Dom34 Rescues Ribosomes in 3′ Untranslated Regior

Cell 156, 950-962 DOI: 10.1016/j.cell.2014.02.006

Citation Report

#	Article	IF	CITATIONS
1	Overcoming stalled translation in human mitochondria. Frontiers in Microbiology, 2014, 5, 374.	1.5	16
2	Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. ELife, 2014, 3, e01257.	2.8	272
3	Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports, 2014, 8, 1365-1379.	2.9	591
4	AP2 controls clathrin polymerization with a membrane-activated switch. Science, 2014, 345, 459-463.	6.0	185
5	Translational control in germline stem cell development. Journal of Cell Biology, 2014, 207, 13-21.	2.3	84
6	Reconstitution of a Minimal Ribosome-Associated Ubiquitination Pathway with Purified Factors. Molecular Cell, 2014, 55, 880-890.	4.5	94
7	An Active Role for the Ribosome in Determining the Fate of Oxidized mRNA. Cell Reports, 2014, 9, 1256-1264.	2.9	179
8	An Integrated Approach Reveals Regulatory Controls on Bacterial Translation Elongation. Cell, 2014, 159, 1200-1211.	13.5	131
9	Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Research, 2014, 42, e134-e134.	6.5	251
10	Ribosome Rescue, Nearing the End. Cell, 2014, 156, 866-867.	13.5	2
11	Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science, 2014, 345, 455-459.	6.0	378
12	Genome-wide Translational Changes Induced by the Prion [PSI+]. Cell Reports, 2014, 8, 439-448.	2.9	57
13	Sequence selectivity of macrolide-induced translational attenuation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15379-15384.	3.3	96
14	The 3′ Untranslated Region of Pea Enation Mosaic Virus Contains Two T-Shaped, Ribosome-Binding, Cap-Independent Translation Enhancers. Journal of Virology, 2014, 88, 11696-11712.	1.5	43
15	Ribosome profiling reveals sequence-independent post-initiation pausing as a signature of translation. Cell Research, 2014, 24, 842-851.	5.7	48
16	Interrelations between translation and general <scp>mRNA</scp> degradation in yeast. Wiley Interdisciplinary Reviews RNA, 2014, 5, 747-763.	3.2	77
17	Cytoplasmic Control of Sense-Antisense mRNA Pairs. Cell Reports, 2015, 12, 1853-1864.	2.9	29
18	The <scp>RNA</scp> surveillance complex <scp>P</scp> elo― <scp>H</scp> bs1 is required for transposon silencing in the <i> <scp>D</scp> rosophila </i> germline. EMBO Reports, 2015, 16, 965-974.	2.0	17

TION RED

		CITATION REPORT		
#	Article	IF	F	CITATIONS
19	Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell, 2015, 161, 1400-141	2. 1	3.5	246
20	Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell, 2015, 161, 1248-125	1. 1	.3.5	92
21	Dying mRNA Tells a Story of Its Life. Cell, 2015, 161, 1246-1248.	1	3.5	3
22	Ribosome A and P sites revealed by length analysis of ribosome profiling data. Nucleic Acids Rese 2015, 43, 3680-3687.	arch, 6	5.5	43
23	Global analysis of RNA cleavage by 5′-hydroxyl RNA sequencing. Nucleic Acids Research, 2015 e108-e108.	, 43, 6	5.5	39
24	Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformatic Active Translational GTPases. Structure, 2015, 23, 1336-1343.	n of 1	6	26
25	Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. Journal of Genetics and Genomics, 2015, 42, 671-684.	1	.7	8
26	Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments der from 3′ untranslated regions. Nucleic Acids Research, 2015, 43, 1019-1034.	ived 6	5.5	69
27	Ubiquitination of newly synthesized proteins at the ribosome. Biochimie, 2015, 114, 127-133.	1	.3	40
28	Antiangiogenic VEGF-Ax: A New Participant in Tumor Angiogenesis. Cancer Research, 2015, 75, 2	2765-2769. o).4	48
29	Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. Methods, 2015 75-89.	i, 85, 1	.9	35
30	Pelota mediates gonocyte maturation and maintenance of spermatogonial stem cells in mouse t Reproduction, 2015, 149, 213-221.	estes. 1	.1	14
31	The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Molecular Biology of the Cell, 2015, 26, 2168-2180.	C).9	49
32	Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA co repeats. Rna, 2015, 21, 935-945.	don 1	6	68
33	Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3′UTRs Iı 2015, 162, 872-884.	ıÂVivo. Cell, 1	.3.5	184
34	Ribosome profiling reveals the what, when, where and how of protein synthesis. Nature Reviews Molecular Cell Biology, 2015, 16, 651-664.	1	.6.1	389
35	HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nature Structural and Molecular Biology, 2015, 22, 906-913.	3	9.6	88
36	Ribosome Profiling as a Tool to Decipher Viral Complexity. Annual Review of Virology, 2015, 2, 3	35-349. <u> </u>	9.0	26

#	Article	IF	CITATIONS
37	Evidence That Base-pairing Interaction between Intron and mRNA Leader Sequences Inhibits Initiation of HAC1 mRNA Translation in Yeast. Journal of Biological Chemistry, 2015, 290, 21821-21832.	1.6	22
38	Upstream <scp>ORF</scp> s are prevalent translational repressors in vertebrates. EMBO Journal, 2016, 35, 706-723.	3.5	288
39	A systematic computational analysis of the rRNA–3′ UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation. Rna, 2016, 22, 957-967.	1.6	7
40	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2016, , .	1.0	3
41	Illuminating Parasite Protein Production by Ribosome Profiling. Trends in Parasitology, 2016, 32, 446-457.	1.5	14
42	Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT SignalingÂPathways. Journal of Investigative Dermatology, 2016, 136, 1664-1671.	0.3	14
43	Dynamic Regulation of a Ribosome Rescue Pathway in Erythroid Cells and Platelets. Cell Reports, 2016, 17, 1-10.	2.9	117
44	Discovery of novel targets for antivirals: learning from flies. Current Opinion in Virology, 2016, 20, 64-70.	2.6	20
45	Conserved functions of human Pelota in <scp>mRNA</scp> quality control of nonstop <scp>mRNA</scp> . FEBS Letters, 2016, 590, 3254-3263.	1.3	15
46	Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in <i>Condylostoma magnum</i> . Molecular Biology and Evolution, 2016, 33, 2885-2889.	3.5	100
47	The DEAD-Box Protein Dhh1p Couples mRNA Decay and Translation by Monitoring Codon Optimality. Cell, 2016, 167, 122-132.e9.	13.5	232
48	Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biology, 2016, 13, 927-933.	1.5	8
49	Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell, 2016, 167, 1229-1240.e15.	13.5	191
50	Super-resolution ribosome profiling reveals unannotated translation events in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7126-E7135.	3.3	222
51	Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation. Cell Reports, 2016, 14, 1787-1799.	2.9	330
52	Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Research, 2016, 44, 6840-6852.	6.5	17
53	Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex. Molecular Cell, 2016, 63, 125-134.	4.5	72
54	Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nature Protocols, 2016, 11, 359-376.	5.5	45

#	Article	IF	CITATIONS
55	Systematic discovery of cap-independent translation sequences in human and viral genomes. Science, 2016, 351, .	6.0	258
56	The Emerging World of Small ORFs. Trends in Plant Science, 2016, 21, 317-328.	4.3	99
57	70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1180-9.	3.3	82
58	Ribosome Footprint Profiling of Translation throughout the Genome. Cell, 2016, 165, 22-33.	13.5	348
59	Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E829-38.	3.3	37
60	Redefining the Translational Status of 80S Monosomes. Cell, 2016, 164, 757-769.	13.5	183
61	Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature, 2016, 530, 490-494.	13.7	202
62	Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling. Cell Reports, 2016, 14, 686-694.	2.9	161
63	Ribosome-associated protein quality control. Nature Structural and Molecular Biology, 2016, 23, 7-15.	3.6	347
64	Translation Analysis at the Genome Scale by Ribosome Profiling. Methods in Molecular Biology, 2016, 1361, 105-124.	0.4	13
65	Mapping the non-standardized biases of ribosome profiling. Biological Chemistry, 2016, 397, 23-35.	1.2	50
66	Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. Rna, 2017, 23, 798-810.	1.6	113
67	Slowed decay of mRNAs enhances platelet specific translation. Blood, 2017, 129, e38-e48.	0.6	68
68	Synonymous Codons: Choose Wisely for Expression. Trends in Genetics, 2017, 33, 283-297.	2.9	161
69	Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160183.	1.8	149
70	Translation of poly(A) tails leads to precise mRNA cleavage. Rna, 2017, 23, 749-761.	1.6	77
71	The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Current Genetics, 2017, 63, 997-1005.	0.8	34
72	eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Research, 2017, 45, 7326-7338.	6.5	142

	CITATION	REPORT	
#	Article	IF	CITATIONS
73	The Growing Toolbox for Protein Synthesis Studies. Trends in Biochemical Sciences, 2017, 42, 612-624.	3.7	104
74	Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nature Structural and Molecular Biology, 2017, 24, 453-460.	3.6	77
75	elF5A Functions Globally in Translation Elongation and Termination. Molecular Cell, 2017, 66, 194-205.e5.	4.5	352
76	Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research, 2017, 45, 513-526.	6.5	124
77	ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. Rna, 2017, 23, 1946-1960.	1.6	29
78	Regulation of mRNA Translation in Neurons—A Matter of Life and Death. Neuron, 2017, 96, 616-637.	3.8	188
79	Ribosomopathies: Thereâ \in Ms strength in numbers. Science, 2017, 358, .	6.0	343
80	Ribosome Collision Is Critical for Quality Control during No-Go Decay. Molecular Cell, 2017, 68, 361-373.e5.	4.5	248
81	Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe. Scientific Reports, 2017, 7, 10331.	1.6	47
82	Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annual Review of Cell and Developmental Biology, 2017, 33, 343-368.	4.0	171
83	Silencing transposable elements in the Drosophila germline. Cellular and Molecular Life Sciences, 2017, 74, 435-448.	2.4	21
84	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Journal of Computational Biology, 2017, 24, 486-500.	0.8	22
85	Ribonuclease selection for ribosome profiling. Nucleic Acids Research, 2017, 45, e6-e6.	6.5	134
86	Genome-wide Quantification of Translation in Budding Yeast by Ribosome Profiling. Journal of Visualized Experiments, 2017, , .	0.2	5
87	elF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. ELife, 2017, 6, .	2.8	39
88	A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling. PLoS ONE, 2017, 12, e0170333.	1.1	3
89	Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biology, 2017, 15, e2001882.	2.6	104
90	riboviz: analysis and visualization of ribosome profiling datasets. BMC Bioinformatics, 2017, 18, 461.	1.2	37

#	Article	IF	CITATIONS
91	The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay. Nucleic Acids Research, 2017, 45, 4094-4107.	6.5	56
92	Regulated Ire1-dependent mRNA decay requires no-go mRNA degradation to maintain endoplasmic reticulum homeostasis in S. pombe. ELife, 2017, 6, .	2.8	64
93	Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nature Structural and Molecular Biology, 2018, 25, 302-310.	3.6	63
94	An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature, 2018, 556, 376-380.	13.7	47
95	Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data. Methods, 2018, 137, 67-70.	1.9	3
96	Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation. Physical Review E, 2018, 97, 012106.	0.8	18
97	Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiology Reviews, 2018, 42, 165-192.	3.9	85
98	GWIPS-viz: 2018 update. Nucleic Acids Research, 2018, 46, D823-D830.	6.5	45
99	Molecular autopsy provides evidence for widespread ribosome-phased mRNA fragmentation. Nature Structural and Molecular Biology, 2018, 25, 299-301.	3.6	3
100	LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. Plant and Cell Physiology, 2018, 59, 887-902.	1.5	26
101	An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome. Methods in Molecular Biology, 2018, 1712, 1-18.	0.4	9
102	Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics, 2018, 18, e1700038.	1.3	63
103	Widespread Accumulation of Ribosome-Associated Isolated 3′ UTRs in Neuronal Cell Populations of the Aging Brain. Cell Reports, 2018, 25, 2447-2456.e4.	2.9	63
104	RNA virus evasion of nonsense-mediated decay. PLoS Pathogens, 2018, 14, e1007459.	2.1	47
105	Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata. Frontiers in Microbiology, 2018, 9, 2689.	1.5	7
106	Ribosomal flavours: an acquired taste for specific mRNAs?. Biochemical Society Transactions, 2018, 46, 1529-1539.	1.6	8
107	Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genetics, 2018, 14, e1007806.	1.5	29
108	Translation Stress Regulates Ribosome Synthesis and Cell Proliferation. International Journal of Molecular Sciences, 2018, 19, 3757.	1.8	20

#	Article	IF	Citations
109	ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Molecular Cell, 2018, 72, 469-481.e7.	4.5	294
110	Active Ribosome Profiling with RiboLace. Cell Reports, 2018, 25, 1097-1108.e5.	2.9	51
111	Lso2 is a conserved ribosome-bound protein required for translational recovery in yeast. PLoS Biology, 2018, 16, e2005903.	2.6	31
112	A Pelota-like gene regulates root development and defence responses in rice. Annals of Botany, 2018, 122, 359-371.	1.4	10
113	Roadblocks and resolutions in eukaryotic translation. Nature Reviews Molecular Cell Biology, 2018, 19, 526-541.	16.1	177
114	Following Ribosome Footprints to Understand Translation at a Genome Wide Level. Computational and Structural Biotechnology Journal, 2018, 16, 167-176.	1.9	26
115	Nonsense mRNA suppression via nonstop decay. ELife, 2018, 7, .	2.8	46
116	Identification and analysis of ribosome-associated IncRNAs using ribosome profiling data. BMC Genomics, 2018, 19, 414.	1.2	56
117	Translation elongation and mRNA stability are coupled through the ribosomal A-site. Rna, 2018, 24, 1377-1389.	1.6	44
118	Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells. Molecular Cell, 2018, 71, 229-243.e11.	4.5	123
119	Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits InÂVivo. Molecular Cell, 2018, 71, 761-774.e5.	4.5	62
120	ABCE Proteins: From Molecules to Development. Frontiers in Plant Science, 2018, 9, 1125.	1.7	26
121	The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation. PLoS Genetics, 2018, 14, e1007166.	1.5	77
122	The extent of ribosome queuing in budding yeast. PLoS Computational Biology, 2018, 14, e1005951.	1.5	55
123	Ribosome Profiling: Global Views of Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032698.	2.3	205
124	The Tomato Translational Landscape Revealed by Transcriptome Assembly and Ribosome Profiling. Plant Physiology, 2019, 181, 367-380.	2.3	66
125	Hcr1/elF3j Is a 60S Ribosomal Subunit Recycling Accessory Factor InÂVivo. Cell Reports, 2019, 28, 39-50.e4.	2.9	33
126	Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21769-21779.	3.3	48

#	ARTICLE Converting GTP hydrolysis into motion: versatile translational elongation factor G. Biological	IF	CITATIONS
127	Chemistry, 2019, 401, 131-142.	1.2	41
128	EF-G–induced ribosome sliding along the noncoding mRNA. Science Advances, 2019, 5, eaaw9049.	4.7	12
129	A specialised <scp>SKI</scp> complex assists the cytoplasmic <scp>RNA</scp> exosome in the absence of direct association with ribosomes. EMBO Journal, 2019, 38, e100640.	3.5	24
130	Translational regulation and deregulation in erythropoiesis. Experimental Hematology, 2019, 75, 11-20.	0.2	9
131	Ribosome clearance during RNA interference. Rna, 2019, 25, 963-974.	1.6	11
132	mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biology, 2019, 17, e3000274.	2.6	37
133	The Plant Translatome Surveyed by Ribosome Profiling. Plant and Cell Physiology, 2019, 60, 1917-1926.	1.5	19
134	Identifying A- and P-site locations on ribosome-protected mRNA fragments using Integer Programming. Scientific Reports, 2019, 9, 6256.	1.6	18
135	The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. International Journal of Molecular Sciences, 2019, 20, 1981.	1.8	38
136	Pelota-interacting G protein Hbs1 is required for spermatogenesis in Drosophila. Scientific Reports, 2019, 9, 3226.	1.6	5
137	Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Frontiers in Genetics, 2018, 9, 743.	1.1	66
138	Engineered transfer RNAs for suppression of premature termination codons. Nature Communications, 2019, 10, 822.	5.8	86
139	A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. ELife, 2019, 8, .	2.8	161
140	Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biology, 2019, 17, 101.	1.7	10
141	Conservation of location of several specific inhibitory codon pairs in the Saccharomyces sensu stricto yeasts reveals translational selection. Nucleic Acids Research, 2019, 47, 1164-1177.	6.5	15
142	Control of mRNA Translation by Versatile ATP-Driven Machines. Trends in Biochemical Sciences, 2019, 44, 167-180.	3.7	33
143	Recent advances in ribosome profiling for deciphering translational regulation. Methods, 2020, 176, 46-54.	1.9	24
144	Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Research, 2020, 48, 1056-1067.	6.5	61

#	Article	IF	CITATIONS
145	UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Research, 2020, 30, 5-20.	5.7	97
146	Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Research, 2020, 48, 1043-1055.	6.5	105
147	No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5â€2-OH ends phosphorylated by Trl1. Nature Communications, 2020, 11, 122.	5.8	24
148	NONU-1 Encodes a Conserved Endonuclease Required for mRNA Translation Surveillance. Cell Reports, 2020, 30, 4321-4331.e4.	2.9	60
149	Genome-wide Survey of Ribosome Collision. Cell Reports, 2020, 31, 107610.	2.9	119
150	Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs. Nucleic Acids Research, 2020, 48, 8977-8992.	6.5	13
151	Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Research, 2020, 30, 985-999.	2.4	73
152	Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Research, 2020, 48, 10259-10279.	6.5	28
153	eIF4C-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Research, 2020, 48, 10441-10455.	6.5	6
154	Inferring efficiency of translation initiation and elongation from ribosome profiling. Nucleic Acids Research, 2020, 48, 9478-9490.	6.5	18
155	ArfB can displace mRNA to rescue stalled ribosomes. Nature Communications, 2020, 11, 5552.	5.8	16
156	RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Research, 2020, 48, W218-W229.	6.5	53
157	CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules, 2020, 10, 911.	1.8	13
158	Detection and Degradation of Stalled Nascent Chains via Ribosome-Associated Quality Control. Annual Review of Biochemistry, 2020, 89, 417-442.	5.0	60
159	Stem cell aging: The upcoming era of proteins and metabolites. Mechanisms of Ageing and Development, 2020, 190, 111288.	2.2	16
160	Nuclease-mediated depletion biases in ribosome footprint profiling libraries. Rna, 2020, 26, 1481-1488.	1.6	29
161	Readthrough Errors Purge Deleterious Cryptic Sequences, Facilitating the Birth of Coding Sequences. Molecular Biology and Evolution, 2020, 37, 1761-1774.	3.5	11
162	Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. Molecular Cell, 2020, 79, 588-602.e6.	4.5	118

#	Article	IF	CITATIONS
163	The ASC-1 Complex Disassembles Collided Ribosomes. Molecular Cell, 2020, 79, 603-614.e8.	4.5	117
164	Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Molecular Cell, 2020, 79, 546-560.e7.	4.5	92
165	mRNA Editing, Processing and Quality Control in <i>Caenorhabditis elegans</i> . Genetics, 2020, 215, 531-568.	1.2	24
166	Ribosome and Translational Control in Stem Cells. Cells, 2020, 9, 497.	1.8	66
167	Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Molecular Cell, 2020, 77, 1222-1236.e13.	4.5	78
168	RiboFlow, RiboR and RiboPy: an ecosystem for analyzing ribosome profiling data at read length resolution. Bioinformatics, 2020, 36, 2929-2931.	1.8	23
169	A HemK class glutamineâ€nethyltransferase is involved in the termination of translation and essential for iron homeostasis in Arabidopsis. New Phytologist, 2020, 226, 1361-1374.	3.5	7
170	Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9630-9641.	3.3	29
171	A cellular handbook for collided ribosomes: surveillance pathways and collision types. Current Genetics, 2021, 67, 19-26.	0.8	51
172	Perturbed differentiation of murine embryonic stem cells upon Pelota deletion due to dysregulated FOXO1/βâ€catenin signaling. FEBS Journal, 2021, 288, 3317-3329.	2.2	3
173	Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Molecular Cell, 2021, 81, 614-628.e4.	4.5	87
174	The effects of codon bias and optimality on mRNA and protein regulation. Cellular and Molecular Life Sciences, 2021, 78, 1909-1928.	2.4	26
175	Translational control in aging and neurodegeneration. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1628.	3.2	17
176	Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biology, 2021, 22, 16.	3.8	63
177	RiboDoc: A Docker-based package for ribosome profiling analysis. Computational and Structural Biotechnology Journal, 2021, 19, 2851-2860.	1.9	3
179	Tools for Assessing Translation in Cryptococcus neoformans. Journal of Fungi (Basel, Switzerland), 2021, 7, 159.	1.5	5
180	Inferring translational heterogeneity from <i>Saccharomyces cerevisiae</i> ribosome profiling. FEBS Journal, 2021, 288, 4541-4559.	2.2	2
181	The ribosome collision sensor Hel2 functions as preventive quality control in the secretory pathway. Cell Reports, 2021, 34, 108877.	2.9	14

#	Article	IF	CITATIONS
182	HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
183	Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. ELife, 2021, 10, .	2.8	15
184	Deep conservation of ribosome stall sites across RNA processing genes. NAR Genomics and Bioinformatics, 2021, 3, Iqab038.	1.5	9
185	Ribosome quality control activity potentiates vaccinia virus protein synthesis during infection. Journal of Cell Science, 2021, 134, .	1.2	19
186	Ribosome states signal RNA quality control. Molecular Cell, 2021, 81, 1372-1383.	4.5	75
187	Ribosome dynamics and <scp>mRNA</scp> turnover, a complex relationship under constant cellular scrutiny. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1658.	3.2	41
188	High-throughput 5′P sequencing enables the study of degradation-associated ribosome stalls. Cell Reports Methods, 2021, 1, 100001.	1.4	12
189	Iron in Translation: From the Beginning to the End. Microorganisms, 2021, 9, 1058.	1.6	8
190	A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Reports, 2021, 35, 109217.	2.9	8
191	Genome-Wide Identification and Characterization of Small Peptides in Maize. Frontiers in Plant Science, 2021, 12, 695439.	1.7	16
192	Persistence of Ambigrammatic Narnaviruses Requires Translation of the Reverse Open Reading Frame. Journal of Virology, 2021, 95, e0010921.	1.5	20
194	Ribosome-associated quality control and CAT tailing. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 603-620.	2.3	14
195	RNA degradation is required for the germ-cell to maternal transition in Drosophila. Current Biology, 2021, 31, 2984-2994.e7.	1.8	22
196	Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nature Communications, 2021, 12, 5094.	5.8	21
197	Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Reports, 2021, 36, 109633.	2.9	20
198	Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. Biochemistry (Moscow), 2021, 86, 1095-1106.	0.7	2
199	Detecting and Rescuing Stalled Ribosomes. Trends in Biochemical Sciences, 2021, 46, 731-743.	3.7	40
200	ĐазлĐ,чĐ,Ñ•Đ, ÑŇĐ¾Đ´ÑŇ,Đ²Đ¾ Đ;Ñ€Đ¾Ñ†ĐµÑŇĐ¾Đ² Ñ,ĐµÑ€Đ¼Đ,Đ½Đ°Ñ†Đ,Đ, Ñ,Ñ€Đ°Đ½ÑĐ»Ñ	цÐ,Ð, Ð, Í	ŇĐ@аÑеĐ

#	Article	IF	CITATIONS
201	Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. Biochemistry (Moscow), 2021, 86, 1107-1121.	0.7	2
202	ĐœĐ¾ĐĐֻÑ"Đ¸ĐºĐ°Ñ†Đ¸Đ _, Ñ€Đ¸Đ±Đ¾ÑĐ¾Đ¼Đ½Đ¾Đ3Đ¾ Đ¿Ñ€Đ¾Ñ"Đ°Đ¹Đ»Đ¸Đ½Đ3а, Đ¿Đ¾ĐĐ2Đ¾	л NÞNŽ Ñ%	₀Đ , е Đ;Đ¾
203	Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Molecular Aspects of Medicine, 2021, 81, 101017.	2.7	3
204	Ribosomal profiling—Diversity and applications. , 2021, , 255-280.		0
205	Quantitative Comparisons of Translation Activity by Ribosome Profiling with Internal Standards. Methods in Molecular Biology, 2021, 2252, 127-149.	0.4	5
206	Translationâ€"Process and control. , 2021, , 183-211.		1
207	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Lecture Notes in Computer Science, 2016, , 37-52.	1.0	3
208	Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control. Nature Communications, 2019, 10, 563.	5.8	32
209	Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nature Cell Biology, 2020, 22, 200-212.	4.6	29
210	Does elF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?. RNA Biology, 2017, 14, 1660-1667.	1.5	37
211	Coupling of translation quality control and mRNA targeting to stress granules. Journal of Cell Biology, 2020, 219, .	2.3	40
212	Improved computational analysis of ribosome dynamics from 5′P degradome data using fivepseq. NAR Genomics and Bioinformatics, 2020, 2, Iqaa099.	1.5	14
213	What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biology, 2020, 10, 200292.	1.5	18
233	Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Research, 0, 2, 116.	0.9	11
234	Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Research, 2017, 2, 116.	0.9	4
235	Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast. PLoS Genetics, 2015, 11, e1005732.	1.5	196
236	Dom34 Links Translation to Protein O-mannosylation. PLoS Genetics, 2016, 12, e1006395.	1.5	4
237	High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLoS Pathogens, 2016, 12, e1005473.	2.1	188

#	Article	IF	CITATIONS
238	ROSE: A Deep Learning Based Framework for Predicting Ribosome Stalling. SSRN Electronic Journal, 0, ,	0.4	2
239	Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. ELife, 2014, 3, .	2.8	115
240	Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria. ELife, 2017, 6, .	2.8	41
241	Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. ELife, 2018, 7, .	2.8	174
242	Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. ELife, 2018, 7, .	2.8	37
243	tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. ELife, 2019, 8, .	2.8	24
244	The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. ELife, 2019, 8, .	2.8	139
245	Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. ELife, 2020, 9, .	2.8	122
246	Inhibition of post-termination ribosome recycling at premature termination codons in UPF1 ATPase mutants. ELife, 2020, 9, .	2.8	14
247	Ribosome recycling is not critical for translational coupling in Escherichia coli. ELife, 2020, 9, .	2.8	19
248	GTPBP1 resolves paused ribosomes to maintain neuronal homeostasis. ELife, 2020, 9, .	2.8	28
249	Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in <i>Theilovirus</i> . Nucleic Acids Research, 2021, 49, 11938-11958.	6.5	11
251	Conserved heterodimeric GTPase Rbg1/Tma46 promotes efficient translation in eukaryotic cells. Cell Reports, 2021, 37, 109877.	2.9	10
252	Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nature Communications, 2021, 12, 5970.	5.8	13
285	The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. Rna, 2022, 28, 290-302.	1.6	8
286	Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Frontiers in Molecular Biosciences, 2021, 8, 787781.	1.6	2
288	Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data. Nucleic Acids Research, 2022, , .	6.5	2
289	Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature, 2022, 601, 637-642.	13.7	91

#	Article	IF	CITATIONS
290	riboviz 2: a flexible and robust ribosome profiling data analysis and visualization workflow. Bioinformatics, 2022, 38, 2358-2360.	1.8	3
291	Rebirth of the translational machinery: The importance of recycling ribosomes. BioEssays, 2022, 44, e2100269.	1.2	7
292	Eukaryotic ribosome quality control system: a potential therapeutic target for human diseases. International Journal of Biological Sciences, 2022, 18, 2497-2514.	2.6	5
293	High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation. Methods in Molecular Biology, 2022, 2428, 173-186.	0.4	2
294	Ribosome Associated Protein Quality Control: Mechanism and Function. International Journal for Research in Applied Sciences and Biotechnology, 2022, 9, 118-126.	0.2	0
295	Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication. Molecular Cell, 2022, 82, 1631-1642.e6.	4.5	16
296	High-throughput translational profiling with riboPLATE-seq. Scientific Reports, 2022, 12, 5718.	1.6	3
304	Identification and functional characterization of mRNAs that exhibit stop codon readthrough in Arabidopsis thaliana. Journal of Biological Chemistry, 2022, 298, 102173.	1.6	8
306	Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation. ELife, 0, 11, .	2.8	19
308	SMG-6 mRNA cleavage stalls ribosomes near premature stop codons <i>in vivo</i> . Nucleic Acids Research, 2022, 50, 8852-8866.	6.5	4
309	CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nature Communications, 2022, 13, .	5.8	20
310	Statistical methodology for ribosomal frameshift detection. , 2022, , .		0
311	Proteomic, Metabolomic, and Lipidomic Analyses of Lung Tissue Exposed to Mustard Gas. Metabolites, 2022, 12, 815.	1.3	1
312	Developmental dynamics of RNA translation in the human brain. Nature Neuroscience, 2022, 25, 1353-1365.	7.1	30
315	Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
317	Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity. Immunity, 2023, 56, 926-943.e7.	6.6	4
318	Contributions of Ccr4 and Gcn2 to the Translational Response of <i>C. neoformans</i> to Host-Relevant Stressors and Integrated Stress Response Induction. MBio, 0, , .	1.8	0
319	Principles, mechanisms, and biological implications of translation termination–reinitiation. Rna, 2023, 29, 865-884.	1.6	6

ARTICLE

IF CITATIONS