Assessing antibiotic sorption in soil: a literature review sulfonamides and macrolides

Chemistry Central Journal 8, 5 DOI: 10.1186/1752-153x-8-5

Citation Report

#	Article	IF	CITATIONS
1	Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 982-991.	0.7	7
2	Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research, 2014, 21, 12583-12604.	2.7	33
3	Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Science of the Total Environment, 2014, 500-501, 250-269.	3.9	526
4	Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments. Water Environment Research, 2015, 87, 868-1937.	1.3	12
5	Natural products in soil microbe interactions and evolution. Natural Product Reports, 2015, 32, 956-970.	5.2	172
6	Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China. Science of the Total Environment, 2015, 527-528, 56-64.	3.9	85
7	Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control. Science of the Total Environment, 2015, 532, 138-153.	3.9	63
8	Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 2015, 290, 43-50.	6.5	299
9	Parameters influencing ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole retention by natural and converted calcium phosphates. Journal of Hazardous Materials, 2015, 291, 38-44.	6.5	28
10	Degradation of antimicrobials in soils and sediments. , 2015, , .		0
11	Impact of pharmaceuticals on the environment. , 2016, , 109-152.		14
12	Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal of Hazardous Materials, 2016, 318, 407-416.	6.5	109
13	Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review. Journal of Environmental Quality, 2016, 45, 407-419.	1.0	94
14	The Chemical Ecology of Predatory Soil Bacteria. ACS Chemical Biology, 2016, 11, 1502-1510.	1.6	51
15	Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems. Journal of Hazardous Materials, 2016, 317, 198-209.	6.5	59
16	Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere, 2016, 152, 229-237.	4.2	102
17	Transport of sulfonamide antibiotics in crop fields during monsoon season. Environmental Science and Pollution Research, 2016, 23, 22980-22992.	2.7	10

#	Article	IF	CITATIONS
19	Not All Antibiotic Use Practices in Food-Animal Agriculture Afford the Same Risk. Journal of Environmental Quality, 2016, 45, 618-629.	1.0	24
20	Studies on uptake and distribution of antibiotics in red cabbage. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2016, 11, 61-69.	0.5	20
21	Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. Journal of Hazardous Materials, 2016, 305, 139-148.	6.5	116
22	Trends in sulfonamides and their by-products analysis in environmental samples using mass spectrometry techniques. Trends in Environmental Analytical Chemistry, 2016, 9, 24-36.	5.3	28
23	A simple, accurate, time-saving and green method for the determination of 15 sulfonamides and metabolites in serum samples by ultra-high performance supercritical fluid chromatography. Journal of Chromatography A, 2016, 1432, 132-139.	1.8	31
24	Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. Science of the Total Environment, 2017, 578, 649-659.	3.9	51
25	Sediment and salinity effects on the bioaccumulation of sulfamethoxazole in zebrafish (Danio rerio). Chemosphere, 2017, 180, 467-475.	4.2	60
26	Removal of antibiotics (sulfamethazine, tetracycline and chloramphenicol) from aqueous solution by raw and nitrogen plasma modified steel shavings. Science of the Total Environment, 2017, 601-602, 845-856.	3.9	24
27	Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 2017, 231, 1621-1632.	3.7	166
28	Kinetics, electron-donor-acceptor interactions, and site energy distribution analyses of norfloxacin adsorption on pretreated barley straw. Chemical Engineering Journal, 2017, 330, 1211-1221.	6.6	71
29	Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Research, 2017, 125, 360-373.	5.3	139
30	Development of a soft extraction method for sulfamethoxazole and transformation products from agricultural soils: Effects of organic matter co-extraction on the environmental availability assessment. Science of the Total Environment, 2017, 607-608, 1037-1048.	3.9	15
31	Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Science of the Total Environment, 2017, 609, 830-841.	3.9	66
32	Levofloxacin is phytotoxic and modifies the protein profile of lupin seedlings. Environmental Science and Pollution Research, 2017, 24, 22226-22240.	2.7	8
33	Gamma irradiation-induced decomposition of sulfamethoxazole in aqueous solution: the influence of additives, biological inhibitory, and degradation mechanisms. Environmental Science and Pollution Research, 2017, 24, 23658-23665.	2.7	13
34	Antibiotic Resistance Gene Due to Manure Application. Soil Biology, 2017, , 141-150.	0.6	2
35	Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment, 2017, 599-600, 500-512.	3.9	277
36	Biocontrol through antibiosis: exploring the role played by subinhibitory concentrations of antibiotics in soil and their impact on plant pathogens. Canadian Journal of Plant Pathology, 2017, 39, 267, 274	0.8	27

#	Article	IF	CITATIONS
37	The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteriaÂand resistance genes – A review. Water Research, 2017, 123, 448-467.	5.3	400
38	Bioavailability of Antibiotics at Soil–Water Interfaces: A Comparison of Measured Activities and Equilibrium Partitioning Estimates. Environmental Science & Technology, 2018, 52, 6555-6564.	4.6	31
39	A facile synthesis of goethite-modified g-C3N4 composite for photocatalytic degradation of tylosin in an aqueous solution. Research on Chemical Intermediates, 2018, 44, 3151-3167.	1.3	24
40	Effect of composting and soil type on dissipation of veterinary antibiotics in land-applied manures. Chemosphere, 2018, 196, 270-279.	4.2	46
41	16-membered macrolide antibiotics: a review. International Journal of Antimicrobial Agents, 2018, 51, 283-298.	1.1	118
42	Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Science of the Total Environment, 2018, 612, 1387-1406.	3.9	175
43	Monitoring tylosin and sulfamethazine in a tile-drained agricultural watershed using polar organic chemical integrative sampler (POCIS). Science of the Total Environment, 2018, 612, 358-367.	3.9	17
44	Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). Journal of Cleaner Production, 2018, 197, 491-500.	4.6	112
45	Explaining the accelerated degradation of ciprofloxacin, sulfamethazine, and erythromycin in different soil exposure scenarios by their aqueous extractability. Environmental Science and Pollution Research, 2018, 25, 16236-16245.	2.7	8
46	Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution, 2018, 240, 368-377.	3.7	113
47	Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Journal of Water Process Engineering, 2018, 25, 195-204.	2.6	127
48	Method of Dairy Manure Application and Time before Rainfall Affect Antibiotics in Surface Runoff. Journal of Environmental Quality, 2018, 47, 1310-1317.	1.0	23
49	Antibiotics and Antibiotic Resistance Genes in Bulk and Rhizosphere Soils Subject to Manure Amendment and Vegetable Cultivation. Journal of Environmental Quality, 2018, 47, 1318-1326.	1.0	23
50	Distribution and fate of pharmaceuticals and their metabolite conjugates in a municipal wastewater treatment plant. Water Research, 2018, 144, 774-783.	5.3	67
51	Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?. Journal of Hazardous Materials, 2019, 379, 120807.	6.5	81
52	Pedotransfer functions to estimate the adsorption and desorption of sulfadiazine in agricultural soils. Science of the Total Environment, 2019, 691, 933-942.	3.9	19
53	Occurrence of antibiotics and their associations with antibiotic resistance genes and bacterial communities in Guangdong coastal areas. Ecotoxicology and Environmental Safety, 2019, 186, 109796.	2.9	40
54	Current progress in the adsorption, transport and biodegradation of antibiotics in soil. Journal of Environmental Management, 2019, 251, 109598.	3.8	123

#	Article	IF	CITATIONS
55	Occurrence and Risk Assessment of Antibiotics in Manure, Soil, Wastewater, Groundwater from Livestock and Poultry Farms in Xuzhou, China. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 590-596.	1.3	46
56	Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Science of the Total Environment, 2019, 678, 10-20.	3.9	81
57	A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2019, 178, 146-158.	2.9	9
58	Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Frontiers in Microbiology, 2019, 10, 338.	1.5	511
59	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 2019, 119, 3510-3673.	23.0	1,427
60	Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 270-279.	2.0	48
61	KINETICS OF TYLOSIN IN SOIL AND ITS INFLUENCING FACTORS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, 34-41.	0.1	2
62	The Efficacy of Three Diatomaceous Earth Sources for Removing Tylosin from Aqueous Systems. Journal of Environmental Quality, 2019, 48, 1863-1871.	1.0	5
63	Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. Journal of Hazardous Materials, 2019, 361, 169-186.	6.5	207
64	Environmental availability of sulfamethoxazole and its acetylated metabolite added to soils via sludge compost or bovine manure. Science of the Total Environment, 2019, 651, 506-515.	3.9	7
65	Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils. Science of the Total Environment, 2019, 650, 173-183.	3.9	24
66	Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: Findings from an experimental field site (Baix EmpordÃ, NE Catalonia). Science of the Total Environment, 2019, 654, 1337-1349.	3.9	101
67	Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling. Environmental Technology (United Kingdom), 2019, 40, 2940-2953.	1.2	24
68	Characterization of novel thorium tolerant Ochrobactrum intermedium AM7 in consort with assessing its EPS-Thorium binding. Journal of Hazardous Materials, 2020, 388, 122047.	6.5	26
69	Environmental antibiotics drives the genetic functions of resistome dynamics. Environment International, 2020, 135, 105398.	4.8	29
70	Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. Journal of Dairy Science, 2020, 103, 1051-1071.	1.4	112
71	The seasonal distribution and concentration of antibiotics in rural streams and drinking wells in the piedmont of North Carolina. Science of the Total Environment, 2020, 710, 136286.	3.9	30
72	Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes, 2020, 8, 1479.	1.3	78

#	Article	IF	CITATIONS
73	Removal of Nutrients From Anaerobically Digested Swine Wastewater Using an Intermittent Cycle Extended Aeration System. Frontiers in Microbiology, 2020, 11, 576438.	1.5	12
74	Fate and risk assessment of sulfonamides and metabolites in urban groundwater. Environmental Pollution, 2020, 267, 115480.	3.7	22
75	Research on the Impact and Mechanism for the Inhibition of Micrococcus Catalase Activity by Typical Tetracyclines. BioMed Research International, 2020, 2020, 1-13.	0.9	1
76	Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Veterinary Sciences, 2020, 7, 110.	0.6	97
77	Salinity-independent dissipation of antibiotics from flooded tropical soil: a microcosm study. Scientific Reports, 2020, 10, 14088.	1.6	3
78	Environmental Fate and Transport of Veterinary Antibiotics Derived from Animal Manure. ASA Special Publication, 2020, , 409-430.	0.8	6
79	Tracing veterinary antibiotics in the subsurface – A long-term field experiment with spiked manure. Environmental Pollution, 2020, 265, 114930.	3.7	24
80	Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Science of the Total Environment, 2020, 739, 139756.	3.9	54
81	Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Science of the Total Environment, 2020, 741, 140199.	3.9	128
82	Antibiotics utilization and farmers' knowledge of its effects on soil ecosystem in the coastal drylands of Ghana. PLoS ONE, 2020, 15, e0228777.	1.1	18
83	Evaluation of Existing Models to Estimate Sorption Coefficients for Ionisable Pharmaceuticals in Soils and Sludge. Toxics, 2020, 8, 13.	1.6	8
84	Antibiotics in wastewater from multiple sources and surface water of the Yangtze River in Chongqing in China. Environmental Monitoring and Assessment, 2020, 192, 159.	1.3	26
85	Preparation of high-capacity magnetic polystyrene sulfonate sodium material based on SI-ATRP method and its adsorption property research for sulfonamide antibiotics. BMC Chemistry, 2020, 14, 3.	1.6	13
86	Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. Science of the Total Environment, 2021, 753, 141891.	3.9	73
87	A Preliminary Study: Antibiotic Resistance of Escherichia coli and Staphylococcus aureus from the Meat and Feces of Various South African Wildlife Species. Food Science of Animal Resources, 2021, 41, 135-144.	1.7	7
88	Eco-friendly ionic liquid imprinted polymer based on a green synthesis strategy for highly selective adsorption tylosin in animal muscle samples. Environmental Science and Pollution Research, 2021, 28, 16470-16479.	2.7	7
89	Plant growth promoting bacteria as biocontrol agents against diseases of cereal crops. , 2021, , 221-239.		1
90	Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 2021, 102, 103269.	1.4	14

#	Article	IF	CITATIONS
91	Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN Applied Sciences, 2021, 3, 1.	1.5	30
92	Exemplifying an archetypal thorium-EPS complexation by novel thoriotolerant Providencia thoriotolerans AM3. Scientific Reports, 2021, 11, 3189.	1.6	16
93	Occurrence of heavy metals, antibiotics, and antibiotic resistance genes in different kinds of land-applied manure in China. Environmental Science and Pollution Research, 2021, 28, 40011-40021.	2.7	18
94	Agricultural Soils Amended With Thermally-Dried Anaerobically-Digested Sewage Sludge Showed Increased Risk of Antibiotic Resistance Dissemination. Frontiers in Microbiology, 2021, 12, 666854.	1.5	12
95	Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 2021, 149, 106367.	4.8	276
96	Uptake, accumulation and impact of antiretroviral and antiviral pharmaceutical compounds in lettuce. Science of the Total Environment, 2021, 766, 144499.	3.9	16
97	Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, "oak ash―and mussel shell. Environmental Research, 2021, 195, 110814.	3.7	28
98	Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin –induced diabetic albino wistar rats. Bioorganic Chemistry, 2021, 110, 104808.	2.0	20
99	Residue and risk assessment of veterinary antibiotics in manure-based composts and agricultural soils. Journal of Applied Biological Chemistry, 2021, 64, 177-184.	0.2	2
100	The Effect of Clarithromycin Toxicity on the Growth of Bacterial Communities in Agricultural Soils. Processes, 2021, 9, 1303.	1.3	4
101	Occurrence, effects and behaviour of the antibiotic lincomycin in the agricultural and aquatic environment – A review. Science of the Total Environment, 2021, 778, 146306.	3.9	34
102	Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study. Antibiotics, 2021, 10, 888.	1.5	21
103	Sorption of sulfadiazine and flow modeling in an alluvial deposit of a dry riverbed in the Brazilian semiarid. Journal of Contaminant Hydrology, 2021, 241, 103818.	1.6	4
104	Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel. Journal of Hazardous Materials, 2021, 416, 126184.	6.5	54
105	Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environmental Toxicology and Chemistry, 2021, 40, 3275-3298.	2.2	70
106	Occurrence and distribution of antibiotics and corresponding antibiotic resistance genes in different soil types irrigated with treated wastewater. Science of the Total Environment, 2021, 782, 146835.	3.9	29
107	A strategy to determine the fate of active chemical compounds in soil; applied to antimicrobially active substances. Chemosphere, 2021, 279, 130495.	4.2	13
108	Performance of full scale constructed wetlands in removing antibiotics and antibiotic resistance genes. Science of the Total Environment, 2021, 786, 147368.	3.9	48

#	Article	IF	CITATIONS
109	An integrated modelling approach to derive the grey water footprint of veterinary antibiotics. Environmental Pollution, 2021, 288, 117746.	3.7	10
110	Eugenol Supplementation as an Additive to Improve the Thermal Stability of Hedychium coronarium Koening Essential Oil. Natural Products Journal, 2020, 10, 279-285.	0.1	1
111	Duality in the Mechanism of Hexagonal ZnO/CuxO Nanowires Inducing Sulfamethazine Degradation under Solar or Visible Light. Catalysts, 2019, 9, 916.	1.6	37
112	Adsorption of Tetracycline and Sulfadiazine onto Three Different Bioadsorbents in Binary Competitive Systems. Processes, 2021, 9, 28.	1.3	9
113	Effect of Antibiotics on Plant Growth in a Water Culture. Emerging Contaminants and Associated Treatment Technologies, 2020, , 239-253.	0.4	0
114	Removal of Pharmaceuticals and Personal Care Products in Aquatic Environment by Membrane Technology. Environmental Chemistry for A Sustainable World, 2020, , 177-242.	0.3	0
115	Fate of Antibiotics and AMR/ARGs in the Environment. Emerging Contaminants and Associated Treatment Technologies, 2020, , 297-318.	0.4	0
117	Suspect screening of antimicrobial agents transformation products in environmental samples development of LC-QTrap method running in pseudo MRM transitions. Science of the Total Environment, 2022, 808, 152114.	3.9	17
118	Occurrences and impacts of pharmaceuticals and personal care products in soils and groundwater. , 2022, , 5-47.		0
119	Sorption properties and mechanisms of erythromycin and ampicillin in loess soil: Roles of pH, ionic strength, and temperature. Chemical Engineering Journal, 2022, 434, 134694.	6.6	20
120	Relevance of sorption in bio-reduction of amoxicillin taking place in forest and crop soils. Environmental Research, 2022, 208, 112753.	3.7	12
121	Understanding flow patterns from the field – Controlled laboratory experiments on the transport behavior of veterinary antibiotics in the presence of liquid manure. Science of the Total Environment, 2022, 821, 153415.	3.9	5
122	Removal characteristics of antibiotics in livestock wastewater by contact treatment with clay minerals. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, III_83-III_91.	0.1	0
123	From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environmental Microbiology, 2022, 24, 3290-3306.	1.8	19
124	Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic resistance genes in soil: A meta-analysis study. Chemosphere, 2022, 300, 134529.	4.2	63
125	Single-step and two-step syntheses of magnetic carbons from coffee residue: elimination of sulfamethazine by adsorption. International Journal of Environmental Science and Technology, 2023, 20, 755-768.	1.8	2
126	Water-sediment partitioning of flumequine and florfenicol, two antibiotics used in salmon aquaculture in Chile. Marine Pollution Bulletin, 2022, 177, 113480.	2.3	8
127	Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil. International Journal of Environmental Research and Public Health, 2021, 18, 13383.	1.2	2

#	Article	IF	CITATIONS
129	Biocontrol Potential of Microbial Consortia: Approaches in Food Security and Disease Management. , 2022, , 187-203.		2
130	Efficient electrochemical sensor for trace detection of sulfamethazine in spring water: Use of novel nanocomposite material coated with Ag or Au nanoparticles. Microchemical Journal, 2022, 179, 107520.	2.3	7
131	Distribution and ecological risks of pharmaceuticals and personal care products with different anthropogenic stresses in a coastal watershed of China. Chemosphere, 2022, 303, 135176.	4.2	18
133	Competitive adsorption and desorption of tetracycline and sulfadiazine in crop soils. Environmental Research, 2022, 214, 113726.	3.7	8
134	Clobal review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. Journal of Hazardous Materials, 2022, 439, 129628.	6.5	50
135	Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms. Journal of Environmental Management, 2022, 321, 116028.	3.8	14
136	A high-precision prediction for spatiotemporal distribution and risk assessment of antibiotics in an urban watershed using a hydrodynamic model. Chemosphere, 2022, 308, 136403.	4.2	4
137	Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. Science of the Total Environment, 2023, 857, 159202.	3.9	9
139	Determination of antimicrobial agents and their transformation products in an agricultural water-soil system modified with manure. Scientific Reports, 2022, 12, .	1.6	3
140	Synthesis, In Vitro Anti-Microbial Analysis and Molecular Docking Study of Aliphatic Hydrazide-Based Benzene Sulphonamide Derivatives as Potent Inhibitors of α-Clucosidase and Urease. Molecules, 2022, 27, 7129.	1.7	13
141	Human health risk estimation of antibiotics transferred from wastewater and soil to crops. Environmental Science and Pollution Research, 2023, 30, 20601-20614.	2.7	5
142	Determination of Residual Amounts of Antibiotics in Environmental Samples and Food Products. Journal of Analytical Chemistry, 2022, 77, 1349-1385.	0.4	2
143	Rapid adsorption of sulfamethazine on mesoporous graphene produced from plastic waste: optimization, mechanism, isotherms, kinetics, and thermodynamics. International Journal of Environmental Science and Technology, 2023, 20, 9717-9732.	1.8	7
144	Influence of Organic Matter on the Sorption of Cefdinir, Memantine and Praziquantel on Different Soil and Sediment Samples. Molecules, 2022, 27, 8008.	1.7	2
145	Comprehensive analysis of the fates and risks of veterinary antibiotics in a small ecosystem comprising a pig farm and its surroundings in Northeast China. Journal of Hazardous Materials, 2023, 445, 130570.	6.5	6
146	Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobialâ€Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes?. Environmental Toxicology and Chemistry, 2024, 43, 623-636.	2.2	10
147	Synthesis of indole derivatives as Alzheimer inhibitors and their molecular docking study. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9865-9878.	2.0	2
148	A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. Science of the Total Environment, 2023, 861, 160584.	3.9	17

#	Article	IF	CITATIONS
149	New Models for Estimating the Sorption of Sulfonamide and Tetracycline Antibiotics in Soils. International Journal of Environmental Research and Public Health, 2022, 19, 16771.	1.2	5
150	Determination of the Antibiotic and Antibiotic Resistance Footprint in Surface Water Environments of a Metropolitan Area: Effects of Anthropogenic Activities. ACS ES&T Water, 2023, 3, 387-399.	2.3	4
151	Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment. Lancet Planetary Health, The, 2023, 7, e45-e54.	5.1	26
152	Mesocosm experiment to determine the contribution of adsorption, biodegradation, hydrolysis and photodegradation in the attenuation of antibiotics at the water sediment interface. Science of the Total Environment, 2023, 866, 161385.	3.9	11
153	Sonochemically synthesized rod-like bismuth phosphate and carbon black hybrid electrocatalyst for electrochemical monitoring of hazardous sulfamethazine. Journal of Environmental Chemical Engineering, 2023, 11, 109420.	3.3	6
154	Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment—a bibliometric study. Environmental Science and Pollution Research, 2023, 30, 64313-64341.	2.7	2
155	Synthesis, in vitro α-glucosidase and α-amylase activities and molecular docking study of oxadiazole-sulphonamide hybrid analogues. Chemical Data Collections, 2023, 45, 101031.	1.1	2
162	Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2