Luminescent metal–organic frameworks for chemica

Chemical Society Reviews 43, 5815-5840

DOI: 10.1039/c4cs00010b

Citation Report

#	Article	IF	CITATIONS
1	A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds. APL Materials, 2014, 2, .	2.2	44
2	Multifunctional Benzothiadiazoleâ€Based Small Molecules Displaying Solvatochromism and Sensing Properties toward Nitroarenes, Anions, and Cations. ChemistryOpen, 2014, 3, 242-249.	0.9	21
3	Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. Journal of Materials Chemistry A, 2014, 2, 13479-13485.	5.2	25
4	A Facile and General Coating Approach to Moisture/Water-Resistant Metal–Organic Frameworks with Intact Porosity. Journal of the American Chemical Society, 2014, 136, 16978-16981.	6.6	445
6	Optical detection of submicromolar levels of nitro explosives by a submicron sized metal–organic phosphor material. Journal of Materials Chemistry A, 2014, 2, 20908-20915.	5.2	120
7	Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency. Journal of the American Chemical Society, 2014, 136, 16724-16727.	6.6	254
10	A Eu/Tb-codoped coordination polymer luminescent thermometer. Inorganic Chemistry Frontiers, 2014, 1, 757-760.	3.0	63
11	Luminescent metal–organic frameworks as explosive sensors. Dalton Transactions, 2014, 43, 10668-10685.	1.6	344
12	Assembly of a series of d ¹⁰ coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties. CrystEngComm, 2014, 16, 10658-10673.	1.3	64
13	Rational construction of metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2014, 1, 721-734.	3.0	64
14	Two 3D photoluminescent Zn(<scp>ii</scp>) complexes constructed from 5-amino-1-H-tetrazole with aromatic polycarboxylate ligands. RSC Advances, 2014, 4, 56434-56439.	1.7	7
15	A Series of Cu ^{II} â€"Ln ^{III} Metalâ€"Organic Frameworks Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2014, 14, 6409-6420.	1.4	20
16	Coordination polymers derived from pyridyl carboxylate ligands having an amide backbone: an attempt towards the selective separation of Cull cation following in situ crystallization under competitive conditions. CrystEngComm, 2014, 16, 7815-7829.	1.3	6
17	A luminescent terbium MOF containing uncoordinated carboxyl groups exhibits highly selective sensing for Fe ³⁺ ions. RSC Advances, 2014, 4, 55252-55255.	1.7	72
18	Selective pyridine recognition by an imidazole dicarboxylate-based 3D cadmium(<scp>ii</scp>) MOF. RSC Advances, 2014, 4, 33537-33540.	1.7	18
19	Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society, 2014, 136, 15485-15488.	6.6	390
20	Amineâ∈Responsive Adaptable Nanospaces: Fluorescent Porous Coordination Polymer for Molecular Recognition. Angewandte Chemie - International Edition, 2014, 53, 11772-11777.	7.2	184
21	Cu ^{II} â€"PDC-bpe frameworks (PDC = 2,5-pyridinedicarboxylate, bpe = 1,2-di(4-pyridyl)ethylene): mapping of herringbone-type structures. CrystEngComm, 2014, 16, 8726-8735.	1.3	13

#	Article	IF	CITATIONS
22	Highly sensitive and selective fluorescent probe for Ag ⁺ based on a Eu ³⁺ post-functionalized metal–organic framework in aqueous media. Journal of Materials Chemistry A, 2014, 2, 18018-18025.	5.2	160
23	A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chemical Communications, 2014, 50, 9636-9639.	2.2	120
24	Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chemical Communications, 2014, 50, 12545-12547.	2.2	136
25	2D Cd(II)–Lanthanide(III) Heterometallic–Organic Frameworks Based on Metalloligands for Tunable Luminescence and Highly Selective, Sensitive, and Recyclable Detection of Nitrobenzene. Inorganic Chemistry, 2014, 53, 8105-8113.	1.9	105
26	Fluorescent Dodecapus in 3D Framework. Crystal Growth and Design, 2014, 14, 4258-4261.	1.4	41
27	An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chemical Communications, 2014, 50, 12069-12072.	2.2	178
28	One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chemical Communications, 2014, 50, 14752-14755.	2.2	84
29	Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu ²⁺ ions and selective CO ₂ capture. Chemical Communications, 2014, 50, 8731.	2.2	245
30	Effective sensing of RDX via instant and selective detection of ketone vapors. Chemical Science, 2014, 5, 4873-4877.	3.7	112
31	Facile preparation of yttrium and aluminum co-doped ZnO via a sol–gel route for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014, 2, 11040-11044.	5.2	74
32	Organic Cation Templated Synthesis of Three Zinc–2,5-Thiophenedicarboxylate Frameworks for Selective Gas Sorption. Crystal Growth and Design, 2014, 14, 3493-3498.	1.4	19
33	Pyrolytic cavitation, selective adsorption and molecular recognition of a porous Eu(iii) MOF. Dalton Transactions, 2014, 43, 15305-15307.	1.6	17
34	Explosives Sensing by Using Electronâ€Rich Supramolecular Polymers: Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity. Chemistry - A European Journal, 2014, 20, 13662-13680.	1.7	94
35	Isostructural Synthesis of Porous Metal–Organic Nanotubes. Journal of the American Chemical Society, 2014, 136, 10983-10988.	6.6	67
36	A fluorescent metal–organic framework for highly selective detection of nitro explosives in the aqueous phase. Chemical Communications, 2014, 50, 8915-8918.	2.2	486
37	A Rare L1D + R1D → 3D Luminescent Dense Polymer as Multifunctional Sensor to Nitro Aromatic Compounds, Cu ²⁺ , and Bases. Crystal Growth and Design, 2014, 14, 2954-2961.	1.4	56
38	A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(<scp>iii</scp>) complexes. Chemical Communications, 2014, 50, 13323-13326.	2.2	192
39	Multicomponent Assembly of Fluorescentâ€₹ag Functionalized Ligands in Metal–Organic Frameworks for Sensing Explosives. Chemistry - A European Journal, 2014, 20, 13321-13336.	1.7	150

#	ARTICLE	IF	Citations
40	Two structurally different praseodymium-organic frameworks with permanent porosity. Inorganic Chemistry Communication, 2014, 45, 89-92.	1.8	1
41	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€technique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	1.7	25
42	Synthesis, structure, and luminescent properties of layered coordination polymer based on cadmium(II) 2,5-furandicarboxylate. Russian Chemical Bulletin, 2015, 64, 613-617.	0.4	2
43	Metal†and Substituentâ€Dependent Structural Diversity in ÂCobalt and Nickel Isophthalate Coordination Polymers with Bis(4â€pyridylformyl)piperazine Tethers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1357-1365.	0.6	2
44	A Bimetallic Lanthanide Metal–Organic Material as a Selfâ€Calibrating Colorâ€Gradient Luminescent Sensor. Advanced Materials, 2015, 27, 7072-7077.	11.1	299
46	Metal–Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn ^I Mn ^I Bonds. Angewandte Chemie - International Edition, 2015, 54, 11681-11685.	7.2	50
47	Structural Variety of Cobalt(II), Nickel(II), Zinc(II), and Cadmium(II) Complexes with 4,4′â€Azopyridine: Synthesis, Structure and Luminescence Properties. Chemistry - an Asian Journal, 2015, 10, 2388-2396.	1.7	19
48	Titanium Dioxide Reinforced Metal–Organic Framework Pd Catalysts: Activity and Reusability Enhancement in Alcohol Dehydrogenation Reactions and Improved Photocatalytic Performance. ChemCatChem, 2015, 7, 3916-3922.	1.8	29
49	Encapsulation of Ln ^{III} lons/Dyes within a Microporous Anionic MOF by Postâ€synthetic Ionic Exchange Serving as a Ln ^{III} Ion Probe and Twoâ€Color Luminescent Sensors. Chemistry - A European Journal, 2015, 21, 9748-9752.	1.7	123
50	A Fluorescent 1,3â€Diaminonaphthalimide Conjugate of Calix[4]arene for Sensitive and Selective Detection of Trinitrophenol: Spectroscopy, Microscopy, and Computational Studies, and Its Applicability using Cellulose Strips. Chemistry - A European Journal, 2015, 21, 13364-13374.	1.7	44
51	Surface and Structural Investigation of a MnO _{<i>x</i>} Birnessiteâ€Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry - A European Journal, 2015, 21, 14218-14228.	1.7	29
52	Imidazolium Dicarboxylate Based Metal–Organic Frameworks Obtained by Solvoâ€lonothermal Reaction. European Journal of Inorganic Chemistry, 2015, 2015, 5342-5350.	1.0	19
53	Green Synthesis of a Microporous, Partially Fluorinated Zn ^{II} Paddlewheel Metal–Organic Framework: H ₂ /CO ₂ Adsorption Behavior and Solidâ€State Conversion to a ZnO–C Nanocomposite. European Journal of Inorganic Chemistry, 2015, 2015, 5669-5676.	1.0	28
54	Tailoring the Optical Absorption of Waterâ€6table Zr ^{IV} ―and Hf ^{IV} â€Based Metal–Organic Framework Photocatalysts. Chemistry - an Asian Journal, 2015, 10, 2660-2668.	1.7	62
55	Metalâ€Dependent Topologies and Water Aggregations in Copper and Nickel Carboxycinnamate Coordination Polymers with a Longâ€Spanning Dipyridylamide Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1560-1565.	0.6	0
56	Effect of Flexible Bis(Benzimidazole) Ligands on the Structures of Cobalt(II) Coordination Polymers Derived from 2,6â€Naphthalenedicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1980-1986.	0.6	2
57	Selfâ€Powered, Roomâ€Temperature Electronic Nose Based on Triboelectrification and Heterogeneous Catalytic Reaction. Advanced Functional Materials, 2015, 25, 7049-7055.	7.8	76
58	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	7.8	260

#	Article	IF	CITATIONS
59	Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns. Advanced Materials, 2015, 27, 7293-7298.	11.1	97
61	Systematic Investigation of Highâ€Sensitivity Luminescent Sensing for Polyoxometalates and Iron(III) by MOFs Assembled with a New Resorcin[4]areneâ€Functionalized Tetracarboxylate. Chemistry - A European Journal, 2015, 21, 15806-15819.	1.7	98
62	Recognition of an Explosive and Mutagenic Water Pollutant, 2,4,6â€Trinitrophenol, by Costâ€Effective Luminescent MOFs. European Journal of Inorganic Chemistry, 2015, 2015, 2851-2857.	1.0	87
63	A Series of Multifunctional Metal–Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. Chemistry - A European Journal, 2015, 21, 11475-11482.	1.7	219
64	A Nitroâ€Functionalized Metal–Organic Framework as a Reactionâ€Based Fluorescence Turnâ€On Probe for Rapid and Selective H ₂ S Detection. Chemistry - A European Journal, 2015, 21, 9994-9997.	1.7	93
65	Realâ€Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 15854-15859.	1.7	92
66	Highly Selective and Sensitive Detection of Picric Acid Explosive by a Bisporphyrin Cleft: Synergistic Effects of Encapsulation, Efficient Electron Transfer, and Hydrogen Bonding. European Journal of Inorganic Chemistry, 2015, 2015, 4956-4964.	1.0	30
67	Three Cadmium(II) Coordination Polymers based on Mixed 1,2â€Naphthalenedicarboxylate and Bis(pyridyl) Coâ€igands: Structural Diversities and Photoluminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 876-882.	0.6	1
68	Engineering Zeoliticâ€Imidazolate Framework (ZIF) Thin Film Devices for Selective Detection of Volatile Organic Compounds. Advanced Functional Materials, 2015, 25, 4470-4479.	7.8	140
69	Controlled lanthanide–organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications. Chemical Communications, 2015, 51, 6769-6772.	2.2	97
70	A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Advances, 2015, 5, 48881-48884.	1.7	31
71	Aqueous- and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid. Journal of Materials Chemistry A, 2015, 3, 12690-12697.	5.2	156
72	Auxiliary Ligand-Assisted Structural Variation of Cd(II) Metal–Organic Frameworks Showing 2D → 3D Polycatenation and Interpenetration: Synthesis, Structure, Luminescence Properties, and Selective Sensing of Trinitrophenol. Crystal Growth and Design, 2015, 15, 3356-3365.	1.4	125
73	A luminescent cadmium(<scp>ii</scp>) metal–organic framework based on a triazolate–carboxylate ligand exhibiting selective gas adsorption and guest-dependent photoluminescence properties. CrystEngComm, 2015, 17, 4787-4792.	1.3	30
74	Selective Detection of 2,4,6-Trinitrophenol (TNP) by a π-Stacked Organic Crystalline Solid in Water. Crystal Growth and Design, 2015, 15, 3493-3497.	1.4	70
7 5	A Two-Fold Interpenetrating Porous Metal–Organic Framework with a Large Solvent-Accessible Volume: Gas Sorption and Luminescent Properties. Crystal Growth and Design, 2015, 15, 3119-3122.	1.4	15
76	Metal organic frameworks from extended, conjugated pentiptycene-based ligands. CrystEngComm, 2015, 17, 4912-4918.	1.3	13
77	A microporous lanthanum metal–organic framework as a bi-functional chemosensor for the detection of picric acid and Fe ³⁺ ions. Dalton Transactions, 2015, 44, 13340-13346.	1.6	114

#	Article	IF	CITATIONS
78	Highly Selective and Sensitive Luminescence Turn-On-Based Sensing of Al ³⁺ lons in Aqueous Medium Using a MOF with Free Functional Sites. Inorganic Chemistry, 2015, 54, 6373-6379.	1.9	169
79	Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions. Journal of Molecular Structure, 2015, 1096, 136-141.	1.8	5
80	Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 2015, 5, 48433-48441.	1.7	276
81	Alkaline Earth Metal Ion/Dihydroxy–Terephthalate MOFs: Structural Diversity and Unusual Luminescent Properties. Inorganic Chemistry, 2015, 54, 5813-5826.	1.9	71
82	Sensing of 2,4,6â€Trinitrotoluene (TNT) and 2,4â€Dinitrotoluene (2,4â€DNT) in the Solid State with Photoluminescent Ru ^{II} and Ir ^{III} Complexes. Chemistry - A European Journal, 2015, 21, 4056-4064.	1.7	33
83	Influence of noncovalent interactions on the structures of metal–organic hybrids based on a [VO ₂ (2,6-pydc)] ^{â^²} tecton with cations of imidazole, pyridine and its derivatives. New Journal of Chemistry, 2015, 39, 4265-4277.	1.4	14
84	A sensor for formaldehyde detection: luminescent metal–organic framework [Zn ₂ (H ₂ n. RSC Advances, 2015, 5, 49752-49758.	1.7	21
85	Selection of rigid N-donor ligands influence the dimensions and luminescences of five new Cd(II) coordination polymers, based on a flexible tricarboxylic acid. Inorganica Chimica Acta, 2015, 433, 52-62.	1.2	15
86	Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands. Journal of Molecular Structure, 2015, 1089, 135-145.	1.8	9
87	Low-temperature CO oxidation using a metal organic framework with unsaturated Co2+ sites. Polyhedron, 2015, 90, 18-22.	1.0	15
88	Four super water-stable lanthanide–organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe ³⁺ . Dalton Transactions, 2015, 44, 13325-13330.	1.6	164
89	Discrete and polymeric complexes formed from cobalt(<scp>ii</scp>), 4,4′-bipyridine and 2-sulfoterephthalate: synthetic, crystallographic and magnetic studies. CrystEngComm, 2015, 17, 4502-4511.	1.3	8
90	Turn-on luminescence based discrimination of protic acids using a flexible layered metal–organic coordination polymer. RSC Advances, 2015, 5, 48169-48175.	1.7	8
91	Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11956-11964.	4.0	131
92	An In ^{III} -based anionic metalâ€"organic framework: sensitization of lanthanide (III) ions and selective absorption and separation of cationic dyes. Journal of Materials Chemistry A, 2015, 3, 14157-14164.	5.2	128
93	A 3D Cu(II) coordination polymer constructed from BIBP (BIBP=5,5′-bis(1H-imidazol-1-yl)-2,2′-bithiophene) ligand with semiconductive property. Inorganic Chemistry Communication, 2015, 58, 14-15.	1.8	5
94	Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12804-12809.	5.2	118
95	A urea decorated (3,24)-connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm, 2015, 17, 4632-4636.	1.3	33

#	Article	IF	CITATIONS
96	Unraveling the multi-functional behavior in a series of Metal Organic Frameworks. Journal of Solid State Chemistry, 2015, 229, 103-111.	1.4	6
97	A novel trinuclear Cd(ii) cluster-based metal–organic framework: synthesis, structure and luminescence properties. RSC Advances, 2015, 5, 102525-102529.	1.7	10
98	Regulation of the pore size by shifting the coordination sites of ligands in two MOFs: enhancement of CO ₂ uptake and selective sensing of nitrobenzene. Dalton Transactions, 2015, 44, 20926-20935.	1.6	21
99	Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 16209-16215.	6.6	350
100	Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range. Inorganic Chemistry, 2015, 54, 11193-11199.	1.9	130
101	A Series of Homochiral Helical Metal–Organic Frameworks Based on Proline Derivatives. Crystal Growth and Design, 2015, 15, 5901-5909.	1.4	27
102	Supramolecular photochemistry: recent progress and key challenges. Faraday Discussions, 2015, 185, 549-558.	1.6	3
103	Luminescent MOFs and Frameworks. , 2015, , .		2
104	Recent progress in the synthesis of metal–organic frameworks. Science and Technology of Advanced Materials, 2015, 16, 054202.	2.8	196
105	An unprecedented twelve-connected 3D metal-organic framework based on heptanuclear cobalt cluster building blocks. Inorganic Chemistry Communication, 2015, 62, 98-102.	1.8	3
106	Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties. Journal of Solid State Chemistry, 2015, 232, 200-206.	1.4	32
107	Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal–organic framework. Chemical Communications, 2015, 51, 3045-3048.	2.2	148
108	Silver-tetrapyridyl coordination polymers: $[Ag2(L)](NO3)2(H2O)2$, $[Ag(L)](PF6)$, and $[Ag2I2L](CH2CI2)$ {L = 1,1,2,2-tetrakis(4-(pyridin-3-yl)phenyl)ethene}. Polyhedron, 2015, 87, 338-348.	1.0	7
109	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234
110	A porous metal–organic framework containing multiple active Cu ²⁺ sites for highly efficient cross dehydrogenative coupling reaction. Dalton Transactions, 2015, 44, 2038-2041.	1.6	27
111	Selfâ€Assembled Discrete Molecules for Sensing Nitroaromatics. Chemistry - A European Journal, 2015, 21, 6656-6666.	1.7	179
112	Chain, ladder and self-penetrated cobalt and nickel coordination polymers containing sterically bulky isophthalate and long-spanning dipyridylamide ligands. Inorganica Chimica Acta, 2015, 428, 65-72.	1.2	8
113	The vapour phase detection of explosive markers and derivatives using two fluorescent metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 6351-6359.	5.2	69

#	Article	IF	CITATIONS
114	Synthesis, structures and luminescent studies of five metal coordination compounds with a pyridine-containing tripodal ligand. Polyhedron, 2015, 87, 369-376.	1.0	5
115	Guest-induced single-crystal-to-single-crystal transformations of a new 4-connected 3D cadmium(<scp>ii</scp>) metal–organic framework. RSC Advances, 2015, 5, 17588-17591.	1.7	42
116	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	1.9	177
117	Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chemical Communications, 2015, 51, 4827-4829.	2.2	33
118	Solvent-controlled three families of Zn(<scp>ii</scp>) coordination compounds: synthesis, crystal structure, solvent-induced structural transformation, supramolecular isomerism and photoluminescence. Dalton Transactions, 2015, 44, 6052-6061.	1.6	78
119	Solid state organic amine detection in a photochromic porous metal organic framework. Chemical Science, 2015, 6, 1420-1425.	3.7	316
120	A novel triphenylamine functionalized bithiazole–metal complex with C ₆₀ for photocatalytic hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 6258-6264.	5.2	40
121	A blue luminescent MOF as a rapid turn-off/turn-on detector for H ₂ 0, O ₂ and CH ₂ Cl ₂ , MeCN: 3â^ž[Ce(lm) ₃ lmH]·lmH. Dalton Transactions, 2015, 44, 4070-4079.	1.6	51
122	Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem, 2015, 8, 878-885.	3.6	193
123	Synthesis, Light Emission, Explosive Detection, Fluorescent Photopatterning, and Optical Limiting of Disubstituted Polyacetylenes Carrying Tetraphenylethene Luminogens. Macromolecules, 2015, 48, 1038-1047.	2.2	51
124	Synthesis and energy applications of metal organic frameworks. Journal of Porous Materials, 2015, 22, 413-424.	1.3	17
125	An insight into the controllable synthesis of Cd(<scp>ii</scp>) complexes with a new multifunctional ligand and its application in dye-sensitized solar cells and luminescence properties. Journal of Materials Chemistry A, 2015, 3, 6053-6063.	5.2	18
126	Submicrometerâ€Sized ZIFâ€₹1 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. Advanced Functional Materials, 2015, 25, 516-525.	7.8	94
127	Controlled growth of dense and ordered metal–organic framework nanoparticles on graphene oxide. Chemical Communications, 2015, 51, 3874-3877.	2.2	75
128	The copper(i) metal azolate framework showing unusual coordination mode for the 1,2,4-triazole derivative and photocatalytic activity. Dalton Transactions, 2015, 44, 3954-3958.	1.6	13
129	Open metal sites dangled on cobalt trigonal prismatic clusters within porous MOF for CO ₂ capture. Inorganic Chemistry Frontiers, 2015, 2, 369-372.	3.0	23
130	Lanthanides post-functionalized nanocrystalline metal–organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry. Nanoscale, 2015, 7, 4063-4069.	2.8	122
131	Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015, 45, 102-118.	11.8	99

#	Article	IF	CITATIONS
132	Ag ⁺ -sensitized lanthanide luminescence in Ln ³⁺ post-functionalized metalâ \in organic frameworks and Ag ⁺ sensing. Journal of Materials Chemistry A, 2015, 3, 4788-4792.	5.2	131
133	Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites. Computational and Theoretical Chemistry, 2015, 1055, 8-14.	1.1	15
134	Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation. Journal of the American Chemical Society, 2015, 137, 2665-2673.	6.6	266
135	Encapsulation of Mono―or Bimetal Nanoparticles Inside Metal–Organic Frameworks via In situ Incorporation of Metal Precursors. Small, 2015, 11, 2642-2648.	5.2	85
136	In situ spectroscopy studies of CO ₂ adsorption in a dually functionalized microporous metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 4945-4953.	5.2	41
137	Highly thermostable lanthanide metal–organic frameworks exhibiting unique selectivity for nitro explosives. RSC Advances, 2015, 5, 93-98.	1.7	46
138	New insights into the nitroaromatics-detection mechanism of the luminescent metal–organic framework sensor. Dalton Transactions, 2015, 44, 2897-2906.	1.6	50
139	A New Design Strategy to Access Zwitterionic Metal–Organic Frameworks from Anionic Viologen Derivates. Inorganic Chemistry, 2015, 54, 1756-1764.	1.9	86
140	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	1.6	225
141	Guest-induced reversible structural transitions and concomitant on/off luminescence switching of an Eu(<scp>iii</scp>) metal–organic framework and its application in detecting picric acid. New Journal of Chemistry, 2015, 39, 2289-2295.	1.4	46
142	Additive Effects in the Formation of Fluorescent Zinc Metal–Organic Frameworks with 5-Hydroxyisophthalate. Crystal Growth and Design, 2015, 15, 1452-1459.	1.4	17
143	Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality: Photochromism, Photomodulated Fluorescence, and Luminescent pH Sensing. Chemistry of Materials, 2015, 27, 1327-1331.	3.2	404
144	Two dimethylphenyl imidazole dicarboxylate-based lanthanide metal–organic frameworks for luminescence sensing of benzaldehyde. Dalton Transactions, 2015, 44, 4362-4369.	1.6	95
145	Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene. Journal of Solid State Chemistry, 2015, 225, 310-314.	1.4	9
146	Tunable photoluminescence of a dual-emissive zinc(II) coordination polymer with an in-situ generated tetrazole derivative and benzenetetracarboxyli. Inorganic Chemistry Communication, 2015, 53, 20-22.	1.8	6
147	Dualâ€Emitting MOFâŠfDye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	11.1	604
148	Highly selective luminescence sensing for Cu ²⁺ ions and selective CO ₂ capture in a doubly interpenetrated MOF with Lewis basic pyridyl sites. Dalton Transactions, 2015, 44, 4423-4427.	1.6	64
149	Metal–organic framework materials for light-harvesting and energy transfer. Chemical Communications, 2015, 51, 3501-3510.	2.2	409

#	Article	IF	CITATIONS
150	Structural studies and detection of nitroaromatics by luminescent 2D coordination polymers with angular dicarboxylate ligands. Inorganic Chemistry Frontiers, 2015, 2, 228-236.	3.0	30
151	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	3.7	265
152	A new Cd(<scp>ii</scp>)-based metal–organic framework for highly sensitive fluorescence sensing of nitrobenzene. CrystEngComm, 2015, 17, 2459-2463.	1.3	57
153	Acid-induced Zn(<scp>ii</scp>)-based metal–organic frameworks for encapsulation and sensitization of lanthanide cations. CrystEngComm, 2015, 17, 2294-2300.	1.3	11
154	Aqueous phase nitric oxide detection by an amine-decorated metal–organic framework. Chemical Communications, 2015, 51, 6111-6114.	2.2	83
155	Highly selective detection of palladium and picric acid by a luminescent MOF: a dual functional fluorescent sensor. Chemical Communications, 2015, 51, 6576-6579.	2.2	232
156	Luminescent silver(<scp>i</scp>) coordination architectures containing 2-aminopyrimidyl ligands. CrystEngComm, 2015, 17, 3393-3417.	1.3	34
157	Metal–organic frameworks for luminescence thermometry. Chemical Communications, 2015, 51, 7420-7431.	2.2	354
158	Manganese- and Cobalt-Based Coordination Networks as Promising Heterogeneous Catalysts for Olefin Epoxidation Reactions. Inorganic Chemistry, 2015, 54, 2603-2615.	1.9	33
159	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	3.2	72
160	Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Transactions, 2015, 44, 15175-15180.	1.6	161
161	Sorption Properties and Nitroaromatic Explosives Sensing Based on Two Isostructural Metal–Organic Frameworks. Crystal Growth and Design, 2015, 15, 2033-2038.	1.4	102
162	Luminescent coordination polymer–fullerene composite as a highly sensitive and selective optical detector for 2,4,6-trinitrophenol (TNP). RSC Advances, 2015, 5, 28092-28097.	1.7	23
163	Coordination assemblies of seven metal-organic frameworks based on a bent connector: structural diversity and properties. CrystEngComm, 2015, 17, 3129-3138.	1.3	21
164	In situ fabrication of a perfect Pd/ZnO@ZIF-8 core–shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy. Nanoscale, 2015, 7, 7615-7623.	2.8	118
165	In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants. Journal of Materials Chemistry A, 2015, 3, 8028-8033.	5.2	86
166	Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil. Journal of Materials Chemistry A, 2015, 3, 10069-10076.	5.2	46
167	Protonation effect on ligands in EuL: a luminescent switcher for fast naked-eye detection of HCl. Dalton Transactions, 2015, 44, 13586-13591.	1.6	19

#	Article	IF	CITATIONS
168	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130
169	The highly sensitive and facile colorimetric detection of the glycidyl azide polymer based on propargylamine functionalized gold nanoparticles using click chemistry. Chemical Communications, 2015, 51, 12092-12094.	2.2	22
170	Graphitic carbon nitride nanosheets-enhanced chemiluminescence of luminol for sensitive detection of 2,4,6-trinitrotoluene. Sensors and Actuators B: Chemical, 2015, 220, 516-521.	4.0	34
171	Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. Journal of Materials Chemistry C, 2015, 3, 8490-8494.	2.7	103
172	Piezofluorochromic Metal–Organic Framework: A Microscissor Lift. Journal of the American Chemical Society, 2015, 137, 10064-10067.	6.6	218
173	Copper nanoparticles embedded in the triphenylamine functionalized bithiazole–metal complex as active photocatalysts for visible light-driven hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 17201-17208.	5.2	29
174	Fluorogenic and chromogenic heterocyclic thiourea: Selective recognition of cyanide ion via nucleophilic addition reaction and real sample analysis. Sensors and Actuators B: Chemical, 2015, 221, 1104-1113.	4.0	15
175	White-light emission by selectively encapsulating single lanthanide metal ions into alkaline earth metal-organic coordination polymers. Dyes and Pigments, 2015, 122, 317-323.	2.0	22
176	A luminescent cadmium metal-organic framework with potential detection of nitroaromatic compounds. Materials Letters, 2015, 158, 225-228.	1.3	17
177	Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 2015, 3, 21545-21552.	5.2	46
178	Fast and Reversible Detection of Nitrobenzene Vapour by a Fluorescent Metal–Organic Framework Templated by Ionic Liquid. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1320-1326.	1.9	1
179	Tubular porous coordination polymer for the selective sensing of Cu2+ ions and cyclohexane in mixed suspensions of metal ions via fluorescence quenching. RSC Advances, 2015, 5, 65110-65113.	1.7	14
180	Metallogels and Silver Nanoparticles Generated from a Series of Transition Metal-Based Coordination Polymers Derived from a New Bis-pyridyl-bis-amide Ligand and Various Carboxylates. Crystal Growth and Design, 2015, 15, 4635-4645.	1.4	29
181	A 3D-diamond-like metal–organic framework: Crystal structure, nonlinear optical effect and high thermal stability. Inorganic Chemistry Communication, 2015, 60, 19-22.	1.8	12
182	Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 5283-5291.	5.5	212
183	Metal–organic fireworks: MOFs as integrated structural scaffolds for pyrotechnic materials. Chemical Communications, 2015, 51, 12185-12188.	2.2	46
184	Luminescent zinc metalâ€"organic framework (ZIF-90) for sensing metal ions, anions and small molecules. Photochemical and Photobiological Sciences, 2015, 14, 1644-1650.	1.6	84
185	lonic liquid directed syntheses of water-stable Eu– and Tb–organic-frameworks for aqueous-phase detection of nitroaromatic explosives. Dalton Transactions, 2015, 44, 14594-14603.	1.6	113

#	Article	IF	Citations
186	Tuning the structures of three coordination polymers incorporating ZnII and 2,2′-dichloro-4,4′-azodibenzoic acid via selective auxiliary ligands. Journal of Molecular Structure, 2015, 1099, 441-445.	1.8	4
187	Solvent-Induced Topological Diversity of Two Zn(II) Metal–Organic Frameworks and High Sensitivity in Recyclable Detection of Nitrobenzene. Crystal Growth and Design, 2015, 15, 3999-4004.	1.4	119
188	Stable Multiresponsive Luminescent MOF for Colorimetric Detection of Small Molecules in Selective and Reversible Manner. Chemistry of Materials, 2015, 27, 5349-5360.	3.2	227
189	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	18.7	766
190	Chiral porous metalâ \in "organic frameworks containing $\hat{1}$ /4-oxo-bis[Ti(salan)] units for asymmetric cyanation of aldehydes. Dalton Transactions, 2015, 44, 12999-13002.	1.6	21
191	Three-Dimensional Heterometallic Coordination Networks: Syntheses, Crystal Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2015, 15, 4110-4122.	1.4	23
192	Cluster-based metal–organic frameworks as sensitive and selective luminescent probes for sensing nitro explosives. New Journal of Chemistry, 2015, 39, 7858-7862.	1.4	34
193	A self-catenated rob-type porous coordination polymer constructed from triazolate and carboxylate ligands: fluorescence response to the reversible phase transformation. CrystEngComm, 2015, 17, 6023-6029.	1.3	9
194	Ratiometric multiplexed barcodes based on luminescent metal–organic framework films. Journal of Materials Chemistry C, 2015, 3, 8413-8418.	2.7	39
195	Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chemistry of Materials, 2015, 27, 5332-5339.	3.2	146
196	Tuning the Dimensionality of Interpenetration in a Pair of Framework-Catenation Isomers To Achieve Selective Adsorption of CO ₂ and Fluorescent Sensing of Metal Ions. Inorganic Chemistry, 2015, 54, 6084-6086.	1.9	22
197	Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties. Journal of Solid State Chemistry, 2015, 229, 49-61.	1.4	7
198	Ab Initio Derived Force Fields for Predicting CO ₂ Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu). Journal of Physical Chemistry C, 2015, 119, 16058-16071.	1.5	84
199	Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature. Langmuir, 2015, 31, 6114-6121.	1.6	52
200	Gas Sorption, Second-Order Nonlinear Optics, and Luminescence Properties of a Multifunctional srs-Type Metal–Organic Framework Built by Tris(4-carboxylphenylduryl)amine. Inorganic Chemistry, 2015, 54, 6653-6656.	1.9	47
201	Inorganic nanocarriers for platinum drug delivery. Materials Today, 2015, 18, 554-564.	8.3	122
202	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
203	Intramolecular hydrogen bonding stabilizes the nuclearity of complexes. A comparative study based on the H-carborane and Me-carborane framework. Dalton Transactions, 2015, 44, 10399-10409.	1.6	9

#	ARTICLE	IF	CITATIONS
204	Microporous Metal–Organic Framework with Lantern-like Dodecanuclear Metal Coordination Cages as Nodes for Selective Adsorption of C2/C1 Mixtures and Sensing of Nitrobenzene. Crystal Growth and Design, 2015, 15, 3847-3852.	1.4	42
205	Enantiopure Peptide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 9409-9416.	6.6	166
206	Exploiting Synthetic Conditions to Promote Structural Diversity within the Scandium(III)/Pyrimidine-4,6-dicarboxylate System. Crystal Growth and Design, 2015, 15, 2352-2363.	1.4	31
207	Zinc complexes of pyridyl-tetrazole derivatives – Highly fluorescent materials. Inorganica Chimica Acta, 2015, 432, 50-55.	1.2	11
208	A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg ²⁺ from water. Journal of Materials Chemistry A, 2015, 3, 11587-11595.	5.2	179
209	MOF based luminescence tuning and chemical/physical sensing. Microporous and Mesoporous Materials, 2015, 216, 171-199.	2.2	303
210	Semidirected versus holodirected coordination and single-component white light luminescence in Pb(<scp>ii</scp>) complexes. New Journal of Chemistry, 2015, 39, 5287-5292.	1.4	36
211	Syntheses and Structures of Two Novel Interdigitated Metalâ€Quinolone Complexes: [Cu ₂ (cfH) ₂ (bptc)(H ₂ O)]·4H ₂ O and [Zn ₂ (levofH) ₂ (odpa)]·5.5H ₂ O. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 820-825.	0.6	6
212	Substituent-induced effects on dimensionality in cadmium isophthalate coordination polymers containing 3-pyridylisonicotinamide. Journal of Molecular Structure, 2015, 1094, 161-168.	1.8	3
213	Two new pH-controlled coordination polymers constructed from an asymmetrical tricarboxylate ligand and Zn-based rod-shaped SBUs. Inorganic Chemistry Communication, 2015, 56, 8-12.	1.8	10
214	Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(<scp>ii</scp>) coordination polymers assembled from a terphenyl-hexacarboxylate ligand. CrystEngComm, 2015, 17, 3829-3837.	1.3	43
215	A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chemical Communications, 2015, 51, 10280-10283.	2.2	244
216	Three new luminescent Cd(<scp>ii</scp>)-MOFs by regulating the tetracarboxylate and auxiliary co-ligands, displaying high sensitivity for Fe ³⁺ in aqueous solution. Dalton Transactions, 2015, 44, 10385-10391.	1.6	132
217	Highly selective CH2Cl2 fluorescent sensor based on Cd(II) metal-organic framework. Inorganic Chemistry Communication, 2015, 56, 76-78.	1.8	15
218	Hydrothermal Syntheses and Photoluminescent Properties of Two Zinc(II) Coordination Polymers Based on 4,6-di(1H-imidazol-1-yl)-1,3,5-triazin-2-ol. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 948-954.	1.9	0
219	Ionothermal Synthesis of a 3D Luminescent Strontium(II) Coordination Polymer with Dodecanuclear Metallocyclic Ring Segments. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1103-1110.	1.9	2
220	Three metal-organic frameworks showing novel architectures based on multifunctional imidazole dicarboxylates. Transition Metal Chemistry, 2015, 40, 387-396.	0.7	2
221	Luminescent Two-Dimensional Coordination Polymer for Selective and Recyclable Sensing of Nitroaromatic Compounds with High Sensitivity in Water. Crystal Growth and Design, 2015, 15, 2753-2760.	1.4	128

#	Article	IF	CITATIONS
222	A series of two-dimensional microporous triazole-functionalized metal–organic frameworks with the new multi-dentate ligand 1-(4-aminobenzyl)-1,2,4-triazole: single-crystal-to-single-crystal transformation, structural diversity and luminescent sensing. RSC Advances, 2015, 5, 35238-35251.	1.7	25
223	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
224	Multifunctional Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) metal complexes for tunable luminescence properties and highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 43705-43716.	1.7	17
225	Three luminescent d10 metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu2+ ion and nitrobenzene. Journal of Solid State Chemistry, 2015, 228, 124-130.	1.4	18
226	Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A, 2015, 3, 7445-7452.	5.2	330
227	Positioning of the HKUST-1 metal–organic framework (Cu ₃ (BTC) ₂) through conversion from insoluble Cu-based precursors. Inorganic Chemistry Frontiers, 2015, 2, 434-441.	3.0	54
228	Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters, 2015, 15, 2149-2154.	4.5	36
229	Synthesis, crystal structure, and characterization of a cadmium(II) complex containing an octacarboxylate ligand. Journal of Coordination Chemistry, 2015, 68, 1926-1935.	0.8	0
230	Ammonia detection by using flexible Lewis acidic sites in luminescent porous frameworks constructed from a bipyridinium derivative. Chemical Communications, 2015, 51, 8189-8192.	2.2	66
231	Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 2015, 5, 2062-2069.	5.5	363
232	Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln ³⁺ lons for White-Light Emission and To Detect Nitroaromatic Explosives. Inorganic Chemistry, 2015, 54, 3290-3296.	1.9	196
233	White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu ³⁺ and Tb ³⁺ . Journal of Materials Chemistry C, 2015, 3, 4623-4631.	2.7	38
234	A 2D bilayered metal–organic framework as a fluorescent sensor for highly selective sensing of nitro explosives. Dalton Transactions, 2015, 44, 7822-7827.	1.6	94
235	Two-Photon Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 4026-4029.	6.6	185
236	New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates. Journal of Solid State Chemistry, 2015, 226, 206-214.	1.4	4
237	Novel metal–organic framework with tunable fluorescence property: supramolecular signaling platform for polynitrophenolics. Dalton Transactions, 2015, 44, 6348-6352.	1.6	29
238	Coordination polymers constructed from a tripodal phosphoryl carboxylate ligand: synthesis, structures and physical properties. CrystEngComm, 2015, 17, 4547-4553.	1.3	6
239	Metal organic frameworks for sensing applications. TrAC - Trends in Analytical Chemistry, 2015, 73, 39-53.	5.8	446

#	Article	IF	CITATIONS
240	Chemical sensing in two dimensional porous covalent organic nanosheets. Chemical Science, 2015, 6, 3931-3939.	3.7	504
241	Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosensors and Bioelectronics, 2015, 71, 373-379.	5.3	111
242	Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a "Click― Reaction. Inorganic Chemistry, 2015, 54, 5139-5141.	1.9	51
243	Macroscopic Architecture of Charge Transfer-Induced Molecular Recognition from Electron-Rich Polymer Interpenetrated Porous Frameworks. ACS Applied Materials & Enterfaces, 2015, 7, 5056-5060.	4.0	34
244	Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. RSC Advances, 2015, 5, 39592-39600.	1.7	102
245	Lanthanide Organic Framework as a Regenerable Luminescent Probe for Fe ³⁺ . Inorganic Chemistry, 2015, 54, 4585-4587.	1.9	306
246	Postsynthetic Exterior Decoration of an Organic Cage by Copper(I) atalysed A ³ oupling and Detection of Nitroaromatics. Chemistry - A European Journal, 2015, 21, 6823-6831.	1.7	49
247	A tetranuclear copper cluster-based MOF with sulfonate–carboxylate ligands exhibiting high proton conduction properties. Chemical Communications, 2015, 51, 8150-8152.	2.2	96
248	A Temperatureâ€Responsive Smart Europium Metalâ€Organic Framework Switch for Reversible Capture and Release of Intrinsic Eu ³⁺ lons. Advanced Science, 2015, 2, 1500012.	5.6	83
249	Solvent-induced secondary building unit (SBU) variations in a series of Cu(<scp>ii</scp>) metal–organic frameworks derived from a bifunctional ligand. Dalton Transactions, 2015, 44, 8926-8931.	1.6	28
250	Designed synthesis of a series of zwitterion–polyoxometalate hybrid materials for selective scavenging and photolysis of dyes. Dalton Transactions, 2015, 44, 7862-7869.	1.6	26
251	Enhanced Photocatalytic Activity of the Agl/UiOâ€66(Zr) Composite for Rhodamineâ€B Degradation under Visibleâ€Light Irradiation. ChemPlusChem, 2015, 80, 1321-1328.	1.3	51
252	Solvent-dependent luminescence behavior of a new charge-transfer Cu(I)-MOF: An experimental and theoretical investigation. Inorganic Chemistry Communication, 2015, 56, 41-44.	1.8	4
253	A novel 3D zinc metal–organic framework based on the tetrazole-containing ligand and tricarboxylic acid. Inorganic Chemistry Communication, 2015, 56, 102-104.	1.8	6
254	A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd ²⁺ . Chemical Communications, 2015, 51, 7737-7740.	2.2	316
255	Two robust metal–organic frameworks with uncoordinated N atoms for CO ₂ adsorption. CrystEngComm, 2015, 17, 8198-8201.	1.3	12
256	A Zn(<scp>ii</scp>) coordination polymer and its photocycloaddition product: syntheses, structures, selective luminescence sensing of iron(<scp>iii</scp>) ions and selective absorption of dyes. Dalton Transactions, 2015, 44, 18795-18803.	1.6	166
257	Effect of Aggregation of Acridine Orange on the Luminescent Characteristics of Its Composites with a Zinc-Containing Coordination Polymer. Theoretical and Experimental Chemistry, 2015, 51, 259-265.	0.2	3

#	Article	IF	CITATIONS
258	Hybrid nanoparticles for combination therapy of cancer. Journal of Controlled Release, 2015, 219, 224-236.	4.8	113
259	Pre-concentration and energy transfer enable the efficient luminescence sensing of transition metal ions by metala \in organic frameworks. Chemical Communications, 2015, 51, 16996-16999.	2.2	55
260	A luminescent Zr-based metal–organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH ₄ /C ₂ H ₆ . Journal of Materials Chemistry A, 2015, 3, 23493-23500.	5.2	22
261	Efficient multicolor and white light emission from Zr-based MOF composites: spectral and dynamic properties. Journal of Materials Chemistry C, 2015, 3, 11300-11310.	2.7	44
262	A zeolitic Cd(II) boron imidazolate framework with sensing and catalytic properties. Journal of Solid State Chemistry, 2015, 231, 185-189.	1.4	11
263	Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks. Journal of Solid State Chemistry, 2015, 232, 96-101.	1.4	59
264	Metal–organic framework composites with luminescent gold(<scp>iii</scp>) complexes. Strongly emissive and long-lived excited states in open air and photo-catalysis. Chemical Science, 2015, 6, 7105-7111.	3.7	51
265	A novel coordination network of Tb(III) with 2-hydroxy-trimesic acid showing very intense photoluminescence. Inorganic Chemistry Communication, 2015, 61, 60-63.	1.8	12
266	A luminescent dye@MOF as a dual-emitting platform for sensing explosives. Chemical Communications, 2015, 51, 17521-17524.	2.2	93
267	Permanently Porous Co(II) Porphyrin-Based Hydrogen Bonded Framework for Gas Adsorption and Catalysis. Crystal Growth and Design, 2015, 15, 5028-5033.	1.4	46
268	Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperature-modulated method. Journal of Materials Chemistry A, 2015, 3, 22369-22376.	5.2	61
269	1,8-Naphthyridine-based fluorescent receptors for picric acid detection in aqueous media. Analytical Methods, 2015, 7, 10272-10279.	1.3	31
270	Hydrolytic Transformation of Microporous Metal–Organic Frameworks to Hierarchical Micro―and Mesoporous MOFs. Angewandte Chemie - International Edition, 2015, 54, 13273-13278.	7. 2	186
271	Compartment compounds as secondary building units for the preparation of 3dâ€"4f coordination polymers: Preparation, structures, and properties of [NiLn(L)(NO3)2(4-pyp)(EtOH)] (Ln = Nd, Eu; H2L =) Tj ETQq1 48-55.	1.0.7843 1.0	14.rgBT/Ov
272	Facile Fabrication of Ultrathin Metal–Organic Framework-Coated Monolayer Colloidal Crystals for Highly Efficient Vapor Sensing. Chemistry of Materials, 2015, 27, 7601-7609.	3.2	67
273	Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry, 2015, 54, 10738-10747.	1.9	19
274	A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. Journal of Materials Chemistry A, 2015, 3, 24016-24021.	5.2	154
275	Molecular Tectonics: Design of Enantiopure Luminescent Heterometallic Ir(III)–Cd(II) Coordination Network. Inorganic Chemistry, 2015, 54, 10429-10439.	1.9	23

#	Article	IF	CITATIONS
276	Ammonia Adsorption and Co-adsorption with Water in HKUST-1: Spectroscopic Evidence for Cooperative Interactions. Journal of Physical Chemistry C, 2015, 119, 24781-24788.	1.5	39
277	Exploitation of Guest Accessible Aliphatic Amine Functionality of a Metal–Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Crystal Growth and Design, 2015, 15, 4627-4634.	1.4	137
278	Homochiral Cluster-Organic Frameworks Constructed from Enantiopure Lactate Derivatives. Crystal Growth and Design, 2015, 15, 4676-4686.	1.4	33
279	Metal–organic framework deposition on dealloyed substrates. Journal of Materials Chemistry A, 2015, 3, 19747-19753.	5.2	13
280	A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal–Organic Framework. Chemistry - an Asian Journal, 2015, 10, 1703-1709.	1.7	31
281	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	5.2	117
282	In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. Journal of Materials Chemistry B, 2015, 3, 8279-8292.	2.9	96
283	A Stable Polyoxometalateâ€Pillared Metal–Organic Framework for Protonâ€Conducting and Colorimetric Biosensing. Chemistry - A European Journal, 2015, 21, 11894-11898.	1.7	79
284	Heterometallic coordination polymers: syntheses, structures and heterogeneous catalytic applications. New Journal of Chemistry, 2015, 39, 9772-9781.	1.4	28
285	Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore. Inorganic Chemistry Frontiers, 2015, 2, 1085-1090.	3.0	12
286	Ï€-Electron rich small molecule sensors for the recognition of nitroaromatics. Chemical Communications, 2015, 51, 16014-16032.	2.2	301
287	Formation of Zn(<scp>ii</scp>) and Pb(<scp>ii</scp>) coordination polymers of tetrakis(4-pyridyl)cyclobutane controlled by benzene and toluene. CrystEngComm, 2015, 17, 8345-8352.	1.3	12
288	A luminescent europium MOF containing Lewis basic pyridyl site for highly selective sensing of o-, m-and p-nitrophenol. RSC Advances, 2015, 5, 86614-86619.	1.7	39
289	Molecular simulation of adsorption of NO and CO2 mixtures by a Cu-BTC metal organic framework. Current Applied Physics, 2015, 15, 1070-1074.	1.1	9
290	Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO ₂ under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 2015, 3, 23136-23142.	5.2	175
291	Reversible Tuning Hydroquinone/Quinone Reaction in Metal–Organic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431.	3.2	72
292	Synthesis of triptycene based non-conjugated polytriazole: Temperature dependent regioselectivity and host–guest interaction with nitroaromatics. Polymer, 2015, 75, 109-118.	1.8	8
293	A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 2015, 51, 15386-15389.	2.2	64

#	Article	IF	CITATIONS
294	Ratiometric detection of temperature using responsive dual-emissive MOF hybrids. Journal of Materials Chemistry C, 2015, 3, 9353-9358.	2.7	106
295	Targeted synthesis of core–shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. Journal of Materials Chemistry A, 2015, 3, 19346-19352.	5.2	69
296	Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. CrystEngComm, 2015, 17, 7636-7645.	1.3	15
297	The first mixed-ligand coordination compound involving 8-aminoquinoline and pyridine-2,6-dicarboxylate: synthesis, X-ray crystal structure, and DFT studies. Journal of Coordination Chemistry, 2015, 68, 3599-3610.	0.8	8
298	A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics. IUCrJ, 2015, 2, 552-562.	1.0	35
299	Phenanthroline modulated self-assembly of nano/micro-scaled metal–organic frameworks. Inorganic Chemistry Communication, 2015, 60, 119-121.	1.8	2
300	A colorimetric/luminescent benzene compound sensor based on a bis (if -acetylide) platinum($scp>ii$) complex: enhancing selectivity and reversibility through dual-recognition sites strategy. RSC Advances, 2015, 5, 65613-65617.	1.7	16
301	Pyrazine Motif Containing Hexagonal Macrocycles: Synthesis, Characterization, and Host–Guest Chemistry with Nitro Aromatics. Inorganic Chemistry, 2015, 54, 8994-9001.	1.9	22
302	Influence of gas packing and orientation on FTIR activity for CO chemisorption to the Cu paddlewheel. Physical Chemistry Chemical Physics, 2015, 17, 26766-26776.	1.3	24
303	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	1.3	13
304	Spontaneous chiral resolution of a rare 3D self-penetration coordination polymer for sensitive aqueous-phase detection of picric acid. Dalton Transactions, 2015, 44, 18386-18394.	1.6	52
305	Dual emission tunable in the near-infrared (NIR) and visible (VIS) spectral range by mix-LnMOF. Dalton Transactions, 2015, 44, 17318-17325.	1.6	14
306	Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 2015, 44, 8019-8061.	18.7	949
307	Two porous luminescent metal–organic frameworks: quantifiable evaluation of dynamic and static luminescent sensing mechanisms towards Fe ³⁺ . Dalton Transactions, 2015, 44, 17222-17228.	1.6	114
308	Racemic cobalt phosphonates incorporating flexible bis(imidazole) co-ligands. Dalton Transactions, 2015, 44, 18122-18129.	1.6	0
309	Influence of Guest Molecules on the Crystal Lattice Structure and Porous Structure Characteristics of Coordination Polymers. Theoretical and Experimental Chemistry, 2015, 51, 301-306.	0.2	1
310	Luminescent nanoscale metal–organic frameworks for chemical sensing. Chinese Chemical Letters, 2015, 26, 1439-1445.	4.8	62
311	Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 2015, 54, 10701-10710.	1.9	155

#	Article	IF	CITATIONS
312	Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. Chemistry of Materials, 2015, 27, 7903-7909.	3.2	121
313	Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials, 2015, 27, 8255-8260.	3.2	97
314	Mixed-Lanthanoid Metal–Organic Framework for Ratiometric Cryogenic Temperature Sensing. Inorganic Chemistry, 2015, 54, 11323-11329.	1.9	165
315	Synthesis, structure and enhanced photoluminescence properties of two robust, water stable calcium and magnesium coordination networks. Dalton Transactions, 2015, 44, 20459-20463.	1.6	14
316	A unique Zn(<scp>ii</scp>)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. CrystEngComm, 2015, 17, 9404-9412.	1.3	78
317	Preparation and Reactions of Dichlorodithienogermoles. Organometallics, 2015, 34, 5609-5614.	1.1	27
318	Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26968-26976.	4.0	119
319	Visible detection of explosive nitroaromatics facilitated by a large stokes shift of luminescence using europium and terbium doped yttrium based MOFs. RSC Advances, 2015, 5, 102076-102084.	1.7	53
320	A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system. Analyst, The, 2015, 140, 8201-8208.	1.7	37
321	A highly connected (5,5,18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Advances, 2015, 5, 97831-97835.	1.7	11
322	A 2-D coordination polymer incorporating cobalt(<scp>ii</scp>), 2-sulfoterephthalate and the flexible bridging ligand 1,3-di(4-pyridyl)propane. Inorganic Chemistry Frontiers, 2015, 2, 157-163.	3.0	14
324	Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry, 2015, 54, 586-595.	1.9	56
325	Three new solvent-directed Cd(<scp>ii</scp>)-based MOFs with unique luminescent properties and highly selective sensors for Cu ²⁺ cations and nitrobenzene. Dalton Transactions, 2015, 44, 3271-3277.	1.6	203
326	Turnâ€On Luminescence Sensing and Realâ€Time Detection of Traces of Water in Organic Solvents by a Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 1651-1656.	7.2	277
327	Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. CrystEngComm, 2015, 17, 1381-1388.	1.3	31
328	Roles of hydrogen bonds and π–π stacking in the optical detection of nitro-explosives with a luminescent metal–organic framework as the sensor. RSC Advances, 2015, 5, 3045-3053.	1.7	62
329	A luminescent metal–organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chemical Communications, 2015, 51, 1677-1680.	2.2	159
330	A ketone functionalized luminescent terbium metal–organic framework for sensing of small molecules. Chemical Communications, 2015, 51, 376-379.	2.2	97

#	ARTICLE	IF	Citations
331	Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Scientific Reports, 2014, 4, 7053.	1.6	109
332	Selective and Sensitive Aqueousâ€Phase Detection of 2,4,6â€Trinitrophenol (TNP) by an Amineâ€Functionalized Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 965-969.	1.7	297
333	Highly selective Fe ³⁺ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. Journal of Materials Chemistry A, 2015, 3, 641-647.	5.2	340
334	Detection of Nitroaromatic Explosives with Fluorescent Molecular Assemblies and Ï€â€Gels. Chemical Record, 2015, 15, 252-265.	2.9	115
335	A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2015, 44, 230-236.	1.6	137
336	Structure-directing factors when introducing hydrogen bond functionality to metal–organic frameworks. CrystEngComm, 2015, 17, 299-306.	1.3	33
337	A novel $[4 + 3]$ interpenetrated net containing 7-fold interlocking pseudo-helical chains and exceptional catenane-like motifs. Dalton Transactions, 2015, 44, 2844-2851.	1.6	6
338	A flexible zwitterion ligand based lanthanide metal–organic framework for luminescence sensing of metal ions and small molecules. Dalton Transactions, 2015, 44, 10914-10917.	1.6	124
339	Five 8-hydroxyquinolinate-based coordination polymers with tunable structures and photoluminescent properties for sensing nitroaromatics. Dalton Transactions, 2015, 44, 401-410.	1.6	46
340	Tiny Pd@Co Core–Shell Nanoparticles Confined inside a Metal–Organic Framework for Highly Efficient Catalysis. Small, 2015, 11, 71-76.	5.2	215
341	Synthesis, crystal structure and optical property of three coordination polymer constructed from m-phenylenediacrylate acid. Journal of Solid State Chemistry, 2015, 221, 37-48.	1.4	3
342	Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 2015, 283, 329-339.	6.5	1,142
343	Construction of Four Zn(II) Coordination Polymers Used as Catalysts for the Photodegradation of Organic Dyes in Water. Polymers, 2016, 8, 3.	2.0	20
344	A Family of Nitrogen-Enriched Metal Organic Frameworks with CCS Potential. Crystals, 2016, 6, 14.	1.0	12
345	Catalytic Applications of Metal-Organic Frameworks. , 0, , .		4
346	A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O)6][Cd2(atr)2(Î⅓2-btc)2(H2O)4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and ΀-Stacking Network. Crystals, 2016, 6, 23.	1.0	13
347	Syntheses, crystal structures, and characterization of two Mn(II) coordination polymers with bis(4-(1H-imidazol-1-yl)phenyl)methanone ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2016, 71, 869-874.	0.3	27
348	A visible-light responsive zirconium metal–organic framework for living photopolymerization of methacrylates. RSC Advances, 2016, 6, 66444-66450.	1.7	18

#	Article	IF	CITATIONS
349	Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(<scp>ii</scp>) ions in aqueous phase. RSC Advances, 2016, 6, 69807-69814.	1.7	76
350	A Bifunctional Metal–Organic Framework: Striking CO ₂ â€Selective Sorption Features along with Guestâ€Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, 702-707.	1.3	12
351	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	1.3	21
352	Luminescent Metal–Organic Framework Mixedâ€Matrix Membranes from Lanthanide Metal–Organic Frameworks in Polysulfone and Matrimid. European Journal of Inorganic Chemistry, 2016, 2016, 4408-4415.	1.0	16
353	Effect of Nitrogen Donor Disposition on Topology in Cobalt Isophthalate Coordination Polymers Containing Dipyridylamide Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 785-791.	0.6	3
354	<i>In Situ</i> Electron Paramagnetic Resonance and X-ray Diffraction Monitoring of Temperature-Induced Breathing and Related Structural Transformations in Activated V-Doped MIL-53(Al). Journal of Physical Chemistry C, 2016, 120, 17400-17407.	1.5	26
355	Synthesis, crystal structure and luminescence studies of zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) complexes with 6-(1H-tetrazol-5-yl)-2-naphthoic acid. CrystEngComm, 2016, 18, 6396-6402.	1.3	13
356	Alkaline Earth Metal-Based Metal-Organic Frameworks: Synthesis, Properties, and Applications. , 0, , 73-103.		6
357	A Multiresponsive Metal–Organic Framework: Direct Chemiluminescence, Photoluminescence, and Dual Tunable Sensing Applications. Advanced Functional Materials, 2016, 26, 393-398.	7.8	95
358	The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chemical Record, 2016, 16, 1456-1476.	2.9	24
359	Effects of Different Amount of Crystalline Solvate Molecules on Solid Structures and Photophysical Properties of a Platinum(II) Moiety with 4,4′â€Dibromoâ€2,2′â€Bipyridine Ligand. Zeitschrift Fur Anorganisc Und Allgemeine Chemie, 2016, 642, 597-602.	hæ.6	2
360	Structures and enhanced third-order nonlinear optical performance of four complexes investigated by thin film Z-scan technique. Transition Metal Chemistry, 2016, 41, 721-730.	0.7	2
361	Two Dynamic ABW-Type Metal Organic Frameworks Built of Pentacarboxylate and Zn ²⁺ as Photoluminescent Probes of Nitroaromatics. Crystal Growth and Design, 2016, 16, 4539-4546.	1.4	36
362	An enhanced extended hook method to realize tetranuclear metal clusters embedded in energetic metal–organic framework channels. CrystEngComm, 2016, 18, 5803-5806.	1.3	7
363	Ironâ€Based Metal–Organic Frameworks as Catalysts for Visible Lightâ€Driven Water Oxidation. Small, 2016, 12, 1351-1358.	5. 2	136
364	A Hierarchically Porous Metalâ€Organic Framework from Semirigid Ligand for Gas Adsorption. Chinese Journal of Chemistry, 2016, 34, 215-219.	2.6	17
365	Postsynthetic Modification of Metalâ€Organic Frameworks through Click Chemistry. Chinese Journal of Chemistry, 2016, 34, 186-190.	2.6	33
366	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ O][Co ₂ (dat)(sdba) ₂]â <h<sub>2sdbaâ<5 H₂ChemPlusChem. 2016. 81. 733-742.</h<sub>). ¹ 0 ³ .	9

#	Article	IF	CITATIONS
367	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
368	Strongly Enhanced Longâ€Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal–Organic Hybrids. Advanced Optical Materials, 2016, 4, 897-905.	3.6	241
369	Bismuthâ€Based Coordination Polymers with Efficient Aggregationâ€Induced Phosphorescence and Reversible Mechanochromic Luminescence. Angewandte Chemie - International Edition, 2016, 55, 7998-8002.	7.2	121
370	CO ₂ Capture in Aluminumâ€Based Metalâ€organic Frameworks: A Theoretical Study. Journal of the Chinese Chemical Society, 2016, 63, 459-464.	0.8	4
371	Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption. Chemical Record, 2016, 16, 1298-1310.	2.9	26
372	A luminescent coordination polymer with potential active site for the sensing of metal cation, anion and nitrobenzene explosive. Inorganic Chemistry Communication, 2016, 71, 19-22.	1.8	12
373	Encapsulating a Co(II) Molecular Photocatalyst in Metal–Organic Framework for Visible-Light-Driven H ₂ Production: Boosting Catalytic Efficiency via Spatial Charge Separation. ACS Catalysis, 2016, 6, 5359-5365.	5.5	184
374	A Threefold Interpenetrated Pillared‣ayer Metal–Organic Framework for Selective Separation of C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ . ChemPlusChem, 2016, 81, 764-769.	1.3	24
375	Microporous Metal-Organic Frameworks Based on Zinc Clusters and Their Fluorescence Enhancements towards Acetone and Chloroform. European Journal of Inorganic Chemistry, 2016, 2016, 3411-3416.	1.0	17
376	Cadmium(II)–Triazole Framework as a Luminescent Probe for Ca ²⁺ and Cyano Complexes. Chemistry - A European Journal, 2016, 22, 10459-10474.	1.7	75
377	Luminescent Metal–Organic Frameworks with Anthracene Chromophores: Small-Molecule Sensing and Highly Selective Sensing for Nitro Explosives. Crystal Growth and Design, 2016, 16, 4374-4382.	1.4	91
378	Structurally Distinct Metal–Organic and H-Bonded Networks Derived from 5-(6-Carboxypyridin-3-yl)isophthalic Acid: Coordination and Template Effect of 4,4′-Bipyridine. Crystal Growth and Design, 2016, 16, 4658-4670.	1.4	89
379	Inserting CO ₂ into Aryl Câ~'H Bonds of Metalâ€"Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ~'H Activation. Angewandte Chemie - International Edition, 2016, 55, 5472-5476.	7.2	129
380	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7116-7120.	7.2	41
381	Synthesis of halide anionâ€doped bismuth terephthalate hybrids for organic pollutant removal. Applied Organometallic Chemistry, 2016, 30, 304-310.	1.7	13
382	A heterometal (Pd–Pb) organic framework: synthesis, structure and heterogeneous catalytic application. Applied Organometallic Chemistry, 2016, 30, 699-704.	1.7	7
383	Fluorescent Detection of 2,4â€DNT and 2,4,6â€₹NT in Aqueous Media by Using Simple Waterâ€Soluble Pyrene Derivatives. Chemistry - an Asian Journal, 2016, 11, 775-781.	1.7	44
384	Assembling Metal–Organic Frameworks in Ionic Liquids and Supercritical CO ₂ . Chemistry - an Asian Journal, 2016, 11, 2610-2619.	1.7	49

#	Article	IF	Citations
385	Nanocomposites of Platinum/Metal–Organic Frameworks Coated with Metal–Organic Frameworks with Remarkably Enhanced Chemoselectivity for Cinnamaldehyde Hydrogenation. ChemCatChem, 2016, 8, 946-951.	1.8	76
386	A Metal–Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry - A European Journal, 2016, 22, 477-480.	1.7	155
387	Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal–Organic Frameworks Chelated with Polyaniline Helices. Chemistry - A European Journal, 2016, 22, 1406-1414.	1.7	8
388	Highly Efficient Visibleâ€ŧoâ€NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Chargeâ€₹ransfer Character: Beyond Triplet Sensitization. Chemistry - A European Journal, 2016, 22, 2440-2451.	1.7	109
389	Metal–Organic Frameworkâ€Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chemistry - A European Journal, 2016, 22, 3470-3477.	1.7	79
390	Synthesis, Characterization, and Luminescence Modulation of a Metal–Organic Framework Based on a Cyclotriphosphazeneâ€Functionalized Multicarboxylate Ligand. ChemPlusChem, 2016, 81, 786-791.	1.3	9
391	Group 3 Elements and Lanthanide Metals., 0,, 231-270.		1
392	Bismuthâ€Based Coordination Polymers with Efficient Aggregationâ€Induced Phosphorescence and Reversible Mechanochromic Luminescence. Angewandte Chemie, 2016, 128, 8130-8134.	1.6	33
393	In Situ Generation of NiO Nanoparticles in a Magnetic Metal–Organic Framework Exhibiting Three-Dimensional Magnetic Ordering. Inorganic Chemistry, 2016, 55, 12938-12943.	1.9	24
394	An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	30
395	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€Solution Effects on Porosity and Sensitivity. Angewandte Chemie, 2016, 128, 16255-16259.	1.6	9
396	Syntheses and Structural Analyses of New 3D Isostructural Zn(II) and Cd(II) Luminescent MOFs and their Application Towards Detection of Nitroaromatics in Aqueous Media. ChemistrySelect, 2016, 1, 6308-6315.	0.7	37
397	Role of Anions in Assembling the Coordination Polymers of Bis–pyridyl–alkanediamides. ChemistrySelect, 2016, 1, 6641-6648.	0.7	0
398	Alkylâ€Chainâ€Separated Triphenybenzene ―Carbazole Conjugates and their Derived Polymers: Candidates for Sensory, Electrical and Optical Materials. ChemistrySelect, 2016, 1, 6649-6657.	0.7	10
399	A novel one-dimensional double-chain-like Znllcoordination polymer: poly[bis(1-benzyl-1H-imidazole-PN3)tris(μ-cyanido-P2C:N)(cyanido-PC)disilver(I)zinc(II)]. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 960-965.	0.2	4
400	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie - International Edition, 2016, 55, 5019-5023.	7.2	190
401	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	6.6	84
402	Multifunctional copper dimer: structure, band gap energy, catalysis, magnetism, oxygen reduction reaction and proton conductivity. RSC Advances, 2016, 6, 37515-37521.	1.7	11

#	Article	IF	CITATIONS
403	The electrochemical properties, nitrogen adsorption, and photocatalytic activities of three 3D metalâ \in organic frameworks bearing the rigid terphenyl tetracarboxylates ligands. CrystEngComm, 2016, 18, 3086-3094.	1.3	35
404	A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu ²⁺ ions. Chemical Communications, 2016, 52, 8475-8478.	2.2	88
405	Homochiral zinc benzene-1,3,5-tricarboxylate coordination networks with a chiral nitrogen ligand or template: Spontaneous resolution of a twofold interpenetrated 2D sql (4,4) network and formation of enantiopure 3D sra (SrAl2) networks. Inorganica Chimica Acta, 2016, 450, 190-201.	1.2	10
406	Syntheses, structures and properties of group 12 element (Zn, Cd, Hg) coordination polymers with a mixed-functional phosphonate-biphenyl-carboxylate linker. CrystEngComm, 2016, 18, 5209-5223.	1.3	23
407	Zirconium–metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. Nanoscale, 2016, 8, 11649-11657.	2.8	64
408	Three metal complexes derived from 3-methyl-1H-pyrazole-4-carboxylic acid: synthesis, crystal structures, luminescence and electrocatalytic properties. RSC Advances, 2016, 6, 52040-52047.	1.7	14
409	Anion- and temperature-dependent assembly, crystal structures and luminescence properties of six new Cd(<scp>ii</scp>) coordination polymers based on 2,3,5,6-tetrakis(2-pyridyl)pyrazine. CrystEngComm, 2016, 18, 5164-5176.	1.3	24
410	A luminescent Li(I)-based metal–organic framework showing selective Fe(III) ion and nitro explosive sensing. Inorganic Chemistry Communication, 2016, 68, 29-32.	1.8	18
411	Three types of lanthanide coordination polymers from 1D to 3D based on a tetracarboxylate ligand: synthesis, structural diversities and properties. CrystEngComm, 2016, 18, 5140-5148.	1.3	16
412	Structural, electronic and magnetic properties of metal–organic-framework perovskites [AmH][Mn(HCOO)3]: a first-principles study. RSC Advances, 2016, 6, 48779-48787.	1.7	11
413	Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(II)-Porphyrin Metal–Organic Framework (MOF) at RT. Inorganic Chemistry, 2016, 55, 5320-5327.	1.9	95
414	Unique microporous NbO-type Coll/ZnII MOFs from double helical chains: Sorption and luminescent properties. Journal of Solid State Chemistry, 2016, 238, 170-174.	1.4	9
415	Shape uniformity control of metal–organic framework nanodisks via surfactant and substrate synergetic scissoring effects and their fluorescence sensing properties. CrystEngComm, 2016, 18, 4830-4835.	1.3	13
416	Metal–Organic Framework Based on Isonicotinate <i>N</i> Oxide for Fast and Highly Efficient Aqueous Phase Cr(VI) Adsorption. Inorganic Chemistry, 2016, 55, 5507-5513.	1.9	104
417	Real-Time Monitoring of Dissolved Oxygen with Inherent Oxygen-Sensitive Centers in Metal–Organic Frameworks. Chemistry of Materials, 2016, 28, 2652-2658.	3.2	56
418	Photonic hybrid crystals constructed from in situ host–guest nanoconfinement of a light-emitting complex in metal–organic framework pores. Nanoscale, 2016, 8, 6851-6859.	2.8	36
419	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300
420	Influence of Interpenetration in Diamondoid Metal–Organic Frameworks on the Photoreactivity and Sensing Properties. Crystal Growth and Design, 2016, 16, 2504-2508.	1.4	33

#	Article	IF	CITATIONS
421	Syntheses, Characterization, and Luminescence Properties of Four Metal–Organic Frameworks Based on a Linear-Shaped Rigid Pyridine Ligand. Crystal Growth and Design, 2016, 16, 2496-2503.	1.4	54
422	A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses, Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2016, 16, 2874-2886.	1.4	37
423	Synthesis, crystal structures and photoluminescences of silver(I) complexes with chelating carboxylic and pyrazine derivatives. Inorganic Chemistry Communication, 2016, 68, 21-28.	1.8	13
424	A microporous cobalt-organic framework constructed from mixed tripodal ligands for high CO2 adsorption capacity. Inorganic Chemistry Communication, 2016, 68, 60-62.	1.8	10
425	Chemosensor for Selective Determination of 2,4,6-Trinitrophenol Using a Custom Designed Imprinted Polymer Recognition Unit Cross-Linked to a Fluorophore Transducer. ACS Sensors, 2016, 1, 636-639.	4.0	36
426	Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Advances, 2016, 6, 42324-42333.	1.7	150
427	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	1.4	36
428	1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.	1.9	30
429	Heterometallic Alkaline Earth–Lanthanide Ba ^{II} –La ^{III} Microporous Metal–Organic Framework as Bifunctional Luminescent Probes of Al ³⁺ and MnO ₄ [–] . Inorganic Chemistry, 2016, 55, 4391-4402.	1.9	195
430	Effect of reaction conditions on the assembly, structures and fluorescent sensing behaviors of Cd(II) metal-organic complexes. Chemical Research in Chinese Universities, 2016, 32, 8-15.	1.3	6
431	Zn(II)/Cd(II) Terephthalate Coordination Polymers Incorporating Bi-, Tri-, and Tetratopic Phenylamine Derivatives: Crystal Structures and Photoluminescent Properties. Crystal Growth and Design, 2016, 16, 2747-2755.	1.4	50
432	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 2016, 138, 6204-6216.	6.6	1,273
433	An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel–Crafts benzoylation. Dalton Transactions, 2016, 45, 7875-7880.	1.6	49
434	Selective and sensitive detection of picric acid based on a water-soluble fluorescent probe. RSC Advances, 2016, 6, 38328-38331.	1.7	35
435	A new series of trivalent lanthanide (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) coordination polymers with a 1,2-cyclohexanedicarboxylate ligand: synthesis, crystal structure, luminescence and catalytic properties. CrystEngComm, 2016, 18, 3594-3605.	1.3	35
436	Birefringent, emissive cyanometallate-based coordination polymer materials containing group(II) metal-terpyridine building blocks. Polyhedron, 2016, 108, 93-99.	1.0	18
437	Tuning the properties of the metal–organic framework UiO-67-bpy via post-synthetic N-quaternization of pyridine sites. Dalton Transactions, 2016, 45, 8614-8621.	1.6	62
438	Fluorescence array-based sensing of nitroaromatics using conjugated polyelectrolytes. Analyst, The, 2016, 141, 3242-3245.	1.7	12

#	ARTICLE	IF	CITATIONS
439	Stabilization of the Anionic Metalloligand, [Ag ₆ (mna) ₆] ^{6–} (H ₂ mna = 2-Mercapto Nicotinic Acid), in <i>cor</i> , <i>fi+Po</i> , and <i>sql</i> Nets Employing Alkaline Earth Metal Ions: Synthesis, Structure, and Nitroaromatics Sensing Behavior. Crystal Growth and Design, 2016, 16, 3497-3509.	1.4	15
440	Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework. Journal of Solid State Chemistry, 2016, 239, 1-7.	1.4	11
441	Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational Perspective. Journal of Physical Chemistry B, 2016, 120, 5063-5072.	1.2	28
442	Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chemical Communications, 2016, 52, 8215-8218.	2.2	76
443	A Family of Metal–Organic Frameworks with a New Chair-Conformation Resorcin[4]arene-Based Ligand: Selective Luminescent Sensing of Amine and Aldehyde Vapors, and Solvent-Mediated Structural Transformations. Crystal Growth and Design, 2016, 16, 3244-3255.	1.4	45
444	Assembly of two novel 3D organic–inorganic hybrids based on Keggin-type polyoxometalates: syntheses, crystal structures and properties. CrystEngComm, 2016, 18, 6370-6377.	1.3	35
445	Metallomacrocycle-supported interpenetration networks assembled from binary N-containing ligands. CrystEngComm, 2016, 18, 3506-3512.	1.3	6
446	Dative and covalent-dative postsynthetic modification of a two-fold interpenetration pillared-layer MOF for heterogeneous catalysis: A comparison of catalytic activities and reusability. Microporous and Mesoporous Materials, 2016, 229, 51-58.	2.2	29
447	Unique (3,4,10)-Connected Lanthanide–Organic Framework as a Recyclable Chemical Sensor for Detecting Al ³⁺ . Inorganic Chemistry, 2016, 55, 4790-4794.	1.9	158
448	Anthracene-based indium metal–organic framework as a promising photosensitizer for visible-light-induced atom transfer radical polymerization. CrystEngComm, 2016, 18, 3696-3702.	1.3	38
449	Effect of the Structure of Aromatic Nitro Compounds on the Efficiency of Luminescence Quenching of the Metal–Organic Framework of Zinc(II) 4,4ʹ-Diphenyldicarboxylate. Theoretical and Experimental Chemistry, 2016, 52, 44-50.	0.2	7
450	Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. CrystEngComm, 2016, 18, 4445-4451.	1.3	130
451	Highly selective luminescence sensing of nitrite and benzaldehyde based on 3d–4f heterometallic metal–organic frameworks. Dalton Transactions, 2016, 45, 8700-8704.	1.6	46
452	A Zn-MOF constructed from electron-rich ï€-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor. RSC Advances, 2016, 6, 45475-45481.	1.7	94
453	A fluorescent sensor for highly selective sensing of nitro explosives and Hg(<scp>ii</scp>) ions based on a 3D porous layer metal–organic framework. CrystEngComm, 2016, 18, 4765-4771.	1.3	31
454	Copper(<scp>ii</scp>) complexes with phosphorylated 1,10-phenanthrolines: from molecules to infinite supramolecular arrays. New Journal of Chemistry, 2016, 40, 5896-5905.	1.4	15
455	Microwave-assisted ionothermal synthesis of a water-stable Eu-coordination polymer: a Ba ²⁺ ion detector and fluorescence thermometer. Dalton Transactions, 2016, 45, 8745-8752.	1.6	20
456	A multi-responsive luminescent sensor towards Fe 3+ and acetone based on a Cd-containing metal–organic framework. Chinese Chemical Letters, 2016, 27, 497-501.	4.8	20

#	ARTICLE	IF	CITATIONS
457	Metal–organic frameworks assembled from flexible alicyclic carboxylate and bipyridyl ligands for sensing of nitroaromatic explosives. CrystEngComm, 2016, 18, 4530-4537.	1.3	29
458	One-step growth of lanthanoid metal–organic framework (MOF) films under solvothermal conditions for temperature sensing. Chemical Communications, 2016, 52, 6926-6929.	2.2	76
459	Luminescent metal–organic frameworks based on dipyrromethene metal complexes and BODIPYs. CrystEngComm, 2016, 18, 4671-4680.	1.3	40
460	Functionalization of Microporous Lanthanide-Based Metal–Organic Frameworks by Dicarboxylate Ligands with Methyl-Substituted Thieno[2,3- <i>b</i>)thiophene Groups: Sensing Activities and Magnetic Properties. Inorganic Chemistry, 2016, 55, 5139-5151.	1.9	117
461	Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016, 45, 9565-9573.	1.6	70
462	A luminescent 3D Zn(II)-organic framework showing fast, selective and reversible detection of p-nitrophenol in aqueous media. Journal of Luminescence, 2016, 180, 287-291.	1.5	10
463	Anion-Exchange Induced Strong π–π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection. ACS Applied Materials & Amp; Interfaces, 2016, 8, 25326-25336.	4.0	40
464	Green synthesis, optical and magnetic properties of a Mn ^{II} metal–organic framework (MOF) that exhibits high heat of H ₂ adsorption. RSC Advances, 2016, 6, 86468-86476.	1.7	18
465	A Porous Zirconiumâ€Based Metalâ€Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry - A European Journal, 2016, 22, 14988-14997.	1.7	57
466	The construction, structures, and functions of pillared layer metal–organic frameworks. Inorganic Chemistry Frontiers, 2016, 3, 1208-1226.	3.0	83
467	A luminescent metal–organic framework for highly selective sensing of nitrobenzene and aniline. RSC Advances, 2016, 6, 87945-87949.	1.7	42
468	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
469	Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. Chemistry - A European Journal, 2016, 22, 15451-15457.	1.7	63
470	Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands. Journal of Solid State Chemistry, 2016, 244, 12-19.	1.4	4
471	An Anionic Interpenetrated Zeoliteâ€Like Metal–Organic Framework Composite As a Tunable Dualâ€Emission Luminescent Switch for Detecting Volatile Organic Molecules. Chemistry - A European Journal, 2016, 22, 17298-17304.	1.7	71
472	Specific Detection of Picric Acid and Nitrite in Aqueous Medium Using Flexible Eu(III)â€Based Luminescent Probe b>Â. ChemistrySelect, 2016, 1, 1943-1948.	0.7	12
473	Luminescent Porous Polymers Based on Aggregationâ€Induced Mechanism: Design, Synthesis and Functions. Small, 2016, 12, 6513-6527.	5. 2	96
474	Effect of Structure of Aromatic Compounds on Luminescence of Composite of Zinc-Containing Metal–Organic Framework with Acridine Orange. Theoretical and Experimental Chemistry, 2016, 52, 240-245.	0.2	3

#	ARTICLE	IF	CITATIONS
475	Water linked 3D coordination polymers: Syntheses, structures and applications. Journal of Solid State Chemistry, 2016, 244, 151-159.	1.4	11
476	Ligand-oriented assembly of a porous metal–organic framework by [Cu ^I ₄ I ₄] clusters and paddle-wheel [Cu ^{II} ₂ (COO) ₄ (H ₂ O) ₂] subunits. CrystEngComm. 2016. 18. 8362-8365.	1.3	14
477	The Quantitative Evaluations of the Luminescent Sensing Ability to Cu ²⁺ Based on Two Homologous Crystalline Coordination Polymers. ChemistrySelect, 2016, 1, 3946-3953.	0.7	3
478	A Water-Stable Metal–Organic Framework for Highly Sensitive and Selective Sensing of Fe ³⁺ Ion. Inorganic Chemistry, 2016, 55, 10580-10586.	1.9	230
479	Tuning the luminescence performance of metalâ€"organic frameworks based on d ¹⁰ metal ions: from an inherent versatile behaviour to their response to external stimuli. CrystEngComm, 2016, 18, 8556-8573.	1.3	76
480	Sorption discrimination between secondary alcohol enantiomers by chiral alkyl-dicarboxylate MOFs. RSC Advances, 2016, 6, 93707-93714.	1.7	7
481	Fluorescent selectivity for small molecules of two coordination polymers based on a tetracarboxylate ligand. Inorganic Chemistry Communication, 2016, 73, 21-25.	1.8	2
482	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	1.4	11
483	A luminescent cationic metal–organic framework featuring [Cu–pyrazolate] ₃ units for volatile organic compound sensing. Dalton Transactions, 2016, 45, 17087-17090.	1.6	25
484	Effect of pyridyl donor disposition and ligand flexibility on dimensionality in luminescent and nitrobenzene-detecting cadmium adamantanedicarboxylate coordination polymers. Inorganica Chimica Acta, 2016, 451, 187-196.	1.2	7
485	Molecular Level Characterization of the Structure and Interactions in Peptideâ€Functionalized Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 16531-16538.	1.7	27
486	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	7.3	202
487	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 13943-13947.	1.6	24
488	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 13739-13743.	7.2	78
489	Lanthanide Metal-Organic Frameworks for Luminescent Applications. Fundamental Theories of Physics, 2016, 50, 243-268.	0.1	24
490	Two Cd(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties. Inorganic Chemistry Communication, 2016, 73, 12-15.	1.8	19
491	Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry, 2016, 55, 11230-11248.	1.9	46
492	An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta, 2016, 161, 867-874.	2.9	71

#	Article	IF	CITATIONS
493	A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations. Chemical Communications, 2016, 52, 13167-13170.	2.2	48
494	Isophthalate–Hydrazone 2D Zinc–Organic Framework: Crystal Structure, Selective Adsorption, and Tuning of Mechanochemical Synthetic Conditions. Inorganic Chemistry, 2016, 55, 9663-9670.	1.9	25
495	A Bifunctional Europium–Organic Framework with Chemical Fixation of CO ₂ and Luminescent Detection of Al ³⁺ . Inorganic Chemistry, 2016, 55, 9671-9676.	1.9	142
496	Encapsulation of coumarin dye within lanthanide MOFs as highly efficient white-light-emitting phosphors for white LEDs. CrystEngComm, 2016, 18, 8366-8371.	1.3	33
497	Role of the electronic excited-state hydrogen bonding in the nitro-explosives detection by [Zn2(oba)2(bpy)]. Chemical Physics Letters, 2016, 661, 257-262.	1.2	10
498	Self-assembly of two supramolecular indium(<scp>iii</scp>) metal–organic frameworks for reversible iodine capture and large band gap change semiconductor behavior. Inorganic Chemistry Frontiers, 2016, 3, 1480-1490.	3.0	19
499	Synthesis, structure and luminescent sensor of zinc coordination polymers based on a new functionalized bipyridyl carboxylate ligand. Inorganica Chimica Acta, 2016, 453, 771-778.	1.2	9
500	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. CrystEngComm, 2016, 18, 8301-8308.	1.3	19
501	Direct Structural Identification of Gas Induced Gateâ€Opening Coupled with Commensurate Adsorption in a Microporous Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 11816-11825.	1.7	27
502	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
503	Two Dimensional Host–Guest Metal–Organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21472-21479.	4.0	129
504	Supercoiled fibres of self-sorted donor–acceptor stacks: a turn-off/turn-on platform for sensing volatile aromatic compounds. Chemical Science, 2016, 7, 4460-4467.	3.7	80
505	Tuning structural dimensionalities of two new luminescent Cd(II) compounds: Different dicarboxylate coligands. Journal of Molecular Structure, 2016, 1123, 133-137.	1.8	8
506	Chemistry in confined spaces: reactivity of the Zn-MOF-74 channels. Journal of Materials Chemistry A, 2016, 4, 13176-13182.	5.2	7
507	Ligand Symmetry Modulation for Designing Mixed-Ligand Metal–Organic Frameworks: Gas Sorption and Luminescence Sensing Properties. Inorganic Chemistry, 2016, 55, 8892-8897.	1.9	56
508	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	1.7	91
509	AIE-active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications, 2016, 52, 11284-11287.	2.2	145
510	Structural Diversity and Magnetic Properties of Seven Coordination Polymers Based on the $2,2\hat{a}\in^2$ -Phosphinico-dibenzoate Ligand. Crystal Growth and Design, 2016, 16, 5184-5193.	1.4	27

#	ARTICLE	IF	CITATIONS
511	Layer-structured coordination polymers based on 5-(1H-tetrazol-5-yl)isophthalic acid: structure, sensitization of lanthanide(iii) cations and small-molecule sensing. CrystEngComm, 2016, 18, 7126-7134.	1.3	10
512	A Robust Sulfonate-Based Metal–Organic Framework with Permanent Porosity for Efficient CO ₂ Capture and Conversion. Chemistry of Materials, 2016, 28, 6276-6281.	3.2	180
513	AlEgensâ€Functionalized Inorganicâ€Organic Hybrid Materials: Fabrications and Applications. Small, 2016, 12, 6478-6494.	5.2	83
514	A four-fold interpenetrated metal–organic framework as a fluorescent sensor for volatile organic compounds. Dalton Transactions, 2016, 45, 14888-14892.	1.6	56
515	1D and 2D Zn–Ln coordination polymers based on compartment compounds: [ZnLn(L)(NO3)2(4-ppa)(EtOH)] and [ZnLn(L)(NO3)2(4-pca)(H2O)] (Ln = Eu, Tb; H2L =) Tj ETQq0 0 0 rgBT /Over	·lock 10 Tf	50 ₁₂ 82 Td (1
516	Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 2016, 3, 1500434.	5.6	271
517	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie - International Edition, 2016, 55, 10667-10671.	7.2	334
518	Understanding The Fascinating Origins of CO ₂ Adsorption and Dynamics in MOFs. Chemistry of Materials, 2016, 28, 5829-5846.	3.2	66
519	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie, 2016, 128, 10825-10829.	1.6	76
520	Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. ACS Applied Materials & Detection of Naterials &	4.0	131
521	Structural modulation and luminescent properties of four CdII coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands. Journal of Solid State Chemistry, 2016, 242, 120-126.	1.4	5
522	Metalloligand-induced Synthesis of Two Cu(I)–M (M=Ni, Co) Heterobimetallic Coordination Polymers: Structures, Thermal and Luminescence Properties. Journal of Cluster Science, 2016, 27, 1537-1552.	1.7	3
523	Four new 3D metal–organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties. Dalton Transactions, 2016, 45, 15473-15480.	1.6	29
524	Porphyrinic Metal–Organic Framework Catalyzed Heck-Reaction: Fluorescence "Turn-On―Sensing of Cu(II) Ion. Chemistry of Materials, 2016, 28, 6698-6704.	3.2	161
525	Two Unusual Nanocageâ€Based Lnâ€MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe ³⁺ and Cr ₂ O ₇ ^{2â°} , and Selective CO ₂ Capture. ChemPlusChem, 2016, 81, 1299-1304.	1.3	133
526	A Luminescent Terbium MOF Containing Hydroxyl Groups Exhibits Selective Sensing of Nitroaromatic Compounds and Fe(III) lons. Crystal Growth and Design, 2016, 16, 5852-5858.	1.4	120
527	Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and 1,4-Dioxane via Luminescent Turn-off and Turn-on Sensing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24097-24103.	4.0	78
528	Metal nuclearity affects network connectivity: a series of highly connected metal–organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm, 2016, 18, 8182-8193.	1.3	12

#	Article	IF	CITATIONS
529	One Unique 1D Silver(I)-Bromide-Thiol Coordination Polymer Used for Highly Efficient Chemiresistive Sensing of Ammonia and Amines in Water. Inorganic Chemistry, 2016, 55, 9417-9423.	1.9	52
530	Mixed anionic and inclusion complexes of nickel(II) with nitroaromatics showing selectivity in oxygen-Ï€ interactions. Inorganica Chimica Acta, 2016, 453, 135-141.	1.2	9
531	High Performance Hollow Metal–Organic Framework Nanoshellâ€Based Etalons for Volatile Organic Compounds Detection. Advanced Materials Technologies, 2016, 1, 1600127.	3.0	30
532	A stimuli-responsive Au(<scp>i</scp>) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties. CrystEngComm, 2016, 18, 7629-7635.	1.3	30
533	Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. Journal of Catalysis, 2016, 342, 151-157.	3.1	126
534	A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(<scp>iii</scp>)–organic framework. Dalton Transactions, 2016, 45, 15492-15499.	1.6	201
535	Two metal-organic frameworks with different configurations constructed from a flexible tripodal triaromatic acid. Journal of Molecular Structure, 2016, 1125, 656-661.	1.8	4
536	Modelling photophysical properties of metal–organic frameworks: a density functional theory based approach. Physical Chemistry Chemical Physics, 2016, 18, 25176-25182.	1.3	27
537	Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?. Physical Chemistry Chemical Physics, 2016, 18, 27761-27774.	1.3	67
538	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€6olution Effects on Porosity and Sensitivity. Angewandte Chemie - International Edition, 2016, 55, 16021-16025.	7.2	60
539	Monte Carlo Simulation of Adsorption of Polar and Nonpolar Gases in (FP)YEu Metal–Organic Framework. Journal of Chemical & Engineering Data, 2016, 61, 4209-4214.	1.0	7
540	Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts. MRS Bulletin, 2016, 41, 890-896.	1.7	57
541	One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing. Journal of Materials Chemistry A, 2016, 4, 15880-15887.	5.2	133
542	Nitro explosive and cation sensing by a luminescent 2D Cu(I) coordination polymer with multiple Lewis basic sites. Inorganic Chemistry Communication, 2016, 73, 37-40.	1.8	7
543	A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework. Journal of Solid State Chemistry, 2016, 244, 31-34.	1.4	17
544	Two novel eight-connected self-penetrating porous lanthanide–organic frameworks: structures, luminescence, and gas adsorption properties. CrystEngComm, 2016, 18, 8159-8163.	1.3	5
545	The Uncommon Channelâ€Based Lnâ€MOFs for Highly Selective Fe ³⁺ Detection and Superior Rhodamineâ€B Adsorption. Chemistry - A European Journal, 2016, 22, 16230-16235.	1.7	70
546	A three-dimensional Nd(<scp>iii</scp>)-based metal–organic framework as a smart drug carrier. New Journal of Chemistry, 2016, 40, 9017-9020.	1.4	26

#	Article	IF	Citations
547	Fluorescence tuning of Zn(<scp>ii</scp>)-based metallo-supramolecular coordination polymers and their application for picric acid detection. Inorganic Chemistry Frontiers, 2016, 3, 1363-1375.	3.0	25
548	A microporous Cu ²⁺ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO ₂ uptake. Inorganic Chemistry Frontiers, 2016, 3, 1527-1535.	3.0	22
549	Highly selective sorption of CO ₂ and N ₂ O and strong gas-framework interactions in a nickel(<scp>ii</scp>) organic material. Journal of Materials Chemistry A, 2016, 4, 16198-16204.	5.2	42
550	Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New Journal of Chemistry, 2016, 40, 9170-9175.	1.4	65
551	A pair of 3D homochiral helical metal–organic frameworks with hetrometallic chains constructed by proline derivative ligands. Polyhedron, 2016, 118, 91-95.	1.0	2
552	Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorganic Chemistry, 2016, 55, 9757-9766.	1.9	78
553	A cadmium(<scp>ii</scp>)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. Journal of Materials Chemistry A, 2016, 4, 16349-16355.	5.2	85
554	Lanthanide-Organic Frameworks (LnOFs) Containing 1D Metal/Oxygen Ribbons with Cubane-like and Triangle Motifs: Synthesis, Structure, Luminescence and Slow Magnetic Relaxation. ChemistrySelect, 2016, 1, 3335-3342.	0.7	8
555	A Metal-Organic Framework Containing Arsenic Atoms with a Free Lone Pair. Bulletin of the Chemical Society of Japan, 2016, 89, 1057-1062.	2.0	9
556	Three new complexes based on methyl-pyrimidine-2-thione: in situ transformation, crystal structures and properties. Journal of Coordination Chemistry, 2016, 69, 3072-3083.	0.8	4
557	Coordination Polymers of M ₂ L ₂ Macrocycles and M ₃ L ₂ Podands Containing Tris (pyridyl) Tripodal Amide: Anion Bridging, Agâ‹â‹â‹A Interactions and Solidâ€State Luminescence. ChemistrySelect, 2016, 1, 2299-2306.	.go.7	1
558	A Terbiumâ€Organic Framework Material for Highly Sensitive Sensing of Fe ³⁺ in Aqueous and Biological Systems: Experimental Studies and Theoretical Analysis. ChemistrySelect, 2016, 1, 3555-3561.	0.7	31
559	Synthesis of two Zn(II) compounds from terpyridine-based ligand: Structures, crystal-to-crystal transformation and detection of nerve agent mimics. Inorganic Chemistry Communication, 2016, 73, 16-20.	1.8	7
560	Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions. Journal of Solid State Chemistry, 2016, 244, 6-11.	1.4	14
561	Multifunctional Three-Dimensional Europium Metal–Organic Framework for Luminescence Sensing of Benzaldehyde and Cu ²⁺ and Selective Capture of Dye Molecules. Inorganic Chemistry, 2016, 55, 7826-7828.	1.9	87
562	Luminescent Zinc Phosphonates for Ratiometric Sensing of 2,4,6-Trinitrophenol and Temperature. Crystal Growth and Design, 2016, 16, 5074-5083.	1.4	34
563	Tunable dual-emissive photoluminescence of a zinc(II) coordination polymer based on tetrazolate-carboxylatate acid and 4,4′-bipyridine mixed organic chromophores. Inorganic Chemistry Communication, 2016, 70, 193-196.	1.8	5
564	Two novel anionic indium–tetracarboxylate frameworks: Syntheses, structures and photoluminescent properties. Polyhedron, 2016, 117, 513-517.	1.0	5

#	Article	IF	CITATIONS
565	Competitive Excimer Formation and Energy Transfer in Zrâ€Based Heterolinker Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 13072-13082.	1.7	28
566	A Highly Robust Terbium Coordination Polymer as a Multiresponsive Luminescent Sensor for Detecting Pollutant Anions. European Journal of Inorganic Chemistry, 2016, 2016, 3994-3998.	1.0	10
567	Mechanochemically synthesized crystalline luminescent 2D coordination polymers of La ³⁺ and Ce ³⁺ , doped with Sm ³⁺ , Eu ³⁺ , Tb ³⁺ , and Dy ³⁺ : synthesis, crystal structures and luminescence. CrystEngComm, 2016, 18, 6738-6747.	1.3	21
568	Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus, 2016, 6, 20160027.	1.5	142
569	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie - International Edition, 2016, 55, 10358-10362.	7.2	175
570	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie, 2016, 128, 10514-10518.	1.6	44
571	Luminescent metal-organic frameworks for nitro explosives detection. Science China Chemistry, 2016, 59, 929-947.	4.2	68
572	Four new lanthanide–organic frameworks: selective luminescent sensing and magnetic properties. Dalton Transactions, 2016, 45, 12800-12806.	1.6	38
573	Four Co(II) coordination polymers based on 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl and aromatic carboxylic acids co-ligands: Synthesis, structures, and photocatalytic properties. Inorganica Chimica Acta, 2016, 450, 418-425.	1.2	26
574	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
575	Nickel adipate coordination polymers with isomeric dipyridylamide ligands: topological disorder and divergent magnetic properties. CrystEngComm, 2016, 18, 6789-6797.	1.3	4
576	An aminopyrimidine-functionalized cage-based metal–organic framework exhibiting highly selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Dalton Transactions, 2016, 45, 13373-13382.	1.6	73
577	Near-Infrared Luminescence and Inner Filter Effects of Lanthanide Coordination Polymers with 1,2-Di(4-pyridyl)ethylene. Inorganic Chemistry, 2016, 55, 7396-7406.	1.9	34
578	A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorganic Chemistry, 2016, 55, 7326-7328.	1.9	83
579	A series of transition metal–organic frameworks: crystal structures, luminescence properties, and sensitizing for luminescent Ln(<scp>iii</scp>) ions in aqueous solution. RSC Advances, 2016, 6, 69007-69015.	1.7	9
580	A Luminescent Zinc(II) Metal–Organic Framework for Selective Detection of Nitroaromatics, Fe ³⁺ and CrO ₄ ^{2â^'} : A Versatile Threefold Fluorescent Sensor. ChemPlusChem, 2016, 81, 885-892.	1.3	67
581	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	5.2	101
582	Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in Co ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 5247-5259.	1.4	28

#	Article	IF	CITATIONS
583	Rigidifying Effect of Metal–Organic Frameworks: Protect the Conformation, Packing Mode, and Blue Fluorescence of a Soft Piezofluorochromic Compound under Pressures up to 8 MPa. Inorganic Chemistry, 2016, 55, 7311-7313.	1.9	37
584	Applications of water stable metal–organic frameworks. Chemical Society Reviews, 2016, 45, 5107-5134.	18.7	991
585	Lanthanide-based metal–organic frameworks as luminescent probes. Dalton Transactions, 2016, 45, 18003-18017.	1.6	233
586	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	4.2	14
587	Click-modified hexahomotrioxacalix[3] arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Analytica Chimica Acta, 2016, 936, 216-221.	2.6	33
588	Optical detection of small biomolecule thiamines at a micromolar level by highly luminescent lanthanide complexes with tridentate N-heterocyclic ligands. RSC Advances, 2016, 6, 71012-71024.	1.7	18
589	Solvent-Controlled Assembly of Ionic Metal–Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties. Crystal Growth and Design, 2016, 16, 5554-5562.	1.4	46
590	Chromophore-immobilized luminescent metal–organic frameworks as potential lighting phosphors and chemical sensors. Chemical Communications, 2016, 52, 10249-10252.	2.2	70
591	Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Applied Materials & Interfaces, 2016, 8, 30294-30303.	4.0	320
592	A two-fold interpenetrated metal-organic framework for the highly selective detection of explosive picric acid. Inorganic Chemistry Communication, 2016, 73, 103-106.	1.8	27
593	The assembly of thiophene-based bis-pyridyl-bis-amide Co ^{II} coordination polymers and their polypyrrole-functionalized hybrid materials for boosting their photocatalytic performances. Dalton Transactions, 2016, 45, 19341-19350.	1.6	17
594	A series of europium-based metal organic frameworks with tuned intrinsic luminescence properties and detection capacities. RSC Advances, 2016, 6, 111934-111941.	1.7	34
595	Hydrogen Oxidation-Mediated Current Discharge in Mesoporous Pt/TiO ₂ Nanocomposite. ACS Applied Materials & Discharge in Mesoporous Pt/TiO ₂ Nanocomposite.	4.0	11
596	A novel photoluminescent Cd(<scp>ii</scp>)–organic framework exhibiting rapid and efficient multi-responsive fluorescence sensing for trace amounts of Fe ³⁺ ions and some NACs, especially for 4-nitroaniline and 2-methyl-4-nitroaniline. Journal of Materials Chemistry C, 2016, 4, 11404-11418.	2.7	147
597	Metalloligands to material: design strategies and network topologies. CrystEngComm, 2016, 18, 9185-9208.	1.3	33
598	Luminescence, chemical sensing and mechanical properties of crystalline materials based on lanthanide–sulfonate coordination polymers. RSC Advances, 2016, 6, 110171-110181.	1.7	19
599	Syntheses, Structures, and Luminescence of Metal(II) Coordination Polymers based on Flexible 1,1′-(1,4-ButanediyI)bis(imidazole) and Tetrachlorobenzene-1,4-dicarboxylate Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1486-1492.	0.6	1
600	A two-dimensional metal-organic framework composed of paddle-wheel cobalt clusters with permanent porosity. Inorganic Chemistry Communication, 2016, 74, 98-101.	1.8	10

#	Article	IF	CITATIONS
601	Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 32259-32265.	4.0	207
602	A postsynthetically modified MOF hybrid as a ratiometric fluorescent sensor for anion recognition and detection. Dalton Transactions, 2016, 45, 18668-18675.	1.6	53
603	Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Science Advances, 2016, 2, e1600480.	4.7	188
605	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	2.2	33
606	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
607	Imparting amphiphobicity on single-crystalline porous materials. Nature Communications, 2016, 7, 13300.	5.8	126
608	Efficient and recyclable copper-based MOF-catalyzed N-arylation of N-containing heterocycles with aryliodides. Organic and Biomolecular Chemistry, 2016, 14, 10861-10865.	1.5	30
609	Structure and third-order nonlinear optical properties of the two-dimensional Collcoordination polymer $[Co(1,2-BIB)(PA)]n\{1,2-BIB \text{ is } 1,2-bis[(1H-imidazol-1-yl)methyl]benzene and H2PA is phthalic acid}.$ Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 890-894.	0.2	5
610	A Postsynthetic Modified MOF Hybrid as Heterogeneous Photocatalyst for \hat{l}_{\pm} -Phenethyl Alcohol and Reusable Fluorescence Sensor. Inorganic Chemistry, 2016, 55, 11831-11838.	1.9	70
611	A Multiâ€responsive Regenerable Europium–Organic Framework Luminescent Sensor for Fe ³⁺ , Cr ^{VI} Anions, and Picric Acid. Chemistry - A European Journal, 2016, 22, 18769-18776.	1.7	242
612	Fluorescent Porous Organic Frameworks Containing Molecular Rotors for Size-Selective Recognition. Chemistry of Materials, 2016, 28, 7889-7897.	3.2	101
613	A Highly Stable 3D Luminescent Indium–Polycarboxylic Framework for the Turn-off Detection of UO ₂ ²⁺ , Ru ³⁺ , and Biomolecule Thiamines. ACS Applied Materials & ACS Applied & ACS	4.0	50
614	Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination networks based onÂN-donor ligands: synthesis, crystal structures, and sensing of nitroaromatic explosives. RSC Advances, 2016, 6, 101380-101388.	1.7	15
615	Two 3D Isostructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr ₂ O ₇ ^{2â€"} . Inorganic Chemistry, 2016, 55, 11323-11330.	1.9	142
616	AlEgens-Functionalized Porous Materials for Explosives Detection. ACS Symposium Series, 2016, , 129-150.	0.5	2
617	Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics. Scientific Reports, 2016, 6, 34870.	1.6	28
618	Grinding size-dependent mechanoresponsive luminescent Cd(<scp>ii</scp>) coordination polymer. Dalton Transactions, 2016, 45, 18074-18078.	1.6	31
619	H-Bonding Interactions Induced Two Isostructural Cd(II) Metal–Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives. Inorganic Chemistry, 2016, 55, 10999-11005.	1.9	109

#	Article	IF	CITATIONS
620	Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks. Scientific Reports, 2016, 6, 29118.	1.6	57
621	A luminescent two-fold interpenetrated pillared-layer metal-organic framework for highly selective and sensitive sensing of Fe3+. Inorganic Chemistry Communication, 2016, 73, 90-93.	1.8	10
622	Structure tuning in amino-functionalized coordination polymers based on different V-shaped dicarboxylate ligands. Inorganic Chemistry Communication, 2016, 73, 183-186.	1.8	0
623	Commensurate Superstructure of the {Cu(NO ₃)(H ₂ O)}(HTae)(Bpy) Coordination Polymer: An Example of 2D Hydrogen-Bonding Networks as Magnetic Exchange Pathway. Inorganic Chemistry, 2016, 55, 11662-11675.	1.9	9
624	W-shaped 1,3-di(2,4-dicarboxyphenyl)benzene based lanthanide coordination polymers with tunable white light emission. New Journal of Chemistry, 2016, 40, 10440-10446.	1.4	18
625	Complete multinuclear solidâ€state <scp>NMR</scp> of metalâ€organic frameworks: The case of αâ€Mgâ€formate. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, .	0.2	12
626	Heterometallic molecular complex [Co2Gd(NO3)(piv)6(py)2] and coordination polymer [{CoGd(dma)2}2(bdc)5]·4DMA: the synthesis, structure, and properties. Russian Chemical Bulletin, 2016, 65, 2601-2606.	0.4	20
627	Ratiometric Thermometer Based on a Lanthanoid Coordination Polymer. European Journal of Inorganic Chemistry, 2016, 2016, 2984-2988.	1.0	16
628	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	1.6	41
629	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie, 2016, 128, 7505-7509.	1.6	72
630	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie - International Edition, 2016, 55, 7811-7815.	7.2	302
631	A Postâ€Synthetically Modified MOF for Selective and Sensitive Aqueousâ€Phase Detection of Highly Toxic Cyanide Ions. Chemistry - A European Journal, 2016, 22, 864-868.	1.7	91
632	A Highly Sensitive Luminescent Dye@MOF Composite for Probing Different Volatile Organic Compounds. ChemPlusChem, 2016, 81, 758-763.	1.3	31
633	Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem, 2016, 81, 675-690.	1.3	552
634	Microporous Lanthanide Metal–Organic Frameworks with Multiple 1D Channels: Tunable Colors, Whiteâ€Light Emission, and Luminescent Sensing for Iron(II) and Iron(III). ChemPlusChem, 2016, 81, 798-803.	1.3	27
635	Encapsulation of Ln ^{III} ions/Ag nanoparticles within Cd(<scp>ii</scp>) boron imidazolate frameworks for tuning luminescence emission. Chemical Communications, 2016, 52, 8577-8580.	2.2	17
636	High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chemical Communications, 2016, 52, 8459-8462.	2.2	32
637	Lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. RSC Advances, 2016, 6, 57828-57834.	1.7	36

#	Article	IF	CITATIONS
638	Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chemical Engineering Journal, 2016, 303, 231-237.	6.6	117
639	Conversion of Ni Nd and Ni Tb compartment compounds into one-dimensional coordination polymers or tetranuclear dimers. Polyhedron, 2016, 117, 231-243.	1.0	12
640	From discrete complex to 1-D coordination polymer by subtle variation of ligand donor: structures and electrical conductivities. Journal of Coordination Chemistry, 2016, 69, 1837-1843.	0.8	2
641	Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions. Journal of the American Chemical Society, 2016, 138, 7488-7491.	6.6	230
642	Moisture-Stable Zn(II) Metal–Organic Framework as a Multifunctional Platform for Highly Efficient CO ₂ Capture and Nitro Pollutant Vapor Detection. ACS Applied Materials & Diterfaces, 2016, 8, 18043-18050.	4.0	84
643	Elaboration of metal organic framework hybrid materials with hierarchical porosity by electrochemical deposition–dissolution. CrystEngComm, 2016, 18, 5095-5100.	1.3	17
644	2D lanthanide MOFs driven by a rigid 3,5-bis(3-carboxy-phenyl)pyridine building block: solvothermal syntheses, structural features, and photoluminescence and sensing properties. CrystEngComm, 2016, 18, 6425-6436.	1.3	84
645	Lanthanide–organic frameworks constructed from naphthalenedisulfonates: structure, luminescence and luminescence sensing properties. CrystEngComm, 2016, 18, 5890-5900.	1.3	27
646	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5. 2	412
647	Highly Porous Zirconium Metal–Organic Frameworks with β-UH ₃ -like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	6.6	76
648	Commensurate CO ₂ Capture, and Shape Selectivity for HCCH over H ₂ CCH ₂ , in Zigzag Channels of a Robust Cu ^I (CN)(L) Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 6195-6200.	1.9	18
649	Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission. ACS Applied Materials & Interfaces, 2016, 8, 15489-15496.	4.0	153
650	A highly sensitive near-infrared luminescent metal–organic framework thermometer in the physiological range. Chemical Communications, 2016, 52, 8259-8262.	2.2	60
651	Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors. Inorganic Chemistry, 2016, 55, 7250-7256.	1.9	74
652	Synthesis and Fluorescent Properties of a Chiral 2D Tetranuclear Cd(II) Coordination Polymer Based on Asymmetrical Biphenyltetracarboxylate. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 472-478.	1.9	6
653	Luminescent cadmium dimethylsuccinate and dimethylglutarate coordination polymers self-assembled in the presence of flexible dipyridylamide ligands with capability for nitrobenzene detection. Inorganica Chimica Acta, 2016, 441, 169-180.	1.2	22
654	Metal-dependent ribbon and self-penetrated topologies in nitroaromatic-sensing zinc and cadmium coordination polymers with terephthalate and dipyridylamide ligands. Polyhedron, 2016, 114, 72-79.	1.0	7
655	Two Cd II -containing coordination polymers based on trinuclear and dodecanuclear clusters. Inorganic Chemistry Communication, 2016, 70, 90-94.	1.8	9

#	Article	IF	CITATIONS
656	Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands. Journal of Molecular Structure, 2016, 1118, 233-240.	1.8	6
657	Designs of 3-Dimensional Networks and MOFs Using Mono- and Polymetallic Copper(I) Secondary Building Units and Mono- and Polythioethers: Materials Based on the Cu–S Coordination Bond. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1174-1197.	1.9	20
658	Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Diterfaces, 2016, 8, 16533-16539.	4.0	72
659	A gadolinium MOF acting as a multi-responsive and highly selective luminescent sensor for detecting o-, m-, and p-nitrophenol and Fe ³⁺ ions in the aqueous phase. RSC Advances, 2016, 6, 61725-61731.	1.7	70
660	Eight Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) complexes based on the aromatic C-centered triangular multicarboxylate and N-donor mixed ligands. RSC Advances, 2016, 6, 54993-54998.	1.7	4
661	High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-lon Battery. ACS Applied Materials & Date (1,3,5-Benzenetricarboxylate) amp; Interfaces, 2016, 8, 15352-15360.	4.0	181
662	Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16457-16464.	4.0	89
663	Anionic metal–organic framework for high-efficiency pollutant removal and selective sensing of Fe(<scp>iii</scp>) ions. RSC Advances, 2016, 6, 60940-60944.	1.7	35
664	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
665	Diversity in the Coordination Polymers of 2-(2-(Pyridin-4/3-yl)vinyl)- $1 < i > H < /i >$ -benzimidazole and Dicarboxylates/Disulfonates: Photochemical Reactivity and Luminescence Studies. Crystal Growth and Design, 2016, 16, 4457-4466.	1.4	28
666	High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4178-4182.	1.4	50
667	Three novel Cu ₆ S ₆ cluster-based coordination compounds: synthesis, framework modulation and the sensing of small molecules and Fe ³⁺ ions. Dalton Transactions, 2016, 45, 11883-11891.	1.6	47
668	Metalâ€Organic Frameworkâ€Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 2016, 6, 1600423.	10.2	539
669	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie, 2016, 128, 7942-7946.	1.6	59
670	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie, 2016, 128, 7232-7236.	1.6	10
671	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie - International Edition, 2016, 55, 7379-7383.	7.2	260
672	Turnâ€On Fluorogenic and Chromogenic Detection of Small Aromatic Hydrocarbon Vapors by a Porous Supramolecular Host. Chemistry - A European Journal, 2016, 22, 10346-10350.	1.7	47
673	Applications of metal-organic frameworks featuring multi-functional sites. Coordination Chemistry Reviews, 2016, 307, 106-129.	9.5	471

#	Article	IF	CITATIONS
674	Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors. Nanoscale, 2016, 8, 3954-3961.	2.8	23
675	Supramolecular Interactions Induced Chirality Transmission, Second Harmonic Generation Responses, and Photoluminescent Property of a Pair of Enantiomers from in Situ [2 + 3] Cycloaddition Synthesis. Crystal Growth and Design, 2016, 16, 1559-1564.	1.4	18
676	Metal ion induced porous HKUST-1 nano/microcrystals with controllable morphology and size. CrystEngComm, 2016, 18, 4127-4132.	1.3	40
677	3D Luminescent Amide-Functionalized Cadmium Tetrazolate Framework for Selective Detection of 2,4,6-Trinitrophenol. Crystal Growth and Design, 2016, 16, 842-851.	1.4	167
678	Imparting BrÃ, nsted acidity into a zeolitic imidazole framework. Inorganic Chemistry Frontiers, 2016, 3, 393-396.	3.0	19
679	Remarkably selective and enantiodifferentiating sensing of histidine by a fluorescent homochiral Zn-MOF based on pyrene-tetralactic acid. Chemical Science, 2016, 7, 3085-3091.	3.7	146
680	Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	5.2	259
681	A charged metal–organic framework for CO2/CH4 and CO2/N2 separation. Inorganica Chimica Acta, 2016, 443, 299-303.	1.2	16
682	Two new three-dimensional metal–organic frameworks with 4-connected diamondoid and unusual (6,16)-connected net topologies based on planar tetranuclear squares as secondary building units. CrystEngComm, 2016, 18, 1174-1183.	1.3	15
683	Pyrazine-based donor tectons: synthesis, self-assembly and characterization. RSC Advances, 2016, 6, 8992-9001.	1.7	12
684	Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. Journal of Materials Chemistry A, 2016, 4, 3584-3616.	5.2	301
685	A porous metal–organic framework with a unique hendecahedron-shaped cage: structure and controlled drug release. Dalton Transactions, 2016, 45, 3694-3697.	1.6	18
686	Four metal–organic frameworks based on the 5-(1H-tetrazol-5-yl)isophthalic acid ligand: luminescence and magnetic properties. CrystEngComm, 2016, 18, 1523-1531.	1.3	23
687	A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants. RSC Advances, 2016, 6, 11570-11576.	1.7	114
688	A two-fold interpenetrating porous metal–organic framework with a large solvent-accessible volume and selective sensing of nitroaromatic explosives. Journal of Coordination Chemistry, 2016, 69, 996-1004.	0.8	4
689	Three Highly Fluorescent Iridium(III) Unit Based Coordination Polymers: Coordinated Solvent-Dependent Photoluminescence. Crystal Growth and Design, 2016, 16, 406-411.	1.4	9
690	Solvent-induced construction of two zinc metal–organic frameworks for highly selective detection of nitroaromatic explosives. CrystEngComm, 2016, 18, 4102-4108.	1.3	30
691	A series of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination compounds based on 4-(4H-1,2,4-triazol-4-yl)benzoic acid: synthesis, structure and photoluminescence properties. CrystEngComm, 2016, 18, 130-142.	1.3	16

#	Article	IF	CITATIONS
692	Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm, 2016, 18, 193-206.	1.3	235
693	Structural transformations and solid-state reactivity involving nano lead(II) coordination polymers via thermal, mechanochemical and photochemical approaches. Coordination Chemistry Reviews, 2016, 310, 116-130.	9.5	47
694	Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Applied Catalysis A: General, 2016, 511, 1-10.	2.2	34
695	Mechanochromic Cu(<scp>i</scp>) boron imidazolate frameworks with low-dimensional structures and reducing function. Inorganic Chemistry Frontiers, 2016, 3, 263-267.	3.0	26
696	A responsive MOF nanocomposite for decoding volatile organic compounds. Chemical Communications, 2016, 52, 2265-2268.	2.2	128
697	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	1.9	82
698	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	2.2	33
699	Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Advances, 2016, 6, 1136-1142.	1.7	55
700	A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & D) and its effect on CO ₂ adsorption properties. RSC Advances, 2016, 6, 632-640.	1.7	46
701	Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials. Chemical Communications, 2016, 52, 1555-1562.	2.2	56
702	Structure-dependent mechanochromism of two Ag(<scp>i</scp>) imidazolate chains. CrystEngComm, 2016, 18, 218-221.	1.3	21
703	Electrical conductivity and electroluminescence of a new anthracene-based metal–organic framework with π-conjugated zigzag chains. Chemical Communications, 2016, 52, 2019-2022.	2.2	102
704	The dynamic response of a flexible indium based metal–organic framework to gas sorption. Chemical Communications, 2016, 52, 2277-2280.	2.2	36
705	The moisture-triggered controlled release of a natural food preservative from a microporous metal–organic framework. Chemical Communications, 2016, 52, 2129-2132.	2.2	37
706	Luminescent Metal–Organic Complexes of Pyrene or Anthracene Chromophores: Energy Transfer Assisted Amplified Exciplex Emission and Al ³⁺ Sensing. Crystal Growth and Design, 2016, 16, 82-91.	1.4	44
707	Roles of anions in the structural diversity of Cd(II) complexes based on a V-shaped triazole-carboxylate ligand: Synthesis, structure and photoluminescence properties. Inorganica Chimica Acta, 2016, 446, 103-110.	1.2	9
708	De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials, 2016, 28, 2000-2010.	3.2	63
709	Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm, 2016, 18, 2994-3007.	1.3	189

#	Article	IF	CITATIONS
710	Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 2016, 3, 808-813.	3.0	8
711	Rational synthesis of an exceptionally stable Zn(<scp>ii</scp>) metal–organic framework for the highly selective and sensitive detection of picric acid. Chemical Communications, 2016, 52, 5734-5737.	2.2	253
712	Fluorescence and photochromic properties of a series of new Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) coordination compounds with a flexible semi-rigid tetrazole–viologen derivative. CrystEngComm, 2016, 18, 2524-2531.	1.3	20
713	Structural stabilization of a metal–organic framework for gas sorption investigation. Dalton Transactions, 2016, 45, 6830-6833.	1.6	21
714	Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Materials, 2016, 8, e253-e253.	3.8	114
715	A thiadiazole-functionalized Zr(<scp>iv</scp>)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm, 2016, 18, 3104-3113.	1.3	141
716	Freestanding MOF Microsheets with Defined Size and Geometry Using Superhydrophobic–Superhydrophilic Arrays. Advanced Materials Interfaces, 2016, 3, 1500392.	1.9	32
717	Mixed ligand two dimensional Cd(<scp>ii</scp>)/Ni(<scp>ii</scp>) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(<scp>ii</scp>) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Transactions, 2016, 45, 7881-7892.	1.6	168
718	Long-afterglow metal–organic frameworks: reversible guest-induced phosphorescence tunability. Chemical Science, 2016, 7, 4519-4526.	3.7	376
719	Förster Energy Transport in Metal–Organic Frameworks Is Beyond Step-by-Step Hopping. Journal of the American Chemical Society, 2016, 138, 5308-5315.	6.6	131
720	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	6.6	104
721	Ln3+ post-functionalized metal–organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. New Journal of Chemistry, 2016, 40, 4654-4661.	1.4	90
722	Assemblies of metal–organic frameworks based on a tetrapodal linker for luminescence sensing of tetrahydrofuran. CrystEngComm, 2016, 18, 2857-2863.	1.3	21
723	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie, 2016, 128, 5103-5107.	1.6	42
724	Tunable luminescence and white light emission of mixed lanthanide–organic frameworks based on polycarboxylate ligands. Journal of Materials Chemistry C, 2016, 4, 3364-3374.	2.7	116
725	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
726	Two-dimensional 3d–4f coordination polymers based on compartment compounds: [NiLn(L)(NO3)2(4-pca)(H2O)] (Ln = Nd, Eu, Tb; H2L = 1,3-bis((3-methoxysalicylidene)amino)propane); 4-Hpca	1.0	17
727	Advancing Magnesium–Organic Porous Materials through New Magnesium Cluster Chemistry. Crystal Growth and Design, 2016, 16, 1261-1267.	1.4	33

#	Article	IF	CITATIONS
728	Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm, 2016, 18, 4323-4335.	1.3	30
729	Synthesis of borocarbonitride from a multifunctional Cu(<scp>i</scp>) boron imidazolate framework. Dalton Transactions, 2016, 45, 5223-5228.	1.6	5
730	Luminescent lanthanide–organic polyrotaxane framework as a turn-off sensor for nitrobenzene and Fe ³⁺ . RSC Advances, 2016, 6, 19459-19462.	1.7	27
731	Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. Chemistry of Materials, 2016, 28, 1636-1646.	3.2	87
732	Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules. Inorganic Chemistry, 2016, 55, 2261-2273.	1.9	181
733	Two microporous metal–organic frameworks constructed from trinuclear cobalt(<scp>ii</scp>) and cadmium(<scp>ii</scp>) cluster subunits. CrystEngComm, 2016, 18, 2239-2243.	1.3	11
734	Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Crystal Growth and Design, 2016, 16, 1837-1849.	1.4	94
735	Picogram sensing of trinitrophenol in aqueous medium through a water stable nanoscale coordination polymer. Nanoscale, 2016, 8, 11782-11786.	2.8	37
736	Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chemical Communications, 2016, 52, 4971-4974.	2.2	41
737	Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. Journal of the American Chemical Society, 2016, 138, 2158-2161.	6.6	276
738	Mononuclear and polynuclear complexes ligated by an iminodiacetic acid derivative: synthesis, structure, solution studies and magnetic properties. Dalton Transactions, 2016, 45, 5356-5373.	1.6	13
739	Unique anisotropic optical properties of a highly stable metal–organic framework based on trinuclear iron(<scp>iii</scp>) secondary building units linked by tetracarboxylic linkers with an anthracene core. Dalton Transactions, 2016, 45, 7244-7249.	1.6	15
740	Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination. Analytica Chimica Acta, 2016, 912, 139-145.	2.6	41
741	Synthesis of homochiral helical metal–organic frameworks based on lactate derivatives. Journal of Coordination Chemistry, 2016, 69, 1812-1818.	0.8	6
742	Linker-Induced Structural Diversity and Photophysical Property of MOFs for Selective and Sensitive Detection of Nitroaromatics. Inorganic Chemistry, 2016, 55, 1741-1747.	1.9	92
743	A lanthanide(<scp>iii</scp>) metal–organic framework exhibiting ratiometric luminescent temperature sensing and tunable white light emission. CrystEngComm, 2016, 18, 4268-4271.	1.3	43
744	Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. Journal of Materials Chemistry A, 2016, 4, 3991-4002.	5. 2	121
745	Structural diversification and single-crystal-to-single-crystal transformation of alkaline earth metal-based MOFs regulated by solvent effect. CrystEngComm, 2016, 18, 2864-2872.	1.3	10

#	Article	IF	CITATIONS
746	A pillar-layer MOF used as a luminescent probe for detecting small molecules acetone. Inorganic Chemistry Communication, 2016, 66, 87-89.	1.8	14
747	The structural diversity and properties of nine new viologen based zwitterionic metal–organic frameworks. CrystEngComm, 2016, 18, 2189-2202.	1.3	50
748	Luminescent coordination polymers for the VIS and NIR range constituting LnCl ₃ and 1,2-bis(4-pyridyl)ethane. Dalton Transactions, 2016, 45, 6529-6540.	1.6	18
749	Superparamagnetic Luminescent MOF@Fe ₃ O ₄ /SiO ₂ Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors. ACS Applied Materials & Detectors. ACS Applied & Detectors. ACS Applied Materials & Detectors. ACS Applied Materials & Detectors. ACS Applied Materials & Detectors. ACS Applied & Detectors. ACS Applied Materials & Detectors. ACS Applied & Detectors. A	4.0	70
750	Syntheses, structures and properties of zinc(II) and cadmium(II) coordination polymers with mixed organic ligands. Microporous and Mesoporous Materials, 2016, 227, 39-47.	2.2	12
751	Cerium-based azide- and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm, 2016, 18, 4374-4381.	1.3	95
752	Novel photo- and/or thermochromic MOFs derived from bipyridinium carboxylate ligands. Inorganic Chemistry Frontiers, 2016, 3, 814-820.	3.0	59
753	A Cd(<scp>ii</scp>)-based metal–organic framework as a luminance sensor to nitrobenzene and Tb(<scp>iii</scp>) ion. Dalton Transactions, 2016, 45, 6983-6989.	1.6	48
754	Understanding and controlling water stability of MOF-74. Journal of Materials Chemistry A, 2016, 4, 5176-5183.	5.2	155
755	Interpenetrating metal–organic frameworks. CrystEngComm, 2016, 18, 2596-2606.	1.3	96
756	Luminescent hybrid metal-organic coordination polymers based on Cu/Ag-bis(benzotriazole) units and polyoxometalates. Journal of Coordination Chemistry, 2016, 69, 1769-1779.	0.8	9
757	A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal lons and Small Molecules. Inorganic Chemistry, 2016, 55, 3265-3271.	1.9	516
758	A microscale multi-functional metal-organic framework as a fluorescence chemosensor for Fe(III), Al(III) and 2-hydroxy-1-naphthaldehyde. Journal of Colloid and Interface Science, 2016, 471, 1-6.	5.0	71
759	An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Transactions, 2016, 45, 7078-7084.	1.6	80
760	Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes and Pigments, 2016, 130, 216-225.	2.0	31
761	Luminescent sensing from a new Zn(<scp>ii</scp>) metal–organic framework. RSC Advances, 2016, 6, 31161-31166.	1.7	83
762	Nanostructured coordination complexes/polymers derived from cardanol: "one-pot, two-step― solventless synthesis and characterization. RSC Advances, 2016, 6, 6607-6622.	1.7	28
763	3d–4f Metal–Organic Framework with Dual Luminescent Centers That Efficiently Discriminates the Isomer and Homologues of Small Organic Molecules. Inorganic Chemistry, 2016, 55, 1089-1095.	1.9	72

#	Article	IF	CITATIONS
764	Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4′-dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	1.3	30
765	Two multifunctional Mn(II) metal–organic frameworks: Synthesis, structures and applications as photocatalysis and luminescent sensor. Polyhedron, 2016, 105, 49-55.	1.0	53
766	Tetranuclear Zn(II) and mononuclear Ni(II) based coordination polymers derived from a pair of isomeric 1,2,4-triazole ligands 3,5-disubstituted by pyridine and acetate ethyl ester groups. Polyhedron, 2016, 106, 138-143.	1.0	3
767	A novel 2D porous Cd(II) MOF with a (4,4) connected binodal network: Synthesis and photoluminescence sensing of small molecules. Inorganic Chemistry Communication, 2016, 64, 16-18.	1.8	18
768	A series of coordination polymers with tuned terphenyl tetracarboxylates and bis-pyridyl ligands with different flexibilities manifesting fluorescence properties and photocatalytic activities. CrystEngComm, 2016, 18, 986-999.	1.3	25
769	3,5-Bis((4′-carboxylbenzyl)oxy)benzoilate-based coordination polymers: their synthesis, structural characterization, and sensing properties. Inorganic Chemistry Frontiers, 2016, 3, 406-416.	3.0	20
770	Syntheses and Characterization of Two Cd(II) Coordination Polymers Based on Mixed Flexible Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 264-269.	1.9	2
771	Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coordination Chemistry Reviews, 2016, 311, 38-52.	9.5	272
772	The lighter side of MOFs: structurally photoresponsive metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 6714-6723.	5 . 2	128
773	An indirect generation of 1D M ^{II} -2,5-dihydroxybenzoquinone coordination polymers, their structural rearrangements and generation of materials with a high affinity for H ₂ , CO ₂ and CH ₄ . Dalton Transactions, 2016, 45, 1339-1344.	1.6	26
774	Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Transactions, 2016, 45, 3743-3749.	1.6	74
775	A simple but efficient strategy to enhance hydrostability of intensely fluorescent Mg-based coordination polymer (CP) via forming a composite of CP with hydrophobic PVDF. Dalton Transactions, 2016, 45, 3372-3379.	1.6	8
776	Construction of a New ZnII Coordination Polymer for Selective Fluorescence Sensing of CCl4. Australian Journal of Chemistry, 2016, 69, 56.	0.5	7
777	Magnetic Properties and Photoluminescence of Lanthanide Coordination Polymers Constructed with Conformation-Flexible Cyclohexane-Tetracarboxylate Ligands. Crystal Growth and Design, 2016, 16, 946-952.	1.4	27
778	One-dimensional mercury(II) halide coordination polymers of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine ligand: Synthesis, crystal structure, spectroscopic and DFT studies. Journal of Solid State Chemistry, 2016, 233, 311-319.	1.4	16
779	Microporous Cd(II) metal-organic framework as fluorescent sensor for nitroaromatic explosives at the sub-ppm level. Journal of Molecular Structure, 2016, 1107, 1-6.	1.8	66
780	Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chemistry, 2016, 18, 1212-1217.	4.6	148
781	Modulating the electrical conductivity of metal–organic framework films with intercalated guest π-systems. Journal of Materials Chemistry C, 2016, 4, 894-899.	2.7	80

#	Article	IF	CITATIONS
782	Self-assembly of CPO-27-Mg/TiO 2 nanocomposite with enhanced performance for photocatalytic CO 2 reduction. Applied Catalysis B: Environmental, 2016, 183, 47-52.	10.8	142
783	A novel 2D infinite M ₃ L ₂ cage-based Cd(<scp>ii</scp>) microporous coordination polymer with a tripodal carboxylic acid ligand and solvent-dependent luminescence properties. New Journal of Chemistry, 2016, 40, 97-100.	1.4	9
784	Benzo[5]helicene-based conjugated polymers: synthesis, photophysical properties, and application for the detection of nitroaromatic explosives. Polymer Chemistry, 2016, 7, 310-318.	1.9	34
785	A chiral lanthanide metal–organic framework for selective sensing of Fe(<scp>iii</scp>) ions. Dalton Transactions, 2016, 45, 1040-1046.	1.6	269
786	A novel 3D Cu(<scp>i</scp>) coordination polymer based on Cu ₆ Br ₂ and Cu ₂ (CN) ₂ SBUs: in situ ligand formation and use as a naked-eye colorimetric sensor for NB and 2-NT. Dalton Transactions, 2016, 45, 545-551.	1.6	28
787	Synthesis, structure and photoluminescent behavior of a novel pillar-layered {Zn ₃ }-based metal–organic framework. Functional Materials Letters, 2016, 09, 1650002.	0.7	3
788	Synthesis of [Dy(DPA)(HDPA)] and its potential as gunshot residue marker. Journal of Luminescence, 2016, 170, 697-700.	1.5	21
789	A viologen-functionalized chiral Eu-MOF as a platform for multifunctional switchable material. Chemical Communications, 2016, 52, 525-528.	2.2	160
790	Instant high-selectivity Cd-MOF chemosensor for naked-eye detection of Cu(<scp>ii</scp>) confirmed using in situ microcalorimetry. Green Chemistry, 2016, 18, 951-956.	4.6	50
791	Adaptive soft molecular self-assemblies. Soft Matter, 2016, 12, 337-357.	1.2	129
792	Improved synthesis of trigone trimer cluster metal organic framework MIL-100Al by a later entry of methyl groups. Chemical Communications, 2016, 52, 725-728.	2.2	13
793	Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chemistry, 2016, 18, 1061-1069.	4.6	188
794	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	3.7	114
795	A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes. Journal of Solid State Chemistry, 2016, 233, 143-149.	1.4	22
796	Metal–organic frameworks for electrochemical applications. TrAC - Trends in Analytical Chemistry, 2016, 75, 86-96.	5.8	192
797	Two new luminescent Zn(II) compounds constructed from guanazole and aromatic polycarboxylate ligands. Journal of Molecular Structure, 2016, 1105, 112-117.	1.8	7
798	Eu(III) functionalized Zr-based metal-organic framework as excellent fluorescent probe for Cd2+ detection in aqueous environment. Sensors and Actuators B: Chemical, 2016, 222, 347-353.	4.0	108
799	Stimuli and shape responsive †boron-containing†luminescent organic materials. Journal of Materials Chemistry C, 2016, 4, 2647-2662.	2.7	154

#	Article	IF	Citations
800	A water-stable metal–organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for Ebolavirus RNA sequences. Chemical Communications, 2016, 52, 132-135.	2.2	102
801	Advances in explosives analysisâ€"partÂll: photon and neutron methods. Analytical and Bioanalytical Chemistry, 2016, 408, 49-65.	1.9	47
802	Encapsulation of dyes in metal–organic frameworks and their tunable nonlinear optical properties. Dalton Transactions, 2016, 45, 4218-4223.	1.6	45
803	Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 2016, 307, 267-291.	9.5	289
804	Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews, 2016, 307, 211-236.	9.5	206
805	Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous and Mesoporous Materials, 2016, 219, 186-189.	2.2	35
806	Recent Electroanalytical Studies of Metal-Organic Frameworks: A Mini-Review. Critical Reviews in Analytical Chemistry, 2016, 46, 323-331.	1.8	29
807	Diverse Structures and Physicochemical Properties of Four Zinc–Tripyridyltriazole Coordination Polymers Regulated by Counter-Ions. Australian Journal of Chemistry, 2016, 69, 33.	0.5	1
808	Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. Coordination Chemistry Reviews, 2016, 306, 566-614.	9.5	337
809	Preparation and applications of monolithic structures containing metal–organic frameworks. Journal of Separation Science, 2017, 40, 272-287.	1.3	54
810	Two-dimensional metal–organic frameworks for selective separation of CO ₂ /CH ₄ and CO ₂ /N ₂ . Materials Chemistry Frontiers, 2017, 1, 1514-1519.	3.2	30
811	Study of the detection of bisphenol A based on a nano-sized metal–organic framework crystal and an aptamer. Analytical Methods, 2017, 9, 906-909.	1.3	22
812	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37
813	A terbium(<scp>iii</scp>) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor. Journal of Materials Chemistry C, 2017, 5, 2015-2021.	2.7	198
814	Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Coâ€catalyst Platform. ChemCatChem, 2017, 9, 1192-1196.	1.8	28
815	A Cryptand Metal–Organic Framework as a Platform for the Selective Uptake and Detection of Group I Metal Cations. Chemistry - A European Journal, 2017, 23, 2286-2289.	1.7	18
816	Two 3D Cd(II) Metal–Organic Frameworks Linked by Benzothiadiazole Dicarboxylates: Fantastic S@Cd ₆ Cage, Benzothiadiazole Antidimmer, and Dual Emission. Inorganic Chemistry, 2017, 56, 1696-1705.	1.9	27
817	2D Coordination Polymer Built from Lithium Dimethylmalonate and Co ^{II} lons: The Influence of Dehydration on Spectral and Magnetic Properties. European Journal of Inorganic Chemistry, 2017, 2017, 1396-1405.	1.0	11

#	Article	IF	CITATIONS
818	A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives: A new strategy for the mask-free discrimination of TNT and TNP within same sample. Talanta, 2017, 166, 228-233.	2.9	45
819	Highly Water-Stable Novel Lanthanide Wheel Cluster Organic Frameworks Featuring Coexistence of Hydrophilic Cagelike Chambers and Hydrophobic Nanosized Channels. ACS Applied Materials & Interfaces, 2017, 9, 5337-5347.	4.0	28
820	Copper(<scp>i</scp>)/(<scp>ii</scp>)-redox triggered efficient and green rare-earth separation using a heterometallic metal–organic framework. Green Chemistry, 2017, 19, 1250-1254.	4.6	12
821	A pillar-layered metal-organic framework as luminescent sensor for selective and reversible response of chloroform. Journal of Solid State Chemistry, 2017, 247, 39-42.	1.4	11
822	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
823	MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds. RSC Advances, 2017, 7, 1531-1539.	1.7	59
824	Neodymium(III) organic frameworks (Nd-MOF) as near infrared fluorescent probe for highly selectively sensing of Cu2+. Inorganic Chemistry Communication, 2017, 76, 18-21.	1.8	20
825	Direct white-light-emitting and near-infrared phosphorescence of zeolitic imidazolate framework-8. Chemical Communications, 2017, 53, 1801-1804.	2.2	86
826	A water-stable La-based coordination polymer for highly fluorescent detection of Fe3+ ion and nitrobenzene vapor. Inorganic Chemistry Communication, 2017, 76, 77-80.	1.8	9
827	Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411.	1.9	157
828	Ratiometric dual-emitting MOFâŠ $_f$ dye thermometers with a tunable operating range and sensitivity. Journal of Materials Chemistry C, 2017, 5, 1607-1613.	2.7	96
829	Rational Synthesis and Investigation of Porous Metal–Organic Framework Materials from a Preorganized Heterometallic Carboxylate Building Block. Inorganic Chemistry, 2017, 56, 1599-1608.	1.9	63
830	Pore modulation of metal–organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. Journal of Materials Chemistry A, 2017, 5, 4861-4867.	5.2	68
831	Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe ³⁺ and Al ³⁺ ion detection and VOC vapor sensing. Journal of Materials Chemistry C, 2017, 5, 2311-2317.	2.7	273
832	Sonochemical synthesis, characterization, and effects of temperature, power ultrasound and reaction time on the morphological properties of two new nanostructured mercury(II) coordination supramolecule compounds. Ultrasonics Sonochemistry, 2017, 37, 382-393.	3.8	14
833	A generic and facile strategy to fabricate metal–organic framework films on TiO ₂ substrates for photocatalysis. Dalton Transactions, 2017, 46, 2751-2755.	1.6	18
834	Building Lightâ€Emitting Metalâ€Organic Frameworks by Postâ€Synthetic Modification. ChemistrySelect, 2017, 2, 136-139.	0.7	39
835	Syntheses, structural diversities and characterization of a series of coordination polymers with two isomeric oxadiazol-pyridine ligands. RSC Advances, 2017, 7, 9704-9718.	1.7	17

#	Article	IF	CITATIONS
836	Pd(0) loaded Zn ₂ (azoBDC) ₂ (dabco) as a heterogeneous catalyst. CrystEngComm, 2017, 19, 4182-4186.	1.3	13
837	Encapsulation of an iridium complex in a metal–organic framework to give a composite with efficient white light emission. Inorganic Chemistry Frontiers, 2017, 4, 547-552.	3.0	42
838	A series of coordination polymers based on terphenyl tetracarboxylates and bis-pyridyl ligands with water vapor sorption properties. RSC Advances, 2017, 7, 975-984.	1.7	6
839	Postsynthetic N-methylation making a metal–organic framework responsive to alkylamines. Chemical Communications, 2017, 53, 1747-1750.	2.2	91
840	Metal-Organic Frameworks for Energy Applications. CheM, 2017, 2, 52-80.	5.8	941
841	Preparation of Dithienogermole-containing Polysilsesquioxane Films for Sensing Nitroaromatics. Chemistry Letters, 2017, 46, 438-441.	0.7	4
842	2-Fold Interpenetrating Bifunctional Cd-Metal–Organic Frameworks: Highly Selective Adsorption for CO ₂ and Sensitive Luminescent Sensing of Nitro Aromatic 2,4,6-Trinitrophenol. ACS Applied Materials & Diterfaces, 2017, 9, 4701-4708.	4.0	113
843	Base-driven sunlight oxidation of silver nanoprisms for label-free visual colorimetric detection of hexahydro-1,3,5-trinitro-1,3,5-triazine explosive. Journal of Hazardous Materials, 2017, 329, 249-254.	6.5	11
844	A 2D Cd(II)-MOF as a multifunctional luminescencent sensor for nitroaromatics, iron(III) and chromate ions. Journal of Coordination Chemistry, 2017, 70, 1077-1088.	0.8	17
845	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5699-5708.	4.0	129
846	Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing. RSC Advances, 2017, 7, 8661-8669.	1.7	62
847	Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal–organic frameworks. Faraday Discussions, 2017, 201, 317-326.	1.6	32
848	Nanosized NIR‣uminescent Ln Metal–Organic Cage for Picric Acid Sensing. European Journal of Inorganic Chemistry, 2017, 2017, 646-650.	1.0	32
849	Rapid DNT fluorescent films detection with high sensitivity and selectivity. Sensors and Actuators B: Chemical, 2017, 244, 1080-1084.	4.0	21
850	Luminescent Metal–Organicâ€Frameworkâ€Based Labelâ€Free Assay of Polyphenol Oxidase with Fluorescent Scan. Chemistry - A European Journal, 2017, 23, 6562-6569.	1.7	20
851	Synthesis and characterization of lanthanide-based coordination polymers for highly selective and sensitive luminescent sensor for Pb2+ over mixed metal ions. Journal of Alloys and Compounds, 2017, 702, 303-308.	2.8	15
852	Bis(salicylato)borate as Versatile Sensitizer for Highly Luminescent Lanthanide Oxoborates from the Ultraviolet to Near Infrared with 4f and 5d Participation of the Lanthanides. European Journal of Inorganic Chemistry, 2017, 2017, 1355-1363.	1.0	13
853	Robust high-connected rare-earth MOFs as efficient heterogeneous catalysts for CO ₂ conversion. Chemical Communications, 2017, 53, 3224-3227.	2.2	79

#	Article	IF	CITATIONS
854	Handâ€Ground Nanoscale Zn ^{II} â€Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells. Chemistry - A European Journal, 2017, 23, 5736-5747.	1.7	24
855	Structural diversity of Zn(II)/Cd(II) coordination polymers constructed from mixed ligand systems of conformationally flexible azo functionalized bis-imidazolate and dicarboxylates. Polyhedron, 2017, 127, 266-277.	1.0	5
856	Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2034-2040.	1.4	24
857	Highly Selective Adsorption of C ₂ /C ₁ Mixtures and Solvent-Dependent Thermochromic Properties in Metal–Organic Frameworks Containing Infinite Copper-Halogen Chains. Crystal Growth and Design, 2017, 17, 2081-2089.	1.4	48
858	Syntheses and Structures of Four Pairs of Coordination Polymers Based on $2,2\hat{a}\in^2$ -((5-(Methoxycarbonyl)-1,3-phenylene)bis(oxy))dipropanoic Acid. Crystal Growth and Design, 2017, 17, 1788-1795.	1.4	23
859	Mechanochemical and Conventional Synthesis of Zn(II)/Cd(II) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection of Chromate Anions and TNP in Aqueous Phase. Inorganic Chemistry, 2017, 56, 2627-2638.	1.9	304
860	Luminescent Functionalised Supramolecular Coordination Polymers Based on an Aromatic Carboxylic Acid Ligand for Sensing Hg2+ Ions. Australian Journal of Chemistry, 2017, 70, 786.	0.5	1
861	A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1605637.	11.1	91
862	Ultrasonic synthesis of two nanostructured cadmium(II) coordination supramolecular polymers: Solvent influence, luminescence and photocatalytic properties. Ultrasonics Sonochemistry, 2017, 37, 414-423.	3.8	48
863	Polar Ketone-Functionalized Metal–Organic Framework Showing a High CO2 Adsorption Performance. Inorganic Chemistry, 2017, 56, 2363-2366.	1.9	44
864	Solvothermal self-assembly of Cd ²⁺ coordination polymers with supramolecular networks involving N-donor ligands and aromatic dicarboxylates: synthesis, crystal structure and photoluminescence studies. Dalton Transactions, 2017, 46, 3623-3630.	1.6	50
865	Fieldâ€Dependent Magnetic Behaviour in Mn ^{II} (dicarboxylate)â€(bipyridyl)â€type 3D Metal–Organic Frameworks with Interpenetrated Structures. ChemistrySelect, 2017, 2, 2322-2329.	0.7	6
866	Immobilisation of catalytically active proline on H2N-MIL-101(Al) accompanied with reversal in enantioselectivity. Catalysis Communications, 2017, 95, 12-15.	1.6	26
867	Luminescence and white-light emitting luminescent sensor of tetrafluoroterephthalate-lanthanide metal–organic frameworks. Dalton Transactions, 2017, 46, 4642-4653.	1.6	59
868	Selective gas adsorption and fluorescence sensing response of a Zn(<scp>ii</scp>) metal–organic framework constructed by a mixed-ligand strategy. Dalton Transactions, 2017, 46, 4893-4897.	1.6	42
869	Design, structural diversity and properties of novel zwitterionic metal–organic frameworks. Dalton Transactions, 2017, 46, 6853-6869.	1.6	10
870	Significant centre metallic effects on the sensing properties of two isostructural lanthanide metal-organic frameworks. Inorganic Chemistry Communication, 2017, 79, 12-16.	1.8	10
871	Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation. Environmental Science & Lechnology. 2017. 51. 3911-3921.	4.6	331

#	Article	IF	CITATIONS
872	Stepwise observation and quantification and mixed matrix membrane separation of CO ₂ within a hydroxy-decorated porous host. Chemical Science, 2017, 8, 3239-3248.	3.7	15
873	Highly Efficient White-Light Emission and UV–Visible/NIR Luminescence Sensing of Lanthanide Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2178-2185.	1.4	86
874	Brightening Quinolineimines by Al ³⁺ and Subsequent Quenching by PPi/PA in Aqueous Medium: Synthesis, Crystal Structures, Binding Behavior, Theoretical and Cell Imaging Studies. Inorganic Chemistry, 2017, 56, 3315-3323.	1.9	41
875	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
876	Two zigzag chain-like lanthanide(III) coordination polymers based on the rigid 1,3-adamantanedicarboxylic acid ligand: Crystal structure, luminescence and magnetic properties. Polyhedron, 2017, 126, 17-22.	1.0	11
877	Electrochemical synthesis of metal organic framework films with proton conductive property. Solid State Ionics, 2017, 301, 125-132.	1.3	45
878	Fluorescence detection of Mn ²⁺ , Cr ₂ O ₇ ^{2â^²} and nitroexplosives and photocatalytic degradation of methyl violet and rhodamine B based on two stable metal–organic frameworks. RSC Advances, 2017, 7, 10415-10423.	1.7	69
879	Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nature Communications, 2017, 8, 14085.	5.8	193
880	Guest dependent structure and acetone sensing properties of a 2D Eu ³⁺ coordination polymer. RSC Advances, 2017, 7, 2258-2263.	1.7	39
881	A multi-responsive luminescent sensor for organic small-molecule pollutants and metal ions based on a 4d–4f metal–organic framework. Dalton Transactions, 2017, 46, 3526-3534.	1.6	56
882	Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites. Journal of Luminescence, 2017, 186, 40-47.	1.5	21
883	Controllable assembly of three copper-organic frameworks: Structure transformation and gas adsorption properties. Polyhedron, 2017, 126, 83-91.	1.0	11
884	Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Advanced Materials, 2017, 29, 1605446.	11.1	275
885	Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Applied Materials & Interfaces, 2017, 9, 10286-10295.	4.0	371
886	A facile water-stable MOF-based "off–on―fluorescent switch for label-free detection of dopamine in biological fluid. Journal of Materials Chemistry B, 2017, 5, 2524-2535.	2.9	59
887	Flexible Ligandâ€Based Lanthanide Threeâ€Dimensional Metal–Organic Frameworks with Tunable Solidâ€State Photoluminescence and OHâ€Solventâ€Sensing Properties. European Journal of Inorganic Chemistry, 2017, 2017, 2321-2331.	1.0	19
888	A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing. Journal of Solid State Chemistry, 2017, 249, 87-97.	1.4	23
889	Unusually Flexible Indium(III) Metal–Organic Polyhedra Materials for Detecting Trace Amounts of Water in Organic Solvents and High Proton Conductivity. Inorganic Chemistry, 2017, 56, 3429-3439.	1.9	31

#	Article	IF	CITATIONS
890	Pore modulation of zirconium–organic frameworks for high-efficiency detection of trace proteins. Chemical Communications, 2017, 53, 3941-3944.	2.2	114
891	Surface modification of a polyvinyl alcohol sponge with functionalized boronic acids to develop porous materials for multicolor emission, chemical sensing and 3D cell culture. Chemical Communications, 2017, 53, 3563-3566.	2.2	17
892	One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution. Analytical Chemistry, 2017, 89, 3001-3008.	3.2	227
893	Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 5541-5549.	5.2	160
894	Detection mechanism of perovskite BFO (1 1 1) membrane for FOX-7 and TATB gases: molecular-scale insight into sensing ultratrace explosives. Journal Physics D: Applied Physics, 2017, 50, 105601.	1.3	2
895	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	6.6	790
896	Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation. Dalton Transactions, 2017, 46, 3223-3228.	1.6	23
897	Nanoporous Cu(I) Metal-Organic Framework: Selective Adsorption of Benzene and Luminescence Sensing of Nitroaromatics. ChemistrySelect, 2017, 2, 3200-3206.	0.7	21
898	Pt(II)C ^{â^§} N ^{â^§} N-Based Luminophoreâ^'Micelle Adducts for Sensing Nitroaromatic Explosives. Langmuir, 2017, 33, 4291-4300.	1.6	15
899	Structural variety in ytterbium dicarboxylate frameworks and in situ study diffraction of their solvothermal crystallisation. CrystEngComm, 2017, 19, 2424-2433.	1.3	13
900	Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs. Journal of Magnetic Resonance, 2017, 279, 22-28.	1.2	18
901	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sensors and Actuators B: Chemical, 2017, 250, 121-131.	4.0	94
902	Two (5,5)-connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics. CrystEngComm, 2017, 19, 2786-2794.	1.3	19
903	Functional hybrid nanostructure materials: Advanced strategies for sensing applications toward volatile organic compounds. Coordination Chemistry Reviews, 2017, 342, 80-105.	9.5	69
904	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	5.2	78
905	A digitally printed optoelectronic nose for the selective trace detection of nitroaromatic explosive vapours using fluorescence quenching. Flexible and Printed Electronics, 2017, 2, 024001.	1.5	31
906	Two luminescent d 10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu $2+$, Cr 2 O 7 $2-$ and acetone. Journal of Solid State Chemistry, 2017, 251, 79-89.	1.4	34
907	Selective Luminescenceâ€Based Detection of Cd ²⁺ and Zn ²⁺ lons in Water Using a Protonâ€Transferred Coordination Polymerâ€Amine Conjugate Pair. ChemistrySelect, 2017, 2, 3388-3395.	0.7	6

#	Article	IF	CITATIONS
908	Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 2017, 117, 6160-6224.	23.0	682
909	Selective recognition of m-dinitrobenzene based on NHC silver(I) macrometallocycle. Sensors and Actuators B: Chemical, 2017, 249, 203-209.	4.0	9
910	Lanthanide organic frameworks for luminescence sensing of nitrobenzene and nitrophenol with high selectivity. Dyes and Pigments, 2017, 143, 10-17.	2.0	40
911	A novel luminescent Pb(<scp>ii</scp>) – organic framework exhibiting a rapid and selective detection of trace amounts of NACs and Fe ³⁺ with excellent recyclability. Dalton Transactions, 2017, 46, 6303-6311.	1.6	91
912	A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H3 tda): $\{[Cd12(tda)8(H2O)11] \hat{A} \cdot (H2O)6.25\}$ n. Crystallography Reports, 2017, 62, 238-241.	0.1	3
913	Syntheses, Structural Evolutions, and Properties of Cd(II) Coordination Polymers Induced by Bis(pyridyl) Ligand with Chelated or Protonated Spacer and Diverse Counteranions. Crystal Growth and Design, 2017, 17, 2667-2681.	1.4	13
914	Assembling hierarchical metal–oxygen building units with a semirigid tetracarboxylate ligand into a three-dimensional framework for nitrobenzene sensing. Dalton Transactions, 2017, 46, 6523-6527.	1.6	3
915	A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb ²⁺ ions in aqueous solution. Journal of Materials Chemistry A, 2017, 5, 10200-10205.	5.2	225
916	Rapid Sensing of Specific Drugs at Subâ€Ppb Levels by Using a Hybrid Organic–Inorganic Photoluminescent Soft Material. Asian Journal of Organic Chemistry, 2017, 6, 1235-1239.	1.3	10
917	An Extremely Stable 2D Zinc(II) Coordination Polymer Exhibiting High Sensing Ability and Photocatalytic Degradation Activities of Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1243-1251.	1.9	17
918	Highly Fluorescent Metal–Organic Frameworks Based on a Benzene-Cored Tetraphenylethene Derivative with the Ability To Detect 2,4,6-Trinitrophenol in Water. Crystal Growth and Design, 2017, 17, 3170-3177.	1.4	95
919	Cyclic gas-phase heterogeneous process in a metal–organic framework involving a nickel nitrosyl complex. Faraday Discussions, 2017, 201, 101-112.	1.6	14
920	Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites. Journal of Electronic Materials, 2017, 46, 6063-6069.	1.0	6
921	Novel multi-component photofunctional nanohybrids for ratio-dependent oxygen sensing. Journal of Colloid and Interface Science, 2017, 502, 8-15.	5.0	16
922	A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Transactions, 2017, 46, 7549-7555.	1.6	68
923	Selective and sensitive detection of picric acid in aqueous, sol-gel and solid support media by Ln(III) probes. Sensors and Actuators B: Chemical, 2017, 250, 215-223.	4.0	22
924	Local Deprotonation Enables Cation Exchange, Porosity Modulation, and Tunable Adsorption Selectivity in a Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3387-3394.	1.4	23
925	Metal–Organic Frameworks with Tb ₄ Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO ₂ . Inorganic Chemistry, 2017, 56, 6244-6250.	1.9	109

#	Article	IF	CITATIONS
926	Twoâ€Dimensional Metalâ€Organic Layers as a Bright and Processable Phosphor for Fast Whiteâ€Light Communication. Chemistry - A European Journal, 2017, 23, 8390-8394.	1.7	47
927	A Fluorescent Zirconiumâ€Based Metalâ€Organic Framework for Selective Detection of Nitro Explosives and Metal Ions. Chinese Journal of Chemistry, 2017, 35, 1091-1097.	2.6	12
928	Synthesis of Halide-Modulated Cuprous(I) Coordination Polymers with Mechanochromic and Photocatalytic Properties. Inorganic Chemistry, 2017, 56, 6507-6511.	1.9	66
929	Metal–organic frameworks constructed from tib and carboxylate acid ligands: selective sensing of nitro explosives and magnetic properties. Dalton Transactions, 2017, 46, 7567-7576.	1.6	33
930	Optochemically Responsive 2D Nanosheets of a 3D Metal–Organic Framework Material. Advanced Materials, 2017, 29, 1701463.	11.1	99
931	Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: towards transparent metal–organic frameworks. Dalton Transactions, 2017, 46, 7397-7402.	1.6	12
932	Deciphering the Structural Relationships of Five Cd-Based Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 6522-6531.	1.9	41
933	Heat capacities and thermodynamic properties of Cr-MIL-101. Journal of Thermal Analysis and Calorimetry, 2017, 129, 509-514.	2.0	14
934	A fluorescent chemosensor based on nonplanar donor-acceptor structure for highly sensitive and selective detection of picric acid in water. Dyes and Pigments, 2017, 143, 463-469.	2.0	48
935	PH-dependent fluorescence sensing activities of two water-stable 2-D zinc(II) compounds. Inorganic Chemistry Communication, 2017, 81, 59-66.	1.8	6
936	A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal–Organic Framework Materials. Inorganic Chemistry, 2017, 56, 5544-5552.	1.9	81
937	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	18.7	2,457
938	CFA-4 \hat{a} e" a fluorinated metal \hat{a} e"organic framework with exchangeable interchannel cations. Dalton Transactions, 2017, 46, 6745-6755.	1.6	17
939	Detection of Picric Acid by Terpyâ∈Based Metalloâ∈Supramolecular Fluorescent Coordination Polymers in Aqueous Media. Chinese Journal of Chemistry, 2017, 35, 447-456.	2.6	10
940	Dramatic Effect of Solvent on the Rate of Photobleaching of Organic Pyrroleâ€BF ₂ (BOPHY) Dyes. ChemPhotoChem, 2017, 1, 317-325.	1.5	12
941	Highly Selective Bifunctional Luminescent Sensor toward Nitrobenzene and Cu ²⁺ Ion Based on Microporous Metal–Organic Frameworks: Synthesis, Structures, and Properties. ACS Applied Materials & Diterfaces, 2017, 9, 17208-17217.	4.0	98
942	Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers. Journal of the American Chemical Society, 2017, 139, 7020-7029.	6.6	134
943	Selectively sensing and adsorption properties of nickel(II) and cadmium(II) architectures with rigid 1H-imidazol-4-yl containing ligands and 1,3,5-tri(4-carboxyphenyl)benzene. Sensors and Actuators B: Chemical, 2017, 250, 179-188.	4.0	51

#	Article	IF	CITATIONS
944	A series of alkaline earth metal coordination polymers constructed from two newly designed imidazole-based dicarboxylate ligands containing pyridinylmethyl groups. CrystEngComm, 2017, 19, 3003-3016.	1.3	16
945	Smart Luminescent Coordination Polymers toward Multimode Logic Gates: Time-Resolved, Tribochromic and Excitation-Dependent Fluorescence/Phosphorescence Emission. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17399-17407.	4.0	102
946	Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials. ACS Applied Materials & Composite Materials	4.0	51
947	Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16448-16457.	4.0	223
948	Lanthanide separation using size-selective crystallization of Ln-MOFs. Chemical Communications, 2017, 53, 5737-5739.	2.2	31
949	A two-dimensional microporous metal–organic framework for highly selective adsorption of carbon dioxide and acetylene. Chinese Chemical Letters, 2017, 28, 1653-1658.	4.8	27
950	Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53, 5818-5821.	2.2	90
951	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
952	A series of five-coordinated copper coordination polymers for efficient degradation of organic dyes under visible light irradiation. RSC Advances, 2017, 7, 23432-23443.	1.7	32
953	Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2017, 130, 335-342.	2.0	3
954	A convenient electrolytic assembly of graphene-MOF composite thin film and its photoanodic application. Applied Surface Science, 2017, 396, 1303-1309.	3.1	47
955	Nitroaromatic explosives detection by a luminescent Cd(II) based metal organic framework. Polyhedron, 2017, 123, 217-225.	1.0	35
956	Novel polymer-supported phosphine palladium catalyst: one-pot synthesis from and application in Suzuki–Miyaura coupling reaction. Journal of Porous Materials, 2017, 24, 847-853.	1.3	6
957	Reversible structural transformations between a chain polymer and a metallocage induced by anion templation. Inorganica Chimica Acta, 2017, 455, 241-246.	1.2	6
958	A 3D heterometallic Pb(II)-Na(I) coordination polymer as a sensitive and selective fluorescent sensor for detecting Fe 3+. Inorganic Chemistry Communication, 2017, 75, 37-40.	1.8	7
959	Rare Earth pcu Metal–Organic Framework Platform Based on RE ₄ (μ ₃ -OH) ₄ (COO) ₆ ²⁺ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. Journal of the American Chemical Society, 2017, 139, 9333-9340.	6.6	102
960	Progress in the sensing techniques for heavy metal ions using nanomaterials. Journal of Industrial and Engineering Chemistry, 2017, 54, 30-43.	2.9	124
961	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	18.7	1,519

#	Article	IF	CITATIONS
962	Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 4976-5004.	18.7	493
963	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr ⁴⁺ MOF. Journal of Materials Chemistry A, 2017, 5, 14707-14719.	5.2	150
964	Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. Journal of Solid State Chemistry, 2017, 253, 277-281.	1.4	57
965	Two threefold Interpenetrating 3D Supramolecular Networks Based on 1D Chains and Hydrogenâ€bond Interactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 864-869.	0.6	1
966	Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. Journal of Chromatography A, 2017, 1505, 63-68.	1.8	47
967	A microporous metal–organic framework for selective C 2 H 2 and CO 2 separation. Journal of Solid State Chemistry, 2017, 252, 138-141.	1.4	31
968	A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Transactions, 2017, 46, 7821-7832.	1.6	44
969	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	1.9	39
970	Photoluminescence and magnetic analysis of a family of lanthanide(<scp>iii</scp>) complexes based on diclofenac. New Journal of Chemistry, 2017, 41, 5467-5475.	1.4	19
971	Waterâ€Mediated Structural Transformations of Cu ^{II} 5â€Halonicotinates Coordination Networks with Distinct Mechanisms. Chemistry - A European Journal, 2017, 23, 12985-12990.	1.7	11
972	A Mg-CP with <i>in Situ</i> Encapsulated Photochromic Guest as Sensitive Fluorescence Sensor for Fe ³⁺ /Cr ³⁺ lons and Nitro-Explosives. Inorganic Chemistry, 2017, 56, 7397-7403.	1.9	73
973	Electrochemical and diffuse reflectance study on tetrahedral Îμ-Keggin-based metal–organic frameworks. RSC Advances, 2017, 7, 31544-31548.	1.7	12
974	Sensitive and Reversible Detection of Methanol and Water Vapor by In Situ Electrochemically Grown CuBTC MOFs on Interdigitated Electrodes. Small, 2017, 13, 1604150.	5.2	31
975	Lanthanide-Based Coordination Polymers for the Size-Selective Detection of Nitroaromatics. Crystal Growth and Design, 2017, 17, 3907-3916.	1.4	45
976	Fluorescence Zn-based metal–organic frameworks for the detection of hydrogen sulfide in natural gas. Analytical Methods, 2017, 9, 3914-3919.	1.3	16
977	Two isomorphous coordination polymer-derived metal oxides as high-performance anodes for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 6187-6194.	1.4	10
978	Synthesis and characterization of a photochromic magnesium(II) coordination polymer based on a naphthalene diimide ligand. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 437-441.	0.2	1
979	Synthesis, spectral and X-ray diffraction of two new 2D lead(II) coordination polymers formed by nicotinic acid N-oxide linkers. Journal of Molecular Structure, 2017, 1149, 92-98.	1.8	21

#	Article	IF	CITATIONS
980	Multidimensional networks constructed with 2,5-dichloroterephthalate and bis(benzimidazole) co-ligands: Syntheses, structures, electrochemical and photocatalytic properties. Polyhedron, 2017, 133, 169-178.	1.0	18
981	Highly Stable and Regenerative Metal–Organic Framework Designed by Multiwalled Divider Installation Strategy for Detection of Co(II) Ions and Organic Aromatics in Water. ACS Applied Materials & Divident Response (2017, 9, 19881-19893.	4.0	38
982	Fluorescence properties and analytical applications of covalent organic frameworks. Analytical Methods, 2017, 9, 3737-3750.	1.3	107
983	An Efficient Blue-Emissive Metal–Organic Framework (MOF) for Lanthanide-Encapsulated Multicolor and Stimuli-Responsive Luminescence. Inorganic Chemistry, 2017, 56, 6362-6370.	1.9	104
984	Multivariate Metal–Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions. Journal of the American Chemical Society, 2017, 139, 8259-8266.	6.6	224
985	Enhanced properties of metal–organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. Journal of Materials Chemistry A, 2017, 5, 13665-13673.	5.2	35
986	Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20076-20085.	4.0	117
987	A superior fluorescent sensor for Al ³⁺ and UO ₂ ²⁺ based on a Co(<scp>ii</scp>) metal–organic framework with exposed pyrimidyl Lewis base sites. Journal of Materials Chemistry A, 2017, 5, 13079-13085.	5.2	287
988	Solvent-induced assembly of two helical Eu(III) metal-organic frameworks and fluorescence sensing activities towards nitrobenzene and Cu 2+ ions. Journal of Solid State Chemistry, 2017, 252, 142-151.	1.4	29
989	One unexpected mixed-valence Cu(I,II)-cyanide coordination polymer in situ originating from the cleavage of acetonitrile. Inorganic Chemistry Communication, 2017, 80, 46-48.	1.8	9
990	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	1.4	42
991	"Turn-on―Fluorescence Sensing and Discriminative Detection of Aliphatic Amines Using a 5-Fold-Interpenetrated Coordination Polymer. Inorganic Chemistry, 2017, 56, 6772-6775.	1.9	53
992	Luminescence of samarium(<scp>iii</scp>) bis-dithiocarbamate frameworks: codoped lanthanide emitters that cover visible and near-infrared domains. Journal of Materials Chemistry C, 2017, 5, 6620-6628.	2.7	31
993	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017, 139, 8022-8028.	6.6	417
994	Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. Physical Chemistry Chemical Physics, 2017, 19, 17544-17552.	1.3	7
995	Photodynamics of Zr-based MOFs: effect of explosive nitroaromatics. Physical Chemistry Chemical Physics, 2017, 19, 16337-16347.	1.3	28
996	Lanthanide metal-organic frameworks as multifunctional luminescent sensor for detecting cations, anions and organic solvent molecules in aqueous solution. Journal of Solid State Chemistry, 2017, 253, 202-210.	1.4	26
997	Tunability in Metal Coordination Sphere, Ligand Coordination Mode, Network Topology, and Magnetism via Stepwise Dehydration Induced Single-Crystal to Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 3724-3730.	1.4	12

#	Article	IF	CITATIONS
998	Fluorescent sensing and selective adsorption properties of metal–organic frameworks with mixed tricarboxylate and 1H-imidazol-4-yl-containing ligands. Dalton Transactions, 2017, 46, 9022-9029.	1.6	56
999	Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives. Journal of Solid State Chemistry, 2017, 249, 210-214.	1.4	7
1000	One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 2017, 433, 77-83.	1.0	31
1001	Synthesis, luminescent sensing based on a three-fold interpenetrating network with flexible carboxylates. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 50-54.	0.3	1
1002	Robust MOFs of "tsg―Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO ₂ Capture. Chemistry - A European Journal, 2017, 23, 7297-7305.	1.7	26
1003	Building Block Dependent Morphology Modulation of Cage Nanoparticles and Recognition of Nitroaromatics. Chemistry - A European Journal, 2017, 23, 8482-8490.	1.7	13
1004	Syntheses, Structures and Characterization of Four Metal-Organic Frameworks constructed by 2,2′,6,6′-Tetramethoxy-4,4′-biphenyldicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 612-618.	0.6	2
1005	A novel NbO-type metal-organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Materials Letters, 2017, 196, 112-114.	1.3	15
1006	Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta, 2017, 170, 146-151.	2.9	69
1007	Mixed-Lanthanide Porous Coordination Polymers Showing Range-Tunable Ratiometric Luminescence for O ₂ Sensing. Inorganic Chemistry, 2017, 56, 4238-4243.	1.9	63
1008	Missing metal-linker connectivities in a 3-D robust sulfonate-based metal–organic framework for enhanced proton conductivity. Chemical Communications, 2017, 53, 4156-4159.	2.2	42
1009	Luminescent Zn(II) Coordination Polymers for Highly Selective Sensing of Cr(III) and Cr(VI) in Water. Inorganic Chemistry, 2017, 56, 4668-4678.	1.9	218
1010	Synthesis, structure, and characterization of two Pr-based coordination polymers containing the 1,10-phenanthroline and their luminescence performances. Inorganic and Nano-Metal Chemistry, 2017, 47, 1190-1195.	0.9	0
1011	Immobilization of AlEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.5	17
1012	Selective fluorescence sensors and photocatalysis of four new luminescent coordination complexes. Journal of Molecular Structure, 2017, 1141, 107-114.	1.8	7
1013	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	18.7	707
1014	Syntheses, structures and luminescence properties of five coordination polymers based on designed 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole. CrystEngComm, 2017, 19, 2632-2643.	1.3	18
1015	Dynamic Spacer Installation for Multirole Metal–Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. Journal of the American Chemical Society, 2017, 139, 6034-6037.	6.6	168

#	Article	IF	CITATIONS
1016	Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6253-6260.	6.6	78
1017	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	6.6	122
1018	Two copper(II) coordination polymers constructed by bis(4-(1H-imidazol-1-yl)phenyl)methanone and dicarboxylate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 257-261.	0.3	17
1019	Fluorescence sensing of nitro-aromatics by Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) based coordination polymers having the 5-[bis(4-carboxybenzyl)-amino]isophthalic acid ligand. New Journal of Chemistry, 2017, 41, 3537-3542.	1.4	48
1020	Fluorescent thiazol-substituted pyrazoline nanoparticles for sensitive and highly selective sensing of explosive 2,4,6-trinitrophenol in aqueous medium. Sensors and Actuators B: Chemical, 2017, 248, 57-62.	4.0	54
1021	Lead-Based Metal–Organic Framework with Stable Lithium Anodic Performance. Inorganic Chemistry, 2017, 56, 4289-4295.	1.9	78
1022	A robust metallomacrocyclic motif for the formation interpenetrated coordination polymers. CrystEngComm, 2017, 19, 2402-2412.	1.3	19
1023	In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N,N-diethyl-3-methylbenzamide). Journal of Porous Materials, 2017, 24, 1175-1185.	1.3	60
1024	Multifunctional Zinc Metal–Organic Framework Based on Designed H ₄ TCPP Ligand with Aggregation-Induced Emission Effect: CO ₂ Adsorption, Luminescence, and Sensing Property. Crystal Growth and Design, 2017, 17, 2090-2096.	1.4	84
1025	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	1.7	44
1026	Transition-metal-based (Co 2+, Ni 2+ and Cd 2+) coordination polymers constructed by a polytopic ligand integrating both flexible aliphatic and rigid aromatic carboxylate groups: Aqueous detection of nitroaromatics. Polyhedron, 2017, 128, 18-29.	1.0	10
1027	A pH-controlled fluorescent sensor and logic gate based on a 1D â†' 2D â†' 3D Cd(II)-containing coordination polymer. Polyhedron, 2017, 128, 169-174.	1.0	7
1028	Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity. Inorganic Chemistry, 2017, 56, 4197-4205.	1.9	169
1029	Al-Based coordination polymer nanotubes: simple preparation, post-modification and application in Fe ³⁺ ions sensing. Dalton Transactions, 2017, 46, 5373-5383.	1.6	23
1030	Luminescent Sensing of Volatile Organic Compounds Using a Zn-based Coordination Polymer with Tunable Morphology. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 467-473.	1.9	4
1031	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie - International Edition, 2017, 56, 563-567.	7.2	486
1032	Two Lanthanide Metal–Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal lons and Small Organic Molecules. ACS Applied Materials & Discrete Sensor, 1629-1634.	4.0	354
1033	Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chemical Communications, 2017, 53, 1253-1256.	2.2	56

#	Article	IF	CITATIONS
1034	Eu(<scp>iii</scp>)-functionalized ZnO@MOF heterostructures: integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. Journal of Materials Chemistry A, 2017, 5, 2215-2223.	5.2	109
1035	Boric-Acid-Functional Lanthanide Metal–Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions. Analytical Chemistry, 2017, 89, 1930-1936.	3.2	226
1036	Rapid and sensitive detection of nitroaromatic explosives by using new 3D lanthanide phosphonates. Journal of Materials Chemistry A, 2017, 5, 1952-1956.	5.2	80
1037	Luminescent Metal–Organic Framework Sensor: Exceptional Cd ²⁺ Turnâ€On Detection and First In Situ Visualization of Cd ²⁺ Ion Diffusion into a Crystal. Chemistry - A European Journal, 2017, 23, 4803-4809.	1.7	32
1038	Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335, 28-43.	9.5	312
1039	A microporous Cd-MOF based on a hexavalent silicon-centred connector and luminescence sensing of small molecules. New Journal of Chemistry, 2017, 41, 1137-1141.	1.4	17
1040	Highly Stable Mixed‣anthanide Metal–Organic Frameworks for Selfâ€Referencing and Colorimetric Luminescent pH Sensing. ChemNanoMat, 2017, 3, 51-57.	1.5	50
1041	A Complementary Aggregation Induced Emission Pair for Generating White Light and Fourâ€Colour (RGB) Tj ETQ	q1,10.784	1314 rgBT /(
1042	Coordination Polymers with Intramolecular Fluorine-Involved Contacts in Two-Dimensional Sheet Windows. Crystal Growth and Design, 2017, 17, 834-845.	1.4	18
1043	Synthesis and structural characterization of Mn(II) and Cu(II) complexes with bis(4-(1 <i>H</i> -imidazol-1-yl)phenyl)methanone ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 83-87.	0.3	17
1044	A fluorescent coordination polymer for selective sensing of hazardous nitrobenzene and dichromate anion. Dyes and Pigments, 2017, 139, 372-380.	2.0	42
1045	Photoactive Zeolitic Imidazolate Framework as Intrinsic Heterogeneous Catalysts for Light-Driven Hydrogen Generation. ACS Energy Letters, 2017, 2, 75-80.	8.8	64
1046	Two cage-based zinc-tetracarboxylate frameworks with white-light emission. CrystEngComm, 2017, 19, 214-217.	1.3	14
1047	Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids. Dalton Transactions, 2017, 46, 465-470.	1.6	9
1048	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie, 2017, 129, 578-582.	1.6	96
1049	Phase Transformation, Exceptional Quenching Efficiency, and Discriminative Recognition of Nitroaromatic Analytes in Hydrophobic, Nonporous Zn(II) Coordination Frameworks. Inorganic Chemistry, 2017, 56, 305-312.	1.9	22
1050	AlE-active polymers for explosive detection. Chinese Journal of Polymer Science (English Edition), 2017, 35, 141-154.	2.0	103
1051	Anion–Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 950-955.	1.9	6

#	Article	IF	Citations
1052	Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chemical Communications, 2017, 53, 1249-1252.	2.2	73
1053	Thermodynamic properties of 3D copper(II)-MOFs assembled by 1H-tetrazole. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1175-1182.	2.0	4
1054	Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy, 2017, 32, 130-156.	8.2	73
1055	Highly selective detection of picric acid from multicomponent mixtures of nitro explosives by using COP luminescent probe. Sensors and Actuators B: Chemical, 2017, 243, 753-760.	4.0	56
1056	Smart Optical Composite Materials: Dispersions of Metal–Organic Framework@Superparamagnetic Microrods for Switchable Isotropic–Anisotropic Optical Properties. ACS Nano, 2017, 11, 779-787.	7.3	37
1057	Three-dimensional nickel(II) and cobalt(II) coordination polymers constructed from 2,5-dichloroterephthalic acid and bis(imidazole) ligands. Transition Metal Chemistry, 2017, 42, 123-130.	0.7	10
1058	Metal–Organic Framework Supported on Processable Polymer Matrix by In Situ Copolymerization for Enhanced Iron(III) Detection. Chemistry - A European Journal, 2017, 23, 3885-3890.	1.7	23
1059	Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. Journal of Materials Chemistry C, 2017, 5, 601-606.	2.7	48
1060	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	1.0	10
1061	Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular tri(4-pyridylphenyl)amine. Dalton Transactions, 2017, 46, 956-961.	1.6	36
1062	In Situ Multimodality Imaging of Cancerous Cells Based on a Selective Performance of Fe ²⁺ â€Adsorbed Zeolitic Imidazolate Frameworkâ€8. Advanced Functional Materials, 2017, 27, 1603926.	7.8	46
1063	A Eu/Tb-mixed MOF for luminescent high-temperature sensing. Journal of Solid State Chemistry, 2017, 246, 341-345.	1.4	89
1064	A stable 3D Cd(<scp>ii</scp>) metal–organic framework for highly sensitive detection of Cu ²⁺ ions and nitroaromatic explosives. RSC Advances, 2017, 7, 49618-49625.	1.7	24
1065	Formation of Nâ€Doped Carbonâ€Coated ZnO/ZnCo ₂ O ₄ Derived from a Polymetallic Metalâ€"Organic Framework: Toward Highâ€Rate and Longâ€Cycleâ€Life Lithium Storage. Small, 2017, 13, 1702150.	5.2	58
1066	Synthesis, Structures, and Properties of Lanthanide Complexes with Pyrimidineâ€2 arboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1752-1758.	0.6	4
1067	A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water. Polymer Chemistry, 2017, 8, 7180-7187.	1.9	58
1068	A terbium(<scp>iii</scp>)-based coordination polymer for selective and sensitive sensing of nitroaromatics and ferric ion: synthesis, crystal structure and photoluminescence properties. New Journal of Chemistry, 2017, 41, 12713-12720.	1.4	33
1069	Effect of Molecular Guest Binding on the d–d Transitions of Ni ²⁺ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorganic Chemistry, 2017, 56, 14408-14425.	1.9	22

#	ARTICLE	IF	CITATIONS
1070	A 3D luminescent Zn(<scp>ii</scp>) MOF for the detection of high explosives and the degradation of organic dyes: an experimental and computational study. CrystEngComm, 2017, 19, 6464-6472.	1.3	66
1071	Nanomaterials for the optical detection of fluoride. Nanoscale, 2017, 9, 17667-17680.	2.8	39
1072	Luminescent two-dimensional CdII coordination polymer for selective sensing Fe3+ and 2,4,6-trinitrophenol with high sensitivity in water. Inorganic Chemistry Communication, 2017, 86, 262-266.	1.8	14
1073	An uncommon 3D 3,3,4,8-c Cd(<scp>ii</scp>) metal–organic framework for highly efficient luminescent sensing and organic dye adsorption: experimental and theoretical insight. CrystEngComm, 2017, 19, 7057-7067.	1.3	31
1074	Tetraphenylethylene Immobilized Metal–Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr ₂ O ₇ ^{2–} and Nitroaromatic Explosives. Crystal Growth and Design, 2017, 17, 6041-6048.	1.4	239
1075	Four Cu ^I (ett) coordination polymorphs and changes in XRD upon hydrothermal condition optimization. CrystEngComm, 2017, 19, 6146-6153.	1.3	3
1076	Reliability of Aerosol Jet Printed Fluorescence Quenching Sensor Arrays for the Identification and Quantification of Explosive Vapors. ACS Omega, 2017, 2, 6500-6505.	1.6	9
1077	Luminescent porous organic polymer nanotubes for highly selective sensing of H ₂ S. Materials Chemistry Frontiers, 2017, 1, 2643-2650.	3.2	35
1078	A porous copper–organic framework with intersecting channels and gas adsorption properties. Dalton Transactions, 2017, 46, 13952-13956.	1.6	11
1079	Optical spatial modulation of luminescent properties of van der Waals metal-organic framework. AIP Conference Proceedings, 2017, , .	0.3	0
1080	A versatile covalent organic framework-based platform for sensing biomolecules. Chemical Communications, 2017, 53, 11469-11471.	2.2	148
1081	A 3D europium-organic-framework from phenyl imidazole dicarboxylate showing high sensitivity in detection of nitrobenzene. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 604-611.	0.3	4
1082	The coordination chemistry of N-heterocyclic carboxylic acid: A comparison of the coordination polymers constructed by 4,5-imidazoledicarboxylic acid and 1H-1,2,3-triazole-4,5-dicarboxylic acid. Coordination Chemistry Reviews, 2017, 352, 108-150.	9.5	104
1083	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
1084	pH-Stable Eu- and Tb-organic-frameworks mediated by an ionic liquid for the aqueous-phase detection of 2,4,6-trinitrophenol (TNP). Dalton Transactions, 2017, 46, 15434-15442.	1.6	111
1085	Cu(I) Coordination Polymers as the Green Heterogeneous Catalysts for Direct C–H Bonds Activation of Arylalkanes to Ketones in Water with Spatial Confinement Effect. Inorganic Chemistry, 2017, 56, 13329-13336.	1.9	37
1086	Aggregation-induced emission nanofiber as a dual sensor for aromatic amine and acid vapor. Journal of Materials Chemistry C, 2017, 5, 11532-11541.	2.7	64
1087	Arylene–vinylene terpyridine conjugates: highly sensitive, reusable and simple fluorescent probes for the detection of nitroaromatics. Journal of Materials Chemistry C, 2017, 5, 11100-11110.	2.7	45

#	Article	IF	CITATIONS
1088	A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Materials Today, 2017, 20, 493-500.	8.3	52
1089	Antiferromagnetic Copper(II) Metal–Organic Framework Based Quartz Crystal Microbalance Sensor for Humidity. Crystal Growth and Design, 2017, 17, 6719-6724.	1.4	22
1090	Pseudopolymorphism based on 1D metallacyclic chains constructed from an angular zwitterionic ditopic diacid organic linker. CrystEngComm, 2017, 19, 6686-6693.	1.3	5
1091	Encapsulated phosphomolybdic acid in TMU-16 metal organic framework: Study the catalytic activity and structural stability dependent on synthetic solvent. Inorganic Chemistry Communication, 2017, 86, 159-164.	1.8	9
1092	New lanthanide(<scp>iii</scp>) coordination polymers: synthesis, structural features, and catalytic activity in CO ₂ fixation. Dalton Transactions, 2017, 46, 16426-16431.	1.6	28
1093	Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chemical Communications, 2017, 53, 12361-12364.	2,2	92
1094	Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 961-981.	0.8	13
1095	Unique structural micro-adjustments in a new benzothiadiazole-derived Zn(<scp>ii</scp>) metal organic framework via simple photochemical decarboxylation. Chemical Communications, 2017, 53, 10314-10317.	2.2	20
1096	A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives. Chemical Communications, 2017, 53, 10318-10321.	2.2	78
1097	Functional metal-organic quadrangular macrocycle as luminescent sensor for ATP in aqueous media. Inorganic Chemistry Communication, 2017, 84, 195-199.	1.8	9
1098	Nitroaromatic sensing with a new lanthanide coordination polymer [Er ₂ (C ₁₀ H ₄ O ₄ S ₂) ₃ (H ₂ assembled by 2,2′-bithiophene-5,5′-dicarboxylate. New Journal of Chemistry, 2017, 41, 10929-10934.	ıb 1 @) <sut< td=""><td>>@1/sub>]<</td></sut<>	> @1 /sub>]<
1099	Upgrading of palmitic acid over MOF catalysts in supercritical fluid of n-hexane. RSC Advances, 2017, 7, 40581-40590.	1.7	28
1100	Water-stable Eu-MOF fluorescent sensors for trivalent metal ions and nitrobenzene. Dalton Transactions, 2017, 46, 12201-12208.	1.6	140
1101	A Eu ^{III} -MOF with Bis(2-carboxyethyl)isocyanurate for Luminescence Sensing of Fe ³⁺ and SCN ⁻ lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1126-1130.	0.6	8
1102	Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V ^{IV} dopant ions. Physical Chemistry Chemical Physics, 2017, 19, 24545-24554.	1.3	24
1103	Enzymeâ€Assisted Metal–Organic Framework Sensing System for Diethylstilbestrol Detection. Chemistry - A European Journal, 2017, 23, 15498-15504.	1.7	16
1104	Reversible structural switching of a metal–organic framework by photoirradiation. Chemical Communications, 2017, 53, 11142-11145.	2.2	41
1105	Mixed-Ligand LMOF Fluorosensors for Detection of Cr(VI) Oxyanions and Fe ³⁺ /Pd ²⁺ Cations in Aqueous Media. Inorganic Chemistry, 2017, 56, 10939-10949.	1.9	147

#	ARTICLE	IF	CITATIONS
1106	An ultrastable zinc(<scp>ii</scp>)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(<scp>iii</scp>), Cr(<scp>vi</scp>) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity. Journal of Materials Chemistry A, 2017, 5, 20035-20043.	5.2	215
1107	Syntheses, crystal structures and fluorescent properties of three metal-tris(4′-carboxybiphenyl)amine frameworks. Journal of Solid State Chemistry, 2017, 255, 200-205.	1.4	10
1108	A series of Mg–Zn heterometallic coordination polymers: synthesis, characterization, and fluorescence sensing for Fe ³⁺ , CS ₂ , and nitroaromatic compounds. Dalton Transactions, 2017, 46, 12597-12604.	1.6	47
1109	Composite materials combining multiple luminescent MOFs and superparamagnetic microparticles for ratiometric water detection. Journal of Materials Chemistry C, 2017, 5, 10133-10142.	2.7	56
1110	Waterâ€Stable Luminescent Zn(II) Metalâ€Organic Framework as Rare Multifunctional Sensor for Cr(VI) and TNP. ChemistrySelect, 2017, 2, 7465-7473.	0.7	14
1111	A Luminescent 3d-4f-4d MOF Nanoprobe as a Diagnosis Platform for Human Occupational Exposure to Vinyl Chloride Carcinogen. Inorganic Chemistry, 2017, 56, 11176-11183.	1.9	49
1112	A multifunctional three-fold interpenetrated coordination polymer showing excellent luminescent sensing for Cr(VI)/ Fe(III) and photocatalytic properties. Journal of Solid State Chemistry, 2017, 256, 176-183.	1.4	24
1113	Supramolecular isomerism in cadmium (II) coordination polymers from benzene-1,3,5-tribenzoate (BTB): Syntheses, structures and luminescent properties. Journal of Solid State Chemistry, 2017, 256, 227-233.	1.4	5
1114	Two metal-organic frameworks based on a flexible dithioether spacer with luminescence and sensing properties. Inorganic Chemistry Communication, 2017, 86, 271-275.	1.8	4
1115	Metal–organic frameworks with 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylate ligands for selectively sensing Fe(<scp>iii</scp>) ions and ketone molecules. Dalton Transactions, 2017, 46, 13943-13951.	1.6	120
1116	Color-tunable entangled coordination polymers based on long flexible bis(imidazole) ligands and phenylenediacetate. New Journal of Chemistry, 2017, 41, 12139-12146.	1.4	9
1117	Selective sensing of two novel coordination polymers based on tris(4-carboxylphenyl)phosphine oxide for organic molecules and Fe 3+ and Hg 2+ ions. Journal of Solid State Chemistry, 2017, 256, 168-175.	1.4	14
1118	Kinetic and Thermodynamic Control of Structure Transformations in a Family of Cobalt(II)–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35141-35149.	4.0	14
1119	Sorption and sensing properties of coordination polymers with mixed 1,3,5-tri(1-imidazolyl)benzene and 2,6-naphthalenedicarboxylate ligands. RSC Advances, 2017, 7, 44639-44646.	1.7	12
1120	Rational Design of a Bifunctional, Twoâ€Fold Interpenetrated Zn ^{II} â€Metal–Organic Framework for Selective Adsorption of CO ₂ and Efficient Aqueous Phase Sensing of 2,4,6â€Trinitrophenol. Chemistry - A European Journal, 2017, 23, 16204-16212.	1.7	100
1121	Enhanced detection of explosives by turn-on resonance Raman upon host–guest complexation in solution and the solid state. Chemical Communications, 2017, 53, 10918-10921.	2.2	9
1122	Nanoporous Nanocomposite Materials for Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 129-174.	0.5	0
1123	Syntheses, crystal structures, electrochemical and photocatalytic properties of two mixed-ligand cobalt(II) coordination polymers based on flexible bis(2-methylbenzimidazole) dicarboxylic acid ligands. Transition Metal Chemistry, 2017, 42, 661-671.	0.7	11

#	Article	IF	CITATIONS
1124	Metal–organic frameworks for biosensing and bioimaging applications. Coordination Chemistry Reviews, 2017, 349, 139-155.	9.5	291
1125	Kineticâ€Controlled Formation of Bimetallic Metal–Organic Framework Hybrid Structures. Small, 2017, 13, 1702049.	5.2	69
1126	2D carboxylate-bridged Ln ^{III} coordination polymers: displaying slow magnetic relaxation and luminescence properties in the detection of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} and nitrobenzene. Dalton Transactions, 2017, 46, 13878-13887.	1.6	51
1127	A 3D Coordination Network Built from Cu ^{It sup>(H_{2< sub>0)_{2< sub> Linear Clusters and Tetrapyridyl Tetrahedral Silane Ligands: Reversible Iodine Uptake and Friedel–Crafts Alkylation Reactions, Inorganic Chemistry, 2017, 56, 11762-11767.}}}	1.9	23
1128	Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe ^{Ill} and Cr ^{VI} lons in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 11768-11778.	1.9	167
1129	A bifunctional luminescent europium–organic framework for highly selective sensing of nitrobenzene and 4-aminophenol. RSC Advances, 2017, 7, 45029-45033.	1.7	23
1130	A highly selective and sensitive Zn(<scp>ii</scp>) coordination polymer luminescent sensor for Al ³⁺ and NACs in the aqueous phase. Inorganic Chemistry Frontiers, 2017, 4, 1888-1894.	3.0	87
1131	Calcium and Strontium Coordination Polymers Based on Rigid and Flexible Aromatic Dicarboxylates: Synthesis, Structure, Photoluminescence and Dielectric Properties. ChemistrySelect, 2017, 2, 8567-8576.	0.7	13
1132	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
1133	Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Advances, 2017, 7, 42242-42288.	1.7	74
1134	A Poly(ethylenglycol) Functionalized ZIF-8 Membrane Prepared by Coordination-Based Post-Synthetic Strategy for the Enhanced Adsorption of Phenolic Endocrine Disruptors from Water. Scientific Reports, 2017, 7, 8912.	1.6	18
1135	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chemical Communications, 2017, 53, 11150-11153.	2.2	93
1136	Recent advances in metalâ€organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis, 2017, 38, 3059-3078.	1.3	98
1137	Long-range magnetic ordering in a metal–organic framework based on octanuclear nickel(<scp>ii</scp>) clusters. Dalton Transactions, 2017, 46, 12771-12774.	1.6	16
1138	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	5.8	171
1139	Mn ^{II} and Co ^{II} Coordination Polymers Showing Field-Dependent Magnetism and Slow Magnetic Relaxation Behavior. Crystal Growth and Design, 2017, 17, 4393-4404.	1.4	46
1140	Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption. Faraday Discussions, 2017, 201, 221-232.	1.6	5
1141	A pillar-layered Cd(II) metal-organic framework for selective detection of organic explosives. Journal of Coordination Chemistry, 2017, 70, 2541-2550.	0.8	3

#	Article	IF	CITATIONS
1142	Strong Blue Emissive Supramolecular Self-Assembly System Based on Naphthalimide Derivatives and Its Ability of Detection and Removal of 2,4,6-Trinitrophenol. Langmuir, 2017, 33, 7788-7798.	1.6	63
1143	Two 1D zinc coordination polymers based on tris(<i>p</i> structures and photoluminescence properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 579-584.	0.3	1
1144	ATPâ€Responsive Aptamerâ€Based Metal–Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. Advanced Functional Materials, 2017, 27, 1702102.	7.8	169
1145	Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. Journal of Colloid and Interface Science, 2017, 506, 365-372.	5.0	31
1146	Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26210-26218.	4.0	89
1147	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	11.1	127
1148	Construction of bimetallic nanoparticles immobilized by porous functionalized metal-organic frameworks toward remarkably enhanced catalytic activity for the room-temperature complete conversion of hydrous hydrazine into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 19096-19105.	3.8	32
1149	Synthesis, aggregation-induced emission and application as chemosensor for explosives of a 1,10-phenanthroline derivative and its rhenium(I) carbonyl complex having triphenylamino and thienyl donors. Inorganic Chemistry Communication, 2017, 84, 15-19.	1.8	7
1150	Luminescent Cd(<scp>ii</scp>)â€"organic frameworks with chelating NH ₂ sites for selective detection of Fe(<scp>iii</scp>) and antibiotics. Journal of Materials Chemistry A, 2017, 5, 15797-15807.	5 . 2	330
1151	Synthesis, crystal structures and properties of three coordination polymers based on semi-rigid bis(benzimidazole-1-ylmethyl)biphenyl ligand. Journal of Molecular Structure, 2017, 1148, 247-253.	1.8	4
1152	A unique multifunctional cluster-based nano-porous Terbium organic material: Real-time detection of benzaldehyde, visually luminescent sensor for nitrite and selective high capacity capture of Congo Red. Dyes and Pigments, 2017, 146, 455-466.	2.0	30
1153	Advances of Metalâ€Organic Frameworks in Energy and Environmental Applications. Chinese Journal of Chemistry, 2017, 35, 1501-1511.	2.6	37
1154	A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives. Journal of Materials Chemistry C, 2017, 5, 8469-8474.	2.7	168
1155	Recent advances on supramolecular isomerism in metal organic frameworks. CrystEngComm, 2017, 19, 4666-4695.	1.3	66
1156	Two new photochromic coordination compounds with nonphotochromic ligands and different metal centers. RSC Advances, 2017, 7, 34901-34906.	1.7	12
1157	Selfâ€Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications. ChemNanoMat, 2017, 3, 670-684.	1.5	54
1158	A luminescent coordination polymer for selective, sensitive, and recyclable sensing of nitrobenzene in aqueous solution. Inorganic Chemistry Communication, 2017, 84, 36-39.	1.8	8
1159	Highly Selective Aqueous Phase Detection of Azinphosâ€Methyl Pesticide in ppb Level Using a Cageâ€Connected 3D MOF. ChemistrySelect, 2017, 2, 5760-5768.	0.7	37

#	Article	IF	CITATIONS
1160	Dual-functional recyclable luminescent sensors based on 2D lanthanide-based metal-organic frameworks for highly sensitive detection of Fe 3+ and 2,4-dinitrophenol. Dyes and Pigments, 2017, 146, 263-271.	2.0	62
1161	Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn2+. Science Bulletin, 2017, 62, 1114-1121.	4.3	29
1162	A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal–organic frameworks for the ratiometric detection of Cu ²⁺ in tap water. Journal of Materials Chemistry C, 2017, 5, 8566-8571.	2.7	89
1163	Anti-UV Radiation Textiles Designed by Embracing with Nano-MIL (Ti, In)–Metal Organic Framework. ACS Applied Materials & Designed Services, 2017, 9, 28034-28045.	4.0	157
1164	Trace-doped metal–organic gels with remarkably enhanced luminescence. RSC Advances, 2017, 7, 37194-37199.	1.7	18
1165	Five 1D to 3D Zn(<scp>ii</scp>)/Mn(<scp>ii</scp>)-CPs based on dicarboxyphenyl-terpyridine ligand: stepwise adsorptivity and magnetic properties. CrystEngComm, 2017, 19, 4789-4796.	1.3	14
1166	Copper-Catalyzed Electrophilic Polyhydroamination of Internal Alkynes. Macromolecules, 2017, 50, 5719-5728.	2.2	16
1167	A Sensitive Luminescent Acetylacetone Probe Based on Znâ€MOF with Sixâ€Fold Interpenetration. Chemistry - A European Journal, 2017, 23, 13289-13293.	1.7	92
1168	Three coordination compounds based on benzene tetracarboxylate ligand: syntheses, structures, thermal behaviors and luminescence properties. Journal of Chemical Sciences, 2017, 129, 1183-1191.	0.7	1
1169	The Design of Dual-Emissive Composite Material [Zn ₂ (HL) ₃] ⁺ @MOF-5 as Self-Calibrating Luminescent Sensors of Al ³⁺ lons and Monoethanolamine. Inorganic Chemistry, 2017, 56, 9555-9562.	1.9	40
1170	An Amine Functionalized Metal–Organic Framework as an Effective Catalyst for Conversion of CO ₂ and Biginelli Reactions. Inorganic Chemistry, 2017, 56, 9765-9771.	1.9	56
1171	Luminescent sensing of Cu 2+ , CrO 4 2â^ and photocatalytic degradation of methyl violet by Zn(II) metal-organic framework (MOF) having 5,5′-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid ligand. Journal of Molecular Structure, 2017, 1148, 531-536.	1.8	24
1172	A novel metal–organic framework loaded with abundant N-(aminobutyl)-N-(ethylisoluminol) as a high-efficiency electrochemiluminescence indicator for sensitive detection of mucin1 on cancer cells. Chemical Communications, 2017, 53, 9705-9708.	2.2	80
1173	Crystal structure of <i>catena</i> -(bis(ν ₂ -1,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 232 To C ₂₈ H ₂₈ C ₂ N ₈ Ni. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 197-198.	d (2-bis(im 0.1	o o
1174	Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2,5-dicarboxylic acid. Journal of Solid State Chemistry, 2017, 255, 76-81.	1.4	27
1175	Pre-synthesized secondary building units in the rational synthesis of porous coordination polymers. Mendeleev Communications, 2017, 27, 321-331.	0.6	43
1176	(3,4)â€Connected Twofold Interpenetrated Network with Right―and Leftâ€Handed Helical Chains: Synthesis, Crystal Structure, and Luminescence Sensing. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 968-972.	0.6	0
1177	Designing functional metal-organic frameworks from a new tripodal carboxylate ligand: Fluorescence sensing and photocatalytic properties. Journal of Luminescence, 2017, 192, 775-782.	1.5	17

#	Article	IF	CITATIONS
1178	Introduction of Redâ€Greenâ€Blue Fluorescent Dyes into a Metal–Organic Framework for Tunable White Light Emission. Advanced Materials, 2017, 29, 1700778.	11.1	219
1179	Functionalized Baseâ€Stable Metal–Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	1.0	43
1180	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
1181	Rapid and specific luminescence sensing of Cu(<scp>ii</scp>) ions with a porphyrinic metal–organic framework. Chemical Communications, 2017, 53, 9986-9989.	2.2	120
1182	A highly luminescent entangled metal–organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chemical Communications, 2017, 53, 9975-9978.	2.2	154
1183	New hybrid polyoxovanadate–Cu complex with Vâ <h acid="" and="" aqueous-phase="" dual="" for="" interactions="" pd<sup="" picric="" properties="" sensing="">2+: X-ray analysis, magnetic and theoretical studies, and mechanistic insights into the hybrid's sensing capabilities. Journal of Materials Chemistry C, 2017, 5, 9315-9330.</h>	2.7	22
1184	Two cadmium coordination polymers based on tris(p-carboxyphenyl) phosphane oxide with highly selective sensing of nitrobenzene derivatives and Hg ²⁺ cations. CrystEngComm, 2017, 19, 5285-5292.	1.3	43
1185	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
1186	Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal–Organic Frameworks. ACS Applied Materials & Enterfaces, 2017, 9, 30064-30073.	4.0	35
1187	A family of ssa-type copper-based MOFs constructed from unsymmetrical diisophthalates: synthesis, characterization and selective gas adsorption. Materials Chemistry Frontiers, 2017, 1, 2283-2291.	3.2	34
1188	A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. Journal of Materials Chemistry C, 2017, 5, 8999-9004.	2.7	133
1189	Synthesis, crystal structure, and fluorescence properties of two 1-D chain polymers extended by a semi-rigid bis(triazole) ligand. Journal of Coordination Chemistry, 2017, 70, 2785-2795.	0.8	3
1190	Coordination Polymers with Grinding-Size-Dependent Mechanoresponsive Luminescence Induced by π··Î∈ Stacking Interactions. European Journal of Inorganic Chemistry, 2017, 2017, 3811-3814.	1.0	14
1191	Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 9646-9652.	1.9	86
1192	Ultrahigh adsorption and singlet-oxygen mediated degradation for efficient synergetic removal of bisphenol A by a stable zirconium-porphyrin metal-organic framework. Scientific Reports, 2017, 7, 6297.	1.6	76
1193	A Recyclable Metal–Organic Framework as a Dual Detector and Adsorbent for Ammonia. Chemistry - A European Journal, 2017, 23, 13602-13606.	1.7	52
1194	Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction. Small, 2017, 13, 1701395.	5.2	75
1195	A luminescent metal–organic framework as an ideal chemosensor for nitroaromatic compounds. RSC Advances, 2017, 7, 38871-38876.	1.7	48

#	Article	IF	CITATIONS
1196	Structure-forming role of heterocyclic compounds in the synthesis of metal-organic frameworks based on cadmium(II). Russian Chemical Bulletin, 2017, 66, 1472-1477.	0.4	3
1197	Synthesis and structural characterization of a Cu(I) complex with	0.1	2
1198	Crystal structure of poly-[(ν ₆ -benzene-1,2,4,5-tetracarboxylato)-(ν ₂ -1,2-bis(imidazol-1-ylmethyl)benzer Co ₂ C ₂₄ H ₁₆ N ₄ O ₈ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 193-195.	ne)dicobalt	:(11)],
1199	Functional Titanium Dioxide-Derived Materials of Different Morphology and Metal–Organic Framework Compounds. Theoretical and Experimental Chemistry, 2017, 53, 349-358.	0.2	4
1200	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
1201	Fabrication of a new metal–organic framework for sensitive sensing of nitroaromatics and efficient dye adsorption. RSC Advances, 2017, 7, 54522-54531.	1.7	25
1202	Facile and Rapid Growth of Nanostructured Ln-BTC Metal–Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr ³⁺ Detection in Solution. Langmuir, 2017, 33, 14238-14243.	1.6	39
1203	Neutral Luminescent Metal-Organic Frameworks: Structural Diversification, Photophysical Properties, and Sensing Applications. Inorganic Chemistry, 2017, 56, 14556-14566.	1.9	71
1204	Surface tension sensor meshes for rapid alcohol quantification. RSC Advances, 2017, 7, 49795-49798.	1.7	2
1205	Luminescent sulfonate coordination polymers: synthesis, structural analysis and selective sensing of nitroaromatic compounds. CrystEngComm, 2017, 19, 7009-7020.	1.3	25
1206	A Europium ion post-functionalized indium metal–organic framework hybrid system for fluorescence detection of aromatics. Analyst, The, 2017, 142, 4633-4637.	1.7	10
1207	Two luminescent Zn(II) metal–organic frameworks for exceptionally selective detection of picric acid. Inorganic Chemistry Communication, 2017, 86, 290-294.	1.8	14
1208	A Zn(II)â€Containing Coordination Polymer: Synthesis, Crystal Structure and pH Fluorescent Sensing. Crystal Research and Technology, 2017, 52, 1700105.	0.6	8
1209	Optical Sensors Using Solvatochromic Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 14164-14169.	1.9	19
1210	Synthesis, structures and magnetic properties of two chiral mixed-valence iron(<scp>ii</scp> , <scp>iii</scp>) coordination networks. Dalton Transactions, 2017, 46, 16623-16630.	1.6	6
1211	Synergic effect of copper-based metal–organic frameworks for highly efficient C–H activation of amidines. RSC Advances, 2017, 7, 51658-51662.	1.7	16
1212	Syntheses, structures, and properties of four novel Ag(I) coordination polymers based on 2,6-dimethylpyrazine and benzene dicarboxylates. Inorganic Chemistry Communication, 2017, 86, 192-199.	1.8	13
1213	Stereochemically Dependent Synthesis of Two Cu(I) Cluster-Based Coordination Polymers with Thermochromic Luminescence. Inorganic Chemistry, 2017, 56, 13975-13981.	1.9	38

#	Article	IF	CITATIONS
1214	Construction of new zinc(II) coordination polymers by 1-(triazol-1-yl)-2,4,6-benzenetricarboxylate ligand for sensitizing lanthanide(III) ions and sensing small molecules. Journal of Solid State Chemistry, 2017, 253, 430-437.	1.4	7
1215	Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrasonics Sonochemistry, 2017, 39, 845-852.	3.8	126
1216	Luminescent lanthanide metal–organic frameworks for chemical sensing and toxic anion detection. Dalton Transactions, 2017, 46, 9859-9867.	1.6	54
1217	A rare 3D chloro-laced Mn(II) metal-organic framework to show sensitive probing effect to Hg 2+. Journal of Solid State Chemistry, 2017, 254, 9-13.	1.4	3
1218	Luminescent sensing and photocatalytic degradation properties of an uncommon (4,5,5)-connected 3D MOF based on 3,5-di(3′,5′-dicarboxylphenyl)benzoic acid. CrystEngComm, 2017, 19, 4368-4377.	1.3	82
1219	Postsynthetic modification of a zirconium metal–organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chemical Communications, 2017, 53, 8557-8560.	2.2	40
1220	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
1221	Two luminescent Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) metal–organic frameworks as rare multifunctional sensors. New Journal of Chemistry, 2017, 41, 8107-8117.	1.4	58
1222	The influence of coordination modes and active sites of a 5-(triazol-1-yl) nicotinic ligand on the assembly of diverse MOFs. Dalton Transactions, 2017, 46, 9784-9793.	1.6	11
1223	Structural Investigation of Chemiresistive Sensing Mechanism in Redox-Active Porous Coordination Network. Inorganic Chemistry, 2017, 56, 8735-8738.	1.9	14
1224	An anionic Cd(ii) boron imidazolate framework with reversible structural transformation and biomolecular sensing properties. Dalton Transactions, 2017, 46, 10202-10204.	1.6	6
1225	Long-lasting phosphorescence with a tunable color in a Mn ²⁺ -doped anionic metal–organic framework. Journal of Materials Chemistry C, 2017, 5, 7898-7903.	2.7	56
1226	Dual-Emitting Dye@MOF Composite as a Self-Calibrating Sensor for 2,4,6-Trinitrophenol. ACS Applied Materials & Self-Calibr	4.0	111
1227	Rational Design and Functionalization of a Zinc Metal–Organic Framework for Highly Selective Detection of 2,4,6-Trinitrophenol. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23828-23835.	4.0	154
1228	The first porphyrin–salen based chiral metal–organic framework for asymmetric cyanosilylation of aldehydes. Chemical Communications, 2017, 53, 8223-8226.	2.2	58
1229	Functionalized metal organic frameworks for effective capture of radioactive organic iodides. Faraday Discussions, 2017, 201, 47-61.	1.6	38
1230	Multi-Responsive Luminescent Sensors Based on Two-Dimensional Lanthanide–Metal Organic Frameworks for Highly Selective and Sensitive Detection of Cr(III) and Cr(VI) Ions and Benzaldehyde. Crystal Growth and Design, 2017, 17, 4326-4335.	1.4	154
1231	A Flexible Fluorescent Zr Carboxylate Metal–Organic Framework for the Detection of Electron-Rich Molecules in Solution. Inorganic Chemistry, 2017, 56, 8423-8429.	1.9	23

#	Article	IF	CITATIONS
1232	Aptamer-Embedded Zirconium-Based Metal–Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sensors, 2017, 2, 982-989.	4.0	76
1233	A new set of Cd(<scp>ii</scp>)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO ₂ and cationic dyes. Dalton Transactions, 2017, 46, 9901-9911.	1.6	55
1234	Metal $\hat{a}\in$ organic gels of silver salts with an $\hat{l}\pm,\hat{l}^2$ -unsaturated ketone: the influence of anions and solvents on gelation. Inorganic Chemistry Frontiers, 2017, 4, 1365-1373.	3.0	6
1235	Metal–organic frameworks meet polymer brushes: enhanced crystalline film growth induced by macromolecular primers. Materials Chemistry Frontiers, 2017, 1, 2256-2260.	3.2	19
1236	Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 2017, 8, 15985.	5.8	373
1237	Transition-metal-based (Zn2+ and Cd2+) metal-organic frameworks as fluorescence "turn-off―sensors for highly sensitive and selective detection of hydrogen sulfide. Inorganica Chimica Acta, 2017, 466, 410-416.	1.2	21
1238	Identification of peptide sequences that selectively bind to pentaerythritol trinitrate hemisuccinateâ€a surrogate of PETN, via phage display technology. Biopolymers, 2017, 108, e22997.	1.2	4
1239	Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chemical Engineering Journal, 2017, 310, 197-215.	6.6	370
1240	Metalâ \in Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives. Nano Letters, 2017, 17, 1-7.	4.5	56
1241	Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates. Journal of Molecular Structure, 2017, 1131, 171-180.	1.8	12
1242	Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46, 126-157.	18.7	1,554
1243	The effect of carboxylate position on the structure of a metal organic framework derived from cyclotriveratrylene. CrystEngComm, 2017, 19, 603-607.	1.3	10
1244	Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework. Journal of Solid State Chemistry, 2017, 245, 127-131.	1.4	28
1245	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4
1246	A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 2017, 8, 1535-1546.	3.7	164
1247	A multifunctional metal-organic framework showing excellent fluorescence sensing and sensitization. Sensors and Actuators B: Chemical, 2017, 239, 688-695.	4.0	34
1248	Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sensors and Actuators B: Chemical, 2017, 239, 759-767.	4.0	83
1249	Keggin Arsenomolybdate Based Hybrid Compound with Complementary Inorganic Double Helical Chains. Journal of Cluster Science, 2017, 28, 869-879.	1.7	3

#	Article	IF	CITATIONS
1250	Two dinuclear Zn(II) complexes for the fluorescent detection of 2,4,6-trinitrophenol. Journal of Luminescence, 2017, 181, 345-351.	1.5	16
1251	Four new coordination polymers based on carboxyphenyl-substituted dipyrazinylpyridine ligand: Syntheses, structures, magnetic and luminescence properties. Journal of Molecular Structure, 2017, 1128, 385-390.	1.8	13
1252	Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.	2.2	13
1253	Facile synthesis of Fe 3 O 4/g-C 3 N 4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosensors and Bioelectronics, 2017, 92, 718-723.	5.3	93
1254	Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure, 2017, 1130, 89-95.	1.8	8
1255	Fabrication of Ln-MOFs with color-tunable photoluminescence and sensing for small molecules. Journal of Solid State Chemistry, 2017, 245, 132-137.	1.4	39
1256	Luminescent rare-earth-based MOFs as optical sensors. Dalton Transactions, 2017, 46, 301-328.	1.6	237
1257	Highly Selective and Sensitive Detection of Nitroaromatic Compounds and Metal Ions by Supramolecular Assemblies of 3,3',5,5'-Azobenzenetetracarboxylic Acid and 4,4'-Bipyridine. Journal of Fluorescence, 2017, 27, 281-286.	1.3	5
1258	Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe 3+ in water. Journal of Solid State Chemistry, 2017, 245, 160-163.	1.4	58
1259	Highly sensitive and selective ratiometric fluorescent metal–organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs. Sensors and Actuators B: Chemical, 2017, 243, 353-360.	4.0	81
1260	A Cooperative Copper Metal–Organic Frameworkâ€Hydrogel System Improves Wound Healing in Diabetes. Advanced Functional Materials, 2017, 27, 1604872.	7.8	280
1261	High sensitive luminescence metal-organic framework sensor for hydrogen sulfide in aqueous solution: A trial of novel turn-on mechanism. Sensors and Actuators B: Chemical, 2017, 243, 8-13.	4.0	64
1262	A Hirshfeld surface analysis, crystal structure and physicochemical studies of a new Cd(II) complex with the 2-amino-4-methylpyrimidine ligand. Journal of Molecular Structure, 2017, 1128, 378-384.	1.8	11
1263	Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Applied Surface Science, 2017, 392, 402-409.	3.1	92
1264	Three new imidazole dicarboxylate metal compounds: Synthesis, structures, and magnetic property. Inorganic and Nano-Metal Chemistry, 2017, 47, 509-514.	0.9	1
1265	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
1266	Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2,4-Dinitrotoluene Sensing. Materials, 2017, 10, 992.	1.3	25
1267	Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry. Materials, 2017, 10, 769.	1.3	10

#	Article	IF	CITATIONS
1268	Elaboration of Luminescent and Magnetic Hybrid Networks Based on Lanthanide Ions and Imidazolium Dicarboxylate Salts: Influence of the Synthesis Conditions. Magnetochemistry, 2017, 3, 1.	1.0	15
1269	Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules, 2017, 22, 1902.	1.7	52
1270	Four Mixed-Ligand Zn(II) Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property. Polymers, 2017, 9, 644.	2.0	13
1271	Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots. Sensors, 2017, 17, 2676.	2.1	12
1272	Synthesis, Crystal Structures, and Properties of Two Coordination Polymers Built from Imidazolyl and Carboxylate Ligands. Crystals, 2017, 7, 73.	1.0	5
1273	Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone. Crystals, 2017, 7, 199.	1.0	11
1274	Breathing 3D Frameworks with T-Shaped Connecting Ligand Exhibiting Solvent Induction, Metal Ions Effect and Luminescent Properties. Crystals, 2017, 7, 311.	1.0	2
1275	Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic Chemistry, 2017, 13, 1-9.	1.3	9
1276	Synthesis, Crystal Structures, and Properties of a New Supramolecular Polymer Based on Mixed Imidazole and Carboxylate Ligands. Crystals, 2017, 7, 210.	1.0	0
1277	Self-Assembly in Sensor Nanotechnology. , 2017, , 297-320.		5
1278	Network Solids: Mixed Ligand Molecular Building Blocks. , 2017, , 243-270.		0
1279	Selective Recognition of Hg ²⁺ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorganic Chemistry, 2018, 57, 2360-2364.	1.9	131
1280	A trichromatic MOF composite for multidimensional ratiometric luminescent sensing. Chemical Science, 2018, 9, 2918-2926.	3.7	96
1281	Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8797-8817.	4.0	177
1282	Modular construction, magnetic property, and luminescent sensing of 3D Mn(II) and Cd(II) coordination polymers based on p-terphenyl-2,2 \hat{a} €3,5 \hat{a} € \hat{c} 3,5 \hat{a} € \hat{c} 4-tetracarboxylate acid. Journal of Solid State Chemistry, 2018, 260, 46-51.	1.4	16
1283	Functional Sensing Materials Based on Lanthanide N-Heterocyclic Polycarboxylate Crystal Frameworks for Detecting Thiamines. Crystal Growth and Design, 2018, 18, 2259-2269.	1.4	11
1284	Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives. Analytical Chemistry, 2018, 90, 4273-4276.	3.2	15
1285	Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochemistry Communications, 2018, 89, 32-37.	2.3	42

#	ARTICLE	IF	CITATIONS
1286	Zinc-coordinated MOFs complexes regulated by hydrogen bonds: Synthesis, structure and luminescence study toward broadband white-light emission. Journal of Solid State Chemistry, 2018, 260, 159-164.	1.4	6
1287	Hydrothermal Preparation of a Series of Luminescent Cadmium(II) and Zinc(II) Coordination Complexes and Enhanced Realâ€time Photoâ€luminescent Sensing for Benzaldehyde. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 357-366.	0.6	5
1288	Tetracarboxylate Linker-Based Flexible Cu ^{II} Frameworks: Efficient Separation of CO ₂ from CO ₂ H ₂ from CO ₂ H ₂ H ₂ H ₂ H ₂ H ₄ Mixtures. ACS Omega, 2018, 3, 2018-2026.	1.6	18
1289	Modulation of Nuclearity by Zn(II) and Cd(II) in Their Complexes with a Polytopic Mannich Base Ligand:  A Turn-On Luminescence Sensor for Zn(II) and Detection of Nitroaromatic Explosives by Zn(II) Complexes. Crystal Growth and Design, 2018, 18, 2335-2348.	1.4	48
1290	Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal–Organic Framework Sensor. Advanced Functional Materials, 2018, 28, 1707169.	7.8	335
1291	Acidity Considerations in the Self-Assembly of POM/Ag/trz-Based Compounds with Efficient Electrochemical Activities in LIBs. Crystal Growth and Design, 2018, 18, 2289-2296.	1.4	18
1292	Encapsulating a ruthenium(<scp>ii</scp>) complex into metal organic frameworks to engender high sensitivity for dopamine electrochemiluminescence detection. Analytical Methods, 2018, 10, 1560-1564.	1.3	24
1293	Peptide cleavage induced assembly enables highly sensitive electrochemiluminescence detection of protease activity. Sensors and Actuators B: Chemical, 2018, 262, 516-521.	4.0	14
1294	MOF based fluorescent assay of xanthine oxidase for rapid inhibitor screening with real-time kinetics monitoring. Talanta, 2018, 183, 83-88.	2.9	24
1295	Two novel lanthanide(III) organic frameworks based on a biphenyltetracarboxylate ligand: synthesis, structure and magnetic and luminescence properties. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 386-391.	0.2	7
1296	Fabrication of a Robust Lanthanide Metal–Organic Framework as a Multifunctional Material for Fe(III) Detection, CO ₂ Capture, and Utilization. Crystal Growth and Design, 2018, 18, 2956-2963.	1.4	89
1297	Efficient CO2 adsorption by Cu(II) acetate and itaconate bioproduct based MOF. Journal of Environmental Chemical Engineering, 2018, 6, 2910-2917.	3.3	10
1298	Three new super water-stable lanthanide–organic frameworks for luminescence sensing and magnetic properties. New Journal of Chemistry, 2018, 42, 9221-9227.	1.4	10
1299	Structure, color-tunable luminescence, and UV-vis/NIR benzaldehyde detection of lanthanide coordination polymers based on two fluorinated ligands. CrystEngComm, 2018, 20, 3335-3343.	1.3	27
1300	Dual-emission MOF \hat{a} Sf dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. Journal of Materials Chemistry A, 2018, 6, 9183-9191.	5.2	170
1301	A Cuprous/Lanthanideâ€Organic Framework as the Luminescent Sensor of Hypochlorite. Chemistry - A European Journal, 2018, 24, 10296-10299.	1.7	36
1302	Efficient separation of C ₂ H ₂ from C ₂ H _{/CO₂mixtures in an acid–base resistant metal–organic framework. Chemical Communications, 2018, 54, 4846-4849.}	2.2	62
1303	Lab-on-MOFs: Color-Coded Multitarget Fluorescence Detection with White-Light Emitting Metal–Organic Frameworks under Single Wavelength Excitation. Analytical Chemistry, 2018, 90, 5758-5763.	3.2	80

#	Article	IF	CITATIONS
1304	Lanthanide(Tb3+, Eu3+)-functionalized a new one dimensional Zn-MOF composite as luminescent probe for highly selectively sensing Fe3+. Polyhedron, 2018, 148, 178-183.	1.0	22
1305	Optimisation of synthesis conditions for UiO-66-CO ₂ H towards scale-up and its vapour sorption properties. Reaction Chemistry and Engineering, 2018, 3, 365-370.	1.9	16
1306	NanoMOFs: little crystallites for substantial applications. Journal of Materials Chemistry A, 2018, 6, 7338-7350.	5. 2	79
1307	2D double-layered dibenzoyl-tartrate chiral coordination polymer containing [Mn 4 L 2 (bpp) 4] tetrahedral cage. Inorganic Chemistry Communication, 2018, 92, 131-135.	1.8	8
1308	A Novel Zrâ€MOF as Fluorescence Turnâ€On Probe for Realâ€Time Detecting H ₂ S Gas and Fingerprint Identification. Small, 2018, 14, e1703822.	5. 2	86
1309	A luminescent zinc(<scp>ii</scp>) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor. Dalton Transactions, 2018, 47, 6189-6198.	1.6	147
1310	A ternary Fe(<scp>ii</scp>)-terpyridyl complex-based single platform for reversible multiple-ion recognition. Dalton Transactions, 2018, 47, 6386-6393.	1.6	6
1311	Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters. New Journal of Chemistry, 2018, 42, 7223-7229.	1.4	62
1312	Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters. Inorganic Chemistry, 2018, 57, 4328-4339.	1.9	72
1313	Luminescent amine sensor based on europium(III) chelate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 200, 70-75.	2.0	16
1314	Bimetallic Fe/Tiâ€Based Metal–Organic Framework for Persulfateâ€Assisted Visible Light Photocatalytic Degradation of Orange II. ChemistrySelect, 2018, 3, 3664-3674.	0.7	54
1315	Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511.	3.0	129
1316	From 2D â†' 3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe ³⁺ and Cr ₂ O ₇ ^{2â°'} ions. Dalton Transactions, 2018, 47, 6240-6249.	1.6	76
1317	Hypersensitive Self-Referencing Detection Traces of Water in Ethyl Alcohol by Dual-Emission Lanthanide Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 1998-2003.	1.0	18
1318	Two Cd(II) coordination polymers based on tris(p-carboxylphenyl)phosphine oxide accompanied by in situ ligand formation. Journal of Coordination Chemistry, 2018, 71, 1357-1367.	0.8	2
1319	Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS Applied Materials & Encapsulation. ACS Applied Materials & Encapsulation.	4.0	40
1320	Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution. Sensors and Actuators B: Chemical, 2018, 267, 542-548.	4.0	72
1321	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie - International Edition, 2018, 57, 5016-5019.	7.2	53

#	Article	IF	CITATIONS
1322	Luminescent detection by coordination polymers derived from a pre-organized heterometallic carboxylic building unit. Polyhedron, 2018, 145, 147-153.	1.0	23
1323	A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media. Journal of Materials Chemistry C, 2018, 6, 2983-2988.	2.7	133
1324	A fluorescent microporous crystalline dendrimer discriminates vapour molecules. Chemical Communications, 2018, 54, 2534-2537.	2.2	19
1325	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie, 2018, 130, 5110-5113.	1.6	14
1326	Three coordination polymers based on tris(p-carboxyphenyl) phosphane oxide with luminescent sensing acetone, nitrobenzene derivatives and Fe3+ ion. Inorganic Chemistry Communication, 2018, 89, 83-88.	1.8	16
1327	Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. Journal of Industrial and Engineering Chemistry, 2018, 62, 130-145.	2.9	173
1328	Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sensors and Actuators B: Chemical, 2018, 262, 137-143.	4.0	225
1329	Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles. Inorganic Chemistry, 2018, 57, 1693-1697.	1.9	44
1330	Ratiometric and selective fluorescent sensor for Fe(III) and bovine serum albumin based on energy transfer. Sensors and Actuators B: Chemical, 2018, 262, 228-235.	4.0	20
1331	Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles. Nanoscale, 2018, 10, 4650-4657.	2.8	70
1332	The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on Tb 3+ functionalized metal-organic framework. Analytica Chimica Acta, 2018, 1012, 82-89.	2.6	44
1333	Enhancing luminescence in lanthanide coordination polymers through dilution of emissive centers. Journal of Luminescence, 2018, 197, 412-417.	1.5	12
1334	Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions. Journal of Solid State Chemistry, 2018, 261, 75-85.	1.4	44
1335	Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M) Tj ETQq1 1 145-151.	0.784314 rg 1.8	BT /Overlock 8
1336	Influence of synthetic conditions on the formation of thermally and hydrolytically stable Sc-based metal–organic frameworks. Polyhedron, 2018, 144, 219-224.	1.0	17
1337	Azamacrocyclic-based metal organic frameworks: Design strategies and applications. Polyhedron, 2018, 145, 154-165.	1.0	43
1338	Large Third-Order Optical Susceptibility with Good Nonlinear Figures of Merit Induced by Octupole Plasmon Resonance of Asymmetric Au–Ag Core–Shell Nanorods. Journal of Physical Chemistry C, 2018, 122, 3958-3964.	1.5	8
1339	Light-enhanced acid catalysis over a metal–organic framework. Chemical Communications, 2018, 54, 2498-2501.	2.2	21

#	Article	IF	CITATIONS
1340	A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb ³⁺ Cation. Inorganic Chemistry, 2018, 57, 2654-2662.	1.9	52
1341	A multifunctional MOF as a recyclable catalyst for the fixation of CO ₂ with aziridines or epoxides and as a luminescent probe of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 4545-4553.	1.6	77
1342	Picric acid sensing and \$\$hbox {CO}_{2}\$\$ CO 2 capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. Journal of Chemical Sciences, 2018, 130, 1.	0.7	39
1343	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6014-6023.	4.0	81
1344	Highly selective sensing of Fe ³⁺ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Transactions, 2018, 47, 3452-3458.	1.6	119
1345	Understanding the effect of an amino group on the selective and ultrafast detection of TNP in water using fluorescent organic probes. Journal of Materials Chemistry C, 2018, 6, 3288-3297.	2.7	70
1346	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
1347	A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Advances, 2018, 8, 5714-5720.	1.7	25
1348	Recent Advances in Microâ€∮Nanostructured Metal–Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, 6484-6493.	1.7	45
1349	Thermal Transport in Interpenetrated Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 2281-2286.	3.2	40
1350	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
1351	Fluorescent Zn-PDC/Tb ³⁺ Coordination Polymer Nanostructure: A Candidate for Highly Selective Detections of Cefixime Antibiotic and Acetone in Aqueous System. Inorganic Chemistry, 2018, 57, 1417-1425.	1.9	110
1352	Water mediated proton conductance in a hydrogen-bonded Ni(<scp>ii</scp>)-bipyridine-glycoluril chloride self-assembled framework. CrystEngComm, 2018, 20, 1094-1100.	1.3	11
1353	Copper Metal–Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano, 2018, 12, 1023-1032.	7.3	282
1354	Optical isotherms as a fundamental characterization method for gas sensing with luminescent MOFs by comparison of open and dense frameworks. Journal of Materials Chemistry C, 2018, 6, 2588-2595.	2.7	16
1355	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
1356	Two Metal–Organic Frameworks with Structural Varieties Derived from <i>cis–trans</i> Isomerism Nodes and Effective Detection of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 1857-1863.	1.4	44
1357	Charge-Transfer within Zr-Based Metal–Organic Framework: The Role of Polar Node. Journal of the American Chemical Society, 2018, 140, 2756-2760.	6.6	78

#	Article	IF	CITATIONS
1358	Fluorescence modulation <i>via</i> photoinduced spin crossover switched energy transfer from fluorophores to Fe ^{II} ions. Chemical Science, 2018, 9, 2892-2897.	3.7	67
1359	A bifunctional photoluminescent metalâ~organic framework for detection of Fe3+ ion and nitroaromatics. Inorganic Chemistry Communication, 2018, 89, 68-72.	1.8	18
1360	A luminescent Cd(II)-based metalâ^organic framework for detection of Fe(III) ions in aqueous solution. Journal of Solid State Chemistry, 2018, 261, 31-36.	1.4	41
1361	Two Temperatureâ€Controlled Zinc Coordination Polymers: Ionothermal Synthesis, Properties, and Dye Adsorption. European Journal of Inorganic Chemistry, 2018, 2018, 932-939.	1.0	9
1362	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.4	2
1363	Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Analytica Chimica Acta, 2018, 1013, 63-70.	2.6	67
1364	Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(II)-based polymer. Journal of Molecular Structure, 2018, 1158, 264-270.	1.8	20
1365	A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chemical Communications, 2018, 54, 1762-1765.	2.2	118
1366	Highly selective luminescent sensor for CCl ₄ vapor and pollutional anions/cations based on a multi-responsive MOF. Journal of Materials Chemistry C, 2018, 6, 2010-2018.	2.7	31
1367	Iridium(III)-Based Metal–Organic Frameworks as Multiresponsive Luminescent Sensors for Fe ³⁺ , Cr ₂ O ₇ ^{2–} , and ATP ^{2–} in Aqueous Media. Inorganic Chemistry, 2018, 57, 1079-1089.	1.9	104
1368	A lanthanide functionalized MOF hybrid for ratiometric luminescence detection of an anthrax biomarker. CrystEngComm, 2018, 20, 1264-1270.	1.3	44
1369	Selective fluorescent sensing and photocatalytic properties of three MOFs based on naphthalene-1,4-dicarboxylic acid and 2,4,5-tri(4-pyridyl)-imidazole. New Journal of Chemistry, 2018, 42, 3551-3559.	1.4	8
1370	Synthesis, crystal structure and fluorescent properties of indolo[3,2-b]carbazole-based metal–organic coordination polymers. Polyhedron, 2018, 141, 337-342.	1.0	9
1371	Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis. ACS Central Science, 2018, 4, 5-19.	5.3	148
1372	Multiphoton Absorption and Two-Photon-Pumped Random Lasing in Crystallites of a Coordination Polymer. Journal of Physical Chemistry C, 2018, 122, 777-781.	1.5	24
1373	A Eu/Tb mixed lanthanide coordination polymer with rare 2D thick layers: Synthesis, characterization and ratiometric temperature sensing. Journal of Solid State Chemistry, 2018, 259, 98-103.	1.4	15
1374	Shape engineering of metal–organic frameworks. Polyhedron, 2018, 145, 1-15.	1.0	172
1375	Assembly of Zn ^{II} -coordination polymers constructed from benzothiadiazole functionalized bipyridines and V-shaped dicarboxylic acids: topology variety, photochemical and visible-light-driven photocatalytic properties. CrystEngComm, 2018, 20, 668-678.	1.3	39

#	Article	IF	CITATIONS
1376	Incorporating cuprous-halide clusters and lanthanide clusters to construct Heterometallic cluster organic frameworks with luminescence and gas adsorption properties. CrystEngComm, 2018, 20, 738-745.	1.3	20
1377	Molecular-based selection of porphyrins towards the sensing of explosives in the gas phase. Sensors and Actuators B: Chemical, 2018, 260, 116-124.	4.0	20
1378	Characterization and application of a lanthanideâ€based metal–organic framework in the development and validation of a matrix solidâ€phase dispersion procedure for pesticide extraction on peppers <i>(Capsicum annuum L.)</i> with gas chromatography–mass spectrometry. Journal of Separation Science, 2018, 41, 1593-1599.	1.3	18
1379	A fluorescent anthracene-based metal–organic framework for highly selective detection of nitroanilines. Inorganica Chimica Acta, 2018, 473, 70-74.	1.2	19
1380	Zn/Cd/Cu- frameworks constructed by 3,3′-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium. Journal of Solid State Chemistry, 2018, 258, 744-752.	1.4	20
1381	In situ secondary growth of Eu(III)-organic framework film for fluorescence sensing of sulfur dioxide. Sensors and Actuators B: Chemical, 2018, 260, 63-69.	4.0	44
1382	Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal–organic framework. Talanta, 2018, 180, 396-402.	2.9	50
1383	Confinement of polysulfides within bi-functional metal–organic frameworks for high performance lithium–sulfur batteries. Nanoscale, 2018, 10, 2774-2780.	2.8	98
1384	1D and 3D Polymeric Manganese(II) Thiolato Complexes: Synthesis, Structure, and Properties ofâ€a€a€a€acsub>â²z ³ [Mn ₄ (SPh) ₈] andâ²z ¹ [Mn(SMes) ₂]. Inorganic Chemistry, 2018, 57, 602-608.	1.9	20
1385	Structures and properties of two coordination polymers constructed by the semirigid bi-functional 5-((1-methyl-1H-tetrazol-5-yl)thio)isophthalic acid ligand. Journal of Solid State Chemistry, 2018, 258, 453-459.	1.4	6
1386	Achieving Multicolor Long-Lived Luminescence in Dye-Encapsulated Metal–Organic Frameworks and Its Application to Anticounterfeiting Stamps. ACS Applied Materials & Diterfaces, 2018, 10, 1802-1809.	4.0	151
1387	A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO ₂ Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018, 140, 993-1003.	6.6	176
1388	Tailoring the Fluorescence of AIE-Active Metal–Organic Frameworks for Aqueous Sensing of Metal lons. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3801-3809.	4.0	75
1389	Solvent Dependent Luminescence Sensing of Nitroâ€Explosives by a Terbiumâ€Based Metalâ€Organic Complex. ChemistrySelect, 2018, 3, 683-689.	0.7	3
1390	A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives. Journal of Solid State Chemistry, 2018, 258, 781-785.	1.4	19
1391	Development of Isostructural Porphyrin–Salen Chiral Metal–Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry, 2018, 57, 1203-1212.	1.9	57
1392	Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4844-4850.	4.0	52
1393	Two new luminescence cadmium coordination polymers constructed by 4,4′-di(4 <i>H</i> -1,2,4-triazol-4-yl)-1,1′-biphenyl and polycarboxylic acids: syntheses, structures, Fe ³⁺ identifying and photo-degradable properties. RSC Advances, 2018, 8, 557-566.	1.7	14

#	Article	IF	CITATIONS
1394	A recognition mechanism study: Luminescent metal-organic framework for the detection of nitro-explosives. Journal of Molecular Graphics and Modelling, 2018, 80, 132-137.	1.3	10
1395	Metal–Organic Framework-Based Selective Sensing of Biothiols via Chemidosimetric Approach in Water. ACS Omega, 2018, 3, 254-258.	1.6	36
1396	Syntheses, structures, luminescence and magnetic properties of seven isomorphous metal–organic frameworks based on 2,7-bis(4-benzoic acid)- <i>N</i> -(4-benzoic acid)carbazole. New Journal of Chemistry, 2018, 42, 2830-2837.	1.4	8
1397	Aldehyde-functionalized metal–organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chemical Communications, 2018, 54, 1004-1007.	2.2	55
1398	Enhancement of visible-light-driven CO ₂ reduction performance using an amine-functionalized zirconium metal–organic framework. Dalton Transactions, 2018, 47, 909-915.	1.6	67
1399	Highly selective luminescence sensing for the detection of nitrobenzene and Fe ³⁺ by new Cd(<scp>ii</scp>)-based MOFs. CrystEngComm, 2018, 20, 477-486.	1.3	119
1400	Tunable Emission and Selective Luminescence Sensing in a Series of Lanthanide Metal–Organic Frameworks with Uncoordinated Lewis Basic Triazolyl Sites. Crystal Growth and Design, 2018, 18, 2031-2039.	1.4	57
1401	Tuning structures and emissive properties in a series of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers containing dicarboxylic acids and nicotinamide pillars. CrystEngComm, 2018, 20, 432-447.	1.3	22
1402	Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation. Journal of Physical Chemistry C, 2018, 122, 2200-2206.	1.5	47
1403	Metal–organic frameworks in proteomics/peptidomics-A review. Analytica Chimica Acta, 2018, 1027, 9-21.	2.6	48
1404	A luminescent metal-organic framework with helical SBUs for highly effective detection of Fe 3+ ions. Inorganic Chemistry Communication, 2018, 93, 52-55.	1.8	9
1405	Three coordination polymers based on 5-(1H-tetrazol-5-yl)isophthalic acid: Syntheses, structure, magnetic properties. Journal of Solid State Chemistry, 2018, 264, 15-21.	1.4	7
1406	Bismuth as a versatile cation for luminescence in coordination polymers from BiX ₃ /4,4′-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides. Dalton Transactions, 2018, 47, 7669-7681.	1.6	43
1407	A triphenylamine-functionalized luminescent sensor for efficient $\langle i \rangle p \langle i \rangle$ -nitroaniline detection. Dalton Transactions, 2018, 47, 7222-7228.	1.6	44
1408	Structure, sensing and photocatalytic properties of two multifunctional 3D luminescent coordination polymers based on an N-heterocyclic carboxylic acid. New Journal of Chemistry, 2018, 42, 8905-8913.	1.4	22
1409	Graphene inclusion controlling conductivity and gas sorption of metal–organic framework. RSC Advances, 2018, 8, 13921-13932.	1.7	13
1410	Structural and luminescent properties of a new 1D Cadmium(II) coordination polymer: A combined effort with experiment & Description of Molecular Structure, 2018, 1167, 187-193.	1.8	14
1411	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105

#	Article	IF	CITATIONS
1412	A cyano-bridged Cu(⟨scp⟩i⟨ scp⟩)-based organic framework coupled with the C–C bond cleavage of acetonitrile for selective and sensitive sensing of Fe⟨sup⟩3+⟨ sup⟩ ions. Dalton Transactions, 2018, 47, 6888-6892.	1.6	15
1413	Four 3D coordination polymers based on layers with single <i>syn</i> ê" <i>anti</i> carboxylate bridges: synthesis, structures, and magnetic properties. RSC Advances, 2018, 8, 14101-14108.	1.7	13
1414	An uncommon 3D (3,8)-connected metal-organic framework: Luminescence sensing and photocatalytic properties. Journal of Solid State Chemistry, 2018, 262, 256-263.	1.4	10
1415	A quinoline-based compound for explosive 2,4,6-trinitrophenol sensing: experimental and DFT-D3 studies. New Journal of Chemistry, 2018, 42, 8408-8414.	1.4	29
1416	Green Approach To Synthesize Crystalline Nanoscale Zn ^{II} -Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study. Inorganic Chemistry, 2018, 57, 4050-4060.	1.9	107
1417	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	18.7	478
1418	Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chemical Communications, 2018, 54, 4231-4249.	2.2	137
1419	Lanthanide-based near-infrared emitting metal–organic frameworks with tunable excitation wavelengths and high quantum yields. Chemical Communications, 2018, 54, 6816-6819.	2.2	25
1420	Metal-Organic Frameworks: An Advanced Class of Anion-Exchange Materials. Series on Chemistry, Energy and the Environment, 2018, , 325-375.	0.3	2
1422	Adjusting the Linear Range of Au-MOF Fluorescent Probes for Real-Time Analyzing Intracellular GSH in Living Cells. ACS Applied Materials & Interfaces, 2018, 10, 12417-12423.	4.0	40
1423	Hydrogen-bonded structures from adamantane-based catechols. Journal of Molecular Structure, 2018, 1164, 116-122.	1.8	5
1424	Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives. Sensors and Actuators B: Chemical, 2018, 265, 476-487.	4.0	96
1425	A bifunctional luminescent Tb(III)-metal-organic framework by a tetracarboxylate ligand for highly selective detection of Fe3+ cation and Cr2O72- anion. Journal of Solid State Chemistry, 2018, 262, 282-286.	1.4	26
1426	Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 73-80.	2.3	83
1427	Supramolecular iridium(III) assemblies. Coordination Chemistry Reviews, 2018, 364, 86-117.	9.5	44
1428	A hexanuclear cluster based metal-organic framework for Fe3+ sensing. Inorganic Chemistry Communication, 2018, 91, 108-111.	1.8	19
1429	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61
1430	La-Metal-Organic Framework incorporating Fe3O4 nanoparticles, post-synthetically modified with Schiff base and Pd. A highly active, magnetically recoverable, recyclable catalyst for C C cross-couplings at low Pd loadings. Journal of Catalysis, 2018, 361, 116-125.	3.1	75

#	Article	IF	CITATIONS
1431	A dual-functional luminescent Tb(<scp>iii</scp>) metal–organic framework for the selective sensing of acetone and TNP in water. RSC Advances, 2018, 8, 10746-10755.	1.7	35
1432	Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chemical Engineering Journal, 2018, 341, 618-627.	6.6	94
1433	Improving analyte selectivity by post-assembly modification of metal–organic framework based photonic crystal sensors. Nanoscale Horizons, 2018, 3, 383-390.	4.1	33
1434	Two luminescent transition-metal–organic frameworks with a predesigned ligand as highly sensitive and selective iron(<scp>iii</scp>) sensors. New Journal of Chemistry, 2018, 42, 6839-6847.	1.4	34
1435	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
1436	Zinc(II) and cadmium(II) complexes of long flexible bis(imidazole) and phenylenediacetate ligands, synthesis, structure, and luminescent property. Polyhedron, 2018, 146, 180-186.	1.0	13
1437	Design and Development of Fluorescent Sensors with Mixed Aromatic Bicyclic Fused Rings and Pyridyl Groups: Solid Mediated Selective Detection of 2,4,6-Trinitrophenol in Water. ACS Omega, 2018, 3, 3248-3256.	1.6	17
1438	A luminescent ytterbium(III)-organic framework for highly selective sensing of 2,4,6-trinitrophenol. Journal of Solid State Chemistry, 2018, 262, 186-190.	1.4	15
1439	Ni(II)/Zn(II)-triazolate clusters based MOFs constructed from a V-shaped dicarboxylate ligand: Magnetic properties and phosphate sensing. Journal of Solid State Chemistry, 2018, 262, 100-105.	1.4	22
1440	Exploiting Dimensional Variability in Cu Paddle-Wheel Secondary Building Unit Based Mixed Valence Cu(II)/Cu(I) Frameworks from a Bispyrazole Ligand by Solvent/pH Variation. Crystal Growth and Design, 2018, 18, 2397-2404.	1.4	13
1441	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	3.2	138
1442	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
1443	Structures, luminescence and photocatalytic properties of two nanostructured cadmium(II) coordination polymers synthesized by sonochemical process. Ultrasonics Sonochemistry, 2018, 40, 68-77.	3.8	35
1444	Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40, 453-459.	3.8	23
1445	A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH. Sensors and Actuators B: Chemical, 2018, 254, 1069-1077.	4.0	67
1446	A visible-light driven Bi ₂ S ₃ @ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism. Dalton Transactions, 2018, 47, 684-692.	1.6	83
1447	Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344, 283-290.	6.5	129
1448	Hierarchical 3D ordered meso-/macroporous metal-organic framework produced through a facile template-free self-assembly. Journal of Solid State Chemistry, 2018, 258, 220-224.	1.4	27

#	Article	IF	CITATIONS
1449	Metal–organic layers stabilize earth-abundant metal–terpyridine diradical complexes for catalytic C–H activation. Chemical Science, 2018, 9, 143-151.	3.7	75
1450	Secondary-amine-functionalized isoreticular metal–organic frameworks for controllable and selective dye capture. Materials Chemistry Frontiers, 2018, 2, 129-135.	3.2	28
1451	A water-stable Tb(<scp>)iii</scp>)-based metal–organic gel (MOG) for detection of antibiotics and explosives. Inorganic Chemistry Frontiers, 2018, 5, 120-126.	3.0	248
1452	Exploring methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate and varying flexible bis(imidazole)-based synthons as building blocks for the construction of diverse cadmium coordination polymers. Dyes and Pigments, 2018, 149, 498-504.	2.0	40
1453	A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu 4 I 2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties. Journal of Molecular Structure, 2018, 1155, 7-10.	1.8	3
1454	Tuning aggregation-induced emission properties with the number of cyano and ester groups in the same dibenzo[b,d]thiophene skeleton for effective detection of explosives. Sensors and Actuators B: Chemical, 2018, 257, 303-311.	4.0	15
1455	Syntheses, structures, fluorescence sensing and magnetic properties of two coordination polymers based on 5-(benzimidazol-2-yl) isophthalic acid ligand. Inorganica Chimica Acta, 2018, 469, 515-522.	1,2	5
1456	Two 3D metalâ^'organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission. Journal of Solid State Chemistry, 2018, 258, 42-48.	1.4	17
1457	A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based Schiff base: Design, fabrication and density functional theory calculations. Ultrasonics Sonochemistry, 2018, 41, 337-349.	3.8	47
1458	Development of photoluminescence metal-organic framework sensors consisting of dual-emission centers. Chinese Chemical Letters, 2018, 29, 823-826.	4.8	21
1459	Two new zinc(II) coordination polymers based on asymmetric tetracarboxylic acid for fluorescent sensing. Inorganica Chimica Acta, 2018, 469, 298-305.	1.2	7
1460	A series of porous metal–organic frameworks with hendecahedron cage: Structural variation and drug slow release properties. Journal of Solid State Chemistry, 2018, 257, 58-63.	1.4	12
1461	Synthesis, structure and magnetic studies of lanthanide metal–organic frameworks (Ln–MOFs): Aqueous phase highly selective sensors for picric acid as well as the arsenic ion. Polyhedron, 2018, 131-141.	1.0	34
1462	Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach. Inorganic Chemistry Frontiers, 2018, 5, 29-38.	3.0	15
1463	Design and construction of lanthanide metal-organic frameworks through mixed-ligand strategy: Sensing property of acetone and Cu2+. Inorganica Chimica Acta, 2018, 469, 51-56.	1.2	14
1464	Multi-functional sites catalysts based on post-synthetic modification of metal-organic frameworks. Chinese Chemical Letters, 2018, 29, 827-830.	4.8	39
1465	A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 613-620.	2.0	16
1466	Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al(III). Ultrasonics Sonochemistry, 2018, 41, 17-26.	3.8	48

#	Article	IF	Citations
1467	Construction of nine non-covalently-bonded zinc(II) and cadmium(II) supramolecules containing the mixed-ligands of 3,5-dimethylpyrazole and carboxylates: Their synthesis and characterization. Polyhedron, 2018, 139, 17-32.	1.0	10
1468	Nanoâ€Biohybrids: In Vivo Synthesis of Metal–Organic Frameworks inside Living Plants. Small, 2018, 14, 1702958.	5.2	52
1469	Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties. Journal of Solid State Chemistry, 2018, 258, 588-601.	1.4	22
1470	A luminescent Eu(III)-based metal-organic framework as a highly effective sensor for cation and anion detections. Sensors and Actuators B: Chemical, 2018, 258, 358-364.	4.0	69
1471	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	11.1	1,210
1472	Sonochemical synthesis of a novel nanoscale 1D lead(II) [Pb2(L)2(I)4]n coordination Polymer, survey of temperature, reaction time parameters. Ultrasonics Sonochemistry, 2018, 42, 320-326.	3.8	14
1473	Assembly of a series of coordination polymers built from rigid a tetracarboxylate ligand and flexible bis(imidazole) linker: syntheses, structural diversities, luminescence sensing, and photocatalytic properties. Dalton Transactions, 2018, 47, 1202-1213.	1.6	38
1474	Design of a calix[4]arene-functionalized metal-organic framework probe for highly sensitive and selective monitor of hippuric acid for indexing toluene exposure. Analytica Chimica Acta, 2018, 1001, 134-142.	2.6	29
1475	Novel double layer lanthanide metal–organic networks for sensing applications. Dalton Transactions, 2018, 47, 465-474.	1.6	14
1476	Preconcentration of Nitroalkanes with Archetype Metal–Organic Frameworks (MOFs) as Concept for a Sensitive Sensing of Explosives in the Gas Phase. Advanced Functional Materials, 2018, 28, 1704250.	7.8	22
1477	Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. Journal of Physical Chemistry C, 2018, 122, 50-61.	1.5	48
1478	Stable Zn ^I â€Containing MOFs with Large [Zn ₇₀] Nanocages from Assembly of Zn ^{II} lons and Aromatic [Zn ^I ₈] Clusters. Chemistry - A European Journal, 2018, 24, 3683-3688.	1.7	19
1479	A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine. Sensors and Actuators B: Chemical, 2018, 259, 125-132.	4.0	64
1480	Single-crystal-to-single-crystal (SCSC) transformation and dissolution–recrystallization structural transformation (DRST) among three new copper(<scp>ii</scp>) coordination polymers. CrystEngComm, 2018, 20, 570-577.	1.3	27
1481	An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chemical Engineering Journal, 2018, 336, 510-517.	6.6	36
1482	Auxiliary dipyridylamide ligand control of dimensionality in copper 5-sulfoisophthalate coordination polymers. Inorganica Chimica Acta, 2018, 471, 595-607.	1.2	4
1483	Multifunctional luminescent Zn(<scp>ii</scp>)-based metal–organic framework for high proton-conductivity and detection of Cr ³⁺ ions in the presence of mixed metal ions. Dalton Transactions, 2018, 47, 1383-1387.	1.6	58
1484	Emissive and birefringent Hg(CN) ₂ -based coordination polymer materials with very distorted coordination geometries. Canadian Journal of Chemistry, 2018, 96, 226-234.	0.6	7

#	Article	IF	CITATIONS
1485	The visible light driven copper based metal-organic-framework heterojunction:HKUST-1@Ag-Ag3PO4 for plasmon enhanced visible light photocatalysis. Journal of Alloys and Compounds, 2018, 737, 798-808.	2.8	96
1486	Integrating Down-Shifting and Down-Conversion into Metal–Organic Frameworks to Enhance the Spectral Conversion for Solar Cells. Journal of Physical Chemistry C, 2018, 122, 96-104.	1.5	12
1487	Open and closed forms of the interpenetrated [Cu2(Tae)(Bpa)2](NO3)2·nH2O: magnetic properties and high pressure CO2/CH4 gas sorption. Dalton Transactions, 2018, 47, 958-970.	1.6	2
1488	A Series of New Eu/Tb Mixed MOFs with Tunable Color Luminescence. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 43-49.	0.6	7
1489	Structural diversity and magnetic properties of four Cu(II)/Co(II) coordination complexes based on 3,5-bis(2-carboxylphenoxy)benzoic acid. Polyhedron, 2018, 141, 133-139.	1.0	6
1490	<i>ci>cis</i> - and <i>trans</i> -9,10-di(1 <i>H</i> -imidazol-1-yl)-anthracene based coordination polymers of Zn and Cd : synthesis, crystal structures and luminescence properties. Dalton Transactions, 2018, 47, 596-607.	1.6	17
1491	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405
1492	Synthesis of Novel Fluorescent Cellulose Derivatives and Their Applications in Detection of Nitroaromatic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 1436-1445.	3.2	24
1493	Kovalente organische Netzwerke und KÃ#gverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerýsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
1494	A Waterâ€Stable Luminescent Zn ^{II} Metalâ€Organic Framework as Chemosensor for Highâ€Efficiency Detection of Cr ^{VI} â€Anions (Cr ₂ O ₇ ^{2â°'}) Tj I	ETQg1 1 0	.784314 rgE
1495	Reversible crystal-to-amorphous structural transformations and magnetic variations in single end-on	1.6	24
1496	Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coordination Chemistry Reviews, 2018, 357, 105-129.	9.5	262
1497	A novel 2D coordination network built from hexacopper(<scp>i</scp>)-iodide clusters and cagelike aminophosphine blocks for reversible "turn-on―sensing of aniline. Journal of Materials Chemistry C, 2018, 6, 1670-1678.	2.7	85
1498	Synthesis, crystal structures, adsorption and fluorescence properties of coordination polymers based on a semirigid octadentate ligand. Transition Metal Chemistry, 2018, 43, 9-19.	0.7	4
1499	Magnetic functionalities in MOFs: from the framework to the pore. Chemical Society Reviews, 2018, 47, 533-557.	18.7	615
1500	An -OH group functionalized MOF for ratiometric Fe3+ sensing. Journal of Solid State Chemistry, 2018, 258, 441-446.	1.4	82
1501	Control of chirality and catenation in cobalt and cadmium camphorate coordination complexes. CrystEngComm, 2018, 20, 280-293.	1.3	11
1502	Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities. Applied Surface Science, 2018, 435, 149-155.	3.1	61

#	Article	IF	CITATIONS
1503	Slow relaxation of magnetization and luminescence properties of a novel dysprosium and pyrene-1,3,6,8-tetrasulfonate based MOF. New Journal of Chemistry, 2018, 42, 832-837.	1.4	7
1504	Metathesis in Metal–Organic Gels (MOGs): A Facile Strategy to Construct Robust Fluorescent Lnâ€MOG Sensors for Antibiotics and Explosives. European Journal of Inorganic Chemistry, 2018, 2018, 186-193.	1.0	30
1505	A multifunctional luminescent metal-organic framework showing sensing, sensitization, and adsorbent abilities. Inorganica Chimica Acta, 2018, 471, 336-344.	1.2	5
1506	Two lanthanide metal–organic frameworks as sensitive luminescent sensors for the detection of Cr ²⁺ and Cr ₂ O ₇ ^{2â^'} in aqueous solutions. CrystEngComm, 2018, 20, 189-197.	1.3	47
1507	A 3D supramolecular network as highly selective and sensitive luminescent sensor for PO 4 3â° and Cu 2+ ions in aqueous media. Dyes and Pigments, 2018, 150, 36-43.	2.0	46
1508	Synthesis, characterization, and luminescent properties of two new Zr(IV) metal–organic frameworks based on anthracene derivatives. Canadian Journal of Chemistry, 2018, 96, 875-880.	0.6	7
1509	Luminescent sensors based on metal-organic frameworks. Coordination Chemistry Reviews, 2018, 354, 28-45.	9.5	987
1510	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
1511	Engineering a MOF–magnetic graphene oxide nanocomposite for enantioselective capture. Analytical Methods, 2018, 10, 5811-5816.	1.3	20
1512	Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Transactions, 2018, 47, 16551-16557.	1.6	30
1513	Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts. Dalton Transactions, 2018, 47, 16985-16994.	1.6	15
1514	An anionic layered europium(<scp>iii</scp>) coordination polymer for solvent-dependent selective luminescence sensing of Fe ³⁺ and Cu ²⁺ ions and latent fingerprint detection. Dalton Transactions, 2018, 47, 17479-17485.	1.6	25
1515	Iron(<scp>iii</scp>) identification and proton conduction of a luminescent cadmium–organic framework. New Journal of Chemistry, 2018, 42, 20197-20204.	1.4	24
1516	Sensing ensembles for nitroaromatics. Journal of Materials Chemistry C, 2018, 6, 12142-12158.	2.7	62
1517	A CoOOH nanoflake-based light scattering probe for the simple and selective detection of uric acid in human serum. Analytical Methods, 2018, 10, 4951-4957.	1.3	11
1518	An efficient strategy for improving the luminescent sensing performance of a terbium(<scp>iii</scp>) metalâ€"organic framework towards multiple substances. Chemical Communications, 2018, 54, 13271-13274.	2.2	60
1519	Fluorescent 2D metal–organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale, 2018, 10, 22389-22399.	2.8	67
1520	Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds. RSC Advances, 2018, 8, 34291-34296.	1.7	26

#	Article	IF	CITATIONS
1521	Ni(<scp>ii</scp>)-based coordination polymers for efficient electrocatalytic oxygen evolution reaction. RSC Advances, 2018, 8, 38562-38565.	1.7	18
1522	The efficiency and mechanism of dibutyl phthalate removal by copper-based metal organic frameworks coupled with persulfate. RSC Advances, 2018, 8, 39352-39361.	1.7	30
1523	Comparison of two water oxidation electrocatalysts by copper or zinc supermolecule complexes based on porphyrin ligand. RSC Advances, 2018, 8, 40054-40059.	1.7	8
1524	Facile preparation of a tetraphenylethylene-doped metal–organic framework for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 11701-11706.	2.7	22
1525	Tunability of fluorescent metal–organic frameworks through dynamic spacer installation with multivariate fluorophores. Chemical Communications, 2018, 54, 13666-13669.	2.2	22
1526	A Cul modified Mg-coordination polymer as a ratiometric fluorescent probe for toxic thiol molecules. Journal of Materials Chemistry C, 2018, 6, 13367-13374.	2.7	12
1527	Synthesis of spiny metal–phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acids. CrystEngComm, 2018, 20, 7626-7630.	1.3	14
1528	Two water-stable lanthanide metal–organic frameworks with oxygen-rich channels for fluorescence sensing of Fe(<scp>iii</scp>) ions in aqueous solution. Dalton Transactions, 2018, 47, 16190-16196.	1.6	101
1529	Controllable synthesis of isoreticular pillared-layer MOFs based on N-rich triangular prism building units: gas adsorption and luminescent properties. New Journal of Chemistry, 2018, 42, 20056-20060.	1.4	10
1530	Cholesterol-based diazine derivative: selective sensing of Ag ⁺ and Fe ³⁺ ions through gelation and the performance of metallogels in dye and picric acid adsorption from water. Materials Chemistry Frontiers, 2018, 2, 2286-2296.	3.2	26
1531	Cadmium($<$ scp $>$ ii $<$ /scp $>$) coordination polymers based on 2-(4-(($<$ i $>$ E $<$ /i $>$)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensors for TNP. Journal of Materials Chemistry C, 2018, 6, 12623-12630.	2.7	39
1532	Synthesis, structure and temperature sensing of a lanthanide-organic framework constructed from a pyridine-containing tetracarboxylic acid ligand. CrystEngComm, 2018, 20, 7395-7400.	1.3	25
1533	Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm, 2018, 20, 7567-7573.	1.3	43
1534	(1/1), C30H36N12O10S2Zn2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 1053-1055.	0.1	0
1535	Synthesis, Solid State Characterization and Thermal Aspects of Coordination Polymers of Some Transition Metal Ions with Sebacoyl bis(isonicotinoylhydrazone). Materials Today: Proceedings, 2018, 5, 15399-15408.	0.9	0
1537	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961. Crystal structure of	1.0	24

#	Article	IF	CITATIONS
1540	Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin Iâ€"Challenges and Potential Value. Biosensors, 2018, 8, 114.	2.3	32
1541	Wet NH ₃ -Triggered NH ₂ -MIL-125(Ti) Structural Switch for Visible Fluorescence Immunoassay Impregnated on Paper. Analytical Chemistry, 2018, 90, 14121-14125.	3.2	182
1542	Ratiometric Luminescent Sensor of Picric Acid Based on the Dual-Emission Mixed-Lanthanide Coordination Polymer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44109-44115.	4.0	58
1543	Continuous Crystalline Membranes of a Ni(II)-Based Pillared-Layer Metal-Organic Framework In Situ Grown on Nickel Foam with Two Orientations. Crystals, 2018, 8, 383.	1.0	8
1544	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	1.4	47
1545	A Stable Zr(IV)-Based Metal–Organic Framework Constructed from C╀ Bridged Di-isophthalate Ligand for Sensitive Detection of Cr ₂ O ₇ ^{2–} in Water. Inorganic Chemistry, 2018, 57, 14260-14268.	1.9	62
1546	Synthesis, Crystal Structure, and Properties of a Zn(II) Coordination Polymer Based on a Difunctional Ligand Containing Triazolyl and Carboxyl Groups. Crystals, 2018, 8, 424.	1.0	3
1547	Effect of transition metal ions on luminescence of MOFs. MATEC Web of Conferences, 2018, 238, 05004.	0.1	7
1548	Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO2 Adsorption Properties. Polymers, 2018, 10, 1398.	2.0	6
1549	Modifying the Hydrophobic Properties of Metal–Organic Framework HKUST-1. Russian Journal of Physical Chemistry A, 2018, 92, 2391-2395.	0.1	4
1550	Synthesis and Structural Characterization of a Cobalt Coordination Polymer with Bis(4-(1H-imidazol-1-yl)phenyl)methanone and 4-Nitrophthalate. Crystallography Reports, 2018, 63, 1124-1128.	0.1	1
1551	Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 2018, 8, 1042.	1.9	35
1552	Structure and Photocatalytic Properties of a 3D Zinc(II) Triazolate Coordination Polymer Combining Hydroxyl and Formate Anions as the Auxiliary Coligands. Journal of Structural Chemistry, 2018, 59, 1450-1455.	0.3	2
1553	Terbium Oxalatophosphonate as Efficient Multiresponsive Luminescent Sensors for Chromate Anions and Tryptophan Molecules. ACS Omega, 2018, 3, 16735-16742.	1.6	15
1554	3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of Cr ₂ O ₇ ^{2â^'} , MnO ₄ ^{â^'} , Cr ³⁺ ions and SDBS in aqueous solution. New Journal of Chemistry, 2018, 42, 20137-20143.	1.4	43
1555	A new potassiumâ€based coordination polymer with hydrogen bonding and zigzag metallophilic interactions. Applied Organometallic Chemistry, 2018, 32, e4613.	1.7	9
1556	A Potassium Metal-Organic Framework based on Perylene-3,4,9,10-tetracarboxylate as Sensing Layer for Humidity Actuators. Scientific Reports, 2018, 8, 14414.	1.6	27
1557	Crystal structures, selective fluorescent sensing and photocatalytic properties of cobalt(II) and copper(II) coordination architectures with 2,4,5-tri(4-pyridyl)-imidazole. Journal of Coordination Chemistry, 2018, 71, 4007-4021.	0.8	0

#	Article	IF	Citations
1558	Hydrothermal synthesis and crystal structure of poly[bis(μ2-3-(3,5-dicarboxyphenoxy)phthalato-κ3O,O′:O′′)-(μ2-1,2-di(pyridin-4-yl)ethane-κ2N:N′)cC22H14CuNO9. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 387-389.	ecopper(II)],	, O
1559	Affinity Ionic Liquids for Chemoselective Gas Sensing. Molecules, 2018, 23, 2380.	1.7	8
1560	Luminescence Vapochromism of a Dynamic Copper Iodide Mesocate. Chemistry - A European Journal, 2018, 24, 18868-18872.	1.7	16
1561	Simple One-Pot Preparation of a Rapid Response AlE Fluorescent Metal–Organic Framework. ACS Applied Materials & Distriction (1988) A	4.0	48
1562	A penetrating metal-organic framework based on N-heterocyclic carboxylic acid with sensing properties toward Cr(VI)/Fe(III) and nitrobenzene. Journal of Coordination Chemistry, 2018, 71, 2691-2701.	0.8	4
1563	Visualization of Anisotropic and Stepwise Piezofluorochromism in an MOF Single Crystal. CheM, 2018, 4, 2658-2669.	5.8	65
1564	Albumin-Stabilized Metal–Organic Nanoparticles for Effective Delivery of Metal Complex Anticancer Drugs. ACS Applied Materials & Drugs. ACS Applied Mate	4.0	40
1565	A critical review on the metal sensing capabilities of optically active nanomaterials: Limiting factors, mechanism, and performance evaluation. TrAC - Trends in Analytical Chemistry, 2018, 109, 227-246.	5.8	25
1566	MgO Nanocubes as Self-Calibrating Optical Probes for Efficient Ratiometric Detection of Picric Acid in the Solid State. ACS Sustainable Chemistry and Engineering, 2018, 6, 13719-13729.	3.2	17
1567	Acid- and base-stable porous mechanically interlocked 2D metal–organic polyrotaxane for⟨i⟩in situ⟨ i⟩organochlorine insecticide encapsulation, sensing and removal. New Journal of Chemistry, 2018, 42, 18152-18158.	1.4	7
1568	Stable Lanthanide–Organic Framework Materials Constructed by a Triazolyl Carboxylate Ligand: Multifunction Detection and White Luminescence Tuning. Inorganic Chemistry, 2018, 57, 12850-12859.	1.9	65
1569	Investigation of Missing-Cluster Defects in UiO-66 and Ferrocene Deposition into Defect-Induced Cavities. Industrial & Engineering Chemistry Research, 2018, 57, 14233-14241.	1.8	44
1570	Acidochromic Turnâ€on 2,4â€Diarylpyrano[2, 3â€ <i>b</i>) indole Luminophores with Solubilizing Groups for A Broad Range of Polarity. ChemistrySelect, 2018, 3, 10345-10351.	0.7	4
1571	A Versatile Anionic Cd(II)-Based Metal–Organic Framework for CO ₂ Capture and Nitroaromatic Explosives Detection. Crystal Growth and Design, 2018, 18, 7088-7093.	1.4	21
1572	Rational Design of Three Two-Fold Interpenetrated Metal–Organic Frameworks: Luminescent Zn/Cd-Metal–Organic Frameworks for Detection of 2,4,6-Trinitrophenol and Nitrofurazone in the Aqueous Phase. Crystal Growth and Design, 2018, 18, 7173-7182.	1.4	135
1573	Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications. Coordination Chemistry Reviews, 2018, 377, 259-306.	9.5	151
1574	Two 3D Co(II) coordination polymers modulated by rigid tris(imidazolyl) ligands: Syntheses, structural diversity and photo-degradation properties. Polyhedron, 2018, 156, 123-130.	1.0	6
1575	Luminescent Zn(ii) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. CrystEngComm, 2018, 20, 6762-6774.	1.3	32

#	Article	IF	CITATIONS
1576	Temperature-dependent 3D structures of lanthanide coordination polymers based on dicarboxylate mixed ligands. CrystEngComm, 2018, 20, 7446-7457.	1.3	18
1577	Metal ion coordination enhancing quantum efficiency of ligand phosphorescence in a double-stranded helical chain coordination polymer of Pb ²⁺ with nicotinic acid. Dalton Transactions, 2018, 47, 14636-14643.	1.6	11
1578	Evaluation of the adsorption and desorption properties of zeolitic imidazolate framework-7 for volatile organic compounds through thermal desorption-gas chromatography. Analytical Methods, 2018, 10, 4894-4901.	1.3	14
1579	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
1580	Crystal structures and luminescent properties of a cadmium(II) metal-organic framework based on tri(4-pyridylphenyl)amine. Journal of Coordination Chemistry, 2018, 71, 4023-4030.	0.8	6
1581	A Multifunctional Dual-Luminescent Polyoxometalate@Metal-Organic Framework EuW10@UiO-67 Composite as Chemical Probe and Temperature Sensor. Frontiers in Chemistry, 2018, 6, 425.	1.8	31
1583	A novel binary Cu2l2 and Cu6S6 cluster-based red emission compound and sensing of Cr(VI) in water. Inorganic Chemistry Communication, 2018, 98, 154-158.	1.8	9
1584	Synthesis of Prussian blue-embedded porous polymer for detection and removal of Cs ions. Polymer, 2018, 158, 320-326.	1.8	9
1585	Design of High-Symmetrical Magnesium-Organic Frameworks with Acetate as Modulator and Their Fluorescence Sensing Performance. Inorganic Chemistry, 2018, 57, 14280-14289.	1.9	20
1586	Spectroscopic Study of Solvent Polarity on the Optical and Photo-Physical Properties of Novel 9,10-bis(coumarinyl)anthracene. Journal of Fluorescence, 2018, 28, 1421-1430.	1.3	7
1587	Luminescent Metal–Organic Frameworks for the Detection and Discrimination of <i>o</i> -Xylene from Xylene Isomers. Inorganic Chemistry, 2018, 57, 13631-13639.	1.9	25
1588	Rational Design of Pore Size and Functionality in a Series of Isoreticular Zwitterionic Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 8332-8342.	3.2	28
1589	Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. ACS Applied Materials & Distinct Metal Sites & Distinct	4.0	112
1590	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	1.9	29
1591	Nanometer-Thick Conjugated Microporous Polymer Films for Selective and Sensitive Vapor-Phase TNT Detection. ACS Applied Nano Materials, 2018, 1, 6483-6492.	2.4	32
1592	A Novel Magnesium Metal–Organic Framework as a Multiresponsive Luminescent Sensor for Fe(III) lons, Pesticides, and Antibiotics with High Selectivity and Sensitivity. Inorganic Chemistry, 2018, 57, 13330-13340.	1.9	142
1593	Two Zn(II)-based metal-organic frameworks for selective detection of nitroaromatic explosives and Fe3+ ion. Inorganic Chemistry Communication, 2018, 98, 120-126.	1.8	25
1594	Interesting pH-Responsive Behavior in Benzothiadiazole-Derived Coordination Polymer Constructed via an in Situ Click Synthesis. Crystal Growth and Design, 2018, 18, 7419-7425.	1.4	17

#	Article	IF	CITATIONS
1595	Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry. Beilstein Journal of Nanotechnology, 2018, 9, 2775-2787.	1.5	19
1596	Systematic Tuning of the Luminescence Output of Multicomponent Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15470-15476.	6.6	103
1597	Aggregation-Induced Emission and White Luminescence from a Combination of ⊩̃-Conjugated Donor–Acceptor Organic Luminogens. ACS Omega, 2018, 3, 13757-13771.	1.6	51
1598	Selfâ€Templated Formation of Pt@ZIFâ€8/SiO ₂ Composite with 3Dâ€Ordered Macropores and Sizeâ€Selective Catalytic Properties. Small Methods, 2018, 2, 1800219.	4.6	34
1599	Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional Metal–Organic Framework: Experimental and Computational Study. Inorganic Chemistry, 2018, 57, 12155-12165.	1.9	47
1600	Coordination supramolecules with oxazoline-containing ligands. CrystEngComm, 2018, 20, 6109-6121.	1.3	7
1601	A 2D water-stable metal–organic framework for fluorescent detection of nitroaromatics. Polyhedron, 2018, 155, 457-463.	1.0	28
1602	Synthesis and Luminescence Properties of New Metal-Organic Frameworks Based on Zinc(II) lons and 2,5-Thiophendicarboxylate Ligands. Crystals, 2018, 8, 7.	1.0	9
1603	A Heptanuclear Copper Iodide Nanocluster. Inorganic Chemistry, 2018, 57, 11961-11969.	1.9	16
1604	Europium-Based Metal–Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe ³⁺ Ion in Aqueous Media. Inorganic Chemistry, 2018, 57, 11855-11858.	1.9	104
1605	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	1.4	8
1606	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
1607	Zinc/itaconate coordination polymers as first examples with long-lasting phosphorescence based on acyclic ligands. Journal of Materials Chemistry C, 2018, 6, 10870-10880.	2.7	10
1608	Five transition metal coordination polymers driven by a semirigid trifunctional nicotinic acid ligand: selective adsorption and magnetic properties. CrystEngComm, 2018, 20, 5726-5734.	1.3	33
1609	Chemical sensor using metal-organic complex: Preparation, characterization and application for highly selective detection of cyanide ions in mixed aqueous-organic media. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 384-389.	2.0	27
1610	Incorporating the Thiazolo[5,4-d]thiazole Unit into a Coordination Polymer with Interdigitated Structure. Crystals, 2018, 8, 30.	1.0	19
1611	A Novel Fluorescent Biosensor for Adenosine Triphosphate Detection Based on a Metal–Organic Framework Coating Polydopamine Layer. Materials, 2018, 11, 1616.	1.3	42
1612	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18

#	Article	IF	CITATIONS
1613	Flexible metal–organic frameworks for the wavelength-based luminescence sensing of aqueous pH. Journal of Materials Chemistry C, 2018, 6, 10628-10639.	2.7	45
1614	Molecular Association-Induced Emission Shifts for <i>E</i> /i>/ <i>Z</i> Isomers and Selective Sensing of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 6197-6203.	1.4	17
1615	Dicarboxylate-induced structural diversity of luminescent Zn ^{II} /Cd ^{II} coordination polymers derived from V-shaped bis-benzimidazole. CrystEngComm, 2018, 20, 5822-5832.	1.3	49
1616	Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today, 2018, 22, 132-144.	6.2	170
1617	Investigating the crystal engineering of the pillared paddlewheel metal–organic framework Zn2(NH2BDC)2DABCO. CrystEngComm, 2018, 20, 6082-6087.	1.3	3
1618	A family of mixed-lanthanide metal–organic framework thermometers in a wide temperature range. Dalton Transactions, 2018, 47, 13384-13390.	1.6	30
1619	Multistimuli-Responsive Hydrolytically Stable "Smart―Mercury(II) Coordination Polymer. Inorganic Chemistry, 2018, 57, 11369-11381.	1.9	19
1620	Aqueous detection of antibiotics with a Cd(II)-based metal-organic framework constructed by a tetra(1,2,4-triazole)-functionalized-bis(triphenylamine) ligand. Inorganic Chemistry Communication, 2018, 96, 202-205.	1.8	22
1621	Anionic Lanthanide Metal–Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorganic Chemistry, 2018, 57, 11463-11473.	1.9	88
1622	Two luminescent lanthanide(<scp>iii</scp>) metal–organic frameworks as chemosensors for high-efficiency recognition of Cr(<scp>vi</scp>) anions in aqueous solution. Dalton Transactions, 2018, 47, 15694-15702.	1.6	92
1623	Flipping the Switch: Fast Photoisomerization in a Confined Environment. Journal of the American Chemical Society, 2018, 140, 7611-7622.	6.6	110
1624	Three new Zn-based metal–organic frameworks exhibiting selective fluorescence sensing and photocatalytic activity. CrystEngComm, 2018, 20, 3877-3890.	1.3	14
1625	Aggregationâ€Induced Emission of Multiphenylâ€Substituted 1,3â€Butadiene Derivatives: Synthesis, Properties and Application. Chemistry - A European Journal, 2018, 24, 15965-15977.	1.7	30
1626	Exploring side-chain length effect on \hat{l}^2 -phase of polyfluorene derivatives in electrospinning and their optical behavior. Polymer, 2018, 153, 338-343.	1.8	13
1627	A <i>usf</i> Zinc(II) Metal–Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange. Crystal Growth and Design, 2018, 18, 3997-4003.	1.4	75
1628	A multifunctional Eu-CP as a recyclable luminescent probe for the highly sensitive detection of Fe ³⁺ /Fe ²⁺ , Cr ₂ O ₇ ^{2â°'} , and nitroaromatic explosives. Dalton Transactions, 2018, 47, 7480-7486.	1.6	57
1629	Probing Calciumâ€Based Metalâ€Organic Frameworks via Natural Abundance ⁴³ Ca Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2018, 24, 8732-8736.	1.7	15
1630	Synthesis, structure and electrochemical properties of three metal cobalt complexes. Journal of Molecular Structure, 2018, 1169, 103-109.	1.8	1

#	Article	IF	CITATIONS
1631	Two luminescent lanthanide–organic frameworks containing bithiophene groups for the selective detection of nitrobenzene and Fe ³⁺ . CrystEngComm, 2018, 20, 3609-3619.	1.3	29
1632	Three Cd(<scp>ii</scp>) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: synthesis, structures and luminescence properties. CrystEngComm, 2018, 20, 3535-3542.	1.3	8
1633	Supramolecular recognition of benzene homologues in a 2D coordination polymer through variable inter-layer Ï€â€"Í€ interaction. CrystEngComm, 2018, 20, 3313-3317.	1.3	12
1634	Stable dye-encapsulated indium–organic framework as dual-emitting sensor for the detection of Hg ²⁺ /Cr ₂ O ₇ ^{2â^³} and a wide range of nitro-compounds. Journal of Materials Chemistry C, 2018, 6, 6440-6448.	2.7	126
1635	MIL-53(Al)/Eu3+ luminescent nanocrystals: Solvent-adjusted shape-controllable synthesis and highly selective detections for Fe3+ ions, Cr2O72â^ anions and acetone. Sensors and Actuators B: Chemical, 2018, 271, 33-43.	4.0	43
1636	Three metal-organic frameworks constructed from $3,3\hat{a}\in ^2,5,5\hat{a}\in ^2$ -azobenzene-tetracarboxylic acid: Synthesis, structure and luminescent sensing. Inorganica Chimica Acta, 2018, 480, 166-172.	1.2	7
1637	A facile means for the improvement of sensing properties of metal-organic frameworks through control on the key synthesis variables. Sensors and Actuators B: Chemical, 2018, 271, 157-163.	4.0	17
1638	Synthesis, structure and effective peroxidase-like activity of a stable polyoxometalate-pillared metal–organic framework with multinuclear cycles. Polyhedron, 2018, 151, 206-212.	1.0	16
1639	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	4.0	76
1640	Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin. Journal of Materials Research, 2018, 33, 1442-1448.	1.2	4
1641	Tailoring the structure, pH sensitivity and catalytic performance in Suzuki–Miyaura cross-couplings of Ln/Pd MOFs based on the 1,1′-di(<i>p</i> -carboxybenzyl)-2,2′-diimidazole linker. Dalton Transactions, 2018, 47, 8755-8763.	1.6	22
1642	Direct synthesis of functionalized PCN-333 <i>via</i> linker design for Fe ³⁺ detection in aqueous media. Dalton Transactions, 2018, 47, 11806-11811.	1.6	38
1643	Magnetic Metal–Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior along with Reversible Crystal-to-Amorphous-to-Crystal Transformation. Inorganic Chemistry, 2018, 57, 7006-7014.	1.9	38
1644	One-Pot Synthesis of a Magnetic, Ratiometric Fluorescent Nanoprobe by Encapsulating Fe ₃ O ₄ Magnetic Nanoparticles and Dual-Emissive Rhodamine B Modified Carbon Dots in Metal–Organic Framework for Enhanced HClO Sensing. ACS Applied Materials & Little Sensing. Interfaces, 2018, 10, 20801-20805.	4.0	84
1645	Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. Journal of Materials Chemistry A, 2018, 6, 12115-12124.	5.2	45
1646	Sulfur-rich covalent triazine polymer nanospheres for environmental mercury removal and detection. Polymer Chemistry, 2018, 9, 4125-4131.	1.9	72
1647	A metalloligand appended with benzimidazole rings: tetranuclear [CoZn ₃] and [CoCd ₃] complexes and their catalytic applications. New Journal of Chemistry, 2018, 42, 9847-9856.	1.4	18
1648	Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe(III) Ion, and Dyes. Crystal Growth and Design, 2018, 18, 3683-3692.	1.4	66

#	Article	IF	CITATIONS
1649	Towards Versatile Continuousâ€Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. Bulletin of the Korean Chemical Society, 2018, 39, 757-772.	1.0	27
1650	Selective fluorescent sensing and photocatalytic properties of Zinc(II) and Cadmium(II) coordination architectures with naphthalene-1,5-disulfonate and 2,4,5-tri(4-pyridyl)-imidazole. Inorganica Chimica Acta, 2018, 482, 447-453.	1.2	11
1651	A heterobimetallic metal–organic framework as a "turn-on―sensor toward DMF. Chemical Communications, 2018, 54, 8233-8236.	2.2	32
1652	A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A, 2018, 6, 21696-21718.	5.2	244
1653	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	1.9	54
1654	Pore Wall-Functionalized Luminescent Cd(II) Framework for Selective CO ₂ Adsorption, Highly Specific 2,4,6-Trinitrophenol Detection, and Colorimetric Sensing of Cu ²⁺ lons. ACS Sustainable Chemistry and Engineering, 2018, 6, 10295-10306.	3.2	102
1655	Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Advanced Materials, 2018, 30, e1707634.	11.1	504
1656	Sensitive luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal-organic framework and its lanthanide(III) post-functionalizations. Dyes and Pigments, 2018, 159, 429-438.	2.0	63
1657	Cu-MOF: an efficient heterogeneous catalyst for the synthesis of symmetric anhydrides $\langle i \rangle via \langle i \rangle$ the Câ \in "H bond activation of aldehydes. RSC Advances, 2018, 8, 24203-24208.	1.7	18
1658	Towards white-light emission by Tb3+/Eu3+ substitution in a Ca2+ framework. Polyhedron, 2018, 153, 24-30.	1.0	9
1659	Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 2018, 273, 1346-1370.	4.0	85
1660	Strategic Design and Functionalization of an Amine-Decorated Luminescent Metal Organic Framework for Selective Gas/Vapor Sorption and Nanomolar Sensing of 2,4,6-Trinitrophenol in Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25360-25371.	4.0	104
1661	Cu(I)/Ag(I)â€3â€(2â€PyridyI)â€5,6â€diphenylâ€1,2,4â€triazineâ€p,p'â€disulfonate Based Coordination Polyr Structures and Photoluminescent Properties. ChemistrySelect, 2018, 3, 6786-6790.	ners: Synt 0.7	hesis,
1662	MOFs-derived porous nanomaterials for gas sensing. Polyhedron, 2018, 152, 155-163.	1.0	67
1663	A robust two-dimensional zirconium-based luminescent coordination polymer built on a V-shaped dicarboxylate ligand for vapor phase sensing of volatile organic compounds. Chemical Communications, 2018, 54, 8088-8091.	2.2	40
1664	A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C ₃ N ₄ with highly enhanced photocatalytic activity under simulated sunlight. New Journal of Chemistry, 2018, 42, 12180-12187.	1.4	66
1665	Novel luminescent lanthanide ($\langle scp \rangle iii \langle scp \rangle$) hybrid materials: fluorescence sensing of fluoride ions and $\langle i \rangle N \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -dimethylformamide. Dalton Transactions, 2018, 47, 11530-11538.	1.6	17
1666	Highly efficient fluorescence sensing of phosphate by dual-emissive lanthanide MOFs. Dalton Transactions, 2018, 47, 12273-12283.	1.6	52

#	Article	IF	CITATIONS
1667	1D helical silver(I)-based coordination polymer containing pyridyl diimide ligand for Fe(III) ions detection. Inorganic Chemistry Communication, 2018, 96, 30-33.	1.8	13
1668	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	3.0	62
1669	Two anthracene-based metal–organic frameworks for highly effective photodegradation and luminescent detection in water. Journal of Materials Chemistry A, 2018, 6, 17177-17185.	5.2	95
1670	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
1671	Fluorescence sensing of fluoride ions and N, N- dimethylformamide by novel luminescent lanthanide(III) xerogels. Journal of Luminescence, 2018, 204, 169-175.	1.5	6
1672	Four New Stable Lanthanide Organic Frameworks: Highly Selective Luminescent Sensing and Magnetic Properties. ChemistrySelect, 2018, 3, 3214-3220.	0.7	6
1673	Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives. Journal of Materials Chemistry C, 2018, 6, 8513-8521.	2.7	56
1674	A multifunctional and recyclable terbium(<scp>iii</scp>) coordination polymer: displaying highly selective and sensitive detection of Fe ³⁺ and Cr ^{VI} anions, and picric acid in aqueous media. Dalton Transactions, 2018, 47, 11077-11083.	1.6	20
1675	An unsymmetrical tritopic pyrazole carboxylate ligand based porous Cd(II) MOF sensor for acetone molecule. Inorganic Chemistry Communication, 2018, 96, 16-19.	1.8	9
1676	Heterometallic Coordination Polymers with Pyrazine 2,6â€Dicarboxamide: Sequential Metallation of Co(III) and Ag(I). ChemistrySelect, 2018, 3, 8051-8055.	0.7	1
1677	A New Porous Three-Dimensional Iron(II) Coordination Polymer with Solvent-Induced Reversible Spin-Crossover Behavior. Crystal Growth and Design, 2018, 18, 5214-5219.	1.4	22
1678	Structural diversity, magnetic properties, and luminescence sensing of five 3D coordination polymers derived from designed 3,5-di(2′,4′-dicarboxylphenyl)benozoic acid. CrystEngComm, 2018, 20, 4752-4762.	1.3	69
1679	Ag ₃ PO ₄ â€MILâ€53(Fe) Composites with Visibleâ€Lightâ€Enhanced Photocatalytic Activities for Rhodamine B Degradation. ChemistrySelect, 2018, 3, 8045-8050.	0.7	16
1680	Four different dimensional Zn(II) coordination polymers as fluorescent sensor for detecting Hg2+, Cr2O72- in aqueous solution. Journal of Solid State Chemistry, 2018, 266, 181-188.	1.4	19
1681	Advances of metal–organic frameworks for gas sensing. Polyhedron, 2018, 154, 83-97.	1.0	95
1682	Monitoring Ultraviolet Radiation Dosage Based on a Luminescent Lanthanide Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 8714-8717.	1.9	19
1683	Framework and coordination strain in two isostructural hybrid metal–organic perovskites. CrystEngComm, 2018, 20, 5348-5355.	1.3	14
1684	Extremely stable europium-organic framework for luminescent sensing of Cr ₂ O ₇ ^{2â^²} and Fe ³⁺ in aqueous systems. Dalton Transactions, 2018, 47, 12051-12055.	1.6	58

#	Article	IF	CITATIONS
1685	Synthesis, crystal structure, and anti-breast cancer activity of a novel metal-porphyrinic complex $[YK(TCPP)(OH)2\hat{A}\cdot(solvents)x]$. Brazilian Journal of Medical and Biological Research, 2018, 51, e6858.	0.7	1
1686	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
1687	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
1688	Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth and Design, 2018, 18, 5492-5500.	1.4	29
1689	Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. ACS Sensors, 2018, 3, 1451-1461.	4.0	80
1690	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
1691	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4′-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	1.0	8
1692	A luminescent Cd(II)-MOF as recyclable bi-responsive sensor for detecting TNP and iron(III)/silver(I) with high selectivity and sensitivity. Polyhedron, 2018, 153, 261-267.	1.0	38
1693	Synthesis and crystal structure of a Zn(II) metal-organic framework based on 1,3,5-benzenetricarboxylate and 4,4′-bis(1-imidazolyl)biphenyl ligands: selective sensing of Mn ²⁺ and Fe ³⁺ ions in aqueous solution. Journal of Coordination Chemistry, 2018, 71, 2674-2690.	0.8	7
1694	Coordination Behavior of Bis-Imidazole and Various Carboxylate Ligands towards Zn(II) and Cd(II) Ions: Synthesis, Structure, and Photoluminescence Study. Crystals, 2018, 8, 236.	1.0	5
1695	Alkaline-earth metal based MOFs with second scale long-lasting phosphor behavior. CrystEngComm, 2018, 20, 4793-4803.	1.3	29
1696	Coordination driven architectures based on metalloligands offering appended carboxylic acid groups. Journal of Chemical Sciences, 2018, 130, 1.	0.7	6
1697	Indium Phosphiteâ€Based Porous Solids Exhibiting Organic Sensing and a Facile Route to Superhydrophobicity. Chemistry - A European Journal, 2018, 24, 12474-12479.	1.7	8
1698	High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4275-4281.	2.1	9
1699	Cu MOF-based catalytic sensing for formaldehyde. Journal of Materials Chemistry C, 2018, 6, 8105-8114.	2.7	55
1700	Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials, 2018, 11, 572.	1.3	145
1701	Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs. Nanomaterials, 2018, 8, 248.	1.9	45
1702	Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers, 2018, 10, 165.	2.0	66

#	Article	IF	CITATIONS
1703	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
1704	The utilization of a stable 2D bilayer MOF for simultaneous study of luminescent and photocatalytic properties: experimental studies and theoretical analysis. RSC Advances, 2018, 8, 23529-23538.	1.7	24
1705	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	2.7	24
1706	Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Letters, 2018, 10, 64.	14.4	389
1707	Construction of two Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) multifunctional coordination polymers with mixed ligands for catalytic and sensing properties. New Journal of Chemistry, 2018, 42, 14203-14209.	1.4	53
1708	A dual-functionalized, luminescent and highly crystalline covalent organic framework: molecular decoding strategies for VOCs and ultrafast TNP sensing. Journal of Materials Chemistry A, 2018, 6, 16246-16256.	5.2	109
1709	Structures and luminescent sensors of mixedâ€counterions based salenâ€type lanthanide coordination polymers. Luminescence, 2018, 33, 1040-1047.	1.5	8
1710	Robust lanthanide metal–organic frameworks with highly sensitive sensing of aniline and slow magnetization relaxation behaviors. Polyhedron, 2018, 153, 122-127.	1.0	16
1711	Highly Luminescent Metal–Organic Frameworks Based on an Aggregation-Induced Emission Ligand as Chemical Sensors for Nitroaromatic Compounds. Crystal Growth and Design, 2018, 18, 5166-5173.	1.4	46
1712	Three isostructural azo-functionalized 3D Cd(II)-coordination polymers for solvent dependent photoluminescence study. Polyhedron, 2018, 153, 115-121.	1.0	5
1713	A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorganic Chemistry, 2018, 57, 9020-9027.	1.9	47
1714	Supramolecular Ag(I) coordination polymer directed by argentophilic interactions: Synthesis, crystal structure, luminescent and catalytic properties. Journal of Molecular Structure, 2018, 1173, 833-836.	1.8	5
1715	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
1716	Receptor-Free Detection of Picric Acid: A New Structural Approach for Designing Aggregation-Induced Emission Probes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27260-27268.	4.0	55
1717	A CuO-functionalized NMOF probe with a tunable excitation wavelength for selective detection and imaging of H ₂ S in living cells. Nanoscale, 2018, 10, 15793-15798.	2.8	18
1718	Aromatic 3,5-Di($2\hat{a}\in^2$, $4\hat{a}\in^2$ -dicarboxylphenyl)benozoic acid based coordination polymers as luminescent sensor for the sensitive detection of chromate anions in aqueous solution. Journal of Solid State Chemistry, 2018, 266, 189-195.	1.4	15
1719	Crystalline to Crystalline Phase Transformations in Six Two-Dimensional Dynamic Metal–Organic Frameworks: Syntheses, Characterizations, and Sorption Studies. Crystal Growth and Design, 2018, 18, 5231-5244.	1.4	8
1720	A europium(III) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. Science China Materials, 2018, 61, 752-757.	3.5	25

#	Article	IF	CITATIONS
1721	3D negative thermal expansion in orthorhombic MIL-68(In). Chemical Communications, 2018, 54, 5712-5715.	2.2	34
1722	A bi-metallic MOF catalyst <i>via</i> sensitive detection & amp; adsorption of Fe ³⁺ ions for size-selective reaction prompting. Dalton Transactions, 2018, 47, 9267-9273.	1.6	19
1723	A series of porous interpenetrating metal–organic frameworks based on fluorescent ligands for nitroaromatic explosive detection. Inorganic Chemistry Frontiers, 2018, 5, 1622-1632.	3.0	51
1724	Selective chiral symmetry breaking and luminescence sensing of a Zn(<scp>ii</scp>) metal–organic framework. Dalton Transactions, 2018, 47, 7934-7940.	1.6	14
1725	Control of topology in luminescent nitrobenzene-detecting cadmium camphorate polymers via hydrogen-bonding capable dipyridyl ligands. Inorganica Chimica Acta, 2018, 479, 10-16.	1.2	6
1726	A Mechanoresponsive Fluorescent Mgâ€Zn Bimetallic MOF with Luminescent Sensing Properties. ChemistrySelect, 2018, 3, 4884-4888.	0.7	20
1727	A 2D zinc coordination polymer constructed from long and flexible N -containing tricarboxylate ligand for encapsulating Ln 3+ ions and luminescent sensing. Inorganica Chimica Acta, 2018, 479, 213-220.	1.2	6
1728	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & Detection and Rapid Adsorption of Cr _{10, 16650-16659.}	4.0	219
1729	Dual-Emission SG7@MOF Sensor via SC–SC Transformation: Enhancing the Formation of Excimer Emission and the Range and Sensitivity of Detection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18012-18020.	4.0	68
1730	The MOF ⁺ Technique: A Potential Multifunctional Platform. Chemistry - A European Journal, 2018, 24, 13701-13705.	1.7	9
1731	Treatment of cadmium(II) and zinc(II) with N2-donor linkages in presence of \hat{I}^2 -diketone ligand; supported by structural, spectral, theoretical and docking studies. Inorganica Chimica Acta, 2018, 482, 717-725.	1.2	35
1732	Structural diversity, luminescent and magnetic properties of Tb(III)/Gd(III) metal–organic frameworks constructed by Tris(p-carboxyphenyl)phosphane oxide. Inorganic Chemistry Communication, 2018, 96, 184-188.	1.8	1
1733	Yb(III)-based MOFs with different bulky backbone ligands for optical detection and degradation of organic molecules in wastewater. Polyhedron, 2018, 154, 411-419.	1.0	7
1734	MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors and Actuators B: Chemical, 2018, 275, 145-154.	4.0	55
1735	Five Diverse Multidimensional Polycarboxylate–Based Mixed–Ligand Coordination Polymers with Different N,N′–Donor Ligands: Synthesis, Characterization and Their Sorption Study. ChemistrySelect, 2018, 3, 8980-8991.	0.7	6
1736	Passing it up the ranks: hierarchical ion-size dependent supramolecular response in 1D coordination polymers. CrystEngComm, 2018, 20, 5127-5131.	1.3	3
1737	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
1738	Ligands-Coordinated Zr-Based MOF for Wastewater Treatment. Nanomaterials, 2018, 8, 655.	1.9	33

#	Article	IF	CITATIONS
1739	Metal-organic frameworks for direct electrochemical applications. Coordination Chemistry Reviews, 2018, 376, 292-318.	9.5	430
1740	Luminescent Metal–Organic Framework Thin Films: From Preparation to Biomedical Sensing Applications. Crystals, 2018, 8, 338.	1.0	30
1741	A 3D porous coordination polymer transformed from a 1D nonporous coordination polymer for selectively sensing of diiodomethane. Journal of Solid State Chemistry, 2018, 268, 62-66.	1.4	9
1742	Mesoporous Hexanuclear Copper Cluster-Based Metal–Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules. ACS Applied Materials & Dye Interfaces, 2018, 10, 31233-31239.	4.0	50
1743	Compartmentalizing Incompatible Tandem Reactions in Pickering Emulsions To Enable Visual Colorimetric Detection of Nitramine Explosives Using a Smartphone. Analytical Chemistry, 2018, 90, 11665-11670.	3.2	20
1744	A water-stable lanthanide coordination polymer as a multiresponsive luminescent sensor for Fe ³⁺ , Cr(<scp>vi</scp>) and 4-nitrophenol. Dalton Transactions, 2018, 47, 13543-13549.	1.6	55
1745	Three Co(II) metal-organic frameworks based on a substituted thiophene carboxylic acid ligand with semiconductive properties. Journal of Solid State Chemistry, 2018, 267, 68-75.	1.4	5
1746	Cavitand-Decorated Silicon Columnar Nanostructures for the Surface Recognition of Volatile Nitroaromatic Compounds. ACS Omega, 2018, 3, 9172-9181.	1.6	7
1747	Construction of structurally diverse luminescent lead(<scp>ii</scp>) fluorinated coordination polymers based on auxiliary ligands. New Journal of Chemistry, 2018, 42, 15413-15419.	1.4	8
1748	3-Fold and 6-Fold interpenetrating diamond nets based on the designed N,N'-dioxide 3,3'-benzo(c)cinnoline dicarboxylic acid with highly sensitive luminscence sensing for NACs and Fe3+ ion. Journal of Solid State Chemistry, 2018, 267, 28-34.	1.4	5
1749	Selective Sensing of Peroxynitrite by Hf-Based UiO-66-B(OH) ₂ Metal–Organic Framework: Applicability to Cell Imaging. Inorganic Chemistry, 2018, 57, 10128-10136.	1.9	31
1750	Technology for the Remediation of Water Pollution: A Review on the Fabrication of Metal Organic Frameworks. Processes, 2018, 6, 122.	1.3	53
1751	Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels. Applied Surface Science, 2018, 459, 686-692.	3.1	75
1752	Postsynthetic Metalation Metal–Organic Framework as a Fluorescent Probe for the Ultrasensitive and Reversible Detection of PO ₄ ^{3–} lons. Inorganic Chemistry, 2018, 57, 10525-10532.	1.9	102
1753	Synthesis, structure, and luminescent properties of zinc(II) complexes based on flexible phenylenediacetate ligand. Polyhedron, 2018, 154, 473-479.	1.0	5
1754	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-lon Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	1.9	20
1755	Construction of d $\langle \sup 10 \langle \sup \rangle$ metal coordination polymers based on $\langle i \rangle$ in situ $\langle i \rangle$ formed 3,5-di(1 $\langle i \rangle$ H $\langle i \rangle$ -1,2,4-triazol-1-yl)benzoic acid from different precursors: influence of $\langle i \rangle$ in situ $\langle i \rangle$ hydrolysis reactions on assembly process. CrystEngComm, 2018, 20, 5531-5543.	1.3	6
1756	Chemically stable ionic viologen-organic network: an efficient scavenger of toxic oxo-anions from water. Chemical Science, 2018, 9, 7874-7881.	3.7	91

#	Article	IF	CITATIONS
1757	Tuning Expanded Pores in Metal–Organic Frameworks for Selective Capture and Catalytic Conversion of Carbon Dioxide. ChemSusChem, 2018, 11, 3751-3757.	3.6	47
1758	An electrochemical immunosensor based on an etched zeolitic imidazolate framework for detection of avian leukosis virus subgroup J. Mikrochimica Acta, 2018, 185, 423.	2.5	15
1759	Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chemical Reviews, 2018, 118, 8889-8935.	23.0	444
1760	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	1.0	50
1761	Metallo-supramolecular assemblies of dinuclear Zn(II) and Mn(II) secondary building units (SBUs) and a bent silicon dicarboxylate ligand. Inorganica Chimica Acta, 2018, 483, 454-463.	1.2	6
1762	A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 2018, 6, 17698-17705.	5.2	102
1763	New insights into oximic ligands: Synthesis and characterization of 1D chains by the use of pyridine 2-amidoxime and polycarboxylates. Polyhedron, 2018, 151, 360-368.	1.0	7
1764	A thermosensitive fluorescent Eu-based metal–organic framework and its polyether sulfone composite film as a thermal sensor. Dalton Transactions, 2018, 47, 8330-8336.	1.6	13
1765	Hydro/solvo-thermal syntheses and characterization of a series of Cull and Cul coordination polymers with an asymmetric semi-rigid Bi-functional ligand: Temperature induced polymorphism and photo-luminescent sensing. Dyes and Pigments, 2018, 159, 187-197.	2.0	3
1766	Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C, 2018, 6, 6929-6939.	2.7	33
1767	Structural diversity and luminescent sensing of three coordination polymers based on the Structure, 2018, 1171, 54-61.	1.8	4
1768	Chiral coordination polymers based on d ¹⁰ metals and 2-aminonicotinate with blue fluorescent/green phosphorescent anisotropic emissions. Dalton Transactions, 2018, 47, 8746-8754.	1.6	12
1769	A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkylâ€Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry - A European Journal, 2018, 24, 11033-11041.	1.7	19
1770	Study on the Desorption Process of <i>n</i> -Heptane and Methyl Cyclohexane Using UiO-66 with Hierarchical Pores. ACS Applied Materials & Library; Interfaces, 2018, 10, 21612-21618.	4.0	16
1771	3D Ln ^{III} -MOFs: slow magnetic relaxation and highly sensitive luminescence detection of Fe ³⁺ and ketones. Dalton Transactions, 2018, 47, 8972-8982.	1.6	56
1772	Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews, 2018, 372, 1-30.	9.5	74
1773	Dual-emission and thermochromic luminescence alkaline earth metal coordination polymers and their blend films with polyvinylidene fluoride for detecting nitrobenzene vapor. Journal of Materials Chemistry C, 2018, 6, 7030-7041.	2.7	40
1774	Crystal Structure of Tris- (2,3,5,6-Tetrafluorobenzoato)Scandium [Sc(C6F4HCO2)3]. Journal of Structural Chemistry, 2018, 59, 494-496.	0.3	8

#	Article	IF	CITATIONS
1775	Divergent topologies in luminescent and nitrobenzene-detecting zinc diphenate coordination polymers with flexible dipyridylamide ligands. Polyhedron, 2018, 151, 369-380.	1.0	10
1776	A channel-structured Eu-based metal–organic framework with a zwitterionic ligand for selectively sensing Fe ³⁺ ions. RSC Advances, 2018, 8, 21444-21450.	1.7	24
1777	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	11.1	415
1778	Crystal Structure of Coordination Polymers Based on A Heterometallic Carboxylate Complex. Journal of Structural Chemistry, 2018, 59, 487-493.	0.3	10
1779	A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens. Analyst, The, 2018, 143, 3628-3634.	1.7	34
1780	A Trifunctional Luminescent 3D Microporous MOF with Potential for CO ₂ Separation, Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of Inorganic Chemistry, 2018, 2018, 2785-2792.	1.0	28
1781	Synthesis, Crystal Structure, and Properties of the Novel 2D Cd Coordination Polymer Based on Cd4 Cluster Chains. Journal of Cluster Science, 2018, 29, 1023-1029.	1.7	7
1782	Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework. Nature Communications, 2018, 9, 2401.	5.8	129
1783	A new water stable zinc metal organic framework as an electrode material for hydrazine sensing. New Journal of Chemistry, 2018, 42, 12486-12491.	1.4	32
1784	Two azo-functionalized luminescent 3D Cd(<scp>ii</scp>) MOFs for highly selective detection of Fe ³⁺ and Al ³⁺ . New Journal of Chemistry, 2018, 42, 12865-12871.	1.4	69
1785	A Co(<scp>ii</scp>) framework derived from a tris(4-(triazol-1-yl)phenyl)amine redox-active linker: an electrochemical and magnetic study. Dalton Transactions, 2018, 47, 9341-9346.	1.6	10
1786	A Multiâ€Responsive Cd–Viologen Complex: Photochromism, Photomodulated Fluorescence, and Luminescent Sensing. ChemistrySelect, 2018, 3, 6611-6616.	0.7	18
1787	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	1.3	29
1788	Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(<scp>ii</scp>) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Transactions, 2018, 47, 9627-9633.	1.6	92
1789	Molecular Sensors for NMR-Based Detection. Chemical Reviews, 2019, 119, 195-230.	23.0	82
1790	Metal–Organic Frameworks for Energy. Advanced Energy Materials, 2019, 9, 1801307.	10.2	160
1791	Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Materials, 2019, 18, 349-355.	9.5	105
1792	Highly selective and sensitive detection of Pb2+ and UO22+ ions based on a carboxyl-functionalized Zn(II)-MOF platform. Dyes and Pigments, 2019, 160, 159-164.	2.0	56

#	Article	IF	CITATIONS
1793	Au-Luminol-decorated porous carbon nanospheres for the electrochemiluminescence biosensing of MUC1. Nanoscale, 2019, 11, 16860-16867.	2.8	21
1794	Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. Journal of Materials Chemistry C, 2019, 7, 10743-10763.	2.7	273
1795	Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 2019, 9, 658.	1.6	26
1796	Five new coordination polymers with a Y-shaped N-heterocyclic carboxylic acid: structural diversity, bifunctional luminescence sensing and magnetic properties. CrystEngComm, 2019, 21, 5767-5778.	1.3	20
1797	Luminescence sensing, electrochemical, and magenetic properties of 2D coordination polymers based on the mixed ligands $\langle i \rangle p \langle i \rangle$ -terphenyl-2,2â \in 2â \in 236 \in 236 \in 2â \in 236 \in 236 \in 262 \in 260 coordination polymers based Journal of Chemistry, 2019, 43, 13349-13356.	hr oli ne. N	ew48
1798	From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 483001.	0.7	12
1799	Syntheses, structures and adsorption properties of two-dimensional Cd(II) coordination polymers. Polyhedron, 2019, 171, 46-52.	1.0	6
1800	Alkylamine-Integrated Metal–Organic Framework-Based Waveguide Sensors for Efficient Detection of Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Carbon Dioxide from Humid Gas Streams.	4.0	32
1801	Novel Multifunctional Zn Metal–Organic Framework Fluorescent Probe Demonstrating Unique Sensitivity and Selectivity for Detection of PA and Fe ³⁺ lons in Water Solution. Crystal Growth and Design, 2019, 19, 5729-5736.	1.4	62
1802	Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Mikrochimica Acta, 2019, 186, 620.	2.5	64
1803	Synthesis of symmetric ionic liquids and their evaluation of nonlinear optical properties. Optical Materials, 2019, 96, 109276.	1.7	9
1804	Design of a Multifunctional Indium–Organic Framework: Fluorescent Sensing of Nitro Compounds, Physical Adsorption, and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry, 2019, 58, 11220-11230.	1.9	71
1805	Location determination of metal nanoparticles relative to a metal-organic framework. Nature Communications, 2019, 10, 3462.	5.8	99
1806	Structural Diversity in Luminescent MOFs Containing a Bent Electronâ€rich Dicarboxylate Linker and a Flexible Capping Ligand: Selective Detection of 4â€Nitroaniline in Water. Chemistry - an Asian Journal, 2019, 14, 3712-3720.	1.7	16
1807	Theoretical prediction of thermal and electronic properties of metal-organic frameworks. Journal of Industrial and Engineering Chemistry, 2019, 80, 136-151.	2.9	10
1808	Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+. Journal of Solid State Chemistry, 2019, 278, 120892.	1.4	32
1809	Synthesis, structure and luminescence of lanthanide coordination polymers based on the 1,3-Bis(carboxymethyl) imidazolium salt. Journal of Solid State Chemistry, 2019, 278, 120900.	1.4	12
1810	Tailor-made porous polymer and silica monolithic designs as probe anchoring templates for the solid-state naked eye sensing and preconcentration of hexavalent chromium. Sensors and Actuators B: Chemical, 2019, 298, 126896.	4.0	21

#	ARTICLE	IF	CITATIONS
1811	Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	1.9	92
1812	Green synthesis of nanoscale cobalt(<scp>ii</scp>)-based MOFs: highly efficient photo-induced green catalysts for the degradation of industrially used dyes. Dalton Transactions, 2019, 48, 13869-13879.	1.6	33
1813	A homochiral lead(II) double-stranded helical coordination network as luminescent sensor for iron(III). Journal of Solid State Chemistry, 2019, 277, 769-772.	1.4	6
1814	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	4.0	44
1815	Two bifunctional photoluminescent Zn (II) coordination polymers for detection of Fe3+ ion and nitrobenzene. Inorganic Chemistry Communication, 2019, 107 , 107479 .	1.8	6
1816	A naphthalenediimide-based Co-MOF as naked-eye colorimetric sensor to humidity. Journal of Solid State Chemistry, 2019, 277, 658-664.	1.4	18
1817	Macromolecular Probe Based on a Ni ^{II} /Tb ^{III} Coordination Polymer for Sensitive Recognition of Human Serum Albumin (HSA) and MnO ₄ [–] . ACS Omega, 2019, 4, 11949-11959.	1.6	8
1818	Peripheral Fluorophore Functionalized Shapeâ€Persistent [2+3] Organic Cage for Highly Selective Detection of Picric Acid. ChemistrySelect, 2019, 4, 7991-7995.	0.7	5
1819	Metal-organic frameworks for detection and desensitization of environmentally hazardous nitro-explosives and related high energy materials., 2019,, 231-283.		4
1820	Effective luminescence sensing of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , MnO ₄ ^{â^'} and 4-nitrophenol by lanthanide metalâ€"organic frameworks with a new topology type. Dalton Transactions, 2019, 48, 12287-12295.	1.6	88
1821	Sensing and sequestration of inorganic cationic pollutants by metal-organic frameworks. , 2019, , 63-93.		2
1822	Instantaneous detection of explosive and toxic nitroaromatic compounds <i>via </i> donor–acceptor complexation. Journal of Materials Chemistry C, 2019, 7, 9257-9262.	2.7	13
1823	Two Co ^{II} coordination polymers of biphenyl-2,2′,5,5′-tetracarboxylic acid with flexible N-donor ligands: syntheses, structures and magnetic properties. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1073-1083.	0.2	1
1824	Recent Progress in Metal–Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials, 2019, 9, 974.	1.9	52
1825	Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Progress in Materials Science, 2019, 106, 100579.	16.0	63
1826	EPR characterization of vanadium dopant sites in DUT-5(Al). Optical Materials, 2019, 94, 217-223.	1.7	4
1827	Ligand-Rearrangement-Induced Transformation from a 3D Supramolecular Network to a Discrete Octanuclear Cluster: A Good Detector for Pb2+ and Cr2O72–. ACS Omega, 2019, 4, 11493-11499.	1.6	5
1828	A Superacid-catalyzed Synthesis of Fluorescent Covalent Triazine Based Framework Containing Perylene Tetraanhydride Bisimide for Sensing to O-nitrophenol with Ultrahigh Sensitivity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 1004-1011.	1.2	11

#	Article	IF	Citations
1829	All Roads Lead to Rome: Tuning the Luminescence of a Breathing Catenated Zr-MOF by Programmable Multiplexing Pathways. Chemistry of Materials, 2019, 31, 5550-5557.	3.2	30
1830	Intracellular Imaging of Glutathione with MnO ₂ Nanosheet@Ru(bpy) ₃ ²⁺ –UiO-66 Nanocomposites. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 31693-31699.	4.0	47
1831	Selective detection of two representative organic arsenic compounds in aqueous medium with metal–organic frameworks. Environmental Science: Nano, 2019, 6, 2759-2766.	2.2	33
1832	Antibiotic-triggered reversible luminescence switching in amine-grafted mixed-linker MOF: exceptional turn-on and ultrafast nanomolar detection of sulfadiazine and adenosine monophosphate with molecular keypad lock functionality. Journal of Materials Chemistry A, 2019, 7, 19471-19484.	5.2	96
1833	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58
1834	A Waterâ€Stable Terbium(III)–Organic Framework as a Chemosensor for Inorganic Ions, Nitroâ€Containing Compounds and Antibiotics in Aqueous Solutions. Chemistry - an Asian Journal, 2019, 14, 3694-3701.	1.7	163
1835	Computational insights into the mechanism of formaldehyde detection by luminescent covalent organic framework. Journal of Molecular Modeling, 2019, 25, 248.	0.8	4
1836	Bifunctional bioplatform based on NiCo Prussian blue analogue: Label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensors and Actuators B: Chemical, 2019, 298, 126852.	4.0	53
1837	Zn(<scp>ii</scp>)-based coordination polymer: An emissive signaling platform for the recognition of an explosive and a pesticide in an aqueous system. Dalton Transactions, 2019, 48, 12382-12385.	1.6	21
1838	A robust cage-based framework for the highly selective purification of natural gas. Chemical Communications, 2019, 55, 10257-10260.	2.2	19
1839	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie, 2019, 131, 14517-14523.	1.6	12
1840	Pressureâ€Induced Multiphoton Excited Fluorochromic Metalâ€"Organic Frameworks for Improving MPEF Properties. Angewandte Chemie - International Edition, 2019, 58, 14379-14385.	7.2	53
1841	Experimental and theoretical exploration of sensing and magnetic properties of a triply bridged dicopper(II) complex: The first discrete metal complex to sense picric acid in pure water. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111987.	2.0	11
1842	MIP-coated Eu(BTC) for the fluorometric determination of lincomycin in eggs. Analytical Methods, 2019, 11, 4501-4510.	1.3	9
1843	Unravelling Why and to What Extent the Topology of Similar Ceâ€Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. Advanced Science, 2019, 6, 1901020.	5.6	34
1844	Aqueous-Phase Differentiation and Speciation of Fe ³⁺ and Fe ²⁺ Using Water-Stable Photoluminescent Lanthanide-Based Metal–Organic Framework. ACS Applied Nano Materials, 2019, 2, 5169-5178.	2.4	41
1845	A novel cucurbit[6]uril-based supramolecular coordination assembly as a multi-responsive luminescent sensor for Fe ³⁺ , Cr ₂ O ₇ ^{2â°'} and isoquinoline antibiotics in aqueous medium. Journal of Materials Chemistry C, 2019, 7, 8992-8999.	2.7	45
1846	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10

#	Article	lF	CITATIONS
1847	Cytomembraneâ€Mediated Transport of Metal Ions with Biological Specificity. Advanced Science, 2019, 6, 1900835.	5.6	22
1848	Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.	5.7	85
1849	Crystal structures, one- and two-photon excited fluorescence of two complexes based on D-Ï∈-A structural 2,2-bipyridine derivative. Dyes and Pigments, 2019, 171, 107669.	2.0	3
1850	Concurrent Modulation of Competitive Mechanisms to Design Stimuliâ€Responsive Lnâ€MOFs: A Lightâ€Operated Dualâ€Mode Assay for Oxidative DNA Damage. Advanced Functional Materials, 2019, 29, 1903058.	7.8	42
1851	A PHBA-functionalized organic-inorganic hybrid polyoxometalate as a luminescent probe for selectively sensing chromium and calcium in aqueous solution. Dyes and Pigments, 2019, 171, 107696.	2.0	27
1852	Structural variation from linear, layer to 3D framework: Syntheses, structures and luminescence. Applied Organometallic Chemistry, 2019, 33, e5056.	1.7	1
1853	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
1854	$[2+2]$ cycloaddition reaction and luminescent sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2\hat{a}'} ions by a cadmium-based coordination polymer. Dalton Transactions, 2019, 48, 12159-12167.	1.6	18
1855	Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 2019, 11, 26956-26969.	4.0	28
1856	Series of Cadmium(II) Coordination Polymers Based on a Versatile Multi-N-Donor Tecton or Mixed Carboxylate Ligands: Synthesis, Structure, and Selectively Sensing Property. ACS Omega, 2019, 4, 11540-11553.	1.6	19
1857	New Doubly Interpenetrated MOF with [Zn ₄ O] Clusters and Its Doped Isomorphic MOF: Sensing, Dye, and Gas Adsorption Capacity. Crystal Growth and Design, 2019, 19, 6774-6783.	1.4	52
1858	A Series of 3D Porous Lanthanide-Substituted Polyoxometalate Frameworks Based on Rare Hexadecahedral {Ln ₆ W ₈ O ₂₈ } Heterometallic Cage-Shaped Clusters. Inorganic Chemistry, 2019, 58, 14734-14740.	1.9	27
1859	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie - International Edition, 2019, 58, 17033-17040.	7.2	71
1860	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.	7.2	205
1861	A Discrete Molecule and a 1D Coordination Polymer of Cadmium(II): Preparation, Structures, and		

#	Article	IF	Citations
1865	A new synthetic approach for substitutional solid solutions in a 3D coordination polymer: Cation vacancy, and tunable photoluminescence. Journal of Solid State Chemistry, 2019, 279, 120948.	1.4	6
1866	A new luminescent anionic metal–organic framework based on heterometallic zinc(II)–barium(II) for selective detection of Fe ³⁺ and Cu ²⁺ ions in aqueous solution. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1372-1380.	0.2	5
1867	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie, 2019, 131, 17189-17196.	1.6	21
1868	Efficient Sensing of Trinitrotoluene Using a Photoluminescent Benzo[<i>a</i>)]fluorenone Derivative. ChemistrySelect, 2019, 4, 10164-10168.	0.7	6
1869	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	1.9	38
1870	Study on selenium accumulation characteristics of Lycopersicon esculentum, Solanum melongena and Solanum nigrum. IOP Conference Series: Earth and Environmental Science, 2019, 310, 042065.	0.2	1
1871	Selective Sensing of Fe ³⁺ lons Using a Water-stable Magnesium Coordination Polymer. Chemistry Letters, 2019, 48, 156-158.	0.7	6
1872	Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nature Communications, 2019, 10, 5117.	5.8	150
1873	A novel photochromic metal organic framework based on viologen exhibiting benzene detection and photocontrolled luminescence properties in solid state. Inorganic Chemistry Communication, 2019, 110, 107610.	1.8	21
1874	Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks. Analytical Chemistry, 2019, 91, 15853-15859.	3.2	37
1875	Tetraphenylimidazole-based luminophores for explosive chemosensors and OLEDs: experimental and theoretical investigation. Materials Today Chemistry, 2019, 14, 100201.	1.7	13
1876	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	2.2	16
1877	Fixing Flexible Arms of Core-Shared Ligands to Enhance the Stability of Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 15909-15916.	1.9	14
1878	Synthesis, Structures and Fluorescence Properties of Two Novel Cadmium MOFs Based on a Tetraphenylethene(TPE) ore Ligand. ChemistrySelect, 2019, 4, 12380-12385.	0.7	13
1879	Dy(III)-Based Metal–Organic Framework as a Fluorescent Probe for Highly Selective Detection of Picric Acid in Aqueous Medium. Inorganic Chemistry, 2019, 58, 16065-16074.	1.9	64
1880	Catalytic Metal Nanoparticles Embedded in Conductive Metal–Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Advanced Science, 2019, 6, 1900250.	5.6	59
1881	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie, 2019, 131, 18193-18199.	1.6	62
1882	Fluorescent "Turnâ€on―Sensing Based on Metal–Organic Frameworks (MOFs). Chemistry - an Asian Journal, 2019, 14, 4506-4519.	1.7	140

#	Article	IF	CITATIONS
1883	A Bispyrazole Based Porous 2D Luminescent MOF for the Turnâ€Off Detection of Pd(II) Ions. ChemistrySelect, 2019, 4, 9578-9582.	0.7	4
1884	Synthesis and characterization of a luminescent Ni(II)-compound based on tpt and m-H2bdc detecting picric acid and chromate anions in aqueous. Inorganica Chimica Acta, 2019, 497, 119096.	1.2	5
1885	Metal–Organic Frameworks Based on a Bent Triazole Dicarboxylic Acid: Magnetic Behaviors and Selective Luminescence Sensing Properties. Crystal Growth and Design, 2019, 19, 1057-1063.	1.4	21
1886	Electronâ€Rich Ï€â€Extended Diindolotriazatruxeneâ€Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. ChemPlusChem, 2019, 84, 1623-1629.	1.3	7
1887	Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech, 2019, 9, 29.	1,1	60
1888	In-situ S/TEM Probing of the Coupling among Electrochemical, Thermal, and Mechanical Effect in Rechargeable Batteries. Microscopy and Microanalysis, 2019, 25, 2164-2165.	0.2	0
1889	Ce(III)-Based Frameworks: From 1D Chain to 3D Porous Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 7096-7105.	1.4	15
1890	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	5.2	94
1891	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	18.7	630
1892	A highly selective and sensitive fluorescent sensor based on Tb ³⁺ -functionalized MOFs to determine arginine in urine: a potential application for the diagnosis of cystinuria. Analyst, The, 2019, 144, 5875-5881.	1.7	32
1893	Self-assembly of emissive metallocycles with tetraphenylethylene, BODIPY and terpyridine in one system. Supramolecular Chemistry, 2019, 31, 597-605.	1.5	8
1894	Two entangled photoluminescent MOFs of naphthalenedisulfonate and bis(benzimidazole) ligands for selective sensing of Fe3+. Journal of Solid State Chemistry, 2019, 278, 120926.	1.4	27
1895	Photoluminescent metal–organic frameworks and their application for sensing biomolecules. Journal of Materials Chemistry A, 2019, 7, 22744-22767.	5.2	224
1896	Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal–Organic Framework. Chemistry of Materials, 2019, 31, 7933-7940.	3.2	21
1897	Alkaline Hydrolysis Behavior of Metal–Organic Frameworks NH ₂ -MIL-53(Al) Employed for Sensitive Immunoassay via Releasing Fluorescent Molecules. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35597-35603.	4.0	45
1898	Tuning the net topology of a ternary Ag(i)-1,2,4,5-tetra(4-pyridyl)benzene-carboxylate framework: structures and photoluminescence. CrystEngComm, 2019, 21, 6446-6451.	1.3	9
1899	Tetrahedral UMOFNs/Ag ₃ PO ₄ Coreâ€"Shell Photocatalysts for Enhanced Photocatalytic Activity under Visible Light. ACS Omega, 2019, 4, 15975-15984.	1.6	16
1900	A Robust Multifunctional Eu ₆ -Cluster Based Framework for Gas Separation and Recognition of Small Molecules and Heavy Metal Ions. Crystal Growth and Design, 2019, 19, 6381-6387.	1.4	26

#	ARTICLE	IF	CITATIONS
1901	Assembly of Two Isostructural Metal-organic Frameworks Based on Hetero-N,O Donor Ligand for Detecting Nitro Explosives. Chemical Research in Chinese Universities, 2019, 35, 762-766.	1.3	3
1902	Thiazolothiazole-Based Luminescent Metal–Organic Frameworks with Ligand-to-Ligand Energy Transfer and Hg ²⁺ -Sensing Capabilities. Inorganic Chemistry, 2019, 58, 12707-12715.	1.9	67
1903	On the potential for nanoscale metal–organic frameworks for energy applications. Journal of Materials Chemistry A, 2019, 7, 21545-21576.	5.2	88
1904	Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. Chinese Chemical Letters, 2019, 30, 1931-1934.	4.8	13
1905	LCOFs: Role of the excited state hydrogen bonding in the detection for nitro-explosives. Journal of Luminescence, 2019, 215, 116733.	1.5	7
1906	Selective Detection of Aromatic Nitrophenols by a Metal–Organic Framework-Based Fluorescent Sensor. Crystal Growth and Design, 2019, 19, 6308-6314.	1.4	65
1907	Fluorescent chitosan hydrogel for highly and selectively sensing of p-nitrophenol and 2, 4, 6-trinitrophenol. Carbohydrate Polymers, 2019, 225, 115253.	5.1	41
1908	Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678.	3.5	132
1909	Tetraphenylethylene-Decorated Metal–Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorganic Chemistry, 2019, 58, 12700-12706.	1.9	152
1910	Metal-organic frameworks as materials for applications in sensors. Mendeleev Communications, 2019, 29, 361-368.	0.6	33
1911	Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coordination Chemistry Reviews, 2019, 401, 213065.	9.5	173
1912	Magnesium based coordination polymers: Syntheses, structures, properties and applications. Coordination Chemistry Reviews, 2019, 399, 213025.	9.5	17
1913	Diverse 2D and 3D topologies in cobalt cyclohexyldicarboxylate coordination polymers with bis(4-pyridylmethyl)piperazine coligands. Inorganica Chimica Acta, 2019, 498, 119122.	1.2	3
1914	Four 3D metal-organic frameworks formed by 1,4-bis(imidazol-1-yl)terephthalic acid: Synthesis, luminescent sensing and magnetic properties. Journal of Solid State Chemistry, 2019, 279, 120909.	1.4	8
1915	Eu(III) doped zinc metal organic framework material and its sensing detection for nitrobenzene. Journal of Solid State Chemistry, 2019, 280, 120984.	1.4	23
1916	Effect of pH on the construction of zinc coordination polymers based on carboxylate functionalized triazole derivative ligand. Journal of Molecular Structure, 2019, 1198, 126905.	1.8	4
1917	Bimetallic-organic coordination polymers to prepare N-doped hierarchical porous carbon for high performance supercapacitors. Progress in Natural Science: Materials International, 2019, 29, 495-503.	1.8	15
1918	Structural diversity in cobalt camphorate coordination polymers with flexible dipyridylamide ligands including looped layers and self-penetrated topologies. Inorganica Chimica Acta, 2019, 498, 119087.	1.2	4

#	Article	IF	CITATIONS
1919	Metal–Organic Framework (MOF)-based Nanomaterials for Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 3341-3369.	1.2	117
1920	Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. TrAC - Trends in Analytical Chemistry, 2019, 120, 115654.	5 . 8	47
1921	Solvatochromism and Selective Sorption of Volatile Organic Solvents in Pyridylbenzoate Metal-Organic Frameworks. Chemistry, 2019, 1, 111-125.	0.9	4
1922	A benzimidazolyl terpyridine-Fe2+ system and its recognition driven molecular model of a traffic light. Dalton Transactions, 2019, 48, 158-167.	1.6	0
1923	A rational design and green synthesis of 3D metal organic frameworks containing a rigid heterocyclic nitrogen-rich dicarboxylate: structural diversity, CO ₂ sorption and selective sensing of 2,4,6-TNP in water. Dalton Transactions, 2019, 48, 2388-2398.	1.6	37
1924	Simple and sensitive colorimetric detection of a trace amount of 2,4,6-trinitrotoluene (TNT) with QD multilayer-modified microchannel assays. Materials Chemistry Frontiers, 2019, 3, 193-198.	3.2	21
1925	Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Analytica Chimica Acta, 2019, 1055, 74-80.	2.6	42
1926	Rare metal-ion metathesis of a tetrahedral Zn(<scp>ii</scp>) core of a noncentrosymmetric (3,4)-connected 3D MOF. Dalton Transactions, 2019, 48, 1950-1954.	1.6	7
1927	Zinc-based CPs for effective detection of Fe3+ and Cr2O72â^' ions. New Journal of Chemistry, 2019, 43, 1494-1504.	1.4	26
1928	Zinc(<scp>ii</scp>)–organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2,6-dichloro-4-nitroaniline, Fe(<scp>iii</scp>) and Cr(<scp>vi</scp>). New Journal of Chemistry, 2019, 43, 2353-2361.	1.4	113
1929	A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption. Inorganic Chemistry Frontiers, 2019, 6, 263-270.	3.0	47
1930	A water-stable luminescent metal–organic framework for effective detection of aflatoxin B1 in walnut and almond beverages. RSC Advances, 2019, 9, 620-625.	1.7	39
1931	A luminescent metal–organic framework integrated hydrogel optical fibre as a photoluminescence sensing platform for fluorescence detection. Journal of Materials Chemistry C, 2019, 7, 897-904.	2.7	45
1932	Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm, 2019, 21, 494-501.	1.3	25
1933	La(III)-based MOFs with 5-aminoisophthalic acid for optical detection and degradation of organic molecules in water. Polyhedron, 2019, 162, 255-262.	1.0	15
1934	Cu ²⁺ -BTC based metal–organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine. New Journal of Chemistry, 2019, 43, 3119-3127.	1.4	42
1935	Space-confined indicator displacement assay inside a metal–organic framework for fluorescence turn-on sensing. Chemical Science, 2019, 10, 3307-3314.	3.7	62
1936	8-Hydroxyquinolinate-Based Metal–Organic Frameworks: Synthesis, Tunable Luminescent Properties, and Highly Sensitive Detection of Small Molecules and Metal Ions. Inorganic Chemistry, 2019, 58, 2444-2453.	1.9	72

#	Article	IF	CITATIONS
1937	Supramolecular Aggregate of Cadmium(II)-Based One-Dimensional Coordination Polymer for Device Fabrication and Sensor Application. Inorganic Chemistry, 2019, 58, 2686-2694.	1.9	89
1939	A Dual Associated-Functional Fluorescent Switch: From Alternate Detection Cycle for Fe(III) and pH to Molecular Logic Operations. Inorganic Chemistry, 2019, 58, 2122-2132.	1.9	15
1940	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	3.2	165
1941	Multifunctional luminescent coordination polymers based on tricarboxylic acid for the detection of 2,4-dinitrophenol and iron(<scp>iii</scp>) and aluminum(<scp>iii</scp>) ions. New Journal of Chemistry, 2019, 43, 3690-3697.	1.4	34
1942	Synthesis and structural characterizations of nine non-covalent-bonded Zn2+, and Cd2+ supramolecules based on 3,5-dimethylpyrazole and carboxylates. Polyhedron, 2019, 159, 408-425.	1.0	17
1943	Zn and Co redox active coordination polymers as efficient electrocatalysts. Dalton Transactions, 2019, 48, 3601-3609.	1.6	41
1944	Building Block and Directional Bonding Approaches for the Synthesis of $\{DyMn \cdot sub \cdot 4 \cdot sub \cdot i \cdot n \cdot i \cdot n \cdot i \cdot n \cdot i \cdot = 2, 3\}$ Metallacrown Assemblies. Crystal Growth and Design, 2019, 19, 1896-1902.	1.4	23
1945	Three novel topologically different metal–organic frameworks built from 3-nitro-4-(pyridin-4-yl)benzoic acid. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 150-160.	0.2	5
1946	\hat{l}^2 -Octaalkoxyporphyrins: Versatile fluorometric sensors towards nitrated explosives. Journal of Porphyrins and Phthalocyanines, 2019, 23, 287-295.	0.4	4
1947	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	9.5	126
1948	Octahedron-shaped three-shell Ln _{14} -substituted polyoxotungstogermanates encapsulating a W _{4} O _{15} cluster: luminescence and frequency dependent magnetic properties. Chemical Communications, 2019, 55, 2857-2860.	2.2	59
1949	Tunable Light Emission and Multiresponsive Luminescent Sensitivities in Aqueous Solutions of Two Series of Lanthanide Metal–Organic Frameworks Based on Structurally Related Ligands. ACS Applied Materials & Interfaces, 2019, 11, 7914-7926.	4.0	198
1950	Co(<scp>ii</scp>)-cluster-based metal–organic frameworks as efficient heterogeneous catalysts for selective oxidation of arylalkanes. CrystEngComm, 2019, 21, 1666-1673.	1.3	12
1951	Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. Journal of Materials Chemistry C, 2019, 7, 2625-2632.	2.7	54
1952	Mechanochemical synthesis of metal–organic frameworks. Polyhedron, 2019, 162, 59-64.	1.0	161
1953	A spin crossover porous hybrid architecture for potential sensing applications. Chemical Communications, 2019, 55, 194-197.	2.2	40
1954	Fast, sensitive, selective and reversible fluorescence monitoring of TATP in a vapor phase. Chemical Communications, 2019, 55, 941-944.	2.2	33
1955	A new 3D luminescent Zn(ii)–organic framework containing a quinoline-2,6-dicarboxylate linker for the highly selective sensing of Fe(iii) ions. Dalton Transactions, 2019, 48, 1766-1773.	1.6	49

#	Article	IF	CITATIONS
1956	A water-stable Eu ^{III} -based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants. Dalton Transactions, 2019, 48, 1843-1849.	1.6	95
1957	Triazole-amide isosteric pyridine-based supramolecular gelators in metal ion and biothiol sensing with excellent performance in adsorption of heavy metal ions and picric acid from water. New Journal of Chemistry, 2019, 43, 934-945.	1.4	26
1958	One-step fabrication of a boric acid-functionalized lanthanide metal–organic framework as a ratiometric fluorescence sensor for the selective recognition of dopamine. New Journal of Chemistry, 2019, 43, 1291-1298.	1.4	43
1959	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	3.7	129
1960	"Receptor free―inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states. Analyst, The, 2019, 144, 669-676.	1.7	45
1961	A simple functionalized silica microsphere for fast PETN vapor detection based on fluorescence color changes <i>via</i> a catalyzed oxidation process. Analyst, The, 2019, 144, 1361-1368.	1.7	2
1962	Aqueous synthesis of three-dimensional fluorescent silicon-based nanoscale networks featuring unusual anti-photobleaching properties. Chemical Communications, 2019, 55, 652-655.	2.2	4
1963	Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chemical Communications, 2019, 55, 1382-1385.	2.2	73
1964	3D Ln ^{III} -MOFs: displaying slow magnetic relaxation and highly sensitive luminescence sensing of alkylamines. CrystEngComm, 2019, 21, 694-702.	1.3	22
1965	A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1,4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion. Inorganica Chimica Acta, 2019, 493, 72-80.	1.2	14
1966	A copper(<scp>ii</scp>)-coordination polymer based on a sulfonic–carboxylic ligand exhibits high water-facilitated proton conductivity. Dalton Transactions, 2019, 48, 11034-11044.	1.6	7
1967	An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117283.	2.0	27
1968	Metal–Organic Framework as a Chemosensor Based on Luminescence Properties for Monitoring Cetyltrimethylammonium Bromide and Its Application in Smartphones. Inorganic Chemistry, 2019, 58, 8388-8395.	1.9	27
1969	The synthesis and electrochemical applications of core–shell MOFs and their derivatives. Journal of Materials Chemistry A, 2019, 7, 15519-15540.	5.2	126
1970	Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(<scp>ii</scp>)/Cu(<scp>ii</scp>) coordination frameworks. Dalton Transactions, 2019, 48, 10122-10128.	1.6	9
1971	Ion-exchange resin as a new tool for characterisation of coordination compounds and MOFs by NMR spectroscopy. Chemical Communications, 2019, 55, 8106-8109.	2.2	5
1972	Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: Overcoming the limitations of cluster light-emitting diodes. Science Advances, 2019, 5, eaav9857.	4.7	81
1973	Crystal Structure And Luminescent Property of a New Two-Dimensional Polymer Based on 1,4-Bis(4-(Imidazole-1-yl)Benzyl)Piperazine. Journal of Structural Chemistry, 2019, 60, 803-809.	0.3	2

#	Article	IF	CITATIONS
1974	Conducting Polymers and Metal-Organic Frameworks as Advanced Materials for Development of Nanosensors. , 2019, , 43-62.		2
1975	Slow relaxation in doped coordination polymers and dimers based on lanthanoids and anilato ligands. Polyhedron, 2019, 170, 476-485.	1.0	12
1976	Cluster-based Call, MgII and CdII coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics. Dyes and Pigments, 2019, 170, 107631.	2.0	28
1977	A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties. Crystal Growth and Design, 2019, 19, 4571-4578.	1.4	26
1978	Three coordination polymers based on 3-(3′,5′-dicarboxylphenoxy)phthalic acid and auxiliary N-donor ligands: syntheses, structures, and highly selective sensing for nitro explosives and Fe ³⁺ ions. CrystEngComm, 2019, 21, 4557-4567.	1.3	28
1979	UiO-68-PT MOF-Based Sensor and Its Mixed Matrix Membrane for Detection of HClO in Water. Inorganic Chemistry, 2019, 58, 9890-9896.	1.9	29
1980	Full-color emission of a Eu ³⁺ -based mesoporous hybrid material modulated by Zn ²⁺ ions: emission color changes for Zn ²⁺ sensing <i>via</i> an ion exchange approach. Dalton Transactions, 2019, 48, 10547-10556.	1.6	19
1981	Post-synthetic modification of a Tb-based metal–organic framework for highly selective and sensitive detection of metal ions in aqueous solution. New Journal of Chemistry, 2019, 43, 10232-10236.	1.4	13
1982	Aggregation-induced emission (AIE)-active polymers for explosive detection. Polymer Chemistry, 2019, 10, 3822-3840.	1.9	120
1983	A dual-emissive MOF for the simultaneous detection of tetrachlorobenzoquinone isomers in their mixtures. Journal of Materials Chemistry C, 2019, 7, 8626-8633.	2.7	31
1984	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	1.6	58
1985	Triptycene-Derived Photoresponsive Fluorescent Azo-Polymer as Chemosensor for Picric Acid Detection. ACS Omega, 2019, 4, 9383-9392.	1.6	35
1986	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	18.7	260
1987	Acetonitrile sensing property of a microporous Co(II) metal-organic framework based on azobenzenetetracarboxylate ligand. Inorganic Chemistry Communication, 2019, 106, 144-150.	1.8	4
1988	Recent applications of metal–organic frameworks in matrix-assisted laser desorption/ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4509-4522.	1.9	12
1989	A three-dimensional Cd(<scp>ii</scp>) metal–organic framework: a bifunctional luminescence sensor for benzaldehyde and Fe ²⁺ ions. New Journal of Chemistry, 2019, 43, 10575-10582.	1.4	12
1990	Water- and Thermal-Stable Silver-Based Photoluminescent Metal-Organic Coordination Polymer for Highly Selective Lead Ion Sensing. Bulletin of the Chemical Society of Japan, 2019, 92, 1430-1435.	2.0	15
1991	Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. Journal of Materials Chemistry C, 2019, 7, 8155-8175.	2.7	104

#	Article	IF	CITATIONS
1992	Waterâ€Stable Coordination Polymers as Dual Fluorescent Sensors for Highly Oxidizing Anions Cr ₂ O ₇ ^{2a^'} and MnO ₄ ^{â^'} . Chemistry - an Asian Journal, 2019, 14, 3620-3626.	1.7	42
1993	The structures of MOFs prepared from 1,3,5â€tris [4â€pyridylethynyl]â€benzene and a copper(I) perchlorate complex. Journal of the Chinese Chemical Society, 2019, 66, 1019-1026.	0.8	0
1994	Structural variation of transition metal–organic frameworks using deep eutectic solvents with different hydrogen bond donors. Dalton Transactions, 2019, 48, 10199-10209.	1.6	57
1995	Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework. Mikrochimica Acta, 2019, 186, 454.	2.5	32
1996	Coordination behaviour of 2-(Methylthio)Pyrazine with Ag(I) in the presence of different counter anions and emission properties. Polyhedron, 2019, 169, 8-13.	1.0	3
1997	Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosensors and Bioelectronics, 2019, 137, 133-139.	5.3	101
1998	Ultrathin Ni(<scp>ii</scp>)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H ₂ -production. Chemical Communications, 2019, 55, 6499-6502.	2.2	14
1999	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie, 2019, 131, 10079-10083.	1.6	21
2000	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie - International Edition, 2019, 58, 9974-9978.	7.2	176
2001	Metal-Organic Frameworks for Chemiresistive Sensors. CheM, 2019, 5, 1938-1963.	5.8	419
2002	Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews, 2019, 393, 48-78.	9.5	198
2003	Crystal structure, Hirshfeld surface analysis, and physicochemical studies of a new Cu(II) complex with 2-amino-4-methylpyrimidine. Journal of Molecular Structure, 2019, 1194, 297-304.	1.8	1
2004	Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal–organic framework. Chemical Science, 2019, 10, 6140-6148.	3.7	45
2005	Dicarboxylate-Induced Structural Diversity of Luminescent Zn(II)/Cd(II) Metal-Organic Frameworks Based on the 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 2725-2734.	1.0	17
2006	From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Journal of Chemical Theory and Computation, 2019, 15, 3793-3809.	2.3	72
2007	Emissions of terbium metal–organic frameworks modulated by dispersive/agglomerated gold nanoparticles for the construction of prostate-specific antigen biosensor. Analytical and Bioanalytical Chemistry, 2019, 411, 3979-3988.	1.9	31
2008	The novel anthracene decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-trinitrotoluene (TNT). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117115.	2.0	39
2009	Crystal Structures of Compounds Obtained in Reactions of Heterometallic Pivalate Complexes With Dicarboxylic Acids. Journal of Structural Chemistry, 2019, 60, 609-616.	0.3	8

#	Article	IF	CITATIONS
2010	Turn-on Fluorescent Detection of Hydrogen Peroxide and Triacetone Triperoxide via Enhancing Interfacial Interactions of a Blended System. Analytical Chemistry, 2019, 91, 6967-6970.	3.2	25
2011	Facile one-step solvothermal synthesis of a luminescent europium metal-organic framework for rapid and selective sensing of uranyl ions. Analytical and Bioanalytical Chemistry, 2019, 411, 4213-4220.	1.9	30
2012	1-D multifunctional Ln-CPs: Luminescence probes for Fe3+ and Cr(VI) and uncommon discriminative detection between Cr2O72â^' and CrO42â^' of Tb-CP in various media. Journal of Luminescence, 2019, 213, 140-150.	1.5	28
2013	Syntheses, structures, fluorescence sensing properties and white-light emission of lanthanide coordination polymers assembled from imidazophenanthroline derivative and isophthalate ligands. Journal of Solid State Chemistry, 2019, 276, 6-18.	1.4	10
2014	Flexible Microporous Framework Based on Pb ₄ Clusters for Highly Selective Storage and Separation of Energy Gases. Crystal Growth and Design, 2019, 19, 3103-3108.	1.4	9
2015	Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environmental Research, 2019, 174, 46-53.	3.7	98
2016	An AND logic gate-based fluorescence probe for the detection of homovanillic acid, an indicator of the tumor. Journal of Luminescence, 2019, 211, 431-436.	1.5	14
2017	Highly selective luminescent sensing of Cu2+ in aqueous solution based on a Eu(III)-centered periodic mesoporous organosilicas hybrid. Materials and Design, 2019, 172, 107712.	3.3	34
2018	Synthesis, crystal structure and fluorescent sensing property of metal–organic frameworks with 1,3-di(1H-imidazol-4-yl)benzene and 1,4-phenylenediacetate. Polyhedron, 2019, 167, 33-38.	1.0	21
2019	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15788-15794.	4.0	31
2020	A fourfold interpenetrating diamond-like three-dimensional zinc(II) coordination polymer: synthesis, crystal structure and physical properties. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 504-507.	0.2	2
2021	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie, 2019, 131, 9553-9558.	1.6	22
2022	A microporous metal–organic framework with soc topology for adsorption and separation selectivity of C2H2/CO2. Chemical Papers, 2019, 73, 2371-2375.	1.0	3
2023	A series of three isostructural 1D lanthanide coordination network based on 4,4′,4″-((benzene-1,3,5-triyltris(methylene))tris(oxy))tribenzoate ligand: Synthesis, crystal structure and photophysical properties. Inorganica Chimica Acta, 2019, 494, 21-29.	1.2	3
2024	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie - International Edition, 2019, 58, 9453-9458.	7.2	132
2025	Effect of Aromatic and Aliphatic Hydrocarbons on the Spectral and Luminescent Properties of Composites Derived from a Zinc-Containing Coordination Polymer and Dyes. Theoretical and Experimental Chemistry, 2019, 55, 29-35.	0.2	1
2026	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	5.2	68
2027	Synthesis, Crystal Structures, and Magnetic Properties of Three Cobalt(II) Coordination Polymers Constructed from 3,5-Pyridinedicarboxylic Acid or 3,4-Pyridinedicarboxylic Acid Ligands. Crystals, 2019, 9, 166.	1.0	7

#	Article	IF	CITATIONS
2028	Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives. ACS Omega, 2019, 4, 7738-7749.	1.6	58
2029	Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	3.7	28
2030	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
2031	Metal–Organic Framework Enhances Aggregation-Induced Fluorescence of Chlortetracycline and the Application for Detection. Analytical Chemistry, 2019, 91, 5913-5921.	3.2	130
2032	Direct Blue Light-Induced Autocatalytic Oxidation of <i>o</i> o-Phenylenediamine for Highly Sensitive Visual Detection of Triaminotrinitrobenzene. Analytical Chemistry, 2019, 91, 6155-6161.	3.2	19
2033	Enhanced Visual Wireless Electrochemiluminescence Immunosensing of Prostate-Specific Antigen Based on the Luminol Loaded into MIL-53(Fe)-NH ₂ Accelerator and Hydrogen Evolution Reaction Mediation. Analytical Chemistry, 2019, 91, 6383-6390.	3.2	71
2034	Switching the Zinc Diphosphonates from 1D Chain to 2D Layer and 3D Framework by the Modulation of a Flexible Organic Amine. Crystal Growth and Design, 2019, 19, 2919-2926.	1.4	15
2035	Highly Chemically Stable MOFs with Trifluoromethyl Groups: Effect of Position of Trifluoromethyl Groups on Chemical Stability. Inorganic Chemistry, 2019, 58, 5725-5732.	1.9	43
2036	Strontiumâ€Carboxylateâ€Based Coordination Polymers: Synthesis, Structure and Dielectric Properties. ChemistrySelect, 2019, 4, 4756-4766.	0.7	8
2037	A fluorescent probe for Cd ²⁺ detection based on the aggregation-induced emission enhancement of aqueous Zn–Ag–In–S quantum dots. Analytical Methods, 2019, 11, 2559-2564.	1.3	23
2038	A hydrolytically stable europium–organic framework for the selective detection of radioactive Th ⁴⁺ in aqueous solution. CrystEngComm, 2019, 21, 3471-3477.	1.3	13
2039	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
2040	Thermal decomposition of inclusion compounds and metal–organic frameworks on the basis of heterometallic complex [Li2Zn2(bpdc)3]. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4453-4461.	2.0	3
2041	Study on structure and properties of two metal coordination polymers prepared by 3,5-Bis (4-carboxy-phenoxy)benzoic acid. Journal of Molecular Structure, 2019, 1188, 238-243.	1.8	2
2042	Density Functional Theory Studies of Catalytic Sites in Metal- Organic Frameworks. , 0, , .		3
2043	Highly sensitive fluorescent metal-organic framework as a selective sensor of MnVII and CrVI anions (MnO4â^'/Cr2O72â^'/CrO42â^') in aqueous solutions. Analytica Chimica Acta, 2019, 1064, 119-125.	2.6	69
2044	A silicon-cored tetraphenyl benzene derivative with aggregation-induced emission enhancement as a fluorescent probe for nitroaromatic compounds detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 395-403.	2.0	10
2045	Sensing and Discrimination of Explosives at Variable Concentrations with a Large-Pore MOF as Part of a Luminescent Array. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11618-11626.	4.0	54

#	Article	IF	CITATIONS
2046	Dye-insertion dynamic breathing MOF as dual-emission platform for antibiotics detection and logic molecular operation. Sensors and Actuators B: Chemical, 2019, 288, 307-315.	4.0	32
2047	Methanol Sensing by a Luminescent Zinc(II)â€Based Metalâ^Organic Framework. ChemPlusChem, 2019, 84, 307-313.	1.3	9
2048	Fluorescent sensing properties of Cd(II)/Zn(II) metal–organic frameworks based on 3,5-di(2′,5′-dicarboxylphenyl)benozoic acid. Polyhedron, 2019, 164, 90-95.	1.0	22
2049	Design of a Zn-MOF biosensor <i>via</i> a ligand "lock―for the recognition and distinction of S-containing amino acids. Chemical Communications, 2019, 55, 4059-4062.	2.2	25
2050	Ratiometric and Turn-On Luminescence Detection of Water in Organic Solvents Using a Responsive Europium-Organic Framework. Analytical Chemistry, 2019, 91, 4845-4851.	3.2	93
2051	A multifunctional Zn(II)-based four-fold interpenetrated metal-organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). Inorganic Chemistry Communication, 2019, 103, 21-24.	1.8	15
2052	Synthesis, Structures and Electrochemical Properties of Lithium 1,3,5-Benzenetricarboxylate Complexes. Polymers, 2019, 11, 126.	2.0	4
2053	One-Pot Trapping Luminescent Rhodamine 110 into the Cage of MOF-801 for Nitrite Detection in Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1476-1484.	1.9	16
2054	Construction of a Large High-Nuclearity Cd–Sm Schiff Base Cluster with Nanoscale Inner Cavity as Luminescent Probe for Metal Cations. Crystal Growth and Design, 2019, 19, 2149-2154.	1.4	20
2055	An acetylenedicarboxylato-bridged Mn(<scp>ii</scp>)-based 1D coordination polymer: electrochemical CO ₂ reduction and magnetic properties. New Journal of Chemistry, 2019, 43, 5167-5172.	1.4	26
2056	A tetrathiafulvalene vinylogue-based double-layer polymer thin film as a highly sensitive and selective TNT sensor. New Journal of Chemistry, 2019, 43, 5277-5281.	1.4	7
2057	A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe ³⁺ and TNP. Inorganic Chemistry, 2019, 58, 4026-4032.	1.9	105
2058	Detection of adsorbates on emissive MOF surfaces with X-ray photoelectron spectroscopy. Dalton Transactions, 2019, 48, 4520-4529.	1.6	13
2059	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting selective CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 1058-1067.	3.0	48
2060	Highly Selective Optical Detection of Fe ³⁺ lons in Aqueous Solution Using Labelâ€Free Silicon Nanocrystals. Particle and Particle Systems Characterization, 2019, 36, 1900034.	1.2	5
2061	A family of functional Lnâ€organic framework constructed by iodineâ€substituted aromatic polycarboxylic acid for turnâ€off sensing of UO ₂ ²⁺ . Applied Organometallic Chemistry, 2019, 33, e4898.	1.7	16
2062	Two alkynyl functionalized Co(II)-MOFs as fluorescent sensors exhibiting selectivity and sensitivity for Fe3+ and nitroaromatic compounds. Chinese Chemical Letters, 2019, 30, 1440-1444.	4.8	19
2063	Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2019, 2, .	2.0	82

#	ARTICLE	IF	CITATIONS
2064	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.	1.4	7
2065	Structural Control of Metal–Organic Framework Bearing N-Heterocyclic Imidazolium Cation and Generation of Highly Stable Porous Structure. Inorganic Chemistry, 2019, 58, 6619-6627.	1.9	13
2066	Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chemical Communications, 2019, 55, 4647-4650.	2.2	38
2067	Structural Transformation Pathways of Alkaline Earth Family Coordination Polymers Containing 3,3′,5,5′â€Biphenyl Tetracarboxylic Acid. Chemistry - an Asian Journal, 2019, 14, 1970-1976.	1.7	6
2068	Dual colorimetric sensor for picric acid and pyrophosphate: Practical application for molecular logic gates. Dyes and Pigments, 2019, 166, 443-450.	2.0	26
2069	1D lanthanide coordination polymers based on lanthanides and 4′-hydroxi-4-biphenylcarboxylic acid: Synthesis, structures and luminescence properties. Journal of Solid State Chemistry, 2019, 274, 322-328.	1.4	8
2070	Bimetallic Pd/SnO2 Nanoparticles on Metal Organic Framework (MOF)-Derived Carbon as Electrocatalysts for Ethanol Oxidation. Electrocatalysis, 2019, 10, 366-380.	1.5	40
2071	Copper Ion Fluorescent Probe Based on Zr-MOFs Composite Material. Analytical Chemistry, 2019, 91, 4331-4336.	3.2	106
2072	Hofmann Metal–Organic Framework Monolayer Nanosheets as an Axial Coordination Platform for Biosensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12986-12992.	4.0	32
2073	A Fluorescent Chemosensor with a Hybridized Local and Charge Transfer Nature and Aggregationâ€Induced Emission Effect for the Detection of Picric Acid. ChemistrySelect, 2019, 4, 2868-2873.	0.7	9
2074	Hexanuclear 3d â^' 4f metalâ€"organic cages assembled from a carboxylic acidâ€functionalized trisâ€triazamacrocycle for highly selective fluorescent sensing of picric acid. Applied Organometallic Chemistry, 2019, 33, e4814.	1.7	14
2075	Lanthanide Organic Framework as a Reversible Luminescent Sensor for Sulfamethazine Antibiotics. Inorganic Chemistry, 2019, 58, 4223-4229.	1.9	89
2076	A simple urea-based multianalyte and multichannel chemosensor for the selective detection of $F < \sup \hat{a}^* < \sup $, $Hg < \sup 2+ \le \inf 2 \pmod n$ and $Hg < \sup 2 + \le \inf 2 \pmod n$ and $Hg < \sup 2 + \le \inf 2 \pmod n$ and $Hg < \sup 3 \pmod n$ and $Hg < \sup 3 \pmod n$ and $Hg < \sup 3 \pmod n$ and $Hg < \sup 4 \pmod n$ are sources: a logic gate mimic ensemble. Dalton Transactions, 2019, 48, 4375-4386.	1.6	39
2077	Design of Novel Oligomeric Mixed Ligand Complexes: Preparation, Biological Applications and the First Example of Their Nanosized Scale. International Journal of Molecular Sciences, 2019, 20, 743.	1.8	11
2078	Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O′-Chelating Sites for Fe(III) Detection in Water. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12830-12837.	4.0	152
2079	Luminescent Lanthanide-Based Probes for the Detection of Nitroaromatic Compounds in Water. ACS Omega, 2019, 4, 5283-5292.	1.6	32
2080	Luminescent Lanthanide Metal Organic Frameworks as Chemosensing Platforms towards Agrochemicals and Cations. Sensors, 2019, 19, 1260.	2.1	22
2081	Ionothermal Synthesis of Zn(II) Coordination Polymers with Fluorescent Sensing and Selective Dye Adsorption Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1746-1754.	1.9	3

#	Article	IF	CITATIONS
2082	Synthesis and Characterization of Two Cationic Silver Quinoxaline Coordination Polymers. European Journal of Inorganic Chemistry, 2019, 2019, 2175-2181.	1.0	2
2083	Anion-Induced Structural Diversity of Zn and Cd Coordination Polymers Based on Bis-9,10-(pyridine-4-yl)-anthracene, Their Luminescent Properties, and Highly Efficient Sensing of Nitro Derivatives and Herbicides. Inorganic Chemistry, 2019, 58, 5646-5653.	1.9	49
2084	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of <i>o</i> à€Alkynylanilines. Angewandte Chemie - International Edition, 2019, 58, 7687-7691.	7.2	78
2085	A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosensors and Bioelectronics, 2019, 135, 208-215.	5.3	201
2086	TDDFT investigation on the solvent effect of methanol on the electronic structure and luminescence of metal organic framework CdL2. Chemical Physics, 2019, 523, 70-74.	0.9	3
2087	Biligand metal-organic coordination polymer to prepare high N-doped content and structure controllable porous carbon with high-electrochemical performance. Electrochimica Acta, 2019, 308, 263-276.	2.6	8
2088	Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10601-10609.	5.2	51
2089	Two Cd(II) coordination polymers based on a tetra-imidazole ligand: Syntheses, structures and photoluminescence. Inorganica Chimica Acta, 2019, 492, 60-65.	1.2	11
2090	Photochromism and photomagnetism in crystalline hybrid materials actuated by nonphotochromic units. Chemical Communications, 2019, 55, 5631-5634.	2.2	160
2091	Cd(<scp>ii</scp>) coordination polymers constructed from bis(pyridyl) ligands with an asymmetric spacer in chelating mode and diverse organic dicarboxylates: syntheses, structural evolutions and properties. Dalton Transactions, 2019, 48, 7589-7601.	1.6	15
2092	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o â€Alkynylanilines. Angewandte Chemie, 2019, 131, 7769-7773.	1.6	11
2093	Preparation of mesoporous carbon material derived from Metal-Organic Frameworks and its application in selective capture of endogenous peptides from human serum. Talanta, 2019, 200, 443-449.	2.9	11
2094	Applications and advances in coordination cages: Metal-Organic Frameworks. Vacuum, 2019, 167, 287-300.	1.6	15
2095	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450.	5.8	96
2096	Supramolecular interactions induced distortion of BTB ligands: breaking convention to reproduce an unusual (3,4,4)-connected MOF topology. Dalton Transactions, 2019, 48, 5511-5514.	1.6	4
2097	A Water Stable Cd ^{II} â€based Metalâ€Organic Framework as a Multifunctional Sensor for Selective Detection of Cu ²⁺ and Cr ₂ O ₇ ^{2â€"} Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 484-489.	0.6	10
2098	A Zn-MOF with 8-fold interpenetrating structure constructed with N,N′-bis(4-carbozylbenzyl)-4-aminotoluene ligands, sensors and selective adsorption of dyes. Journal of Solid State Chemistry, 2019, 274, 86-91.	1.4	20
2099	Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of methyl parathion. Sensors and Actuators B: Chemical, 2019, 290, 267-274.	4.0	55

#	Article	IF	CITATIONS
2100	A New 3D 10-Connected Cd(II) Based MOF With Mixed Ligands: A Dual Photoluminescent Sensor for Nitroaroamatics and Ferric Ion. Frontiers in Chemistry, 2019, 7, 244.	1.8	50
2101	A highly stable nanofibrous Eu-MOF membrane as a convenient fluorescent test paper for rapid and cyclic detection of nitrobenzene. Chemical Communications, 2019, 55, 4941-4944.	2.2	58
2102	Relations between Structural and Luminescence Properties of Novel Lanthanide Nitrate Complexes with Bis-phosphoramidate Ligands. Inorganic Chemistry, 2019, 58, 5630-5645.	1.9	13
2103	Nanocomposites of Zr(IV)-Based Metal–Organic Frameworks and Reduced Graphene Oxide for Electrochemically Sensing Ciprofloxacin in Water. ACS Applied Nano Materials, 2019, 2, 2367-2376.	2.4	139
2104	A Zn-based coordination polymer as a highly selective multi-responsive luminescent sensor for Fe3+cation and Cr2O72â°'/CrO42â° anions. Journal of Solid State Chemistry, 2019, 273, 62-66.	1.4	17
2105	Determination of uric acid in serum using an optical sensor based on binuclear Pd(II) 2-pyrazinecarboxamide-bipyridine doped in a sol gel matrix. Talanta, 2019, 199, 89-96.	2.9	16
2106	Studies on catalytic activity of MIL-53(Al) and structure analogue DUT-5(Al) using bdc- and bpdc-ligands functionalized with l-proline in a solid-solution mixed-linker approach. Molecular Catalysis, 2019, 467, 70-77.	1.0	18
2107	Absorption- and Excitation-Modulated Luminescence of Pr ³⁺ , Nd ³⁺ , and Lu ³⁺ Compounds with Dianions of Tetrafluoroterephthalic and Camphoric Acids. ACS Omega, 2019, 4, 2669-2675.	1.6	5
2108	A novel fluorescent sensing platform based on metal-polydopamine frameworks for the dual detection of kanamycin and oxytetracycline. Analyst, The, 2019, 144, 2337-2344.	1.7	25
2109	Synthesis and structural characterization of two coordination polymers constructed by bis $(4-(1i)+4-(1>i)+4$	0.3	9
2110	Assembly of metal–organic frameworks based on 4-connected 3,3′,5,5′-azobenzenetetracarboxylic acid: structures, magnetic properties, and sensing of Fe ³⁺ ions. New Journal of Chemistry, 2019, 43, 4226-4234.	1.4	8
2111	Design of Nitrile Rubber with High Strength and Recycling Ability Based on Fe ³⁺ –Catechol Group Coordination. Industrial & Engineering Chemistry Research, 2019, 58, 3912-3920.	1.8	31
2112	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326
2113	Two 3D Cobalt(II) Metal–Organic Frameworks with Micropores for Selective Dye Adsorption. Inorganic Chemistry, 2019, 58, 3130-3136.	1.9	69
2114	A series of two-dimensional lanthanide coordination polymers: synthesis, structures, magnetism and selective luminescence detection for heavy metal ions and toxic solvents. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 221-230.	0.2	5
2115	A rigid and porous metal-organic frameworks with 1D rhombus channels and double walls: Selective adsorption of CO2 over N2, iodine capture, and fluorescence. Inorganic Chemistry Communication, 2019, 102, 147-151.	1.8	11
2116	A novel metal-organic framework based on mixed ligands as a highly-selective luminescent sensor for Cr2O72â° and nitroaromatic compounds. Inorganic Chemistry Communication, 2019, 102, 108-112.	1.8	10
2117	Adaptive and Guest Responsive Supramolecular Porous Framework: Solvent Modulated Energy Transfer toward Fingerprint Sensing. Crystal Growth and Design, 2019, 19, 1514-1517.	1.4	7

#	Article	IF	CITATIONS
2118	New Sm (III) and Nd (III) complexes: Synthesis, structural characterization and fluorescent sensing of nitroâ€aromatic compounds. Applied Organometallic Chemistry, 2019, 33, e4843.	1.7	6
2119	Fluorescent In based MOFs showing "turn on―luminescence towards thiols and acting as a ratiometric fluorescence thermometer. Journal of Materials Chemistry C, 2019, 7, 3049-3055.	2.7	39
2120	Design of a Primary-Amide-Functionalized Highly Efficient and Recyclable Hydrogen-Bond-Donating Heterogeneous Catalyst for the Friedel–Crafts Alkylation of Indoles with β-Nitrostyrenes. ACS Catalysis, 2019, 9, 3165-3173.	5.5	44
2121	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	3.2	21
2122	Two triphenylamine-based luminescent metal–organic frameworks as a dual-functional sensor for the detection of nitroaromatic compounds and ofloxacin antibiotic. CrystEngComm, 2019, 21, 2559-2570.	1.3	53
2123	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	3.2	65
2124	Metalâ \in organic frameworks with 5,5â \in 2-(1,4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for selectively sensing Fe($<$ scp $>$ iii $<$ /scp $>$)/Cr($<$ scp $>$ vi $<$ /scp $>$) and nitroaromatic compounds. CrystEngComm, 2019, 21, 2333-2344.	1.3	67
2125	A stable mixed lanthanide metal–organic framework for highly sensitive thermometry. Dalton Transactions, 2019, 48, 3723-3729.	1.6	59
2126	Dual-Emitting EY@Zr-MOF Composite as Self-Calibrating Luminescent Sensor for Selective Detection of Inorganic lons and Nitroaromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 6196-6203.	3.2	96
2127	Two metal–organic zeolites for highly sensitive and selective sensing of Tb ³⁺ . Inorganic Chemistry Frontiers, 2019, 6, 1129-1134.	3.0	46
2128	Metal organic frameworks in electrochemical and optical sensing platforms: a review. Mikrochimica Acta, 2019, 186, 196.	2.5	138
2129	Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coordination Chemistry Reviews, 2019, 387, 60-78.	9.5	172
2130	Functional microscale single-phase white emission lanthanide MOF for tunable fluorescent sensing and water quality monitoring. Journal of Materials Chemistry C, 2019, 7, 3598-3606.	2.7	47
2131	Luminescent metal–organic frameworks with a 2-(4-pyridyl)-terephthalic acid ligand for detection of acetone. New Journal of Chemistry, 2019, 43, 4800-4807.	1.4	21
2132	Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small, 2019, 15, e1804849.	5.2	67
2133	A Tb-calixarene coordination chain for luminescent sensing of Fe3+, Cr2O72â^ and 2,4-DNT. Polyhedron, 2019, 163, 84-90.	1.0	12
2134	A luminescent sensor based on a Zn(<scp>ii</scp>) coordination polymer for selective and sensitive detection of NACs and Fe ³⁺ ions. CrystEngComm, 2019, 21, 1948-1955.	1.3	58
2135	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	7.8	35

#	Article	IF	Citations
2136	Rational synthesis and dimensionality tuning of MOFs from preorganized heterometallic molecular complexes. Dalton Transactions, 2019, 48, 3676-3686.	1.6	28
2137	Room temperature synthesis of an Fe(<scp>ii</scp>)-based porous MOF with multiple open metal sites for high gas adsorption properties. New Journal of Chemistry, 2019, 43, 4338-4341.	1.4	2
2138	Three new Zn ^{II} coordination polymers constructed from a semi-rigid tricarboxylic acid: structural changes caused by flexibility and luminescence sensing for hexavalent chromate anions. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1286-1298.	0.2	3
2139	Detection of mercuric ion in water environment based on luminescent metal–organic frameworks. IOP Conference Series: Earth and Environmental Science, 2019, 358, 022041.	0.2	1
2140	General Way To Construct Micro- and Mesoporous Metal–Organic Framework-Based Porous Liquids. Journal of the American Chemical Society, 2019, 141, 19708-19714.	6.6	111
2141	A series of helical coordination polymers based on two racemic bis(pyridylmethylene) propane-1,2-diamine ligands: relationship of conformations, structures and properties. CrystEngComm, 2019, 21, 7249-7259.	1.3	5
2142	Selective recognition of Fe ³⁺ and CrO ₄ ^{2â^'} ions using a Zn(<scp>ii</scp>) metallacycle and a Cd(<scp>ii</scp>) coordination polymer and their heterogeneous catalytic application. CrystEngComm, 2019, 21, 7447-7459.	1.3	14
2143	Two new MOFs based on 5-((4-carboxypyridin-2-yl)oxy) isophthalic acid displaying unique selective CO ₂ gas adsorption and magnetic properties. CrystEngComm, 2019, 21, 7078-7084.	1.3	8
2144	Improving LMOF luminescence quantum yield through guest-mediated rigidification. Journal of Materials Chemistry C, 2019, 7, 14739-14744.	2.7	17
2145	Calcium-based efficient cathode-ray scintillating metal–organic frameworks constructed from π-conjugated luminescent motifs. Chemical Communications, 2019, 55, 13816-13819.	2.2	15
2146	An unprecedented 2D covalent organic framework with an htb net topology. Chemical Communications, 2019, 55, 13454-13457.	2.2	26
2147	Two cadmium(<scp>ii</scp>) coordination polymers as luminescent sensors for the detection of nitrofuran/nitroimidazole antibiotics. CrystEngComm, 2019, 21, 6130-6135.	1.3	65
2148	A bifunctional 3D Tb-based metal–organic framework for sensing and removal of antibiotics in aqueous medium. CrystEngComm, 2019, 21, 7286-7292.	1.3	43
2149	A pyrazine core-based luminescent Zr(<scp>iv</scp>) organic framework for specific sensing of Fe ³⁺ , picric acid and Cr ₂ O ₇ ^{2â^'} . CrystEngComm, 2019, 21, 6252-6260.	1.3	26
2150	A highly sensitive and selective "turn-on―fluorescent probe for detection of fleroxacin in human serum and urine based on a lanthanide functionalized metal–organic framework. Dalton Transactions, 2019, 48, 17945-17952.	1.6	38
2151	A novel photochromic coordination polymer based on a robust viologen ligand exhibiting multiple detection properties in the solid state. Dalton Transactions, 2019, 48, 17852-17857.	1.6	26
2152	Selective detection and removal of mercury ions by dual-functionalized metal–organic frameworks: design-for-purpose. New Journal of Chemistry, 2019, 43, 18079-18091.	1.4	49
2153	Eu-based coordination polymer microrods for low-loss optical waveguiding application. Nanoscale, 2019, 11, 21061-21067.	2.8	5

#	Article	IF	CITATIONS
2155	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	1.7	15
2156	Evaluation of metal-organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples. Heliyon, 2019, 5, e02848.	1.4	28
2157	Multifunctional Nanoscale Metal–Organic Layers for Ratiometric pH and Oxygen Sensing. Journal of the American Chemical Society, 2019, 141, 18964-18969.	6.6	60
2158	A Cd(II) Coordination Polymer Based on Mixed Ligands: Synthesis, Crystal Structure, and Properties. Crystals, 2019, 9, 625.	1.0	0
2159	A novel (3,6)-connected Cd ^{II} coordination polymer based on an ether-linked tricarboxylate ligand: synthesis, topology and luminescence sensing properties in aqueous solution. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1666-1674.	0.2	0
2160	A Novel Supramolecular Silver Coordination Complex Based on a Triazole Carboxylate Ligand: Synthesis and Fluorescence Sensing of Colchicine and a Series of Nitro Explosives. ChemistrySelect, 2019, 4, 13327-13332.	0.7	6
2161	Network Coordination Polymers Based on Thieno [3,2-b] Thiophene-2,5-Dicarboxylic Acid. Journal of Structural Chemistry, 2019, 60, 1468-1473.	0.3	6
2162	Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels. Molecules, 2019, 24, 4525.	1.7	61
2163	Coordination Assemblies of Zn(II) Coordination Polymers: Positional Isomeric Effect and Optical Properties. Crystals, 2019, 9, 664.	1.0	6
2164	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	6.6	42
2165	Band gap, sorption properties and fluorescence sensing behaviour of a novel 1Dâ†'2D cathenane-like cobalt(II)â€"organic framework. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1593-1604.	0.2	3
2166	Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Advances, 2019, 9, 34359-34376.	1.7	101
2167	Rational design, crystal structures and sensing properties of a series of luminescent MOFs based on a flexible tetracarboxylate ligand and N-donor ligands. CrystEngComm, 2019, 21, 7389-7406.	1.3	12
2168	Improvements to the production of ZIF-94; a case study in MOF scale-up. Green Chemistry, 2019, 21, 5665-5670.	4.6	23
2169	Recent developments on zinc(<scp>ii</scp>) metal–organic framework nanocarriers for physiological pH-responsive drug delivery. MedChemComm, 2019, 10, 2038-2051.	3.5	41
2170	Insight into the structure and bonding of copper(i) iodide clusters and a cluster-based coordination polymer. New Journal of Chemistry, 2019, 43, 16176-16187.	1.4	4
2171	Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu ³⁺ /Tb ³⁺ -doped nickel coordination polymer. New Journal of Chemistry, 2019, 43, 18259-18267.	1.4	27
2172	Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes <i>via</i> voltammetric techniques: a critical review. Inorganic Chemistry Frontiers, 2019, 6, 3440-3455.	3.0	38

#	Article	IF	CITATIONS
2173	Two-dimensional Cd(<scp>ii</scp>) coordination polymer encapsulated by Tb ³⁺ as a reversible luminescent probe for Fe ³⁺ . RSC Advances, 2019, 9, 34949-34957.	1.7	3
2174	Temperature-induced structural diversity of metal–organic frameworks and their applications in selective sensing of nitrobenzene and electrocatalyzing the oxygen evolution reaction. RSC Advances, 2019, 9, 33890-33897.	1.7	15
2175	Ternary dual <i>Z</i> -scheme graphitic carbon nitride/ultrathin metal–organic framework nanosheet/Ag ₃ PO ₄ photocatalysts for boosted photocatalytic performance under visible light. RSC Advances, 2019, 9, 39843-39853.	1.7	16
2176	A Zn(<scp>ii</scp>) metal–organic framework based on bimetallic paddle wheels as a luminescence indicator for carcinogenic organic pollutants: phthalate esters. RSC Advances, 2019, 9, 37101-37108.	1.7	5
2177	Construction of a crystalline 14-metal Zn–Nd rectangular nanocluster with a dual-emissive response towards metal ions. RSC Advances, 2019, 9, 40017-40022.	1.7	4
2178	Single-component solid state white-light emission and photoluminescence color tuning of a Cd(<scp>ii</scp>) complex and its application as a luminescence thermometer. Journal of Materials Chemistry C, 2019, 7, 13454-13460.	2.7	11
2179	Crystal Structure and Luminescent Property of a new Three-Dimensional Polymer Based on 3,5-Di(1H-Benzimidazol-1-yl)Pyridine. Journal of Structural Chemistry, 2019, 60, 1995-2000.	0.3	1
2180	The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews, 2019, 119, 231-292.	23.0	718
2181	Self-assembly of Zn/Cd-coordination polymers based on $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -biphenyltetracarboxylic acid and N-donor ligands and luminescence sensing of Fe3+ ions. Journal of Solid State Chemistry, 2019, 269, 65-71.	1.4	18
2182	A mixed matrix Eu-4,4′-biphenyldicarboxylate coordination polymer film as a fluorescence turn-off sensor to aniline vapor. Journal of Solid State Chemistry, 2019, 269, 87-93.	1.4	8
2183	Palladium nanoparticles supported on UiO-66-NH2 as heterogeneous catalyst for epoxidation of styrene. Inorganic Chemistry Communication, 2019, 100, 51-55.	1.8	23
2184	Highly selective functional luminescent sensor toward Cr(VI)/Fe(III) ion and nitrobenzene based on metal–organic frameworks: Synthesis, structures, and properties. Journal of Solid State Chemistry, 2019, 270, 651-665.	1.4	24
2185	A multi-responsive luminescent sensor based on flexible and ultrastable Zn-MOF@SWCNT hybrid nanocomposite film. Polyhedron, 2019, 160, 68-73.	1.0	5
2186	Highly sensitive and selective fluorescent sensor based on a multi-responsive ultrastable amino-functionalized Zn(II)-MOF for hazardous chemicals. Sensors and Actuators B: Chemical, 2019, 284, 403-413.	4.0	83
2187	A Flexible Cu-MOF as Crystalline Sponge for Guests Determination. Inorganic Chemistry, 2019, 58, 61-64.	1.9	22
2188	Designed of bifunctional Z-scheme CuSnO3@Cu2O heterojunctions film for photoelectrochemical catalytic reduction and ultrasensitive sensing nitrobenzene. Chemical Engineering Journal, 2019, 361, 398-407.	6.6	34
2189	Sonochemically synthesized microporous metal–organic framework representing unique selectivity for detection of Fe3+ ions. Polyhedron, 2019, 159, 251-258.	1.0	49
2190	Rare-earth post-modified Zn-based coordination polymer microspheres: Simple room-temperature preparation, fluorescent performances and application for detection of tryptophane. Sensors and Actuators B: Chemical, 2019, 283, 731-739.	4.0	37

#	Article	IF	CITATIONS
2191	MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant. Journal of Materials Science: Materials in Electronics, 2019, 30, 3711-3721.	1.1	22
2192	Structural diversity, magnetic properties, and luminescent sensing of four coordination polymers based on 6-(3,5-dicarboxylphenyl)nicotinic acid. Journal of Solid State Chemistry, 2019, 271, 40-46.	1.4	13
2193	Identification performance of two luminescent lanthanide–organic frameworks. Polyhedron, 2019, 161, 40-46.	1.0	7
2194	Syntheses, Gas Adsorption, and Sensing Properties of Solvent-Controlled Zn(II) Pseudo-Supramolecular Isomers and Pb(II) Supramolecular Isomers. Crystal Growth and Design, 2019, 19, 630-637.	1.4	52
2195	Conventional and Mechanochemical Syntheses of Copper(I) lodide Luminescent MOF with Bis(amidoquinoline) and Its Application for the Detection of Amino Acid in Aqueous Solution. Inorganic Chemistry, 2019, 58, 1177-1183.	1.9	34
2196	Chemical Detection Using a Metal–Organic Framework Single Crystal Coupled to an Optical Fiber. ACS Applied Materials & Coupled to an Optical Fiber. ACS Applied Materials & Coupled to an Optical Fiber. ACS Applied Materials & Coupled to an Optical Fiber. ACS	4.0	42
2197	Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3233-3239.	2.0	1
2198	Synthesis and characterization of luminescent metal–organic frameworks for the selective recognition of Cu2+ cation and Tryptophan. Journal of Alloys and Compounds, 2019, 781, 904-912.	2.8	24
2199	Highly selective fluorescent probe for Hg2+ and MnO4â ⁻ ' by the two-fold interpenetrating metal-organic framework with nitro functionalized linkers. Journal of Solid State Chemistry, 2019, 270, 509-515.	1.4	39
2200	Synthesis and properties of interspersed structure complexes prepared from 4,4'-(phenylazanediyl)-dibenzoic acid with rigid and semi-rigid nitrogen-containing ligands. Journal of Molecular Structure, 2019, 1180, 547-555.	1.8	5
2201	Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd(DMIPA)]2-framework with exposed thioether group in the snowflake-like channels. Journal of Solid State Chemistry, 2019, 270, 493-499.	1.4	31
2202	Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrasonics Sonochemistry, 2019, 52, 106-119.	3.8	213
2203	A thioether-containing luminescent metal-organic framework for highly selective and sensitive detection of Ag(I) ion. Journal of Solid State Chemistry, 2019, 270, 45-50.	1.4	11
2204	Two low-dimensional transition metal coordination polymers constructed from thiophene‴2,5‴dicarboxylic acid and N/O-donor ligands: Syntheses, structures and magnetic property. Inorganic Chemistry Communication, 2019, 99, 140-144.	1.8	11
2205	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
2206	Green Synthesis of Self Assembled Nanospherical Dysprosium MOFs: Selective and Efficient Detection of Picric Acid in Aqueous and Gas Phase. ACS Sustainable Chemistry and Engineering, 2019, 7, 819-830.	3.2	45
2207	A three-dimensional Cu-MOF with strong $\tilde{l}\in\tilde{l}\in$ interactions exhibiting high water and chemical stability. Inorganic Chemistry Communication, 2019, 99, 108-112.	1.8	7
2208	A rapid-response fluorescent film probe to DNT based on novel AIE materials. Sensors and Actuators B: Chemical, 2019, 281, 971-976.	4.0	13

#	Article	IF	CITATIONS
2209	Photoluminescence of metal-imidazolate complexes with Cd(II), Zn(II), Co(II) and Ni(II) cation nodes and 2-methylimidazole organic linker. Journal of Luminescence, 2019, 207, 454-459.	1.5	23
2210	AIE-active luminogen for highly sensitive and selective detection of picric acid in water samples: Pyridyl as an effective recognition group. Dyes and Pigments, 2019, 163, 1-8.	2.0	31
2211	Five 3D lanthanide-based coordination polymers with 3,3,6T13 topology: Structures and luminescent sensor for Hg2+ and Pb2+ ions. Journal of Solid State Chemistry, 2019, 270, 339-345.	1.4	16
2212	Lanthanide-2,3,5,6-Tetrabromoterephthalic Acid Metal–Organic Frameworks: Evolution of HalogenÂ-Â-Â-Halogen Interactions across the Lanthanide Series and Their Potential as Selective Bifunctional Sensors for the Detection of Fe ³⁺ , Cu ²⁺ , and Nitroaromatics. Crystal Growth and Design, 2019, 19, 305-319.	1.4	86
2213	Preparation of Fe(III)-MOFs by microwave-assisted ball for efficiently removing organic dyes in aqueous solutions under natural light. Chemical Engineering and Processing: Process Intensification, 2019, 135, 63-67.	1.8	42
2214	Fineâ€Tuning Aromatic Stacking and Singleâ€Crystal Photoluminescence Through Coordination Chemistry. European Journal of Organic Chemistry, 2019, 2019, 1778-1783.	1.2	4
2215	Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. Chinese Journal of Polymer Science (English Edition), 2019, 37, 340-351.	2.0	15
2216	Controlled Manipulation of Metal–Organic Framework Layers to Nanometer Precision Inside Large Mesochannels of Ordered Mesoporous Silica for Enhanced Removal of Bisphenol A from Water. ACS Applied Materials & Diterfaces, 2019, 11, 4328-4337.	4.0	36
2217	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	6.6	148
2218	Highly Efficient Fluorescent Material Based on Rare-Earth-Modified Polyhydroxyalkanoates. Biomacromolecules, 2019, 20, 3233-3241.	2.6	29
2219	A New Biscarbazoleâ€Based Metal–Organic Framework for Efficient Host–Guest Energy Transfer. Chemistry - A European Journal, 2019, 25, 1901-1905.	1.7	16
2220	Synthesis, Structure, and Photoluminescence Properties of a Metalâ€Organic Framework with Hexagonal Channels: Selective Turnâ€On Sensing for Mg ²⁺ Ion. European Journal of Inorganic Chemistry, 2019, 2019, 330-335.	1.0	12
2221	A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Science China Chemistry, 2019, 62, 205-211.	4.2	34
2222	Chance-constrained stochastic congestion management of power systems considering uncertainty of wind power and demand side response. International Journal of Electrical Power and Energy Systems, 2019, 107, 703-714.	3.3	47
2223	Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), $Cd(II)$ and $Cr(VI)$ ions from aqueous solutions. Journal of Hazardous Materials, 2019, 368, 10-20.	6.5	381
2224	Luminescence properties of a family of lanthanide metal-organic frameworks. Microporous and Mesoporous Materials, 2019, 279, 400-406.	2.2	62
2225	Efficient and selective sensing of Cu2+ and UO22+ by a europium metal-organic framework. Talanta, 2019, 196, 515-522.	2.9	69
2226	An Ultrasensitive and Selective Metal–Organic Framework Chemosensor for Palladium Detection in Water. Inorganic Chemistry, 2019, 58, 1738-1741.	1.9	42

#	Article	IF	CITATIONS
2228	Role of Aromatic Moiety in the Probe Property toward Picric Acid: Synthesis, Crystal Structure, Spectroscopy, Microscopy, and Computational Modeling of a Knoevenagel Condensation Product of <scp>d</scp> -Glucose. ACS Omega, 2019, 4, 1167-1177.	1.6	13
2229	Synthesis and characterization of two Cd (II) complexes constructed with tricarboxylic acids and as a fluorescent probe of iron ions. Inorganica Chimica Acta, 2019, 486, 48-54.	1.2	7
2230	Highly selective metal–organic framework-based sensor for protamine through photoinduced electron transfer. Journal of Materials Science, 2019, 54, 3144-3155.	1.7	18
2231	Fluorescent Cadmium Bipillaredâ€Layer Open Frameworks: Synthesis, Structures, Sensing of Nitro Compounds, and Capture of Volatile Iodine. Chemistry - A European Journal, 2019, 25, 1337-1344.	1.7	23
2232	Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates. Materials Letters, 2019, 236, 398-402.	1.3	12
2233			

#	Article	IF	CITATIONS
2247	A Luminescent Probe for Highly Selective Cu ²⁺ Sensing Using a Lanthanideâ€Doped Metal Organic Framework with Large Pores. European Journal of Inorganic Chemistry, 2019, 2019, 206-211.	1.0	17
2248	A triazine-based metal-organic framework with solvatochromic behaviour and selectively sensitive photoluminescent detection of nitrobenzene and Cu2+ ions. Dyes and Pigments, 2019, 163, 159-167.	2.0	22
2249	Diverse stacked and entangled topologies in cadmium tricarballylate coordination polymers with nitrobenzene detection capability. Inorganica Chimica Acta, 2019, 485, 9-19.	1.2	7
2250	Temperature- and solvent-dependent structures of three zinc(II) metal-organic frameworks for nitroaromatic explosives detection. Journal of Solid State Chemistry, 2019, 269, 195-202.	1.4	37
2251	A Eu3+ post-functionalized metal-organic framework as fluorescent probe for highly selective sensing of Cu2+ in aqueous media. Journal of Molecular Structure, 2019, 1177, 444-448.	1.8	36
2252	Selective fluorescent sensing and photodegradation properties of Tb(III)-based MOFs with different bulky backbone ligands. Polyhedron, 2019, 157, 63-70.	1.0	12
2253	Four new Zn/Cd coordination polymers constructed by the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structure, photoluminescence and sensing properties. Journal of Solid State Chemistry, 2019, 269, 158-166.	1.4	7
2254	Benzotriazol-based structure assemble directed by transition metals. Structural Chemistry, 2019, 30, 227-235.	1.0	1
2255	Nanoscale metal–organic frameworks for phototherapy of cancer. Coordination Chemistry Reviews, 2019, 379, 65-81.	9.5	309
2256	Exploration of porous metal–organic frameworks for gas separation and purification. Coordination Chemistry Reviews, 2019, 378, 87-103.	9.5	538
2257	Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews, 2019, 378, 17-31.	9.5	479
2258	Bienzymatic assembly formed @ Pt nano sensing framework detecting acetylcholine in aqueous phase. Applied Surface Science, 2019, 474, 154-160.	3.1	37
2259	Multicenter Metal–Organic Frameworkâ€Based Ratiometric Fluorescent Sensors. Advanced Materials, 2020, 32, e1805871.	11.1	413
2260	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	11.1	408
2261	Synthesis, Crystal Structures, and Photocatalytic Activity of Two Nickel(II) Coordination Polymers with Flexible Bis(benzimidazol-1-yl)alkane and Polycarboxylate Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1099-1109.	1.9	2
2262	MgO nanoparticles confined in ZIF-8 as acid-base bifunctional catalysts for enhanced glycerol carbonate production from transesterification of glycerol and dimethyl carbonate. Catalysis Today, 2020, 351, 21-29.	2.2	38
2263	Investigating metal-organic framework based on nickel (II) and benzene 1,3,5-tri carboxylic acid (H3BTC) as a new photocatalyst for degradation of 4-nitrophenol. International Journal of Environmental Studies, 2020, 77, 137-151.	0.7	2
2264	Electrochemiluminescence immunosensor of "signal-off―for β-amyloid detection based on dual metal-organic frameworks. Talanta, 2020, 208, 120376.	2.9	27

#	Article	IF	CITATIONS
2265	Lanthanide–organic framework based on a 4,4-(9,9-dimethyl-9H-fluorene-2,7-diyl) dibenzoic acid: Synthesis, structure and fluorescent sensing for a variety of cations and anions simultaneously. Dyes and Pigments, 2020, 172, 107862.	2.0	30
2266	Quantitative and rapid detection of explosives using an efficient luminogen with aggregation-induced emission characteristics. Sensors and Actuators B: Chemical, 2020, 302, 127201.	4.0	23
2267	Adsorption and sensing properties of non-planar π surfaces towards high energy molecules: A density functional theory study. Journal of Physics and Chemistry of Solids, 2020, 138, 109198.	1.9	6
2268	Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives. Sensors and Actuators B: Chemical, 2020, 304, 127233.	4.0	30
2269	Two entangled Cd(II) MOFs of sebacic acid and bis(2-methyl-imidazole) ligands for selective sensing of Fe3+. Inorganica Chimica Acta, 2020, 499, 119184.	1.2	15
2270	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
2271	Functional aromatic polyamides for the preparation of coated fibres as smart labels for the visual detection of biogenic amine vapours and fish spoilage. Sensors and Actuators B: Chemical, 2020, 304, 127249.	4.0	30
2272	Determination method of scaling laws based on least square method and applied to rectangular thin plates and rotor-bearing systems. Mechanics Based Design of Structures and Machines, 2020, 48, 241-265.	3.4	14
2273	Spectroscopic, crystallographic and thermal characterizations of monospiro(N/N)cyclotriphosphazenes with 9-ethyl-3-carbazolyl pendant arm. Journal of Molecular Structure, 2020, 1200, 127079.	1.8	6
2274	A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine. Talanta, 2020, 208, 120438.	2.9	69
2275	Highly sensitive and selective Fe3+ detection by a water-stable Tb3+-doped nickel coordination polymer-based turn-off fluorescence sensor. Journal of Solid State Chemistry, 2020, 281, 121030.	1.4	21
2276	Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection. Journal of Hazardous Materials, 2020, 381, 120966.	6.5	78
2277	A highly stable, luminescent and layered zinc(II)-MOF: Iron(III)/copper(II) dual sensing and guest-assisted exfoliation. Chinese Chemical Letters, 2020, 31, 2211-2214.	4.8	25
2278	Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Materials Horizons, 2020, 7, 32-53.	6.4	61
2279	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
2280	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 581-595.	1.9	11
2281	A dual luminescent chemosensor derived from a europium(III) metal-organic framework for quantitative detection of phosphate anions and acetylacetone in aqueous solution. Dyes and Pigments, 2020, 173, 108004.	2.0	44
2282	A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes and Pigments, 2020, 173, 107993.	2.0	94

#	Article	IF	CITATIONS
2283	Development of an SBUâ€Based Mechanochemical Approach for Drugâ€Loaded MOFs. European Journal of Inorganic Chemistry, 2020, 2020, 796-800.	1.0	14
2284	Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Applied Materials Today, 2020, 19, 100550.	2.3	36
2285	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	3.0	89
2286	A Water-Stable Luminescent W/S/Cu Heterothiometallic Cluster for Detection of TNP. Journal of Cluster Science, 2020, 31, 1383-1388.	1.7	2
2287	Design of a pillar-layered metal-organic framework as high-performance fluorescence sensor for nitroaromatic compounds. Journal of Solid State Chemistry, 2020, 283, 121166.	1.4	12
2288	Rapid Visual Detection of Amines by Pyrylium Salts for Food Spoilage Taggant. ACS Applied Bio Materials, 2020, 3, 772-778.	2.3	42
2289	A stable dual-emitting dye@LMOF luminescence probe for the rapid and visible detection of organophosphorous pesticides in aqueous media. CrystEngComm, 2020, 22, 1050-1056.	1.3	19
2290	Luminescent metal–organic framework-based phosphor for the detection of toxic oxoanions in an aqueous medium. Dalton Transactions, 2020, 49, 829-840.	1.6	30
2291	Specific recognition of toxic allyl alcohol by pore-functionalized metal–organic frameworks. Molecular Systems Design and Engineering, 2020, 5, 469-476.	1.7	8
2292	Mechanochemical synthesis, luminescent and magnetic properties of lanthanide benzene-1,4-dicarboxylate coordination polymers (Ln _{0.5} Od _{0.5}) ₂ (1,4-BDC) ₃ (H ₂ O) ₄ ; Ln = Sm, Eu, Tb. New Journal of Chemistry, 2020, 44, 1054-1062.	1.4	17
2293	Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications. Polymer Chemistry, 2020, 11, 2006-2014.	1.9	16
2294	A Stable Broad-Range Fluorescent pH Sensor Based on Eu ³⁺ Post-Synthetic Modification of a Metalâ€"Organic Framework. Industrial & Engineering Chemistry Research, 2020, 59, 1764-1771.	1.8	19
2295	Triggering Lewis Acidic Nature through the Variation of Coordination Environment of Cd-Centers in 2D-Coordination Polymers. Inorganic Chemistry, 2020, 59, 1284-1294.	1.9	20
2296	Synthesis, Structure, and Characterization of Variable Chains in a Series of Transition Metal Coordination Compounds. European Journal of Inorganic Chemistry, 2020, 2020, 452-460.	1.0	6
2297	An electron-rich small AlEgen as a solid platform for the selective and ultrasensitive on-site visual detection of TNT in the solid, solution and vapor states. Analyst, The, 2020, 145, 1687-1694.	1.7	35
2298	A self-calibrating dual responsive platform for the sensitive detection of sulfite and sulfonic derivatives based on a robust Hf(⟨scp⟩iv⟨/scp⟩) metal–organic framework. Chemical Communications, 2020, 56, 631-634.	2.2	16
2299	Polymorphs of a copper coordination compound: interlinking active sites enhance the electrocatalytic activity of the coordination polymer compared to the coordination complex. CrystEngComm, 2020, 22, 425-429.	1.3	16
2300	Construction of a 1-D Sm(<scp>iii</scp>) coordination polymer with a long-chain Schiff base ligand: dual-emissive response to metal ions. Inorganic Chemistry Frontiers, 2020, 7, 464-469.	3.0	3

#	Article	IF	CITATIONS
2301	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	9.5	366
2302	Study of four new Cd(II) metal-organic frameworks: Syntheses, structures, and highly selective sensing for 4-nitrophenol. Inorganica Chimica Acta, 2020, 503, 119352.	1.2	7
2303	Crystal structures and properties of four coordination polymers based on a new asymmetric ligand: Tuning structure/dimensionality by various organic solvents. Inorganica Chimica Acta, 2020, 503, 119403.	1.2	9
2304	Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds. Journal of Industrial and Engineering Chemistry, 2020, 84, 87-95.	2.9	37
2305	Construction of luminescent coordination polymers based on 5-(1-(carboxymethyl)-pyrazol-3-yl)isophthalic ligand for sensing Cu2+ and acetone. Polyhedron, 2020, 177, 114314.	1.0	7
2306	HDBB@ZIF-8 fluorescent nanoprobe with hereditary alcohols selectivity for chemical sensing. Microporous and Mesoporous Materials, 2020, 294, 109959.	2.2	13
2307	Synthesis, structures, and fluorescence properties of one novel Cobalt metal–organic framework based on a tetraphenylethene-core ligand. Journal of Chemical Research, 2020, 44, 193-197.	0.6	8
2308	Fluorescence quenching based detection of p-nitrophenol using luminescent silicon nanocrystals and insights into the quenching mechanism. Semiconductor Science and Technology, 2020, 35, 035003.	1.0	5
2309	Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coordination Chemistry Reviews, 2020, 404, 213113.	9.5	245
2310	Polynuclear and coordination polymers of copper(II) complexes assembled by flexible polyamines and bridging rigid N-heterocyclic multicarboxylates. Inorganica Chimica Acta, 2020, 500, 119240.	1.2	5
2311	Enhanced permeability in mixed matrix membranes for CO2 capture through the structural regulation of the amino-functionalized Co/ZIF-8 heterometallic nanoparticles. Chemical Engineering Journal, 2020, 383, 123137.	6.6	34
2312	Two novel 3D MOFs based on the flexible (E)-1,4-di(1H-imidazol-1-yl)but-2-ene and multi-carboxylate ligands: Synthesis, structural diversity and luminescence property. Inorganic Chemistry Communication, 2020, 111, 107641.	1.8	4
2313	Four congenetic zinc(II) MOFs from delicate solvent-regulated strategy: Structural diversities and fluorescent properties. Inorganica Chimica Acta, 2020, 502, 119296.	1.2	3
2314	p-Pyridine BODIPY-based fluorescence probe for highly sensitive and selective detection of picric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117793.	2.0	8
2315	Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress. Progress in Energy and Combustion Science, 2020, 77, 100805.	15.8	107
2316	A mechanical stability enhanced luminescence lanthanide MOF test strip encapsulated with polymer net for detecting picric acid and macrodantin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117816.	2.0	19
2317	Side Chain Induced Self-Assembly and Selective Catalytic Oxidation Activity of Copper(I)–Copper(II)-N4 Complexes. Crystal Growth and Design, 2020, 20, 1237-1241.	1.4	4
2318	Tuning the interpenetration of metal–organic frameworks through changing ligand functionality: effect on gas adsorption properties. CrystEngComm, 2020, 22, 506-514.	1.3	22

#	Article	IF	Citations
2319	AIE-ligand-based luminescent Cd(<scp>ii</scp>)â€"organic framework as the first "turn-on― Fe ³⁺ sensor in aqueous medium. Journal of Materials Chemistry C, 2020, 8, 1427-1432.	2.7	61
2320	Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1082-1107.	3.0	161
2321	Sensitive Ratiometric Fluorescent Metal-Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4625-4631.	4.0	39
2322	Synthesis, structure, and photoluminescence properties of coordination polymers of 4,4′,4′,4′,4′,4ꀲ,4ꀲ-triazol-1′-yl)pyridine. Cry 534-545.	st En gCon	n n, 12020, 2
2323	Significance of the porosity of luminescent metal-organic frameworks for sensitive sensing of metal cation. Inorganic Chemistry Communication, 2020, 112, 107760.	1.8	0
2324	A stable Cu-MOF as a dual function sensor with high selectivity and sensitivity detection of picric acid and CrO42-in aqueous solution. Microchemical Journal, 2020, 153, 104498.	2.3	14
2325	RhBâ€Embedded Zirconium–Naphthaleneâ€Based Metal–Organic Framework Composite as a Luminescent Selfâ€Calibrating Platform for the Selective Detection of Inorganic Ions. Chemistry - A European Journal, 2020, 26, 1661-1667.	1.7	46
2326	Metal Ion-Driven Assembly of Coordination Polymers Based on 1,3-Bis(4-imidazolylphenoxy)propane: Crystal Structures and Photocatalytic Properties. Journal of Chemical Crystallography, 2020, 50, 428-437.	0.5	0
2327	Binuclear Gold(I) Phosphine Alkynyl Complexes Templated on a Flexible Cyclic Phosphine Ligand: Synthesis and Some Features of Solid-State Luminescence. Inorganic Chemistry, 2020, 59, 244-253.	1.9	15
2328	Fabrication of (4, 10) and (4, 12)-Connected Multifunctional Zirconium Metal–Organic Frameworks for the Targeted Adsorption of a Guest Molecule. Inorganic Chemistry, 2020, 59, 695-704.	1.9	15
2329	Lanthanide-Based Metal–Organic Frameworks Containing "V-Shaped―Tetracarboxylate Ligands: Synthesis, Crystal Structures, "Naked-Eye―Luminescent Detection, and Catalytic Properties. Inorganic Chemistry, 2020, 59, 264-273.	1.9	36
2330	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	3.0	14
2331	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	1.2	22
2332	Ammonium molybdate-assisted shape-controlled synthesis of fluorescent Co(II)-based MOFs nanoflakes as highly-sensitive probes for selective detection of vanillin in milk powders. Materials Research Bulletin, 2020, 123, 110721.	2.7	17
2333	Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nature Reviews Materials, 2020, 5, 87-104.	23.3	604
2334	Lanthanide coordination polymers of viologen carboxylic acid: Crystal structures and luminescence response tuning. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112296.	2.0	4
2335	Cucurbit[7]urilâ€Based Metal–Organic Rotaxane Framework for Dualâ€Capture of Molecular Iodine and Cationic Potassium Ion. Chemistry - A European Journal, 2020, 26, 2154-2158.	1.7	18
2336	A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors. Journal of Luminescence, 2020, 219, 116908.	1.5	21

#	Article	IF	Citations
2337	Ultrasensitive Fe3+ luminescence sensing and supercapacitor performances of a triphenylamine-based TbIII-MOF. Journal of Solid State Chemistry, 2020, 282, 121083.	1.4	16
2338	A highly stable luminescent coordination polymer for sensing of volatile iodine and its metal-ion exchange properties with Cu2+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112256.	2.0	24
2339	Luminescent metal organic frameworks–based chemiluminescence resonance energy transfer platform for turn–on detection of fluoride ion. Talanta, 2020, 209, 120582.	2.9	34
2340	Three Lanthanide Metalâ€Organic Frameworks Based on an Etherâ€Decorated Polycarboxylic Acid Linker: Luminescence Modulation, CO ₂ Capture and Conversion Properties. Chemistry - an Asian Journal, 2020, 15, 191-197.	1.7	18
2341	A 2D lanthanum coordination polymer as a multiresponsive luminescent chemosensor with fast response and high sensitivity. Journal of Solid State Chemistry, 2020, 283, 121173.	1.4	4
2342	A Stable 3D Zn-Coordination Polymer Sensor Based on Dual Luminescent Ligands for Efficient Detection of Multiple Analytes under Acid or Alkaline Environment. Inorganic Chemistry, 2020, 59, 15495-15503.	1.9	71
2343	Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Transactions, 2020, 49, 15161-15170.	1.6	11
2344	Product Control in Conversion of Ethanol on MILâ€101(Cr) with Adjustable Brønsted Acid Density. ChemCatChem, 2020, 12, 6234-6240.	1.8	2
2345	Development of a smartphone-based real time cost-effective VOC sensor. Heliyon, 2020, 6, e05167.	1.4	8
2346	A luminescent Cd(II)-MOF based on flexible biimidazolyl-benzenecarboxylate ligand for selectively sensing of acetone. Inorganic Chemistry Communication, 2020, 120, 108167.	1.8	10
2347	BGO/AlFu MOF core shell nano-composite based bromide ion-selective electrode. Journal of Environmental Chemical Engineering, 2020, 8, 104375.	3.3	14
2348	Lanthanide contraction effect and white-emitting luminescence in a series of metal–organic frameworks based on 2,5-pyrazinedicarboxylic acid. RSC Advances, 2020, 10, 38252-38259.	1.7	6
2349	A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 44771-44796.	2.7	83
2350	A stable Ni-based coordination polymer used as anode materials for supercapacitors. Journal of Solid State Chemistry, 2020, 292, 121711.	1.4	2
2351	A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. Inorganic Chemistry Communication, 2020, 122, 108272.	1.8	38
2352	Ligand effects on the dimensionality of cyclophosphazene-based mercury(II) coordination polymers: Structures, UVâ€"Visible absorption and thermal properties. Polyhedron, 2020, 192, 114823.	1.0	9
2353	Alkyl ammonium ion-induced drastic emission enhancement of Eu($\langle i \rangle D \langle i \rangle$ -facam) $\langle sub \rangle 3 \langle sub \rangle$ in 1-butanol. Chemical Communications, 2020, 56, 13532-13535.	2.2	4
2354	TWO 3D Cd (II) luminescent coordination polymers as highly selective and sensitive sensing for Fe3+ and CrO42â°'/Cr2O72â°' ions in aqueous system. Journal of Solid State Chemistry, 2020, 292, 121637.	1.4	11

#	Article	IF	CITATIONS
2355	Europium metal-organic framework containing helical metal-carboxylate chains for fluorescence sensing of nitrobenzene and nitrofunans antibiotics. Journal of Solid State Chemistry, 2020, 292, 121701.	1.4	41
2356	Cr ₂ O ₇ ^{2â^'} inside Zr/Hf-based metal–organic frameworks: highly sensitive and selective detection and crystallographic evidence. Journal of Materials Chemistry C, 2020, 8, 16974-16983.	2.7	26
2357	Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. Journal of Theoretical and Applied Physics, 2020, 14, 1-8.	1.4	5
2358	Structure, photoluminescence, and magnetic properties of a Mn(ii)-based metal–organic framework. New Journal of Chemistry, 2020, 44, 18694-18702.	1.4	1
2359	Highly efficient synergistic CO ₂ conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites. Inorganic Chemistry Frontiers, 2020, 7, 4517-4526.	3.0	36
2360	Synthesis of multifunctional metal–organic frameworks and tuning the functionalities with pendant ligands. Dalton Transactions, 2020, 49, 15034-15040.	1.6	2
2361	A Doubly Interpenetrated Cu ^{II} Metal–Organic Framework for Selective Molecular Recognition of Nitroaromatics. Crystal Growth and Design, 2020, 20, 7141-7151.	1.4	25
2362	"Orthogonalâ€Twistedâ€Arm―Ligands for The Construction of Metal–Organic Frameworks (MOFs): New Topology and Catalytic Reactivity. Chemistry - A European Journal, 2020, 26, 16272-16276.	1.7	7
2363	Cd-Based Metal–Organic Framework Containing Uncoordinated Carbonyl Groups as Lanthanide Postsynthetic Modification Sites and Chemical Sensing of Diphenyl Phosphate as a Flame-Retardant Biomarker. Inorganic Chemistry, 2020, 59, 15088-15100.	1.9	38
2364	A Flexible–Robust Copper(II) Metal–Organic Framework Constructed from a Fluorinated Ligand for CO ₂ /R22 Capture. Inorganic Chemistry, 2020, 59, 14856-14860.	1.9	14
2365	A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite. Inorganic Chemistry Frontiers, 2020, 7, 3379-3385.	3.0	69
2366	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	5.8	122
2367	Molecular simulation study on the flexibility in the interpenetrated metal–organic framework LMOF-201 using reactive force field. Journal of Materials Chemistry A, 2020, 8, 16385-16391.	5.2	6
2368	Modulating Magnetic and Photoluminescence Properties in 2â€Aminonicotinateâ€Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry - A European Journal, 2020, 26, 13484-13498.	1.7	8
2369	Polar Sulfone-Functionalized Oxygen-Rich Metal–Organic Frameworks for Highly Selective CO ₂ Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS Applied Materials & Level COS Applied Materi	4.0	53
2370	AIE ligands-based new cobalt metal-organic framework as bifunctional sensor for Fe3+ ion and TNP in aqueous solution. Journal of Solid State Chemistry, 2020, 290, 121561.	1.4	20
2371	Amine-functionalized titanium metal-organic framework (NH2-MIL-125(Ti)): A novel fluorescent sensor for the highly selective sensing of copper ions. Materials Chemistry and Physics, 2020, 254, 123539.	2.0	56
2372	Three New Lnâ€Decavanadates Materials:Synthesis, Structure, and Photoluminescent Sensing for Detection of Zn 2+ and Co 2+. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1315-1323.	0.6	1

#	Article	IF	CITATIONS
2373	Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NO _x . ChemCatChem, 2020, 12, 5599-5610.	1.8	15
2374	Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Science Bulletin, 2020, 65, 2107-2119.	4.3	37
2375	Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts. Journal of Materials Chemistry A, 2020, 8, 15066-15073.	5.2	17
2376	Highly selective sensing of Fe ³⁺ /Hg ²⁺ and proton conduction using two fluorescent Zn(<scp>ii</scp>) coordination polymers. Dalton Transactions, 2020, 49, 11129-11141.	1.6	22
2378	A polyoxometalate-encapsulated nanocage cluster organic framework built from {Cu ₄ P ₂ } units and its efficient bifunctional electrochemical performance. Chemical Communications, 2020, 56, 15177-15180.	2.2	61
2379	A quantitative ratiometric fluorescent Hddb-based MOF sensor and its on-site detection of the anthrax biomarker 2,6-dipicolinic acid. Journal of Materials Chemistry C, 2020, 8, 17325-17335.	2.7	37
2380	Novel amino-functionalized hypercrosslinked polymer nanoparticles constructed from commercial macromolecule polystyrene via a two-step strategy for CO2 adsorption. New Journal of Chemistry, 2020, 44, 21125-21133.	1.4	7
2381	A Y(III)-based Metal–Organic Framework as a Carrier in Chemodynamic Therapy. Inorganic Chemistry, 2020, 59, 17276-17281.	1.9	25
2382	Facile Fabrication of an AIE-Active Metal–Organic Framework for Sensitive Detection of Explosives in Liquid and Solid Phases. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55299-55307.	4.0	51
2383	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	1.3	17
2384	Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for Self-Enhanced Electrochemiluminescence. Analytical Chemistry, 2020, 92, 15270-15274.	3.2	10
2385	Computational Investigations of Dispersion Interactions between Small Molecules and Graphene-like Flakes. Journal of Physical Chemistry A, 2020, 124, 9552-9561.	1.1	7
2386	Influence of Missing Linker Defects on the Thermal Conductivity of Metal–Organic Framework HKUST-1. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56172-56177.	4.0	25
2387	A photoactive copper iodide phosphine-based coordination polymer. New Journal of Chemistry, 2020, 44, 19850-19857.	1.4	7
2388	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	1.6	13
2389	Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon. Journal of the American Chemical Society, 2020, 142, 20088-20097.	6.6	62
2390	Co ₇ -Cluster-Based Metal–Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO ₂ Adsorption and Fixation. Crystal Growth and Design, 2020, 20, 7972-7978.	1.4	16
2391	Highly fluorescent scandium-tetracarboxylate frameworks: selective detection of nitro-aromatic compounds, sensing mechanism, and their application. Dalton Transactions, 2020, 49, 17737-17744.	1.6	29

#	Article	IF	CITATIONS
2392	99TcO4â^' removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11, 5571.	5.8	124
2393	Pore wall functionalized ultrasonically synthesized cooperative MOF for luminescence sensing of 2,4,6-trinitrophenol. Journal of Solid State Chemistry, 2020, 291, 121622.	1.4	19
2394	Magnetically treated Zr-based UiO-type porous coordination polymers study on adsorption of azo dye. Microporous and Mesoporous Materials, 2020, 306, 110291.	2.2	14
2395	A luminescent Cd(II)-metal organic frameworks combined of TPT and H3BTC detecting 2,4,6-trinitrophenol and chromate anions in aqueous. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118790.	2.0	10
2396	Pillar-Layered Metal–Organic Frameworks Based on a Hexaprismane [Co6(Î1⁄43-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Inorganic Chemistry, 2020, 59, 11728-11735.	1.9	17
2397	Two novel zinc(II) phosphonates for the selective luminescence sensing of 1,2,4-trichlorobenzene and Hg2+. Microchemical Journal, 2020, 159, 105385.	2.3	4
2398	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	9.5	138
2399	High 3D Proton Conductivity of a 2D Zn(II) Metal–Organic Framework Synthesized via Water-Assisted Single-Crystal-to-Single-Crystal Phase Transformation. Journal of Physical Chemistry C, 2020, 124, 18901-18910.	1.5	15
2400	A Stable Interpenetrated Zn-MOF with Efficient Light Hydrocarbon Adsorption/Separation Performance. Crystal Growth and Design, 2020, 20, 5670-5675.	1.4	29
2401	Functionalizing Luminescent Metal–Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 2020, 5, 2671-2680.	8.8	58
2402	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
2403	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	5.6	32
2404	Temperature and humidity sensors based on luminescent metal-organic frameworks. Polyhedron, 2020, 179, 114413.	1.0	23
2405	A dual-emission Acf@bioMOF-1 platform as fluorescence sensor for highly efficient detection of inorganic ions. Journal of Solid State Chemistry, 2020, 290, 121580.	1.4	15
2406	An Electron-Deficient Coordination Polymer Based on a Viologen Ligand Accompanying Photochromism, Vaporchromism, and Photoswitchable Luminescence Properties. Russian Journal of Inorganic Chemistry, 2020, 65, 874-879.	0.3	5
2407	Recent Advances in the Use of Metal-Organic Frameworks for Dye Adsorption. Frontiers in Chemistry, 2020, 8, 708.	1.8	80
2408	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	5.5	40
2409	Exploratory studies of a multidimensionally talented simple Mn ^{II} -based porous network: selective "turn-on―recognition @ cysteine over homocysteine with an indication of cystinuria and renal dysfunction. New Journal of Chemistry, 2020, 44, 14712-14722.	1.4	29

#	Article	IF	CITATIONS
2410	A selfâ€penetrating and chemically stable zinc (ii)â€organic framework as multiâ€responsive chemoâ€sensor to detect pesticide and antibiotics in water. Applied Organometallic Chemistry, 2020, 34, e5960.	1.7	62
2411	Fluorescent sensing response of metal-organic frameworks for the highly sensitive detection of Hg2+ and nitrobenzene in aqueous media. Journal of Solid State Chemistry, 2020, 290, 121610.	1.4	11
2412	A luminescent zinc(II) coordination polymer as a highly selective and sensitive chemosensor for Fe(III) cation and Cr(VI) anions detection in aqueous solution. Inorganica Chimica Acta, 2020, 513, 119940.	1.2	6
2413	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
2414	Polyurethane-coated luminescent dye@MOF composites for highly-stable white LEDs. Journal of Materials Chemistry C, 2020, 8, 12308-12313.	2.7	28
2415	Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews, 2020, 422, 213470.	9.5	124
2416	A three-dimensional covalent organic framework with turn-on luminescence for molecular decoding of volatile organic compounds. Sensors and Actuators B: Chemical, 2020, 323, 128708.	4.0	30
2417	Two dimensional coordination polymers based on 3,5-di(1H-imidazol-1-yl)pyridine and their fluorescence properties. Journal of Molecular Structure, 2020, 1207, 127818.	1.8	7
2418	A Primary Amide-Functionalized Heterogeneous Catalyst for the Synthesis of Coumarin-3-carboxylic Acids via a Tandem Reaction. Inorganic Chemistry, 2020, 59, 11407-11416.	1.9	9
2419	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie - International Edition, 2020, 59, 21752-21757.	7.2	115
2420	Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coordination Chemistry Reviews, 2020, 424, 213520.	9.5	105
2421	Lanthanide-Titanium Oxo Clusters as the Luminescence Sensor for Nitrobenzene Detection. Inorganic Chemistry, 2020, 59, 12404-12409.	1.9	41
2422	Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors. Journal of Materials Chemistry C, 2020, 8, 12739-12754.	2.7	139
2423	Highly selective and sensitive dual-fluorescent probe for cationic Pb2+ and anionic Cr2O72â^', CrO42â^' contaminants via a powerful indiumâ^'organic framework. Journal of Solid State Chemistry, 2020, 291, 121672.	1.4	17
2424	Sensing mechanism elucidation of a chemosensor based on a <scp>metalâ€organic</scp> framework selective to explosive aromatic compounds. International Journal of Quantum Chemistry, 2020, 120, e26404.	1.0	14
2425	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	1.7	53
2426	A fluorescent coordination polymer for TNP detection and protection effect on cough after infection by up-regulates the activity of neuroendopeptide enzyme in respiratory tract mucosa. Journal of Polymer Research, 2020, 27, 1.	1.2	2
2427	Adsorptive and Photocatalytic Dye Removal from Wastewater Using Metal-Organic Frameworks. IOP Conference Series: Materials Science and Engineering, 2020, 782, 052002.	0.3	0

#	Article	IF	CITATIONS
2428	MOF based flexible, low-cost chemiresistive device as a respiration sensor for sleep apnea diagnosis. Journal of Materials Chemistry B, 2020, 8, 10182-10189.	2.9	33
2429	Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â°} ions in aqueous systems. Journal of Coordination Chemistry, 2020, 73, 2718-2727.	0.8	17
2430	Nitrogen-doped carbon quantum dots conjugated isoreticular metal-organic framework-3 particles based luminescent probe for selective sensing of trinitrotoluene explosive. Mikrochimica Acta, 2020, 187, 536.	2.5	13
2431	Facile Synthesis of a Metal–Organic Framework for Removal of Methyl Blue from Water: First-Year Undergraduate Teaching Lab. Journal of Chemical Education, 2020, 97, 4145-4151.	1.1	15
2432	Vapoluminescence Behavior Triggered by Crystal-State Complexation between Host Crystals and Guest Vapors Exhibiting No Visible Fluorescence. Crystal Growth and Design, 2020, 20, 7087-7092.	1.4	16
2433	Di-functional luminescent sensors based on Y ³⁺ doped Eu ³⁺ and Tb ³⁺ coordination polymers: fast response and visible detection of Cr ³⁺ , Fe ³⁺ ions in aqueous solutions and acetone. RSC Advances, 2020, 10, 32232-32240.	1.7	16
2435	A cucurbit[6]uril-based supramolecular assembly test strip for immediate detection of nitrofuran antibiotics in water. CrystEngComm, 2020, 22, 7660-7667.	1.3	2
2436	A highly stable 8-hydroxyquinolinate-based metal–organic framework as a selective fluorescence sensor for Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} and nitroaromatic explosives. Inorganic Chemistry Frontiers, 2020, 7, 4387-4395.	3.0	32
2438	Vapor switching of the luminescence mechanism in a Re($<$ scp> $vscp>) complex. Chemical Communications, 2020, 56, 12961-12964.$	2.2	7
2439	From 1D Coordination Polymers to Metal Organic Frameworks by the Use of 2-Pyridyl Oximes. Materials, 2020, 13, 4084.	1.3	7
2440	Monitoring the spin crossover phenomenon of [Fe(2â€mpz) ₂ Ni(CN) ₄] 2D Hofmannâ€type polymer nanoparticles via temperatureâ€dependent Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2171-2181.	1,2	13
2441	Multi-responsive chemosensing and photocatalytic properties of three luminescent coordination polymers derived from a bifunctional 1,1′-di(4-carbonylphenyl)-2,2′-biimidazoline ligand. CrystEngComm, 2020, 22, 6195-6206.	1.3	28
2442	An Efficient Aggregationâ€Induced Emission Supramolecular Probe for Detection of Nitroaromatic Explosives in Water. Advanced Photonics Research, 2020, 1, 2000007.	1.7	4
2443	Design and properties of multiple-emitter luminescent metal–organic frameworks. Chemical Communications, 2020, 56, 12290-12306.	2.2	78
2444	Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Structures, 2020, 1, 2000019.	6.9	26
2445	An all white magnet by combination of electronic properties of a white light emitting MOF with strong magnetic particle systems. Journal of Materials Chemistry C, 2020, 8, 16010-16017.	2.7	10
2446	Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and a tetra(triazole) ligand. Journal of Coordination Chemistry, 2020, 73, 2042-2054.	0.8	2
2447	Luminescence in Manganese (II)-Doped SrZn2S2O Crystals From Multiple Energy Conversion. Frontiers in Chemistry, 2020, 8, 752.	1.8	15

#	Article	IF	CITATIONS
2448	Two tetranuclear Cd-based metal–organic frameworks for sensitive sensing of TNP/Fe3+ in aqueous media and gas adsorption. CrystEngComm, 2020, 22, 6927-6934.	1.3	8
2449	Luminescent triphenylamine-based metal–organic frameworks: recent advances in nitroaromatics detection. Dalton Transactions, 2020, 49, 12929-12939.	1.6	18
2450	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie, 2020, 132, 21936-21941.	1.6	23
2451	Metalloporphyrinâ€Based Metal–Organic Frameworks on Flexible Carbon Paper for Electrocatalytic Nitrite Oxidation. Chemistry - A European Journal, 2020, 26, 17399-17404.	1.7	7
2452	Size-controlled synthesis of metal–organic frameworks and their performance as fluorescence sensors. Analyst, The, 2020, 145, 7349-7356.	1.7	12
2453	Portable Analytical Techniques for Monitoring Volatile Organic Chemicals in Biomanufacturing Processes: Recent Advances and Limitations. Frontiers in Chemistry, 2020, 8, 837.	1.8	6
2454	Near-infrared fluorescent organic porous crystal that responds to solvent vapors. Journal of Materials Chemistry C, 2020, 8, 12437-12444.	2.7	15
2455	Synthesis, Fluorescence, and Antifungal Activity of a Bifunctional Lead(<scp>II</scp>) Coordination Polymer Based on Multidentate Acylhydrazone Ligand. Bulletin of the Korean Chemical Society, 2020, 41, 1124-1127.	1.0	1
2456	Multiresponsive luminescent Cd(II) coordination polymer for selective and recyclable detection of TNP and Cr2O72- in aqueous media. Inorganic Chemistry Communication, 2020, 121, 108233.	1.8	6
2457	Recent Advances in the Application of Metal–Organic Frameworks for Polymerization and Oligomerization Reactions. Catalysts, 2020, 10, 1441.	1.6	6
2458	Crystal Structure, Synthesis and Luminescence Sensing of a Zn(II) Coordination Polymer with 2,5-Dihydroxy-1,4-Terephthalic Acid and 2,2 \hat{a} \in 2-Bipyridine as Ligands. Crystals, 2020, 10, 1105.	1.0	5
2459	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	3.3	26
2460	Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: application for chlorpyrifos. Mikrochimica Acta, 2020, 187, 673.	2.5	31
2461	Amine-functionalized metal–organic framework-based Pd nanoparticles: highly efficient multifunctional catalysts for base-free aerobic oxidation of different alcohols. New Journal of Chemistry, 2020, 44, 19113-19121.	1.4	3
2462	A porous Eu(III)-containing MOF: selective detection of Cr2O72– and treatment activity on the uterine fibroids by reducing TGF-β production and mmp expression. Journal of Polymer Research, 2020, 27, 1.	1.2	1
2463	SURMOF Devices Based on Heteroepitaxial Architectures with Whiteâ€Light Emission and Luminescent Thermalâ€Dependent Performance. Advanced Materials Interfaces, 2020, 7, 2000929.	1.9	15
2464	A 3D Adenineâ€based Cdâ€MOF: Synthesis, Structure and Photoluminescent Sensing for an Aromatic Azo Compound. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1911-1915.	0.6	6
2465	Trace detection and chemical analysis of homemade fuel-oxidizer mixture explosives: Emerging challenges and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 131, 116023.	5.8	27

#	Article	IF	CITATIONS
2466	Enhancing Selective Adsorption in a Robust Pillared-Layer Metal–Organic Framework via Channel Methylation for the Recovery of C2–C3 from Natural Gas. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 51499-51505.	4.0	50
2467	Facile Grafting of Silver Nanoparticles into Copper and Guanosine 5′-Monophosphate Metal Organic Frameworks (AgNPs@Cu/GMP): Characterization and Antimicrobial Activity. Journal of Cluster Science, 2020, , 1.	1.7	1
2468	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	23.0	299
2469	Alkaline earth-organic frameworks with amino derivatives of 2,6-naphthalene dicarboxylates: structural studies and fluorescence properties. Dalton Transactions, 2020, 49, 16736-16744.	1.6	3
2470	Influence of thermally induced structural transformations on the magnetic and luminescence properties of tartrate-based chiral lanthanide organic-frameworks. Journal of Materials Chemistry C, 2020, 8, 8243-8256.	2.7	21
2471	Hexnuclear Cadmium(II) Cluster Constructed from Tris(2-methylpyridyl)amine (TPA) and Azides. Crystals, 2020, 10, 317.	1.0	7
2472	Efficient Identification for Alcohol Homologues and Hyperthermy Based on Coordination Polymer Multiple Structural Transformations. ACS Applied Materials & Structural Transformations. ACS Applied Materials & Structural Transformations.	4.0	8
2473	Supramolecular organic frameworks with ultralong phosphorescence via breaking π-Conjugated structures. Giant, 2020, 1, 100007.	2.5	12
2474	Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 13897-13903.	1.6	3
2475	Synthesis of eight isostructural 2D lanthanide coordination polymers assembled by rigid furan-2,5-dicarboxylic acid and flexible adipic acid as linkers and exploration of luminescent Eu/Tb polymers as efficient and sensitive sensors for nitroaromatic compounds. New Journal of Chemistry, 2020. 44, 8125-8137.	1.4	20
2476	Linear dicarboxylate-based pyridyl-appended cobalt(ii) coordination polymers in search of opto-electronic properties. New Journal of Chemistry, 2020, 44, 9004-9009.	1.4	9
2477	Opportunities and critical factors of porous metal–organic frameworks for industrial light olefins separation. Materials Chemistry Frontiers, 2020, 4, 1954-1984.	3.2	48
2478	Dual mode selective detection and differentiation of TNT from other nitroaromatic compounds. Journal of Materials Chemistry A, 2020, 8, 10767-10771.	5.2	15
2479	A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta, 2020, 218, 121157.	2.9	16
2480	From a 1D Sb Coordination Polymer to a 3D Sb Framework with Pyrazine: Switching off the Stereochemically Active Loneâ€Pair. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 507-513.	0.6	6
2481	Building a robust 3D Ca-MOF by a new square Ca ₄ O SBU for purification of natural gas. Dalton Transactions, 2020, 49, 8836-8840.	1.6	19
2482	Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020, 417, 213366.	9.5	174
2483	Advanced Properties and Applications of AlEgens-Inspired Smart Materials. Industrial & Engineering Chemistry Research, 2020, 59, 10721-10736.	1.8	28

#	Article	IF	Citations
2484	Excitation-Dependent Photoluminescence Color Tuning in Lanthanide-Organic Hybrid Materials. Inorganic Chemistry, 2020, 59, 7539-7552.	1.9	24
2485	Photoresponsivity and antibiotic sensing properties of an entangled tris(pyridinium)-based metal–organic framework. Dalton Transactions, 2020, 49, 7488-7495.	1.6	31
2486	A white-light-emitting lanthanide metal–organic framework for luminescence turn-off sensing of MnO ₄ ^{â^'} and turn-on sensing of folic acid and construction of a "turn-on plus―system. New Journal of Chemistry, 2020, 44, 10239-10249.	1.4	24
2487	Series of coordination polymers with multifunctional properties for nitroaromatic compounds and Cull sensing. Journal of Solid State Chemistry, 2020, 288, 121381.	1.4	13
2488	Two cadmium(II) coordination polymers as multi-functional luminescent sensors for the detection of Cr(VI) anions, dichloronitroaniline pesticide, and nitrofuran antibiotic in aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118467.	2.0	86
2489	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie, 2020, 132, 16195-16202.	1.6	4
2490	Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosensors and Bioelectronics, 2020, 164, 112332.	5.3	99
2491	Eu(III)-organic complex as recyclable dual-functional luminescent sensor for simultaneous and quantitative sensing of 2,4,6-trinitrophenol and CrO42â° in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118497.	2.0	10
2492	UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta, 2020, 218, 121207.	2.9	45
2493	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187
2495	Multiâ€emissive 1D Cd(II) polymers with a biphenyl bridged bisazamacrocycle for ratiometric discrimination of nitroaromatics and selective visual detection of picric acid. Applied Organometallic Chemistry, 2020, 34, e5774.	1.7	6
2496	Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): Enhancement the biological and visibleâ€light photocatalytic activity. Journal of Environmental Chemical Engineering, 2020, 8, 104107.	3.3	78
2497	Highly selective C2H2 and CO2 capture and photoluminescence properties of two Tb(III)-based MOFs. Journal of Solid State Chemistry, 2020, 285, 121257.	1.4	4
2498	Stepwise elucidation of fluorescence based sensing mechanisms considering picric acid as a model analyte. Analyst, The, 2020, 145, 4753-4767.	1.7	36
2499	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	2.8	40
2500	Porous hydrogen-bonded organic frameworks (HOFs): From design to potential applications. Chemical Engineering Journal, 2020, 399, 125873.	6.6	132
2501	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	1.9	33
2502	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	1.4	8

#	Article	IF	CITATIONS
2503	Synthesis, structure and luminescence properties of a three-dimensional Cd(II) coordination polymer with (3,Â7)-connected topology. Journal of Sulfur Chemistry, 2020, 41, 508-516.	1.0	1
2504	Two Cadmium(II) Coordination Polymers based on Pamoic Acid and Different Polydentate Nâ€donor Ligands: Syntheses, Crystal Structures, and Fluorescence Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 420-425.	0.6	5
2505	Water Stable Zn(II) Metal–Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(III) and Chromate Ions. Inorganic Chemistry, 2020, 59, 8818-8826.	1.9	107
2506	A Zn-Based Fluorescent Coordination Polymer as Bifunctional Sensor: Sensitive and Selective Aqueous-Phase Detection of Picric Acid and Heavy Metal Ion. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4496-4509.	1.9	20
2507	A water-soluble fluorescent probe for selective detection of 2,4,6-trinitrophenol (TNP) in real samples. Microchemical Journal, 2020, 157, 105117.	2.3	12
2508	Highly Stable Lanthanide Metal–Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorganic Chemistry, 2020, 59, 8809-8817.	1.9	45
2509	The synergistic effect of heterostructured dissimilar metal–organic framework thin films on adsorption properties. Journal of Materials Chemistry A, 2020, 8, 12990-12995.	5.2	15
2510	Guestâ€Tunable Dielectric Sensing Using a Single Crystal of HKUSTâ€1. Advanced Materials Interfaces, 2020, 7, 2000408.	1.9	12
2511	A Scandium MOF with an Unprecedented Inorganic Building Unit, Delimiting the Micropore Windows. Inorganic Chemistry, 2020, 59, 8995-9004.	1.9	11
2512	Preparation of Multifunctional Hyperbranched Poly(\hat{l}^2 -aminoacrylate)s by Spontaneous Amino-yne Click Polymerization. Macromolecules, 2020, 53, 5248-5254.	2.2	48
2513	Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science, 2020, 11, 8373-8387.	3.7	119
2514	Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Science China Chemistry, 2020, 63, 1315-1322.	4.2	31
2515	Eu(III)-organic framework as a multi-responsive photoluminescence sensor for efficient detection of 1-naphthol, Fe3+ and MnO4â°' in water. Inorganica Chimica Acta, 2020, 511, 119843.	1.2	16
2516	A new 1D Zn(II) coordination polymer containing 2-amino-4,6-dimethoxypyrimidine ligand: crystal structure, Hirshfeld surface analysis, and physicochemical studies. Journal of Molecular Structure, 2020, 1216, 128309.	1.8	2
2517	Advances in luminescent metal-organic framework sensors based on post-synthetic modification. TrAC - Trends in Analytical Chemistry, 2020, 129, 115939.	5.8	80
2518	Two Novel Lanthanide Metal–Organic Frameworks: Selective Luminescent Sensing for Nitrobenzene, Cu ²⁺ , and MnO ₄ [–] . Crystal Growth and Design, 2020, 20, 5225-5234.	1.4	64
2519	Confined Synthesis of Oriented Two-Dimensional Ni ₃ (hexaiminotriphenylene) ₂ Films for Electrocatalytic Oxygen Evolution Reaction. Langmuir, 2020, 36, 7528-7532.	1.6	21
2520	Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews, 2020, 120, 8066-8129.	23.0	284

#	ARTICLE	IF	CITATIONS
2521	Interfacial Optimization of Bi NPs Decorated Bi ₂ WO ₆ /MILâ€53(Fe) Heterojunction with Enhanced Visible Light Photocatalytic Response. ChemistrySelect, 2020, 5, 6630-6638.	0.7	5
2522	Metalâ€Organic Framework Based on an Anthracene Tetracarboxylate Ligand and Cadmium or Cobalt: Synthesis, Structure Analysis, Stability and Magnetic Properties. ChemistrySelect, 2020, 5, 6537-6540.	0.7	3
2523	Design and Construction of a Luminescent and Highly Stable 3D Metal–Organic Framework with a [Zn ₄ (μ ₃ -OH) ₂] ⁶⁺ Core. Inorganic Chemistry, 2020, 59, 4588-4600.	1.9	58
2524	Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. Journal of the American Chemical Society, 2020, 142, 6690-6697.	6.6	185
2525	CO ₂ â€Induced Spinâ€State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angewandte Chemie - International Edition, 2020, 59, 10658-10665.	7.2	25
2526	Selective determination of 2,4,6-trinitrophenol by using a novel carbon nanoparticles as a fluorescent probe in real sample. Analytical and Bioanalytical Chemistry, 2020, 412, 3083-3090.	1.9	14
2527	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351.	1.6	14
2528	Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection. Science China Chemistry, 2020, 63, 497-503.	4.2	20
2529	Cu(<scp>i</scp>)–I coordination polymers as the possible substitutes of lanthanides as downshifters for increasing the conversion efficiency of solar cells. Dalton Transactions, 2020, 49, 4315-4322.	1.6	9
2530	Three Cd(II)-based luminescent metal-organic frameworks constructed from the mixed-ligand strategy for highly selective detection of nitrobenzene. Journal of Solid State Chemistry, 2020, 286, 121314.	1.4	5
2531	Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal–Organic Frameworks for Highly Sensitive NO⟨sub⟩2⟨/sub⟩ Sensors. Journal of Physical Chemistry Letters, 2020, 11, 3362-3368.	2.1	50
2532	A Cu-BTC metal–organic framework (MOF) as an efficient heterogeneous catalyst for the aerobic oxidative synthesis of imines from primary amines under solvent free conditions. New Journal of Chemistry, 2020, 44, 5972-5979.	1.4	51
2533	Taking lanthanides out of isolation: tuning the optical properties of metal–organic frameworks. Chemical Science, 2020, 11, 4164-4170.	3.7	12
2534	Highly chemically and thermally stable lanthanide coordination polymers for luminescent probes and white light emitting diodes. CrystEngComm, 2020, 22, 2667-2674.	1.3	16
2535	Turn-on fluorescence in a stable Cd(II) metal-organic framework for highly sensitive detection of Cr3+ in water. Dyes and Pigments, 2020, 178, 108359.	2.0	23
2536	Ultrasensitive Fluorescent miRNA Biosensor Based on a "Sandwich―Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design. ACS Applied Materials & Design. Interfaces. 2020. 12. 16076-16087.	4.0	100
2537	Synthesis and characterization of linear 1,4-diazine-triphenylamine–based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines. Dyes and Pigments, 2020, 178, 108344.	2.0	20
2538	Eosin Y-Embedded Zirconium-Based Metal–Organic Framework as a Dual-Emitting Built-In Self-Calibrating Platform for Pesticide Detection. Inorganic Chemistry, 2020, 59, 5386-5393.	1.9	62

#	Article	IF	Citations
2539	Strongly visible light-absorbing metal–organic frameworks functionalized by cyclometalated ruthenium(<scp>ii</scp>) complexes. RSC Advances, 2020, 10, 9052-9062.	1.7	6
2540	Lanthanide organic/inorganic hybrid systems: Efficient sensors for fluorescence detection. Dyes and Pigments, 2020, 178, 108386.	2.0	28
2541	A 3D cadmium(II) coordination polymer based on rigid ligand 1-tetrazole-4-imidazole-benzene: Solvothermal synthesis, crystal structure and tunable luminescent emissions. Inorganic Chemistry Communication, 2020, 115, 107887.	1.8	2
2542	Post synthetically modified compounds of Cd-MOF by l-amino acids for luminescent applications. Journal of Solid State Chemistry, 2020, 287, 121320.	1.4	14
2543	Two copper (II) complexes based on different copper salts, 1,3-benzenedicarboxylic acid and 1,4-di(imidazolidin-1-yl) benzene and their fluorescence recognition to nitrobenzene derivatives. Journal of Solid State Chemistry, 2020, 287, 121334.	1.4	4
2544	Hydrothermal Synthesis of Sub-20 nm Amine-Functionalized MIL-101(Cr) Nanoparticles with High Surface Area and Enhanced CO ₂ Uptake. Industrial & Description of the Surface Area and Enhanced CO ₂ Uptake. Industrial & Description of the Surface Area and Enhanced CO ₂	1.8	35
2545	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	3.0	126
2546	Efficient detection of Cr ³⁺ and Cr ₂ O ₇ ^{2â^'} using a Zn(<scp>ii</scp>) luminescent metalâ€"organic framework. New Journal of Chemistry, 2020, 44, 7293-7299.	1.4	6
2547	Water-stable Ln ^{III} -based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. New Journal of Chemistry, 2020, 44, 6747-6759.	1.4	15
2548	Polymorphic Copper Iodide Anions: Luminescence Thermochromism and Mechanochromism of (PPh ₄) ₂ [Cu ₂ 1 ₄]. Inorganic Chemistry, 2020, 59, 5768-5780.	1.9	39
2549	Fluorescent SiO2@Tb3+(PET-TEG)3Phen Hybrids as Nucleating Additive for Enhancement of Crystallinity of PET. Polymers, 2020, 12, 568.	2.0	10
2550	Room-temperature preparation of coordination polymers for biomedicine. Coordination Chemistry Reviews, 2020, 411, 213256.	9.5	25
2551	Multiresponsive Luminescent Sensitivities of a 3D Cd-CP with Visual Turn-on and Ratiometric Sensing toward Al $<$ sup $>$ 3+ $<$ lsup $>$ and Cr $<$ sup $>$ 3+ $<$ lsup $>$ as Well as Turn-off Sensing toward Fe $<$ sup $>$ 3+ $<$ lsup $>$. Inorganic Chemistry, 2020, 59, 3828-3837.	1.9	94
2552	Zeolitic Metal Cluster Carboxylic Framework for Selective Carbon Dioxide Chemical Fixation through the Superlarge Cage. Inorganic Chemistry, 2020, 59, 3912-3918.	1.9	19
2553	Nanoscale light–matter interactions in metal–organic frameworks cladding optical fibers. Nanoscale, 2020, 12, 9991-10000.	2.8	25
2554	Double-signal mode based on metal–organic framework coupled cascaded nucleic acid circuits for accurate and sensitive detection of serum circulating miRNAs. Chemical Communications, 2020, 56, 4288-4291.	2.2	18
2555	A lanthanide MOF immobilized in PMMA transparent films as a selective fluorescence sensor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2020, 8, 3626-3630.	2.7	39
2556	Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 2020, 13, 2881.	1.3	99

#	Article	IF	CITATIONS
2557	Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorganica Chimica Acta, 2020, 511, 119840.	1.2	12
2558	Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149.	3.2	34
2559	Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push–Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. International Journal of Molecular Sciences, 2020, 21, 4366.	1.8	4
2560	AlE-active metal–organic frameworks: facile preparation, tunable light emission, ultrasensitive sensing of copper(<scp>ii</scp>) and visual fluorescence detection of glucose. Journal of Materials Chemistry C, 2020, 8, 10408-10415.	2.7	41
2561	Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chemical Communications, 2020, 56, 9016-9019.	2.2	29
2562	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie, 2020, 132, 18381-18385.	1.6	7
2563	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18224-18228.	7.2	44
2564	A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO ₄ ^{2â°'} . New Journal of Chemistry, 2020, 44, 12646-12653.	1.4	11
2565	Chain-like uranyl-coordination polymer as a bright green light emitter for sensing and sunlight driven photocatalysis. Journal of Materials Chemistry C, 2020, 8, 11102-11109.	2.7	7
2566	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	11.1	182
2567	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	18.7	75
2568	Employable metal (Ag &	5.1	109
2569	Selective sensing of aliphatic biogenic polyamines by a zwitterionic Cd-MOF based on bisimidazole tetracarboxylic acid linker. Journal of Materials Chemistry C, 2020, 8, 11449-11456.	2.7	21
2570	Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies. Journal of Molecular Modeling, 2020, 26, 188.	0.8	7
2571	Two anthracene chromophore based metal–organic frameworks for gas adsorption and promising nitro aromatic sensing. New Journal of Chemistry, 2020, 44, 12496-12502.	1.4	4
2572	Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. TrAC - Trends in Analytical Chemistry, 2020, 129, 115958.	5.8	33
2573	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Cross oupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	0.6	9
2574	Sonochemical synthesis of microscale Zn(<scp>ii</scp>)-MOF with dual Lewis basic sites for fluorescent turn-on detection of Al ³⁺ and methanol with low detection limits. Dalton Transactions, 2020, 49, 10240-10249.	1.6	35

#	Article	IF	CITATIONS
2575	High conductivity, percolation behavior and dielectric relaxation of hybrid ZIF-8/CNT composites. Journal of Alloys and Compounds, 2020, 825, 154132.	2.8	33
2576	Anhydride Post-Synthetic Modification in a Hierarchical Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 4419-4428.	6.6	53
2577	Waterâ€Stable Lanthanide Coordination Polymers with Triple Luminescent Centers for Tunable Emission and Efficient Selfâ€Calibration Sensing Wastewater Pollutants. Advanced Optical Materials, 2020, 8, 1901659.	3.6	27
2578	Amine-Functionalized ZIF-8 as a Fluorescent Probe for Breath Volatile Organic Compound Biomarker Detection of Lung Cancer Patients. ACS Omega, 2020, 5, 3478-3486.	1.6	19
2579	Emerging Cubic Chirality in γCDâ€MOF for Fabricating Circularly Polarized Luminescent Crystalline Materials and the Size Effect. Angewandte Chemie, 2020, 132, 4983-4988.	1.6	28
2580	Ratiometric fluorescence detection of anthrax biomarker 2,6-dipicolinic acid using hetero MOF sensors through ligand regulation. Journal of Materials Chemistry C, 2020, 8, 4392-4400.	2.7	72
2581	Air-Flow Impacting Synthesis of Metal Organic Frameworks: A Continuous, Highly Efficient, Large-Scale Mechanochemical Synthetic Method. ACS Sustainable Chemistry and Engineering, 2020, 8, 4037-4043.	3.2	18
2582	Influence of pH on the structures of two Cd phosphonate compounds. Journal of Chemical Sciences, 2020, 132, 1.	0.7	1
2583	Luminescence turn-on detection by an entanglement-protected MOF operating ⟨i⟩via⟨ i⟩ a divided receptor–transducer protocol. Journal of Materials Chemistry C, 2020, 8, 3622-3625.	2.7	18
2584	Optimizing Energy Transfer in Nanostructures Enables In Vivo Cancer Lesion Tracking via Nearâ€Infrared Excited Hypoxia Imaging. Advanced Materials, 2020, 32, e1907718.	11.1	38
2585	Selective Th(<scp>iv</scp>) capture from a new metal–organic framework with O ^{â^'} groups. Dalton Transactions, 2020, 49, 4060-4066.	1.6	14
2586	Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous and Mesoporous Materials, 2020, 300, 110136.	2.2	22
2587	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Diterfaces, 2020, 12, 14087-14094.	4.0	48
2588	Exchange coupled Co(⟨scp⟩ii⟨/scp⟩) based layered and porous metal–organic frameworks: structural diversity, gas adsorption, and magnetic properties. Dalton Transactions, 2020, 49, 4012-4021.	1.6	18
2589	Luminescent coordination polymers with anthracene chromophores: Syntheses, crystal structures and luminescent properties. Inorganica Chimica Acta, 2020, 506, 119556.	1.2	3
2590	A novel spectroscopic probe for detecting food preservative NO2â^': Citric acid functionalized metal-organic framework and luminescence sensing. Microchemical Journal, 2020, 155, 104768.	2.3	20
2591	Metal–Organic Framework Magnets. Chemical Reviews, 2020, 120, 8716-8789.	23.0	369
2592	An Electroactive Zinc-based Metal–Organic Framework: Bifunctional Fluorescent Quenching Behavior and Direct Observation of Nitrobenzene. Inorganic Chemistry, 2020, 59, 2997-3003.	1.9	20

#	Article	IF	CITATIONS
2593	Assembly of four new cobalt coordination polymers modulated by N-coligands: sensitive and selective sensing of nitroaromatics, Fe $<$ sup $>$ 3+ $<$ /sup $>$ and Cr $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 7 $<$ /sub $><$ sup $>$ 2 \hat{a} °' $<$ /sup $>$ in water. CrystEngComm, 2020, 22, 1789-1801.	1.3	17
2594	Bimetal-organic frameworks (Cu -Cr –MOF) as a stable and efficient catalyst for synthesis of 3, 4-dihydropyrimidin-2-one and 14-phenyl-14H-dibenzo [a, j] xanthene. Journal of Materials Research and Technology, 2020, 9, 1998-2008.	2.6	32
2595	A Zn-based coordination polymer as a luminescent sensor for simple and sensitive detecting of sulfonamides antibiotics and nitroaromatic. Journal of Solid State Chemistry, 2020, 286, 121247.	1.4	12
2596	The construction of helicate metal–organic nanotubes and enantioselective recognition. Journal of Materials Chemistry C, 2020, 8, 4453-4460.	2.7	12
2597	Tuning the Catalytic Activity of UiOâ€66 via Modulated Synthesis: Esterification of Levulinic Acid as a Test Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 833-840.	1.0	12
2598	Morphology control of nanoscale metal-organic frameworks for high-performance supercapacitors. Electrochimica Acta, 2020, 343, 135617.	2.6	36
2599	Construction of a Succinate-Bridged Cd(II)-Based Two-Dimensional Coordination Polymer for Efficient Optoelectronic Device Fabrication and Explosive Sensing Application. Crystal Growth and Design, 2020, 20, 765-776.	1.4	57
2600	Multicolour barcoding in one MOF crystal through rational postsynthetic transmetalation. Journal of Materials Chemistry C, 2020, 8, 3176-3182.	2.7	6
2601	Four luminescent metal-organic chain compounds based on semi-rigid N-donor ligands and 3-hydroxy-2-naphthoic acid for recognition of Fe3+ and Cr2O72â~ ions. Polyhedron, 2020, 179, 114383.	1.0	8
2602	In Situ Ligand Formation-Driven Synthesis of a Uranyl Organic Framework as a Turn-on Fluorescent pH Sensor. Inorganic Chemistry, 2020, 59, 1778-1784.	1.9	36
2603	A Waterâ€Stable Lanthanide Coordination Polymer as Multicenter Platform for Ratiometric Luminescent Sensing Antibiotics. Chemistry - A European Journal, 2020, 26, 3137-3144.	1.7	72
2604	Synthesis of a biocompatible nanoporous zeolitic imidazolate framework-8 in the presence of Gum Arabic inspired by the biomineralization process. CrystEngComm, 2020, 22, 1875-1884.	1.3	5
2605	A two-dimensional zinc(II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone. Mikrochimica Acta, 2020, 187, 136.	2.5	16
2606	A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 1481-1488.	2.9	72
2607	Super-quenching: Multiple migration channels of excitons cause "area quenching― Materials Chemistry and Physics, 2020, 243, 122657.	2.0	4
2608	Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium. Optical Materials, 2020, 100, 109646.	1.7	32
2609	MOF-derived CuCoNi trimetallic hybrids as efficient oxygen evolution reaction electrocatalysts. New Journal of Chemistry, 2020, 44, 2459-2464.	1.4	23
2610	Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordination Chemistry Reviews, 2020, 408, 213173.	9.5	272

#	Article	IF	CITATIONS
2611	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5.6	136
2612	Emerging Cubic Chirality in γCDâ€MOF for Fabricating Circularly Polarized Luminescent Crystalline Materials and the Size Effect. Angewandte Chemie - International Edition, 2020, 59, 4953-4958.	7.2	97
2613	Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe ³⁺ ,Cr ₂ O ₇ ^{2â€"} /CrO ₄ ^{2â€"} in a Water Environment. Inorganic Chemistry, 2020, 59, 2005-2010.	1.9	154
2614	A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors and Actuators B: Chemical, 2020, 310, 127756.	4.0	133
2615	Metal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a review. Journal of Materials Chemistry C, 2020, 8, 2952-2963.	2.7	111
2616	Metal–Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. Accounts of Chemical Research, 2020, 53, 520-531.	7.6	81
2617	Ultra-fast catalytic detoxification of organophosphates by nano-zeolitic imidazolate frameworks. Molecular Catalysis, 2020, 490, 110965.	1.0	3
2618	Improving the Cd2+ detection capability of a new anionic rare earth metal–organic framework based on a [RE6(μ3-OH)8]10+ secondary building unit: an ion-exchange approach towards more efficient sensors. Molecular Systems Design and Engineering, 2020, 5, 1077-1087.	1.7	8
2619	Efficient Gating of Ion Transport in Threeâ€Dimensional Metal–Organic Framework Subâ€Nanochannels with Confined Lightâ€Responsive Azobenzene Molecules. Angewandte Chemie, 2020, 132, 13151-13156.	1.6	7
2620	A water-stable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect. Talanta, 2020, 217, 121019.	2.9	37
2621	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
2622	A tubular luminescent framework: precise decoding of nitroaniline isomers and quantitative detection of traces of benzaldehyde in benzyl alcohol. Journal of Materials Chemistry C, 2020, 8, 9828-9835.	2.7	12
2623	CO 2 â€Induced Spinâ€State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angewandte Chemie, 2020, 132, 10745-10752.	1.6	4
2624	Fe ₃ O ₄ @MOF Magnetic Nanocomposites: Synthesis and Applications. European Journal of Inorganic Chemistry, 2020, 2020, 1916-1937.	1.0	65
2625	Design and synthesis of <scp>Dâ€Ï€â€A</scp> fluorescent dyes based on nicotinonitrile and azobenzene derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 2738-2747.	1.4	7
2626	New functionalized ditopic redox-active hydroxy-p-iminoquinone-type ligands and mercury(ii) complexes based on these ligands. Russian Chemical Bulletin, 2020, 69, 49-60.	0.4	5
2627	Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor for acetone. Journal of Cleaner Production, 2020, 263, 121492.	4.6	32
2628	Discrete nanographene implanted in zirconium metal-organic framework for electrochemical energy storage. Journal of Solid State Chemistry, 2020, 287, 121377.	1.4	7

#	Article	IF	CITATIONS
2629	Highly Selective Separation of C ₃ H ₈ and C ₂ H ₂ from CH ₄ within Two Water-Stable Zn ₅ Cluster-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18642-18649.	4.0	49
2630	A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chemical Communications, 2020, 56, 5389-5392.	2.2	49
2631	Dual-responsive luminescent sensors based on two Cd-MOFs: rare enhancement toward acac and quenching toward Cr ₂ O ₇ ^{2â^'} . CrystEngComm, 2020, 22, 3759-3767.	1.3	40
2632	Syntheses, crystal structures and properties of four metal coordination complexes constructed from aromatic carboxylate and benzimidazole-based ligands. Transition Metal Chemistry, 2020, 45, 353-362.	0.7	3
2633	Metal–Organic Framework with Dual Active Sites in Engineered Mesopores for Bioinspired Synergistic Catalysis. Journal of the American Chemical Society, 2020, 142, 8602-8607.	6.6	53
2634	Luminescent Chemosensor Properties of Eu(III) Complex Compounds. Optics and Spectroscopy (English) Tj ETQq1	1.0.7843	114 rgBT /0
2635	Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 13793-13799.	7.2	23
2636	Highly Selective and Stable Zn (II)â€Based Metal–Organic Frameworks for the Detections of Tetracycline Antibiotic and Acetone in Aqueous System. Applied Organometallic Chemistry, 2020, 34, e5518.	1.7	27
2637	Efficient Gating of Ion Transport in Threeâ€Dimensional Metal–Organic Framework Subâ€Nanochannels with Confined Lightâ€Responsive Azobenzene Molecules. Angewandte Chemie - International Edition, 2020, 59, 13051-13056.	7.2	70
2638	Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal–Organic Frameworks. ChemPlusChem, 2020, 85, 832-837.	1.3	9
2639	Temperature-Dependent Emission and Turn-Off Fluorescence Sensing of Hazardous "Quat―Herbicides in Water by a Zn-MOF Based on a Semi-Rigid Dibenzochrysene Tetraacetic Acid Linker. Inorganic Chemistry, 2020, 59, 6202-6213.	1.9	47
2640	Heterometallic Cluster Coordination Polymers Assembled from Cuprous-Halide Clusters and Organotin–Oxygen Pyridinecarboxylate Clusters. Crystal Growth and Design, 2020, 20, 3795-3800.	1.4	8
2641	Development of Colorimetric and Turnâ€On Fluorescence Sensor for the Detection of Al ³⁺ and F ^{â°¹} lons: DNA Tracking and Practical Performance as Applications. ChemistrySelect, 2020, 5, 4778-4785.	0.7	5
2642	Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catalysis, 2020, 10, 5805-5813.	5.5	88
2643	Metal-based nanocontainers for drug delivery in tumor therapy. , 2020, , 195-215.		3
2644	Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coordination Chemistry Reviews, 2020, 415, 213299.	9.5	158
2645	High-efficiency fluorescent probe constructed by triazine polycarboxylic acid for detecting nitro compounds. Inorganica Chimica Acta, 2020, 507, 119591.	1.2	12
2646	A fluorescent titanium-based metal-organic framework sensor for nitroaromatics and nanomolar Fe3+ detection. Journal of Solid State Chemistry, 2020, 288, 121391.	1.4	22

#	Article	IF	Citations
2647	Iron-Based Metal–Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Inorganic Chemistry, 2020, 59, 6078-6086.	1.9	69
2648	Solvatochromism Study of DCM Encapsulated in ZIF-90 and the Potential Application of DCM/ZIF-90 as the Fluorescence Down-Conversion Layer for an LED Chip. Journal of Physical Chemistry C, 2020, 124, 8854-8860.	1.5	6
2649	Flexible Luminescent MOF: Trapping of Less Stable Conformation of Rotational Isomers, In Situ Guest-Responsive Turn-Off and Turn-On Luminescence and Mechanistic Study. ACS Applied Materials & Los Representations (2020), 12, 22335-22346.	4.0	42
2650	Design and development of HMS@ZIF-8/fluorinated polybenzoxazole composite films with excellent low- <i>k</i> performance, mechanical properties and thermal stability. Journal of Materials Chemistry C, 2020, 8, 7476-7484.	2.7	27
2651	Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C, 2020, 8, 7492-7500.	2.7	22
2652	Robust fluorescent calcium coordination polymers as Cu ²⁺ sensors with high sensitivity and fast response. Journal of Materials Chemistry C, 2020, 8, 6820-6825.	2.7	30
2653	Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 2020, 180, 108414.	2.0	89
2654	Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene. Bioconjugate Chemistry, 2020, 31, 1400-1407.	1.8	16
2655	A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1,10-phenanthroline ligand. Journal of Rare Earths, 2021, 39, 460-468.	2.5	27
2656	Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Research, 2021, 14, 392-397.	5.8	9
2657	An Mn(II) cluster–based coordination framework derived from a <i>C</i> ₃ symmetric ligand: Synthesis, structure, and magnetic properties. Journal of Chemical Research, 2021, 45, 84-88.	0.6	0
2658	Turnâ€off Fluorescent Sensing of Energetic Materials using Protonic Acid doped Polyaniline: A Spectrochemical Mechanistic Approach. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 331-340.	0.6	11
2659	A water-stable multi-responsive luminescent Zn-MOF sensor for detecting TNP, NZF and Cr ₂ O ₇ ^{2â^²} in aqueous media. Dalton Transactions, 2021, 50, 3816-3824.	1.6	42
2660	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	9.5	65
2661	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
2662	A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework. Journal of Solid State Chemistry, 2021, 294, 121835.	1.4	36
2663	Detection of 2,4,6-trinitrophenol based on f–f transition of Eu2+. Journal of Rare Earths, 2021, 39, 952-958.	2.5	3
2664	Construction and magnetic properties of cobalt(II) and manganese(II) coordination polymers based on N-heterocyclic carboxylate bifunctional ligands. Inorganica Chimica Acta, 2021, 515, 120054.	1.2	6

#	Article	IF	CITATIONS
2665	An inorganic-organic hydrogen cluster: Fluorescence response of the high efficient detection of Fe3+, OHâ° and nitro explosives. Journal of Molecular Structure, 2021, 1225, 129115.	1.8	4
2666	Incorporation of thiazolothiazole fluorophores into a MOF structure: A highly luminescent Zn(II)-based MOF as a selective and reversible sensor for Cr2O72â^' and MnO4â^' anions. Journal of Solid State Chemistry, 2021, 294, 121762.	1.4	39
2667	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	9.5	86
2668	Heterometallic metal-organic frameworks: two-step syntheses, structures and catalytic for imine synthesis. Microporous and Mesoporous Materials, 2021, 310, 110626.	2.2	7
2669	Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon, 2021, 172, 15-25.	5.4	59
2670	Rational design of bimetallic metal–organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chemical Engineering Journal, 2021, 404, 127111.	6.6	70
2671	Adsorptive separation of La(III) from aqueous solution via the synthesized [Zn(bim)2(bdc)] metal-organic framework. Journal of Rare Earths, 2021, 39, 742-748.	2.5	17
2672	A novel high sensitive Cd-MOF fluorescent probe for acetone vapor in air and picric acid in water: Synthesis, structure and sensing properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118962.	2.0	20
2673	Synergistic Size Effect of MOF Cavity/Encapsulated Luminescent Modules Significantly Boosts Nitro-Aromatic Vapors Distinction via a Three-Dimensional Ratiometric Sensing. Sensors and Actuators B: Chemical, 2021, 328, 129025.	4.0	7
2674	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
2675	Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. Applied Organometallic Chemistry, 2021, 35, .	1.7	9
2676	A turn-on luminescence probe based on amino-functionalized metal-organic frameworks for the selective detections of $Cu2+$, $Pb2+$ and pyrophosphate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119073.	2.0	39
2677	Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. Nano-Micro Letters, 2021, 13, 15.	14.4	22
2678	Enhanced acetone sensing from Zn(II)-MOFs comprising tetranuclear metal clusters built with EDC and BDC ligands. Inorganic Chemistry Communication, 2021, 123, 108339.	1.8	4
2679	Trinuclear cerium complex based on a chiral ligand of $1,1\hat{a}\in^2$ -binaphthyl-2, $2\hat{a}\in^2$ -diyl phosphate: Synthesis, characterization, and template effect of chloride ion. Inorganic Chemistry Communication, 2021, 123, 108352.	1.8	0
2680	Environmental pollutionÂanalysis based on the luminescent metal organic frameworks: A review. TrAC - Trends in Analytical Chemistry, 2021, 134, 116131.	5.8	45
2681	Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Analytica Chimica Acta, 2021, 1145, 95-102.	2.6	19
2682	Co(II) and Mn(II) coordination polymers: Ligand functional and positional isomeric effects, structural diversities, luminescence sensing and magnetic properties. Polyhedron, 2021, 194, 114918.	1.0	9

#	Article	IF	CITATIONS
2683	Construction of Transition Metal Coordination Polymers with Free Carboxyl Groups and Turn-On Fluorescent Detection for $\hat{l}\pm,\hat{l}^2$ -Diamine. Crystal Growth and Design, 2021, 21, 383-395.	1.4	17
2684	A new metal–organic framework based on 4,4′-bibenzoic acid-2,2′-sulfone: synthesis, crystal structure and magnetic property. Journal of Porous Materials, 2021, 28, 481-486.	1.3	1
2685	Trinuclear iron cluster and layered manganese complexes based on indolecarboxylic acid showing magnetic and antibacterial properties. Inorganic Chemistry Communication, 2021, 124, 108381.	1.8	6
2686	Two luminescent Ni(II) coordination polymers for sensing of iron(III) ions/benzaldehyde and photocatalytic degradation of methylene blue under UV irradiation. Journal of Molecular Structure, 2021, 1225, 129128.	1.8	18
2687	High quantum-yield carbon dots embedded metal-organic frameworks for selective and sensitive detection of dopamine. Microchemical Journal, 2021, 160, 105718.	2.3	24
2688	Low-cost inkjet printing of metal–organic frameworks patterns on different substrates and their applications in ammonia sensing. Sensors and Actuators B: Chemical, 2021, 329, 129157.	4.0	26
2689	A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron, 2021, 193, 114897.	1.0	51
2690	Synthesis, structure and gas adsorption properties of coordination polymers based on mixed imidazole-containing ligands and carboxylate ligands. Inorganica Chimica Acta, 2021, 517, 120193.	1.2	5
2691	Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. Journal of Hazardous Materials, 2021, 406, 124501.	6.5	65
2692	Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sensors and Actuators B: Chemical, 2021, 330, 129314.	4.0	79
2693	A different approach: highly encapsulating macrocycles being used as organic tectons in the building of CPs. CrystEngComm, 2021, 23, 453-464.	1.3	2
2694	Blue luminescent N,S-doped carbon dots encapsulated in red emissive Eu-MOF to form dually emissive composite for reversible anti-counterfeit ink. Dalton Transactions, 2021, 50, 1690-1696.	1.6	19
2695	A luminescent zinc-organic framework as bifunctional chemosensors for detection of nitrobenzene and Fe3+. Journal of Solid State Chemistry, 2021, 294, 121854.	1.4	6
2696	Recyclability and selective fluorescence/colorimetric sensing properties of fluorescent porous materials synthesized by the copolymerization of 4-vinylpyridine zinc and divinylbenzene. Sensors and Actuators B: Chemical, 2021, 329, 129102.	4.0	5
2697	Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. , 2021, 3, 77-89.		73
2698	Bioresponsive metal–organic frameworks: Rational design and function. Coordination Chemistry Reviews, 2021, 431, 213682.	9.5	17
2699	Lipase@zeolitic imidazolate framework ZIF-90: A highly stable and recyclable biocatalyst for the synthesis of fruity banana flavour. International Journal of Biological Macromolecules, 2021, 166, 1301-1311.	3.6	41
2700	Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorganic Chemistry Frontiers, 2021, 8, 590-619.	3.0	74

#	Article	IF	Citations
2701	Synthesis and selective detection towards TNP of two coordination polymers based on ligand generated by in situ acylation reaction. Journal of Solid State Chemistry, 2021, 293, 121771.	1.4	10
2702	Deciphering supramolecular isomerization in coordination polymers: connected molecular squares <i>vs.</i> fused hexagons. Dalton Transactions, 2021, 50, 2221-2232.	1.6	4
2703	Water-stable Cd(<scp>ii</scp>)/Zn(<scp>ii</scp>) coordination polymers as recyclable luminescent sensors for detecting hippuric acid in simulated urine for indexing toluene exposure with high selectivity, sensitivity and fast response. Dalton Transactions, 2021, 50, 553-561.	1.6	21
2704	Encoding Multilayer Complexity in Antiâ€Counterfeiting Heterometallic MOFâ€Based Optical Tags. Angewandte Chemie, 2021, 133, 1223-1231.	1.6	7
2705	Assembly of Two Mesoporous Anionic Metal–Organic Frameworks for Fluorescent Sensing of Metal lons and Organic Dyes Separation. Inorganic Chemistry, 2021, 60, 167-174.	1.9	49
2706	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie - International Edition, 2021, 60, 17314-17336.	7.2	124
2707	Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks. Chinese Chemical Letters, 2021, 32, 1988-1992.	4.8	9
2708	Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorganic Chemistry Frontiers, 2021, 8, 201-233.	3.0	166
2709	Aqueous degradation of artificial sweeteners saccharin and neotame by metal organic framework material. Science of the Total Environment, 2021, 761, 143181.	3.9	14
2710	An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications <i>via</i> Tb ³⁺ sensitization. Inorganic Chemistry Frontiers, 2021, 8, 296-310.	3.0	41
2711	Encoding Multilayer Complexity in Antiâ€Counterfeiting Heterometallic MOFâ€Based Optical Tags. Angewandte Chemie - International Edition, 2021, 60, 1203-1211.	7.2	54
2712	Calciumâ€Based Metal–Organic Frameworks and Their Potential Applications. Small, 2021, 17, e2005165.	5.2	30
2713	Selective and recyclable tandem sensing of PO43â^' and Al3+ by a water-stable terbium-based metalâ€"organic framework. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119084.	2.0	12
2714	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie, 2021, 133, 17455-17477.	1.6	9
2715	Metalâ€Organic Frameworksâ€Based Fluorescent Nanocomposites for Bioimaging in Living Cells and <i>in vivo</i> ^{â€} . Chinese Journal of Chemistry, 2021, 39, 473-487.	2.6	21
2716	Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. Comments on Inorganic Chemistry, 2021, 41, 1-66.	3.0	33
2717	Supramolecular fluorescent sensors: An historical overview and update. Coordination Chemistry Reviews, 2021, 427, 213560.	9.5	135
2718	Fabricating a wettable microwells array onto a nitrogen plasma-treated ITO substrate: high-throughput fluorimetric platform for selective sensing of ammonia in blood using polymer-stabilized NH ₂ -MIL-125. Journal of Materials Chemistry B, 2021, 9, 5998-6005.	2.9	3

#	Article	IF	Citations
2719	Chemiresistive Sensor Based on Redox-Active Porous Coordination Networks. Springer Theses, 2021, , 43-60.	0.0	0
2720	Color tunable luminescent cellulose acetate nanofibers functionalized by Cul-based complexes. Cellulose, 2021, 28, 1421-1430.	2.4	2
2721	Advanced applications of green materials for gas separation and storage., 2021,, 681-703.		1
2722	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
2723	Stereoselective synthesis of E, E / E, Z isomers based on 1-(4- iodophenyl)-2,5-divinyl-1H-pyrrole core skeleton: A configuration-controlled fluorescence characteristics and highly selective anti-cancer activity. Dyes and Pigments, 2021, 184 , 108733 .	2.0	7
2724	Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications. Dalton Transactions, 2021, 50, 6901-6912.	1.6	22
2725	Luminescence sensing and photocatalytic activities of four Zn(<scp>ii</scp>)/Co(<scp>ii</scp>) coordination polymers based on a pyridinephenyl bifunctional ligand. CrystEngComm, 2021, 23, 1497-1506.	1.3	34
2726	An exceptionally stable luminescent cadmium(<scp>ii</scp>) metal–organic framework as a dual-functional chemosensor for detecting Cr(<scp>vi</scp>) anions and nitro-containing antibiotics in aqueous media. CrystEngComm, 2021, 23, 1218-1225.	1.3	62
2727	An imine linked fluorescent covalent organic cage: the sensing of chloroform vapour and metal ions, and the detection of nitroaromatics. New Journal of Chemistry, 2021, 45, 4810-4822.	1.4	8
2728	MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification. CrystEngComm, 2021, 23, 1377-1387.	1.3	38
2729	Two cluster-based metal–organic frameworks with selective detection of Hg2+ ion and magnetic properties. CrystEngComm, 2021, 23, 6053-6058.	1.3	0
2730	A new hydrazone-linked covalent organic framework for Fe(<scp>iii</scp>) detection by fluorescence and QCM technologies. CrystEngComm, 2021, 23, 3594-3601.	1.3	28
2731	3D Ln-MOFs as multi-responsive luminescent probes for efficient sensing of Fe3+, Cr2O72â^', and antibiotics in aqueous solution. CrystEngComm, 2021, 23, 3838-3848.	1.3	14
2732	A luminescent metal–organic framework with mixed-linker strategy for white-light-emitting by iridium-complex encapsulation. Inorganic Chemistry Communication, 2021, 123, 108359.	1.8	9
2733	A luminescent metal–organic framework with tetragonal nanochannels as an efficient chemosensor for nitroaromatic explosives detection. CrystEngComm, 2021, 23, 3901-3906.	1.3	14
2734	Identification of vanadium dopant sites in the metal–organic framework DUT-5(Al). Physical Chemistry Chemical Physics, 2021, 23, 7088-7100.	1.3	1
2735	1D ladder and 2D bilayer coordination polymers constructed from a new T-shaped ligand: luminescence, magnetic and CO ₂ gas adsorption properties. CrystEngComm, 2021, 23, 3196-3203.	1.3	11
2736	Chemical Sensors: Gas Sensors; Optical Sensors. , 2021, , .		0

#	Article	IF	CITATIONS
2738	Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection. New Journal of Chemistry, 2021, 45, 4828-4834.	1.4	10
2739	An anionic-ligand installed pyrene-based MOF for the fluorescence detection of paraquat. New Journal of Chemistry, 2021, 45, 4401-4407.	1.4	11
2740	A family of luminescent metal–organic frameworks: synthesis, structure, and sensing studies. Materials Advances, 2021, 2, 2667-2675.	2.6	2
2741	Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Advances, 2021, 11, 3241-3263.	1.7	27
2742	Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. Journal of Materials Chemistry B, 2021, 9, 3423-3449.	2.9	61
2743	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
2744	Raman spectroscopy-based sensitive, fast and reversible vapour phase detection of explosives adsorbed on metal–organic frameworks UiO-67. New Journal of Chemistry, 2021, 45, 7145-7153.	1.4	16
2745	pH response of a hydroxyl-functionalized luminescent metal–organic framework based phosphor. New Journal of Chemistry, 2021, 45, 9394-9402.	1.4	7
2746	A petal-shaped MOF assembled with a gold nanocage and urate oxidase used as an artificial enzyme nanohybrid for tandem catalysis and dual-channel biosensing. Nanoscale, 2021, 13, 13014-13023.	2.8	24
2747	A tetraphenylethylene-based covalent organic framework for waste gas adsorption and highly selective detection of Fe ³⁺ . CrystEngComm, 2021, 23, 5569-5574.	1.3	19
2748	Luminescent metal–organic frameworks as chemical sensors based on "mechanism–response― a review. Dalton Transactions, 2021, 50, 3429-3449.	1.6	68
2749	Luminescent Metal-Organic Frameworks-Based Sensors for Environmentally Toxic Analytes. Advances in Chemical and Materials Engineering Book Series, 2021, , 13-35.	0.2	0
2750	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	1.6	8
2751	Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers. Dalton Transactions, 2021, 50, 11899-11908.	1.6	11
2752	Carbazole–acenaphthene (donor–acceptor)-based luminophores for picric acid detection: a combined experimental and theoretical study. Materials Advances, 2021, 2, 5236-5247.	2.6	5
2753	Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm, 2021, 23, 1744-1755.	1.3	5
2754	Long-lived room temperature phosphorescence of organic–inorganic hybrid systems. Inorganic Chemistry Frontiers, 2021, 8, 1942-1950.	3.0	51
2755	A selective detection of nanomolar-range noxious anions in water by a luminescent metal–organic framework. Materials Advances, 2021, 2, 985-995.	2.6	14

#	ARTICLE	IF	CITATIONS
2756	Highly sensitive detection of nitrobenzene by a series of fluorescent 2D zinc(<scp>ii</scp>) metal–organic frameworks with a flexible triangular ligand. RSC Advances, 2021, 11, 23975-23984.	1.7	10
2757	The influence of linker substitution on the fluorescence responsive sensing of isostructural coordination polymers: visual turn-on, ratiometric, and turn-off sensing in water. CrystEngComm, 2021, 23, 2222-2234.	1.3	16
2758	A template-directed synthesis of metal–organic framework (MOF-74) ultrathin nanosheets for oxygen reduction electrocatalysis. RSC Advances, 2021, 11, 9353-9360.	1.7	9
2759	Metal-Organic Frameworks for Catalytic Applications. , 2021, , 228-259.		2
2760	Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Transactions, 2021, 50, 8657-8670.	1.6	13
2761	Fluorescence-based sensors as an emerging tool for anion detection: mechanism, sensory materials and applications. Journal of Materials Chemistry C, 2021, 9, 9820-9850.	2.7	64
2762	An NH ₂ -modified {EuIII2}–organic framework for the efficient chemical fixation of CO ₂ and highly selective sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2021, 8, 4376-4385.	3.0	20
2763	Efficient detection of Fe(<scp>iii</scp>) and chromate ions in water using two robust lanthanide metal–organic frameworks. CrystEngComm, 2021, 23, 1677-1683.	1.3	24
2764	Inter-ligand charge-transfer interactions in a photochromic and redox active zinc–organic framework. CrystEngComm, 2021, 23, 5982-5988.	1.3	7
2765	An excellent thermostable dual-functionalized 3D <i>fsx</i> -type Cd(<scp>ii</scp>) MOF for the highly selective detection of Fe ³⁺ ions and ten nitroaromatic explosives. CrystEngComm, 2021, 23, 6171-6179.	1.3	6
2766	Highly efficient fluorescent chemosensor for nitro antibiotic detection based on luminescent coordination polymers with 2,6-di(4-carboxyphenyl)pyrazine. CrystEngComm, 2021, 23, 3167-3174.	1.3	29
2767	An enantiomeric pair of alkaline-earth metal based coordination polymers showing room temperature phosphorescence and circularly polarized luminescence. Journal of Materials Chemistry C, 2021, 9, 5544-5553.	2.7	10
2768	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58
2769	The application of machine learning for predicting the methane uptake and working capacity of MOFs. Faraday Discussions, 2021, 231, 224-234.	1.6	9
2770	Wettability control of metal-organic frameworks. , 2021, , 131-166.		2
2771	Highly selective fluorescent turn-on–off sensing of OH ^{â^'} , Al ³⁺ and Fe ³⁺ ions by tuning ESIPT in metal organic frameworks and mitochondria targeted bio-imaging. RSC Advances, 2021, 11, 27787-27800.	1.7	15
2772	Construction of a zeolite A-type multivariate metal–organic framework for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â°} . CrystEngComm, 2021, 23, 4923-4929.	1.3	3
2774	Metal–organic frameworks towards bio-medical applications. Materials Chemistry Frontiers, 2021, 5, 5573-5594.	3.2	39

#	Article	IF	CITATIONS
2775	Metal–organic framework thin films as versatile chemical sensing materials. Materials Advances, 2021, 2, 6169-6196.	2.6	30
2776	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	2.6	27
2777	Quinoline-tagged fluorescent organic probes for sensing of nitro-phenolic compounds and Zn ²⁺ ions at the ppb level. Materials Advances, 2021, 2, 2334-2346.	2.6	7
2778	Donor/acceptor substituted dithiafulvenes and tetrathiafulvalene vinylogues: electronic absorption, crystallographic, and computational analyses. New Journal of Chemistry, 2021, 45, 11918-11926.	1.4	3
2779	Towards MOFs' mass market adoption: MOF Technologies' efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discussions, 2021, 231, 312-325.	1.6	21
2780	An unprecedented pyridine-based dinuclear mixed-valent Re ^{I/VII} oxo-bridged complex: a solvatochromic and AIE-active probe for nanomolar detection of picric acid and trinitrotoluene. Dalton Transactions, 2021, 50, 9144-9157.	1.6	1
2781	A water stable Eu(<scp>iii</scp>)–organic framework as a recyclable multi-responsive luminescent sensor for efficient detection of <i>p</i> -aminophenol in simulated urine, and Mn ^{VII} and Cr ^{VI} anions in aqueous solutions. Dalton Transactions, 2021, 50, 5236-5243.	1.6	27
2782	Electrochemical aspects of metal-organic frameworks. , 2021, , 65-109.		4
2783	Recent advances in simulating gas permeation through MOF membranes. Materials Advances, 2021, 2, 5300-5317.	2.6	22
2784	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	8.3	172
2785	Ultrasensitive and highly selective detection of formaldehyde <i>via</i> an adenine-based biological metal–organic framework. Materials Chemistry Frontiers, 2021, 5, 2416-2424.	3.2	34
2786	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
2787	A dual-response regenerable luminescent 2D-MOF for nitroaromatic sensing <i>via</i> target-modulation of active interaction sites. Journal of Materials Chemistry C, 2021, 9, 12849-12858.	2.7	15
2788	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	1.6	13
2789	Reaction pathways and deactivation mechanisms of isostructural Cr and Fe MIL-101 during liquid-phase styrene oxidation by hydrogen peroxide. Catalysis Science and Technology, 2021, 11, 5282-5296.	2.1	15
2790	Highly Specific Coordination-Driven Self-Assembly of 2D Heterometallic Metal–Organic Frameworks with Unprecedented Johnson-type (⟨i⟩J⟨i⟩⟨sub⟩51⟨ sub⟩) Nonanuclear Zr-Oxocarboxylate Clusters. Journal of the American Chemical Society, 2021, 143, 657-663.	6.6	20
2791	The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Advanced Functional Materials, 2021, 31, 2010052.	7.8	92
2792	Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small, 2021, 17, e2005327.	5.2	177

#	Article	IF	CITATIONS
2793	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
2794	Multisite Coordination Ligands on Cyclotriphosphazene Core for the Assembly of Metal Clusters and Porous Coordination Polymers. ChemistrySelect, 2021, 6, 1478-1507.	0.7	10
2795	The Effect of Auxiliary Nitrogenated Linkers on the Design of New Cadmiumâ€Based Coordination Polymers as Sensors for the Detection of Explosive Materials. Chemistry - A European Journal, 2021, 27, 5298-5306.	1.7	8
2796	Coordination Polymers in Dicyanamido-Cadmium(II) with Diverse Network Dimensionalities. Crystals, 2021, 11, 181.	1.0	6
2797	Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC - Trends in Analytical Chemistry, 2021, 135, 116163.	5.8	77
2798	Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano, 2021, 15, 3808-3848.	7. 3	241
2799	Encapsulation of Luminescent Guests to Construct Luminescent Metal–Organic Frameworks for Chemical Sensing. ACS Sensors, 2021, 6, 641-658.	4.0	184
2800	Recent development of magnetic nanomaterial-supported M(Salen) composites as recyclable heterogeneous catalysts. Chemical Papers, 2021, 75, 2965-2980.	1.0	9
2801	Two New Metal–Organic Frameworks: Photoluminescent Property and Prevention on the Hypotension After Anesthesia by Activating the α Receptor on the Peripheral Blood Vessels. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2990-2998.	1.9	1
2802	Recent advances in AlEgenâ€based crystalline porous materials for chemical sensing. Aggregate, 2021, 2, e34.	5.2	27
2803	Ultrasensitive and portable fluorescence polyurethane indicator paper for real-time, visual and selective detection of 2,4,6-trinitrophenol. Chemical Engineering Journal Advances, 2021, 5, 100069.	2.4	1
2804	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	1.0	8
2805	Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16300-16308.	4.0	74
2806	A highly stable terbium metal-organic framework for efficient detection of picric acid in water. Chinese Chemical Letters, 2021, 32, 3095-3098.	4.8	15
2807	Metal-Organic Frameworks as Versatile Heterogeneous Solid Catalysts for Henry Reactions. Molecules, 2021, 26, 1445.	1.7	29
2808	Photoluminescent Coordination Polymers Based on Group 12 Metals and 1H-Indazole-6-Carboxylic Acid. Inorganics, 2021, 9, 20.	1.2	5
2809	Four new coordination polymers with a Y-shaped tricarboxylic acid ligand: Structural diversities, luminescence sensing and magnetic properties. Journal of Molecular Structure, 2021, 1228, 129453.	1.8	10
2810	A Photoluminescent Cd(II) Coordination Polymer with Potential Active Sites Exhibiting Multiresponsive Fluorescence Sensing for Trace Amounts of NACs and Fe ³⁺ and Al ³⁺ lons. Inorganic Chemistry, 2021, 60, 4945-4956.	1.9	58

#	ARTICLE	IF	CITATIONS
2811	A Zr-Based Metal–Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorganic Chemistry, 2021, 60, 4539-4550.	1.9	26
2812	Excited State Energy Transfer in Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2005819.	11.1	34
2813	Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry, 2021, 3, 327-337.	0.9	11
2814	Construction of a nanoscale Yb(III) Schiff base complex with NIR luminescence response to anions and nitro explosives. Journal of Luminescence, 2021, 231, 117807.	1.5	2
2815	Unique Cluster-Metal Framework Constructed by Multidentate N-Donating Ligand for TNP Detection. Journal of Cluster Science, 0, , 1.	1.7	0
2816	Antenna Doping: The Key for Achieving Efficient Optical Wavelength Conversion in Crystalline Chromophoric Heterolayers. Advanced Materials Interfaces, 2021, 8, 2100262.	1.9	4
2817	A stable terbium(III) metal-organic framework as a dual luminescent sensor for MnO4â^' ions and nitroaromatic explosives. Journal of Solid State Chemistry, 2021, 295, 121924.	1.4	11
2818	Continuous Fluidic Techniques for the Precise Synthesis of Metalâ€Organic Frameworks. ChemPlusChem, 2021, 86, 650-661.	1.3	8
2819	High-Performance Trichloroacetic Acid Sensor Based on the Intramolecular Hydrogen Bond Formation and Disruption of a Specially Designed Fluorescent <i>o</i> Carborane Derivative in the Film State. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19342-19350.	4.0	19
2820	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	1.4	34
2821	Synthesis and crystal structures of Zn(II) and Cd(II) coordination polymers derived from the flexible N-(4-carboxyphenyl)iminodiacetic acid and auxiliary ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 319-325.	0.3	1
2822	From zero-dimensional complexes to one-dimensional coordination polymers adjusted by the solvents or ligand substituent groups. Nano Structures Nano Objects, 2021, 26, 100690.	1.9	4
2823	A Reliable Fluorescenceâ€enhanced Chemical Sensor (Eu@milâ€61) for the Directed Detection of 2â€Naphthol. ChemistrySelect, 2021, 6, 3155-3161.	0.7	0
2824	Near-Infrared-Light emitting diode driven white light Emission: Upconversion nanoparticles decorated Metal-Organic Frame-works thin film. Chemical Engineering Journal, 2021, 409, 128220.	6.6	14
2825	Magnet Creation by Guest Insertion into a Paramagnetic Charge-Flexible Layered Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 7021-7031.	6.6	20
2826	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie - International Edition, 2021, 60, 11148-11152.	7.2	38
2827	An ultra-sensitive electrochemical sensor of Ni/Fe-LDH toward nitrobenzene with the assistance of surface functionalization engineering. Talanta, 2021, 225, 122087.	2.9	29
2828	Improving the synthesis process of chromium benzenedicarboxylate, MIL-101(Cr), by a microwave pre-step for CO2 adsorption. Journal of the Iranian Chemical Society, 2021, 18, 2283-2289.	1.2	0

#	Article	IF	CITATIONS
2829	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Research, 2021, 14, 2981-3009.	5.8	26
2830	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie, 2021, 133, 11248-11252.	1.6	4
2831	One-dimensional La(III) coordination polymer displaying multi-responsive luminescence activities towards Fe3+, acetone and benzothiozoles. Journal of Solid State Chemistry, 2021, 296, 121952.	1.4	13
2832	State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochimica Acta, 2021, 188, 168.	2.5	21
2833	Turn-On Fluorescence Enantioselective Sensing of Hydroxyl Carboxylic Enantiomers by Metal–Organic Framework Nanosheets with a Homochiral Tetracarboxylate of Cyclohexane Diamide. ACS Applied Materials & Diamide. ACS Applied Materials & Diamide.	4.0	34
2834	Strategic Design of Anthracene-Decorated Highly Luminescent Coordination Polymers for Selective and Rapid Detection of TNP: An Explosive Nitro Derivative and Mutagenic Pollutant. Crystal Growth and Design, 2021, 21, 3344-3354.	1.4	34
2835	Photocatalytic organic dye by two new coordination polymers with flexible dicarboxylate and different N-donor linkage. Inorganica Chimica Acta, 2021, 519, 120284.	1.2	5
2836	Highly Emissive Metalâ€Organic Frameworks for Sensitive and Selective Detection of Nitrofuran and Quinolone Antibiotics. Chemistry - an Asian Journal, 2021, 16, 1773-1779.	1.7	34
2837	Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal. Chemosensors, 2021, 9, 101.	1.8	33
2838	Modulator Induced Formation of a Neutral Framework Based on Trinuclear Cobalt(II) Clusters and Nitrilotribenzoic Acid: Synthesis, Magnetism, and Sorption Properties. European Journal of Inorganic Chemistry, 2021, 2021, 2266-2273.	1.0	1
2839	Two W/S/Cu-Cluster-Containing Metal–Organic Frameworks Fabricated by Multidentate Organic Ligands: New Topologies, Strong NLO Properties, and Efficient Luminescent Detection. Crystal Growth and Design, 2021, 21, 3225-3233.	1.4	18
2840	Hydrolytically Stable and Trifunctional Zirconium-Based Organic Frameworks toward Cr ₂ O ₇ ^{2–} Detection, Capture, and Photoreduction. Inorganic Chemistry, 2021, 60, 8143-8153.	1.9	35
2841	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	9.5	141
2842	MOF@MnO ₂ nanocomposites prepared using in situ method and recyclable cholesterol oxidase–inorganic hybrid nanoflowers for cholesterol determination. Nanotechnology, 2021, 32, 315502.	1.3	6
2843	Na–Ln Heterometallic Coordination Polymers: Structure Modulation by Na ⁺ Concentration and Efficient Detection to Tetracycline Antibiotics and 4-(Phenylazo)aniline. Inorganic Chemistry, 2021, 60, 7937-7951.	1.9	15
2844	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
2845	Thiolate-based One-dimensional Flexible Pb–MOFs Exhibiting a Large Sorption Hysteresis Phenomenon. Chemistry Letters, 2021, 50, 1053-1056.	0.7	0
2846	Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds**. Angewandte Chemie - International Edition, 2021, 60, 17455-17463.	7.2	34

#	Article	IF	CITATIONS
2847	Metal–organic frameworks of lanthanide iminodiacetates and tartrates: Synthesis, structural characterization and luminescence properties — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. Journal of Rare Earths, 2021, 39, 487-494.	2.5	4
2848	Insights into the selective sensing mechanism of a luminescent Cd(II)-based MOF chemosensor toward NACs: roles of the host–guest interactions and PET processes. Journal of Materials Science, 2021, 56, 13684-13704.	1.7	14
2849	Synergistic enhancement of photoluminesent intensity in monolayer molybdenum disulfide embedded with plasmonic nanostructures for catalytic sensing. 2D Materials, 0, , .	2.0	4
2850	IsoretikulÃ ¤ e Kristallisation von hochporösen kubischen kovalentorganischen Kögverbindungen**. Angewandte Chemie, 2021, 133, 17595-17604.	1.6	7
2851	Electron Transfer Facilitated by π–π Stacking during the Nitrobenzene Recognition Process of an MOF Sensor. Journal of Physical Chemistry C, 2021, 125, 12433-12440.	1.5	21
2852	Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O. Crystals, 2021, 11, 553.	1.0	7
2853	Fluorescent sensors: A bright future for cages. Coordination Chemistry Reviews, 2021, 434, 213820.	9.5	86
2854	Triazine Based MOFs with Abundant N Sites for Selective Nitrobenzene Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1301-1304.	0.6	13
2855	A stable 3-D Cd(II) metal–organic framework formed by aromatic carboxylate and flexible imidazole ligand for sensing of nitroaromatic explosives. Journal of Coordination Chemistry, 2021, 74, 1856-1865.	0.8	5
2856	Luminescent, Helical and Highly Stable Zn(II) and Cd(II) Coordination Polymers: Structural Diversity and Selective Sensing of 4â€Nitroaniline in Water. European Journal of Inorganic Chemistry, 2021, 2021, 2595-2605.	1.0	5
2857	Dicyanamide-intertwined assembly of two new Zn complexes based on N2O4-type pro-ligand: Synthesis, crystal networks, spectroscopic insights, and selective nitroaromatic turn-off fluorescence sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119612.	2.0	39
2858	A Water-Stable Tb-MOF As a Rapid, Accurate, and Highly Sensitive Ratiometric Luminescent Sensor for the Discriminative Sensing of Antibiotics and D ₂ O in H ₂ O. Inorganic Chemistry, 2021, 60, 10513-10521.	1.9	54
2859	Construction of hollow proanthocyanidin cages as a novel delivery system using zeolitic imidazolate framework-8 sacrificial templates. LWT - Food Science and Technology, 2021, 144, 111155.	2.5	4
2860	CRYSTAL STRUCTURE OF DENSE METAL-ORGANIC FRAMEWORKS BASED ON Sc(III) AND TWO TYPES OF LIGANDS. Journal of Structural Chemistry, 2021, 62, 897-904.	0.3	5
2861	Visible-Light-Activated Type II Heterojunction in Cu ₃ (hexahydroxytriphenylene) ₂ /Fe ₂ O ₃ Hybrids for Reversible NO ₂ Sensing: Critical Role of π–π* Transition. ACS Central Science, 2021, 7, 1176-1182.	5.3	51
2862	Metal Organic Frameworks: A Versatile Class of Hybrid Compounds for Luminescent Detection and Adsorptive Removal of Environmental Hazards. Comments on Inorganic Chemistry, 2021, 41, 267-315.	3.0	6
2863	Tuning Chromophore-Based LMOF Dimensionality to Enhance Detection Sensitivity for Fe ³⁺ lons. ACS Omega, 2021, 6, 16498-16506.	1.6	10
2864	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	1.7	14

#	Article	IF	CITATIONS
2865	Acoustic Properties of Metal-Organic Frameworks. Research, 2021, 2021, 9850151.	2.8	10
2866	Multifunctional sensing activities toward heavy metals of three luminescent complexes: Effect of N-donor coligands and sensing medium. Dyes and Pigments, 2021, 190, 109291.	2.0	8
2867	A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. Journal of Porous Materials, 2021, 28, 1837-1865.	1.3	36
2868	Magnetism and Luminescence of a MOF with Linear Mn3 Nodes Derived from an Emissive Terthiophene-Based Imidazole Linker. Molecules, 2021, 26, 4286.	1.7	6
2869	Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules, 2021, 26, 4241.	1.7	3
2870	PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes and Pigments, 2021, 191, 109379.	2.0	18
2871	Linker Engineering toward Full-Color Emission of UiO-68 Type Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 10547-10552.	6.6	54
2872	Adsorptive removal of different pollutants using metal-organic framework adsorbents. Journal of Molecular Liquids, 2021, 333, 115593.	2.3	85
2873	UV-induced alteration of luminescence chromaticity of Ln-based MOF-76. Journal of Luminescence, 2021, 235, 117970.	1.5	6
2874	Luminescent properties of Eu3+/Tb3+ doped fluorine containing coordination polymers. Solid State Sciences, 2021, 117, 106614.	1.5	4
2875	Biopolymeric-Inorganic Composites for Drug Delivery Applications. Advances in Material Research and Technology, 2022, , 271-298.	0.3	0
2876	Lab on optical fiber: surface nano-functionalization for real-time monitoring of VOC adsorption/desorption in metal-organic frameworks. Nanophotonics, 2021, 10, 2705-2716.	2.9	13
2877	Guest-Anion-Induced Rotation-Restricted Emission in UiO-66-NH ₂ and Advanced Structure Elucidation. Chemistry of Materials, 2021, 33, 5422-5429.	3.2	5
2878	Nanozymes—Hitting the Biosensing "Target― Sensors, 2021, 21, 5201.	2.1	27
2879	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	1.9	12
2880	Tetraphenylpyrazine-Based Manganese Metal–Organic Framework as a Multifunctional Sensor for Cu ²⁺ , Cr ³⁺ , MnO ₄ [–] , and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorganic Chemistry, 2021, 60, 11222-11230.	1.9	49
2881	Elucidating the Relationship between ROS and Protein Phosphorylation through <i>In Situ</i> Fluorescence Imaging in the Pneumonia Mice. Analytical Chemistry, 2021, 93, 10907-10915.	3.2	8
2882	Crystal Structures and Luminescent Probe Behaviors of Three-Dimensional Zn(II) Frameworks with Multicarboxylate and Tetradentate Imidazole-Containing Ligands. Crystal Growth and Design, 2021, 21, 5306-5316.	1.4	31

#	Article	IF	CITATIONS
2883	Differentiation of Epoxide Enantiomers in the Confined Spaces of an Homochiral Cu(II) Metalâ€Organic Framework by Kinetic Resolution. Chemistry - A European Journal, 2021, 27, 16956-16965.	1.7	1
2884	Flexible Zn-MOF with Rare Underlying <i>scu</i> Topology for Effective Separation of C6 Alkane Isomers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51997-52005.	4.0	22
2885	A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe3+/Cr3+ lons and TNP. Frontiers in Chemistry, 2021, 9, 678993.	1.8	5
2886	Reversible Electroactive Behavior in a Zn-Based Metal–Organic Framework via Mild Oxidation Potential. Inorganic Chemistry, 2021, 60, 11458-11465.	1.9	2
2887	Introduction of continuous excited-state intermolecular proton transfer process into open yttrium-terephthalate framework for ratiometric fluorescent fluorion detection. Journal of Solid State Chemistry, 2021, 300, 122212.	1.4	12
2888	Synthesis, DFT Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand Salen/8-Hydroxyquinoline Metal Complexes. Molecules, 2021, 26, 4725.	1.7	29
2889	A Metalâ€Organic Framework with Allyloxy Functionalization for Aqueousâ€Phase Fluorescence Recognition of Pd(II) Ion. European Journal of Inorganic Chemistry, 2021, 2021, 3846-3851.	1.0	14
2890	Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coordination Chemistry Reviews, 2021, 440, 213957.	9.5	111
2891	A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. Journal of Coordination Chemistry, 2021, 74, 2111-2127.	0.8	15
2892	Highly Selective and Sensitive Detection of Hg(I), Hg(II) Ions by a Covalent Organic Framework Embedding Active Sulfur Sites in the Pore Wall. Bulletin of the Chemical Society of Japan, 2021, 94, 2133-2138.	2.0	6
2893	New Coordination Polymers of Selected Lanthanides with 1,2-Phenylenediacetate Linker: Structures, Thermal and Luminescence Properties. Materials, 2021, 14, 4871.	1.3	6
2894	Recent development on the alkaline earth MOFs (AEMOFs). Coordination Chemistry Reviews, 2021, 440, 213955.	9.5	24
2895	Copper(I) Alkynyl Clusters with Crystallization-Induced Emission Enhancement. Inorganic Chemistry, 2021, 60, 13493-13499.	1.9	11
2896	Label-free one-dimension photonics crystals sensors assembled by UiO-66 and graphene oxide: A platform to quick and efficiently detect chlorobenzene vapors. Journal of Environmental Chemical Engineering, 2021, 9, 105445.	3.3	7
2897	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
2898	A pillared metal-organic framework with rich π-electron linkers as a novel fluorescence probe for the highly selective and sensitive detection of nitroaromatics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126631.	2.3	8
2899	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	16.0	52
2900	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	1.8	3

#	Article	IF	CITATIONS
2901	Integration of Multiple Redox Centers into Porous Coordination Networks for Ratiometric Sensing of Dissolved Oxygen. ACS Applied Materials & Interfaces, 2021, 13, 40847-40852.	4.0	10
2902	Diamine Functionalization of a Metal–Organic Framework by Exploiting Solvent Polarity for Enhanced CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 38358-38364.	4.0	8
2903	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
2904	Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chimica Acta, 2021, 523, 120381.	1.2	50
2905	Imidazoliumâ€Functionalized Chemically Robust Ionic Porous Organic Polymers (<i>i</i> POPs) toward Toxic Oxoâ€Pollutants Capture from Water. Chemistry - A European Journal, 2021, 27, 13442-13449.	1.7	35
2906	Smart Metal–Organic Frameworks with Reversible Luminescence/Magnetic Switch Behavior for HCl Vapor Detection. Advanced Functional Materials, 2021, 31, 2106925.	7.8	42
2907	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{Ill} â€based Macrocyclic Framework. Angewandte Chemie, 2021, 133, 23898-23905.	1.6	8
2908	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{lll} â€based Macrocyclic Framework. Angewandte Chemie - International Edition, 2021, 60, 23705-23712.	7.2	48
2909	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	7.2	27
2910	Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 25252-25258.	1.6	5
2911	Metal-Organic Framework Materials Coupled to Optical Fibers for Chemical Sensing: A Review. IEEE Sensors Journal, 2021, 21, 19647-19661.	2.4	23
2912	Highly stable terbium(III)-based metal-organic framework for the detection of m-dinitroaromatics and Fe3+ in water. Inorganica Chimica Acta, 2021, 525, 120454.	1.2	9
2913	Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal–organic framework for highly selective fluorescence detection of metronidazole. Talanta, 2021, 232, 122411.	2.9	35
2914	Pillar[5]areneâ€based "Threeâ€components―Supramolecular Assembly and the Performance of Nitrobenzeneâ€based Explosive Fluorescence Sensing. ChemistrySelect, 2021, 6, 9363-9367.	0.7	4
2915	Fluorescence quenching based detection of nitroaromatics using luminescent triphenylamine carboxylic acids. Scientific Reports, 2021, 11, 19324.	1.6	22
2916	Crystallineâ€Phaseâ€Recognitionâ€Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angewandte Chemie, 2021, 133, 23561.	1.6	8
2917	A two-fold interpenetrated Zn-based coordination polymer for highly selective and sensitive detection of MnO4â^. Journal of Molecular Structure, 2021, 1239, 130486.	1.8	7
2918	A review on water treatment technologies for the management of oxoanions: prospects and challenges. Environmental Science and Pollution Research, 2021, 28, 61979-61997.	2.7	11

#	Article	IF	CITATIONS
2919	Novel Lanthanide(III) Porphyrin-Based Metal–Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS Omega, 2021, 6, 24637-24649.	1.6	7
2920	Fabrication of a MOF/Aerogel Composite via a Mild and Green One-Pot Method. Bulletin of the Chemical Society of Japan, 2021, 94, 2477-2483.	2.0	5
2921	Synthesis of Copper Metal Organic Framework Based on Schiff Base Tricarboxylate Ligand for Highly Selective and Sensitive Detection of 2,4,6-Trinitrophenol in Aqueous Medium. Journal of Fluorescence, 2021, 31, 1959-1973.	1.3	16
2922	Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MILâ€53. Chemistry - A European Journal, 2021, 27, 14711-14720.	1.7	9
2923	Recent progress in the removal of mercury ions from water based MOFs materials. Coordination Chemistry Reviews, 2021, 443, 214034.	9.5	93
2924	<i>catena</i> -poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ ¹) Tj ETQq1 1 0.7843	14 rgBT /0 0.1	Overlock 10 1
	C ₂₃ H ₂₃ AgN ₄ O ₈ S. Zeitschrift Fur Kristallographie -		
2925	Bilanthanide Metal–Organic Frameworks for Instant Detection of 17βâ€Estradiol, a Vital Physiological Index. Small Structures, 2022, 3, 2100113.	6.9	21
2926	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	1.6	4
2927	Crystallineâ€Phaseâ€Recognitionâ€Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angewandte Chemie - International Edition, 2021, 60, 23373-23379.	7.2	55
2928	Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 25048-25054.	7.2	39
2929	Detection of sialic acid using boronic-acid-functionalized metal organic framework UiO-66-NH2@B(OH)2. Talanta, 2021, 232, 122434.	2.9	18
2930	A hydrolytically stable amino-functionalized Zinc(II) metal-organic framework containing nanocages for selective gas adsorption and luminescent sensing. Microporous and Mesoporous Materials, 2021, 326, 111396.	2.2	82
2931	Highly efficient and bifunctional Cd(II)-Organic Framework platform towards Pb(II), Cr(VI) detection and Cr(VI) photoreduction. Journal of Solid State Chemistry, 2021, 302, 122416.	1.4	12
2932	Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction. Environmental Pollution, 2021, 286, 117305.	3.7	44
2933	A multi-responsive luminescent indicator based on a Zn(II) metal-organic framework with "Turn on― sensing of pyridine and "Turn off―sensing of Fe3+, Cr2O72Ⱐand antibiotics in aqueous media. Inorganica Chimica Acta, 2021, 526, 120513.	1.2	10
2934	Crystal structure and optical property of a Cadmium(II) complex based on triphenylamine derivative—Theoretical and experimental investigation. Journal of Luminescence, 2021, 238, 118270.	1.5	2
2935	Silver nanoparticles supported on UiO-66 (Zr): As an efficient and recyclable heterogeneous catalyst and efficient adsorbent for removal of indigo carmine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127089.	2.3	40
2936	Metal organic framework based fluorescence sensor for detection of antibiotics. Trends in Food Science and Technology, 2021, 116, 1002-1028.	7.8	74

#	Article	IF	CITATIONS
2937	Tubular porous coordination polymer for selective adsorption of CO2. Inorganic Chemistry Communication, 2021, 132, 108798.	1.8	1
2938	Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coordination Chemistry Reviews, 2021, 445, 214037.	9.5	76
2939	GaOOH-modified metal-organic frameworks UiO-66-NH2: Selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta, 2021, 234, 122679.	2.9	51
2940	Construction of enhanced fluorescence sensors in aqueous media by cation regulation and hybridization. Journal of Luminescence, 2021, 239, 118338.	1.5	6
2941	The highly specific detection and mechanism of Cu-MOF-74 fluorescent probe to amino trimethylene phosphonic acid: Experimental study and theoretical calculation of quantum chemistry. Journal of Molecular Liquids, 2021, 341, 117442.	2.3	10
2942	Two water-stable Cd(II)-MOFs as multiresponsive chemosensor with high sensitively and selectively detection of Fe3+, Cr2O72â´² and MnO4â´' ions. Journal of Solid State Chemistry, 2021, 303, 122538.	1.4	11
2943	Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews, 2021, 446, 214115.	9.5	123
2944	A new 3D 3-fold interpenetrated framework from flexible tricarboxylate: Photocatalytic and sensing performances. Polyhedron, 2021, 209, 115454.	1.0	7
2945	High-efficiency energy transfer pathways between Er(III) and Tm(III) in metal-organic frameworks for tunable upconversion emission and optical temperature sensing. Journal of Luminescence, 2021, 239, 118296.	1.5	6
2946	Synthesis, structure and fluorescence property of a new Zn-MOF based on a tetraphenylethane (TPE) ligand. Journal of Molecular Structure, 2021, 1244, 130975.	1.8	9
2947	A lanthanide metal–organic framework as ratio fluorescence probe to detect pesticides in water. Inorganica Chimica Acta, 2021, 528, 120632.	1,2	8
2948	Post-synthetic modification of luminescent metal-organic frameworks using schiff base complexes for biological and chemical sensing. Coordination Chemistry Reviews, 2021, 449, 214214.	9.5	55
2949	An Eu-based MOF as fluorescent probe for the sensitive detection of L-tryptophan. Journal of Solid State Chemistry, 2021, 304, 122555.	1.4	16
2950	A new 2D Zn(II) coordination polymer as luminescent probe for highly selective detection of nitrofurazone. Journal of Molecular Structure, 2021, 1245, 131264.	1.8	4
2951	A stable lanthanum-based metal-organic framework as fluorescent sensor for detecting TNP and Fe3+ with hyper-sensitivity and ultra-selectivity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120276.	2.0	14
2952	Efficient sequestration of radioactive 99TcO4- by a rare 3-fold interlocking cationic metal-organic framework: A combined batch experiments, pair distribution function, and crystallographic investigation. Chemical Engineering Journal, 2022, 427, 130942.	6.6	37
2953	Luminescent binuclear Zinc(II) organic framework as bifunctional water-stable chemosensor for efficient detection of antibiotics and Cr(VI) anions in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120232.	2.0	73
2954	RhB-encapsulated MOF-based composite as self-calibrating sensor for selective detection of 4-nitroaniline. Journal of Luminescence, 2022, 241, 118480.	1.5	10

#	Article	IF	CITATIONS
2955	Selective adsorption and detection of p-arsanilic acid on MOF-on-MOF heterostructure induced by nitrogen-rich self-assembly template. Chemical Engineering Journal, 2022, 427, 131483.	6.6	24
2956	A Review on Metal-Organic Frameworks: Synthesis and Applications. Asian Journal of Chemistry, 2021, 33, 245-252.	0.1	1
2957	Statistic Replacement of Lanthanide Ions in Bisâ€salicylatoborate Coordination Polymers for the Deliberate Control of the Luminescence Chromaticity. ChemistryOpen, 2021, 10, 164-170.	0.9	0
2958	ZnII and Cull-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules, 2021, 26, 491.	1.7	11
2959	A terbium(iii) lanthanide–organic framework as a selective and sensitive iodide/bromide sensor in aqueous medium. Dalton Transactions, 2021, 50, 1697-1702.	1.6	8
2960	An anthracene based conjugated triazine framework as a luminescent probe for selective sensing of p-nitroaniline and Fe(<scp>iii</scp>) ions. Materials Chemistry Frontiers, 2021, 5, 6568-6574.	3.2	23
2961	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
2962	Defect formation and amorphization of Zn-MOF-74 crystals by post-synthetic interactions with bidentate adsorbates. Journal of Materials Chemistry A, 2021, 9, 19698-19704.	5.2	9
2963	Triangular Cd(II)–Sm(III) Schiff Base Complex with Dual Visible and Near-Infrared Luminescent Responses to Nitro Explosives. Journal of Physical Chemistry A, 2021, 125, 251-257.	1.1	5
2964	Rapid synthesis of self-propelled tubular micromotors for "ON–OFF―fluorescent detection of explosives. Chemical Communications, 2021, 57, 10528-10531.	2.2	16
2965	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	1.6	22
2966	The synthesis and characterization of Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) based MOFs by a mixed ligand strategy: a Zn(<scp>ii</scp>) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction. Materials Chemistry Frontiers, 2021, 5, 304-314.	3.2	52
2967	Biosensing Using MOFs. , 2021, , 457-499.		0
2968	A microporous shp -topology metal–organic framework with an unprecedented high-nuclearity Co ₁₀ -cluster for iodine capture and histidine detection. Materials Chemistry Frontiers, 2021, 5, 4300-4309.	3.2	27
2969	A "turn-on―Cr ³⁺ ion probe based on non-luminescent metal–organic framework-new strategy to prepare a recovery probe. Journal of Materials Chemistry A, 2021, 9, 13552-13561.	5.2	20
2970	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
2971	Synthesis of tricarboxylic acid based metal organic frameworks: Structural and gas adsorption studies. Journal of Molecular Structure, 2021, 1224, 129161.	1.8	1
2972	A single-crystal to single-crystal transition from a 7-fold interpenetrated coordination polymer to a non-interpenetrated one by photochemical $[2+2]$ polymerization and their sensing properties. Dalton Transactions, 2021, 50, 4408-4414.	1.6	9

#	Article	IF	CITATIONS
2973	Anthracene-Bisimidazole Tetraacid Linker-Based Metal–Organic Nanosheets for Turn-On Fluorescence Sensing of Nerve Agent Mimics. ACS Applied Nano Materials, 2021, 4, 449-458.	2.4	20
2974	Selective fluorescent sensing of LMOFs constructed from tri(4-pyridylphenyl)amine ligand. RSC Advances, 2021, 11, 16989-16995.	1.7	11
2975	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	1.4	1
2976	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
2977	Porphyrin-Based Metal–Organic Framework Probe: Highly Selective and Sensitive Fluorescent Turn-On Sensor for M ³⁺ (Al ³⁺ , Cr ³⁺ , and Fe ³⁺) lons. Inorganic Chemistry, 2021, 60, 1116-1123.	1.9	81
2978	Nanoscale Metal–Organic Layers Detect Mitochondrial Dysregulation and Chemoresistance via Ratiometric Sensing of Glutathione and pH. Journal of the American Chemical Society, 2021, 143, 1284-1289.	6.6	38
2979	Fluorescent sensors for aldehydes based on luminescent metal–organic frameworks. Dalton Transactions, 2021, 50, 7166-7175.	1.6	26
2980	Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A, 2021, 9, 4348-4378.	5.2	34
2981	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	11.1	184
2982	Mehr als nur ein Netzwerk: Strukturierung retikuläer Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
2983	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
2984	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 16061-16068.	7.2	39
2985	Bifunctional luminescent Eu metal–organic framework for sensing nitroaromatic pollutants and Fe ³⁺ ion with high sensitivity and selectivity. Applied Organometallic Chemistry, 2021, 35, e6136.	1.7	9
2986	Two Pairs of Homochiral Coordination Polymers with Helices Based on Semiâ€rigid Lactic Acid Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 373-378.	0.6	5
2987	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
2988	Two 1D Looped Coordination Polymers as Luminescent Probes for Highly Selective Sensing of Fe3+ lons. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1376-1382.	1.9	2
2989	Assembling latter d-block heterometal coordination polymers: Synthetic strategies and structural outcomes. Coordination Chemistry Reviews, 2017, 348, 121-170.	9.5	17
2990	A dual linker metal-organic framework demonstrating ligand-based emission for the selective detection of carbon tetrachloride. Inorganica Chimica Acta, 2018, 470, 312-317.	1.2	7

#	Article	IF	CITATIONS
2991	Metal-organic framework/poly ($\hat{l}\mu$ -caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112626.	2.0	34
2992	Dual functional three-dimensional LnMOFs for luminescence sensing of nitrobenzene and Fe 3+ ions. Polyhedron, 2017, 133, 238-244.	1.0	20
2993	Three multifunctional coordination polymers based on the amide-functionalized N2,N5-di(pyridin-3-yl)thiophene-2,5-dicarboxamide ligand (Nptp): Synthesis, magnetic properties and luminescent sensing for Pb2+, Cr2O72â° and acetone. Polyhedron, 2020, 186, 114613.	1.0	3
2994	An ultra-stable Cd coordination polymer based on double-chelated ligand for efficient dual-response of TNP and MnO4 Sensors and Actuators B: Chemical, 2020, 317, 128230.	4.0	27
2995	Metal–Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Accounts of Chemical Research, 2020, 53, 485-495.	7.6	355
2996	Ruthenium Complex-Incorporated Two-Dimensional Metal–Organic Frameworks for Cocatalyst-Free Photocatalytic Proton Reduction from Water. Inorganic Chemistry, 2020, 59, 2379-2386.	1.9	24
2997	Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation. Journal of Physical Chemistry C, 2020, 124, 13187-13195.	1.5	10
2998	Defect-Engineered Metal–Organic Frameworks: A Thorough Characterization of Active Sites Using CO as a Probe Molecule. Journal of Physical Chemistry C, 2021, 125, 593-601.	1.5	15
2999	Cadmium–1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2′-bipyridines: syntheses, crystal structures and photoluminescence studies. Dalton Transactions, 2017, 46, 12516-12526.	1.6	15
3000	Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chemical Society Reviews, 2020, 49, 1517-1544.	18.7	166
3001	Two d ¹⁰ luminescent metal–organic frameworks as dual functional luminescent sensors for (Fe ³⁺ ,Cu ²⁺) and 2,4,6-trinitrophenol (TNP) with high selectivity and sensitivity. RSC Advances, 2020, 10, 4817-4824.	1.7	13
3002	Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid. RSC Advances, 2020, 10, 1439-1446.	1.7	77
3003	A built-in self-calibrating luminescence sensor based on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides. RSC Advances, 2020, 10, 19149-19156.	1.7	51
3004	A multifunctional double walled zirconium metal–organic framework: high performance for CO ₂ adsorption and separation and detecting explosives in the aqueous phase. Journal of Materials Chemistry A, 2020, 8, 17106-17112.	5.2	23
3005	Vapochromism induced by intermolecular electron transfer coupled with hydrogen-bond formation in zinc dithiolene complex. Journal of Materials Chemistry C, 2020, 8, 14939-14947.	2.7	11
3006	Solvent-mediated structural transformations of copper(II) coordination polymers induced by different short-chain alcohols. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 79-85.	0.5	3
3007	Seven new metal–organic frameworks assembled from semi-rigid polycarboxylate and auxiliary N-donor ligands: syntheses, structures and properties. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 1001-1017.	0.5	12
3008	Two new Ni ^{II} and Zn ^{II} metalâ€"organic frameworks of glutarate and 1,4-bis[(2-methyl-1 <i>H</i> i>i-imidazol-1-yl)methyl]benzene ligands: syntheses, structures and luminescence sensing properties. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 148-158.	0.2	5

#	ARTICLE Constal attractives of the Reviews Medicular based Covering Medicular approximation and dimensional	IF	CITATIONS
3009	Crystal structure of the Ba ^{II} -based Co ^{II} -containing one-dimensional coordination polymer poly[[aqua{μ ₄ -2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylidene)] perchlorate]. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1806-1811.	bis(4 - 0x0-4	4<1>H-pyr
3010	Synthesis and structural characterization of a three-dimensional two-fold interpenetrated coordination polymer constructed from bis(4-(1H-imidazol-1-yl)phenyl)methanone and 1,1ʹ-biphenyl-2,2ʹ-dicarboxylate ligands for cadmium(II). Zeitschrift Fur Naturforschung - Section B lournal of Chemical Sciences, 2020, 75, 733-737.	0.3	2
3011	Mesoporous Crystalline Silver-Chalcogenolate Cluster-Assembled Material with Tailored Photoluminescence Properties. CCS Chemistry, 2019, 1, 553-560.	4.6	39
3012	Metal and Covalent Organic Frameworks for Membrane Applications. Membranes, 2020, 10, 107.	1.4	38
3013	Dual-Mode Induction of Tunable Circularly Polarized Luminescence from Chiral Metal-Organic Frameworks. Research, 2020, 2020, 6452123.	2.8	38
3014	Bayesian optimization of nanoporous materials. Molecular Systems Design and Engineering, 2021, 6, 1066-1086.	1.7	47
3015	An europium(<scp>iii</scp>) metal–organic framework as a multi-responsive luminescent sensor for highly sensitive and selective detection of 4-nitrophenol and I ^{â^²} and Fe ³⁺ ions in water. Dalton Transactions, 2021, 50, 15593-15601.	1.6	15
3016	Luminescent 1D heterometallic (Ir,Cd) coordination polymers based on bis-cyclometalated lr(<scp>iii</scp>) metallatectons and trinuclear Cd(<scp>ii</scp>) dianionic nodes. Dalton Transactions, 2021, 50, 15924-15934.	1.6	2
3017	Coumarin-embedded MOF UiO-66 as a selective and sensitive fluorescent sensor for the recognition and detection of Fe ³⁺ ions. Journal of Materials Chemistry C, 2021, 9, 16978-16984.	2.7	32
3018	Simultaneous neutron powder diffraction and microwave characterisation at elevated temperatures. Physical Chemistry Chemical Physics, 2021, 23, 23602-23609.	1.3	0
3019	Amino-functionalized Cu metal–organic framework nanosheets as fluorescent probes for detecting TNP. Analytical Methods, 2021, 13, 5328-5334.	1.3	4
3020	Doping of a Zn-MOF with Eu3+ and Tb3+ for application in the manufacture of a WLED. Journal of Materials Chemistry C, 2021, 9, 15891-15899.	2.7	13
3021	Ultrasonic-assisted fabrication of F-MOFs: morphology and types of pillar-dependent sensing performance to phenolic NAC detection. New Journal of Chemistry, 2021, 45, 20869-20876.	1.4	2
3022	A metal–organic framework featuring highly sensitive fluorescence sensing for Al ³⁺ ions. CrystEngComm, 2021, 23, 8087-8092.	1.3	14
3023	Two chemically robust Cd(<scp>ii</scp>)-frameworks for efficient sensing of levofloxacin, benzaldehyde, and Fe ³⁺ ions. Dalton Transactions, 2021, 50, 15743-15753.	1.6	37
3024	Highly Selective and Sensitive Detection of Volatile Sulfur Compounds by Ionically Conductive Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2104120.	11.1	25
3025	Structural Water Molecules Confined in Soft and Hard Nanocavities as Bright Color Emitters. ACS Physical Chemistry Au, 2022, 2, 47-58.	1.9	12
3026	Syntheses, structures, luminescence and CO2 gas adsorption properties of four three-dimensional heterobimetallic metal–organic frameworks. Journal of Solid State Chemistry, 2022, 305, 122672.	1.4	6

#	ARTICLE	IF	CITATIONS
3027	Integration of Fluorescent Functionality into Pressure-Amplifying Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 7964-7971.	3.2	7
3028	Recent advances in DNA glycosylase assays. Chinese Chemical Letters, 2022, 33, 3603-3612.	4.8	5
3029	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
3030	Relation Between Coordination and Lewisâ€Acid Property of MOFâ€Derived Mononuclear Zn(II) Catalyst Toward Epoxide Hydroxylation. ChemCatChem, 2021, 13, 5236-5242.	1.8	6
3031	Novel Nanoporous Ti-Phosphonate Metal–Organic Framework for Selective Sensing of 2,4,6-Trinitrophenol and a Promising Electrode in an Energy Storage Device. ACS Sustainable Chemistry and Engineering, 2021, 9, 14224-14237.	3.2	42
3032	Synthesis of copper-based metal-organic framework for sensing nitroaromatic compounds. Inorganic Chemistry Communication, 2021, 134, 109017.	1.8	8
3033	A "turn-off―fluorescent sensor based on electrospun polycaprolactone nanofibers and fluorene(bisthiophene) derivative for nitroaromatic explosive detection. Forensic Science International, 2021, 329, 111056.	1.3	14
3034	Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects. Journal of Nanostructure in Chemistry, 2022, 12, 729-764.	5.3	27
3035	Fabrication of Robust and Porous Lead Chloride-Based Metal–Organic Frameworks toward a Selective and Sensitive Smart NH ₃ Sensor. ACS Applied Materials & Interfaces, 2021, 13, 52765-52774.	4.0	18
3036	State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials, 2022, 424, 127558.	6.5	71
3037	Cyclodextrin-based nanostructures. Progress in Materials Science, 2022, 124, 100869.	16.0	48
3038	Syntheses, Structures, and Ratiometric Fluorescent Sensing Properties of a Series of Lanthanide Coordination Polymers. Crystal Growth and Design, 2021, 21, 6543-6551.	1.4	5
3039	Crystal structure of poly[[î¼3-4,4′-(4,4′-bipyridine-2,6-diyl)dibenzoato]{î¼2-4-[6-(4-carboxyphenyl)-4,4′-bipyridin-4′-ium-hemihydrate]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m374-m375.	2-101.]2benzo	pa to }mangai
3040	MOFs for the Detection of High Explosives. Journal of the Korea Institute of Military Science and Technology, 2015, 18, 376-386.	0.1	0
3041	Manganese(II) chloride complexes with pyridine $\langle i \rangle N \langle i \rangle$ -oxide (PNO) derivatives and their solid-state structures. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1434-1438.	0.2	5
3042	Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3',5'-dicarboxylphenyl)-1H-1,2,4-triazole. Journal of Advances in Physical Chemistry, 2018, 07, 163-173.	0.1	0
3043	Multi-metal citrate complex: green synthesis using Lime juice for hydrogen storage applications. International Journal of Pharma and Bio Sciences, 2018, 9, .	0.1	0
3044	Assembly, Structure, and Properties of Six Coordination Polymers Based on 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene. Australian Journal of Chemistry, 2019, 72, 751.	0.5	1

#	Article	IF	CITATIONS
3045	Zeolite-Based Optical Detectors. Advances in Computational Intelligence and Robotics Book Series, 2019, , 1-16.	0.4	1
3046	A New Polyoxovanadate Based Hybrid Materials: A Promising Sensor for Picric Acid and Pd2+ Found in the Aqueous Environment., 2020,, 149-193.		O
3047	Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors, 2021, 9, 306.	1.8	29
3048	Manganese(II), cobalt(II) and nickel(II) complexes constructed from a pyridyloxy-functionalized hexapodal cyclophosphazene ligand: structural and magnetic studies. Polyhedron, 2021, 211, 115557.	1.0	0
3049	Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers, 2021, 13, 3712.	2.0	9
3050	Large scale synthesis and propylene purification by a high-performance MOF sorbent Y-abtc. Separation and Purification Technology, 2022, 282, 120010.	3.9	12
3051	Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications. , 0, , .		3
3052	Lanthanide Isophthalate Metalâ€Organic Frameworks: Crystal Structure, Thermal Behavior, and White Luminescence. European Journal of Inorganic Chemistry, 2021, 2021, 398-404.	1.0	3
3053	CRYSTALLOGRAPHIC ANALYSIS OF A SAMARIUM(III) COMPLEX WITH 1,3,5-TRIS(1-IMIDAZOLYL)BENZENE. Journal of Structural Chemistry, 2020, 61, 1945-1951.	0.3	0
3054	Luminescent Metal-Organic Frameworks for Nitroaromatic Compounds Detection. Comments on Inorganic Chemistry, 2021, 41, 100-132.	3.0	7
3055	Synthesis, Structures and Properties of Two Ln(III) Coordination Polymers based on Pyrimidineâ€2â€carboxylic Acid and Sodium Dicyanamide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 641-645.	0.6	1
3056	Stable hydrogen-bonded organic frameworks for selective fluorescence detection of Al ³⁺ and Fe ³⁺ ions. CrystEngComm, 2021, 23, 8334-8342.	1.3	4
3057	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
3058	Zn(II) complexes based on functional organic ligands: Two-photon activity, theoretical calculation and bioimaging. Dyes and Pigments, 2022, 197, 109878.	2.0	1
3059	Amine-functionalized UiO-66 as a fluorescent sensor for highly selective detecting volatile organic compound biomarker of lung cancer. Journal of Solid State Chemistry, 2022, 305, 122623.	1.4	9
3060	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	9.5	63
3061	Photocatalytic performance and mechanism of Rhodamine B with two new Zn(II)-based coordination polymers under UV-light. Journal of Molecular Structure, 2022, 1249, 131681.	1.8	7
3062	Fabrication of Ni–MOF-derived composite material for efficient electrocatalytic OER. Journal of Taibah University for Science, 2021, 15, 637-648.	1.1	12

#	Article	IF	Citations
3063	Click Chemistry to Metal-Organic Frameworks as a Synthetic Tool for MOF and Applications for Functional Materials., 2020,, 523-538.		2
3064	An ultra-high quantum yield Tb-MOF with phenolic hydroxyl as the recognition group for a highly selective and sensitive detection of Fe ³⁺ . Journal of Materials Chemistry C, 2021, 9, 15840-15847.	2.7	36
3065	The 50 Most Highly Cited Reviews of 2013–2017. Scientific and Technical Information Processing, 2021, 48, 168-184.	0.3	2
3066	Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring. Chemosensors, 2021, 9, 316.	1.8	13
3067	Emergent Photostability Synchronization in Coassembled Array Members for the Steady Multiple Discrimination of Explosives. Advanced Science, 2022, 9, e2102739.	5.6	4
3068	One amino-functionalized luminescence sensor demonstrating high sensitivity and selectivity for detecting Al3+ and Cu2+ as well as its luminescent mixed matrix membranes and test papers. Journal of Solid State Chemistry, 2022, 305, 122705.	1.4	2
3069	Fluorescent macromolecular chemosensors for highly and selectively detecting of 2, 4, 6-trinitrophenol. Materials Research Express, 2020, 7, 105304.	0.8	8
3070	Synthesis and Crystal Structure of a Zinc Coordination Polymer Based on Bis(4-(2'-methylimidazol)phenyl)sulfone and (1,1'-Biphenyl)-2,2'-dicarboxylate Ligands. Crystallography Reports, 2020, 65, 871-874.	0.1	1
3071	Syntheses and structural characterization of manganese and cadmium coordination polymers constructed with bis(4-(1 <i>H</i> -imidazol-1-yl)phenyl)methanone and dicarboxylate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 859-863.	0.3	1
3072	Chiral fluorescence recognition of glutamine enantiomers by a modified Zr-based MOF based on solvent-assisted ligand incorporation. RSC Advances, 2021, 11, 37584-37594.	1.7	11
3073	An aggregation-induced emission-active bis-heteroleptic ruthenium(⟨scp⟩ii⟨ scp⟩) complex of thiophenyl substituted phenanthroline for the selective "turn-off―detection of picric acid. New Journal of Chemistry, 2021, 46, 169-177.	1.4	12
3074	Optimizing the metal ion release and antibacterial activity of ZnO@ZIF-8 by modulating its synthesis method. New Journal of Chemistry, 2021, 45, 22924-22931.	1.4	20
3075	Enhancement of the fluorescence properties via introducing the tetraphenylethylene chromophores into a novel Mn–organic framework with a rare [Mn4(μ3-OH)2] cluster. Dalton Transactions, 2021, 50, 17482-17486.	1.6	8
3076	Uncovering growth species of multivariate MOFs in liquid phase by mass spectrometry. Chinese Chemical Letters, 2022, 33, 3993-3998.	4.8	6
3077	Design and Synthesis of Triphenylamine Based Cyano Stilbenes for Picric Acid Sensing and Two Photon Absorption Applications. ChemistrySelect, 2021, 6, 12300-12308.	0.7	4
3078	Synthesis, crystal structures, luminescence and magnetic property of two complexes based on 5-nitroisophthalic acid. Transition Metal Chemistry, 0 , 1 .	0.7	3
3079	Research progress on porous low dielectric constant materials. Materials Science in Semiconductor Processing, 2022, 139, 106320.	1.9	23
3080	Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. Molecular Catalysis, 2022, 517, 112007.	1.0	6

#	ARTICLE	IF	CITATIONS
3081	Ultrafast Response Optical Microfiber Interferometric VOC Sensor Based on Evanescent Field Interaction with ZIFâ€8/Graphene Oxide Nanocoating. Advanced Optical Materials, 2022, 10, .	3.6	14
3082	Selective Detection of Picric Acid and Pyrosulfate Ion by Nickel Complexes Offering a Hydrogen-Bonding-Based Cavity. Inorganic Chemistry, 2021, 60, 17889-17899.	1.9	18
3083	Symmetry-Guided Synthesis of <i>N,N′</i> -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021, 143, 20411-20418.	6.6	37
3084	Connectivity Replication of Neutral Eu ³⁺ - and Tb ³⁺ -Based Metal–Organic Frameworks (MOFs) from Anionic Cd ²⁺ -Based MOF Crystallites. Inorganic Chemistry, 2021, 60, 18614-18619.	1.9	3
3085	3D printing of metal–organic framework composite materials for clean energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 27252-27270.	5.2	29
3086	Self-assembled porous nanoparticles based on silicone polymers with aggregation-induced emission for highly sensitive detection of nitroaromatics. Polymer Chemistry, 2021, 12, 7016-7022.	1.9	1
3087	Covalent organic frameworks as multifunctional materials for chemical detection. Chemical Society Reviews, 2021, 50, 13498-13558.	18.7	114
3088	Achieving a blue-excitable yellow-emitting Ca-LMOF phosphor <i>via</i> water induced phase transformation. Chemical Science, 2022, 13, 1375-1381.	3.7	2
3089	Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Transactions, 2022, 51, 2992-3003.	1.6	15
3090	Information encryption, highly sensitive detection of nitrobenzene, tetracycline based on a stable luminescent Cd-MOF. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120752.	2.0	11
3091	Two multifunctional luminescent cobalt metal-organic frameworks for selectively and sensitively sensing of Cu2+, MnO4- and picric acid in water. Journal of Solid State Chemistry, 2022, 307, 122875.	1.4	5
3092	The extra-large calixarene-based MOFs-derived hierarchical composites for photocatalysis of dye: Facile syntheses and contribution of carbon species. Journal of Alloys and Compounds, 2022, 897, 163178.	2.8	95
3093	A dual-chemosensor based on Ni-CP: Fluorescence turn-on sensing toward ascorbic acid and turn-off sensing toward acetylacetone. Journal of Luminescence, 2022, 243, 118680.	1.5	10
3094	Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. Chemosphere, 2022, 292, 133440.	4.2	15
3095	Responsive luminescent MOF materials for advanced anticounterfeiting. Chemical Engineering Journal, 2022, 431, 134170.	6.6	64
3097	Fluorescent Zn(<scp>ii</scp>) frameworks with multicarboxylate and pyridyl N-donor ligands for sensing specific anions and organic molecules. Dalton Transactions, 2022, 51, 3572-3580.	1.6	33
3098	Trimesic Acid-Based Co(II) MOFs as Colorimetric Sensor for Detection of Ammonia Gas. IEEE Sensors Journal, 2022, 22, 3903-3910.	2.4	10
3099	Our journey of developing dualâ€emitting metalâ€organic frameworkâ€based fluorescent sensors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	8

#	Article	IF	CITATIONS
3100	A facile method to enhance the output performance of triboelectric nanogenerators based on coordination polymers by modulating terminal coordination groups. CrystEngComm, 2021, 24, 192-198.	1.3	7
3101	A ratiometric fluorescent sensor made of a terbium coordination polymer for the anthrax biomarker 2,6-dipicolinic acid with on-site detection assisted by a smartphone app. CrystEngComm, 2021, 24, 132-142.	1.3	12
3102	Luminescent Eu(III)-based Coordination Polymers for Photonic Materials. Chemistry Letters, 2022, 51, 185-196.	0.7	3
3103	Thermoinduced structural-transformation and luminescent conversion in hybrid manganese halides. Journal of Physics Condensed Matter, 2022, 34, 154001.	0.7	6
3104	Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging. , 2022, 4, 370-377.		8
3105	A covalent organic polymer for turn-on fluorescence sensing of hydrazine. Journal of Materials Chemistry C, 2022, 10, 2807-2813.	2.7	11
3106	Metal–organic frameworks for advanced transducer based gas sensors: review and perspectives. Nanoscale Advances, 2022, 4, 697-732.	2.2	33
3107	State of the art developments and prospects of metal–organic frameworks for energy applications. Dalton Transactions, 2022, 51, 1675-1723.	1.6	11
3108	Molecularly imprinted nanocomposites of CsPbBr ₃ nanocrystals: an approach towards fast and selective gas sensing of explosive taggants. Journal of Materials Chemistry C, 2022, 10, 1754-1766.	2.7	24
3109	Multiple stimuli triggered structural isomerization of copper iodide–pyridine crystals. CrystEngComm, 2022, 24, 788-795.	1.3	3
3110	Temperature-Induced Structural Transformations of Lanthanide Coordination Polymers Based on a Semirigid Tricarboxylic Acid Ligand: Crystal Structures and Luminescence Properties. Crystal Growth and Design, 2022, 22, 1583-1593.	1.4	17
3111	Theoretical investigations on the nitro-explosive sensing process of a MOF sensor: Roles of hydrogen bond and π-π stacking. Chemical Physics Letters, 2022, 793, 139393.	1.2	8
3112	Metal Organic Frameworks Based Nanomaterial: Synthesis and Applications; Removal of Heavy Metal lons from Waste Water. Energy, Environment, and Sustainability, 2022, , 377-392.	0.6	1
3113	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3048-3056.	4.0	18
3114	A calcein-modified Zr(<scp>iv</scp>)-based metal–organic framework as a visualized sensor for calcium ions. Journal of Materials Chemistry C, 2022, 10, 1517-1525.	2.7	10
3115	Carboxylato Bridged Cyclic SBUs as Robust Features in a Series of Cu(II) Coordination Polymers and Halogen···Halogen Interactions in Crystal Packing. Crystal Growth and Design, 2022, 22, 1253-1262.	1.4	7
3116	Study on the adsorption performance of zeolitic imidazolate framework-8 (ZIF-8) for Co2+ and Mn2+. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1367-1379.	0.7	7
3117	Dual-emitting metal–organic frameworks for ratiometric fluorescence detection of fluoride and Al3+ in sequence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120896.	2.0	15

#	Article	IF	Citations
3118	Luminescent \hat{l}^2 -diketonate coordinated europium(III) sensor for rapid and sensitive detection of Bacillus Anthracis biomarker. Journal of Luminescence, 2022, 244, 118726.	1.5	5
3119	A stable and highly luminescent 3D Eu(III)-organic framework for the detection of colchicine in aqueous environment. Environmental Research, 2022, 208, 112652.	3.7	11
3120	Luminescent lanthanide coordination polymers with transformative energy transfer processes for physical and chemical sensing applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100485.	5.6	32
3121	Porous Coordination Polymers as Active Fillers for Solid Polymer Electrolytes of Lithium-Ion Batteries. Materials Performance and Characterization, 2022, 11, 34-45.	0.2	0
3122	Nanoporous Ce-Based Metal–Organic Framework Nanoparticles for NO Sensing. ACS Applied Nano Materials, 2022, 5, 2451-2459.	2.4	6
3123	Anthraceneâ€Modified Cadmium Metalâ€Organic Framework as an Excellent Sensor for the Detection of 2,4,6â€Trinitrophenol and Nitrofurantoin. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
3124	A fluorescence zinc metal-organic framework for the effective detection of Fe3+ and Fe2+ in water. Inorganic Chemistry Communication, 2022, 138, 109282.	1.8	6
3125	Synthesis and characterization of nano-sized magnesium 1,4-benzenedicarboxylate metal organic framework via electrochemical method. Journal of Solid State Chemistry, 2022, 309, 122970.	1.4	1
3126	Three-dimensional electron diffraction: a powerful structural characterization technique for crystal engineering. CrystEngComm, 2022, 24, 2719-2728.	1.3	5
3127	Aggregation induced emission (AIE) active cross-linked poly(<i>N</i> -isopropyl) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf 2.7	50 387 Td (
3128	in an aqueous environment. Journal of Materials Chemistry C, 2022, 10, 5856-5863. Hydrogen-bonded organic frameworks: design, applications, and prospects. Materials Advances, 2022, 3, 3680-3708.	2.6	64
3130	Microwave-Assisted Synthesis to Prepare Metal-Organic Framework for Luminescence Thermometry. SSRN Electronic Journal, 0, , .	0.4	0
3131	A sensitive colorimetric hydrogen sulfide detection approach based on copper-metal–organic frameworks and a smartphone. Analytical Methods, 2022, 14, 1239-1245.	1.3	6
3132	AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. Results in Chemistry, 2022, 4, 100337.	0.9	7
3133	Turn-on Fluorescence Detection of Acetic Acid in Wine Using a Uranyl–Organic Framework. Crystal Growth and Design, 2022, 22, 1984-1990.	1.4	10
3134	A Chemosensor with Switched-on Luminescence for the Detection of Ammonia Vapor. High Energy Chemistry, 2022, 56, 17-21.	0.2	1
3135	State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Letters, 2022, 14, 68.	14.4	117
3136	A Stable Y(III)-Based Amide-Functionalized Metal–Organic Framework for Propane/Methane Separation and Knoevenagel Condensation. Inorganic Chemistry, 2022, 61, 3708-3715.	1.9	25

#	Article	IF	Citations
3138	Zn(II) and Co(II) 3D Coordination Polymers Based on 2-lodoterephtalic Acid and 1,2-bis(4-pyridyl)ethane: Structures and Sorption Properties. Molecules, 2022, 27, 1305.	1.7	5
3139	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9970-9986.	4.0	109
3140	A Benzothiadiazole-Based Eu ³⁺ Metalâ€"Organic Framework as the Turn-On Luminescent Sensor toward Al ³⁺ and Ga ³⁺ with Potential Bioimaging Application. Inorganic Chemistry, 2022, 61, 3607-3615.	1.9	61
3141	Design and Synthesis of Four Newly Water-Stable Pb-Based Heterometallic Organic Frameworks: How Do the Second Metals (Zn, Cd, Co, and Mn) Optimize Their Fluorescent and Catalytic Properties?. Crystal Growth and Design, 2022, 22, 2628-2636.	1.4	2
3142	Heterobimetallic Ln(III)â€Containing Materials Based on Oneâ€Dimensional Aurophilic Chains of Gold(I) Dithiolate Dimers and Their Vapochromic Response to DMF. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
3143	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	1.7	13
3144	Light ontrolled Ionic/Molecular Transport through Solidâ€5tate Nanopores and Nanochannels. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
3145	Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for dopamine. Mikrochimica Acta, 2022, 189, 141.	2.5	23
3146	Ultrasonic assisted synthesis of $Zn(II)$ 2D coordination polymer and 4-nitroaniline photoluminescence sensing manifestation through DFT studies. Journal of Coordination Chemistry, 0, , 1-17.	0.8	0
3147	Smart Tetraphenyletheneâ€Based Luminescent Metal–Organic Frameworks with Amideâ€Assisted Thermofluorochromics and Piezofluorochromics. Advanced Science, 2022, 9, e2200850.	5.6	31
3148	Rational design of an AIE-active metal-organic framework for highly sensitive and portable sensing nitroaromatic explosives. Chinese Chemical Letters, 2023, 34, 107291.	4.8	2
3149	Structures and Catalytic Properties of two New Squaramideâ€decorated Cdâ€MOFs. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
3150	Tailoring Inorganic Halide Perovskite Photocatalysts toward Carbon Dioxide Reduction. Solar Rrl, 2022, 6, .	3.1	19
3151	Rapid detection of lamotrigine by a water stable fluorescent lanthanide metal–organic framework sensor. Polyhedron, 2022, 220, 115803.	1.0	8
3152	lodineâ€Chemisorption, Interpenetration and Polycatenation: Cationic MOFs and CPs from Group 13 Metal Halides and Diâ€Pyridyl‣inkers. Chemistry - A European Journal, 2022, 28, .	1.7	2
3153	Subtle Ligand Spacer Change in 2D Metal–Organic Framework Sheets for Dual Turn-On/Turn-Off Sensing of Acetylacetone and Turn-On Sensing of Water in Organic Solvents. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16357-16368.	4.0	21
3154	Mixed-Linker Strategy for the Construction of Metal–Organic Framework Combined with Dyes toward Alcohol Detection. Inorganic Chemistry, 2022, 61, 5318-5325.	1.9	3
3155	Luminescent Conjugated Microporous Polymers for Selective Sensing and Ultrafast Detection of Picric Acid. ACS Applied Polymer Materials, 2022, 4, 2648-2655.	2.0	26

#	Article	IF	Citations
3156	Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2564-2580.	1.1	3
3157	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Energy	2.5	13
3158	Magnetic Fe ₃ O ₄ Nanoparticle/ZIF-8 Composites for Contaminant Removal from Water and Enhanced Flame Retardancy of Flexible Polyurethane Foams. ACS Applied Nano Materials, 2022, 5, 3491-3501.	2.4	9
3159	Overcoming Efficiency Limitation of Cluster Light-Emitting Diodes with Asymmetrically Functionalized Biphosphine Cu ₄ 1 ₄ Cubes. Journal of the American Chemical Society, 2022, 144, 6551-6557.	6.6	35
3160	Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorganic Chemistry Communication, 2022, 140, 109436.	1.8	24
3161	Cooperation between Eu MOF and glycerol for luminescent sensing of nerve agent mimic vapor. Journal of Solid State Chemistry, 2022, 311, 123114.	1.4	5
3162	Synthesis of ZnO@ZIF-8 Nanorods with Enhanced Response to VOCs. Journal of the Electrochemical Society, 2022, 169, 047508.	1.3	5
3163	Miscellaneous dimensional coordination polymers and luminescence emission properties of cadmium(II)-pseudohalide complexes. Inorganica Chimica Acta, 2022, 535, 120871.	1.2	1
3164	Tunability in dimension, metal and ligand coordination modes and emission properties in Cd(II) and Zn(II) coordination networks based on 4,4'-(hydrazine-1,2-diyilidenebis(methanylylidene)) dibenzoic acid linker. Journal of Solid State Chemistry, 2022, 310, 123021.	1.4	1
3165	Lanthanide metalâ^'organic frameworks based on planar Ï€-conjugated ligands for white light emission, temperature and chemical sensing. Dyes and Pigments, 2022, 202, 110256.	2.0	12
3166	A Sulfur-Containing Capsule-Based Metal-Organic electrochemical sensor for Super-Sensitive capture and detection of multiple Heavy-Metal ions. Chemical Engineering Journal, 2022, 438, 135639.	6.6	43
3167	Luminescence Cd(II) coordination compounds based on a semi-rigid tricarboxylic acid ligand for identifying metal cations, inorganic anions and organic solvents. Polyhedron, 2022, 219, 115799.	1.0	2
3168	Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications $\hat{a} \in A$ review. Chemosphere, 2022, 298, 134184.	4.2	82
3169	Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews, 2022, 462, 214520.	9.5	26
3170	Post-modification of Uio-66-NH2 based on Schiff-base reaction for removal of Hg2+ from aqueous solution: Synthesis, adsorption performance and mechanism. Fuel, 2022, 319, 123816.	3.4	20
3171	Two-stage ligand exchange in Mn(III)-based porphyrinic metalâ^'organic frameworks for fluorescence water sensing. Sensors and Actuators B: Chemical, 2022, 362, 131808.	4.0	23
3172	AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coordination Chemistry Reviews, 2022, 463, 214539.	9.5	40
3173	Structural diversities in the Zn(II), Mn(II) and Cd(II) coordination polymers induced by metal ions and/or anions. Polyhedron, 2022, 220, 115829.	1.0	3

#	Article	IF	CITATIONS
3174	Design, Fabrication and Applications of Electrospun Nanofiber-Based Surface-Enhanced Raman Spectroscopy Substrate. Critical Reviews in Analytical Chemistry, 2023, 53, 289-308.	1.8	6
3175	Two new metal-organic frameworks with different topological networks: syntheses, crystal structures and luminescent properties. Inorganic and Nano-Metal Chemistry, 0, , 1-5.	0.9	0
3176	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
3177	Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chemical Research in Chinese Universities, 2022, 38, 31-44.	1.3	4
3178	Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60163-60172.	4.0	13
3179	Copper Oxide/HKUSTâ€1 Composite Catalyst as Thermal Decomposition Modifier on Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.0	2
3180	Rational design of a rare Zn-MOF material based on mixed carboxylate-azolate ligands and its strong blue luminescence. Inorganic and Nano-Metal Chemistry, 0, , 1-5.	0.9	0
3181	Construction of Stable Metal–Organic Framework Platforms Embedding <i>N</i> Heterocyclic Carbene Metal Complexes for Selective Catalysis. Inorganic Chemistry, 2021, 60, 18687-18697.	1.9	3
3182	A Thermally Stable Undulated Coordination Layer Showing a Sequentially Interweaving 2D → 3D Net as a Turn-On Sensor for Luminescence Detection of Al ³⁺ in Water. Crystal Growth and Design, 2022, 22, 228-236.	1.4	8
3183	A Cobalt(II) Polymer Constructed by N,N '-Bis(3-Pyridinecarboxamide)-1,4-Benzene: Synthesis and Structural Characterization. Crystallography Reports, 2021, 66, 1286-1289.	0.1	2
3184	SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF ZINC AND CADMIUM COORDINATION POLYMERS CONSTRUCTED BY 2-PHENYLBUTANEDIOIC ACID AND BIS(4-(1H-IMIDAZOL-1-YL)PHENYL) METHANONE LIGANDS. Journal of Structural Chemistry, 2021, 62, S1-S7.	0.3	0
3186	TWO Zn(II)/Cu(II) COMPLEXES BASED ON FLEXIBLE MIXED LIGANDS: SYNTHESES, STRUCTURAL CHARACTERIZATION, AND LUMINESCENCE SENSING OF NITROBENZENE. Journal of Structural Chemistry, 2021, 62, 1955-1961.	0.3	0
3187	Luminescent Two-Dimensional Metal–Organic Framework Nanosheets with Large π-Conjugated System: Design, Synthesis, and Detection of Anti-Inflammatory Drugs and Pesticides. Inorganic Chemistry, 2022, 61, 982-991.	1.9	19
3188	Porphyrin-Based Two-Dimensional Layered Metal–Organic Framework with Sono-/Photocatalytic Activity for Water Decontamination. ACS Nano, 2022, 16, 1346-1357.	7.3	64
3189	Metalâ^'Organic Framework and Its Nanocomposites as Chemical Sensors. ACS Symposium Series, 0, , 83-124.	0.5	3
3190	Metal–organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Transactions, 2022, 51, 7775-7782.	1.6	4
3191	Supramolecular assemblies of Zn(<scp>ii</scp>) complexes with a D–π–A ligand for sensing specific organic molecules. CrystEngComm, 2022, 24, 3612-3620.	1.3	9
3192	A Zr-MOF nanoflower sensor and its mixed-matrix membrane for the highly sensitive detection of nitroaromatics. Journal of Materials Chemistry C, 2022, 10, 7469-7475.	2.7	105

#	Article	IF	CITATIONS
3193	Nickel metal–organic frameworks for visible-light CO ₂ reduction under mild reaction conditions. Dalton Transactions, 2022, 51, 7950-7956.	1.6	4
3194	Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chemical Communications, 2022, 58, 5668-5682.	2.2	7
3195	Laser driven conversion of MOFs to rare earth metal oxide nanoparticles. APL Materials, 2022, 10, .	2.2	4
3196	Supramolecular Frameworks and a Luminescent Coordination Polymer from New \hat{l}^2 -Diketone/Tetrazole Ligands. Inorganics, 2022, 10, 55.	1.2	2
3197	Unusual synthesis of nanostructured Zn-MOF by bipolar electrochemistry in ionic liquid-based electrolyte: Intrinsic alkaline phosphatase-like activity. Journal of Electroanalytical Chemistry, 2022, 914, 116306.	1.9	8
3198	2D Cd(II)-MOF of Pyridyl-Imidazoquinazoline: Structure, Luminescence, and Selective Detection of TNP and Fabrication of Semiconducting Devices. Crystal Growth and Design, 2022, 22, 3138-3147.	1.4	18
3199	Room temperature synthesis of new isoreticular 2D metal-organic frameworks of Co(II) and Ni(II) comprised of dual semiflexible neutral and anionic linkers, and their conversion to metal oxide nanomaterials. Inorganica Chimica Acta, 2022, , 120966.	1.2	0
3200	Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Research, 2022, 15, 6430-6437.	5.8	23
3201	Lanthanide-Functionalized Metalâ $^{\circ}$ Organic Framework as Ratiometric Probe for Selective Detection of 4-NA and Fe3+. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	1.9	4
3207	Sizeâ€Controllable Euâ€MOFs through Machine Learning Technology: Application for High Sensitive Ions and Smallâ€Molecular Identification. Small Methods, 2022, , 2200208.	4.6	5
3208	AIE-active polymers for explosive detection. , 2022, , 555-582.		0
3209	Design and synthesis of a push–pull arylene–vinylene terpyridyl conjugate: multifunctional behaviors exhibited by a single molecule. Materials Advances, 2022, 3, 5497-5509.	2.6	4
3210	Structural and anionic effects of microcrystalline Zn-CPs on 4-nitrophenol sensing performances. RSC Advances, 2022, 12, 12957-12966.	1.7	1
3211	Low-temperature water-assisted crystallization approach to MOF@TiO ₂ core–shell nanostructures for efficient dye removal. Inorganic Chemistry Frontiers, 2022, 9, 2725-2733.	3.0	5
3212	Formaldehyde recognition through aminal formation in a luminescent metal–organic framework. Chemical Communications, 2022, 58, 6490-6493.	2.2	3
3213	A Ni(II) Metal–Organic Framework with Mixed Carboxylate and Bipyridine Ligands for Ultrafast and Selective Sensing of Explosives and Photoelectrochemical Hydrogen Evolution. ACS Applied Materials & & & & & & & & & & & & & & & & & & &	4.0	40
3214	Adsorption and Release of 1-Methylcyclopropene by Metal–Organic Frameworks for Fruit Preservation. , 2022, 4, 1053-1057.		8
3215	Electrically Conductive Photoluminescent Porphyrin Phosphonate Metal–Organic Frameworks. Advanced Optical Materials, 2022, 10, .	3.6	8

#	Article	IF	Citations
3216	Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21330-21339.	4.0	47
3217	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	1.9	12
3218	Detection and Sorption of Heavy Metal lons in Aqueous Media by a Fluorescent Zr(IV) Metal–Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorganic Chemistry, 2022, 61, 7847-7858.	1.9	16
3219	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
3220	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metalâ€'Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0
3221	Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS Applied Nano Materials, 2022, 5, 6717-6725.	2.4	10
3222	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	1.9	44
3223	A Dihydrotetrazine-Functionalized Metal–Organic Framework as a Highly Selective Luminescent Host–Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorganic Chemistry, 2022, 61, 7820-7834.	1.9	26
3224	Sensors for Volatile Organic Compounds. ACS Nano, 2022, 16, 7080-7115.	7.3	129
3225	Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability, 2022, 14, 5768.	1.6	23
3226	Sensing and photocatalytic properties of a new 1D Zn(II)-based coordination polymer derived from the 3,5-dibromosalicylaldehyde nicotinoylhydrazone ligand. Polyhedron, 2022, 222, 115900.	1.0	12
3227	Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coordination Chemistry Reviews, 2022, 464, 214562.	9.5	76
3228	Mixed-Metal Cu-Mn iminodiacetate coordination polymer as heterogeneous catalyst for Morita-Baylis-Hillman reactions. Journal of Molecular Structure, 2022, 1263, 133133.	1.8	5
3229	Covalent organic framework modified polyacrylamide electrospun nanofiber membrane as a "turn-on― fluorescent sensor for primary aliphatic amine gas. Sensors and Actuators B: Chemical, 2022, 366, 131988.	4.0	11
3230	Lanthanide coordination polymers functionalized by 5-nitroisophthalic acid: Synthesis, structure-DFT correlation and photoluminescent sensor of Cd2+ ion. Journal of Solid State Chemistry, 2022, 312, 123229.	1.4	5
3231	A {Zn4} cluster as a bi-functional luminescence sensor for highly sensitive detection of chloride ions and histidine in aqueous media. Journal of Materials Chemistry C, 2022, 10, 8979-8993.	2.7	14
3232	Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry, 2022, 312, 123183.	1.4	1
3233	Further Develop 1,3,4-Thiadiazole Based Probe to Effectively Detect 2,4,6-Trinitrophenol with the Help of DFT Calculations. Journal of Fluorescence, 2022, 32, 1601-1610.	1.3	1

#	Article	IF	Citations
3234	Single-Chain Polymer Nanoparticles-Encapsulated Chiral Bifunctional Metal-Organic Frameworks for Asymmetric Sequential Reactions. Inorganic Chemistry Communication, 2022, , 109577.	1.8	5
3235	A General Strategy for Mofs Coupled to Optical Fiber for Highly Sensitive Humidity Sensing. SSRN Electronic Journal, 0, , .	0.4	0
3236	Fabricating defect-rich metal-organic frameworks via mixed-linker induced crystal transformation. Chemical Communications, 0, , .	2.2	3
3237	Study on the Structure Regulation and Electrochemical Properties of Imidazole Based-Mofs by Small Molecules. SSRN Electronic Journal, 0, , .	0.4	0
3238	Self-Calibrated Fret Fluorescent Probe with Metal-Organic Framework for Proportional Detection of Nitrofuran Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0
3239	Metal-Organic Frameworks-Based Sensors for the Detection of Toxins in Food: A Critical Mini-Review on the Applications and Mechanisms. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	2
3240	A New Benzimidazolium Ionâ€Based "Turn Off―Fluorescent Compound for Detection of Fe ³⁺ lon and Its Application towards Antimicrobial, Antibiofilm and Cell Imaging Study. ChemistrySelect, 2022, 7, .	0.7	1
3241	Directional Growth of Conductive Metal–Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25878-25885.	4.0	20
3242	The selective identification of nerve agent and mustard gas simulants based on the multi-functionalized luminescent platform of Tb3+@UiO-66-DPA. Microporous and Mesoporous Materials, 2022, 339, 112006.	2.2	3
3243	Azobenzene modified metal-organic framework: For solar energy storage. Journal of Energy Storage, 2022, 52, 104971.	3.9	2
3244	Metalâ^'Organic Frameworks as Sensors. ACS Symposium Series, 0, , 125-154.	0.5	1
3245	Mechanistic Advances of Metalâ^'Organic Frameworks Assisted Chemical Sensors. ACS Symposium Series, 0, , 33-70.	0.5	0
3246	Metalâ^'Organic Frameworks as Sensors of Biomolecules. ACS Symposium Series, 0, , 1-31.	0.5	4
3247	Stabilization of CO ₂ as zwitterionic carbamate within a coordination polymer (CP): synthesis, structure and anion sensing behaviour of a Tb-CP composite. CrystEngComm, 2022, 24, 5890-5899.	1.3	1
3248	Cationic metal–organic frameworks constructed from a trigonal imidazole-containing ligand for the removal of Cr ₂ O ₇ ^{2â^'} in water. New Journal of Chemistry, 0, , .	1.4	3
3249	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
3250	Multi-responsive luminescent coordination polymer nanosheets for selective detection of nitroaromatics. Chemical Communications, 2022, 58, 7809-7812.	2.2	8
3251	Cooperative catalysis in a metal–organic framework <i>via</i> post-synthetic immobilisation. Dalton Transactions, 2022, 51, 9229-9232.	1.6	3

#	Article	IF	CITATIONS
3252	The impact of MOFs in pH-dependent drug delivery systems: progress in the last decade. Dalton Transactions, 2022, 51, 9950-9965.	1.6	15
3253	Building an emission library of donor–acceptor–donor type linker-based luminescent metal–organic frameworks. Chemical Science, 2022, 13, 8036-8044.	3.7	15
3254	Recent development of the fluorescence-based detection of volatile organic compounds: a mechanistic overview. Journal of Materials Chemistry C, 2022, 10, 10224-10254.	2.7	23
3255	2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorganic Chemistry Frontiers, 2022, 9, 4850-4863.	3.0	7
3256	A cucurbit[6]uril based supramolecular assembly for the detection and removal of dyes and antibiotics from water. Analytical Methods, 2022, 14, 2642-2648.	1.3	4
3257	A Cu(II)-based coordination polymer: catalytic properties and treatment activity on stroke. Designed Monomers and Polymers, 2022, 25, 148-154.	0.7	1
3258	Progress in the Application of MOFs in the Field of Atmospheric Environment. Key Engineering Materials, 0, 922, 237-247.	0.4	0
3259	A luminescence coordination polymer for long-term monitoring of antibiotic aztreonam in aqueous media. Dyes and Pigments, 2022, 205, 110513.	2.0	2
3260	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
3261	Syntheses, crystal structures, and properties of Zn(II), Cd(II), and Co(II) complexes based on 2-methyl-4-chlorophenoxyacetic acid and various N-donor ligands. Molecular Crystals and Liquid Crystals, 2022, 736, 39-55.	0.4	1
3262	Zirconium Metal Organic Framework-Based Hybrid Sensors with Chiral and Luminescent Centers Fabricated by Postsynthetic Modification for the Detection and Recognition of Tryptophan Enantiomers. Inorganic Chemistry, 2022, 61, 9615-9622.	1.9	22
3263	Enhanced Aggregation-Induced Emission Activity of Metal–Organic Frameworks by Using Machine Learning Technology. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	0
3264	Local Coordination and Electronic Structure Ramifications of Guest-Dependent Spin Crossover in a Metal–Organic Framework: A Combined X-ray Absorption and Emission Spectroscopy Study. Inorganic Chemistry, 2022, 61, 9213-9223.	1.9	1
3265	Metal-organic frameworks marry carbon: Booster for electrochemical energy storage. Journal of Energy Storage, 2022, 53, 105104.	3.9	12
3266	Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere, 2022, 304, 135261.	4.2	34
3267	Fabrication of red-emissive ZIF-8@QDs nanoprobe with improved fluorescence based on assembly strategy for enhanced biosensing. Sensors and Actuators B: Chemical, 2022, 368, 132188.	4.0	9
3268	Single mode for luminescence responsive chemical sensing in rare earth metal-organic framework hybrid materials., 2022,, 75-110.		0
3269	Summary and prospects. , 2022, , 503-518.		0

#	Article	IF	CITATIONS
3270	Nanotechnology-based therapies for skin wound regeneration. , 2022, , 485-530.		2
3271	Rare earth luminescence, MOFs luminescence, rare earth MOFs hybrid materials luminescence, luminescence response, and chemical sensing., 2022,, 41-71.		0
3272	2d Lanthanide Coordination Polymers as Multi-Responsive Luminescence Sensors for Selective and Sensitive Recognition of Cr(Vi)/Mno4â \in " Anions and Broad-Spectrum Detection of Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0
3273	Influence of reaction temperature and stoichiometry on the coordination mode of a multidentate pyridylpyrazole ligand in Co(<scp>ii</scp>) complexes: from a OD mononuclear structure to 3D frameworks. CrystEngComm, 2022, 24, 5410-5420.	1.3	1
3274	New Luminescent Cd(II) Coordination Polymer and Its Protective Activity on Alzheimer's Disease. Science of Advanced Materials, 2022, 14, 505-511.	0.1	1
3275	Regulating Structures of Two Co(II)-Based Coordination Polymers: Application Value in Sepsis Therapy by Inhibiting Inflammatory Response. Science of Advanced Materials, 2022, 14, 587-594.	0.1	3
3276	Phosphorescent Iridium Molecular Materials as Chemosensors for Nitroaromatic Explosives: Recent Advances. Comments on Inorganic Chemistry, 2023, 43, 34-65.	3.0	1
3277	Two Eu ³⁺ Based Complexes Containing Uncoordinated Lewis Basic Pyridyl Sites and Chemical Sensing of 4-Nitrophenol and Fe ³⁺ ions. Crystal Growth and Design, 2022, 22, 4874-4884.	1.4	18
3278	Ancillary ligand-assisted self-assembly of a pyrenylpyridine with Zn(II), Cu(II), Ni(II), and Co(II): syntheses, structural characterization, and photoluminescence properties. Journal of Molecular Structure, 2022, , 133671.	1.8	0
3279	Structures and Photoluminescence Properties of Bis(aromatic amino)â€Based Isomers with Biphenyl as Bridge. ChemistrySelect, 2022, 7, .	0.7	0
3280	Angular shaped AIE generator based luminophores for mechanochromism: An explosive sensor. Materials Today Communications, 2022, 32, 104050.	0.9	0
3281	Luminescent Coordination Polymer with Its Multistimuli-Responsive Sensitivity Enabled and Boosted by Its Dual Emission. Crystal Growth and Design, 2022, 22, 4845-4853.	1.4	3
3282	Anisotropic Band-Edge Absorption of Millimeter-Sized Zn(3-ptz) < sub > 2 < / sub > 5 Single-Crystal Metal†Organic Frameworks. ACS Omega, 2022, 7, 24432-24437.	1.6	3
3283	Oxacalix[4]arene based dual-signalling fluorimetric and electrochemical chemosensor for the selective detection of nitroaromatic compounds. Journal of Molecular Liquids, 2022, 362, 119791.	2.3	4
3284	The role of phosphotungstic acid in enhancing the catalytic performance of UiO-66 (Zr) and its applications as an efficient solid acid catalyst for coumarins and dihydropyrimidinones synthesis. Catalysis Communications, 2022, 169, 106479.	1.6	31
3285	Multi-responsive luminescent sensitivities of two pillared-layer frameworks towards nitroaromatics, Cr2O72â^', MnO4â^' and PO43â^' anions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121491.	2.0	2
3286	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	9.5	16
3287	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	9.5	11

#	Article	IF	CITATIONS
3288	Thermochromic Phosphors Based on Oneâ€Dimensional Ionic Copperâ€odine Chains Showing Solidâ€State Photoluminescence Efficiency Exceeding 99 %. Angewandte Chemie, 2022, 134, .	1.6	2
3289	New Carboxylate Anionic Sm-MOF: Synthesis, Structure and Effect of the Isomorphic Substitution of Sm3+ with Gd3+ and Tb3+ Ions on the Luminescent Properties. Inorganics, 2022, 10, 104.	1.2	8
3290	pH-Stable Luminescent Metal–Organic Frameworks for the Selective Detection of Aqueous-Phase Fe ^{III} and Cr ^{VI} lons. Inorganic Chemistry, 2022, 61, 12396-12405.	1.9	41
3291	Optimization of Eu ³⁺ -to-Host Emission Ratio in Double-Perovskite Molybdenites for Highly Sensitive Temperature Sensors. Journal of Physical Chemistry C, 0, , .	1.5	5
3292	Solvothermally synthesized pyrazoledicarboxylate incorporated Fe(II) MOF: Design, characterization, Hirshfeld studies, and mechanistic insight into fluorescent detection of mutagenic adulterant 2,4,6-trinitrophenol. Inorganic Chemistry Communication, 2022, 143, 109810.	1.8	5
3293	An unusual F-bridged dual-trinuclear Mg–organic framework as a luminescent thermometer for highly efficient low-temperature detection. CrystEngComm, 2022, 24, 6141-6145.	1.3	1
3294	Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes. Journal of Environmental Chemical Engineering, 2022, 10, 108469.	3.3	3
3295	Screening of specific aptamers against chlorpromazine and construction of novel ratiometric fluorescent aptasensor based on metal-organic framework. Talanta, 2023, 252, 123850.	2.9	10
3296	Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron, 2022, 226, 116095.	1.0	8
3297	New Oxoquinolineâ€lmidazole Based Fluorescence Signaling Switches for the Determination of Zn ²⁺ /F ^{â^'} (OFFâ€ON), and Fe ³⁺ /Picric Acid (ONâ€OFF): Applications in Anticancer Activity. ChemistrySelect, 2022, 7, .	0.7	0
3298	Precise Introduction of Single Vanadium Site into Indium–Organic Framework for CO ₂ Capture and Photocatalytic Fixation. Inorganic Chemistry, 2022, 61, 14131-14139.	1.9	13
3299	Two zinc and cadmium coordination polymers constructed with bis $(4-(1-imidazol-1-yl)$ phenyl) methanone and naphthalene-1,4-dicarboxylate ligands: synthesis and structural characterization. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022.	0.3	0
3300	Detection of Toxic Polychlorinated Biphenyls by Nanoporous Metal–Organic Frameworks. ACS Applied Nano Materials, 2022, 5, 11656-11664.	2.4	13
3301	One Luminescent Cadmium Iodide with Free Bifunctional Azole Sites as a Triple Sensor for Cu ²⁺ , Fe ³⁺ , and Cr ₂ O ₇ ^{2–} lons. Inorganic Chemistry, 2022, 61, 14156-14163.	1.9	9
3302	Adsorption performance of sulfonamide-modified metal–organic frameworks (MOFs) for Co(II) in aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 3965-3977.	0.7	3
3303	Thermochromic Phosphors Based on Oneâ€Dimensional Ionic Copperâ€odine Chains Showing Solidâ€State Photoluminescence Efficiency Exceeding 99â€‱%. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
3304	Biomimetic Assembly of Spore@ZIFâ€8 Microspheres for Vaccination. Small, 2022, 18, .	5.2	9
3305	Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor. Analytical Chemistry, 2022, 94, 11151-11158.	3.2	11

#	Article	IF	CITATIONS
3306	A Zinc(II) MOF for recognition of nitroaromatic explosive and Cr(III) ion. Journal of Solid State Chemistry, 2022, 315, 123482.	1.4	10
3307	Dual-responsive luminescent sensitivities of a 3D Co-CP with turn-on and ratiometric sensing toward ascorbic acid and turn-off detecting acetylacetone. Journal of Solid State Chemistry, 2022, 315, 123463.	1.4	4
3308	Self-calibrated FRET fluorescent probe with Metal-organic framework for proportional detection of nitrofuran antibiotics. Polyhedron, 2022, 226, 116080.	1.0	6
3309	Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. Chemosphere, 2022, 307, 135999.	4.2	2
3310	A water-stable zwitterionic Zn(II) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk. Polyhedron, 2022, 226, 116092.	1.0	11
3311	2D lanthanide coordination polymers as multi-responsive luminescence sensors for selective and sensitive recognition of $Cr(VI)/MnO4\hat{a}^{\alpha}$ anions and broad-spectrum detection of antibiotics. Journal of Solid State Chemistry, 2022, 315, 123442.	1.4	2
3312	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24
3313	Computational study of Pd–Cd bimetallic crystals: Spectroscopic properties, hirshfeld surface analysis, non-covalent interaction, and sensor activity. Journal of Molecular Liquids, 2022, 365, 120111.	2.3	23
3314	Metal-organic frameworks constructed from tetradentate carboxylic acids: Structural diversity, Fluorescence (Fe3+ detection) and Dye adsorption properties. Journal of Molecular Structure, 2022, 1270, 133925.	1.8	3
3315	"Caught in the Act―@ disruption of A-ET-E process in the recognition of F∹ by a lamellar EullI-MOF in heterogeneous manner with logic gate construction: From protagonist idea to implementation world. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 283, 121764.	2.0	3
3316	A stable turn-off fluorescence sensor for nitroaromatic explosives and Fe3+ detection based on a 3D strontium coordination polymer. Journal of Molecular Structure, 2022, 1270, 133944.	1.8	5
3317	Hierarchical-pore UiO-66-NH2 xerogel with turned mesopore size for highly efficient organic pollutants removal. Journal of Colloid and Interface Science, 2022, 628, 705-716.	5.0	14
3318	Multi-functionalization strategy for environmental monitoring: A metal-organic framework for high capacity Mercury(II) removal and exceptionally sensitive detection of nitroaromatics. Journal of Cleaner Production, 2022, 376, 134301.	4.6	4
3319	Study on the structure regulation and electrochemical properties of imidazole-based MOFs by small molecules. Journal of Solid State Chemistry, 2022, 316, 123528.	1.4	0
3320	Highly effective detection of picric acid by a Ca(II)-Framework with adjustable crystal morphology and size. Journal of Solid State Chemistry, 2022, 316, 123561.	1.4	1
3321	Water-Stable Cd-MOF with fluorescent sensing of Tetracycline, Pyrimethanil, abamectin benzoate and construction of logic gate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121894.	2.0	5
3322	Influence of counter ions on supramolecular structures of copper(II) complexes derived from 1,8-naphthalimide tecton. Journal of Molecular Structure, 2023, 1271, 134086.	1.8	3
3323	Electrospun nanofiber sheets mixed with a novel triphenylamine-pyrenyl salicylic acid fluorophore for the selective detection of picric acid. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114258.	2.0	8

#	Article	IF	CITATIONS
3324	UiO-66-NH ₂ based fluorescent sensing for detection of tetracyclines in milk. RSC Advances, 2022, 12, 23427-23436.	1.7	11
3325	Luminescence Sensing and Electrocatalytic Hydrogen Evolution Performance of an Untrastable Tetranuclear Cadmium(li) Coordination Polymer. SSRN Electronic Journal, 0, , .	0.4	0
3326	Metal-cyanido molecular modulators of the sensing range and performance in lanthanide-based luminescent thermometers. Journal of Materials Chemistry C, 2022, 10, 12054-12069.	2.7	6
3327	A Cu-functionalized MOF and multi-walled carbon nanotube composite modified electrode for the simultaneous determination of hydroquinone and catechol. Analytical Methods, 2022, 14, 3961-3969.	1.3	9
3328	Facile supramolecular strategy to construct solid fluorophore@metal–organic framework composites. Materials Advances, 2022, 3, 6597-6608.	2.6	0
3329	A metal complex based fluorescent chemodosimeter for selective detection of 2,4-dinitrophenol and picric acid in aqueous media. Dalton Transactions, 2022, 51, 14700-14711.	1.6	2
3330	Photocatalytic reduction of low-concentration CO ₂ by metal–organic frameworks. Chemical Communications, 2022, 58, 10114-10126.	2.2	11
3331	Structures, fluorescence and magnetism of a series of coordination polymers driven by a tricarboxypyridine ligand. CrystEngComm, 2022, 24, 6751-6761.	1.3	1
3332	Highly Effective Detection of Picric Acid by a Ca(li)-Framework with Adjustable Crystal Morphology and Size. SSRN Electronic Journal, 0, , .	0.4	0
3333	Amino group induced structural diversity and near-infrared emission of yttrium-tetracarboxylate frameworks. Chemical Science, 2022, 13, 9321-9328.	3.7	16
3334	Luminescent MOFs (LMOFs): recent advancement towards a greener WLED technology. Chemical Communications, 2022, 58, 10768-10788.	2.2	20
3335	Synthesis of Photoluminescentcomposite Based on Graphene Quantum Dot@Zif-11: A Novel Sensor for Extremely Efficient Nano-Molar Detection of Cn SSRN Electronic Journal, 0, , .	0.4	0
3336	Rational synthesis of a pyridyl-imidazoquinazoline based multifunctional 3D Zn(<scp>ii</scp>)-MOF: structure, luminescence, selective and sensitive detection of Al ³⁺ and TNP, and its semiconducting device application. Dalton Transactions, 2022, 51, 13749-13761.	1.6	11
3337	An Efficient, Multiplexed Strategy for Instant Detection of Bacterial Biomarker by a Lanthanide–Organic Material. Inorganic Chemistry, 2022, 61, 14313-14321.	1.9	11
3338	PAN/PEI Nanofiber Membrane for Effective Removal of Heavy Metal Ions and Oil–Water Separation. Journal of Polymers and the Environment, 2022, 30, 4835-4847.	2.4	3
3339	Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 312-324.	0.8	0
3340	Highly Luminescent Metal–Organic Frameworks Based on Binary Chromophoric Ligands Derived from Tetraphenylethylene. Crystal Growth and Design, 2022, 22, 5791-5795.	1.4	4
3341	Dual Emission in the Near-Infrared and Visible Regions from a Mixed Cyanido-Bridged Eu ^{III} /Nd ^{III} (4-OHpy)-Co ^{III} Layered Material. Inorganic Chemistry, 0, , .	1.9	1

#	Article	IF	CITATIONS
3342	RhB-Embedded Zirconium–Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO ₄ ^{2–} , Cr ₂ O ₇ ^{2–} , and MO. Inorganic Chemistry, 2022, 61, 15213-15224.	1.9	18
3343	Demonstration of High-Throughput Building Block and Composition Analysis of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 4672-4679.	2.5	3
3345	Recent Advances in Luminescent Hydrogenâ€Bonded Organic Frameworks: Structures, Photophysical Properties, Applications. Advanced Functional Materials, 2022, 32, .	7.8	43
3346	Fe ₃ O ₄ @Glutamate MOF Functionalized with Co Nanoparticles Anchored Dicyandiamde: as a Capable Heterogeneous and Reusable Nanocatalyst in Câ€P Crossâ€Coupling Reaction. Applied Organometallic Chemistry, 0, , .	1.7	0
3347	Unique Fluorescence Turn-On and Turn-Off–On Responses to Acids by a Carbazole-Based Metal–Organic Framework and Theoretical Studies. Journal of the American Chemical Society, 2022, 144, 17054-17063.	6.6	36
3348	Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 42656-42670.	4.0	9
3349	Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents. ACS Applied Materials & Distriction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents.	4.0	10
3350	Co- and Ni-Based Electroactive Metal–Organic Frameworks for Stable Lithium Storage: Electrochemical and Charge-Storage Behavior in Response to Different Metal Centers. Crystal Growth and Design, 2022, 22, 5872-5882.	1.4	4
3351	Hierarchical Metal–Organic Aerogel as a Highly Selective and Sustainable CO ₂ Adsorbent. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46682-46694.	4.0	0
3352	Luminescence sensing and electrocatslytic redox performances of a new stable Cadmium(II) coordination polymer. Journal of Solid State Chemistry, 2023, 317, 123649.	1.4	4
3353	LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products. LWT - Food Science and Technology, 2022, 169, 114030.	2.5	6
3354	Structures, luminescent properties, and volatile iodine detection of Zn(II) based zigzag coordination chains. Journal of Solid State Chemistry, 2022, 316, 123612.	1.4	1
3356	Dual-Ligand Strategy Employing Rigid 2,5-Thiophenedicarboxylate and 1,10-Phenanthroline as Coligands for Solvothermal Synthesis of Eight Lanthanide(III) Coordination Polymers: Structural Diversity, DFT Study, and Exploration of the Luminescent Tb(III) Coordination Polymer as an Efficient Chemical Sensor for Nitroaromatic Compounds. ACS Omega, 2022, 7, 41370-41391.	1.6	9
3357	Polymeric Emissive Materials Based on Dynamic Covalent Bonds. Molecules, 2022, 27, 6635.	1.7	3
3358	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
3359	Electrically regulating nonlinear optical limiting of metal-organic framework film. Nature Communications, 2022, 13, .	5.8	42
3360	Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum lons. Biosensors, 2022, 12, 935.	2.3	3
3361	Advancement and future challenges of metal–organic coordination polymers: A case study of optical sensor for the detection of the environmental contaminants. Applied Organometallic Chemistry, 2023, 37, .	1.7	6

#	Article	IF	CITATIONS
3362	Photostability of luminophores sensitive to vapors of nitroaromatic compounds in a porous silicon microcavity. , 2022, , .		0
3363	A new heteroleptic cuprous polymer constructed by a cyanopyridine ligand exhibiting a supramolecular framework structure and luminescence. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 685-692.	0.2	0
3364	Graphene Quantum Dot Bearing Liquid Droplets for Ultrasensitive Fluorescence-Based Detection of Nitroaromatics. ACS Applied Nano Materials, 2022, 5, 14639-14645.	2.4	1
3365	Recent Advances in Metal-Organic Frameworks for Biomacromolecule Sensing. Chemosensors, 2022, 10, 412.	1.8	2
3366	Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support. Langmuir, 2022, 38, 13382-13391.	1.6	10
3367	Toward Ideal Metal–Organic Framework Thin-Film Growth via Automated Layer-by-Layer Deposition: Examples Based on Perylene Diimide Linkers. Chemistry of Materials, 2022, 34, 9446-9454.	3.2	8
3368	Tough lanthanide luminescent hydrogel for nitroaromatics detection. Journal of Rare Earths, 2024, 42, 293-302.	2.5	4
3369	Transforming an Insulating Metal–Organic Framework (MOF) into Semiconducting MOF/Gold Nanoparticle (AuNP) and MOF/Polymer/AuNP Composites to Gain Electrical Conductivity. ACS Applied Nano Materials, 2022, 5, 13912-13920.	2.4	16
3370	Limitation of room temperature phosphorescence efficiency in metal organic frameworks due to triplet-triplet annihilation. Frontiers in Chemistry, 0, 10 , .	1.8	1
3371	Recent Advances of Anticancer Studies Based on Nanoâ€Fluorescent Metalâ€Organic Frameworks. ChemMedChem, 0, , .	1.6	1
3372	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
3373	Synthesis, characterization and crystal structure of two nickel-based metal-organic frameworks with electrocatalytic activity. Journal of Coordination Chemistry, 0 , , 1 - 10 .	0.8	0
3374	Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal, 2023, 454, 140093.	6.6	8
3375	A new fluorescent probe constructed by europium(III)-organic framework (Eu-MOF) for detecting Cu2+ selectively and sensitively. Journal of Molecular Structure, 2023, 1274, 134460.	1.8	3
3376	Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. Journal of Environmental Chemical Engineering, 2022, 10, 108836.	3.3	23
3377	Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communication, 2022, 146, 110038.	1.8	6
3378	Mechanochemical synthesis and theoretical investigations of Fe (II) based MOF containing 4,4′-bipyridine with ordained intercalated p-aminobenzoic acid: Application as fluoroprobe for detection of carbonyl group. Inorganica Chimica Acta, 2023, 545, 121248.	1,2	8
3379	Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coordination Chemistry Reviews, 2023, 474, 214859.	9.5	45

#	Article	IF	CITATIONS
3380	MOFs meet electrospinning: New opportunities for water treatment. Chemical Engineering Journal, 2023, 453, 139669.	6.6	30
3381	Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	3.4	27
3382	Stable metal–organic frameworks modulated by doping Tb ³⁺ for multi-hazard detection and capture. Molecular Systems Design and Engineering, 2023, 8, 341-348.	1.7	1
3383	A photofunctional platform of bis-terpyridine ruthenium complex-linked coordination polymers with structural diversity. Journal of Materials Chemistry A, 2022, 10, 25063-25069.	5.2	2
3384	Improvement of the fluorescent sensing biomarker 3-nitrotyrosine for a new luminescent coordination polymer by size regulation. CrystEngComm, 2022, 24, 8286-8293.	1.3	5
3385	Effect of temperature on metal-organic frameworks chemical sensors detection properties. Microchemical Journal, 2023, 184, 108156.	2.3	4
3386	Zirconium-based metal-organic frameworks for fluorescent sensing. Coordination Chemistry Reviews, 2023, 476, 214930.	9.5	63
3387	Detection of anthrax biomarker and metallic ions in aqueous media using spherical-shaped lanthanide infinite coordination polymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 122033.	2.0	5
3388	Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. Journal of Hazardous Materials, 2023, 444, 130422.	6.5	4
3389	Guest Molecules with Amino and Sulfhydryl Groups Enhance Photoluminescence by Reducing the Intermolecular Ligand-To-Metal Charge Transfer Process of Metal–Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 11467.	1.3	0
3390	Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3999.	1.9	0
3391	Proton conduction and electrochemical glucose sensing property of a newly constructed Cu(II) coordination polymer. Journal of Molecular Structure, 2023, 1274, 134550.	1.8	2
3392	Lanthanide(III) lons and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. Nanomaterials, 2022, 12, 3977.	1.9	2
3394	Metalâ€Organic Frameworks for Catalytic Construction of Câ^'B Bond and Related Reactions. ChemCatChem, 2023, 15, .	1.8	4
3395	Lanthanide(III)-Modified MIL-125(Ti-Ln) (Ln = Eu or Tb) for the Detection of Cu(II) and Fe(III) Ions. Crystal Growth and Design, 2022, 22, 6960-6966.	1.4	3
3396	Hydration-Facilitated Coordination Tuning of Metal–Organic Frameworks toward Water-Responsive Fluorescence and Proton Conduction. Inorganic Chemistry, 2022, 61, 18789-18794.	1.9	4
3397	Adapting UFF4MOF for Heterometallic Rare-Earth Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 54101-54110.	4.0	4
3398	Porous metal–organic framework nanoscale carriers as a potential platform for drug delivery. , 2023, , 153-176.		0

#	Article	IF	CITATIONS
3399	New enzymatic reactor designs: From enzymatic batch to 3D microreactors and monoliths. , 2023, , 291-315.		0
3400	From two-dimensional networks to three-dimensional metal–organic frameworks mediated by solvent ratio: luminescence and gas adsorption properties. CrystEngComm, 2023, 25, 683-689.	1.3	2
3401	Sky Blue and Yellow Cluster Light-Emitting Diodes Based on Asymmetric Cu ₄ I ₄ Nanocubes. Research, 2022, 2022, .	2.8	3
3402	Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence. Polymer, 2023, 265, 125577.	1.8	5
3403	Equipping carbon dots in a defect-containing MOF <i>via</i> self-carbonization for explosive sensing. Journal of Materials Chemistry C, 2022, 11, 321-328.	2.7	8
3404	Disentangling the complex photodynamics of mixed-linker Zr-MOFs – efficient energy and charge transfer processes. Journal of Materials Chemistry C, 2022, 11, 183-195.	2.7	1
3405	Selective and ultrafast sensing of 2,4,6-trinitrophenol - A nitro-explosive and mutagenic pollutant - In aqueous media by highly stable and recyclable metal-organic probes: Design principles and mechanistic studies. Dyes and Pigments, 2023, 210, 111025.	2.0	1
3406	Recent progress on the remediation of metronidazole antibiotic as emerging contaminant from water environments using sustainable adsorbents: A review. Journal of Water Process Engineering, 2023, 51, 103405.	2.6	15
3407	Cadmium-Based coordination polymers (CPs) constructed from two different V-Shaped dicarboxylate Ligands: Synthesis, structure and dielectric properties. Inorganic Chemistry Communication, 2023, 148, 110280.	1.8	3
3408	Metal–organic frameworks incorporating azobenzene-based ligands as a heterogeneous Lewis-acid catalyst for cyanosilylation of imines. RSC Advances, 2022, 12, 35461-35468.	1.7	1
3409	N-Heterocyclic Carbene Silver Complex Modified Polyacrylonitrile Fiber/MIL-101(Cr) Composite as Efficient Chiral Catalyst for Three-Component Coupling Reaction. Nanomaterials, 2022, 12, 4175.	1.9	1
3410	Anisotropically Hybridized Porous Crystalline Li‧ Battery Separators. Small, 2023, 19, .	5.2	13
3411	Metal–Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics, 2022, 14, 2641.	2.0	5
3412	Hierarchically Structured CA@ZIF-8 Biohybrids for Carbon Dioxide Mineralization. Applied Biochemistry and Biotechnology, 0, , .	1.4	1
3413	Lanthanide-Anderson Polyoxometalates Frameworks: Efficient Sulfide Photooxidation. Inorganic Chemistry, 2022, 61, 20080-20086.	1.9	11
3414	Advances in enrichment and separation of & amp; lt; litalic& lt; litalic& lt; litalic& lt; litalic& gt; diol-containing compounds by porous organic frameworks. Chinese Journal of Chromatography (Se Pu), 2022, 40, 966-978.	0.1	1
3415	A Highly Efficient Fluorescent Sensor Based on AlEgen for Detection of Nitrophenolic Explosives. Molecules, 2023, 28, 181.	1.7	5
3416	Synthesis of 4-methylthiophenyl silicon phthalocyanines axially substituted with carboxylic acids for MOF materials. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0

#	Article	IF	CITATIONS
3417	A Multimodal Study on the Unique Sensing Behavior of a Guest@Metalâ€Organic Framework Material for the Detection of Volatile Acetone. Advanced Materials Interfaces, 2023, 10, .	1.9	3
3418	Coordination Compounds of Lanthanides as Materials for Luminescent Turn Off Sensors. , 0, , .		O
3419	MOF-Based Materials with Sensing Potential: Pyrrolidine-Fused Chlorin at UiO-66(Hf) for Enhanced NO2 Detection. Chemosensors, 2022, 10, 511.	1.8	0
3420	Tuning Energy Transfer in <scp>Metalâ€Organic</scp> Frameworks for Fluorescence Turnâ€on Sensing of Hg(<scp>II</scp>) lons ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1051-1056.	2.6	4
3421	A novel spectroscopic technique for studying metal–organic frameworks based on Mie scattering. Analytical and Bioanalytical Chemistry, 2023, 415, 1313-1320.	1.9	1
3422	Recent Advances in Luminescent Metal-Organic Frameworks for Detection of Gas and Volatile Organic Molecules. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	0
3423	A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 446-473.	2.4	35
3424	Two Calcium Coordination Polymers with Multiâ€Stimuliâ€Responsive Properties. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	1
3425	Porous framework materials for energy & Description among the relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
3426	A Robust Strontium Coordination Polymer with Selective and Sensitive Fluorescence Sensing Ability for Fe3+ Ions. Materials, 2023, 16, 577.	1.3	1
3427	Facile Synthesis of Silver-Doped Copper Selenide Composite for Enhanced Electrochemical Detection of Ecological Toxic Nitrobenzene. Electrocatalysis, 2023, 14, 448-462.	1.5	3
3428	Topological control of metal–organic frameworks toward highly sensitive and selective detection of chromate and dichromate. Inorganic Chemistry Frontiers, 2023, 10, 1721-1730.	3.0	14
3429	Water stable MOFs as emerging class of porous materials for potential environmental applications. Chemosphere, 2023, 313, 137607.	4.2	18
3430	Two isostructural Ln-MOFs containing triazole groups as luminescent probes for efficient sensing of NACs and Fe3+. Inorganica Chimica Acta, 2023, 547, 121376.	1.2	6
3431	Bovine serum albumin-derived poly-l-glutamic acid-functionalized graphene quantum dots embedded UiO-66-NH2 MOFs as a fluorescence †On-Off-On†magic gate for para-aminohippuric acid sensing. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114532.	2.0	5
3432	Adsorptive removal of Uranium (VI) using zeolitic imidazole framework (ZIF)-67 from alkaline leach liquor. Separation and Purification Technology, 2023, 310, 123137.	3.9	16
3433	Samarium-Based Turn-Off Fluorescence Sensor for Sensitive and Selective Detection of Quinolinic Acid in Human Urine and Serum. Inorganic Chemistry, 2023, 62, 1007-1017.	1.9	5
3434	Metal–Organic-Framework-Based Chemosensor for Ultrafast and Ultrasensitive Detection of Pd ²⁺ Ions in Water, Real Specimens, and Test Strips. Inorganic Chemistry, 2023, 62, 802-809.	1.9	13

#	Article	IF	CITATIONS
3435	From isostructural to hetero-structural one-dimensional coordination polymers adjusted by changing the ligand substituent group from pyrazine to furan. Journal of Coordination Chemistry, 2023, 76, 279-291.	0.8	0
3436	Nano-inks in security and defense applications. , 2023, , 623-657.		0
3437	MOF mixed matrix membranes for syngas purification. , 2023, , 307-323.		0
3438	Supernano Crystals Boost the Initial Coulombic Efficiency and Capacity of Copper Benzene-1,3,5-Tricarboxylate for Li-lon Batteries. Energy & Samp; Fuels, 2023, 37, 3134-3141.	2.5	4
3439	Institution of Metal–Organic Frameworks as a Highly Sensitive and Selective Layer In-Field Integrated Soil-Moisture Capacitive Sensor. ACS Applied Materials & Soil-Moisture Capacitive Sensor.	4.0	9
3440	Fluorescent waterâ€stable Zn (II) coordination polymers for selective aqueous detection of nitrophenols. Applied Organometallic Chemistry, 2023, 37, .	1.7	1
3441	A <i>de novo</i> strategy for the development of a Zn ^{ll} â€"organic framework based luminescent "switch-on―assay for size-exclusive sensitization of the oxidised form of glutathione (GSSG) over the reduced form (GSH): insights into the sensing mechanism through DFT. CrystEngComm, 2023, 25, 1626-1636.	1.3	8
3442	Co-Co ₉ S ₈ -NC particles anchored on 3D hyperfine carbon nanofiber networks with a hierarchical structure as a catalyst promoting polysulfide conversion for lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 5212-5221.	5.2	8
3443	MOFs-based advanced materials for gaseous adsorption: Sustainable environmental remediation. , 2023, , 185-205.		0
3444	High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity. Npj Computational Materials, 2023, 9, .	3.5	18
3445	Post Engineering of a Chemically Stable MOF for Selective and Sensitive Sensing of Nitric Oxide. Molecular Systems Design and Engineering, 0, , .	1.7	2
3446	Dual-Emission 2D Blue Luminescent Organic Silver Chalcogenide for Highly Selective Pb ²⁺ Detection in an Aqueous Medium. Inorganic Chemistry, 2023, 62, 2334-2341.	1.9	0
3447	An imidazole based luminescent Zn (II) metal–organic framework for sensing of nitroaromatic explosives. Inorganica Chimica Acta, 2023, 549, 121409.	1.2	4
3448	A functional cobalt-organic framework constructed by triphenylamine tricarboxylate: Detect nitroaromatics by fluorescence sensing and UV-shielding. Talanta, 2023, 256, 124319.	2.9	2
3449	Selective and efficient detection of Pb ²⁺ in aqueous solution by lanthanoid-organic frameworks bearing pyridine-3,4-dicarboxylic acid and glutaric acid. CrystEngComm, 2023, 25, 2418-2440.	1.3	2
3450	Metal–Organic Dimerization of Dissymmetrical Ligands toward Customized Through-Space Chromophore Interactions. Chemistry of Materials, 2023, 35, 1788-1795.	3.2	2
3451	An Unusual Double-Chelated HATNA-Based Metal-Organic Framework as Highly Efficient Ornidazole Sensor. Journal of Cluster Science, 2023, 34, 2891-2899.	1.7	1
3452	Multifunctional Metal–Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. Journal of Agricultural and Food Chemistry, 0, , .	2.4	6

#	Article	IF	CITATIONS
3453	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
3454	Fiber SPR biosensor sensitized by MOFs for MUC1 protein detection. Talanta, 2023, 258, 124467.	2.9	6
3455	Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks. Sensors and Actuators B: Chemical, 2023, 384, 133665.	4.0	16
3456	Synthesis of photoluminescent composite based on graphene quantum dot@ZIF-11: A novel sensor for extremely efficient nano-molar detection of CN–. Microchemical Journal, 2023, 189, 108494.	2.3	2
3457	Hydrolytically stabilized 5-hydroxyisophthalate appended Tb-MOF as a twofold chemosensor for discerning detection of 2,4,6-trinitrophenol and ferric ion: Structural, topological and mechanistic sensing exploration via experimental and computational studies. Inorganica Chimica Acta, 2023, 552, 121488.	1.2	1
3458	Efficient removal and sensing of copper(II) ions by alkaline earth metal-based metal–organic frameworks. Journal of Solid State Chemistry, 2023, 322, 123936.	1.4	2
3459	TbMOF@Au catalytic determination of trace malathion with aptamer SERS/RRS/Abs assay. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122581.	2.0	2
3460	MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. Environmental Research, 2023, 226, 115664.	3.7	11
3461	A novel Dylll-based metal-organic framework as the multi-responsive luminescent sensor for acetylacetone and salicylaldehyde. Journal of Solid State Chemistry, 2023, 323, 124045.	1.4	1
3462	An insight into the controllable synthesis of Cd(II) coordination polymers with packing-assistant luminescent property. Polyhedron, 2023, 239, 116428.	1.0	1
3463	A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchemical Journal, 2023, 190, 108606.	2.3	11
3464	A pyrazole-functional 3D cobalt-organic framework for fluorescence detection of Cu2+ and Hg2+. Journal of Molecular Structure, 2023, 1284, 135456.	1.8	3
3465	Tetraphenylethylene Based Fluorescent Chemosensor for the Selective Detection of Explosive Nitroaromatic Compounds. ChemistrySelect, 2023, 8, .	0.7	4
3466	Copper(II) and zinc(II) complexes bridged by benzenoid aromatic oxocarbon and dicarboxylate dianions. Polyhedron, 2023, 234, 116327.	1.0	1
3467	Multicomponent Anti-Kasha's Rule Emission from Nanotubular Metal–Organic Frameworks for Selective Detection of Small Molecules. Inorganic Chemistry, 2023, 62, 3170-3177.	1.9	5
3468	Metalâ€Organic Frameworkâ€Based Colloidal Particle Synthesis, Assembly, and Application. ChemPlusChem, 2023, 88, .	1.3	2
3469	Dimensional expansion of 1D zigzag chains to a 2D two-fold interpenetrated metal–organic framework for adsorption of lanthanide cations and white light emission. CrystEngComm, 2023, 25, 1637-1642.	1.3	0
3470	Multicolor Fluorescent Leadâ€MOFs for Whiteâ€Lightâ€Emitting and Anticounterfeiting Applications. Advanced Optical Materials, 2023, 11, .	3.6	6

#	Article	IF	CITATIONS
3471	Metal Organic Frameworks of ANA Topology as an Effective Adsorbent for Co(II) and Mn(II) in Solution. Journal of Physical Chemistry C, 2023, 127, 3551-3562.	1.5	1
3472	Self-assembled, Porous and Molecularly Imprinted Supramolecular Structures in Sensing. , 2023, , 165-208.		0
3473	Monitoring the Activation of Open Metal Sites in [Fe <i></i> M _{3–<i>×</i>} (Î⅓ ₃ -O)] Cluster-Based Metal–Organic Frameworks by Single-Crystal X-ray Diffraction. Journal of the American Chemical Society, 2023, 145, 4736-4745.	6.6	12
3474	Fluorescence Sensing of Physical Parameters and Chemical Composition in Gases and Condensed Media., 2023,, 237-294.		0
3475	Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: A review of current status and future prospects. Materials Chemistry and Physics, 2023, 299, 127512.	2.0	29
3476	Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Critical Reviews in Food Science and Nutrition, 0, , 1-17.	5.4	6
3477	Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity. Molecules, 2023, 28, 1892.	1.7	4
3478	Introduction of Multicomponent Dyes into 2D MOFs: A Strategy to Fabricate White Light-Emitting MOF Composite Nanosheets. ACS Applied Materials & Samp; Interfaces, 2023, 15, 11131-11140.	4.0	11
3479	Tunable Photoinduced Charge Transfer at the Interface between Benzoselenadiazole-Based MOF Linkers and Thermally Activated Delayed Fluorescence Chromophore. Journal of Physical Chemistry B, 2023, 127, 1819-1827.	1.2	3
3480	A Cerium Organic Framework with {Cu2l2} Cluster and {Cu2l2}n Chain Modules: Structure and Fluorescence Sensing Properties. Sensors, 2023, 23, 2420.	2.1	1
3481	Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. Journal of Environmental Sciences, 2024, 137, 741-753.	3.2	2
3482	A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Analytica Chimica Acta, 2023, 1252, 341073.	2.6	21
3483	Facile Synthesis of a Nickel-Based Dopamine MOF/Multiwalled Carbon Nanotubes Nanocomposite as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Energy & Samp; Fuels, 2023, 37, 5388-5398.	2.5	2
3484	Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review. Functional Materials Letters, 0, , .	0.7	0
3485	Fluorescence Ratiometric Antibiotic Detection with a Single Lanthanide Metalâ€Organic Framework. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	1
3486	Using a dual-emission Sm(<scp>iii</scp>)-macrocycle as the perceptive lab-on-a-molecule chemosensor toward selective and discriminative detection of nitroaromatic explosives. New Journal of Chemistry, 0, , .	1.4	0
3487	Enhanced Solid-State Fluorescence of Flavin Derivatives by Incorporation in the Metal-Organic Frameworks MIL-53(Al) and MOF-5. Molecules, 2023, 28, 2877.	1.7	2
3488	Ultraversatile Fluorescent Sensors Based on Two Co ^{II} /Ni ^{II} Coordination Polymers for Identifying Various Antibiotics via the Turn-On/Off Effect and Detecting pH. Inorganic Chemistry, 2023, 62, 5158-5167.	1.9	10

#	Article	IF	CITATIONS
3489	Cage‣ike Sodaliteâ€Type Porous Organic Salts Enabling Luminescent Molecule's Incorporation and Roomâ€ŧemperature Phosphorescence Induction in Air. Small, 2023, 19, .	5.2	4
3490	A general strategy for MOFs coupled to optical fiber for highly sensitive humidity sensing. Rare Metals, 0, , .	3.6	3
3491	Rapid and quantitative detection of the inflammatory marker neopterin based on a visible luminescent Zn(<scp>ii</scp>)–Eu(<scp>iii</scp>) nanocluster. Chemical Communications, 2023, 59, 5435-5438.	2.2	1
3492	One-dimensional europium coordination polymer with redox-active ligands. Russian Chemical Bulletin, 2023, 72, 507-517.	0.4	2
3493	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
3494	Stilbene ligandâ€based metal–organic frameworks for efficient dye adsorption and nitrobenzene detection. Bulletin of the Korean Chemical Society, 2023, 44, 507-515.	1.0	6
3495	Multifunctional cobalt metal–organic framework luminescent probe for the efficient sensing of Cr ₂ O ₇ ^{2â~'} , MnO ₄ ^{â~'} and nucleobases. New Journal of Chemistry, 2023, 47, 9714-9720.	1.4	2
3496	Facile preparation of codoped lanthanide metal–organic frameworks with efficient energy transfer for ratiometric temperature sensing. Journal of Materials Science, 0, , .	1.7	0
3497	Heterogenization of molybdenum complexes: Techniques and catalytic applications. Applied Catalysis A: General, 2023, 661, 119227.	2.2	2
3498	Sensors-integrated organ-on-a-chip for biomedical applications. Nano Research, 2023, 16, 10072-10099.	5.8	4
3508	Metal–organic frameworks (an overview). , 2023, , 1-38.		0
3532	Engineering of metal–organic frameworks (MOFs) for thermometry. Dalton Transactions, 2023, 52, 7383-7404.	1.6	7
3536	Metal–Organic Frameworks for Luminescence Thermometry. , 2023, , .		0
3568	Lanthanides in biosensing. , 2023, , 409-540.		0
3572	Macroscopic alignment of metal–organic framework crystals in specific crystallographic orientations. Materials Chemistry Frontiers, 0, , .	3.2	0
3573	Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	18.7	7
3574	Linker engineering toward near-infrared-l emissive metal–organic frameworks for amine detection. Dalton Transactions, 2023, 52, 12198-12202.	1.6	0
3575	Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Advances, 2023, 13, 24393-24411.	1.7	2

#	Article	IF	CITATIONS
3581	Use of Metal–Organic Frameworks in the Detection Stage of Analysis/Miniaturization Devices. , 2023, , 228-250.		O
3585	Metal–Organic Frameworks for Sensing Applications. , 2023, , 251-300.		O
3600	Tuning atomic-scale sites in metal–organic framework-based nanozymes for sensitive biosensing. Sensors & Diagnostics, 0, , .	1.9	0
3612	Microwave-assisted synthesis of metal–organic frameworks. , 2024, , 51-72.		O
3614	An Introduction: Advanced Functional Materials for Sensing Application. Progress in Optical Science and Photonics, 2023, , 1-30.	0.3	0
3630	A dual encapsulation strategy to generate anion-responsive luminescent lanthanide hydrogels. Chemical Communications, 0, , .	2.2	O
3637	Metal-Organic Framework Composite-Based Biosensors: Biomedical Applications. , 2024, , 1-36.		0
3654	Two highly stable isoreticular M ₈ -pyrazolate (M = Co, Ni) metal–organic frameworks for CO ₂ conversion. Chemical Communications, 2024, 60, 1293-1296.	2.2	0
3664	Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomaterials Science, 0, , .	2.6	1
3676	Approaches toward the synthesis and mechanical properties of porous coordination polymers. , 2024, , $11\text{-}38.$		0
3677	Development of new generation magnets based on porous coordination polymers., 2024,, 317-339.		0