ag Alloy Doped with Zn, Ca, and Nd Elements. Journal of Materials Engineering and Performance, 0, , .	1.2	1
1504	Microstructure Evolution during Mechanical Alloying of a Biodegradable Magnesium Alloy. Crystals, 2022, 12, 1641.	1.0	3
1505	Revealing the corrosion product films of ion-implanted biodegradable Zn–Cu alloys. Corrosion Science, 2023, 210, 110814.	3.0	27
1506	The effects of Cu and Mn on the microstructure, mechanical, corrosion properties and biocompatibility of Zn–4Ag alloy. Journal of Materials Research and Technology, 2022, 21, 4969-4981.	2.6	14
1507	Global perspective and African outlook on additive manufacturing research â^' an overview. Manufacturing Review, 2022, 9, 35.	0.9	2
1508	Fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy. Surface and Coatings Technology, 2023, 452, 129125.	2.2	6
1509	Microstructure, mechanical properties, in vitro degradation behavior and in vivo osteogenic activities of Zn-1Mg-Î2-TCP composites for bone defect repair. Materials and Design, 2023, 225, 111494.	3.3	3
1510	Improving mechanical, degradation and biological behavior of biodegradable Mg–2Ag alloy: effects of Y addition and heat treatment. Journal of Materials Research and Technology, 2023, 22, 1677-1694.	2.6	6
1511	In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105587.	1.5	1
1512	Coating of a biodegradable magnesium alloy for rapid action against S. aureus after ultraviolet exposition. Applied Surface Science, 2023, 613, 156006.	3.1	3
1513	Constitutive modeling of Ta-rich particle reinforced Zr-based bulk metallic composites in the supercooled liquid region by using evolutionary artificial neural network. Journal of Alloys and Compounds, 2023, 938, 168488.	2.8	3
1514	MV-mediated biomineralization mechanisms and treatments of biomineralized diseases. Medicine in Novel Technology and Devices, 2023, 17, 100198.	0.9	1
1515	Comprehensive review of additively manufactured biodegradable magnesium implants for repairing bone defects from biomechanical and biodegradable perspectives. Frontiers in Chemistry, 0, 10, .	1.8	3
1516	Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials. Journal of Functional Biomaterials, 2022, 13, 267.	1.8	18
1517	Ultrasoundâ€Driven Onâ€Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Advanced Science, 2023, 10, .	5.6	34

#	Article	IF	CITATIONS
1518	Finite element simulations of mechanical behaviour and degradation of iron lattices. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237, 1379-1393.	0.7	1
1519	Effect of Al/Mn ratio on corrosion behavior of lean Mg-Zn-Ca-Al-Mn alloy processed by twin-roll casting. Corrosion Science, 2023, 212, 110938.	3.0	6
1520	Degradable Pure Magnesium Used as a Barrier Film for Oral Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 298.	1.8	6
1522	Evaluation of the biocompability and corrosion activity of resorbable CaMgZnYbBAu alloys. Scientific Reports, 2022, 12, .	1.6	1
1523	Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications. Nanomaterials, 2022, 12, 4399.	1.9	2
1524	Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids. ACS Omega, 2023, 8, 1331-1342.	1.6	4
1525	Recent Advances in the Development of Magnesium-Based Alloy Guided Bone Regeneration (GBR) Membrane. Metals, 2022, 12, 2074.	1.0	4
1526	Molybdenum as a Potential Biocompatible and Resorbable Material for Osteosynthesis in Craniomaxillofacial Surgery—An In Vitro Study. International Journal of Molecular Sciences, 2022, 23, 15710.	1.8	3
1527	Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: Synthesized via modified electro co-deposition route. Materials Today Communications, 2023, 34, 105112.	0.9	1
1528	Using high pressure torsion to process magnesium alloys for biological applications. Journal of Materials Research and Technology, 2023, 22, 3075-3084.	2.6	6
1529	Highly Dispersed Cu Produced by Mechanical Stress-Activated Redox Reaction to Establish Galvanic Corrosion in Fe Implant. ACS Biomaterials Science and Engineering, 2023, 9, 153-164.	2.6	2
1530	Endowing biodegradable Zinc implants with dual-function of antibacterial ability and osteogenic activity by micro-addition of Mg and Ag (≤0.1 wt.%). Acta Biomaterialia, 2023, 157, 683-700.	4.1	15
1531	Additive manufacturing of biodegradable magnesium-based materials: Design strategies, properties, and biomedical applications. Journal of Magnesium and Alloys, 2023, 11, 801-839.	5.5	22
1532	Research hotspots and trends of biodegradable magnesium and its alloys. Smart Materials in Medicine, 2023, 4, 468-479.	3.7	12
1533	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
1534	Microstructure, mechanical properties, in vitro degradation behavior and cytocompatibility of biodegradable Zn-3Fe-HAP composites prepared by vacuum heating-press sintering. Journal of Alloys and Compounds, 2023, 942, 168832.	2.8	1
1535	Influence of 0.6Âwt% Sc/Nd on the microstructure, mechanical property and in vitro biodegradation behavior of as-cast Mg-2Zn-0.2Zr alloy. Journal of Alloys and Compounds, 2023, 942, 168890.	2.8	2
1536	Microstructure, Shape Memory Effect, Chemical Composition and Corrosion Resistance Performance of Biodegradable FeMnSi-Al Alloy. Crystals, 2023, 13, 109.	1.0	6

#	Article	IF	CITATIONS
1537	Magnesium based alloys and composites: Revolutionized biodegradable temporary implants and strategies to enhance their performance. Materialia, 2023, 27, 101680.	1.3	5
1538	Evolution of degradation mechanism and fixation strength of biodegradable Zn–Cu wire as sternum closure suture: An in vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105658.	1.5	0
1539	In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Materials Today Bio, 2023, 18, 100533.	2.6	4
1540	Abnormal grain growth through cyclic heat treatment in a Mg–Sc alloy. Journal of Alloys and Compounds, 2023, 938, 168415.	2.8	5
1541	Poly(lactic acid) coating with a silane transition layer on MgAl LDH-coated biomedical Mg alloys for enhanced corrosion and cytocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130947.	2.3	2
1542	Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at% Rare Earth alloys (Zn-RE: Sc, Y,) Tj ETQq1	1,0.7843] 8.6	l4 rgBT /O
1543	Reduction of Electron-Rich Nitro Heteroarenes; A Comprehensive Review. Current Organic Chemistry, 2022, 26, 1626-1637.	0.9	1
1544	Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.1	2
1545	Double Substituted with Manganese and Strontium Tricalcium Phosphate Coatings on Zinc-Lithium Biodegradable Alloys for Biomedical Implant Applications. Coatings, 2023, 13, 36.	1.2	2
1546	In Vitro Degradation and Photoactivated Antibacterial Activity of a Hemin-CaP Microsphere-Loaded Coating on Pure Magnesium. Journal of Functional Biomaterials, 2023, 14, 15.	1.8	3
1547	Tension bending deformability of Mg-Ca and Mg-Zn alloy wires by coiling and evaluation of degradability <i>in vitro</i> . Keikinzoku/Journal of Japan Institute of Light Metals, 2022, 72, 708-710.	0.1	0
1548	Stabilizing A Vascularized Autologous Matrix with Flexible Magnesium Scaffolds to Reconstruct Dysfunctional Left Ventricular Myocardium in a Large-Animal Feasibility Study. Journal of Functional Biomaterials, 2023, 14, 73.	1.8	0
1549	The effect of medical biodegradable magnesium alloy in vivo degradation and bone response in a rat femur model with long-term fixation. Bio-Medical Materials and Engineering, 2023, , 1-13.	0.4	0
1550	Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. , 2023, , 59-103.		0
1551	A Comparative Study About Hydroxyapatite Coated AZ31 and AZ91 Mg Alloys. Minerals, Metals and Materials Series, 2023, , 81-84.	0.3	0
1552	Development of Mg-Based Superelastic Alloy Through Aging Heat Treatment. Minerals, Metals and Materials Series, 2023, , 181-187.	0.3	0
1553	Influence of Spin Coating and Dip Coating with Gelatin/Hydroxyapatite for Bioresorbable Mg Alloy Orthopedic Implants: In Vitro and In Vivo Studies. ACS Biomaterials Science and Engineering, 2023, 9, 705-718.	2.6	7
1554	Drug-releasing nano-bioimplants: from basics to current progress. , 2023, , 273-295.		0

ARTICLE IF CITATIONS Degradation of biomaterials., 2023, , 213-259. 0 1555 Effects of Cu Content on the Mechanical, Degradable, and Antibacterial Properties of the As-Cast Zn-3Al-xCu Alloys. Journal of Materials Engineering and Performance, 0, , . 1.2 Quality of AM implants in biomedical application., 2023, , 689-743. 1557 1 Influence of friction stir processing on microstructure, mechanical properties and corrosion 1558 behaviour of Mg-Zn-Dy alloy. Journal of Materials Science, 2023, 58, 2893-2914. Surface Modification of an Absorbable Bimodal Fe-Mn-Ag Alloy by Nitrogen Plasma Immersion Ion 1559 1.32 Implantation. Materials, 2023, 16, 1048. Supersaturated solid solution enhanced biodegradable Zn-Mn alloys prepared by mechanical alloying and selective laser melting. Journal of Alloys and Compounds, 2023, 943, 169145. 2.8 A "built-up―composite film with synergistic functionalities on Mg–2Zn–1Mn bioresorbable stents 1561 8.6 2 improves corrosion control effects and biocompatibility. Bioactive Materials, 2023, 25, 223-238. MWCNTs-TiO2 Incorporated-Mg Composites to Improve the Mechanical, Corrosion and Biological 1.3 1562 Characteristics for Use in Biomedical Fields. Materials, 2023, 16, 1919. Application of Biodegradable Magnesium Membrane Shield Technique for Immediate Dentoalveolar 1563 9 1.4 Bone Regeneration. Biomedicines, 2023, 11, 744. Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance 1564 and biocompatibility of AZ31 Mg alloys. Colloids and Surfaces A: Physicochemical and Engineering 2.3 Aspects, 2023, 662, 131041. Effect of Specific Second Phases Induced by Minor Y Addition on Corrosion Behaviors of As-Cast 1565 1.2 0 Mg-3Zn-1Mn-xY Alloys. Journal of Materials Engineering and Performance, 2024, 33, 1626-1639. Electrochemical corrosion behavior of AZ91D magnesium alloy-graphene nanoplatelets composites in 1566 2.6 simulated body fluids. Journal of Materials Research and Technology, 2023, 24, 449-462. Investigation of correlation of oxide layer surface morphology and magnesium degradation using a 1567 1.6 2 gas atmosphere dependent nanosecond laser processed model. Vacuum, 2023, 211, 111913. A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable $Zn\hat{a}\in$ "1Mg scaffolds with triply periodic minimal surface. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141, 105763. 1568 1.5 Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications. Journal of the Mechanical Behavior of Biomedical 1569 7 1.5 Materials, 2023, 142, 105852. The preparation and effect of Sr-doped phosphate coatings on the ion release and cytocompatibility of biodegradable zinc. Materials Letters, 2023, 341, 134281. 1570 1.3 Interfacial strengthening and antibacterial behavior in an ultrafine-grained Zn-Ag-based biocomposites fabricated by the Cu2O-induced in situ wetting approach. Journal of Materials Science 1571 5.6 4 and Technology, 2023, 152, 109-134. 300 MPa grade highly ductile biodegradable Zn-2Cu-(0.2-0.8)Li alloys with novel ternary phases. 1572 5.6 Journal of Materials Science and Technology, 2023, 157, 234-245.

#	Article	IF	CITATIONS
1573	Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioactive Materials, 2023, 26, 353-369.	8.6	4
1574	Sustained release of magnesium and zinc ions synergistically accelerates wound healing. Bioactive Materials, 2023, 26, 88-101.	8.6	15
1575	Significant influence of trace Li on the mechanical properties, corrosion behavior, and antibacterial properties of biodegradable Zn–4Cu alloys. Journal of Materials Science and Technology, 2023, 151, 245-257.	5.6	6
1576	Development of biodegradable Fe-Mn-Mg alloys by mechanical alloying and spark plasma sintering. Materials Today Communications, 2023, 34, 105465.	0.9	0
1577	Poly-lactic acid coatings on the biomedical WE43 Mg alloy: Protection mechanism and ion permeation effects. Progress in Organic Coatings, 2023, 177, 107427.	1.9	4
1578	Hierarchy of hybrid materials. Part-II: The place of organics-on-inorganics in it, their composition and applications. Frontiers in Chemistry, 0, 11, .	1.8	6
1579	InÂvitro degradation and corrosion evaluations of plasma electrolytic oxidized Mg–Zn–Ca–Si alloys for biomedical applications. Journal of Materials Research and Technology, 2023, 23, 2410-2425.	2.6	7
1580	Research of Dynamic Corrosion Behavior, Microstructure, and Biocompatibility of Mg–Zn–Ca–Zr Alloys in Simulated Body Fluid Solution Induced by Zn Element Addition. Advanced Engineering Materials, 2023, 25, .	1.6	1
1581	Establishment of coverage-mass equation to quantify the corrosion inhomogeneity and examination of medium effects on iron corrosion. International Journal of Energy Production and Management, 2023, 10, .	1.9	5
1582	Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials, 2023, 16, 1324.	1.3	7
1583	Effect of Equal-Channel Angular Pressing on the Structure and Properties of Fe–Mn–C Alloys for Biomedical Application. Russian Metallurgy (Metally), 2022, 2022, 1386-1396.	0.1	0
1584	Biotribological behaviour, biodegradability and osteocompatibility of Mg-3Zn/HA composite based intramedullary inserts in avian model. , 2023, 147, 213347.		3
1585	Impact of Particle Addition and Aging on the Friction Stir Processed Magnesium Matrix Surface Composite Properties. Jom, 2023, 75, 2974-2988.	0.9	1
1586	Tunability of mechanical and biodegradation properties of zinc-based biomaterial with calcium Micronutrient alloying. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 140, 105724.	1.5	1
1587	Uniformly doped bioactive strontium ions chelate extracellular matrix scaffolds for bone repair. Materials Letters, 2023, 339, 134083.	1.3	1
1588	Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. Journal of Materials Science, 2023, 58, 3879-3908.	1.7	11
1589	Fabrication and Properties of Biodegradable Akermanite-Reinforced Fe35Mn Alloys for Temporary Orthopedic Implant Applications. ACS Biomaterials Science and Engineering, 2023, 9, 1261-1273.	2.6	4
1590	Experimental study of in-vitro bioanalysis and in-vivo living tissue biocompatibility of Mg–Zn alloys. Journal of Materials Research, 0, ,	1.2	1

#	Article	IF	CITATIONS
1591	The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Acta Biomaterialia, 2023, 161, 309-323.	4.1	4
1592	Effects of alloying element on the mechanical behavior of Mg-MMCs: A review. Materials Today: Proceedings, 2023, , .	0.9	8
1593	Biodegradable Mg Alloys for Orthopedic Implant Materials. , 2023, , 1211-1239.		0
1594	Corrosion Mechanisms of a Biodegradable Zn-0.4Li Alloy in Simulated Gastrointestinal Environment. Coatings, 2023, 13, 529.	1.2	2
1595	Preparing high-strength and osteogenesis-induced Mg-Gd alloy with ultra-fine microstructure by equal channel angular pressing. Materials Research Express, 2023, 10, 035402.	0.8	0
1596	Effect of Severe Plastic Deformation by Extrusion on Microstructure and Physical and Mechanical Properties of Mg–Y–Nd and Mg–Ca Alloys. Technical Physics, 2022, 67, 791-797.	0.2	1
1597	Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices. Materials and Design, 2023, 228, 111817.	3.3	7
1598	Microstructural Assessment, Mechanical and Corrosion Properties of a Mg-Sr Alloy Processed by Combined Severe Plastic Deformation. Materials, 2023, 16, 2279.	1.3	1
1599	Structure and Physical Properties of Mg93â´'xZnxCa7 Metallic Glasses. Materials, 2023, 16, 2313.	1.3	0
1600	Analysing the characteristics of magnesium based composites for biomedical applications. Materials Today: Proceedings, 2023, , .	0.9	Ο
1601	Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review. RSC Advances, 2023, 13, 8427-8463.	1.7	17
1602	Production of WE43 magnesium alloy by powder metallurgy and the effect of glucose on wear resistance in biocorrosive wear. Biointerphases, 2023, 18, 021002.	0.6	Ο
1603	Corrosion Resistance and Biological Properties of Pure Magnesium Modified by PEO in Alkaline Phosphate Solutions. Corrosion and Materials Degradation, 2023, 4, 196-211.	1.0	2
1604	Mg-based metal matrix composite in biomedical applications: A review. Materials Today: Proceedings, 2023, , .	0.9	7
1605	Surface analysis of (Ti,Mg)N coated bone fixation devices following the rabbit femur surgery. Bio-Medical Materials and Engineering, 2023, , 1-14.	0.4	0
1606	Utilizing Computational Modelling to Bridge the Gap between In Vivo and In Vitro Degradation Rates for Mg-xGd Implants. Corrosion and Materials Degradation, 2023, 4, 274-283.	1.0	1
1607	Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. Journal of Functional Biomaterials, 2023, 14, 206.	1.8	3
1608	Influence of the Alloying Elements on the Corrosion Behavior of As-Cast Magnesium–Gallium–Zinc Alloys in Simulated Body Fluid. Metals, 2023, 13, 743.	1.0	3

ARTICLE IF CITATIONS A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface 1609 5.5 8 modification methods. Journal of Magnesium and Alloys, 2023, 11, 776-800. Microstructure and Properties of Asâ€Cast Mg–2.0Sn–1.0Zn–1.0Y–0.3Zr Alloys at Different Extrusion 1.6 Ratios. Advanced Engineering Materials, 0, , . Analysis of Degradation Products of Biodegradable ZnMgY Alloy. Materials, 2023, 16, 3092. 1611 1.3 2 Production of Biodegradable Metal Foams by Powder Metallurgy Method. Physical Mesomechanics, 2023, 26, 196-208. Exploring the Influence of Biologically Relevant Ions on the Corrosion Behavior of Biodegradable 1613 2.6 3 Zinc in Physiological Fluids. ACS Biomaterials Science and Engineering, 2023, 9, 2301-2316. Corrosion Behaviour of Metallic Biomaterials in Physiological Environments. Advances in Chemical and Materials Engineering Book Series, 2023, , 246-273. 0.2 Novel Fabrication techniques, microstructural evaluation, and mechanical properties of Magnesium 1641 1 Matrix composites-A Review., 2023, , . Materials and Technology for Implant Manufacturing. Advances in Chemical and Materials 1667 0.2 Engineering Book Series, 2023, , 83-106. 1693 Additively Manufactured Medical Implants. Materials Horizons, 2024, , 219-250. 0.3 0 Synthesis and characterization of nanocomposites for tissue engineering., 2023, , . Heterogeneous catalytic ozonation for achieving sustainable development goals., 2024, , 241-279. 1771 0 Observation of mechanical properties improvement of powder-based magnesium-carbonate apatite 0.3 (Mg-10CA) through deformation strengthening process. AIP Conference Proceedings, 2024, ,. An initial review of magnesium carbonate apatite for biodegradable material bone implant using 1816 0.3 0 VOSviewer application. AIP Conference Proceedings, 2024, , .