An atlas of active enhancers across human cell types an

Nature 507, 455-461 DOI: 10.1038/nature12787

Citation Report

#	Article	IF	CITATIONS
1	Approaches for establishing the function of regulatory genetic variants involved in disease. Genome Medicine, 2014, 6, 92.	3.6	34
2	IncRNA and gene looping. Transcription, 2014, 5, e28658.	1.7	26
3	Enhancer variants: evaluating functions in common disease. Genome Medicine, 2014, 6, 85.	3.6	195
4	OncoCis: annotation of cis-regulatory mutations in cancer. Genome Biology, 2014, 15, 485.	3.8	22
5	Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Research, 2014, 42, 13599-13614.	6.5	50
6	De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics. Molecular Therapy - Nucleic Acids, 2014, 3, e196.	2.3	63
7	A Role for Noncoding Variation in Schizophrenia. Cell Reports, 2014, 9, 1417-1429.	2.9	225
8	UCbase 2.0: ultraconserved sequences database (2014 update). Database: the Journal of Biological Databases and Curation, 2014, 2014, bau062-bau062.	1.4	19
9	Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers. PLoS Genetics, 2014, 10, e1004610.	1.5	105
10	The Case for Junk DNA. PLoS Genetics, 2014, 10, e1004351.	1.5	202
11	Identification of TNF-Â-Responsive Promoters and Enhancers in the Intestinal Epithelial Cell Model Caco-2. DNA Research, 2014, 21, 569-583.	1.5	12
11 12		1.5 1.5	12 149
	Caco-2. DNA Research, 2014, 21, 569-583. Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational		
12	Caco-2. DNA Research, 2014, 21, 569-583. Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational Biology, 2014, 10, e1003677. A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Research, 2014, 13,	1.5	149
12 13	Caco-2. DNA Research, 2014, 21, 569-583. Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational Biology, 2014, 10, e1003677. A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Research, 2014, 13, 390-403. Large-Scale Identification of Coregulated Enhancer Networks in the Adult Human Brain. Cell Reports,	1.5 0.3	149 12
12 13 14	Caco-2. DNA Research, 2014, 21, 569-583. Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational Biology, 2014, 10, e1003677. A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Research, 2014, 13, 390-403. Large-Scale Identification of Coregulated Enhancer Networks in the Adult Human Brain. Cell Reports, 2014, 9, 767-779. Transcription factor binding predicts histone modifications in human cell lines. Proceedings of the	1.5 0.3 2.9	149 12 78
12 13 14 15	 Caco-2. DNA Research, 2014, 21, 569-583. Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational Biology, 2014, 10, e1003677. A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Research, 2014, 13, 390-403. Large-Scale Identification of Coregulated Enhancer Networks in the Adult Human Brain. Cell Reports, 2014, 9, 767-779. Transcription factor binding predicts histone modifications in human cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13367-13372. Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability. 	1.5 0.3 2.9 3.3	149 12 78 109

#	Article	IF	CITATIONS
19	A shared architecture for promoters and enhancers. Nature Genetics, 2014, 46, 1253-1254.	9.4	18
20	<i>Arabidopsis</i> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.	3.1	143
21	Enhancer RNAs. Cell Cycle, 2014, 13, 3151-3152.	1.3	16
22	Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities. Cell, 2014, 159, 1327-1340.	13.5	1,078
23	TermGenie – a web-application for pattern-based ontology class generation. Journal of Biomedical Semantics, 2014, 5, 48.	0.9	30
24	SuRFing the genomics wave: an R package for prioritising SNPs by functionality. Genome Medicine, 2014, 6, 79.	3.6	15
25	Creating and validating cis-regulatory maps of tissue-specific gene expression regulation. Nucleic Acids Research, 2014, 42, 11000-11010.	6.5	14
26	Genetic variation within transcriptional regulatory elements and its implications for human disease. Biological Chemistry, 2014, 395, 1453-1460.	1.2	7
27	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
28	The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood, 2014, 123, e68-e78.	0.6	77
29	A catalogue of human gene activity. Nature Reviews Genetics, 2014, 15, 290-290.	7.7	0
30	Targeting the host immune response to fight infection. Science, 2014, 344, 807-808.	6.0	30
31	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.	9.4	271
32	Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nature Genetics, 2014, 46, 1311-1320.	9.4	572
33	Enhancer alterations in cancer: a source for a cell identity crisis. Genome Medicine, 2014, 6, 77.	3.6	47
35	Nuclear stability and transcriptional directionality separate functionally distinct RNA species. Nature Communications, 2014, 5, 5336.	5.8	165
36	BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nature Structural and Molecular Biology, 2014, 21, 1047-1057.	3.6	247
37	Epigenetic Mechanisms Underlying the Pathogenesis of Neurogenetic Diseases. Neurotherapeutics, 2014, 11, 708-720.	2.1	14

#	Article	IF	CITATIONS
38	Rare and low-frequency variants in human common diseases and other complex traits. Journal of Medical Genetics, 2014, 51, 705-714.	1.5	29
39	Widespread genome transcription: New possibilities for RNA therapies. Biochemical and Biophysical Research Communications, 2014, 452, 294-301.	1.0	37
40	ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. Journal of Experimental Medicine, 2014, 211, 1623-1635.	4.2	49
41	Transcription as a force partitioning the eukaryotic genome. Biological Chemistry, 2014, 395, 1301-1305.	1.2	10
42	Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends in Genetics, 2014, 30, 348-355.	2.9	381
43	In search of the determinants of enhancer–promoter interaction specificity. Trends in Cell Biology, 2014, 24, 695-702.	3.6	142
44	Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer. Cell Reports, 2014, 8, 798-806.	2.9	219
45	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	2.8	76
46	Longitudinal Analysis of DNA Methylation in CD34+ Hematopoietic Progenitors in Myelodysplastic Syndrome. Stem Cells Translational Medicine, 2014, 3, 1188-1198.	1.6	7
47	Design and development of exome capture sequencing for the domestic pig (Sus scrofa). BMC Genomics, 2014, 15, 550.	1.2	24
48	On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Medical Genomics, 2014, 7, 34.	0.7	43
49	Regulation of Transcription by Long Noncoding RNAs. Annual Review of Genetics, 2014, 48, 433-455.	3.2	373
50	Enhancer RNA Facilitates NELF Release from Immediate Early Genes. Molecular Cell, 2014, 56, 29-42.	4.5	345
51	Next generation sequencing technology: Advances and applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1932-1941.	1.8	557
52	Genome-wide analysis of noncoding regulatory mutations in cancer. Nature Genetics, 2014, 46, 1160-1165.	9.4	469
53	Long non-coding RNAs in the regulation of the immune response. Trends in Immunology, 2014, 35, 408-419.	2.9	389
54	Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends in Genetics, 2014, 30, 439-452.	2.9	235
55	Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus. Developmental Biology, 2014, 395, 38-49.	0.9	31

#	Article	IF	CITATIONS
56	Switching on sex: transcriptional regulation of the testis-determining gene <i>Sry</i> . Development (Cambridge), 2014, 141, 2195-2205.	1.2	113
57	In pursuit of design principles of regulatory sequences. Nature Reviews Genetics, 2014, 15, 453-468.	7.7	196
58	Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions. Molecular Genetics and Metabolism, 2014, 112, 73-83.	0.5	39
60	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics, 2014, 15, 1177.	1.2	10
61	Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes. Blood, 2014, 124, 3719-3729.	0.6	55
63	Orthology-driven mapping of bidirectional promoters in human and mouse genomes. BMC Bioinformatics, 2014, 15, S1.	1.2	9
64	Transcriptional enhancers: functional insights and role in human disease. Current Opinion in Genetics and Development, 2015, 33, 71-76.	1.5	35
65	Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biology, 2015, 16, 105.	13.9	178
66	Identification of long noncoding <scp>RNA</scp> s dysregulated in the midbrain of human cocaine abusers. Journal of Neurochemistry, 2015, 135, 50-59.	2.1	38
67	Long nonâ€coding <scp>RNA</scp> s in corticogenesis: deciphering the nonâ€coding code of the brain. EMBO Journal, 2015, 34, 2865-2884.	3.5	71
68	Long-range gene regulation and novel therapeutic applications. Blood, 2015, 125, 1521-1525.	0.6	9
69	Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Scientific Reports, 2015, 5, 12648.	1.6	56
70	Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Scientific Reports, 2015, 5, 14466.	1.6	129
71	Two novel DNA motifs are essential for BACE1 gene transcription. Scientific Reports, 2014, 4, 6864.	1.6	11
72	CGGBP1—an indispensable protein with ubiquitous cytoprotective functions. Upsala Journal of Medical Sciences, 2015, 120, 219-232.	0.4	18
73	Advanced Applications of RNA Sequencing and Challenges. Bioinformatics and Biology Insights, 2015, 9s1, BBI.S28991.	1.0	178
74	Disease-associated variants in different categories of disease located in distinct regulatory elements. BMC Genomics, 2015, 16, S3.	1.2	41
75	Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Medicine, 2015, 7, 103.	3.6	124

#	Article	IF	CITATIONS
76	Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution. Journal of Bioinformatics and Computational Biology, 2015, 13, 1543002.	0.3	3
77	High-density P300 enhancers control cell state transitions. BMC Genomics, 2015, 16, 903.	1.2	37
78	Identification and annotation of conserved promoters and macrophage-expressed genes in the pig genome. BMC Genomics, 2015, 16, 970.	1.2	22
79	Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas. Genome Biology, 2015, 16, 84.	3.8	36
80	Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticityÂby HDAC inhibitors. Epigenetics and Chromatin, 2015, 8, 55.	1.8	32
81	Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics and Chromatin, 2015, 8, 57.	1.8	277
82	Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types. Genome Medicine, 2015, 7, 95.	3.6	13
83	Transâ€Ethnic Metaâ€Analysis Identifies Common and Rare Variants Associated with Hepatocyte Growth Factor Levels in the Multiâ€Ethnic Study of Atherosclerosis (MESA). Annals of Human Genetics, 2015, 79, 264-274.	0.3	13
84	What Does Genetics Tell Us About Age-Related Macular Degeneration?. Annual Review of Vision Science, 2015, 1, 73-96.	2.3	21
85	Mutations in the noncoding genome. Current Opinion in Pediatrics, 2015, 27, 659-664.	1.0	52
86	DENdb: database of integrated human enhancers. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav085.	1.4	51
87	Emerging applications of read profiles towards the functional annotation of the genome. Frontiers in Genetics, 2015, 6, 188.	1.1	9
88	Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Frontiers in Genetics, 2015, 6, 320.	1.1	22
89	Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Frontiers in Genetics, 2015, 6, 331.	1.1	13
90	The Many Alternative Faces of Macrophage Activation. Frontiers in Immunology, 2015, 6, 370.	2.2	281
91	Long Non-Coding RNA Expression during Aging in the Human Subependymal Zone. Frontiers in Neurology, 2015, 6, 45.	1.1	44
92	A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations. PLoS ONE, 2015, 10, e0125444.	1.1	46
93	Long Noncoding RNA Expression during Human B-Cell Development. PLoS ONE, 2015, 10, e0138236.	1.1	80

#	Article	IF	CITATIONS
94	A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events. PLoS Computational Biology, 2015, 11, e1004583.	1.5	17
95	YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers. PLoS Genetics, 2015, 11, e1005465.	1.5	296
96	c-Myb Binding Sites in Haematopoietic Chromatin Landscapes. PLoS ONE, 2015, 10, e0133280.	1.1	20
97	Human Genes Encoding Transcription Factors and Chromatin-Modifying Proteins Have Low Levels of Promoter Polymorphism: A Study of 1000 Genomes Project Data. International Journal of Genomics, 2015, 2015, 1-15.	0.8	13
98	Enrichment of Genetic Variants for Rheumatoid Arthritis within T-Cell and NK-Cell Enhancer Regions. Molecular Medicine, 2015, 21, 180-184.	1.9	16
99	The DDBJ Japanese Genotype-phenotype Archive for genetic and phenotypic human data. Nucleic Acids Research, 2015, 43, D18-D22.	6.5	57
100	The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development. Nucleic Acids Research, 2015, 43, 115-128.	6.5	29
101	Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells. Nucleic Acids Research, 2015, 43, 5838-5854.	6.5	19
102	Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nature Communications, 2015, 6, 6414.	5.8	167
103	Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 2015, 6, 6683.	5.8	365
104	Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nature Genetics, 2015, 47, 381-386.	9.4	589
105	Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics and Chromatin, 2015, 8, 16.	1.8	100
106	Comprehensively Evaluating cis -Regulatory Variation in the Human Prostate Transcriptome by Using Gene-Level Allele-Specific Expression. American Journal of Human Genetics, 2015, 96, 869-882.	2.6	37
107	Non-coding RNA: what is functional and what is junk?. Frontiers in Genetics, 2015, 6, 2.	1.1	602
108	The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis. Cell Reports, 2015, 10, 178-192.	2.9	157
109	Epigenetic silencing of miR-708 enhances NF-κB signaling in chronic lymphocytic leukemia. International Journal of Cancer, 2015, 137, 1352-1361.	2.3	52
110	Western Blotting. Methods in Molecular Biology, 2015, , .	0.4	16
111	Enhancer-associated RNAs as therapeutic targets. Expert Opinion on Biological Therapy, 2015, 15, 723-734.	1.4	28

#	Article	IF	CITATIONS
112	Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic IncRNA loci. Rna, 2015, 21, 320-332.	1.6	76
113	Regulation of Interferon-Stimulated Gene BST2 by a IncRNA Transcribed from a Shared Bidirectional Promoter. Frontiers in Immunology, 2014, 5, 676.	2.2	47
114	Enhancers, enhancers – from their discovery to today's universe of transcription enhancers. Biological Chemistry, 2015, 396, 311-327.	1.2	82
115	In the loop: promoter–enhancer interactions and bioinformatics. Briefings in Bioinformatics, 2016, 17, bbv097.	3.2	115
116	Strategies for fine-mapping complex traits. Human Molecular Genetics, 2015, 24, R111-R119.	1.4	191
117	Dissecting the nascent human transcriptome by analysing the RNA content of transcription factories. Nucleic Acids Research, 2015, 43, e95-e95.	6.5	28
118	Gene therapy for Rett syndrome: prospects and challenges. Future Neurology, 2015, 10, 467-484.	0.9	7
119	Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes. Cell Reports, 2015, 12, 1089-1098.	2.9	153
120	Exome Sequencing: Current and Future Perspectives. G3: Genes, Genomes, Genetics, 2015, 5, 1543-1550.	0.8	165
121	Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD. Human Genomics, 2015, 9, 25.	1.4	0
122	Transcriptional Enhancers: Bridging the Genome and Phenome. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 17-26.	2.0	28
123	Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO Journal, 2015, 34, 896-910.	3.5	43
124	Genomic Perspectives of Transcriptional Regulation in Forebrain Development. Neuron, 2015, 85, 27-47.	3.8	136
125	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	6.0	517
126	Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. International Review of Cell and Molecular Biology, 2015, 315, 183-244.	1.6	29
127	Core promoters in transcription: old problem, new insights. Trends in Biochemical Sciences, 2015, 40, 165-171.	3.7	108
128	The selection and function of cell type-specific enhancers. Nature Reviews Molecular Cell Biology, 2015, 16, 144-154.	16.1	859
129	Genome-Wide DNA Methylation Profiling in Dietary Intervention Studies: a User's Perspective. Current Pharmacology Reports, 2015, 1, 31-45.	1.5	2

~			-	
(``		ON	REPC	NDT
\sim	$\Pi \cap \Pi$		ILLI C	

#	Article	IF	CITATIONS
130	Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nature Communications, 2015, 6, 6370.	5.8	77
131	Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 2015, 518, 350-354.	13.7	201
132	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520, 558-562.	13.7	323
133	Human Promoters Are Intrinsically Directional. Molecular Cell, 2015, 57, 674-684.	4.5	115
134	Enhancer Evolution across 20 Mammalian Species. Cell, 2015, 160, 554-566.	13.5	671
135	Identification of altered cis-regulatory elements in human disease. Trends in Genetics, 2015, 31, 67-76.	2.9	99
136	Long ncRNA expression associates with tissue-specific enhancers. Cell Cycle, 2015, 14, 253-260.	1.3	83
137	Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics, 2015, 31, 128-139.	2.9	283
138	Ligand-Dependent Enhancer Activation Regulated by Topoisomerase-I Activity. Cell, 2015, 160, 367-380.	13.5	122
139	A long non-coding RNA links calreticulin-mediated immunogenic cell removal to RB1 transcription. Oncogene, 2015, 34, 5046-5054.	2.6	39
140	Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science, 2015, 347, 1014-1017.	6.0	61
141	Eukaryotic enhancers: common features, regulation, and participation in diseases. Cellular and Molecular Life Sciences, 2015, 72, 2361-2375.	2.4	39
142	Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape. Nucleic Acids Research, 2015, 43, e27-e27.	6.5	113
143	Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions. Epigenetics and Chromatin, 2015, 8, 4.	1.8	42
144	Divergent signalling pathways regulate lipopolysaccharideâ€induced eRNA expression in human monocytic THP1 cells. FEBS Letters, 2015, 589, 396-406.	1.3	14
145	Investigating the Transcriptional Control of Cardiovascular Development. Circulation Research, 2015, 116, 700-714.	2.0	77
146	Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nature Methods, 2015, 12, 339-342.	9.0	155
147	Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 2015, 16, 22.	3.8	687

#	Article	IF	CITATIONS
148	Three-dimensional genome architecture: players and mechanisms. Nature Reviews Molecular Cell Biology, 2015, 16, 245-257.	16.1	466
149	SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Molecular Cell, 2015, 59, 685-697.	4.5	50
150	Genomic modulators of gene expression in human neutrophils. Nature Communications, 2015, 6, 7545.	5.8	120
151	Why the activity of a gene depends on its neighbors. Trends in Genetics, 2015, 31, 483-490.	2.9	79
152	Lipid-Induced Epigenomic Changes in Human Macrophages Identify a Coronary Artery Disease-Associated Variant that Regulates PPAP2B Expression through Altered C/EBP-Beta Binding. PLoS Genetics, 2015, 11, e1005061.	1.5	56
154	Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Experimental Hematology, 2015, 43, 609-624.	0.2	47
155	Learning about mammalian gene regulation from functional enhancer assays in the mouse. Genomics, 2015, 106, 178-184.	1.3	4
156	Coexpression networks identify brain region–specific enhancer RNAs in the human brain. Nature Neuroscience, 2015, 18, 1168-1174.	7.1	79
157	High throughput technologies for the functional discovery of mammalian enhancers: New approaches for understanding transcriptional regulatory network dynamics. Genomics, 2015, 106, 151-158.	1.3	31
158	STARR-seq — Principles and applications. Genomics, 2015, 106, 145-150.	1.3	76
159	Decoding enhancers using massively parallel reporter assays. Genomics, 2015, 106, 159-164.	1.3	208
160	Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1255-E1261.	1.8	132
161	Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Molecular Cell, 2015, 59, 188-202.	4.5	100
162	Understanding how cis -regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics, 2015, 106, 165-170.	1.3	60
163	BET bromodomain inhibitors in leukemia. Experimental Hematology, 2015, 43, 718-731.	0.2	33
164	Partially Redundant Enhancers Cooperatively Maintain Mammalian Pomc Expression Above a Critical Functional Threshold. PLoS Genetics, 2015, 11, e1004935.	1.5	95
165	A unified architecture of transcriptional regulatory elements. Trends in Genetics, 2015, 31, 426-433.	2.9	173
	Genetic Variation Determines PPARÎ ³ Function and Anti-diabetic Drug Response InÂVivo. Cell, 2015, 162,		

#	Article	IF	CITATIONS
167	Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling. PLoS Genetics, 2015, 11, e1004994.	1.5	155
168	Genetic and Genomic Approaches to Understanding Macrophage Identity and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 755-762.	1.1	21
169	Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response. PLoS Computational Biology, 2015, 11, e1004217.	1.5	22
170	DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Nucleic Acids Research, 2015, 43, 1513-1528.	6.5	37
171	CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Research, 2015, 43, e51-e51.	6.5	194
172	Analysis of tandem E-box motifs within human Complement receptor 2 (CR2/CD21) promoter reveals cell specific roles for RP58, E2A, USF and localized chromatin accessibility. International Journal of Biochemistry and Cell Biology, 2015, 64, 107-119.	1.2	4
173	Genome-wide association studies of late-onset cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2015, 83, 131-141.	0.9	42
174	Ubiquitous L1 Mosaicism in Hippocampal Neurons. Cell, 2015, 161, 228-239.	13.5	292
175	Genome-wide Analysis of Body Proportion Classifies Height-Associated Variants by Mechanism of Action and Implicates Genes Important for Skeletal Development. American Journal of Human Genetics, 2015, 96, 695-708.	2.6	67
176	Proteogenomics analysis reveals specific genomic orientations of distal regulatory regions composed by non-canonical histone variants. Epigenetics and Chromatin, 2015, 8, 13.	1.8	10
177	Rare variant association studies: considerations, challenges and opportunities. Genome Medicine, 2015, 7, 16.	3.6	176
178	Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regeneration, 2015, 4, 4:2.	1.1	52
179	Loss of <i>TET2</i> in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes and Development, 2015, 29, 910-922.	2.7	213
180	The Ensembl Regulatory Build. Genome Biology, 2015, 16, 56.	3.8	382
182	The noncoding human genome and the future of personalised medicine. Expert Reviews in Molecular Medicine, 2015, 17, e4.	1.6	13
183	Regulatory genomics: Combined experimental and computational approaches. Russian Journal of Genetics, 2015, 51, 334-352.	0.2	8
184	The core promoter: At the heart of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1116-1131.	0.9	140
185	RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell, 2015, 161, 774-789.	13.5	370

	CITATION N		
# 186	ARTICLE Association study of the SLITRK5 gene and Tourette syndrome. Psychiatric Genetics, 2015, 25, 31-34.	IF 0.6	Citations 3
187	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015, 97, 985-995.	1.5	23
188	BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. Journal of Experimental Medicine, 2015, 212, 539-553.	4.2	218
189	DEEP: a general computational framework for predicting enhancers. Nucleic Acids Research, 2015, 43, e6-e6.	6.5	124
190	Identification of active transcriptional regulatory elements from GRO-seq data. Nature Methods, 2015, 12, 433-438.	9.0	198
191	Decoding mechanisms by which silent codon changes influence protein biogenesis and function. International Journal of Biochemistry and Cell Biology, 2015, 64, 58-74.	1.2	115
192	Cancer whole-genome sequencing: present and future. Oncogene, 2015, 34, 5943-5950.	2.6	87
193	The Landscape of long noncoding RNA classification. Trends in Genetics, 2015, 31, 239-251.	2.9	942
194	A transcriptional perspective on human macrophage biology. Seminars in Immunology, 2015, 27, 44-50.	2.7	33
195	Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Research, 2015, 43, 3873-3885.	6.5	86
196	Genome-wide association study identifies multiple susceptibility loci for glioma. Nature Communications, 2015, 6, 8559.	5.8	112
197	Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 2015, 47, 1228-1235.	9.4	2,045
198	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	9.4	357
199	Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics. Nucleic Acids Research, 2015, 43, 6969-6982.	6.5	54
200	Diving deeper to predict noncoding sequence function. Nature Methods, 2015, 12, 925-926.	9.0	4
201	Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nature Communications, 2015, 6, 6904.	5.8	31
202	Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell, 2015, 27, 2415-2426.	3.1	136
203	The identification of cis-regulatory elements: A review from a machine learning perspective. BioSystems, 2015, 138, 6-17.	0.9	51

#	Article	IF	CITATIONS
204	Short-Circuiting Gene Regulatory Networks: Origins of B Cell Lymphoma. Trends in Genetics, 2015, 31, 720-731.	2.9	5
205	Long-Range Transcriptional Control of the <i>ll2</i> Gene by an Intergenic Enhancer. Molecular and Cellular Biology, 2015, 35, 3880-3891.	1.1	13
206	groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics, 2015, 16, 222.	1.2	57
207	The conserved histone deacetylase <scp>R</scp> pd3 and the <scp>DNA</scp> binding regulator <scp>U</scp> me6 repress <scp><i>BOI</i></scp> <i>1</i> 's meiotic transcript isoform during vegetative growth in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2015, 96, 861-874.	1.2	10
208	An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiology and Molecular Biology Reviews, 2015, 79, 347-372.	2.9	190
209	Mining the coding and non-coding genome for cancer drivers. Cancer Letters, 2015, 369, 307-315.	3.2	15
210	Removing reference mapping biases using limited or no genotype data identifies allelic differences in protein binding at disease-associated loci. BMC Medical Genomics, 2015, 8, 43.	0.7	13
211	Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identity and Activity-Dependent Responses in the CNS. Journal of Neuroscience, 2015, 35, 13819-13826.	1.7	33
212	Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Research, 2015, 43, 6787-6798.	6.5	94
213	Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 550-573.	2.3	80
214	Evolution of the unspliced transcriptome. BMC Evolutionary Biology, 2015, 15, 166.	3.2	7
215	Dynamics of chromatin accessibility and epigenetic state in response to UV damage. Journal of Cell Science, 2015, 128, 4380-94.	1.2	31
216	DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Research, 2015, 25, 1622-1633.	2.4	73
217	Massively parallel high-order combinatorial genetics in human cells. Nature Biotechnology, 2015, 33, 952-961.	9.4	50
218	Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends in Immunology, 2015, 36, 507-518.	2.9	32
219	Expression Specificity of Disease-Associated IncRNAs: Toward Personalized Medicine. Current Topics in Microbiology and Immunology, 2015, 394, 237-258.	0.7	33
220	Architectural and Functional Commonalities between Enhancers and Promoters. Cell, 2015, 162, 948-959.	13.5	277
221	TRIP through the chromatin: A high throughput exploration of enhancer regulatory landscapes. Genomics, 2015, 106, 171-177.	1.3	1

	CITATION	CITATION REPORT	
# 222	ARTICLE Complexity of Mammalian Transcriptome Analyzed by RNA Deep Sequencing. , 2015, , 3-22.	IF	CITATIONS 2
223	Discovering enhancers by mapping chromatin features in primary tissue. Genomics, 2015, 106, 140-144.	1.3	13
224	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	13.7	726
225	Long non-coding RNAs and their functions in plants. Current Opinion in Plant Biology, 2015, 27, 207-216.	3.5	389
226	Scrutinizing the FTO locus: compelling evidence for a complex, long-range regulatory context. Human Genetics, 2015, 134, 1183-1193.	1.8	22
227	Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity. Genome Research, 2015, 25, 1309-1324.	2.4	46
228	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	1.1	24
229	Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Current Topics in Microbiology and Immunology, 2015, 394, 143-176.	0.7	11
230	The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends in Genetics, 2015, 31, 696-708.	2.9	127
231	Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain. Translational Psychiatry, 2015, 5, e679-e679.	2.4	57
232	Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Molecular Cell, 2015, 60, 460-474.	4.5	80
233	Paradigm shifts in genomics through the FANTOM projects. Mammalian Genome, 2015, 26, 391-402.	1.0	96
234	p38 ^{MAPK} /MK2-mediated phosphorylation of RBM7 regulates the human nuclear exosome targeting complex. Rna, 2015, 21, 262-278.	1.6	40
235	Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Research, 2015, 25, 167-178.	2.4	54
236	Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays, 2015, 37, 314-323.	1.2	92
237	The many faces of long noncoding <scp>RNA</scp> s. FEBS Journal, 2015, 282, 1647-1657.	2.2	51
238	TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Genome Research, 2015, 25, 179-188.	2.4	95
239	Ensembl 2015. Nucleic Acids Research, 2015, 43, D662-D669.	6.5	1,145

#	Article	IF	CITATIONS
240	Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 10-22.	0.9	54
241	Computational schemes for the prediction and annotation of enhancers from epigenomic assays. Methods, 2015, 72, 86-94.	1.9	26
242	Epigenetic regulation of female puberty. Frontiers in Neuroendocrinology, 2015, 36, 90-107.	2.5	108
243	RNA Sequencing of Formalin-Fixed, Paraffin-Embedded Specimens for Gene Expression Quantification and Data Mining. International Journal of Genomics, 2016, 2016, 1-10.	0.8	15
244	DNA methylation at enhancer regions Novel avenues for epigenetic biomarker development. Frontiers in Bioscience - Landmark, 2016, 21, 430-446.	3.0	17
245	E2 Regulates Epigenetic Signature on Neuroglobin Enhancer-Promoter in Neuronal Cells. Frontiers in Cellular Neuroscience, 2016, 10, 147.	1.8	13
246	Selected heterozygosity at cis-regulatory sequences increases the expression homogeneity of a cell population in humans. Genome Biology, 2016, 17, 164.	3.8	7
247	Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe. Genome Medicine, 2016, 8, 65.	3.6	20
248	Biophysically Motivated Regulatory Network Inference: Progress and Prospects. Human Heredity, 2016, 81, 62-77.	0.4	29
249	Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression. PLoS Genetics, 2016, 12, e1005992.	1.5	53
250	LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines. PLoS ONE, 2016, 11, e0163491.	1.1	4
251	On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase. Database: the Journal of Biological Databases and Curation, 2016, 2016, .	1.4	24
252	Phenotypic variability in human skin mast cells. Experimental Dermatology, 2016, 25, 434-439.	1.4	37
253	Ensembl regulation resources. Database: the Journal of Biological Databases and Curation, 2016, 2016, bav119.	1.4	45
254	Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers. Nature Reviews Molecular Cell Biology, 2016, 17, 597-604.	16.1	54
255	Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nature Communications, 2016, 7, 13555.	5.8	142
256	Identifying transcription start sites and active enhancer elements using BruUV-seq. Scientific Reports, 2016, 5, 17978.	1.6	27
257	Constructing 3D interaction maps from 1D epigenomes. Nature Communications, 2016, 7, 10812.	5.8	135

#	Article	IF	CITATIONS
258	Autosomal recessive retinitis pigmentosa with homozygous rhodopsin mutation E150K and non-coding cis-regulatory variants in CRX-binding regions of SAMD7. Scientific Reports, 2016, 6, 21307.	1.6	16
259	Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Scientific Reports, 2016, 6, 22496.	1.6	18
260	Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells. Nature Communications, 2016, 7, 12166.	5.8	47
261	Novel biomarkers that assist in accurate discrimination of squamous cell carcinoma from adenocarcinoma of the lung. BMC Cancer, 2016, 16, 760.	1.1	40
262	Epigenetic Regulation of Myeloid Cells. Microbiology Spectrum, 2016, 4, .	1.2	20
263	Integrated Post-GWAS Analysis Sheds New Light on the Disease Mechanisms of Schizophrenia. Genetics, 2016, 204, 1587-1600.	1.2	41
264	Structure of the RBM7–ZCCHC8 core of the NEXT complex reveals connections to splicing factors. Nature Communications, 2016, 7, 13573.	5.8	38
265	Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Scientific Reports, 2016, 6, 20961.	1.6	46
266	A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nature Communications, 2016, 7, 10716.	5.8	90
267	Transcriptional Regulation and Macrophage Differentiation. Microbiology Spectrum, 2016, 4, .	1.2	35
268	- Protein-Protein Functional Linkage Predictions: Bringing Regulation to Context. , 2016, , 172-191.		0
269	Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis. Scientific Reports, 2016, 6, 33666.	1.6	18
270	Noncoding Regulatory RNAs in Hematopoiesis. Current Topics in Developmental Biology, 2016, 118, 245-270.	1.0	10
271	Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer. BMC Medical Genomics, 2016, 9, 38.	0.7	23
272	DeepEnhancer: Predicting enhancers by convolutional neural networks. , 2016, , .		9
273	Chromatin remodeling effects on enhancer activity. Cellular and Molecular Life Sciences, 2016, 73, 2897-2910.	2.4	25
274	Epigenetic Regulation of Stem Cells. , 2016, , 785-793.		0
275	Progress and challenges in bioinformatics approaches for enhancer identification. Briefings in Bioinformatics, 2016, 17, 967-979.	3.2	81

ARTICLE IF CITATIONS # The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell, 2016, 276 13.5 139 165, 1224-1237. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50. 2.3 Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation. 278 2.3 55 Stem Cell Reports, 2016, 6, 618-632. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum. 279 Cell Reports, 2016, 14, 2463-2475. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature, 280 13.7 195 2016, 532, 259-263. Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, 2016, , . Histone H3 globular domain acetylation identifies a new class of enhancers. Nature Genetics, 2016, 48, 282 9.4 184 681-686. The Determinants of Directionality in Transcriptional Initiation. Trends in Genetics, 2016, 32, 322-333. 2.9 Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic 284 9 6.5 Acids Research, 2016, 44, 4080-4089. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their 6.5 directionality. Nucleic Acids Research, 2016, 44, 4037-4051. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA 286 106 4.5Methylation at Enhancers. Molecular Cell, 2016, 62, 422-431. Single base resolution analysis of 5-hydroxymethylcytosine in 188 human genes: implications for 6.5 hepatic gene expression. Nucleic Acids Research, 2016, 44, 6756-6769. Weighted enrichment method for prediction of transcription regulators from transcriptome and 288 6.5 31 global chromatin immunoprecipitation data. Nucleic Acids Research, 2016, 44, 5010-5021. Differential DNA methylation patterns of homeobox genes in proximal and distal colon epithelial 1.0 cells. Physiological Genomics, 2016, 48, 257-273. Enhancer, epigenetics, and human disease. Current Opinion in Genetics and Development, 2016, 36, 27-33. 290 19 1.5 Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood 49 stem/progenitor cell model. Blood, 2016, 127, e12-e23. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. Journal of 292 0.9 201 Biomedical Semantics, 2016, 7, 44. The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. Advances 293 in Genetics, 2016, 95, 195-216.

#	Article	IF	CITATIONS
294	High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21) AML. Cell Reports, 2016, 16, 2003-2016.	2.9	69
295	Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Molecular Genetics and Metabolism, 2016, 119, 174-185.	0.5	29
296	Extraordinary Cancer Epigenomics: Thinking Outside the Classical Coding and Promoter Box. Trends in Cancer, 2016, 2, 572-584.	3.8	22
297	An inducible long noncoding RNA amplifies DNA damage signaling. Nature Genetics, 2016, 48, 1370-1376.	9.4	195
298	The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science, 2016, 353, .	6.0	147
299	Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, 2016, , .	0.2	2
300	Epigenetics, Enhancers, and Cancer. Energy Balance and Cancer, 2016, , 29-53.	0.2	1
301	Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2016, 17, 289-302.	2.9	92
302	Single-Nucleotide Resolution Mapping of Hepatitis B Virus Promoters in Infected Human Livers and Hepatocellular Carcinoma. Journal of Virology, 2016, 90, 10811-10822.	1.5	27
303	Properties, functions, and therapeutic prospects of enhancer RNAs. Russian Journal of Bioorganic Chemistry, 2016, 42, 473-478.	0.3	1
304	Tissue Specificity of GeneÂExpression. Current Genetic Medicine Reports, 2016, 4, 163-169.	1.9	5
305	Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 2016, 17, 208.	3.8	912
306	Integrative Networks Illuminate Biological Factors Underlying Gene–Disease Associations. Current Genetic Medicine Reports, 2016, 4, 155-162.	1.9	7
307	Spatial genome organization and cognition. Nature Reviews Neuroscience, 2016, 17, 681-691.	4.9	69
308	Past Roadblocks and New Opportunities in Transcription Factor Network Mapping. Trends in Genetics, 2016, 32, 736-750.	2.9	23
309	Chromatin structure–based prediction of recurrent noncoding mutations in cancer. Nature Genetics, 2016, 48, 1321-1326.	9.4	29
310	A Survey of the Computational Methods for Enhancers and Enhancer-target Predictions. , 2016, , 3-27.		1
311	Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biology, 2016, 17, 193.	3.8	29

# 312	ARTICLE Microbial Manipulation Host Dark Matter. , 2016, , 27-52.	IF	CITATIONS 0
313	Isoforms of the Erythropoietin receptor in dopaminergic neurons of the <i>Substantia Nigra</i> . Journal of Neurochemistry, 2016, 139, 596-609.	2.1	11
314	The Estrogen Receptor α-Cistrome Beyond Breast Cancer. Molecular Endocrinology, 2016, 30, 1046-1058.	3.7	20
315	Epigenetic memory: A macrophage perspective. Seminars in Immunology, 2016, 28, 359-367.	2.7	49
316	EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics, 2016, 32, 3543-3551.	1.8	148
317	Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage. Arthritis and Rheumatology, 2016, 68, 845-856.	2.9	114
318	Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. BioEssays, 2016, 38, 881-893.	1.2	39
319	Non-coding RNAs and Inter-kingdom Communication. , 2016, , .		5
320	A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. American Journal of Human Genetics, 2016, 99, 595-606.	2.6	223
321	Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology, 2016, 64, 1743-1756.	3.6	100
322	Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenetics and Chromatin, 2016, 9, 33.	1.8	73
323	YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Scientific Reports, 2016, 6, 37324.	1.6	32
324	Ciliary dyslexia candidate genes <i>DYX1C1</i> and <i>DCDC2</i> are regulated by Regulatory Factor X (RFX) transcription factors through Xâ€box promoter motifs. FASEB Journal, 2016, 30, 3578-3587.	0.2	28
325	A Comprehensive Characterization of the Function of LincRNAs in Transcriptional Regulation Through Long-Range Chromatin Interactions. Scientific Reports, 2016, 6, 36572.	1.6	19
326	TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biology, 2016, 17, 234.	3.8	78
327	Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Current Neurology and Neuroscience Reports, 2016, 16, 94.	2.0	4
328	Plant Enhancers: A Call for Discovery. Trends in Plant Science, 2016, 21, 974-987.	4.3	115
329	Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nature Protocols, 2016, 11, 1455-1476.	5.5	392

#	ARTICLE	IF	CITATIONS
330	A synergistic DNA logic predicts genome-wide chromatin accessibility. Genome Research, 2016, 26, 1430-1440.	2.4	18
331	Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters. Nature Genetics, 2016, 48, 984-994.	9.4	75
332	Identification and function of enhancers in the human genome. Human Molecular Genetics, 2016, 25, R190-R197.	1.4	26
333	Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies. Cellular and Molecular Life Sciences, 2016, 73, 4517-4530.	2.4	17
334	Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature Communications, 2016, 7, 12339.	5.8	69
335	A Functional Variant Associated with Atrial Fibrillation Regulates PITX2c Expression through TFAP2a. American Journal of Human Genetics, 2016, 99, 1281-1291.	2.6	59
336	Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Human Molecular Genetics, 2016, 26, ddw369.	1.4	4
337	Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks. Cell Reports, 2016, 17, 2060-2074.	2.9	90
338	Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Letters, 2016, 590, 4084-4104.	1.3	7
339	Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nature Communications, 2016, 7, 12050.	5.8	146
340	Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nature Communications, 2016, 7, 10767.	5.8	177
341	A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nature Communications, 2016, 7, 12222.	5.8	113
342	Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Molecular Cell, 2016, 64, 520-533.	4.5	209
343	Discriminative identification of transcriptional responses of promoters and enhancers after stimulus. Nucleic Acids Research, 2017, 45, gkw1015.	6.5	3
344	Genome-wide characteristics of de novo mutations in autism. Npj Genomic Medicine, 2016, 1, 160271-1602710.	1.7	200
345	Dissection of transcriptional and <i>cis</i> â€regulatory control of differentiation in human pancreatic cancer. EMBO Journal, 2016, 35, 595-617.	3.5	127
346	PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16051.	1.8	17
347	Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay. Scientific Reports, 2016, 6, 28663.	1.6	35

#	Article	IF	CITATIONS
348	Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 2016, 538, 523-527.	13.7	507
349	In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences. Scientific Reports, 2016, 6, 32476.	1.6	8
350	FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells. Scientific Reports, 2016, 6, 34962.	1.6	40
351	Deleting an Nr4a1 Super-Enhancer Subdomain Ablates Ly6C low Monocytes while Preserving Macrophage Gene Function. Immunity, 2016, 45, 975-987.	6.6	127
352	Regulatory Enhancer–Core-Promoter Communication via Transcription Factors and Cofactors. Trends in Genetics, 2016, 32, 801-814.	2.9	153
353	Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Scientific Reports, 2016, 6, 24724.	1.6	18
354	eRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines. Hereditas, 2016, 153, 6.	0.5	5
355	Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell, 2016, 165, 1519-1529.	13.5	378
356	TT-seq maps the human transient transcriptome. Science, 2016, 352, 1225-1228.	6.0	384
357	Genome stability versus transcript diversity. DNA Repair, 2016, 44, 81-86.	1.3	7
358	Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1. Journal of Neurodevelopmental Disorders, 2016, 8, 4.	1.5	8
359	Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biology, 2016, 17, 100.	3.8	138
360	High-throughput functional comparison of promoter and enhancer activities. Genome Research, 2016, 26, 1023-1033.	2.4	114
361			
	Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots ofÂnewborn infants. Fertility and Sterility, 2016, 106, 629-639.e10.	0.5	84
362		0.5	84 57
362 363	ofÂnewborn infants. Fertility and Sterility, 2016, 106, 629-639.e10.		
	ofÂnewborn infants. Fertility and Sterility, 2016, 106, 629-639.e10. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Briefings in Bioinformatics, 2016, 18, bbw051. Jointly characterizing epigenetic dynamics across multiple human cell types. Nucleic Acids Research,	3.2	57

#	Article	IF	CITATIONS
366	Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters. Journal of Computational Biology, 2016, 23, 322-336.	0.8	118
367	Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells. Molecular Therapy, 2016, 24, 592-606.	3.7	122
368	Enhanced Identification of Transcriptional Enhancers Provides Mechanistic Insights into Diseases. Trends in Genetics, 2016, 32, 76-88.	2.9	87
369	DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nature Genetics, 2016, 48, 253-264.	9.4	254
370	Systematic identification and annotation of human methylation marks based on bisulfite sequencing methylomes reveals distinct roles of cell type-specific hypomethylation in the regulation of cell identity genes. Nucleic Acids Research, 2016, 44, 75-94.	6.5	83
371	Molecular control of activation and priming in macrophages. Nature Immunology, 2016, 17, 26-33.	7.0	392
372	Massively parallel <i>cis</i> -regulatory analysis in the mammalian central nervous system. Genome Research, 2016, 26, 238-255.	2.4	106
373	Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers. Cancer Research, 2016, 76, 216-226.	0.4	80
374	Enhancer scanning to locate regulatory regions in genomic loci. Nature Protocols, 2016, 11, 46-60.	5.5	14
375	Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metabolism, 2016, 23, 369-378.	7.2	435
376	Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 2016, 73, 2491-2509.	2.4	831
377	Decoding the nonâ€coding genome: elucidating genetic risk outside the coding genome. Genes, Brain and Behavior, 2016, 15, 187-204.	1.1	32
378	Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells. Nucleic Acids Research, 2016, 44, 5105-5122.	6.5	16
379	High expression of PTPN21 in B-cell non-Hodgkin's gastric lymphoma, a positive mediator of STAT5 activity. Blood Cancer Journal, 2016, 6, e388-e388.	2.8	8
380	7SK-BAF axis controls pervasive transcription at enhancers. Nature Structural and Molecular Biology, 2016, 23, 231-238.	3.6	92
381	Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nature Reviews Immunology, 2016, 16, 164-176.	10.6	153
382	Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Research, 2016, 26, 601-611.	2.4	88
383	Genome-wide association study of dental caries in the Hispanic Communities Health Study/Study of Latinos (HCHS/SOL). Human Molecular Genetics, 2016, 25, 807-816.	1.4	29

#	Article	IF	CITATIONS
384	Identification of differentially methylated regions in new genes associated with knee osteoarthritis. Gene, 2016, 576, 312-318.	1.0	28
385	Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophrenia Research, 2016, 177, 115-124.	1.1	22
386	Genome-wide Association Study of Platelet Count Identifies Ancestry-Specific Loci in Hispanic/Latino Americans. American Journal of Human Genetics, 2016, 98, 229-242.	2.6	71
387	Epigenomic Landscape of Human Fetal Brain, Heart, and Liver. Journal of Biological Chemistry, 2016, 291, 4386-4398.	1.6	45
388	Transcriptional enhancers: Transcription, function and flexibility. Transcription, 2016, 7, 26-31.	1.7	23
389	Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nature Methods, 2016, 13, 366-370.	9.0	306
390	Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Reviews Genetics, 2016, 17, 207-223.	7.7	614
391	Identification of Tox chromatin binding properties and downstream targets by DamID-Seq. Genomics Data, 2016, 7, 264-268.	1.3	5
392	Understanding Celiac Disease by Genomics. Trends in Genetics, 2016, 32, 295-308.	2.9	78
393	Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. Developmental Cell, 2016, 36, 9-23.	3.1	204
394	Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification. Cell Stem Cell, 2016, 18, 118-133.	5.2	73
395	Autoimmune diseases — connecting risk alleles with molecular traits of the immune system. Nature Reviews Genetics, 2016, 17, 160-174.	7.7	173
396	TNF-α-mediated microRNA-136 induces differentiation of myeloid cells by targeting NFIA. Journal of Leukocyte Biology, 2016, 99, 301-310.	1.5	13
397	Bidirectional expression of long ncRNA/protein-coding gene pairs in cancer. Briefings in Functional Genomics, 2016, 15, 167-173.	1.3	18
398	Next Generation Sequencing—General Information about the Technology, Possibilities, and Limitations. , 2016, , 1-18.		5
399	Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nature Neuroscience, 2016, 19, 75-83.	7.1	187
400	Relationships between PROMPT and gene expression. RNA Biology, 2016, 13, 6-14.	1.5	25
401	Transcriptomics and Gene Regulation. Translational Bioinformatics, 2016, , .	0.0	2

# 402	ARTICLE The complexity of epigenetic diseases. Journal of Pathology, 2016, 238, 333-344.	IF 2.1	Citations 24
403	The genetic and regulatory architecture of ERBB3-type 1 diabetes susceptibility locus. Molecular and Cellular Endocrinology, 2016, 419, 83-91.	1.6	31
404	Public data and open source tools for multi-assay genomic investigation of disease. Briefings in Bioinformatics, 2016, 17, 603-615.	3.2	46
405	An Integrative Genomic Study Implicates the Postsynaptic Density in the Pathogenesis of Bipolar Disorder. Neuropsychopharmacology, 2016, 41, 886-895.	2.8	28
406	Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans. Molecular Biology and Evolution, 2016, 33, 316-322.	3.5	19
407	Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Briefings in Bioinformatics, 2016, 17, 642-656.	3.2	120
408	MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biology, 2017, 14, 1326-1334.	1.5	262
409	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	0.9	53
410	Regulation of Laminin γ2 Expression by CDX2 in Colonic Epithelial Cells Is Impaired During Active Inflammation. Journal of Cellular Biochemistry, 2017, 118, 298-307.	1.2	8
411	Hypermethylation of antisense long noncoding RNAs in acute lymphoblastic leukemia. Epigenomics, 2017, 9, 635-645.	1.0	7
412	Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nature Genetics, 2017, 49, 186-192.	9.4	153
413	Lingering Questions about Enhancer RNA and Enhancer Transcription-Coupled Genomic Instability. Trends in Genetics, 2017, 33, 143-154.	2.9	41
414	Whole-genome view of the consequences of a population bottleneck using 2926 genome sequences from Finland and United Kingdom. European Journal of Human Genetics, 2017, 25, 477-484.	1.4	60
415	Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoarthritis and Cartilage, 2017, 25, 181-189.	0.6	65
416	The origins of developmental gene regulation. Evolution & Development, 2017, 19, 96-107.	1.1	25
417	Retrieving Chromatin Patterns from Deep Sequencing Data Using Correlation Functions. Biophysical Journal, 2017, 112, 473-490.	0.2	18
418	Distal CpG islands can serve as alternative promoters to transcribe genes with silenced proximal promoters. Genome Research, 2017, 27, 553-566.	2.4	32
419	Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1885-E1894.	3.3	27

#	Article	IF	CITATIONS
420	Nucleosome repositioning during differentiation of a human myeloid leukemia cell line. Nucleus, 2017, 8, 188-204.	0.6	21
421	OTX2 Activity at Distal Regulatory Elements Shapes the Chromatin Landscape of Group 3 Medulloblastoma. Cancer Discovery, 2017, 7, 288-301.	7.7	53
422	Properties of STAT1 and IRF1 enhancers and the influence of SNPs. BMC Molecular Biology, 2017, 18, 6.	3.0	36
423	cis -Acting Complex-Trait-Associated lincRNA Expression Correlates with Modulation of Chromosomal Architecture. Cell Reports, 2017, 18, 2280-2288.	2.9	67
424	An atlas of human long non-coding RNAs with accurate $5\hat{a}\in^2$ ends. Nature, 2017, 543, 199-204.	13.7	898
425	Estrogen receptor \hat{I}_{\pm} wields treatment-specific enhancers between morphologically similar endometrial tumors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1316-E1325.	3.3	25
426	Shared genetic variants suggest common pathways in allergy and autoimmune diseases. Journal of Allergy and Clinical Immunology, 2017, 140, 771-781.	1.5	63
427	Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nature Genetics, 2017, 49, 635-642.	9.4	384
428	Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer. Cancer Discovery, 2017, 7, 410-423.	7.7	121
429	Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 45-63.	2.5	115
430	Single-cell profiling reveals that eRNA accumulation at enhancer–promoter loops is not required to sustain transcription. Nucleic Acids Research, 2017, 45, 3017-3030.	6.5	46
431	Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear Transcriptome. Cell Reports, 2017, 19, 425-440.	2.9	43
432	ORIO (Online Resource for Integrative Omics): a web-based platform for rapid integration of next generation sequencing data. Nucleic Acids Research, 2017, 45, 5678-5690.	6.5	11
433	The identification and functional annotation of RNA structures conserved in vertebrates. Genome Research, 2017, 27, 1371-1383.	2.4	71
434	Single-cell CRISPR screening in drug resistance. Cell Biology and Toxicology, 2017, 33, 207-210.	2.4	35
435	DNA methylation controls unmethylated transcription start sites in the genome in <i>trans</i> . Epigenomics, 2017, 9, 611-633.	1.0	14
436	The origin of Metazoa: a unicellular perspective. Nature Reviews Genetics, 2017, 18, 498-512.	7.7	239
437	The FANTOM5 Computation Ecosystem: Genomic Information Hub for Promoters and Active Enhancers. Methods in Molecular Biology, 2017, 1611, 199-217.	0.4	23

#	ARTICLE Protein Function Prediction. Methods in Molecular Biology, 2017, , .	IF 0.4	Citations
439	Histone lysine demethylases in mammalian embryonic development. Experimental and Molecular Medicine, 2017, 49, e325-e325.	3.2	56
440	Genome Annotation. Methods in Molecular Biology, 2017, 1525, 107-121.	0.4	3
441	Identification of context-dependent expression quantitative trait loci in whole blood. Nature Genetics, 2017, 49, 139-145.	9.4	363
442	The Diversity of Long Noncoding RNAs and Their Generation. Trends in Genetics, 2017, 33, 540-552.	2.9	265
443	Chromatin-enriched IncRNAs can act as cell-type specific activators of proximal gene transcription. Nature Structural and Molecular Biology, 2017, 24, 596-603.	3.6	70
445	Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Bioscience Reports, 2017, 37, .	1.1	58
446	Bioinformatics Tools for Genome-Wide Epigenetic Research. Advances in Experimental Medicine and Biology, 2017, 978, 489-512.	0.8	43
447	Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Research, 2017, 45, 6572-6588.	6.5	40
448	Non-coding Transcripts from Enhancers: New Insights into Enhancer Activity and Gene Expression Regulation. Genomics, Proteomics and Bioinformatics, 2017, 15, 201-207.	3.0	52
449	Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Experimental Biology and Medicine, 2017, 242, 1325-1334.	1.1	44
450	Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture. Chromosoma, 2017, 126, 541-557.	1.0	17
451	Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics and Bioinformatics, 2017, 15, 177-186.	3.0	661
452	Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions. Scientific Reports, 2017, 7, 2186.	1.6	70
453	Enhancer-derived RNA: A Primer. Genomics, Proteomics and Bioinformatics, 2017, 15, 196-200.	3.0	41
454	Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study. Bioinformatics, 2017, 33, 2890-2896.	1.8	13
455	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. American Journal of Human Genetics, 2017, 100, 865-884.	2.6	131
456	Inflammation-associated DNA methylation patterns in epithelium of ulcerative colitis. Epigenetics, 2017, 12, 591-606.	1.3	40

#	Article	IF	CITATIONS
457	DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, 49, 1052-1060.	9.4	235
458	EpiCompare: an online tool to define and explore genomic regions with tissue or cell type-specific epigenomic features. Bioinformatics, 2017, 33, 3268-3275.	1.8	17
459	A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation. Nucleic Acids Research, 2017, 45, 5720-5738.	6.5	39
460	Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma. Cancer Discovery, 2017, 7, 630-651.	7.7	48
461	Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics, 2017, 9, 493-504.	1.0	23
462	Age-associated DNA methylation changes in naive CD4 ⁺ T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics, 2017, 9, 429-445.	1.0	47
463	Functional Architectures of Local and Distal Regulation of Gene Expression in Multiple Human Tissues. American Journal of Human Genetics, 2017, 100, 605-616.	2.6	76
465	Enhancer-Derived IncRNAs Regulate Genome Architecture: Fact or Fiction?. Trends in Genetics, 2017, 33, 375-377.	2.9	8
466	Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure <i>in Vivo</i> . ACS Nano, 2017, 11, 3597-3613.	7.3	23
467	Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature Genetics, 2017, 49, 789-794.	9.4	259
468	Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Human Molecular Genetics, 2017, 26, 1942-1951.	1.4	69
469	Environment Tunes Propagation of Cell-to-Cell Variation in the Human Macrophage Gene Network. Cell Systems, 2017, 4, 379-392.e12.	2.9	34
470	NanoCAGE: A Method for the Analysis of Coding and Noncoding 5′-Capped Transcriptomes. Methods in Molecular Biology, 2017, 1543, 57-109.	0.4	29
471	Deep Cap Analysis of Gene Expression (CAGE): Genome-Wide Identification of Promoters, Quantification of Their Activity, and Transcriptional Network Inference. Methods in Molecular Biology, 2017, 1543, 111-126.	0.4	4
472	A comprehensive analysis of cancer-driving mutations and genes in kidney cancer. Oncology Letters, 2017, 13, 2151-2160.	0.8	4
473	Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nature Genetics, 2017, 49, 618-624.	9.4	299
474	Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nature Immunology, 2017, 18, 530-540.	7.0	164
475	A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score. Translational Psychiatry, 2017, 7, e1002-e1002.	2.4	29

#	Article	IF	CITATIONS
476	TTâ€seq captures enhancer landscapes immediately after Tâ€cell stimulation. Molecular Systems Biology, 2017, 13, 920.	3.2	44
477	High expression of insulin receptor on tumourâ€associated blood vessels in invasive bladder cancer predicts poor overall and progressionâ€free survival. Journal of Pathology, 2017, 242, 193-205.	2.1	24
478	Genome-wide uniformity of human â€~open' pre-initiation complexes. Genome Research, 2017, 27, 15-26.	2.4	22
479	Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. Molecular Cell, 2017, 65, 25-38.	4.5	222
480	Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution. Nature Biotechnology, 2017, 35, 136-144.	9.4	78
481	Cancer-specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia. Blood, 2017, 129, e13-e25.	0.6	27
482	Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nature Immunology, 2017, 18, 173-183.	7.0	300
483	CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355, .	6.0	566
484	Distinct global binding patterns of the Wilms tumor gene 1 (WT1) â^'KTS and +KTS isoforms in leukemic cells. Haematologica, 2017, 102, 336-345.	1.7	12
485	ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Research, 2017, 45, 10229-10241.	6.5	53
486	Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nature Genetics, 2017, 49, 1752-1757.	9.4	432
487	Intragenic Enhancers Attenuate Host Gene Expression. Molecular Cell, 2017, 68, 104-117.e6.	4.5	85
488	Linking FANTOM5 CAGE peaks to annotations with CAGEscan. Scientific Data, 2017, 4, 170147.	2.4	29
489	A genome-wide interactome of DNA-associated proteins in the human liver. Genome Research, 2017, 27, 1950-1960.	2.4	10
490	Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers. Cell Systems, 2017, 5, 333-344.e5.	2.9	85
491	The three-dimensional genome: regulating gene expression during pluripotency and development. Development (Cambridge), 2017, 144, 3646-3658.	1.2	96
492	A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. American Journal of Human Genetics, 2017, 101, 643-663.	2.6	87
493	The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Scientific Data, 2017, 4, 170113.	2.4	55

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
494	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
495	Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone. Nucleic Acids Research, 2017, 45, 12681-12699.	6.5	21
496	Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology. Cell Systems, 2017, 5, 168-175.	2.9	7
497	Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	18
498	Application of a CAGE Method to an Avian Development Study. Methods in Molecular Biology, 2017, 1650, 101-109.	0.4	4
499	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
500	Bioinformatics approaches to predict target genes from transcription factor binding data. Methods, 2017, 131, 111-119.	1.9	10
501	Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	7
502	Emerging Roles for Epigenetic Programming in the Control of Inflammatory Signaling Integration in Heath and Disease. Advances in Experimental Medicine and Biology, 2017, 1024, 63-90.	0.8	7
503	FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies. Scientific Data, 2017, 4, 170107.	2.4	68
504	Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nature Communications, 2017, 8, 255.	5.8	136
505	Identification of NCAN as a candidate gene for developmental dyslexia. Scientific Reports, 2017, 7, 9294.	1.6	15
506	Computational Prediction of Position Effects of Apparently Balanced Human Chromosomal Rearrangements. American Journal of Human Genetics, 2017, 101, 206-217.	2.6	51
507	An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes and Development, 2017, 31, 1257-1271.	2.7	98
508	Review: Enhancers in Autoimmune Arthritis: Implications and Therapeutic Potential. Arthritis and Rheumatology, 2017, 69, 1925-1936.	2.9	5
509	Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clinical Science, 2017, 131, 2161-2182.	1.8	66
510	Identification of the macrophage-specific promoter signature in FANTOM5 mouse embryo developmental time course data. Journal of Leukocyte Biology, 2017, 102, 1081-1092.	1.5	35
511	The Ground State and Evolution of Promoter Region Directionality. Cell, 2017, 170, 889-898.e10.	13.5	77

#	Article	IF	CITATIONS
512	GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	820
513	Genome-scale regression analysis reveals a linear relationship for promoters and enhancers after combinatorial drug treatment. Bioinformatics, 2017, 33, 3696-3700.	1.8	6
514	Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints. Molecular Biology and Evolution, 2017, 34, 2856-2869.	3.5	71
515	Long Noncoding RNA: Genome Organization and Mechanism of Action. Advances in Experimental Medicine and Biology, 2017, 1008, 47-74.	0.8	219
516	Long Noncoding RNAs in Plants. Advances in Experimental Medicine and Biology, 2017, 1008, 133-154.	0.8	125
517	The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics, 2017, 18, 643-658.	7.7	414
518	Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35, 732-746.	9.4	79
519	Promoter-level transcriptome in primary lesions of endometrial cancer identified biomarkers associated with lymph node metastasis. Scientific Reports, 2017, 7, 14160.	1.6	11
520	The construction of sparse models of Mars's crustal magnetic field. Journal of Geophysical Research E: Planets, 2017, 122, 1443-1457.	1.5	13
521	Monitoring transcription initiation activities in rat and dog. Scientific Data, 2017, 4, 170173.	2.4	6
522	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35, 1128-1132.	9.4	19
523	Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: implications for human disease. Scientific Reports, 2017, 7, 15518.	1.6	26
524	High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nature Genetics, 2017, 49, 1731-1740.	9.4	227
525	The effect of genetic variation on promoter usage and enhancer activity. Nature Communications, 2017, 8, 1358.	5.8	50
526	Identification of Genetic and Epigenetic Variants Associated with Breast Cancer Prognosis by Integrative Bioinformatics Analysis. Cancer Informatics, 2017, 16, CIN.S39783.	0.9	36
527	Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development. Genome Biology and Evolution, 2017, 9, 2122-2133.	1.1	10
528	Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nature Genetics, 2017, 49, 1261-1266.	9.4	362
529	Switching dynein motors on and off. Nature Structural and Molecular Biology, 2017, 24, 557-559.	3.6	3

#	Article	IF	CITATIONS
530	Chromatin-enriched IncRNAs: a novel class of enhancer RNAs. Nature Structural and Molecular Biology, 2017, 24, 556-557.	3.6	13
531	Promoting transcription over long distances. Nature Genetics, 2017, 49, 972-973.	9.4	11
532	Integration of quantitated expression estimates from polyA-selected and rRNA-depleted RNA-seq libraries. BMC Bioinformatics, 2017, 18, 301.	1.2	40
533	Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. Nucleic Acids Research, 2017, 45, D737-D743.	6.5	116
534	Update on the genetic architecture of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 13-24.	3.5	102
535	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes, 2017, 66, 218-230.	0.3	27
536	A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Research, 2017, 27, 38-52.	2.4	244
537	The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nature Genetics, 2017, 49, 36-45.	9.4	251
538	A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny. Stem Cells and Development, 2017, 26, 314-327.	1.1	4
539	<i>TSHR</i> Gene Polymorphisms in the Enhancer Regions Are Most Strongly Associated with the Development of Graves' Disease, Especially Intractable Disease, and of Hashimoto's Disease. Thyroid, 2017, 27, 111-119.	2.4	15
540	Causal role of histone acetylations in enhancer function. Transcription, 2017, 8, 40-47.	1.7	70
541	New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Seminars in Cell and Developmental Biology, 2017, 64, 160-170.	2.3	24
542	In Silico Promoter Recognition from deepCAGE Data. Methods in Molecular Biology, 2017, 1468, 171-199.	0.4	0
543	Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs. Methods in Molecular Biology, 2017, 1468, 11-18.	0.4	19
544	Visualization of Enhancer-Derived Noncoding RNA. Methods in Molecular Biology, 2017, 1468, 19-32.	0.4	12
545	IL-10 production by CLL cells is enhanced in the anergic IGHV mutated subset and associates with reduced DNA methylation of the IL10 locus. Leukemia, 2017, 31, 1686-1694.	3.3	28
546	Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Research, 2017, 45, 81-91.	6.5	88
547	Transcription start site profiling of 15 anatomical regions of the Macaca mulatta central nervous system. Scientific Data, 2017, 4, 170163.	2.4	4

ARTICLE IF CITATIONS # SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome 548 6.5 44 bisulphite sequencing. Nucleic Acids Research, 2017, 45, e36-e36. **Clucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction** 549 at Multiple Target Loci. Cell Reports, 2017, 21, 3022-3031 550 RNA and the Cellular Biochemistry Revisited., 2017, , 1-53. 0 Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks. Journal of Molecular Cell Biology, 2017, 9, 436-452 Putative enhancer sites in the bovine genome are enriched with variants affecting complex traits. 552 1.2 41 Genetics Selection Evolution, 2017, 49, 56. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics, 2017, 49, 1539-1545. 9.4 Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids 554 6.5 50 Research, 2017, 45, 2354-2367. Transcriptional Regulation and Macrophage Differentiation., 2017, , 117-139. 556 Genome instability: a conserved mechanism of ageing?. Essays in Biochemistry, 2017, 61, 305-315. 2.1 37 Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation. 6.5 Nucleic Acids Research, 2017, 45, 9823-9836. Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. Biology, 2017, 6, 558 1.3 11 28. Living Organisms Author Their Read-Write Genomes in Evolution. Biology, 2017, 6, 42. 1.3 44 Transcriptome Profiling in Human Diseases: New Advances and Perspectives. International Journal of 560 1.8 193 Molecular Sciences, 2017, 18, 1652. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for 2.8 36 cardiac rhythm. ELife, 2017, 6, . Gene Regulatory Enhancers with Evolutionarily Conserved Activity Are More Pleiotropic than Those 562 1.1 26 with Species-Specific Activity. Genome Biology and Evolution, 2017, 9, 2615-2625. Subterranean mammals show convergent regression in ocular genes and enhancers, along with 138 adaptation to tunneling. ELife, 2017, 6, . Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types 564 1.1 73 and Tissues by GenoSTAN. PLoS ONE, 2017, 12, e0169249. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genetics, 2017, 13, 1.5 e1006997.

ARTICLE IF CITATIONS # Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung 1.1 20 566 adenocarcinoma. PLoS ONE, 2017, 12, e0175622. Systematic analysis of transcription start sites in avian development. PLoS Biology, 2017, 15, e2002887. 2.6 Network perturbation by recurrent regulatory variants in cancer. PLoS Computational Biology, 2017, 568 1.5 5 13, e1005449. Uncovering direct and indirect molecular determinants of chromatin loops using a computational 569 integrative approach. PLoS Computational Biology, 2017, 13, e1005538. Analysis of the human monocyte-derived macrophage transcriptome and response to 570 lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS 1.5 161 Genetics, 2017, 13, e1006641. Psip1/p52 regulates posterior Hoxa genes through activation of IncRNA Hottip. PLoS Genetics, 2017, 13, 571 1.5 e1006677. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA 572 1.5 96 elements for late-onset Alzheimer's disease. PLoS Genetics, 2017, 13, e1006933. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in 3.8 134 maize. Genome Biology, 2017, 18, 137. Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome 574 3.8 68 Biology, 2017, 18, 165. Intergenic disease-associated regions are abundant in novel transcripts. Genome Biology, 2017, 18, 241. 3.8 Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers. 576 3.8 52 Genome Biology, 2017, 18, 242. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves 1.8 34 non-random 3D arrangements in chromatin domain clusters. Epigenetics and Chromatin, 2017, 10, 39. Genome-wide profiling of transcribed enhancers during macrophage activation. Epigenetics and 578 1.8 41 Chromatin, 2017, 10, 50. Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes 579 3.6 intronic locus that controls GCKR expression in liver cells. Genome Medicine, 2017, 9, 63 Long non-coding RNAs as novel players in \hat{l}^2 cell function and type 1 diabetes. Human Genomics, 2017, 11, 580 1.4 48 17. Rare non-coding variants are associated with plasma lipid traits in a founder population. Scientific Reports, 2017, 7, 16415. A new method for enhancer prediction based on deep belief network. BMC Bioinformatics, 2017, 18, 418. 582 1.2 47 Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 2017, 18, 478. 1.2

#	Article	IF	CITATIONS
584	Cell type discovery and representation in the era of high-content single cell phenotyping. BMC Bioinformatics, 2017, 18, 559.	1.2	51
585	Discovering new host-directed therapies to treat inflammation. South African Journal of Science, 2017, 113, 2.	0.3	0
586	Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis. Advances and Applications in Bioinformatics and Chemistry, 2017, Volume 10, 57-64.	1.6	16
587	START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries. BMC Genomics, 2017, 18, 749.	1.2	6
588	Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 2017, 18, 536.	1.2	21
589	Identifying noncoding risk variants using disease-relevant gene regulatory networks. Nature Communications, 2018, 9, 702.	5.8	35
590	HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene, 2018, 37, 2728-2745.	2.6	76
591	Enhancer RNA profiling predicts transcription factor activity. Genome Research, 2018, 28, 334-344.	2.4	88
592	Integrative omics for health and disease. Nature Reviews Genetics, 2018, 19, 299-310.	7.7	676
593	Adipocyte Long-Noncoding RNA Transcriptome Analysis of Obese Mice Identified <i>Lnc-Leptin</i> , Which Regulates Leptin. Diabetes, 2018, 67, 1045-1056.	0.3	49
594	Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes and Development, 2018, 32, 202-223.	2.7	171
595	PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN–Inducible Proteins. Journal of Immunology, 2018, 200, 2439-2454.	0.4	70
596	Unravelling the molecular basis for regulatory T ell plasticity and loss of function in disease. Clinical and Translational Immunology, 2018, 7, e1011.	1.7	23
597	Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cellular and Molecular Life Sciences, 2018, 75, 2537-2555.	2.4	26
598	Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nature Communications, 2018, 9, 1636.	5.8	40
599	Widespread Enhancer Activity from Core Promoters. Trends in Biochemical Sciences, 2018, 43, 452-468.	3.7	54
600	Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Research, 2018, 46, 1648-1660.	6.5	90
601	Genome-Wide DNA Methylation Analysis During Palatal Fusion Reveals the Potential Mechanism of Enhancer Methylation Regulating Epithelial Mesenchyme Transformation. DNA and Cell Biology, 2018, 37, 560-573	0.9	17

#	Article	IF	Citations
602	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
603	Epigenome-wide analysis reveals specific DNA hypermethylation of T cells during human hematopoietic differentiation. Epigenomics, 2018, 10, 903-923.	1.0	11
604	Sequence-Based Analysis of Lipid-Related Metabolites in a Multiethnic Study. Genetics, 2018, 209, 607-616.	1.2	8
605	Antisense transcriptionâ€dependent chromatin signature modulates sense transcript dynamics. Molecular Systems Biology, 2018, 14, e8007.	3.2	42
606	Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data. GigaScience, 2018, 7, 1-17.	3.3	27
607	Methods and Applications of Epigenomics. , 2018, , 19-38.		0
608	Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nature Communications, 2018, 9, 619.	5.8	192
609	Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocrine-Related Cancer, 2018, 25, R259-R282.	1.6	94
610	Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions. Nature Communications, 2018, 9, 487.	5.8	50
611	Non-coding RNAs, epigenetics, and cancer: tying it all together. Cancer and Metastasis Reviews, 2018, 37, 55-73.	2.7	87
612	Widespread transcriptional pausing and elongation control at enhancers. Genes and Development, 2018, 32, 26-41.	2.7	269
613	The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes and Development, 2018, 32, 42-57.	2.7	201
614	IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome. Nucleic Acids Research, 2018, 46, e47-e47.	6.5	30
615	Role of epigenetics in the development of childhood asthma. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 132-138.	1.1	25
616	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	9.0	170
617	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	5.8	295
618	Genomic and Expression Analyses Identify a Disease-Modifying Variant for Fibrostenotic Crohn's Disease. Journal of Crohn's and Colitis, 2018, 12, 582-588.	0.6	16
619	The RNA Polymerase II Factor RPAP1 Is Critical for Mediator-Driven Transcription and Cell Identity. Cell Reports, 2018, 22, 396-410.	2.9	30

ARTICLE IF CITATIONS # Emerging themes in neuronal activity-dependent gene expression. Molecular and Cellular 620 1.0 28 Neurosciences, 2018, 87, 27-34. Persistence of Long-Range Contacts at Insulators., 2018, , 171-185. 622 Promoter–Enhancer Looping and Regulatory Neighborhoods., 2018, , 435-456. 3 Phenotypic interpretation of complex chromosomal rearrangements informed by nucleotide-level resolution and structural organization of chromatin. European Journal of Human Genetics, 2018, 26, 374-381 NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources. 624 1.8 14 Bioinformatics, 2018, 34, 249-257. PGA: post-GWAS analysis for disease gene identification. Bioinformatics, 2018, 34, 1786-1788. 1.8 Characterizing ZC3H18, a Multi-domain Protein at the Interface of RNA Production and Destruction 626 2.9 33 Decisions. Cell Reports, 2018, 22, 44-58. Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated 5.8 loci. Nature Communications, 2018, 9, 8. The Post-GWAS Era: From Association to Function. American Journal of Human Genetics, 2018, 102, 628 2.6 626 717-730. The future is now: cutting edge science and understanding toxicology. Cell Biology and Toxicology, 629 2.4 2018, 34, 79-85. Characterization of the enhancer and promoter landscape of inflammatory bowel disease from 630 5.8 78 human colon biopsies. Nature Communications, 2018, 9, 1661. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. 1.2 BMC Genomics, 2018, 19, 181. FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive 632 3.8 63 enhancer–promoter map. Genome Biology, 2018, 19, 56. Integration of Enhancer-Promoter Interactions with GWAS Summary Results Identifies Novel 1.2 34 Schizophrenia-Associated Genes and Pathways. Genetics, 2018, 209, 699-709. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. American 634 30 2.6 Journal of Human Genetics, 2018, 102, 904-919. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nature Genetics, 2018, 50, 727-736. 9.4 235 Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and 636 6.5 40 core promoter-encoded enhancer activities. Nucleic Acids Research, 2018, 46, 5455-5469. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. Scientific 1.6 Reports, 2018, 8, 6758.

#	Article	IF	CITATIONS
638	From "Cellular―RNA to "Smart―RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chemical Reviews, 2018, 118, 4365-4403.	23.0	63
640	Experimental Design and Bioinformatic Analysis of DNA Methylation Data. Methods in Molecular Biology, 2018, 1766, 175-194.	0.4	0
641	Functional annotation of genomic variants in studies of late-onset Alzheimer's disease. Bioinformatics, 2018, 34, 2724-2731.	1.8	30
642	Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era. Population Genomics, 2018, , 361-425.	0.2	6
643	Peripubertal serum dioxin concentrations and subsequent sperm methylome profiles of young Russian adults. Reproductive Toxicology, 2018, 78, 40-49.	1.3	28
644	De novo mutations in regulatory elements in neurodevelopmental disorders. Nature, 2018, 555, 611-616.	13.7	232
645	Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis. Methods in Molecular Biology, 2018, 1769, 353-361.	0.4	7
646	Intergenic and intronic DNA hypomethylated regions as putative regulators of imprinted domains. Epigenomics, 2018, 10, 445-461.	1.0	10
647	Identification of potential regulatory mutations using multi-omics analysis and haplotyping of lung adenocarcinoma cell lines. Scientific Reports, 2018, 8, 4926.	1.6	9
648	A survey of recently emerged genome-wide computational enhancer predictor tools. Computational Biology and Chemistry, 2018, 74, 132-141.	1.1	29
649	Optimal Block-Based Trimming for Next Generation Sequencing. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 364-376.	1.9	0
650	Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Briefings in Functional Genomics, 2018, 17, 49-63.	1.3	111
651	HEDD: Human Enhancer Disease Database. Nucleic Acids Research, 2018, 46, D113-D120.	6.5	47
652	Noncoding RNA Surveillance: The Ends Justify the Means. Chemical Reviews, 2018, 118, 4422-4447.	23.0	20
653	Genetics of human autoimmunity: From genetic information to functional insights. Clinical Immunology, 2018, 186, 9-13.	1.4	7
654	Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. Journal of Biological Chemistry, 2018, 293, 13786-13794.	1.6	39
655	Leveraging putative enhancer-promoter interactions to investigate two-way epistasis in Type 2 Diabetes GWAS. , 2018, , .		2
656	A comprehensive review of genetic and epigenetic mechanisms that regulate <i>BDNF</i> expression and function with relevance to major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 143-167.	1.1	100

#	Article	IF	CITATIONS
657	Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPl. Genome Research, 2018, 28, 88-99.	2.4	54
658	New Insights into Lymphoma Pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 193-217.	9.6	27
659	TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers. Genomics, Proteomics and Bioinformatics, 2018, 16, 332-341.	3.0	4
660	Roles of Non-Coding RNAs in Transcriptional Regulation. , 0, , .		14
661	Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. Open Biology, 2018, 8, 180011.	1.5	13
662	Borders of Cis-Regulatory DNA Sequences Preferentially Harbor the Divergent Transcription Factor Binding Motifs in the Human Genome. Frontiers in Genetics, 2018, 9, 571.	1.1	4
663	A comprehensive review of computational prediction of genome-wide features. Briefings in Bioinformatics, 2020, 21, 120-134.	3.2	12
664	Dichotomy in redundant enhancers points to presence of initiators of gene regulation. BMC Genomics, 2018, 19, 947.	1.2	5
665	Fuzzy neural network learning based on hierarchical agglomerative T-S fuzzy inference. International Journal of Reasoning-based Intelligent Systems, 2018, 10, 83.	0.1	2
666	Ce and Zr Modified WO3-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysts, 2018, 8, 375.	1.6	14
667	Transcriptional Landscape of PARs in Epithelial Malignancies. International Journal of Molecular Sciences, 2018, 19, 3451.	1.8	10
668	SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total RNA. Genome Research, 2018, 28, 1943-1956.	2.4	33
669	Ch <scp>IP</scp> â€Atlas: a dataâ€mining suite powered by full integration of public Ch <scp>IP</scp> â€seq data. EMBO Reports, 2018, 19, .	2.0	544
670	Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor. International Journal of Molecular Sciences, 2018, 19, 3609.	1.8	5
671	Deregulated Expression of Mammalian IncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Molecular Cell, 2018, 72, 970-984.e7.	4.5	140
672	Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell, 2018, 34, 982-995.e7.	7.7	101
673	BRD4 and Cancer: going beyond transcriptional regulation. Molecular Cancer, 2018, 17, 164.	7.9	414
674	Epigenetic Heterogeneity in Human Colorectal Tumors Reveals Preferential Conservation And Evidence of Immune Surveillance. Scientific Reports, 2018, 8, 17292.	1.6	17

ARTICLE IF CITATIONS # Transcriptional Profiling of Hypoxia-Regulated Non-coding RNAs in Human Primary Endothelial Cells. 675 1.1 25 Frontiers in Cardiovascular Medicine, 2018, 5, 159. Production of Spliced Long Noncoding RNAs Specifies Regions with Increased Enhancer Activity. Cell 676 Systems, 2018, 7, 537-547.e3. Histone H3 lysine 4 methylation signature associated with human undernutrition. Proceedings of the 677 3.3 23 National Academy of Sciences of the United States of America, 2018, 115, E11264-E11273. SMARTcleaner: identify and clean off-target signals in SMART ChIP-seq analysis. BMC Bioinformatics, 1.2 2018, 19, 544. Genome-wide maps of distal gene regulatory enhancers active in the human placenta. PLoS ONE, 2018, 679 1.1 7 13, e0209611. Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics and Chromatin, 2018, 11, 74. 680 1.8 T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune 681 1.8 41 alterations in childhood cancer survivors. Clinical Epigenetics, 2018, 10, 138. A miR-150/TET3 pathway regulates the generation of mouse and human non-classical monocyte subset. 5.8 Nature Communications, 2018, 9, 5455 The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the 683 1.6 17 mouse brain. Scientific Reports, 2018, 8, 16913. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 684 6.0 2018, 362, . Genomeâ€Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development 685 12 and Disease., 2018, 9, 439-455. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Non-coding RNA, 686 1.3 2018, 4, 40. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in 687 5.8 119 cardiovascular outcomes. Nature Communications, 2018, 9, 5141. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties. PLoS Computational Biology, 2018, 14, e1006484. 1.5 Enhancer and superâ€enhancer: Positive regulators in gene transcription. Animal Models and 689 1.3 49 Experimental Medicine, 2018, 1, 169-179. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 501-515. Transcription-driven genome organization: a model for chromosome structure and the regulation of 691 6.5 92 gene expression tested through simulations. Nucleic Acids Research, 2018, 46, 9895-9906. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome 2.4 Research, 2018, 28, 1675-1687.

#	Article	IF	CITATIONS
693	Repurposing of promoters and enhancers during mammalian evolution. Nature Communications, 2018, 9, 4066.	5.8	51
694	Towards a Quantitative Understanding of Cell Identity. Trends in Cell Biology, 2018, 28, 1030-1048.	3.6	26
695	Beyond DNA: the Role of Epigenetics in the Premalignant Progression of Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2018, 23, 223-235.	1.0	29
696	Determinants of promoter and enhancer transcription directionality in metazoans. Nature Communications, 2018, 9, 4472.	5.8	22
697	Tissue Expression Difference between mRNAs and IncRNAs. International Journal of Molecular Sciences, 2018, 19, 3416.	1.8	64
698	Global transcriptional activity dynamics reveal functional enhancer RNAs. Genome Research, 2018, 28, 1799-1811.	2.4	34
699	Bioinformatics: Sequences, Structures, Phylogeny. , 2018, , .		0
700	Computational Epigenomics and Its Application in Regulatory Genomics. , 2018, , 115-139.		0
701	Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nature Genetics, 2018, 50, 1681-1687.	9.4	131
702	NanoPARE: parallel analysis of RNA 5′ ends from low-input RNA. Genome Research, 2018, 28, 1931-1942.	2.4	56
703	A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Scientific Reports, 2018, 8, 16048.	1.6	23
704	Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules, 2018, 23, 2789.	1.7	64
705	Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers. Nature Genetics, 2018, 50, 1533-1541.	9.4	89
706	Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme. Nature Genetics, 2018, 50, 1553-1564.	9.4	108
707	Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nature Neuroscience, 2018, 21, 1482-1492.	7.1	79
708	Promoter Usage and Dynamics in Vascular Smooth Muscle Cells Exposed to Fibroblast Growth Factor-2 or Interleukin-1β. Scientific Reports, 2018, 8, 13164.	1.6	10
709	Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Frontiers in Neuroanatomy, 2018, 12, 70.	0.9	21
710	Left ventricular remodeling after the first myocardial infarction in association with LGALS-3 neighbouring variants rs2274273 and rs17128183 and its relative mRNA expression: a prospective study. Molecular Biology Reports, 2018, 45, 2227-2236.	1.0	10

#	Article	IF	CITATIONS
711	The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Research, 2018, 46, 11502-11513.	6.5	40
712	Decoding the non-coding genome: Opportunities and challenges of genomic and epigenomic consortium data. Current Opinion in Systems Biology, 2018, 11, 82-90.	1.3	4
713	Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics, 2018, 13, 910-922.	1.3	37
714	HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures. BMC Bioinformatics, 2018, 19, 310.	1.2	2
715	Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation. Bioengineered, 2018, 9, 242-251.	1.4	8
716	From genome-wide associations to candidate causal variants by statistical fine-mapping. Nature Reviews Genetics, 2018, 19, 491-504.	7.7	611
717	The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts. Cell Reports, 2018, 23, 2199-2210.	2.9	65
718	A Guide for Designing and Analyzing RNA-Seq Data. Methods in Molecular Biology, 2018, 1783, 35-80.	0.4	23
719	Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell, 2018, 173, 1796-1809.e17.	13.5	165
720	Fast-Evolving Human-Specific Neural Enhancers Are Associated with Aging-Related Diseases. Cell Systems, 2018, 6, 604-611.e4.	2.9	20
721	The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 2018, 19, 143-157.	16.1	968
722	Roles of Enhancer RNAs in RANKL-induced Osteoclast Differentiation Identified by Genome-wide Cap-analysis of Gene Expression using CRISPR/Cas9. Scientific Reports, 2018, 8, 7504.	1.6	15
723	Leveraging epigenomics and contactomics data to investigate SNP pairs in GWAS. Human Genetics, 2018, 137, 413-425.	1.8	8
724	The impact of ERα action on muscle metabolism and insulin sensitivity – Strong enough for aÂman, made for a woman. Molecular Metabolism, 2018, 15, 20-34.	3.0	47
725	Emerging Roles of Non-Coding RNA Transcription. Trends in Biochemical Sciences, 2018, 43, 654-667.	3.7	116
726	Eukaryotic core promoters and the functional basis of transcription initiation. Nature Reviews Molecular Cell Biology, 2018, 19, 621-637.	16.1	480
727	An atlas of chromatin accessibility in the adult human brain. Genome Research, 2018, 28, 1243-1252.	2.4	170
728	Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Research, 2018, 46, 7566-7585.	6.5	37

# 729	ARTICLE Type 2 Immunity. Methods in Molecular Biology, 2018, , .	IF 0.4	CITATIONS
730	L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution. Cell Reports, 2018, 23, 3730-3740.	2.9	43
731	High expression of enhancer RNA MARC1 or its activation by DHT is associated with the malignant behavior in bladder cancer. Experimental Cell Research, 2018, 370, 303-311.	1.2	7
732	A bi-stable feedback loop between GDNF, EGR1, and ERα contribute to endocrine resistant breast cancer. PLoS ONE, 2018, 13, e0194522.	1.1	5
733	Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics, 2018, 34, 3983-3989.	1.8	211
734	An Integrated and Semiautomated Microscaled Approach to Profile Cis-Regulatory Elements by Histone Modification ChIP-Seq for Large-Scale Epigenetic Studies. Methods in Molecular Biology, 2018, 1799, 303-326.	0.4	2
735	Current Advances on the Important Roles of Enhancer RNAs in Gene Regulation and Cancer. BioMed Research International, 2018, 2018, 1-6.	0.9	10
736	Functional Genomics. , 2018, , 77-88.		0
737	N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Experimental and Molecular Medicine, 2018, 50, 1-11.	3.2	15
738	Biotagging, an in vivo biotinylation approach for cell-type specific subcellular profiling in zebrafish. Methods, 2018, 150, 24-31.	1.9	3
739	Transcriptional Regulation of Hypothalamic Energy Balance Genes. , 2018, , 55-73.		1
740	JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states. Epigenetics, 2018, 13, 410-431.	1.3	32
741	Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics, 2018, 19, 594.	1.2	86
742	Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment. Journal of Cancer, 2018, 9, 2334-2340.	1.2	49
743	Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood, 2018, 132, 999-1006.	0.6	24
744	Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nature Genetics, 2018, 50, 1067-1071.	9.4	152
745	Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nature Communications, 2018, 9, 2929.	5.8	20
746	A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Research, 2018, 268, 238-242.	1.7	4

ARTICLE IF CITATIONS # Human Enhancers Harboring Specific Sequence Composition, Activity, and Genome Organization Are 747 1.2 16 Linked to the Immune Response. Genetics, 2018, 209, 1055-1071. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC 748 1.2 Bioinformatics, 2018, 19, 202. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. 749 3.6 123 Nature Structural and Molecular Biology, 2018, 25, 687-697. Identification of Single Nucleotide Non-coding Driver Mutations in Cancer. Frontiers in Genetics, 1.1 2018, 9, 16. Genome-wide association study of developmental dysplasia of the hip identifies an association with 751 2.0 45 GDF5. Communications Biology, 2018, 1, 56. Application of High-Throughput Technologies in Personal Genomics: How Is the Progress in Personal Genome Service?. Respiratory Disease Series, 2018, , 319-331. 0.1 RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance. Non-coding RNA, 2018, 4, 753 1.3 56 8. Prioritization and functional assessment of noncoding variants associated with complex diseases. 754 3.6 Genome Medicine, 2018, 10, 53. ER-positive breast cancer cells are poised for RET-mediated endocrine resistance. PLoS ONE, 2018, 13, 755 1.1 19 e0194023. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated 5.8 79 molecular subtypes. Nature Communications, 2018, 9, 2670. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. 757 1.5 30 PLoS Genetics, 2018, 14, e1007275. Bioinformatics in Next-Generation Genome Sequencing., 2018, , 27-38. 758 A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 759 2.9 70 1,400 Cases. Cell Reports, 2018, 24, 515-527. Enabling Precision Medicine through Integrative Network Models. Journal of Molecular Biology, 2018, 430, 2913-2923. 761 Cis-regulatory determinants of MyoD function. Nucleic Acids Research, 2018, 46, 7221-7235. 6.5 11 Genomic positional conservation identifies topological anchor point RNAs linked to developmental 114 loci. Genome Biology, 2018, 19, 32. Weak sharing of genetic association signals in three lung cancer subtypes: evidence at the SNP, gene, 763 3.6 32 regulation, and pathway levels. Genome Medicine, 2018, 10, 16. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 2018, 764 1.2 19,84.

#	Article	IF	CITATIONS
765	TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC Genomics, 2018, 19, 238.	1.2	12
766	Automated transition analysis of activated gene regulation during diauxic nutrient shift in Escherichia coli and adipocyte differentiation in mouse cells. BMC Bioinformatics, 2018, 19, 89.	1.2	0
767	INFERNO: inferring the molecular mechanisms of noncoding genetic variants. Nucleic Acids Research, 2018, 46, 8740-8753.	6.5	46
768	Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biology, 2018, 19, 118.	3.8	38
769	Revealing a human p53 universe. Nucleic Acids Research, 2018, 46, 8153-8167.	6.5	75
770	Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics, 2018, 19, 633.	1.2	60
771	Dynamic turnover of paused Pol II complexes at human promoters. Genes and Development, 2018, 32, 1215-1225.	2.7	65
772	Computational Analysis of Transcriptional Regulation Sites at the HTT Gene Locus. Journal of Huntington's Disease, 2018, 7, 223-237.	0.9	2
773	MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 2018, 361, 1389-1392.	6.0	207
774	Genome-wide Identification and Characterization of Enhancers Across 10 Human Tissues. International Journal of Biological Sciences, 2018, 14, 1321-1332.	2.6	22
775	Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Scientific Reports, 2018, 8, 11635.	1.6	30
776	Comprehensive comparative analysis of 5′-end RNA-sequencing methods. Nature Methods, 2018, 15, 505-511.	9.0	90
777	Genetic Epidemiology. Methods in Molecular Biology, 2018, , .	0.4	1
778	Diminished nuclear <scp>RNA</scp> decay upon <i>Salmonella</i> infection upregulates antibacterial noncoding <scp>RNA</scp> s. EMBO Journal, 2018, 37, .	3.5	55
779	Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Research, 2018, 46, 7022-7039.	6.5	33
780	Cellular and Molecular Biology Fundamentals. , 2018, , 59-78.		0
782	From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results. Methods in Molecular Biology, 2018, 1793, 259-275.	0.4	2
783	Targeting the IGF1R Pathway in Breast Cancer Using Antisense IncRNA-Mediated Promoter cis Competition. Molecular Therapy - Nucleic Acids, 2018, 12, 105-117.	2.3	33

#	Article	IF	CITATIONS
784	Whole Exome Sequencing of Patients from Multicase Families with Systemic Lupus Erythematosus Identifies Multiple Rare Variants. Scientific Reports, 2018, 8, 8775.	1.6	32
785	Transcriptional regulation by promoters with enhancer function. Transcription, 2018, 9, 307-314.	1.7	43
786	Reorganization of <i>interâ€</i> chromosomal interactions in the 2q37â€deletion syndrome. EMBO Journal, 2018, 37, .	3.5	13
787	Dissection of Enhancer Function Using Multiplex CRISPR-based Enhancer Interference in Cell Lines. Journal of Visualized Experiments, 2018, , .	0.2	7
788	CAPTURE: <i>In Situ</i> Analysis of Chromatin Composition of Endogenous Genomic Loci by Biotinylated dCas9. Current Protocols in Molecular Biology, 2018, 123, e64.	2.9	14
789	Approaches and advances in the genetic causes of autoimmune disease and their implications. Nature Immunology, 2018, 19, 674-684.	7.0	58
790	Versatile interactions and bioinformatics analysis of noncoding RNAs. Briefings in Bioinformatics, 2019, 20, 1781-1794.	3.2	24
791	Regulatory variants: from detection to predicting impact. Briefings in Bioinformatics, 2019, 20, 1639-1654.	3.2	82
792	Landscape of the long non-coding RNA transcriptome in human heart. Briefings in Bioinformatics, 2019, 20, 1812-1825.	3.2	17
793	Genome Informatics. , 2019, , 178-194.		0
794	New MiniPromoter Ple345 (<i>NEFL</i>) Drives Strong and Specific Expression in Retinal Ganglion Cells of Mouse and Primate Retina. Human Gene Therapy, 2019, 30, 257-272.	1.4	21
795	The miR-96 and RARÎ ³ signaling axis governs androgen signaling and prostate cancer progression. Oncogene, 2019, 38, 421-444.	2.6	45
796	Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Molecular Psychiatry, 2019, 24, 1685-1695.	4.1	40
797	Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. International Reviews of Immunology, 2019, 38, 232-245.	1.5	16
798	C-Jun drives melanoma progression in PTEN wild type melanoma cells. Cell Death and Disease, 2019, 10, 584.	2.7	24
799	Nascent RNA analyses: tracking transcription and its regulation. Nature Reviews Genetics, 2019, 20, 705-723.	7.7	177
800	Genetic Variation in Long-Range Enhancers. Current Topics in Behavioral Neurosciences, 2019, 42, 35-50.	0.8	2
801	Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Frontiers in Cellular Neuroscience, 2019, 13, 352.	1.8	53

#	Article	IF	CITATIONS
802	EPIP: a novel approach for condition-specific enhancer–promoter interaction prediction. Bioinformatics, 2019, 35, 3877-3883.	1.8	33
803	Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers. American Journal of Human Genetics, 2019, 105, 477-492.	2.6	27
804	Mitochondria in the signaling pathways that control longevity and health span. Ageing Research Reviews, 2019, 54, 100940.	5.0	118
805	Some Aspects of Carcinogenesis Associated with Genetic and Epigenetic Factors. Biology Bulletin Reviews, 2019, 9, 129-144.	0.3	1
806	A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Research, 2019, 47, 9557-9572.	6.5	21
807	Long Noncoding RNAs of the Arterial Wall as Therapeutic Agents and Targets in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1222-1236.	1.8	12
808	AP-1 Signaling by Fra-1 Directly Regulates HMGA1 Oncogene Transcription in Triple-Negative Breast Cancers. Molecular Cancer Research, 2019, 17, 1999-2014.	1.5	15
809	Biological characterization of expression quantitative trait loci (eQTLs) showing tissue-specific opposite directional effects. European Journal of Human Genetics, 2019, 27, 1745-1756.	1.4	32
810	Non-Coding RNAs and their Integrated Networks. Journal of Integrative Bioinformatics, 2019, 16, .	1.0	382
811	Novel mRNAs 3′ end-associated <i>cis</i> -regulatory elements with epigenomic signatures of mammalian enhancers in the <i>Arabidopsis</i> genome. Rna, 2019, 25, 1242-1258.	1.6	6
812	Computational Biology Solutions to Identify Enhancers-target Gene Pairs. Computational and Structural Biotechnology Journal, 2019, 17, 821-831.	1.9	29
813	The Protistan Cellular and Genomic Roots of Animal Multicellularity. Fascinating Life Sciences, 2019, , 15-38.	0.5	0
814	A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Medicine, 2019, 11, 47.	3.6	68
815	Transcription Start Site Mapping Using Super-low Input Carrier-CAGE. Journal of Visualized Experiments, 2019, , .	0.2	5
816	RegulationSpotter: annotation and interpretation of extratranscriptic DNA variants. Nucleic Acids Research, 2019, 47, W106-W113.	6.5	17
817	Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction. Cell Stem Cell, 2019, 25, 713-727.e10.	5.2	76
818	An Approach for Recognition of Enhancer-promoter Associations based on Random Forest. , 2019, , .		2
819	New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends in Genetics, 2019, 35, 914-922.	2.9	45

#	Article	IF	CITATIONS
820	Global impact of somatic structural variation on the DNA methylome of human cancers. Genome Biology, 2019, 20, 209.	3.8	40
821	Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules, 2019, 9, 605.	1.8	27
822	Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. Cell Systems, 2019, 9, 446-458.e6.	2.9	27
823	Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nature Communications, 2019, 10, 4562.	5.8	165
824	CAGEfightR: analysis of 5′-end data using R/Bioconductor. BMC Bioinformatics, 2019, 20, 487.	1.2	59
825	STARRâ€seq and UMIâ€STARRâ€seq: Assessing Enhancer Activities for Genomeâ€Wideâ€, Highâ€, and Lowâ€Cor Candidate Libraries. Current Protocols in Molecular Biology, 2019, 128, e105.	nglexity	46
826	Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues. G3: Genes, Genomes, Genetics, 2019, 9, 2761-2774.	0.8	18
827	CRUP: a comprehensive framework to predict condition-specific regulatory units. Genome Biology, 2019, 20, 227.	3.8	26
828	UCSC Genome Browser enters 20th year. Nucleic Acids Research, 2020, 48, D756-D761.	6.5	138
829	EAGLE: An algorithm that utilizes a small number of genomic features to predict tissue/cell type-specific enhancer-gene interactions. PLoS Computational Biology, 2019, 15, e1007436.	1.5	19
830	The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell, 2019, 36, 630-644.e9.	7.7	35
831	Direct prediction of regulatory elements from partial data without imputation. PLoS Computational Biology, 2019, 15, e1007399.	1.5	13
832	Identification of gene specific cis-regulatory elements during differentiation of mouse embryonic stem cells: An integrative approach using high-throughput datasets. PLoS Computational Biology, 2019, 15, e1007337.	1.5	18
833	7C:ÂComputational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. BMC Genomics, 2019, 20, 777.	1.2	10
834	Enhancer Dysfunction in 3D Genome and Disease. Cells, 2019, 8, 1281.	1.8	15
835	BDNF genetic variants and methylation: effects on cognition in major depressive disorder. Translational Psychiatry, 2019, 9, 265.	2.4	42
836	FFPEcap-seq: a method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples. Genome Research, 2019, 29, 1826-1835.	2.4	9
837	Identification and Characterization of a Transcribed Distal Enhancer Involved in Cardiac Kcnh2 Regulation. Cell Reports, 2019, 28, 2704-2714.e5.	2.9	15

#	Article	IF	CITATIONS
838	NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. Nature Genetics, 2019, 51, 1369-1379.	9.4	72
839	Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19398-19408.	3.3	99
840	Druggable Transcriptional Networks in the Human Neurogenic Epigenome. Pharmacological Reviews, 2019, 71, 520-538.	7.1	11
841	Investigation of the Transcriptional Role of a RUNX1 Intronic Silencer by CRISPR/Cas9 Ribonucleoprotein in Acute Myeloid Leukemia Cells. Journal of Visualized Experiments, 2019, , .	0.2	3
842	Landscape of Enhancer-Enhancer Cooperative Regulation during Human Cardiac Commitment. Molecular Therapy - Nucleic Acids, 2019, 17, 840-851.	2.3	11
843	The first enhancer in an enhancer chain safeguards subsequent enhancer-promoter contacts from a distance. Genome Biology, 2019, 20, 197.	3.8	21
844	Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants. Journal of Alzheimer's Disease, 2019, 72, 301-318.	1.2	19
845	Evolution, Origin of Life, Concepts and Methods. , 2019, , .		4
846	Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Research, 2019, 47, 10597-10611.	6.5	39
847	C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nature Communications, 2019, 10, 360.	5.8	102
848	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
849	Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nature Communications, 2019, 10, 414.	5.8	49
850	High-throughput functional analysis of IncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29, 344-355.	2.4	100
851	Long Non-coding RNA in Neuronal Development and Neurological Disorders. Frontiers in Genetics, 2018, 9, 744.	1.1	68
852	Stems cells, big data and compendium-based analyses for identifying cell types, signalling pathways and gene regulatory networks. Biophysical Reviews, 2019, 11, 41-50.	1.5	7
853	Adolescent Alcohol Exposure Epigenetically Suppresses Amygdala Arc Enhancer RNA Expression to Confer Adult Anxiety Susceptibility. Biological Psychiatry, 2019, 85, 904-914.	0.7	62
854	A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia, 2019, 33, 2061-2077.	3.3	13
855	Transcriptionally induced enhancers in the macrophage immune response to Mycobacterium tuberculosis infection. BMC Genomics, 2019, 20, 71.	1.2	16

#	Article	IF	Citations
856	Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. European Journal of Pharmaceutical Sciences, 2019, 130, 65-77.	1.9	51
857	Sequence Characteristics Distinguish Transcribed Enhancers from Promoters and Predict Their Breadth of Activity. Genetics, 2019, 211, 1205-1217.	1.2	10
858	CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics, 2019, 20, 102.	1.2	43
859	Role of Epigenomics in Bone and Cartilage Disease. Journal of Bone and Mineral Research, 2019, 34, 215-230.	3.1	61
860	ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Scientific Reports, 2019, 9, 7785.	1.6	51
861	Control of p53-dependent transcription and enhancer activity by the p53 family member p63. Journal of Biological Chemistry, 2019, 294, 10720-10736.	1.6	27
862	Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver. American Journal of Human Genetics, 2019, 105, 89-107.	2.6	35
863	Genome-wide enhancer annotations differ significantly in genomic distribution, evolution, and function. BMC Genomics, 2019, 20, 511.	1.2	38
864	refTSS: A Reference Data Set for Human and Mouse Transcription Start Sites. Journal of Molecular Biology, 2019, 431, 2407-2422.	2.0	72
865	Developmental dynamics of lncRNAs across mammalian organs and species. Nature, 2019, 571, 510-514.	13.7	219
866	Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell and Melanoma Research, 2019, 32, 777-791.	1.5	20
867	eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic data. Bioinformatics, 2019, 35, 4767-4769.	1.8	84
868	Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. Environmental Health Perspectives, 2019, 127, 57011.	2.8	40
869	A comparison of two workflows for regulome and transcriptomeâ€based prioritization of genetic variants associated with myocardial mass. Genetic Epidemiology, 2019, 43, 717-726.	0.6	1
870	Insights into active intragenic enhancers. Biochemical and Biophysical Research Communications, 2019, 515, 423-428.	1.0	4
871	Functional impacts of non-coding RNA processing on enhancer activity and target gene expression. Journal of Molecular Cell Biology, 2019, 11, 868-879.	1.5	15
872	Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations. Molecular Cell, 2019, 75, 267-283.e12.	4.5	104
873	Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics, 2019, 20, 477.	1.2	8

	CITATION R	EPORT	
#	Article	IF	CITATIONS
874	Enhancer RNAs: Insights Into Their Biological Role. Epigenetics Insights, 2019, 12, 251686571984609.	0.6	22
875	Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility. Hla, 2019, 94, 275-284.	0.4	5
876	Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 2019, 20, 467-484.	7.7	1,226
877	DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer. Clinical Epigenetics, 2019, 11, 67.	1.8	19
878	Studies of liver tissue identify functional gene regulatory elements associated to gene expression, type 2 diabetes, and other metabolic diseases. Human Genomics, 2019, 13, 20.	1.4	5
879	Associations between Maternal Tobacco Smoke Exposure and the Cord Blood CD4+ DNA Methylome. Environmental Health Perspectives, 2019, 127, 47009.	2.8	13
880	Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Molecular Genetics and Metabolism, 2019, 127, 31-44.	0.5	44
881	Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature, 2019, 569, 576-580.	13.7	195
882	Transcriptional cofactors display specificity for distinct types of core promoters. Nature, 2019, 570, 122-126.	13.7	112
883	Robust Method for Detecting Convergent Shifts in Evolutionary Rates. Molecular Biology and Evolution, 2019, 36, 1817-1830.	3.5	32
884	The evolution of Great Apes has shaped the functional enhancers' landscape in human embryonic stem cells. Stem Cell Research, 2019, 37, 101456.	0.3	28
885	Endogenous interaction profiling identifies DDX5 as an oncogenic coactivator of transcription factor Fra-1. Oncogene, 2019, 38, 5725-5738.	2.6	19
886	Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics, 2019, 14, 672-684.	1.3	39
887	Letter: studies of salivary pepsin in patients with gastroâ€oesophageal reflux disease. Alimentary Pharmacology and Therapeutics, 2019, 49, 1248-1249.	1.9	1
888	Improved Prediction of Regulatory Element Using Hybrid Abelian Complexity Features with DNA Sequences. International Journal of Molecular Sciences, 2019, 20, 1704.	1.8	5
889	TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes. Nucleic Acids Research, 2019, 47, e79-e79.	6.5	3
890	FeatSNP: An Interactive Database for Brain-Specific Epigenetic Annotation of Human SNPs. Frontiers in Genetics, 2019, 10, 262.	1.1	7
891	The AP-1 transcriptional complex: Local switch or remote command?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 11-23.	3.3	165

#	Article	IF	CITATIONS
892	Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. Journal of Medical Genetics, 2019, 56, 783-791.	1.5	93
893	Network Medicine in the Age of Biomedical Big Data. Frontiers in Genetics, 2019, 10, 294.	1.1	143
894	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
895	Studies of salivary pepsin in patients with gastroâ€oesophageal reflux disease. Alimentary Pharmacology and Therapeutics, 2019, 49, 1173-1180.	1.9	16
896	Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity. Trends in Genetics, 2019, 35, 423-433.	2.9	61
897	Revealing the dominant long noncoding RNAs responding to the infection with Colletotrichum gloeosporioides in Hevea brasiliensis. Biology Direct, 2019, 14, 7.	1.9	12
898	Epigenetic Data and Disease. , 2019, , 63-110.		0
899	Functional characterization of the C7ORF76 genomic region, a prominent GWAS signal for osteoporosis in 7q21.3. Bone, 2019, 123, 39-47.	1.4	12
900	Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine, 2019, 41, 427-442.	2.7	26
901	CellSim: a novel software to calculate cell similarity and identify their co-regulation networks. BMC Bioinformatics, 2019, 20, 111.	1.2	3
902	Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. Plant Methods, 2019, 15, 21.	1.9	13
903	The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism. Journal of Bone Metabolism, 2019, 26, 3.	0.5	10
904	Exomic and transcriptomic alterations of hereditary gingival fibromatosis. Oral Diseases, 2019, 25, 1374-1383.	1.5	6
905	Discovering heritable modes of MEG spectral power. Human Brain Mapping, 2019, 40, 1391-1402.	1.9	17
906	Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science, 2019, 363, 1222-1226.	6.0	266
907	DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning. Nucleic Acids Research, 2019, 47, e60-e60.	6.5	101
908	Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease. Scientific Data, 2019, 6, 20.	2.4	8
909	Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. Nature Communications, 2019, 10, 1705.	5.8	70

#	Article	IF	CITATIONS
910	FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Advances, 2019, 3, 825-838.	2.5	24
911	A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nature Neuroscience, 2019, 22, 691-699.	7.1	118
912	Being in a loop: how long non-coding RNAs organise genome architecture. Essays in Biochemistry, 2019, 63, 177-186.	2.1	17
913	Comparison of genotoxic versus nongenotoxic stabilization of p53 provides insight into parallel stress-responsive transcriptional networks. Cell Cycle, 2019, 18, 809-823.	1.3	11
914	Genome organization in immune cells: unique challenges. Nature Reviews Immunology, 2019, 19, 448-456.	10.6	23
915	Predicting enhancers in mammalian genomes using supervised hidden Markov models. BMC Bioinformatics, 2019, 20, 157.	1.2	12
916	Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nature Communications, 2019, 10, 1499.	5.8	346
917	Integration of methylation QTL and enhancer–target gene maps with schizophrenia GWAS summary results identifies novel genes. Bioinformatics, 2019, 35, 3576-3583.	1.8	19
918	Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-coding RNA, 2019, 5, 17.	1.3	441
919	Probing transcription factor combinatorics in different promoter classes and in enhancers. BMC Genomics, 2019, 20, 103.	1.2	27
920	Genetic variants differentially associated with rheumatoid arthritis and systemic lupus erythematosus reveal the disease-specific biology. Scientific Reports, 2019, 9, 2739.	1.6	13
921	PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. ELife, 2019, 8, .	2.8	32
922	Bioinformatic and Biostatistic Methods for DNA Methylome Analysis of Obesity. , 2019, , 165-179.		0
923	Redefining the IBDs using genome-scale molecular phenotyping. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 296-311.	8.2	62
924	Primate optogenetics: Progress and prognosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26195-26203.	3.3	65
925	Integrative Modeling and Novel Technologies in Human Genomics. , 2019, , 155-189.		0
926	Machine Learning Based Comparative Analysis of Methods for Enhancer Prediction in Genomic Data. , 2019, , .		5
927	Increasing Life Science Resources Re-Usability using Semantic Web Technologies. , 2019, , .		2

ARTICLE IF CITATIONS # Blood disease–causing and –suppressing transcriptional enhancers: general principles and GATA2 928 2.5 22 mechanisms. Blood Advances, 2019, 3, 2045-2056. An Approach for Prediction of Enhancers Based on the Bayesian Model., 2019, , . The prevalence, evolution and chromatin signatures of plant regulatory elements. Nature Plants, 2019, 930 4.7 219 5, 1250-1259. Ranking of non-coding pathogenic variants and putative essential regions of the human genome. 5.8 Nature Communications, 2019, 10, 5241. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine 932 6.5 142 species. Nucleic Acids Research, 2020, 48, D58-D64. Deciphering the Gene Regulatory Landscape Encoded in DNA Biophysical Features. IScience, 2019, 21, 638-649. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation. BMC 934 1.2 14 Genomics, 2019, 20, 896. Pancreatic Islet Transcriptional Enhancers and Diabetes. Current Diabetes Reports, 2019, 19, 145. 1.7 935 936 Transcriptional control by enhancers and enhancer RNAs. Transcription, 2019, 10, 171-186. 49 1.7 The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. 0.4 Neuro-Oncology Advances, 2019, 1, vdz023. Global Analysis of Enhancer Targets Reveals Convergent Enhancer-Driven Regulatory Modules. Cell 938 2.9 20 Reports, 2019, 29, 2570-2578.e5. TMRS: an algorithm for computing the time to the most recent substitution event from a multiple 0.3 alignment column. Algorithms for Molecular Biology, 2019, 14, 23. Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 940 1.8 74 2019, 20, 6041. Genomeâ€wide association study and identification of chromosomal enhancer maps in multiple brain 942 2.1 regions related to autism spectrum disorder. Autism Research, 2019, 12, 26-32. Genome-wide approaches to unravelling host–virus interactions in Dengue and Zika infections. 943 2.6 6 Current Opinion in Virology, 2019, 34, 29-38. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription, 2019, 10, 76-90. 944 79 Gene expression models based on transcription factor binding events confer insight into functional 945 1.8 19 <i>cis</i>regulatory variants. Bioinformatics, 2019, 35, 2610-2617. CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development. Oncogene, 946 19 2019, 38, 2580-2594.

#	Article	IF	CITATIONS
947	An evolutionary framework for measuring epigenomic information and estimating cell-type-specific fitness consequences. Nature Genetics, 2019, 51, 335-342.	9.4	33
948	Enhancer RNAs: a missing regulatory layer in gene transcription. Science China Life Sciences, 2019, 62, 905-912.	2.3	23
949	Current perspectives in assessing humoral immunity after measles vaccination. Expert Review of Vaccines, 2019, 18, 75-87.	2.0	39
950	Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Research, 2019, 47, 2306-2321.	6.5	78
951	Identification of regulatory elements from nascent transcription using dREG. Genome Research, 2019, 29, 293-303.	2.4	85
952	Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Research, 2019, 47, D752-D758.	6.5	172
953	Identification of schizophrenia related biological pathways across eight brain regions. Behavioural Brain Research, 2019, 360, 1-6.	1.2	4
954	A neuronal enhancer network upstream of MEF2C is compromised in patients with Rett-like characteristics. Human Molecular Genetics, 2019, 28, 818-827.	1.4	14
955	DNA methylation/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics, 2019, 11, 95-109.	1.0	18
956	Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 5392-5415.	1.9	29
957	Circadian oscillations of cytosine modification in humans contribute to epigenetic variability, aging, and complex disease. Genome Biology, 2019, 20, 2.	3.8	35
958	Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nature Communications, 2019, 10, 335.	5.8	77
959	Discovering Transcriptional Regulatory Elements From Runâ€On and Sequencing Data Using the Webâ€Based dREG Gateway. Current Protocols in Bioinformatics, 2019, 66, e70.	25.8	27
960	Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nature Neuroscience, 2019, 22, 307-316.	7.1	120
961	Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 900-908.	3.3	20
962	<i>Myogenin</i> promoterâ€associated lnc <scp>RNA</scp> <i>Myoparr</i> is essential for myogenic differentiation. EMBO Reports, 2019, 20, .	2.0	46
963	On the Regulatory Evolution of New Genes Throughout Their Life History. Molecular Biology and Evolution, 2019, 36, 15-27.	3.5	24
965	SEdb: a comprehensive human super-enhancer database. Nucleic Acids Research, 2019, 47, D235-D243.	6.5	166

#	Article	IF	CITATIONS
966	Deletion in 2q35 excluding the IHH gene leads to fetal severe limb anomalies and suggests a disruption of chromatin architecture. European Journal of Human Genetics, 2019, 27, 384-388.	1.4	3
967	Computational and Statistical Analysis of Array-Based DNA Methylation Data. Methods in Molecular Biology, 2019, 1878, 173-191.	0.4	2
968	Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nature Genetics, 2019, 51, 138-150.	9.4	177
969	Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes and Cancer, 2019, 58, 427-436.	1.5	35
970	Studying Transcriptional Enhancers: The Founder Fallacy, Validation Creep, and Other Biases. Trends in Genetics, 2019, 35, 93-103.	2.9	55
971	Integrative analysis of genome-wide association study and chromosomal enhancer maps identified brain region related pathways associated with ADHD. Comprehensive Psychiatry, 2019, 88, 65-69.	1.5	1
972	HACER: an atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Research, 2019, 47, D106-D112.	6.5	105
973	Assessment of de novo copy-number variations in Italian patients with schizophrenia: Detection of putative mutations involving regulatory enhancer elements. World Journal of Biological Psychiatry, 2019, 20, 126-136.	1.3	12
974	Linking diabetic vascular complications with LncRNAs. Vascular Pharmacology, 2019, 114, 139-144.	1.0	31
975	Prediction of IncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Briefings in Bioinformatics, 2019, 20, 551-564.	3.2	47
976	An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Molecular Psychiatry, 2019, 24, 1707-1719.	4.1	59
977	Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut, 2020, 69, 365-379.	6.1	117
978	Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Briefings in Bioinformatics, 2020, 21, 836-850.	3.2	4
979	Understanding the genetics of neuropsychiatric disorders: the potential role of genomic regulatory blocks. Molecular Psychiatry, 2020, 25, 6-18.	4.1	26
980	Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 2020, 21, 71-87.	7.7	464
981	Inherited variants at 3q13.33 and 3p24.1 are associated with risk of diffuse large B-cell lymphoma and implicate immune pathways. Human Molecular Genetics, 2020, 29, 70-79.	1.4	17
982	Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)–mediated induction of the long noncoding RNA NICI. Journal of Biological Chemistry, 2020, 295, 4065-4078.	1.6	34
983	Genome-wide heritability analysis of severe malaria resistance reveals evidence of polygenic inheritance. Human Molecular Genetics, 2020, 29, 168-176.	1.4	8

#	Article	IF	Citations
984	Nuclear sorting of RNA. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1572.	3.2	32
985	Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194443.	0.9	28
986	Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biology, 2020, 17, 1550-1559.	1.5	66
987	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
988	Mechanisms of tissue and cell-type specificity in heritable traits andÂdiseases. Nature Reviews Genetics, 2020, 21, 137-150.	7.7	105
989	Alteration in global DNA methylation status following preconditioning injury influences axon growth competence of the sensory neurons. Experimental Neurology, 2020, 326, 113177.	2.0	8
990	The formation of the thumb requires direct modulation of <i>Gli3</i> transcription by Hoxa13. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1090-1096.	3.3	15
991	Enhancers Facilitate the Birth of De Novo Genes and Gene Integration into Regulatory Networks. Molecular Biology and Evolution, 2020, 37, 1165-1178.	3.5	41
992	Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription, 2020, 11, 3-18.	1.7	13
993	From Genetic Epidemiology to Exposome and Systems Epidemiology. , 2020, , 11-35.		0
994	Unveiling the genetic etiology of primary ciliary dyskinesia: When standard genetic approach is not enough. Advances in Medical Sciences, 2020, 65, 1-11.	0.9	4
995	Childhood Obesity Risk in Relationship to Perilipin 1 (<i>PLIN1</i>) Gene Regulation by Circulating microRNAs. OMICS A Journal of Integrative Biology, 2020, 24, 43-50.	1.0	4
996	The role of enhancer RNAs in epigenetic regulation of gene expression. Transcription, 2020, 11, 19-25.	1.7	8
997	Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage. Mutagenesis, 2020, 35, 107-118.	1.0	4
998	Quantitative prediction of enhancer–promoter interactions. Genome Research, 2020, 30, 72-84.	2.4	53
999	Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165626.	1.8	15
1000	Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Research, 2020, 48, 1828-1842.	6.5	14
1001	Altered Enhancer and Promoter Usage Leads to Differential Gene Expression in the Normal and Failed Human Heart. Circulation: Heart Failure, 2020, 13, e006926.	1.6	10

#	Article	IF	Citations
1002	Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Inflammation and Regeneration, 2020, 40, 16.	1.5	12
1003	Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites. American Journal of Human Genetics, 2020, 107, 622-635.	2.6	14
1004	MEIRLOP: improving score-based motif enrichment by incorporating sequence bias covariates. BMC Bioinformatics, 2020, 21, 410.	1.2	5
1005	Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes. Patterns, 2020, 1, 100091.	3.1	5
1006	eRNAs and Superenhancer IncRNAs Are Functional in Human Prostate Cancer. Disease Markers, 2020, 2020, 1-17.	0.6	11
1007	Super Enhancers. Circulation Research, 2020, 127, 1156-1158.	2.0	3
1008	The untold story between enhancers and skeletal muscle development. Journal of Integrative Agriculture, 2020, 19, 2137-2149.	1.7	0
1009	Comprehensive characterization of functional eRNAs in lung adenocarcinoma reveals novel regulators and a prognosis-related molecular subtype. Theranostics, 2020, 10, 11264-11277.	4.6	20
1010	An era of single-cell genomics consortia. Experimental and Molecular Medicine, 2020, 52, 1409-1418.	3.2	12
1011	A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 2020, 17, 1083-1091.	9.0	111
1012	Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell, 2020, 183, 1151-1161.	13.5	153
1013	LncRNA <i>Platr22</i> promotes super-enhancer activity and stem cell pluripotency. Journal of Molecular Cell Biology, 2021, 13, 295-313.	1.5	13
1014	Modulating gene regulation to treat genetic disorders. Nature Reviews Drug Discovery, 2020, 19, 757-775.	21.5	41
1015	Ancestrally Duplicated Conserved Noncoding Element Suggests Dual Regulatory Roles of HOTAIR in cis and trans. IScience, 2020, 23, 101008.	1.9	9
1016	Functional Characterization of a Dual Enhancer/Promoter Regulatory Element Leading Human CD69 Expression. Frontiers in Genetics, 2020, 11, 552949.	1.1	1
1017	Characterizing the function of EPB41L4A in the predisposition to papillary thyroid carcinoma. Scientific Reports, 2020, 10, 19984.	1.6	3
1018	Global Analysis of Transcription Start Sites in the New Ovine Reference Genome (Oar rambouillet) Tj ETQq0 0 0 r	gBT /Overl 1.1	ock 10 Tf 50

1019	Dedifferentiation and neuronal repression define familial Alzheimer's disease. Science Advances, 2020, 6, .	4.7	44
------	---	-----	----

#	Article	IF	CITATIONS
1020	Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Systems, 2020, 11, 625-639.e13.	2.9	31
1021	Rapid and Scalable Profiling of Nascent RNA with fastGRO. Cell Reports, 2020, 33, 108373.	2.9	20
1022	Blood-based epigenetic estimators of chronological age in human adults using DNA methylation data from the Illumina MethylationEPIC array. BMC Genomics, 2020, 21, 747.	1.2	14
1023	Epigenome engineering: new technologies for precision medicine. Nucleic Acids Research, 2020, 48, 12453-12482.	6.5	34
1024	Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Archives of Biochemistry and Biophysics, 2020, 696, 108668.	1.4	22
1025	Manipulating the Mediator complex to induce naÃ ⁻ ve pluripotency. Experimental Cell Research, 2020, 395, 112215.	1.2	2
1026	The intersectional genetics landscape for humans. GigaScience, 2020, 9, .	3.3	1
1027	Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics, 2020, 21, 538.	1.2	20
1028	Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders. Nature Communications, 2020, 11, 3920.	5.8	17
1029	Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information. PLoS ONE, 2020, 15, e0235748.	1.1	9
1030	Methylation Patterns and Chromatin Accessibility in Neuroendocrine Lung Cancer. Cancers, 2020, 12, 2003.	1.7	5
1031	Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nature Methods, 2020, 17, 807-814.	9.0	71
1032	Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Human Molecular Genetics, 2020, 29, 2761-2774.	1.4	6
1033	The RNA exosome shapes the expression of key protein-coding genes. Nucleic Acids Research, 2020, 48, 8509-8528.	6.5	12
1034	Comparative transcriptomics of primary cells in vertebrates. Genome Research, 2020, 30, 951-961.	2.4	29
1035	Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. Journal of Hematology and Oncology, 2020, 13, 109.	6.9	60
1036	Feedback enrichment analysis for transcription factor-target genes in signaling pathways. BioSystems, 2020, 198, 104262.	0.9	3
1037	CAGE-seq analysis of osteoblast derived from cleidocranial dysplasia human induced pluripotent stem cells. Bone, 2020, 141, 115582.	1.4	2

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
1038	A mega-analysis of expression quantitative trait loci in retinal tissue. PLoS Genetics, 2020, 16, e1008934.	1.5	22
1039	Transcription imparts architecture, function and logic to enhancer units. Nature Genetics, 2020, 52, 1067-1075.	9.4	60
1040	PRAM: a novel pooling approach for discovering intergenic transcripts from large-scale RNA sequencing experiments. Genome Research, 2020, 30, 1655-1666.	2.4	2
1041	Existence and possible roles of independent non-CpG methylation in the mammalian brain. DNA Research, 2020, 27, .	1.5	10
1042	Evaluating the informativeness of deep learning annotations for human complex diseases. Nature Communications, 2020, 11, 4703.	5.8	21
1043	Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Research, 2020, 48, 10632-10647.	6.5	22
1044	Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Frontiers in Immunology, 2020, 11, 1269.	2.2	14
1045	SparkINFERNO: a scalable high-throughput pipeline for inferring molecular mechanisms of non-coding genetic variants. Bioinformatics, 2020, 36, 3879-3881.	1.8	7
1046	Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics, 2020, 21, 535.	1.2	33
1047	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	7.1	133
1048	Identification of Potential Prognostic Biomarkers for Breast Cancer Based on IncRNA-TF-Associated ceRNA Network and Functional Module. BioMed Research International, 2020, 2020, 1-13.	0.9	0
1049	Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biology, 2020, 21, 210.	3.8	35
1050	Enhancer dependence of cell-type–specific gene expression increases with developmental age. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21450-2145	8. ^{3.3}	32
1051	Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 2020, 52, 969-983.	9.4	146
1052	Prioritizing long range interactions in noncoding regions using GWAS and deletions perturbed TADs. Computational and Structural Biotechnology Journal, 2020, 18, 2945-2952.	1.9	2
1053	The PWWP2A Histone Deacetylase Complex Represses Intragenic Spurious Transcription Initiation in mESCs. IScience, 2020, 23, 101741.	1.9	9
1054	Population-scale study of eRNA transcription reveals bipartite functional enhancer architecture. Nature Communications, 2020, 11, 5963.	5.8	30
1055	The PVT1 IncRNA is a novel epigenetic enhancer of MYC, and a promising risk-stratification biomarker in colorectal cancer. Molecular Cancer, 2020, 19, 155.	7.9	56

#	Article	IF	CITATIONS
1056	Prediction of enhancer–promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 2020, 21, 507.	1.2	15
1057	Analyzing a putative enhancer of optic disc morphology. BMC Genomic Data, 2020, 21, 73.	0.7	3
1058	Determinants of transcription factor regulatory range. Nature Communications, 2020, 11, 2472.	5.8	28
1059	Tropomyosin 1 genetically constrains in vitro hematopoiesis. BMC Biology, 2020, 18, 52.	1.7	8
1060	Modeling neuronal consequences of autism-associated gene regulatory variants with human induced pluripotent stem cells. Molecular Autism, 2020, 11, 33.	2.6	6
1061	Progress, Challenges, and Surprises in Annotating the Human Genome. Annual Review of Genomics and Human Genetics, 2020, 21, 55-79.	2.5	20
1062	HOXB13 controls cell state through super-enhancers. Experimental Cell Research, 2020, 393, 112039.	1.2	9
1063	Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression. Clinical Epigenetics, 2020, 12, 74.	1.8	22
1064	EpiRegio: analysis and retrieval of regulatory elements linked to genes. Nucleic Acids Research, 2020, 48, W193-W199.	6.5	26
1065	Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cisâ€regulatory modules. Development Growth and Differentiation, 2020, 62, 279-300.	0.6	4
1066	Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome. Genome Biology, 2020, 21, 81.	3.8	77
1067	A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biology, 2020, 10, 190221.	1.5	88
1068	AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding. Blood, 2020, 136, 339-352.	0.6	17
1069	New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biology, 2020, 17, 1535-1549.	1.5	4
1070	Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 5280-5293.	2.4	24
1071	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	9.4	445
1072	Enhancer RNAs Mediate Estrogen-Induced Decommissioning of Selective Enhancers by Recruiting ERα and Its Cofactor. Cell Reports, 2020, 31, 107803.	2.9	17
1073	Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. Nature Communications, 2020, 11, 2928.	5.8	22

#	Article	IF	CITATIONS
1074	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. Journal of Virology, 2020, 94, .	1.5	14
1075	Enhancer RNAs are an important regulatory layer of the epigenome. Nature Structural and Molecular Biology, 2020, 27, 521-528.	3.6	214
1076	The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets. SLAS Discovery, 2020, 25, 568-580.	1.4	3
1077	Machine learning and deep learning for the advancement of epigenomics. , 2020, , 217-237.		0
1078	Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Research, 2020, 28, 111-127.	1.0	3
1079	Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Translational Psychiatry, 2020, 10, 98.	2.4	26
1080	PAN RNA: transcriptional exhaust from a viral engine. Journal of Biomedical Science, 2020, 27, 41.	2.6	17
1081	Locally acting transcription factors regulate p53-dependent cis-regulatory element activity. Nucleic Acids Research, 2020, 48, 4195-4213.	6.5	16
1082	Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity. BioEssays, 2020, 42, e1900188.	1.2	18
1083	Evaluating Enhancer Function and Transcription. Annual Review of Biochemistry, 2020, 89, 213-234.	5.0	123
1084	Exploring the overlap between rheumatoid arthritis susceptibility loci and long non-coding RNA annotations. PLoS ONE, 2020, 15, e0223939.	1.1	2
1085	Using epigenetic data to estimate immune composition in admixed samples. Methods in Enzymology, 2020, 636, 77-92.	0.4	0
1086	Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Computational and Structural Biotechnology Journal, 2020, 18, 558-570.	1.9	37
1087	Characterization of <i>Arabidopsis thaliana</i> Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay Pathways. Plant Cell, 2020, 32, 1845-1867.	3.1	50
1088	Genome-Wide Identification and Analysis of Enhancer-Regulated microRNAs Across 31 Human Cancers. Frontiers in Genetics, 2020, 11, 644.	1.1	4
1089	The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Frontiers in Cell and Developmental Biology, 2020, 8, 498.	1.8	25
1090	Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq. Genome Research, 2020, 30, 910-923.	2.4	23
1091	DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLoS Computational Biology, 2020, 16, e1007616.	1.5	54

#	Article	IF	CITATIONS
1092	Regeneration enhancers: A clue to reactivation of developmental genes. Development Growth and Differentiation, 2020, 62, 343-354.	0.6	20
1093	A Two-Layered Targeting Mechanism Underlies Nuclear RNA Sorting by the Human Exosome. Cell Reports, 2020, 30, 2387-2401.e5.	2.9	44
1094	Recounting the FANTOM CAGE-Associated Transcriptome. Genome Research, 2020, 30, 1073-1081.	2.4	35
1095	Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	1
1096	Chromatin-enriched RNAs mark active and repressive cis-regulation: An analysis of nuclear RNA-seq. PLoS Computational Biology, 2020, 16, e1007119.	1.5	4
1097	The Impact of Skeletal Muscle $\text{ER}\hat{i}\pm$ on Mitochondrial Function and Metabolic Health. Endocrinology, 2020, 161, .	1.4	32
1098	Continuous transcription initiation guarantees robust repair of all transcribed genes and regulatory regions. Nature Communications, 2020, 11, 916.	5.8	22
1099	A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. GigaScience, 2020, 9, .	3.3	29
1100	Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nature Communications, 2020, 11, 402.	5.8	76
1101	Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11, 485.	5.8	139
1102	Epigenetic plasticity of enhancers in cancer. Transcription, 2020, 11, 26-36.	1.7	23
1103	Enhancer–gene maps in the human and zebrafish genomes using evolutionary linkage conservation. Nucleic Acids Research, 2020, 48, 2357-2371.	6.5	32
1104	ModHMM: A Modular Supra-Bayesian Genome Segmentation Method. Journal of Computational Biology, 2020, 27, 442-457.	0.8	6
1105	Towards a comprehensive catalogue of validated and target-linked human enhancers. Nature Reviews Genetics, 2020, 21, 292-310.	7.7	229
1106	Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Frontiers in Cell and Developmental Biology, 2019, 7, 377.	1.8	141
1107	Independent Transposon Exaptation Is a Widespread Mechanism of Redundant Enhancer Evolution in the Mammalian Genome. Genome Biology and Evolution, 2020, 12, 1-17.	1.1	14
1108	A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Research, 2020, 30, 250-262.	2.4	91
1109	Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells, 2020, 9, 246.	1.8	13

#	Article	IF	CITATIONS
1110	The open targets post-GWAS analysis pipeline. Bioinformatics, 2020, 36, 2936-2937.	1.8	24
1111	Non-coding RNAs underlie genetic predisposition to breast cancer. Genome Biology, 2020, 21, 7.	3.8	21
1112	Chromatin maturation of the HIV-1 provirus in primary resting CD4+ÂT cells. PLoS Pathogens, 2020, 16, e1008264.	2.1	19
1113	An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Medical Genomics, 2020, 13, 8.	0.7	9
1114	Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1480.	6.6	1
1115	Pervasive and CpC-dependent promoter-like characteristics of transcribed enhancers. Nucleic Acids Research, 2020, 48, 5306-5317.	6.5	24
1116	Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction. Nature Genetics, 2020, 52, 505-515.	9.4	62
1117	Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nature Methods, 2020, 17, 515-523.	9.0	64
1118	Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4. Biology Open, 2020, 9, .	0.6	3
1119	The Rubber Tree Genome. Compendium of Plant Genomes, 2020, , .	0.3	3
1120	Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Cancer Discovery, 2020, 10, 724-745.	7.7	25
1121	Loss-of-function tolerance of enhancers in the human genome. PLoS Genetics, 2020, 16, e1008663.	1.5	12
1122	Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 309-323.	3.0	10
1123	A statistical framework for predicting critical regions of p53-dependent enhancers. Briefings in Bioinformatics, 2021, 22, .	3.2	4
1124	Plasmablasts derive from CD23– activated B cells after the extinction of IL-4/STAT6 signaling and IRF4 induction. Blood, 2021, 137, 1166-1180.	0.6	18
1125	ERα in the Control of Mitochondrial Function and Metabolic Health. Trends in Molecular Medicine, 2021, 27, 31-46.	3.5	15
1126	Noncoding RNAs Set the Stage for RNA Polymerase II Transcription. Trends in Genetics, 2021, 37, 279-291.	2.9	9
1127	Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genetics in Medicine, 2021, 23, 34-46.	1.1	32

		CITATION REPORT		
#	Article		IF	CITATIONS
1128	Interpretation of deep learning in genomics and epigenomics. Briefings in Bioinformatic	s, 2021, 22, .	3.2	67
1129	Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends in Bic Sciences, 2021, 46, 138-153.	chemical	3.7	39
1130	Open Targets Genetics: systematic identification of trait-associated genes using large-so and functional genomics. Nucleic Acids Research, 2021, 49, D1311-D1320.	cale genetics	6.5	295
1131	Integrated gene-based and pathway analyses using UK Biobank data identify novel gene respiratory diseases. Gene, 2021, 767, 145287.	es for chronic	1.0	7
1132	FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation non-coding RNAs. Nucleic Acids Research, 2021, 49, D892-D898.	on of	6.5	57
1133	The relationship between genome structure and function. Nature Reviews Genetics, 20.	21, 22, 154-168.	7.7	160
1134	Modulation of Brain Pathology by Enhancer RNAs in Cerebral Ischemia. Molecular Neurc 58, 1482-1490.	biology, 2021,	1.9	8
1135	LncRNAâ€MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pa and <i>cis</i> â€modulation of MAP3K4. FASEB Journal, 2021, 35, e21133.	thway	0.2	20
1136	A Tumor Suppressor Enhancer of <i>PTEN</i> in T-cell Development and Leukemia. Blood Discovery, 2021, 2, 92-109.	l Cancer	2.6	15
1137	The UCSC Genome Browser database: 2021 update. Nucleic Acids Research, 2021, 49, 1	D1046-D1057.	6.5	354
1138	Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews N Biology, 2021, 22, 96-118.	Лоlecular Cell	16.1	2,319
1139	RNA-Mediated Feedback Control of Transcriptional Condensates. Cell, 2021, 184, 207-2	225.e24.	13.5	324
1140	HeRA: an atlas of enhancer RNAs across human tissues. Nucleic Acids Research, 2021, 4	9, D932-D938.	6.5	27
1141	Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 editing. Gene, 2021, 768, 145265.	mediated genome	1.0	10
1143	Regulation of human telomerase RNA biogenesis and localization. RNA Biology, 2021, 1	8, 305-315.	1.5	10
1144	Comprehensive functional annotation of susceptibility variants identifies genetic hetero between lung adenocarcinoma and squamous cell carcinoma. Frontiers of Medicine, 20	ogeneity 21, 15, 275-291.	1.5	21
1145	Decoding regulatory structures and features from epigenomics profiles: A Roadmap-EN0 Variational Auto-Encoder (RE-VAE) model. Methods, 2021, 189, 44-53.	CODE	1.9	8
1146	A Multi-omics Data Resource for Frontotemporal Dementia Research. Advances in Exper Medicine and Biology, 2021, 1281, 269-282.	imental	0.8	0

#	Article	IF	CITATIONS
1148	H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nature Communications, 2021, 12, 719.	5.8	140
1149	Genome-Wide Histone Modifications and CTCF Enrichment Predict Gene Expression in Sheep Macrophages. Frontiers in Genetics, 2020, 11, 612031.	1.1	9
1150	Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4 ⁺ T cells through differential DNA methylation, explaining a substantial proportion of heritability. Annals of the Rheumatic Diseases, 2021, 80, 876-883.	0.5	12
1151	Enhancer redundancy in development and disease. Nature Reviews Genetics, 2021, 22, 324-336.	7.7	128
1152	Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma. Theranostics, 2021, 11, 3060-3073.	4.6	6
1154	Role of long noncoding RNAs during stress in cereal crops. , 2021, , 107-131.		1
1155	Dysregulated H3K27 Acetylation Is Implicated in Fatty Liver Hemorrhagic Syndrome in Chickens. Frontiers in Genetics, 2020, 11, 574167.	1.1	9
1156	Identification and Characterisation of Putative Enhancer Elements in Mouse Embryonic Stem Cells. Bioinformatics and Biology Insights, 2021, 15, 117793222097462.	1.0	3
1157	Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Briefings in Bioinformatics, 2021, 22, .	3.2	16
1158	Disease category-specific annotation of variants using an ensemble learning framework. Briefings in Bioinformatics, 2022, 23, .	3.2	7
1160	Multi-level remodelling of chromatin underlying activation of human T cells. Scientific Reports, 2021, 11, 528.	1.6	26
1161	The regulatory genome of the malaria vector <i>Anopheles gambiae</i> : integrating chromatin accessibility and gene expression. NAR Genomics and Bioinformatics, 2021, 3, Iqaa113.	1.5	12
1162	Transcriptionally active enhancers in human cancer cells. Molecular Systems Biology, 2021, 17, e9873.	3.2	28
1163	Where Physics Meets Biology. PuntOorg International Journal, 0, , 1-5.	0.0	0
1165	The PAF1 Complex Recruits Integrator to Chromatin Globally to Terminate Non-Productive Transcription. SSRN Electronic Journal, 0, , .	0.4	0
1166	Chromatin regulatory dynamics of early human small intestinal development using a directed differentiation model. Nucleic Acids Research, 2021, 49, 726-744.	6.5	14
1167	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	2
1169	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19

#	Article	IF	CITATIONS
1170	LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions. Genome Biology, 2021, 22, 62.	3.8	38
1171	Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Research, 2021, 49, 2488-2508.	6.5	15
1172	A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. Bioinformatics, 2021, 37, 1933-1940.	1.8	7
1173	Integrator is a genome-wide attenuator of non-productive transcription. Molecular Cell, 2021, 81, 514-529.e6.	4.5	82
1175	Novel Transcript Discovery Expands the Repertoire of Pathologically-Associated, Long Non-Coding RNAs in Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 1484.	1.8	5
1178	Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Therapy, 2021, 28, 351-372.	2.3	18
1179	DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers. Genomics, Proteomics and Bioinformatics, 2021, 19, 565-577.	3.0	17
1181	HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. American Journal of Human Genetics, 2021, 108, 257-268.	2.6	17
1182	Identification of Novel Genetic Regulatory Region for Proprotein Convertase FURIN and Interferon Gamma in T Cells. Frontiers in Immunology, 2021, 12, 630389.	2.2	7
1184	Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis. Cellular and Molecular Biology Letters, 2021, 26, 4.	2.7	8
1185	Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nature Genetics, 2021, 53, 392-402.	9.4	258
1186	Fine-mapping of two differentiated thyroid carcinoma susceptibility loci at 2q35 and 8p12 in Europeans, Melanesians and Polynesians. Oncotarget, 2021, 12, 493-506.	0.8	6
1187	Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2423-2438.	2.4	14
1188	The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Molecular Cell, 2021, 81, 953-968.e9.	4.5	27
1190	Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Frontiers in Immunology, 2021, 12, 633825.	2.2	12
1192	Cruciform Formable Sequences within Pou5f1 Enhancer Are Indispensable for Mouse ES Cell Integrity. International Journal of Molecular Sciences, 2021, 22, 3399.	1.8	4
1194	Enhancer Pleiotropy, Gene Expression, and the Architecture of Human Enhancer–Gene Interactions. Molecular Biology and Evolution, 2021, 38, 3898-3909.	3.5	17
1195	Remus: A Web Application for Prioritization of Regulatory Regions and Variants in Monogenic Diseases. Frontiers in Genetics, 2021, 12, 638960.	1.1	1

#	Article	IF	CITATIONS
1196	Heart Enhancers: Development and Disease Control at a Distance. Frontiers in Genetics, 2021, 12, 642975.	1.1	4
1197	An intriguing characteristic of enhancer-promoter interactions. BMC Genomics, 2021, 22, 163.	1.2	3
1199	On the importance of evolutionary constraint for regulatory sequence identification. Briefings in Functional Genomics, 2021, , .	1.3	1
1200	A computer-guided design tool to increase the efficiency of cellular conversions. Nature Communications, 2021, 12, 1659.	5.8	22
1201	Computational prediction of CRISPR-impaired non-coding regulatory regions. Biological Chemistry, 2021, 402, 973-982.	1.2	1
1203	Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response. Nature Communications, 2021, 12, 1375.	5.8	31
1204	Characterization of transcripts emanating from enhancer Eβ of the murine TCRβ locus. FEBS Open Bio, 2021, 11, 1014-1028.	1.0	0
1207	Tissue-specific enhancer functional networks for associating distal regulatory regions to disease. Cell Systems, 2021, 12, 353-362.e6.	2.9	24
1208	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9
1209	Prediction of diseaseâ€associated functional variants in noncoding regions through a comprehensive analysis by integrating datasets and features. Human Mutation, 2021, 42, 667-684.	1.1	0
1210	Fish-Ing for Enhancers in the Heart. International Journal of Molecular Sciences, 2021, 22, 3914.	1.8	5
1212	Accurate prediction of <i>cis</i> -regulatory modules reveals a prevalent regulatory genome of humans. NAR Genomics and Bioinformatics, 2021, 3, Iqab052.	1.5	21
1213	Cell-specific epigenetic drivers of pathogenesis in rheumatoid arthritis. Epigenomics, 2021, 13, 549-560.	1.0	4
1214	Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123.	1.6	7
1215	Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia. Scientific Reports, 2021, 11, 8318.	1.6	3
1216	Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus ¹ . Genome, 2021, 64, 386-399.	0.9	58
1217	Genome-wide enhancer maps link risk variants to disease genes. Nature, 2021, 593, 238-243.	13.7	332
1218	Genome-wide strand asymmetry in massively parallel reporter activity favors genic strands. Genome Research, 2021, 31, 866-876.	2.4	1

#	Article	IF	CITATIONS
1219	A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Science Translational Medicine, 2021, 13, .	5.8	59
1220	The epitranscriptome of long noncoding RNAs in metabolic diseases. Clinica Chimica Acta, 2021, 515, 80-89.	0.5	19
1221	Control of RNA Stability in Immunity. Annual Review of Immunology, 2021, 39, 481-509.	9.5	47
1222	Mechanisms of enhancer action: the known and the unknown. Genome Biology, 2021, 22, 108.	3.8	146
1224	A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures. Diabetes, 2021, 70, 1581-1591.	0.3	7
1226	Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biology, 2021, 22, 136.	3.8	13
1227	Modeling the Evolutionary Architectures of Transcribed Human Enhancer Sequences Reveals Distinct Origins, Functions, and Associations with Human Trait Variation. Molecular Biology and Evolution, 2021, 38, 3681-3696.	3.5	7
1228	Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology. Frontiers in Oncology, 2021, 11, 666937.	1.3	25
1229	Review of multi-omics data resources and integrative analysis for human brain disorders. Briefings in Functional Genomics, 2021, 20, 223-234.	1.3	19
1230	Functional mapping of androgen receptor enhancer activity. Genome Biology, 2021, 22, 149.	3.8	18
1231	Transcription start siteâ€level expression of thyroid transcription factor 1 isoforms in lung adenocarcinoma and its clinicopathological significance. Journal of Pathology: Clinical Research, 2021, 7, 361-374.	1.3	1
1232	Modeling regulatory network topology improves genome-wide analyses of complex human traits. Nature Communications, 2021, 12, 2851.	5.8	17
1233	Microdeletion of 9q22.3: A patient with minimal deletion size associated with a severe phenotype. American Journal of Medical Genetics, Part A, 2021, 185, 2070-2083.	0.7	2
1234	Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis. Communications Biology, 2021, 4, 607.	2.0	9
1236	Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics. Molecular Diversity, 2021, 25, 1569-1584.	2.1	14
1237	Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Research, 2021, 81, 4174-4182.	0.4	38
1238	Current Advances on the Important Roles of Enhancer RNAs in Molecular Pathways of Cancer. International Journal of Molecular Sciences, 2021, 22, 5640.	1.8	5
1239	Learning a genome-wide score of human–mouse conservation at the functional genomics level. Nature Communications, 2021, 12, 2495.	5.8	12

# 1240	ARTICLE Development of p53 knockout U87MG cell line for unbiased drug delivery testing system using CRISPR-Cas9 and transcriptomic analysis. Journal of Biotechnology, 2021, 332, 72-82.	lF 1.9	CITATIONS 0
1242	Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction. Current Pharmaceutical Design, 2021, 27, 1847-1855.	0.9	4
1244	DNMT3A haploinsufficiency causes dichotomous DNA methylation defects at enhancers in mature human immune cells. Journal of Experimental Medicine, 2021, 218, .	4.2	16
1246	Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Frontiers in Cellular and Infection Microbiology, 2021, 11, 668637.	1.8	4
1247	A multi-omics study links TNS3 and SEPT7 to long-term former smoking NSCLC survival. Npj Precision Oncology, 2021, 5, 39.	2.3	9
1249	Multi-omics approach identifies germline regulatory variants associated with hematopoietic malignancies in retriever dog breeds. PLoS Genetics, 2021, 17, e1009543.	1.5	9
1251	Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
1252	eNEMAL, an enhancer RNA transcribed from a distal MALAT1 enhancer, promotes NEAT1 long isoform expression. PLoS ONE, 2021, 16, e0251515.	1.1	9
1253	RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Research, 2021, 31, 861-885.	5.7	47
1255	Genetic variations in medical research in the past, at present and in the future. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2021, 97, 324-335.	1.6	4
1256	Characterizing Promoter and Enhancer Sequences by a Deep Learning Method. Frontiers in Genetics, 2021, 12, 681259.	1.1	2
1258	Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains. Molecular Cell, 2021, 81, 2549-2565.e8.	4.5	47
1259	Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Research, 2021, 31, 1136-1149.	2.4	20
1262	Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Molecular Psychiatry, 2022, 27, 113-126.	4.1	33
1263	Chromatin accessibility profiling in Neurospora crassa reveals molecular features associated with accessible and inaccessible chromatin. BMC Genomics, 2021, 22, 459.	1.2	13
1266	Leveraging supervised learning for functionallyÂinformed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs. Nature Communications, 2021, 12, 3394.	5.8	44
1267	Genome-Wide Atlas of Promoter Expression Reveals Contribution of Transcribed Regulatory Elements to Genetic Control of Disuse-Mediated Atrophy of Skeletal Muscle. Biology, 2021, 10, 557.	1.3	2
1268	Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 25, 344-355.	0.4	2

ARTICLE IF CITATIONS Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep 5.8 11 1269 neural network. Nature Communications, 2021, 12, 3297. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genetics, 2021, 1270 1.5 19 17, e1009574. Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a 1271 5.8 12 phenotype inheritance biomarker. Nature Communications, 2021, 12, 3714. Enhancer RNA Inc-CES1-1 inhibits decidual cell migration by interacting with RNA-binding protein FUS 1274 and activating PPAR^{ĵ3} in URPL. Molecular Therapy - Nucleic Acids, 2021, 24, 104-112. Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple transcription 1275 2.0 21 factors from a single experiment. Communications Biology, 2021, 4, 661. UniBind: maps of high-confidence direct TF-DNA interactions across nine species. BMC Genomics, 2021, 1.2 22, 482. Functional annotation of noncoding mutations in cancer. Life Science Alliance, 2021, 4, e201900523. 1277 1.33 TBX5-AS1, an enhancer RNA, is a potential novel prognostic biomarker for lung adenocarcinoma. BMC 1.1 Cancer, 2021, 21, 794. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circulation 1280 2.0 61 Research, 2021, 129, 240-258. Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the 3.3 National Academy of Sciences of the United States of America, 2021, 118, An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using singleâ€base 1282 1.7 8 resolution methylome and hydroxymethylome. Clinical and Translational Medicine, 2021, 11, e498. ANANSE: an enhancer network-based computational approach for predicting key transcription factors 6.5 39 in cell fate determination. Nucleic Acids Research, 2021, 49, 7966-7985. Plant long non-coding RNAs in the regulation of transcription. Essays in Biochemistry, 2021, 65, 1284 2.1 11 751-760. Leveraging three-dimensional chromatin architecture for effective reconstruction of 6.5 enhancer〓target gene regulatory interactions. Nucleic Acids Research, 2021, 49, e97-e97. Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews 1286 23.3 13 Materials, 2021, 6, 717-729. Evolution of tissue and developmental specificity of transcription start sites in Bos taurus indicus. 1288 Communications Biology, 2021, 4, 829. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nature Genetics, 2021, 53, 1289 9.4 57 1156-1165. Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling. 1290 2.4 Genome Research, 2021, 31, 1680-1692.

#	Article	IF	CITATIONS
1291	Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH. Nature Genetics, 2021, 53, 1166-1176.	9.4	36
1292	K-mer Content Changes with Node Degree in Promoter–Enhancer Network of Mouse ES Cells. International Journal of Molecular Sciences, 2021, 22, 8067.	1.8	0
1293	A universal framework for detecting <i>cis</i> -regulatory diversity in DNA regions. Genome Research, 2021, 31, 1646-1662.	2.4	3
1294	Impact of Genetic Variation in Gene Regulatory Sequences: A Population Genomics Perspective. Frontiers in Genetics, 2021, 12, 660899.	1.1	2
1295	Smart-RRBS for single-cell methylome and transcriptome analysis. Nature Protocols, 2021, 16, 4004-4030.	5.5	34
1298	Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning. European Journal of Human Genetics, 2021, 29, 1527-1535.	1.4	19
1299	Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 92-102.	1.4	7
1301	Transcriptional Regulation of RUNX1: An Informatics Analysis. Genes, 2021, 12, 1175.	1.0	4
1303	Loss of Gene Information: Discrepancies between RNA Sequencing, cDNA Microarray, and qRT-PCR. International Journal of Molecular Sciences, 2021, 22, 9349.	1.8	21
1304	Topological isolation of developmental regulators in mammalian genomes. Nature Communications, 2021, 12, 4897.	5.8	12
1305	Transcriptional enhancers and their communication with gene promoters. Cellular and Molecular Life Sciences, 2021, 78, 6453-6485.	2.4	25
1306	The value of primary transcripts to the clinical and nonâ€clinical genomics community: Survey results and roadmap for improvements. Molecular Genetics & Genomic Medicine, 2021, 9, e1786.	0.6	5
1307	Genomic partitioning of inbreeding depression in humans. American Journal of Human Genetics, 2021, 108, 1488-1501.	2.6	6
1308	Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Molecular Cell, 2021, 81, 3368-3385.e9.	4.5	135
1309	Enhancers in disease: molecular basis and emerging treatment strategies. Trends in Molecular Medicine, 2021, 27, 1060-1073.	3.5	84
1310	Mutational bias in spermatogonia impacts the anatomy of regulatory sites in the human genome. Genome Research, 2021, 31, 1994-2007.	2.4	4
1311	Augmenting and directing long-range CRISPR-mediated activation in human cells. Nature Methods, 2021, 18, 1075-1081.	9.0	17
1312	Construction and Characterization of Long Non-Coding RNA-Associated Networks to Reveal Potential Prognostic Biomarkers in Human Lung Adenocarcinoma. Frontiers in Oncology, 2021, 11, 720400.	1.3	5

#	Article	IF	CITATIONS
1314	Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Molecular Cell, 2021, 81, 3110-3127.e14.	4.5	38
1319	Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Human Genetics, 2022, 141, 465-484.	1.8	3
1320	Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Non-coding RNA, 2021, 7, 47.	1.3	6
1321	Heterogeneity among enhancer RNAs: origins, consequences and perspectives. Essays in Biochemistry, 2021, 65, 709-721.	2.1	3
1322	Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nature Communications, 2021, 12, 4800.	5.8	56
1323	Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biological Psychiatry, 2022, 91, 183-193.	0.7	15
1324	A Transcriptional Signature of PDGF-DD Activated Natural Killer Cells Predicts More Favorable Prognosis in Low-Grade Glioma. Frontiers in Immunology, 2021, 12, 668391.	2.2	25
1325	RNA polymerase mapping in plants identifies intergenic regulatory elements enriched in causal variants. C3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
1326	Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. Journal of Clinical Investigation, 2021, 131, .	3.9	15
1327	Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biology, 2021, 22, 265.	3.8	22
1328	Comprehensive characterization genetic regulation and chromatin landscape of enhancer-associated long non-coding RNAs and their implication in human cancer. Briefings in Bioinformatics, 2022, 23, .	3.2	7
1329	Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. , 2022, 231, 107986.		30
1331	Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics, 2021, 113, 3250-3273.	1.3	5
1332	Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science, 2021, 373, eabj0486.	6.0	99
1333	Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Research, 2022, 50, D46-D53.	6.5	14
1334	Identification and Functional Characterization of Two Noncoding RNAs Transcribed from Putative Active Enhancers in Hepatocellular Carcinoma. Molecules and Cells, 2021, 44, 658-669.	1.0	4
1335	The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 666508.	1.8	12
1336	Integrative analysis of epigenetics data identifies gene-specific regulatory elements. Nucleic Acids Research, 2021, 49, 10397-10418.	6.5	14

#	Article	IF	CITATIONS
1337	Conserved and species-specific chromatin remodeling and regulatory dynamics during mouse and chicken limb bud development. Nature Communications, 2021, 12, 5685.	5.8	6
1338	Cap analysis of gene expression (CAGE) and noncoding regulatory elements. Seminars in Immunopathology, 2022, 44, 127-136.	2.8	3
1339	Histone H3 lysine 27 acetylation profile undergoes two global shifts in undernourished children and suggests altered one-carbon metabolism. Clinical Epigenetics, 2021, 13, 182.	1.8	7
1341	From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Frontiers in Genetics, 2021, 12, 713230.	1.1	55
1343	Identification of enhancer RNAs for the prognosis of head and neck squamous cell carcinoma. Head and Neck, 2021, 43, 3820-3831.	0.9	3
1345	Complex small-world regulatory networks emerge from the 3D organisation of the human genome. Nature Communications, 2021, 12, 5756.	5.8	15
1347	Regulation of Microglia for the Treatment of Glioma. World Neurosurgery, 2021, 154, 222-227.	0.7	1
1348	Illuminating Enhancer Transcription at Nucleotide Resolution with. Methods in Molecular Biology, 2021, 2351, 41-65.	0.4	0
1349	Analysis of Enhancer–Promoter Interactions using CAGE and RADICL-Seq Technologies. Methods in Molecular Biology, 2021, 2351, 201-210.	0.4	2
1351	Western Blot Analysis of Protein-DNA Complexes Formed during Gel Shift Experiments. Techniques in Life Science and Biomedicine for the Non-expert, 2021, , 311-330.	0.1	0
1352	Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence. Human Molecular Genetics, 2021, 30, 119-134.	1.4	65
1353	Systematic analysis of binding of transcription factors to noncoding variants. Nature, 2021, 591, 147-151.	13.7	89
1354	Making Biological Sense of Genetic Studies of Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2021, 1256, 201-219.	0.8	2
1356	Low Quantity Single Strand CAGE (LQ-ssCAGE) Maps Regulatory Enhancers and Promoters. Methods in Molecular Biology, 2021, 2351, 67-90.	0.4	6
1357	Pan-Cancer Analysis of Head-to-Head Gene Pairs in Terms of Transcriptional Activity, Co-expression and Regulation. Frontiers in Genetics, 2020, 11, 560997.	1.1	6
1358	Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nature Structural and Molecular Biology, 2021, 28, 152-161.	3.6	172
1361	Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. Methods in Molecular Biology, 2020, 2120, 277-301.	0.4	22
1362	Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein–DNA Complexes. Methods in Molecular Biology, 2015, 1312, 355-373.	0.4	7

#	Article	IF	CITATIONS
1363	Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters. Lecture Notes in Computer Science, 2015, , 205-217.	1.0	32
1364	Systems Biology and Integrated Computational Methods for Cancer-Associated Mutation Analysis. , 2020, , 335-362.		3
1365	An Overview of Non-coding RNAs and Cardiovascular System. Advances in Experimental Medicine and Biology, 2020, 1229, 3-45.	0.8	7
1366	A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. Cancer Cell, 2020, 38, 701-715.e5.	7.7	69
1367	Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines. Nature Genetics, 2017, 49, 1428-1436.	9.4	194
1368	Mutations in ACTRT1 and its enhancer RNA elements lead to aberrant activation of Hedgehog signaling in inherited and sporadic basal cell carcinomas. Nature Medicine, 2017, 23, 1226-1233.	15.2	59
1369	Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nature Reviews Molecular Cell Biology, 2020, 21, 123-136.	16.1	132
1370	Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 2019, 22, 343-352.	7.1	1,589
1473	The Importance of Controlling Transcription Elongation at Coding and Noncoding RNA Loci. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 33-44.	2.0	6
1474	Reversing Mechanoinductive DSP Expression by CRISPR/dCas9–mediated Epigenome Editing. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 599-609.	2.5	31
1475	Secretome profiling identifies neuron-derived neurotrophic factor as a tumor-suppressive factor in lung cancer. JCl Insight, 2019, 4, .	2.3	15
1476	Multiomics dissection of molecular regulatory mechanisms underlying autoimmune-associated noncoding SNPs. JCI Insight, 2020, 5, .	2.3	13
1477	A stress-responsive enhancer induces dynamic drug resistance in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 1217-1232.	3.9	26
1478	Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. Journal of Clinical Investigation, 2015, 125, 208-221.	3.9	62
1479	Transcriptional control of microglia phenotypes in health and disease. Journal of Clinical Investigation, 2017, 127, 3220-3229.	3.9	150
1480	BCL6 Orchestrates Tfh Differentiation Via Multiple Distinct Mechanisms. Blood, 2014, 124, 4137-4137.	0.6	1
1481	Using regulatory genomics data to interpret the function of disease variants and prioritise genes from expression studies. F1000Research, 2018, 7, 121.	0.8	4
1482	A step-by-step guide to analyzing CAGE data using R/Bioconductor. F1000Research, 2019, 8, 886.	0.8	23

#	Article	IF	CITATIONS
1483	metagene Profiles Analyses Reveal Regulatory Element's Factor-Specific Recruitment Patterns. PLoS Computational Biology, 2016, 12, e1004751.	1.5	12
1484	Probing instructions for expression regulation in gene nucleotide compositions. PLoS Computational Biology, 2018, 14, e1005921.	1.5	11
1485	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	1.5	17
1486	Minor Loops in Major Folds: Enhancer–Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease. PLoS Genetics, 2015, 11, e1005640.	1.5	57
1487	The Consensus 5' Splice Site Motif Inhibits mRNA Nuclear Export. PLoS ONE, 2015, 10, e0122743.	1.1	36
1488	The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors. PLoS ONE, 2015, 10, e0126385.	1.1	38
1489	Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0126590.	1.1	4
1490	Comparison of Gene Coexpression Profiles and Construction of Conserved Gene Networks to Find Functional Modules. PLoS ONE, 2015, 10, e0132039.	1.1	9
1491	The Role of H3K4me3 in Transcriptional Regulation Is Altered in Huntington's Disease. PLoS ONE, 2015, 10, e0144398.	1.1	47
1492	Functional Characterization of the Osteoarthritis Susceptibility Mapping to CHST11—A Bioinformatics and Molecular Study. PLoS ONE, 2016, 11, e0159024.	1.1	9
1493	The single nucleotide variant rs12722489 determines differential estrogen receptor binding and enhancer properties of an IL2RA intronic region. PLoS ONE, 2017, 12, e0172681.	1.1	10
1494	CELSR2 is a candidate susceptibility gene in idiopathic scoliosis. PLoS ONE, 2017, 12, e0189591.	1.1	17
1495	Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Molecules and Cells, 2017, 40, 169-177.	1.0	51
1496	Epigenetic silencing of tumor suppressor long non-coding RNA <i>BM742401</i> in chronic lymphocytic leukemia. Oncotarget, 2016, 7, 82400-82410.	0.8	26
1497	Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget, 2017, 8, 10324-10347.	0.8	34
1498	The search for <i>cis</i> -regulatory driver mutations in cancer genomes. Oncotarget, 2015, 6, 32509-32525.	0.8	18
1499	Pre-neoplastic epigenetic disruption of transcriptional enhancers in chronic inflammation. Oncotarget, 2016, 7, 15772-15786.	0.8	23
1501	Sufficiency analysis of estrogen responsive enhancers using synthetic activators. Life Science Alliance, 2019, 2, e201900497.	1.3	10

#	Article	IF	CITATIONS
1502	Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Science Alliance, 2020, 3, e202000663.	1.3	24
1503	The Paf1 complex positively regulates enhancer activity in mouse embryonic stem cells. Life Science Alliance, 2021, 4, e202000792.	1.3	15
1504	A Pretraining-Retraining Strategy of Deep Learning Improves Cell-Specific Enhancer Predictions. Frontiers in Genetics, 2019, 10, 1305.	1.1	11
1505	Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases. Genomics and Informatics, 2014, 12, 181.	0.4	4
1506	Genetic and epigenetic variation in the lineage specification of regulatory T cells. ELife, 2015, 4, e07571.	2.8	49
1507	Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. ELife, 2016, 5, .	2.8	115
1508	Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells. ELife, 2017, 6, .	2.8	79
1509	Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. ELife, 2019, 8, .	2.8	22
1510	Genome-wide identification of hypoxia-induced enhancer regions. PeerJ, 2015, 3, e1527.	0.9	7
1511	Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 2017, 5, e3742.	0.9	12
1512	ShapeGTB: the role of local DNA shape in prioritization of functional variants in human promoters with machine learning. PeerJ, 2018, 6, e5742.	0.9	2
1513	EnContact: predicting enhancer-enhancer contacts using sequence-based deep learning model. PeerJ, 2019, 7, e7657.	0.9	4
1514	lncRNAfunc: a knowledgebase of IncRNA function in human cancer. Nucleic Acids Research, 2022, 50, D1295-D1306.	6.5	63
1515	"Enhancing―mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow. Current Topics in Membranes, 2021, 87, 153-169.	0.5	0
1516	Using INFERNO to Infer the Molecular Mechanisms Underlying Noncoding Genetic Associations. Methods in Molecular Biology, 2021, 2254, 73-91.	0.4	2
1518	Beyond GWAS: from simple associations to functional insights. Seminars in Immunopathology, 2022, 44, 3-14.	2.8	13
1519	Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Reports, 2021, 37, 109803.	2.9	18
1520	Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics. Nature Communications, 2021, 12, 6120.	5.8	13

	CITAI	HON REPORT	
#	Article	IF	Citations
1523	The Cohesin Complex and Its Interplay with Non-Coding RNAs. Non-coding RNA, 2021, 7, 67.	1.3	3
1524	Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Medicine, 2021, 13, 162.	3.6	9
1525	Host methylation predicts SARS-CoV-2 infection and clinical outcome. Communications Medicine, 2021, 1, 42.	1.9	35
1526	Short single-stranded DNAs with putative non-canonical structures comprise a new class of plasma cell-free DNA. BMC Biology, 2021, 19, 225.	1.7	19
1527	No Need to Stick Together to Be Connected: Multiple Types of Enhancers' Networking. Cancers, 202 13, 5201.	21, 1.7	2
1528	Identification of a Putative Enhancer RNA for EGFR in Hyper-Accessible Regions in Esophageal Squamous Cell Carcinoma Cells by Analysis of Chromatin Accessibility Landscapes. Frontiers in Oncology, 2021, 11, 724687.	1.3	4
1529	Targeting the Non-Coding Genome for the Diagnosis of Disorders of Sex Development. Sexual Development, 2021, 15, 392-410.	1.1	9
1536	From Gene Expression to Disease Phenotypes: Network-Based Approaches to Study Complex Human Diseases. Translational Bioinformatics, 2016, , 115-140.	0.0	0
1537	Super-Enhancement and Control of Amh Expression. American Journal of Molecular Biology, 2016, 06, 117-123.	0.1	0
1546	Distinct distributions of genomic features of the 5' and 3' partners of coding somatic cancer gen fusions: arising mechanisms and functional implications. Oncotarget, 2017, 8, 66769-66783.	ne 0.8	0
1554	Epigenetic Regulation of Myeloid Cells. , 0, , 571-590.		1
1584	FANTOM History Paving the Way to Understand "What Is Written in Genomeâ€+ Application of Omic Science to Healthcare Juntendo Medical Journal, 2018, 64, 183-190.	cs 0.1	0
1587	Using regulatory genomics data to interpret the function of disease variants and prioritise genes from expression studies. F1000Research, 2018, 7, 121.	0.8	3
1608	Epilogue: Toward a Quantitative Theory of Oncology. , 2018, , 447-453.		0
1617	The Next Generation Sequencing Techniques and Application in Drug Discovery and Development. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 240-259.	0.3	0
1620	ModHMM: A Modular Supra-Bayesian Genome Segmentation Method. Lecture Notes in Computer Science, 2019, , 35-50.	1.0	2
1623	Genes and Cell Type Specification in Cerebellar Development. , 2019, , 1-19.		2
1624	Methods to Detect and Associate Divergence in Cis-Regulatory Elements to Phenotypic Divergence. , 2019, , 113-134.		1

#	Article	IF	Citations
1647	BioHackathon series in 2013 and 2014: improvements of semantic interoperability in life science data and services. F1000Research, 0, 8, 1677.	0.8	0
1649	SNPnotes: high-throughput tissue-specific functional annotation of single nucleotide variants. F1000Research, 0, 8, 1784.	0.8	0
1656	Conclusions and Future Prospects. , 2020, , 457-466.		0
1666	Unified Analysis of Multiple ChIP-Seq Datasets. Methods in Molecular Biology, 2021, 2198, 451-465.	0.4	2
1671	The 3D Genome: From Structure to Function. International Journal of Molecular Sciences, 2021, 22, 11585.	1.8	12
1672	An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nature Genetics, 2021, 53, 1527-1533.	9.4	208
1674	Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Letters, 2022, 525, 115-130.	3.2	19
1675	Mechanisms of Osteoprotective Actions of Estrogens. , 2020, , 503-523.		2
1676	Bayesian Optimization Improves Tissue-Specific Prediction of Active Regulatory Regions with Deep Neural Networks. Lecture Notes in Computer Science, 2020, , 600-612.	1.0	1
1677	Enhancer RNA: biogenesis, function, and regulation. Essays in Biochemistry, 2020, 64, 883-894.	2.1	35
1678	Fine genetic mapping of the chromosome 11q23.3 region in a Han Chinese population: insights into the apolipoprotein genes underlying the blood lipid-lipoprotein variances. Journal of Genetics and Genomics, 2020, 47, 756-769.	1.7	0
1679	SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Human Molecular Genetics, 2021, 30, 277-293.	1.4	9
1680	Assessment of transcriptional importance of cell line-specific features based on GTRD and FANTOM5 data. PLoS ONE, 2020, 15, e0243332.	1.1	0
1681	The impact of different negative training data on regulatory sequence predictions. PLoS ONE, 2020, 15, e0237412.	1.1	4
1686	Genome-Wide Analysis of Transcription Start Sites and Core Promoter Elements in Hevea brasiliensis. Compendium of Plant Genomes, 2020, , 81-91.	0.3	0
1691	Identification of cell states using super-enhancer RNA. BMC Genomics, 2021, 22, 787.	1.2	0
1695	Association of selected polymorphic sites in the IGF1R gene with body weight and conformation of Hereford cattle. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 2020, 16, 17-26.	0.2	0
1698	Genome-wide CRISPR interference screen identifies long non-coding RNA loci required for differentiation and pluripotency. PLoS ONE, 2021, 16, e0252848.	1.1	12

#	Article	IF	CITATIONS
1712	A saturating mutagenesis CRISPR-Cas9–mediated functional genomic screen identifies cis- and trans-regulatory elements of Oct4 in murine ESCs. Journal of Biological Chemistry, 2020, 295, 15797-15809.	1.6	6
1716	Genome-wide association study identifies 16 genomic regions associated with circulating cytokines at birth. PLoS Genetics, 2020, 16, e1009163.	1.5	12
1717	Leveraging putative enhancer-promoter interactions to investigate two-way epistasis in Type 2 Diabetes GWAS. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 548-558.	0.7	2
1718	Genetic Complexity of Mitral Valve Prolapse Revealed by Clinical and Genetic Evaluation of a Large Family. Journal of Heart Valve Disease, 2017, 26, 569-580.	0.5	1
1719	The effect of key DNA methylation in different regions on gene expression in hepatocellular carcinoma. Molecular Omics, 2022, 18, 57-70.	1.4	3
1720	Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neuroscience Letters, 2022, 766, 136343.	1.0	2
1721	TSSr: an R package for comprehensive analyses of TSS sequencing data. NAR Genomics and Bioinformatics, 2021, 3, lqab108.	1.5	6
1722	Non-Coding RNAs in Response to Drought Stress. International Journal of Molecular Sciences, 2021, 22, 12519.	1.8	32
1723	CD19-CAR TÂcells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Reports, 2021, 37, 110079.	2.9	48
1724	Integrative transcription start site analysis and physiological phenotyping reveal torpor-specific expression program in mouse skeletal muscle. Communications Biology, 2021, 4, 1290.	2.0	2
1725	Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genetics, 2021, 17, e1009907.	1.5	12
1727	Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Research, 2022, 32, 162-174.	2.4	14
1728	Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes, 2021, 12, 1901.	1.0	4
1729	A Transcriptional Signature of IL-2 Expanded Natural Killer Cells Predicts More Favorable Prognosis in Bladder Cancer. Frontiers in Immunology, 2021, 12, 724107.	2.2	17
1730	Enhancer RNA Profiling in Smoking and HPV Associated HNSCC Reveals Associations to Key Oncogenes. International Journal of Molecular Sciences, 2021, 22, 12546.	1.8	1
1731	Nonâ€coding regulatory elements: Potential roles in disease and the case of epilepsy. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	14
1732	Insilico Functional Analysis of Genome-Wide Dataset From 17,000 Individuals Identifies Candidate Malaria Resistance Genes Enriched in Malaria Pathogenic Pathways. Frontiers in Genetics, 2021, 12, 676960.	1.1	1
1733	Gender specific eRNA TBX5-AS1 as the immunological biomarker for male patients with lung squamous cell carcinoma in pan-cancer screening. PeerJ, 2021, 9, e12536.	0.9	6

#	Article	IF	CITATIONS
1734	A Comprehensive Evaluation of Cross-Omics Blood-Based Biomarkers for Neuropsychiatric Disorders. Journal of Personalized Medicine, 2021, 11, 1247.	1.1	3
1735	Evolutionary analysis of candidate non-coding elements regulating neurodevelopmental genes in vertebrates. , 0, 1, .		0
1736	A single-cell atlas of chromatin accessibility in the human genome. Cell, 2021, 184, 5985-6001.e19.	13.5	194
1737	GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors. Communications Biology, 2021, 4, 1356.	2.0	6
1738	Runx2 Regulates Chromatin Accessibility to Direct Skeletal Cell Programs. SSRN Electronic Journal, 0,	0.4	3
1739	Exploring the role of eRNA in regulating gene expression. Mathematical Biosciences and Engineering, 2021, 19, 2095-2119.	1.0	0
1741	PARGP1, a specific enhancer RNA associated with biochemical recurrence of prostate cancer. International Journal of Transgender Health, 2021, 14, 774-781.	1.1	2
1743	Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. International Journal of Molecular Sciences, 2022, 23, 501.	1.8	4
1744	Chromatin accessibility and microRNA expression in nephron progenitor cells during kidney development. Genomics, 2022, 114, 278-291.	1.3	4
1745	Genetic architecture of gene regulation in Indonesian populations identifies QTLs associated with global and local ancestries. American Journal of Human Genetics, 2022, 109, 50-65.	2.6	11
1746	CATA: a comprehensive chromatin accessibility database for cancer. Database: the Journal of Biological Databases and Curation, 2020, 2022, .	1.4	0
1748	ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Reports, 2022, 38, 110216.	2.9	32
1749	Novel sequencing technologies and bioinformatic tools for deciphering the non-coding genome. Medizinische Genetik, 2021, 33, 133-145.	0.1	1
1750	Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. Journal of Bone and Mineral Metabolism, 2022, 40, 361-374.	1.3	3
1752	Fine mapping with epigenetic information and 3D structure. Seminars in Immunopathology, 2022, 44, 115-125.	2.8	8
1753	Emerging roles of <scp>RNA</scp> – <scp>RNA</scp> interactions in transcriptional regulation. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1712.	3.2	8
1754	Genomic and functional conservation of IncRNAs: lessons from flies. Mammalian Genome, 2022, 33, 328-342.	1.0	18
1755	Targeting of non-coding RNAs encoded by novel MYC enhancers inhibits the proliferation of human hepatic carcinoma cells in vitro. Scientific Reports, 2022, 12, 855.	1.6	6

#	Article	IF	CITATIONS
1757	FILER: a framework for harmonizing and querying large-scale functional genomics knowledge. NAR Genomics and Bioinformatics, 2022, 4, lqab123.	1.5	7
1758	Alzheimer's Disease Variant Portal: A Catalog of Genetic Findings for Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 86, 461-477.	1.2	4
1759	Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nature Communications, 2022, 13, 463.	5.8	24
1760	Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, 7.	3.0	42
1761	CT-FOCS: a novel method for inferring cell type-specific enhancer–promoter maps. Nucleic Acids Research, 2022, 50, e55-e55.	6.5	2
1763	The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Computational Biology, 2022, 18, e1009722.	1.5	10
1765	Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Research Reviews, 2022, 73, 101535.	5.0	14
1766	Distinct transcription kinetics of pluripotent cell states. Molecular Systems Biology, 2022, 18, e10407.	3.2	4
1768	Endogenous retroviruses co-opted as divergently transcribed regulatory elements shape the regulatory landscape of embryonic stem cells. Nucleic Acids Research, 2022, 50, 2111-2127.	6.5	12
1769	PIM2 kinase has a pivotal role in plasmablast generation and plasma cell survival, opening up novel treatment options in myeloma. Blood, 2022, 139, 2316-2337.	0.6	5
1770	Comparison of confound adjustment methods in the construction of gene co-expression networks. Genome Biology, 2022, 23, 44.	3.8	4
1775	Transcriptional Landscape of Enhancer RNAs in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus. Journal of Inflammation Research, 2022, Volume 15, 775-791.	1.6	0
1776	Mouse genomic and cellular annotations. Mammalian Genome, 2022, 33, 19-30.	1.0	2
1777	Two ovarian candidate enhancers, identified by time series enhancer RNA analyses, harbor rare genetic variations identified in ovarian insufficiency. Human Molecular Genetics, 2022, 31, 2223-2235.	1.4	3
1778	Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science, 2022, 375, 522-528.	6.0	31
1779	A systematic study of motif pairs that may facilitate enhancer–promoter interactions. Journal of Integrative Bioinformatics, 2022, 19, .	1.0	2
1780	Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature, 2022, 601, 434-439.	13.7	110
1781	Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell, 2022, 34, 718-741.	3.1	125

~			~
	TAT	ION	Report
\sim			KLI OKI

#	Article	IF	CITATIONS
1782	RefSeq Functional Elements as experimentally assayed nongenic reference standards and functional interactions in human and mouse. Genome Research, 2022, 32, 175-188.	2.4	7
1783	Analysis of Enhancers and Transcriptional Networks in Thermogenic Adipocytes. Methods in Molecular Biology, 2022, 2448, 155-175.	0.4	0
1787	Sequence determinants of human gene regulatory elements. Nature Genetics, 2022, 54, 283-294.	9.4	87
1788	RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 555-565.	2.2	6
1789	Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies. Genes, 2022, 13, 381.	1.0	0
1790	Human topoisomerases and their roles in genome stability and organization. Nature Reviews Molecular Cell Biology, 2022, 23, 407-427.	16.1	125
1791	Enhancer RNA: What we know and what we can achieve. Cell Proliferation, 2022, 55, e13202.	2.4	23
1792	A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nature Biotechnology, 2022, 40, 1056-1065.	9.4	28
1793	A versatile 5′ RACE-Seq methodology for the accurate identification of the 5′ termini of mRNAs. BMC Genomics, 2022, 23, 163.	1.2	8
1794	Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biology, 2022, 20, 79.	1.7	12
1795	Improving reusability along the data life cycle: a regulatory circuits case study. Journal of Biomedical Semantics, 2022, 13, 11.	0.9	2
1796	Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Molecular Medicine, 2022, 14, e14817.	3.3	14
1797	Incorporating regulatory interactions into gene-set analyses for GWAS data: A controlled analysis with the MAGMA tool. PLoS Computational Biology, 2022, 18, e1009908.	1.5	3
1798	CREBBP/EP300 acetyltransferase inhibition disrupts FOXA1-bound enhancers to inhibit the proliferation of ER+ breast cancer cells. PLoS ONE, 2022, 17, e0262378.	1.1	5
1799	Development and Validation of a Novel Prognostic Model for Lower-Grade Glioma Based on Enhancer RNA-Regulated Prognostic Genes. Frontiers in Oncology, 2022, 12, 714338.	1.3	4
1800	TADA—a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs. Genome Biology, 2022, 23, 67.	3.8	4
1801	GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants from whole-genome sequencing data. Nucleic Acids Research, 2022, 50, 2522-2535.	6.5	13
1802	Promoter/enhancer-based controllability of regulatory networks. Scientific Reports, 2022, 12, 3528.	1.6	2

#	Article	IF	Citations
1803	Vitamin D and Its Target Genes. Nutrients, 2022, 14, 1354.	1.7	52
1804	Performance Comparison of Computational Methods for the Prediction of the Function and Pathogenicity of Non-Coding Variants. Genomics, Proteomics and Bioinformatics, 2023, 21, 649-661.	3.0	7
1805	Diagnostic Value of Serum Chitinase-3-Like Protein 1 for Liver Fibrosis: A Meta-analysis. BioMed Research International, 2022, 2022, 1-13.	0.9	7
1806	Prediction of histone post-translational modification patterns based on nascent transcription data. Nature Genetics, 2022, 54, 295-305.	9.4	53
1807	Whole genome sequencing delineates regulatory, copy number, and cryptic splice variants in early onset cardiomyopathy. Npj Genomic Medicine, 2022, 7, 18.	1.7	14
1808	Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients, 2022, 14, 1456.	1.7	7
1809	A multi-dimensional integrative scoring framework for predicting functional variants in the human genome. American Journal of Human Genetics, 2022, 109, 446-456.	2.6	18
1810	Immune disease variants modulate gene expression in regulatory CD4+ TÂcells. Cell Genomics, 2022, 2, 100117.	3.0	20
1811	DUX4 is a multifunctional factor priming human embryonic genome activation. IScience, 2022, 25, 104137.	1.9	20
1812	Phenotypic Causal Inference Using Genome-Wide Association Study Data: Mendelian Randomization and Beyond. Annual Review of Biomedical Data Science, 2022, 5, 1-17.	2.8	5
1813	Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist, 2022, , 107385842210839.	2.6	1
1814	Regulatory elements can be essential for maintaining broad chromatin organization and cell viability. Nucleic Acids Research, 2022, 50, 4340-4354.	6.5	0
1815	Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science, 2022, 376, eabg5601.	6.0	33
1816	Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. Science Advances, 2022, 8, eabl9156.	4.7	16
1817	Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Molecular Cell, 2022, 82, 1894-1908.e5.	4.5	15
1818	Enhancer RNA Transcription Is Essential for a Novel CSF1 Enhancer in Triple-Negative Breast Cancer. Cancers, 2022, 14, 1852.	1.7	3
1819	Regulating specificity in enhancer–promoter communication. Current Opinion in Cell Biology, 2022, 75, 102065.	2.6	32
1821	Enhancer RNA Expression in Response to Glucocorticoid Treatment in Murine Macrophages. Cells, 2022, 11, 28.	1.8	7

		CITATION REPORT	
#	Article	IF	CITATIONS
1825	A network-based method for predicting disease-associated enhancers. PLoS ONE, 2021, 16,	, e0260432. 1.1	1
1827	Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics, 2021, 22, 901.	1.2	6
1829	Long-range promoter–enhancer contacts are conserved during evolution and contribute expression robustness. Genome Research, 2022, 32, 280-296.	to gene 2.4	15
1831	CoRE-ATAC: A deep learning model for the functional classification of regulatory elements f single cell and bulk ATAC-seq data. PLoS Computational Biology, 2021, 17, e1009670.	rom 1.5	7
1832	SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis. Genome 2021, 22, 344.	Biology, 3.8	19
1833	Virtual Gene Concept and a Corresponding Pragmatic Research Program in Genetical Data S Entropy, 2022, 24, 17.	Science. 1.1	0
1834	Genes and Cell Type Specification in Cerebellar Development. , 2022, , 333-351.		0
1835	Prediction of Enhancers in DNA Sequence Data using a Hybrid CNN-DLSTM Model. IEEE/ACN Transactions on Computational Biology and Bioinformatics, 2023, 20, 1327-1336.	М 1.9	23
1836	PCRMS: a database of predicted cis-regulatory modules and constituent transcription facto sites in genomes. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	r binding 1.4	8
1837	A general framework for predicting the transcriptomic consequences of non-coding variatio small molecules. PLoS Computational Biology, 2022, 18, e1010028.	n and 1. 5	2
1838	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K2 glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	27M mutant 5.7	16
1839	Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects Immunology, 2022, 13, 849451.	. Frontiers in 2.2	7
1840	Pan ancer analysis of mutations in open chromatin regions and their possible associatior cancer pathogenesis. Cancer Medicine, 2022, , .	ı with 1.3	3
1841	PAMP-triggered genetic reprogramming involves widespread alternative transcription initiat an immediate transcription factor wave. Plant Cell, 2022, 34, 2615-2637.	ion and 3.1	12
1842	An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non- RNAs. Cells, 2022, 11, 1346.	Coding 1.8	5
1843	Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers, 2022, 14, 1978.	1.7	6
1886	Can aggressive cancers be identified by the "aggressiveness―of their chromatin?. BioE 2100212.	ssays, 2022, , 1.2	2
1887	Pleiotropic Enhancers are Ubiquitous Regulatory Elements in the Human Genome. Genome Evolution, 2022, 14, .	Biology and 1.1	5

#	Article	IF	CITATIONS
1889	Abiotic stress-mediated transcription regulation, chromatin dynamics, and gene expression in plants: Arabidopsis as a role model. , 2022, , 321-345.		0
1891	Identification of Enhancer RNA CDK6-AS1 as a Potential Novel Prognostic Biomarker in Gastric Cancer. Frontiers in Genetics, 2022, 13, 854211.	1.1	8
1892	lt's a DoC-eat-DoC world—altered transcriptional mechanisms drive downstream-of-gene (DoC) transcript production. Molecular Cell, 2022, 82, 1981-1991.	4.5	12
1893	Classification of non-coding variants with high pathogenic impact. PLoS Genetics, 2022, 18, e1010191.	1.5	15
1894	Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Molecular Cell, 2022, 82, 2519-2531.e6.	4.5	47
1895	Chronic Exposure to the Food Additive tBHQ Modulates Expression of Genes Related to SARS-CoV-2 and Influenza Viruses. Life, 2022, 12, 642.	1.1	0
1896	Comprehensive enhancer-target gene assignments improve gene set level interpretation of genome-wide regulatory data. Genome Biology, 2022, 23, 105.	3.8	6
1897	Transposable elements in plants: Recent advancements, tools and prospects. Plant Molecular Biology Reporter, O, , 1.	1.0	9
1898	Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nature Communications, 2022, 13, 2429.	5.8	19
1899	Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Reports, 2022, 39, 110798.	2.9	6
1900	eRNAs Identify Immune Microenvironment Patterns and Provide a Novel Prognostic Tool in Acute Myeloid Leukemia. Frontiers in Molecular Biosciences, 2022, 9, 877117.	1.6	1
1901	A Novel and Robust Prognostic Model for Hepatocellular Carcinoma Based on Enhancer RNAs-Regulated Genes. Frontiers in Oncology, 2022, 12, .	1.3	1
1903	Prioritization of risk genes in multiple sclerosis by a refined Bayesian framework followed by tissue-specificity and cell type feature assessment. BMC Genomics, 2022, 23, 362.	1.2	4
1904	Antagonistic action of a synthetic androgen ligand mediated by chromatin remodeling in a human prostate cancer cell line. Biochemical and Biophysical Research Communications, 2022, 612, 110-118.	1.0	4
1906	Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes. , 0, , .		2
1907	Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells. ELife, 0, 11, .	2.8	15
1908	Analysis of the landscape of human enhancer sequences in biological databases. Computational and Structural Biotechnology Journal, 2022, 20, 2728-2744.	1.9	0
1910	Large-scale integration of DNA methylation and gene expression array platforms identifies both <i>ci>cis</i> and <i>trans</i> relationships. Epigenetics, 2022, 17, 1753-1773.	1.3	2

#	Article	IF	CITATIONS
1914	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	9.4	68
1915	Comparison and imputation-aided integration of five commercial platforms for targeted DNA methylome analysis. Nature Biotechnology, 2022, 40, 1478-1487.	9.4	5
1916	Predicting 3D chromatin interactions from DNA sequence using Deep Learning. Computational and Structural Biotechnology Journal, 2022, 20, 3439-3448.	1.9	7
1917	Identification of novel, functional, long noncoding RNAs involved in programmed, large-scale genome rearrangements. Rna, 2022, 28, 1110-1127.	1.6	1
1918	Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell, 2022, 185, 2132-2147.e26.	13.5	16
1919	Regulatory Architecture of the RCA Gene Cluster Captures an Intragenic TAD Boundary, CTCF-Mediated Chromatin Looping and a Long-Range Intergenic Enhancer. Frontiers in Immunology, 0, 13, .	2.2	4
1920	Somatic point mutations are enriched in non-coding RNAs with possible regulatory function in breast cancer. Communications Biology, 2022, 5, .	2.0	5
1921	Transcriptional and post-transcriptional regulation of young genes in plants. BMC Biology, 2022, 20, .	1.7	1
1922	Detection of ovarian cancer using plasma cell-free DNA methylomes. Clinical Epigenetics, 2022, 14, .	1.8	10
1923	Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential. Nature Structural and Molecular Biology, 2022, 29, 613-620.	3.6	19
1924	Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the <i>Sox2</i> locus. Genes and Development, 2022, 36, 699-717.	2.7	17
1925	Computational Methods for Single-cell DNA Methylome Analysis. Genomics, Proteomics and Bioinformatics, 2023, 21, 48-66.	3.0	4
1926	T cell stimulation remodels the latently HIV-1 infected cell population by differential activation of proviral chromatin. PLoS Pathogens, 2022, 18, e1010555.	2.1	5
1927	Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch. Journal of the American Chemical Society, 2022, 144, 10462-10470.	6.6	12
1929	Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nature Communications, 2022, 13, .	5.8	7
1930	Heterogeneity of enhancers embodies shared and representative functional groups underlying developmental and cell type-specific gene regulation. Gene, 2022, 834, 146640.	1.0	0
1931	Multifaceted regulation of enhancers in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194839.	0.9	2
1932	Chromatin Hubs: A biological and computational outlook. Computational and Structural Biotechnology Journal, 2022, 20, 3796-3813.	1.9	6

#	Article	IF	CITATIONS
1933	Identification of prognostic and immunotherapy-related eRNA ID2-AS1 in bladder cancer. Medicine (United States), 2022, 101, e29759.	0.4	1
1934	ETS1 is a novel transcriptional regulator of adult T-cell leukemia/lymphoma of North American descent. Blood Advances, 2022, 6, 5613-5624.	2.5	1
1935	Quality-controlled R-loop meta-analysis reveals the characteristics of R-loop consensus regions. Nucleic Acids Research, 2022, 50, 7260-7286.	6.5	7
1936	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	9.4	26
1937	Landscape of Global Gene Expression Reveals Distinctive Tissue Characteristics in Bactrian Camels (Camelus bactrianus). Agriculture (Switzerland), 2022, 12, 958.	1.4	0
1939	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	2.9	11
1943	Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biology, 2022, 20, .	1.7	4
1944	Loss of Monoallelic Expression of IGF2 in the Adult Liver Via Alternative Promoter Usage and Chromatin Reorganization. Frontiers in Genetics, 0, 13, .	1.1	4
1946	Functional genomic assays to annotate enhancer–promoter interactions genome wide. Human Molecular Genetics, 2022, 31, R97-R104.	1.4	3
1948	Multiregional single-cell proteogenomic analysis of ccRCC reveals cytokine drivers of intratumor spatial heterogeneity. Cell Reports, 2022, 40, 111180.	2.9	7
1949	Polysome-CAGE of TCL1-driven chronic lymphocytic leukemia revealed multiple N-terminally altered epigenetic regulators and a translation stress signature. ELife, 0, 11, .	2.8	0
1950	Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs. Genome Research, 2022, 32, 1727-1735.	2.4	1
1951	Integrated co-expression network analysis uncovers novel tissue-specific genes in major depressive disorder and bipolar disorder. Frontiers in Psychiatry, 0, 13, .	1.3	3
1952	Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from non-coding genome findings. Human Molecular Genetics, 0, , .	1.4	2
1953	Novel Method of Full-Length RNA-seq That Expands the Identification of Non-Polyadenylated RNAs Using Nanopore Sequencing. Analytical Chemistry, 2022, 94, 12342-12351.	3.2	2
1954	Human Genetic Variants Associated with COVID-19 Severity are Enriched in Immune and Epithelium Regulatory Networks. Phenomics, 2022, 2, 389-403.	0.9	5
1955	Temporal analysis of enhancers during mouse cerebellar development reveals dynamic and novel regulatory functions. ELife, 0, 11, .	2.8	7
1958	Demystifying non-coding GWAS variants: an overview of computational tools and methods. Human Molecular Genetics, 2022, 31, R73-R83.	1.4	9

#	Article	IF	CITATIONS
1959	Scalable approaches for functional analyses of whole-genome sequencing non-coding variants. Human Molecular Genetics, 2022, 31, R62-R72.	1.4	2
1960	<scp>Genomeâ€wide</scp> prediction of activating regulatory elements in rice by combining <scp>STARR</scp> â€seq with <scp>FACS</scp> . Plant Biotechnology Journal, 2022, 20, 2284-2297.	4.1	8
1961	Repression of enhancer RNA PHLDA1 promotes tumorigenesis and progression of Ewing sarcoma via decreasing infiltrating Tâ€lymphocytes: A bioinformatic analysis. Frontiers in Genetics, 0, 13, .	1.1	0
1965	iCancer-Pred: A tool for identifying cancer and its type using DNA methylation. Genomics, 2022, 114, 110486.	1.3	4
1966	Genome-wide Analyses of Histone Modifications in the Mammalian Genome. , 2023, , 137-161.		1
1967	A Unified-Field Theory of Genome Organization and Gene Regulation. SSRN Electronic Journal, 0, , .	0.4	0
1968	Enhancers: Encoding Regulation Across Time. Cognitive Systems Monographs, 2022, , 39-57.	0.1	0
1969	Enhancer RNAs step forward: new insights into enhancer function. Development (Cambridge), 2022, 149, .	1.2	14
1970	Population-level variation in enhancer expression identifies disease mechanisms in the human brain. Nature Genetics, 2022, 54, 1493-1503.	9.4	17
1971	An enhancer RNA-based risk model for prediction of bladder cancer prognosis. Frontiers in Medicine, 0, 9, .	1.2	0
1972	Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Reports, 2022, 40, 111315.	2.9	12
1973	Genome-Wide Study of Colocalization between Genomic Stretches: A Method and Applications to the Regulation of Gene Expression. Biology, 2022, 11, 1422.	1.3	0
1976	Building integrative functional maps of gene regulation. Human Molecular Genetics, 0, , .	1.4	2
1977	Nonparametric single-cell multiomic characterization of trio relationships between transcription factors, target genes, and cis-regulatory regions. Cell Systems, 2022, 13, 737-751.e4.	2.9	16
1978	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	1.4	4
1979	SCAFE: a software suite for analysis of transcribed cis-regulatory elements in single cells. Bioinformatics, 2022, 38, 5126-5128.	1.8	6
1980	Systematic comparison of ranking aggregation methods for gene lists in experimental results. Bioinformatics, 2022, 38, 4927-4933.	1.8	3
1982	Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nature Genetics, 2022, 54, 1514-1526.	9.4	50

#	Article	IF	Citations
1983	Dual genome-wide coding and IncRNA screens in neural induction of induced pluripotent stem cells. Cell Genomics, 2022, 2, 100177.	3.0	10
1984	Stroke genetics informs drug discovery and risk prediction across ancestries. Nature, 2022, 611, 115-123.	13.7	143
1985	Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nature Communications, 2022, 13, .	5.8	44
1986	Interpretation of the role of germline and somatic non-coding mutations in cancer: expression and chromatin conformation informed analysis. Clinical Epigenetics, 2022, 14, .	1.8	3
1987	Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nature Reviews Molecular Cell Biology, 2023, 24, 204-220.	16.1	24
1988	CohesinDB: a comprehensive database for decoding cohesin-related epigenomes, 3D genomes and transcriptomes in human cells. Nucleic Acids Research, 2023, 51, D70-D79.	6.5	3
1989	Colorectal cancer-associated SNP rs17042479 is involved in the regulation of NAF1 promoter activity. PLoS ONE, 2022, 17, e0274033.	1.1	0
1990	Accurate prediction of functional states of cis-regulatory modules reveals common epigenetic rules in humans and mice. BMC Biology, 2022, 20, .	1.7	5
1991	Potential mechanisms and prognostic model of eRNAs-regulated genes in stomach adenocarcinoma. Scientific Reports, 2022, 12, .	1.6	1
1992	A brief survey of tools for genomic regions enrichment analysis. Frontiers in Bioinformatics, 0, 2, .	1.0	7
1995	Function and constraint in enhancer sequences with multiple evolutionary origins. Genome Biology and Evolution, 0, , .	1.1	5
1996	Performance of abiotic stress-inducible synthetic promoters in genetically engineered hybrid poplar (Populus tremula × Populus alba). Frontiers in Plant Science, 0, 13, .	1.7	4
1998	Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nature Communications, 2022, 13, .	5.8	26
1999	A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome. BMC Genomics, 2022, 23, .	1.2	3
2000	Emerging Role of Enhancer RNAs as Potential Diagnostic and Prognostic Biomarkers in Cancer. Non-coding RNA, 2022, 8, 66.	1.3	0
2001	Epigenetics of neural differentiation: Spotlight on enhancers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
2002	A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nature Methods, 2022, 19, 1599-1611.	9.0	36
2006	GenomicKB: a knowledge graph for the human genome. Nucleic Acids Research, 2023, 51, D950-D956.	6.5	8

#	Article	IF	CITATIONS
2007	Normalization benchmark of ATAC-seq datasets shows the importance of accounting for GC-content effects. Cell Reports Methods, 2022, 2, 100321.	1.4	6
2009	A systematic study of HIF1A cofactors in hypoxic cancer cells. Scientific Reports, 2022, 12, .	1.6	2
2010	Improving Infinium MethylationEPIC data processing: re-annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics, 2022, 17, 2434-2454.	1.3	3
2011	Promoter sequence and architecture determine expression variability and confer robustness to genetic variants. ELife, 0, 11, .	2.8	12
2013	Deep learning-assisted genome-wide characterization of massively parallel reporter assays. Nucleic Acids Research, 0, , .	6.5	1
2014	Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine, 2022, 86, 104357.	2.7	15
2015	A Myb enhancer-guided analysis of basophil and mast cell differentiation. Nature Communications, 2022, 13, .	5.8	5
2016	RNA and the cellular biochemistry revisited. , 2023, , 1-50.		0
2017	An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Frontiers in Microbiology, 0, 13, .	1.5	11
2018	Transcriptomic meta-analysis reveals unannotated long non-coding RNAs related to the immune response in sheep. Frontiers in Genetics, 0, 13, .	1.1	1
2019	Efficient Selection of Enhancers and Promoters from MIA PaCa-2 Pancreatic Cancer Cells by ChIP-lentiMPRA. International Journal of Molecular Sciences, 2022, 23, 15011.	1.8	0
2020	Prediction of the cell-type-specific transcription of non-coding RNAs from genome sequences via machine learning. Nature Biomedical Engineering, 2023, 7, 830-844.	11.6	8
2022	Current challenges in understanding the role of enhancers in disease. Nature Structural and Molecular Biology, 2022, 29, 1148-1158.	3.6	22
2023	Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies. Nature Genetics, 2023, 55, 154-164.	9.4	12
2024	DeepTSS: multi-branch convolutional neural network for transcription start site identification from CAGE data. BMC Bioinformatics, 2022, 23, .	1.2	1
2025	Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework. PLoS Computational Biology, 2022, 18, e1010779.	1.5	4
2026	CanMethdb: a database for genome-wide DNA methylation annotation in cancers. Bioinformatics, 0, , .	1.8	0
2028	Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques. BMC Bioinformatics, 2022, 23, .	1.2	2

#	Article	IF	CITATIONS
2029	RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts. , 2023, 20, 94-109.		7
2030	Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 2023, 24, 430-447.	16.1	313
2031	Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries. Genome Research, 0, , .	2.4	14
2032	ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Reports, 2023, 42, 111909.	2.9	2
2034	Practical application of massively parallel reporter assay in biotechnology and medicine. Journal of Clinical Practice, 2023, 13, 74-87.	0.2	0
2035	Differential DNA methylation associated with multiple sclerosis and disease modifying treatments in an underrepresented minority population. Frontiers in Genetics, 0, 13, .	1.1	1
2036	Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. International Journal of Molecular Sciences, 2023, 24, 1145.	1.8	3
2037	Regulatory element usage in healthy and failing human heart tissue. , 2023, 2, 10-12.		0
2039	The chromatin signatures of enhancers and their dynamic regulation. Nucleus, 2023, 14, .	0.6	5
2040	Reporter gene assays and chromatin-level assays define substantially non-overlapping sets of enhancer sequences. BMC Genomics, 2023, 24, .	1.2	4
2041	Molecular Landscape of Tourette's Disorder. International Journal of Molecular Sciences, 2023, 24, 1428.	1.8	0
2042	An atlas of transcribed human cardiac promoters and enhancers reveals an important role of regulatory elements in heart failure. , 2023, 2, 58-75.		7
2043	Quality assessment and refinement of chromatin accessibility data using a sequence-based predictive model. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
2044	Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs. Biomolecules, 2023, 13, 45.	1.8	1
2045	The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Scientific Reports, 2022, 12, .	1.6	3
2046	Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Reports, 2022, 41, 111893.	2.9	9
2047	iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information. Briefings in Functional Genomics, 2023, 22, 302-311.	1.3	1
2048	Behind the scenes: How RNA orchestrates the epigenetic regulation of gene expression. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	9

# 2051	ARTICLE Enhancers for Selective Targeting. Neuromethods, 2023, , 169-184.	IF 0.2	CITATIONS 0
2052	The adapted Activity-By-Contact model for enhancer–gene assignment and its application to single-cell data. Bioinformatics, 2023, 39, .	1.8	5
2053	SCN1A: bioinformatically informed revised boundaries for promoter and enhancer regions. Human Molecular Genetics, 2023, 32, 1753-1763.	1.4	1
2054	Higher-order chromatin structure and gene regulation. , 2023, , 11-32.		2
2055	Enhancer–promoter entanglement explains their transcriptional interdependence. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
2056	Enhancer RNA-based modeling of adverse events and objective responses of cancer immunotherapy reveals associated key enhancers and target genes. Frontiers in Oncology, 0, 12, .	1.3	0
2057	Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. International Review of Cell and Molecular Biology, 2023, , 97-148.	1.6	0
2060	<scp>eaQTLdb</scp> : An atlas of enhancer activity quantitative trait loci across cancer types. International Journal of Cancer, 0, , .	2.3	0
2061	Comprehensive characterization of the embryonic factor LEUTX. IScience, 2023, 26, 106172.	1.9	1
2062	Exploring the genetic basis of coronary artery disease using functional genomics. Atherosclerosis, 2023, 374, 87-98.	0.4	5
2063	Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiology Spectrum, 2023, 11, .	1.2	5
2064	RNA m6A methylation across the transcriptome. Molecular Cell, 2023, 83, 428-441.	4.5	60
2067	Development of a novel prognostic signature derived from enhancer <scp>RNA</scp> â€regulated genes in head neck squamous cell carcinoma. Head and Neck, 2023, 45, 900-912.	0.9	1
2068	Transcription factors regulating vasculogenesis and angiogenesis. Developmental Dynamics, 2024, 253, 28-58.	0.8	3
2069	Differential regulation of mRNA stability modulates transcriptional memory and facilitates environmental adaptation. Nature Communications, 2023, 14, .	5.8	3
2070	Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	20
2071	Dynamic interplay between non-coding enhancer transcription and gene activity in development. Nature Communications, 2023, 14, .	5.8	2
2072	Enhancer/gene relationships: Need for more reliable genome-wide reference sets. Frontiers in Bioinformatics, 0, 3, .	1.0	3

#	Article	IF	Citations
2073	The Role of Non-coding RNAs in Cerebellar Development. Contemporary Clinical Neuroscience, 2023, , 111-128.	0.3	0
2074	The long-range interaction between two GNAS imprinting control regions delineates pseudohypoparathyroidism type 1B pathogenesis. Journal of Clinical Investigation, 2023, 133, .	3.9	4
2076	Haplotype-specific <i>MAPK3</i> expression in 16p11.2 deletion contributes to variable neurodevelopment. Brain, 0, , .	3.7	1
2077	Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Reports, 2023, 42, 112193.	2.9	3
2079	Enhancer RNA IRS2e is essential for IRS2 expression and the oncogenic properties in oral squamous cell carcinoma. Carcinogenesis, 0, , .	1.3	0
2080	A unifying statistical framework to discover disease genes from GWASs. Cell Genomics, 2023, 3, 100264.	3.0	1
2082	Neonatal administration of synthetic estrogen, diethylstilbestrol to mice up-regulates inflammatory Cxclchemokines located in the 5qE1 region in the vaginal epithelium. PLoS ONE, 2023, 18, e0280421.	1.1	1
2084	Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq. International Journal of Molecular Sciences, 2023, 24, 6229.	1.8	5
2085	Toward a comprehensive catalog of regulatory elements. Human Genetics, 2023, 142, 1091-1111.	1.8	4
2086	A novel CCDC91 isoform associated with ossification of the posterior longitudinal ligament of the spine works as a non-coding RNA to regulate osteogenic genes. American Journal of Human Genetics, 2023, 110, 638-647.	2.6	2
2087	Transfer learning identifies sequence determinants of cell-type specific regulatory element accessibility. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	2
2088	Novel enhancers conferring compensatory transcriptional regulation of Nkx2-5 in heart development. IScience, 2023, 26, 106509.	1.9	1
2090	Connectome and regulatory hubs of CAGE highly active enhancers. Scientific Reports, 2023, 13, .	1.6	1
2091	Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes. Nature Genetics, 2023, 55, 679-692.	9.4	9
2093	Esearch3D: propagating gene expression in chromatin networks to illuminate active enhancers. Nucleic Acids Research, 0, , .	6.5	1
2095	High-resolution Nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias. Communications Biology, 2023, 6, .	2.0	2
2096	Identification of Critical Genes for Ovine Horn Development Based on Transcriptome during the Embryonic Period. Biology, 2023, 12, 591.	1.3	4
2097	Genome-Wide Principles of Gene Regulation. , 2023, , 145-159.		0

#	Article	IF	CITATIONS
2098	<scp>GRaNIE</scp> and <scp>GRaNPA</scp> : inference and evaluation of enhancerâ€mediated gene regulatory networks. Molecular Systems Biology, 2023, 19, .	3.2	17
2099	Information about immune cell proportions and tumor stage improves the prediction of recurrence in patients with colorectal cancer. Patterns, 2023, , 100736.	3.1	0
2103	Noncoding RNA. , 2022, , 259-278.		0
2121	History and definitions of ncRNAs. , 2023, , 1-46.		0
2172	Molecular Mechanisms of HIV-1 Latency from a Chromatin and Epigenetic Perspective. Current Clinical Microbiology Reports, 0, , .	1.8	1
2199	The Hidden Layer of RNA Variants. RNA Technologies, 2023, , 343-369.	0.2	0
2230	Transcription regulation by long non-coding RNAs:Âmechanisms and disease relevance. Nature Reviews Molecular Cell Biology, 0, , .	16.1	1