Frequencies of circulating MDSC correlate with clinical treated with ipilimumab

Cancer Immunology, Immunotherapy 63, 247-257 DOI: 10.1007/s00262-013-1508-5

Citation Report

#	Article	IF	CITATIONS
1	Computational Algorithm-Driven Evaluation of Monocytic Myeloid-Derived Suppressor Cell Frequency for Prediction of Clinical Outcomes. Cancer Immunology Research, 2014, 2, 812-821.	1.6	122
2	A Feasibility Study of Cyclophosphamide, Trastuzumab, and an Allogeneic GM-CSF–Secreting Breast Tumor Vaccine for HER2+ Metastatic Breast Cancer. Cancer Immunology Research, 2014, 2, 949-961.	1.6	77
3	Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. OncoImmunology, 2014, 3, e956579.	2.1	60
4	Evaluating biomarkers in melanoma. Frontiers in Oncology, 2014, 4, 383.	1.3	38
5	Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunology, Immunotherapy, 2014, 63, 713-719.	2.0	39
6	Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Human Immunology, 2014, 75, 1128-1137.	1.2	55
7	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	3.2	44
8	Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunology, Immunotherapy, 2014, 63, 977-983.	2.0	31
9	Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunology, Immunotherapy, 2014, 63, 545-557.	2.0	102
10	Cancer Vaccines in the World of Immune Suppressive Monocytes (CD14+HLA-DRlo/neg Cells): The Gateway to Improved Responses. Frontiers in Immunology, 2014, 5, 147.	2.2	55
11	Systemic immune changes associated with adjuvant interferon-α2b-therapy in stage III melanoma patients. Melanoma Research, 2015, 25, 357-361.	0.6	13
12	Biomarkers of Response to Immune Modulatory Therapies in Cancer. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	1
13	Paving the Road to Tumor Development and Spreading: Myeloid-Derived Suppressor Cells are Ruling the Fate. Frontiers in Immunology, 2015, 6, 523.	2.2	74
14	Clinical Development of Immune Checkpoint Inhibitors. BioMed Research International, 2015, 2015, 1-12.	0.9	51
15	Cancer Neoantigens: A Promising Source of Immunogens for Cancer Immunotherapy. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	17
16	New Insights in Cutaneous Melanoma Immune-Therapy — Tackling Immune-Suppression and Specific Anti-Tumoral Response. , 0, , .		2
17	T-cell-mediated antitumor immunity in B-cell non-Hodgkin lymphoma: activation, suppression and exhaustion. Leukemia and Lymphoma, 2015, 56, 2498-2504.	0.6	18
18	Tumor-induced CD14+HLA-DRâ^'/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunology, Immunotherapy, 2015, 64, 389-399.	2.0	79

#	Article	IF	CITATIONS
19	Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. Journal of Translational Medicine, 2015, 13, 9.	1.8	54
20	Immunotherapy in Cancer: A Combat between Tumors and the Immune System; You Win Some, You Lose Some. Frontiers in Immunology, 2015, 6, 127.	2.2	51
21	Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends in Molecular Medicine, 2015, 21, 482-491.	3.5	146
22	Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Research, 2015, 17, 34.	2.2	63
23	Myeloid-Derived Suppressor Cells as an Immune Parameter in Patients with Concurrent Sunitinib and Stereotactic Body Radiotherapy. Clinical Cancer Research, 2015, 21, 4073-4085.	3.2	97
24	Immunologic Correlates in the Course of Treatment With Immunomodulating Antibodies. Seminars in Oncology, 2015, 42, 448-458.	0.8	22
25	The nitric oxide radical scavenger carboxy-PTIO reduces the immunosuppressive activity of myeloid-derived suppressor cells and potentiates the antitumor activity of adoptive cytotoxic T lymphocyte immunotherapy. Oncolmmunology, 2015, 4, e1019195.	2.1	20
26	A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. International Immunology, 2016, 28, 87-97.	1.8	21
27	Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clinical Cancer Research, 2015, 21, 5453-5459.	3.2	304
28	Characterization of the <i>in vivo</i> immune network of IDO, tryptophan metabolism, PD-L1, and <i>CTLA-4</i> in circulating immune cells in melanoma. Oncolmmunology, 2015, 4, e982382.	2.1	95
29	Immune checkpoint inhibitors in melanoma. Melanoma Management, 2015, 2, 267-284.	0.1	6
30	Myeloid-Derived Cells in Tumors: Effects of Radiation. Seminars in Radiation Oncology, 2015, 25, 18-27.	1.0	116
31	Radiotherapy and Immunogenic Cell Death. Seminars in Radiation Oncology, 2015, 25, 11-17.	1.0	354
32	Silence STAT3 in the procancer niche…and activate CD8 ⁺ T cells to kill premetastatic myeloid intruders. European Journal of Immunology, 2015, 45, 44-48.	1.6	3
33	Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2015, 64, 1-13.	2.0	104
34	Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells. Annual Review of Medicine, 2015, 66, 97-110.	5.0	406
35	Myeloid regulatory cells in tumor spreading and metastasis. Immunobiology, 2015, 220, 236-242.	0.8	105
36	Therapeutic use of anti-CTLA-4 antibodies. International Immunology, 2015, 27, 3-10.	1.8	96

#	Article	IF	CITATIONS
37	Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer. Vaccines, 2016, 4, 38.	2.1	20
38	Biomarkers for Immunotherapy: Current Developments and Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e493-e503.	1.8	85
39	Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. International Journal of Molecular Sciences, 2016, 17, 1958.	1.8	41
40	The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 2016, 4, 36.	2.1	296
41	Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. European Journal of Cancer, 2016, 64, 116-126.	1.3	54
42	Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treatment Reviews, 2016, 49, 1-12.	3.4	85
43	Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab. Cytotherapy, 2016, 18, 1043-1055.	0.3	45
44	Validation of biomarkers to predict response to immunotherapy in cancer: Volume I — pre-analytical and analytical validation. , 2016, 4, 76.		155
45	Clinical Significance of Circulating CD33+CD11b+HLA-DRâ^' Myeloid Cells in Patients with Stage IV Melanoma Treated with Ipilimumab. Clinical Cancer Research, 2016, 22, 5661-5672.	3.2	170
46	Immunological correlates of treatment and response in stage IV malignant melanoma patients treated with Ipilimumab. Oncolmmunology, 2016, 5, e1100788.	2.1	73
47	Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model. Oncology Letters, 2016, 11, 809-816.	0.8	11
48	Increases in Absolute Lymphocytes and Circulating CD4+ and CD8+ T Cells Are Associated with Positive Clinical Outcome of Melanoma Patients Treated with Ipilimumab. Clinical Cancer Research, 2016, 22, 4848-4858.	3.2	146
49	High Absolute Monocyte Count Predicts Poor Clinical Outcome in Patients with Castration-Resistant Prostate Cancer Treated with Docetaxel Chemotherapy. Annals of Surgical Oncology, 2016, 23, 4115-4122.	0.7	36
50	Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum Versus Placebo Plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. Journal of Clinical Oncology, 2016, 34, 3740-3748.	0.8	438
51	Overcoming resistance to checkpoint blockade therapy by targeting PI3KÎ ³ in myeloid cells. Nature, 2016, 539, 443-447.	13.7	661
52	Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Science Immunology, 2016, 1, .	5.6	560
53	Clinical implication of tumor-associated and immunological parameters in melanoma patients treated with ipilimumab. Oncolmmunology, 2016, 5, e1249559.	2.1	51
54	Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clinical Cancer Research, 2016, 22, 5971-5982.	3.2	206

#	Article	IF	CITATIONS
55	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	6.6	797
56	Immunotherapy for advanced melanoma: Current knowledge and future directions. Journal of Dermatological Science, 2016, 83, 87-94.	1.0	14
57	A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cellular and Molecular Life Sciences, 2016, 73, 4043-4061.	2.4	55
58	Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncolmmunology, 2016, 5, e1196312.	2.1	50
59	Novel technologies and emerging biomarkers for personalized cancer immunotherapy. , 2016, 4, 3.		183
60	Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncolmmunology, 2016, 5, e1071007.	2.1	21
61	Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab. Clinical Cancer Research, 2016, 22, 2908-2918.	3.2	459
62	Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunology Research, 2016, 4, 345-353.	1.6	214
63	Emerging Tissue and Blood-Based Biomarkers that may Predict Response to Immune Checkpoint Inhibition. Current Oncology Reports, 2016, 18, 21.	1.8	39
64	Emerging immunotherapy for the treatment of esophageal cancer. Expert Opinion on Investigational Drugs, 2016, 25, 667-677.	1.9	32
65	Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer, 2016, 16, 219-233.	12.8	580
66	MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 35-48.	3.3	68
67	Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene, 2017, 36, 639-651.	2.6	162
68	Checkpoint Inhibition in Head and Neck Cancer: Immune Therapeutic Options, Limitations, and Beyond. Orl, 2017, 79, 24-33.	0.6	6
69	Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017, 168, 707-723.	13.5	3,483
70	The proportion of circulating CD45RO + CD8 + memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. European Journal of Cancer, 2017, 75, 268-279.	1.3	62
71	The clinical evidence for targeting human myeloid-derived suppressor cells in cancer patients. Journal of Leukocyte Biology, 2017, 102, 381-391.	1.5	50
72	Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination. Oncolmmunology, 2017, 6, e1338995.	2.1	24

#	Article	IF	CITATIONS
73	Can the co-dependence of the immune system and angiogenesis facilitate pharmacological targeting of tumours?. Current Opinion in Pharmacology, 2017, 35, 66-74.	1.7	22
74	Topical treatment of allâ€ <i>trans</i> retinoic acid inhibits murine melanoma partly by promoting CD8 ⁺ Tâ€cell immunity. Immunology, 2017, 152, 287-297.	2.0	26
75	Highlights on immune checkpoint inhibitors in non–small cell lung cancer. Tumor Biology, 2017, 39, 101042831769501.	0.8	17
76	Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. British Journal of Cancer, 2017, 116, 1141-1147.	2.9	112
77	Unleashing the immune response against childhood solid cancers. Pediatric Blood and Cancer, 2017, 64, e26548.	0.8	6
78	Control of immune cell entry through the tumour vasculature: a missing link in optimising melanoma immunotherapy?. Clinical and Translational Immunology, 2017, 6, e134.	1.7	32
79	Mechanisms of Resistance to Immune Checkpoint Antibodies. Handbook of Experimental Pharmacology, 2017, 249, 109-128.	0.9	26
80	Myeloid-Derived Suppressor Cells. Cancer Immunology Research, 2017, 5, 3-8.	1.6	1,345
81	Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clinical Cancer Research, 2017, 23, 2942-2950.	3.2	137
82	PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Letters, 2017, 407, 57-65.	3.2	235
83	Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications, 2017, 8, 517.	5.8	319
84	Regulation of Tumor Progression and Metastasis by Bone Marrow-Derived Microenvironments. , 2017, , 303-328.		Ο
85	Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.	7.7	457
85 86		7.7 2.0	457 48
	PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.		
86	 PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5. Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunology, Immunotherapy, 2017, 66, 1089-1101. Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates 	2.0	48
86 87	 PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5. Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunology, Immunotherapy, 2017, 66, 1089-1101. Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. Journal of Translational Medicine, 2017, 15, 79. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. , 2017, 5, 	2.0	48 37

#	Article	IF	CITATIONS
91	Biomarkers for Response of Melanoma Patients to Immune Checkpoint Inhibitors: A Systematic Review. Frontiers in Oncology, 2017, 7, 233.	1.3	61
92	Highlights of the 31st annual meeting of the Society for Immunotherapy of Cancer (SITC), 2016. , 2017, 5, 55.		5
93	Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget, 2017, 8, 110693-110707.	0.8	115
94	Bispecific antibody based therapeutics: Strengths and challenges. Blood Reviews, 2018, 32, 339-347.	2.8	120
95	Therapeutic prospects of targeting myeloidâ€derived suppressor cells and immune checkpoints in cancer. Immunology and Cell Biology, 2018, 96, 888-897.	1.0	43
96	Myeloid cell heterogeneity in cancer: not a single cell alike. Cellular Immunology, 2018, 330, 188-201.	1.4	127
97	TLR8 ligation induces apoptosis of monocytic myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2018, 103, 157-164.	1.5	23
98	LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell, 2018, 172, 825-840.e18.	13.5	312
99	Molecular Biomarkers of Primary and Acquired Resistance to T-Cell-Mediated Immunotherapy in Cancer: Landscape, Clinical Implications, and Future Directions. Oncologist, 2018, 23, 410-421.	1.9	23
100	Biology of Myeloid-Derived Suppressor Cells. , 2018, , 181-197.		2
101	High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 2018, 24, 144-153.	15.2	564
102	Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. Journal of Immunology, 2018, 200, 422-431.	0.4	404
103	Immune signatures predicting responses to immunomodulatory antibody therapy. Current Opinion in Immunology, 2018, 51, 91-96.	2.4	7
104	Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Research, 2018, 28, 171-184.	0.6	18
105	Molecular and Genomic Determinants of Response to Immune Checkpoint Inhibition in Cancer. Annual Review of Medicine, 2018, 69, 333-347.	5.0	38
106	Involvement of local reninâ€angiotensin system in immunosuppression of tumor microenvironment. Cancer Science, 2018, 109, 54-64.	1.7	60
107	Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, 2018, , .	0.9	1
108	Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 2018, 3, .	2.3	137

#	Article	IF	CITATIONS
109	Long term impact of CTLA4 blockade immunotherapy on regulatory and effector immune responses in patients with melanoma. Journal of Translational Medicine, 2018, 16, 184.	1.8	36
110	Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Frontiers in Immunology, 2018, 9, 1977.	2.2	123
111	Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy. Frontiers in Immunology, 2018, 9, 2250.	2.2	35
112	Genetic screen in myeloid cells identifies TNF-α autocrine secretion as a factor increasing MDSC suppressive activity via Nos2 up-regulation. Scientific Reports, 2018, 8, 13399.	1.6	19
113	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434
114	Immune cell profiling in the age of immune checkpoint inhibitors: implications for biomarker discovery and understanding of resistance mechanisms. Mammalian Genome, 2018, 29, 866-878.	1.0	10
115	Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells – is a new era coming?. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 376-407.	2.7	16
116	Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncolmmunology, 2018, 7, e1494113.	2.1	83
117	Biomarkers of response to immune checkpoint blockade in cancer treatment. Critical Reviews in Oncology/Hematology, 2018, 130, 108-120.	2.0	61
118	Inhibiting Notch1 enhances immunotherapy efficacy in melanoma by preventing Notch1 dependent immune suppressive properties. Cancer Letters, 2018, 434, 144-151.	3.2	25
119	Biomarkers for Immune Checkpoint Inhibitors in Melanoma. Frontiers in Oncology, 2018, 8, 270.	1.3	47
120	Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses. Frontiers in Immunology, 2018, 9, 70.	2.2	120
121	Factors Influencing the Differentiation of Human Monocytic Myeloid-Derived Suppressor Cells Into Inflammatory Macrophages. Frontiers in Immunology, 2018, 9, 608.	2.2	41
122	Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology, 2018, 9, 1310.	2.2	404
123	Immune Profiling of Cancer Patients Treated with Immunotherapy: Advances and Challenges. Biomedicines, 2018, 6, 76.	1.4	10
124	Autoantibodies as Potential Biomarkers in Breast Cancer. Biosensors, 2018, 8, 67.	2.3	36
125	Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. International Immunopharmacology, 2018, 63, 282-291.	1.7	145
126	Current landscape and future directions of biomarkers for predicting responses to immune checkpoint inhibitors. Cancer Management and Research, 2018, Volume 10, 2475-2488.	0.9	22

#	Article	IF	CITATIONS
127	Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Scientific Reports, 2018, 8, 9032.	1.6	31
128	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	15.6	167
129	Damage-Associated Molecular Patterns and Myeloid-Derived Suppressor Cells in Bronchoalveolar Lavage Fluid in Chronic Obstructive Pulmonary Disease Patients. Journal of Immunology Research, 2019, 2019, 1-9.	0.9	7
130	Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Advanced Drug Delivery Reviews, 2019, 141, 104-124.	6.6	14
131	Monoclonal Antibodies in Dermatooncology—State of the Art and Future Perspectives. Cancers, 2019, 11, 1420.	1.7	9
132	Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. Journal of Hematology and Oncology, 2019, 12, 111.	6.9	93
133	Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine, 2019, 49, 96-105.	2.7	47
134	Comparisons between tumor burden and other prognostic factors that influence survival of patients with nonâ€small cell lung cancer treated with immune checkpoint inhibitors. Thoracic Cancer, 2019, 10, 2259-2266.	0.8	18
135	Therapeutic Monoclonal Antibodies Targeting Immune Checkpoints for the Treatment of Solid Tumors. Antibodies, 2019, 8, 51.	1.2	32
136	Characterization of myeloid-derived suppressor cells and cytokines GM-CSF, IL-10 and MCP-1 in dogs with malignant melanoma receiving a GD3-based immunotherapy. Veterinary Immunology and Immunopathology, 2019, 216, 109912.	0.5	15
137	The multifaceted immune regulation of bladder cancer. Nature Reviews Urology, 2019, 16, 613-630.	1.9	123
138	TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti–PD-1 Therapy in Melanoma. Cancer Immunology Research, 2019, 7, 1672-1686.	1.6	85
139	Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 289-312.	3.3	200
140	Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy. Frontiers of Medicine, 2019, 13, 32-44.	1.5	25
141	Recent advances in the clinical development of immune checkpoint blockade therapy. Cellular Oncology (Dordrecht), 2019, 42, 609-626.	2.1	76
142	Tumor-targeted IL-12 combined with tumor resection yields a survival-favorable immune profile. , 2019, 7, 154.		16
143	Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Archives of Pharmacal Research, 2019, 42, 560-566.	2.7	29
144	The Novel Combination of Nitroxoline and PD-1 Blockade, Exerts a Potent Antitumor Effect in a Mouse Model of Prostate Cancer. International Journal of Biological Sciences, 2019, 15, 919-928.	2.6	21

#	Article	IF	CITATIONS
145	The CD14+HLA-DRlo/neg Monocyte: An Immunosuppressive Phenotype That Restrains Responses to Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 1147.	2.2	105
146	A Career in Lung Cancer: Pushing Beyond Chemotherapy. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 583-589.	1.8	4
147	Research progress and clinical application of predictive biomarker for immune checkpoint inhibitors. Expert Review of Molecular Diagnostics, 2019, 19, 517-529.	1.5	15
148	Immune Checkpoint Ligand Reverse Signaling: Looking Back to Go Forward in Cancer Therapy. Cancers, 2019, 11, 624.	1.7	32
149	Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 147-164.	1.8	459
150	The Discovery of Biomarkers in Cancer Immunotherapy. Computational and Structural Biotechnology Journal, 2019, 17, 484-497.	1.9	31
151	Biomarkers in immune checkpoint inhibition therapy for cancer patients: what is the role of lymphocyte subsets and PD1/PD-L1?. Translational Medicine Communications, 2019, 4, .	0.5	3
152	Prostaglanin-E2 Potentiates the Suppressive Functions of Human Mononuclear Myeloid-Derived Suppressor Cells and Increases Their Capacity to Expand IL-10-Producing Regulatory T Cell Subsets. Frontiers in Immunology, 2019, 10, 475.	2.2	62
153	The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer, 2019, 19, 133-150.	12.8	1,657
154	Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation. , 2019, 7, 35.		20
154 155		4.6	20 31
	undergoing autologous stem cell transplantation. , 2019, 7, 35. Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells	4.6	
155	undergoing autologous stem cell transplantation., 2019, 7, 35. Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive	4.6	31
155 156	undergoing autologous stem cell transplantation., 2019, 7, 35. Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?., 2019, 7, 325. Allies or Enemiesâ€"The Multifaceted Role of Myeloid Cells in the Tumor Microenvironment. Frontiers		31
155 156 157	undergoing autologous stem cell transplantation., 2019, 7, 35. Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?., 2019, 7, 325. Allies or Enemiesâ€"The Multifaceted Role of Myeloid Cells in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2746. Tissueâ€specific tumor microenvironments influence responses to immunotherapies. Clinical and	2.2	31 111 41
155 156 157 158	undergoing autologous stem cell transplantation. , 2019, 7, 35. Visualization and quantification of <i>in vivo </i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?. , 2019, 7, 325. Allies or Enemiesâ€"The Multifaceted Role of Myeloid Cells in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2746. Tissueâ€specific tumor microenvironments influence responses to immunotherapies. Clinical and Translational Immunology, 2019, 8, e1094. Biomarkers, measured during therapy, for response of melanoma patients to immune checkpoint	2.2	 31 1111 41 20
155 156 157 158 159	undergoing autologous stem cell transplantation. , 2019, 7, 35. Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?. , 2019, 7, 325. Allies or Enemiesâ€"The Multifaceted Role of Myeloid Cells in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2746. Tissueâ€specific tumor microenvironments influence responses to immunotherapies. Clinical and Translational Immunology, 2019, 8, e1094. Biomarkers, measured during therapy, for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Melanoma Research, 2019, 29, 453-464. Rationale of Immunotherapy in Hepatocellular Carcinoma and Its Potential Biomarkers. Cancers, 2019,	2.2 1.7 0.6	 31 1111 41 20 26

#	Article	IF	CITATIONS
163	Mechanisms of Resistance to Immune Checkpoint Blockade. American Journal of Clinical Dermatology, 2019, 20, 41-54.	3.3	83
164	Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance. Immunology Letters, 2020, 220, 88-96.	1.1	23
165	Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody. Molecular Imaging and Biology, 2020, 22, 685-694.	1.3	32
166	The pan-therapeutic resistance of disseminated tumor cells: Role of phenotypic plasticity and the metastatic microenvironment. Seminars in Cancer Biology, 2020, 60, 138-147.	4.3	26
167	Biomarker-guided therapy for colorectal cancer: strength in complexity. Nature Reviews Clinical Oncology, 2020, 17, 11-32.	12.5	195
168	Quantitative evaluation of tumor-specific T cells in tumors and lymphoid tissues. Methods in Enzymology, 2020, 635, 149-166.	0.4	4
169	Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 2020, 65, 13-27.	4.3	170
170	The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Medical Oncology, 2020, 37, 2.	1.2	145
171	Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discovery Today, 2020, 25, 223-229.	3.2	110
172	Combining epigenetic and immune therapy to overcome cancer resistance. Seminars in Cancer Biology, 2020, 65, 99-113.	4.3	92
173	The tumor organismal environment: Role in tumor development and cancer immunotherapy. Seminars in Cancer Biology, 2020, 65, 197-206.	4.3	26
174	Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science Immunology, 2020, 5, .	5.6	287
175	The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life, 2020, 10, 219.	1.1	11
176	Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chinese Medical Journal, 2020, 133, 2444-2455.	0.9	7
177	A Perspective on Therapeutic Pan-Resistance in Metastatic Cancer. International Journal of Molecular Sciences, 2020, 21, 7304.	1.8	11
178	The Resistance Mechanisms of Lung Cancer Immunotherapy. Frontiers in Oncology, 2020, 10, 568059.	1.3	47
179	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	1.3	68
180	Treatment Progress of Immune Checkpoint Blockade Therapy for Glioblastoma. Frontiers in Immunology, 2020, 11, 592612.	2.2	34

		CITATION RI	EPORT	
#	Article		IF	Citations
181	Immune Checkpoint Blockade in Gynecologic Cancers: State of Affairs. Cancers, 2020,	12, 3301.	1.7	22
182	Imperfect Predictors for Lung Cancer Immunotherapy—A Field for Further Research. I Oncology, 2020, 10, 568174.	Frontiers in	1.3	14
183	Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy. Disease, 2020, 11, 964.	Cell Death and	2.7	61
184	Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Frontiers in Imn 11, 1590.	1unology, 2020,	2.2	50
185	Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message I Envelope. Frontiers in Immunology, 2020, 11, 1525.	s in the	2.2	19
186	Understanding Response to Immunotherapy Using Standard of Care and Experimental Approaches. International Journal of Radiation Oncology Biology Physics, 2020, 108, 2	lmaging 42-257.	0.4	8
187	The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Immune Evasion. Frontiers in Immunology, 2020, 11, 1680.	Overcome	2.2	194
188	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020,	182, 1419-1440.e23.	13.5	1,162
189	A randomized phase 2 trial of pembrolizumab versus pembrolizumab and acalabrutinib platinumâ€resistant metastatic urothelial cancer. Cancer, 2020, 126, 4485-4497.	in patients with	2.0	24
190	IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine m e000949.	ielanoma. , 2020, 8,		59
191	Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Internation Molecular Sciences, 2020, 21, 6176.	al Journal of	1.8	19
192	Study and analysis of antitumor resistance mechanism of PD1/PD‣1 immune checkp Medicine, 2020, 9, 8086-8121.	ooint blocker. Cancer	1.3	95
193	<i>STAT3</i> Antisense Oligonucleotide Remodels the Suppressive Tumor Microenviro Enhance Immune Activation in Combination with Anti–PD-L1. Clinical Cancer Resear 6335-6349.		3.2	26
194	PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subset expression as predictive biomarker candidates. Oncolmmunology, 2020, 9, 1786888.	s and host PD-L1	2.1	29
195	Immunotherapy for advanced thyroid cancers — rationale, current advances and futu Nature Reviews Endocrinology, 2020, 16, 629-641.	re strategies.	4.3	49
196	Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunothera non-small cell lung cancer. Scientific Reports, 2020, 10, 18994.	py in patients with	1.6	52
197	Reprogramming the tumour microenvironment by radiotherapy: implications for radiot immunotherapy combinations. Radiation Oncology, 2020, 15, 254.	herapy and	1.2	62
198	Analysis of immune subtypes based on immunogenomic profiling identifies prognostic cutaneous melanoma. International Immunopharmacology, 2020, 89, 107162.	signature for	1.7	12

#	Article	IF	CITATIONS
199	Pretreatment Peripheral B Cells Are Associated With Tumor Response to Anti-PD-1-Based Immunotherapy. Frontiers in Immunology, 2020, 11, 563653.	2.2	16
200	The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Molecular Cancer, 2020, 19, 81.	7.9	82
201	Mechanism and potential predictive biomarkers of immune checkpoint inhibitors in NSCLC. Biomedicine and Pharmacotherapy, 2020, 127, 109996.	2.5	35
202	Radiation therapy and the innate immune response: Clinical implications for immunotherapy approaches. British Journal of Clinical Pharmacology, 2020, 86, 1726-1735.	1.1	18
203	Novel strategies in immune checkpoint inhibitor drug development: How far are we from the paradigm shift?. British Journal of Clinical Pharmacology, 2020, 86, 1753-1768.	1.1	7
204	Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Frontiers in Immunology, 2020, 11, 783.	2.2	78
205	Biomarkers in Precision Cancer Immunotherapy: Promise and Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e275-e291.	1.8	32
206	Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 4441.	1.8	20
207	Peripheral natural killer cells and myeloid-derived suppressor cells correlate with anti-PD-1 responses in non-small cell lung cancer. Scientific Reports, 2020, 10, 9050.	1.6	43
208	Immune Checkpoint Inhibitors in Hepatocellular Cancer: Current Understanding on Mechanisms of Resistance and Biomarkers of Response to Treatment. Gene Expression, 2020, 20, 53-65.	0.5	65
209	MDSC subtypes and CD39 expression on CD8 ⁺ T cells predict the efficacy of antiâ€PDâ€1 immunotherapy in patients with advanced NSCLC. European Journal of Immunology, 2020, 50, 1810-1819.	1.6	57
210	Immune Signatures and Survival of Patients With Metastatic Melanoma, Renal Cancer, and Breast Cancer. Frontiers in Immunology, 2020, 11, 1152.	2.2	6
211	Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
212	Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer. Cancer Immunology Research, 2020, 8, 609-617.	1.6	12
213	Progress Toward Identifying Exact Proxies for Predicting Response to Immunotherapies. Frontiers in Cell and Developmental Biology, 2020, 8, 155.	1.8	32
214	Melanoma immunotherapy: strategies to overcome pharmacological resistance. Expert Review of Anticancer Therapy, 2020, 20, 289-304.	1.1	13
215	Tumor Microenvironment. Cancer Treatment and Research, 2020, , .	0.2	12
216	Blood Myeloid-Derived Suppressor Cells Correlate with Neutrophil-to-Lymphocyte Ratio and Overall Survival in Metastatic Urothelial Carcinoma. Targeted Oncology, 2020, 15, 211-220.	1.7	14

	CHATION	LFORT	
#	ARTICLE	IF	CITATIONS
217	T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 17.	1.8	226
218	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	1.8	281
219	Determinants of Resistance to Checkpoint Inhibitors. International Journal of Molecular Sciences, 2020, 21, 1594.	1.8	39
220	Sensitizing the Tumor Microenvironment to Immune Checkpoint Therapy. Frontiers in Immunology, 2020, 11, 223.	2.2	54
221	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	3
222	Mechanisms of Resistance to PD-1 Checkpoint Blockade. Drugs, 2020, 80, 459-465.	4.9	6
223	Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Translational Oncology, 2020, 13, 100738.	1.7	173
224	High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunology, Immunotherapy, 2020, 69, 513-522.	2.0	6
225	<p>Resistance Mechanism of PD-1/PD-L1 Blockade in the Cancer-Immunity Cycle</p> . OncoTargets and Therapy, 2020, Volume 13, 83-94.	1.0	27
226	A role for Follistatin-like protein 1 (FSTL1) in colorectal cancer. Annals of Translational Medicine, 2020, 8, 155-155.	0.7	3
227	Lifting the innate immune barriers to antitumor immunity. , 2020, 8, e000695.		50
228	Future Challenges in Cancer Resistance to Immunotherapy. Cancers, 2020, 12, 935.	1.7	41
229	Myeloid derived suppressor cells in cancer, premalignancy and inflammation: A roadmap to cancer immunoprevention. Molecular Carcinogenesis, 2020, 59, 852-861.	1.3	11
230	Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. , 2020, 8, e000587.		62
231	Prediction of Immune checkpoint inhibitors benefit from routinely measurable peripheral blood parameters. Chinese Clinical Oncology, 2020, 9, 19-19.	0.4	6
232	Resistance to PD-L1/PD-1 Blockade Immunotherapy. A Tumor-Intrinsic or Tumor-Extrinsic Phenomenon?. Frontiers in Pharmacology, 2020, 11, 441.	1.6	48
233	Microbiome, bile acids, and obesity: How microbially modified metabolites shape antiâ€ŧumor immunity. Immunological Reviews, 2020, 295, 220-239.	2.8	43
234	Systemic Blood Immune Cell Populations as Biomarkers for the Outcome of Immune Checkpoint Inhibitor Therapies. International Journal of Molecular Sciences, 2020, 21, 2411.	1.8	28

#	Article	IF	CITATIONS
235	The unique immune microenvironment of liver metastases: Challenges and opportunities. Seminars in Cancer Biology, 2021, 71, 143-156.	4.3	35
236	Biomarkers for predicting the outcome of various cancer immunotherapies. Critical Reviews in Oncology/Hematology, 2021, 157, 103161.	2.0	10
237	Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cellular and Molecular Immunology, 2021, 18, 829-841.	4.8	21
238	Myeloid-Derived Suppressor Cells Are a Major Source of Wnt5A in the Melanoma Microenvironment and Depend on Wnt5A for Full Suppressive Activity. Cancer Research, 2021, 81, 658-670.	0.4	15
239	Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 223-249.	9.6	956
240	Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity. Clinical Cancer Research, 2021, 27, 87-95.	3.2	72
241	The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell and Melanoma Research, 2021, 34, 529-549.	1.5	21
242	IFN-Î ³ and CD38 in Hyperprogressive Cancer Development. Cancers, 2021, 13, 309.	1.7	17
243	Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. Clinical Medicine Insights: Oncology, 2021, 15, 117955492110355.	0.6	45
244	Cisplatin inhibits frequency and suppressive activity of monocytic myeloid-derived suppressor cells in cancer patients. Oncolmmunology, 2021, 10, 1935557.	2.1	17
245	Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. Advances in Experimental Medicine and Biology, 2021, 1330, 33-54.	0.8	3
246	Role of myeloid-derived suppressor cells in metastasis. Cancer and Metastasis Reviews, 2021, 40, 391-411.	2.7	22
247	Neem leaf glycoprotein salvages T cell functions from Myeloid-derived suppressor cells-suppression by altering IL-10/STAT3 axis in melanoma tumor microenvironment. Melanoma Research, 2021, 31, 130-139.	0.6	3
248	Emerging dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. Journal of Experimental and Clinical Cancer Research, 2021, 40, 74.	3.5	19
249	Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Frontiers in Oncology, 2021, 11, 614332.	1.3	33
250	The Promise of Liquid Biopsy to Predict Response to Immunotherapy in Metastatic Melanoma. Frontiers in Oncology, 2021, 11, 645069.	1.3	18
251	ERBB1/2/3 Expression, Prognosis, and Immune Infiltration in Cutaneous Melanoma. Frontiers in Genetics, 2021, 12, 602160.	1.1	14
252	Multimarker scores of Th1 and Th2 immune cellular profiles in peripheral blood predict response and immune related toxicity with CTLA4 blockade and IFNα in melanoma. Translational Oncology, 2021, 14, 101014.	1.7	13

#	Article	IF	CITATIONS
253	Baseline Modified Glasgow Prognostic Score Associated with Survival in Metastatic Urothelial Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist, 2021, 26, 397-405.	1.9	14
254	Identification of an Immature Subset of PMN-MDSC Correlated to Response to Checkpoint Inhibitor Therapy in Patients with Metastatic Melanoma. Cancers, 2021, 13, 1362.	1.7	11
255	Host response to immune checkpoint inhibitors contributes to tumor aggressiveness. , 2021, 9, e001996.		9
256	Immunotherapy and predictive immunologic profile: the tip of the iceberg. Medical Oncology, 2021, 38, 51.	1.2	4
257	Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Frontiers in Oncology, 2021, 11, 626818.	1.3	13
258	Cancer Vaccines, Adjuvants, and Delivery Systems. Frontiers in Immunology, 2021, 12, 627932.	2.2	78
259	A Phase I Dose-Escalation Study to Evaluate the Safety and Tolerability of Evofosfamide in Combination with Ipilimumab in Advanced Solid Malignancies. Clinical Cancer Research, 2021, 27, 3050-3060.	3.2	24
260	Immune Cell Profiling of Peripheral Blood as Signature for Response During Checkpoint Inhibition Across Cancer Types. Frontiers in Oncology, 2021, 11, 558248.	1.3	17
261	Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers, 2021, 13, 1191.	1.7	20
262	Therapeutic applications of the cancer immunoediting hypothesis. Seminars in Cancer Biology, 2022, 78, 63-77.	4.3	29
263	Predictive biomarkers for response to immune checkpoint inhibition. Seminars in Cancer Biology, 2022, 79, 4-17.	4.3	70
264	Systemic immunity in cancer. Nature Reviews Cancer, 2021, 21, 345-359.	12.8	605
265	Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers, 2021, 13, 1743.	1.7	7
266	Enhancing clinical and immunological effects of anti-PD-1 with belapectin, a galectin-3 inhibitor. , 2021, 9, e002371.		44
267	Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers, 2021, 13, 1819.	1.7	16
268	Bruton's tyrosine kinase: an emerging targeted therapy in myeloid cells within the tumor microenvironment. Cancer Immunology, Immunotherapy, 2021, 70, 2439-2451.	2.0	19
269	Addressing resistance to immune checkpoint inhibitor therapy:Âan urgent unmet need. Future Oncology, 2021, 17, 1401-1439.	1.1	17
270	Neutrophil to lymphocyte ratio influences impact of steroids on efficacy of immune checkpoint inhibitors in lung cancer brain metastases. Scientific Reports, 2021, 11, 7490.	1.6	8

#	Article	IF	CITATIONS
271	Strategies to overcome resistance to immune checkpoint blockade in lung cancer. Lung Cancer, 2021, 154, 151-160.	0.9	25
272	Discovery of a novel, potent and selective smallâ€molecule inhibitor of PDâ€1/PDâ€L1 interaction with robust <i>in vivo</i> antiâ€tumour efficacy. British Journal of Pharmacology, 2021, 178, 2651-2670.	2.7	13
273	Correlation of Peripheral Blood Parameters and Immune-Related Adverse Events with the Efficacy of Immune Checkpoint Inhibitors. Journal of Oncology, 2021, 2021, 1-15.	0.6	8
274	Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clinical and Translational Oncology, 2021, 23, 2237-2252.	1.2	7
275	TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma. Frontiers in Immunology, 2021, 12, 637146.	2.2	32
276	Clinical Perspectives to Overcome Acquired Resistance to Anti–Programmed Death-1 and Anti–Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer. Molecules and Cells, 2021, 44, 363-373.	1.0	13
277	Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Reports, 2021, 35, 109071.	2.9	35
278	Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells, 2021, 10, 1170.	1.8	31
279	The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Frontiers in Oncology, 2021, 11, 641428.	1.3	32
280	Correlation between tumor infiltrating immune cells and peripheral regulatory T cell determined using methylation analyses and its prognostic significance in resected gastric cancer. PLoS ONE, 2021, 16, e0252480.	1.1	7
281	Senescence and Aging: Does It Impact Cancer Immunotherapies?. Cells, 2021, 10, 1568.	1.8	12
282	A narrative review of combined stereotactic ablative radiotherapy and immunotherapy in metastatic non-small cell lung cancer. Translational Lung Cancer Research, 2021, 10, 2766-2778.	1.3	9
283	Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 707198.	1.8	17
284	Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. British Journal of Cancer, 2021, 125, 1068-1079.	2.9	23
285	Evolving Dynamic Biomarkers for Prediction of Immune Responses to Checkpoint Inhibitors in Cancer. , 0, , .		4
286	Modified Glasgow Prognostic Score associated with survival in metastatic renal cell carcinoma treated with immune checkpoint inhibitors. , 2021, 9, e002851.		12
287	Heterogeneous Myeloid Cells in Tumors. Cancers, 2021, 13, 3772.	1.7	30
288	Extracellular Vesicles Secreted by Tumor Cells Promote the Generation of Suppressive Monocytes. ImmunoHorizons, 2021, 5, 647-658.	0.8	9

#	Article	IF	CITATIONS
289	Tumor NLRP3-Derived IL-1Î ² Drives the IL-6/STAT3 Axis Resulting in Sustained MDSC-Mediated Immunosuppression. Frontiers in Immunology, 2021, 12, 661323.	2.2	44
290	Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. Journal of Cellular Physiology, 2022, 237, 346-372.	2.0	13
291	NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers, 2021, 13, 4543.	1.7	14
292	Biomarkers of Immune Checkpoint Inhibitors in Non–Small Cell Lung Cancer: Beyond PD-L1. Clinical Lung Cancer, 2021, 22, 381-389.	1.1	4
293	Identification of a predictive metabolic signature of response to immune checkpoint inhibitors in non-small cell lung cancer: METABO-ICI clinical study protocol. Respiratory Medicine and Research, 2021, 80, 100845.	0.4	3
294	Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. , 2022, , 409-435.		1
295	Myeloid-derived suppressor cells promote lung cancer metastasis by CCL11 to activate ERK and AKT signaling and induce epithelial-mesenchymal transition in tumor cells. Oncogene, 2021, 40, 1476-1489.	2.6	39
296	Immune signature as predictive marker for response to checkpoint inhibitor immunotherapy and overall survival in melanoma. Cancer Medicine, 2021, 10, 1562-1575.	1.3	16
297	Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 117-140.	0.8	141
	6// //		
298	Mechanisms of Immune Evasion by Cancer. , 2016, , 199-232.		4
298 299		0.8	4 22
	Mechanisms of Immune Evasion by Cancer. , 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and	0.8	
299	Mechanisms of Immune Evasion by Cancer. , 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117.		22
299 300	 Mechanisms of Immune Evasion by Cancer., 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117. p110î´ PI3K as a therapeutic target of solid tumours. Clinical Science, 2020, 134, 1377-1397. TAM kinase inhibition and immune checkpoint blockade– a winning combination in cancer treatment?. 	1.8	22 15
299 300 301	Mechanisms of Immune Evasion by Cancer., 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117. p110Î' PI3K as a therapeutic target of solid tumours. Clinical Science, 2020, 134, 1377-1397. TAM kinase inhibition and immune checkpoint blockade– a winning combination in cancer treatment?. Expert Opinion on Therapeutic Targets, 2021, 25, 141-151. Clinical correlates for immune checkpoint therapy: significance for CNS malignancies.	1.8 1.5	22 15 17
299 300 301 302	Mechanisms of Immune Evasion by Cancer. , 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117. p110î [°] PI3K as a therapeutic target of solid tumours. Clinical Science, 2020, 134, 1377-1397. TAM kinase inhibition and immune checkpoint blockadeâ€ [«] a winning combination in cancer treatment?. Expert Opinion on Therapeutic Targets, 2021, 25, 141-151. Clinical correlates for immune checkpoint therapy: significance for CNS malignancies. Neuro-Oncology Advances, 2021, 3, vdaa161. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic	1.8 1.5 0.4	22 15 17 11
299 300 301 302 304	Mechanisms of Immune Evasion by Cancer. , 2016, , 199-232. Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117. p110 [°] PI3K as a therapeutic target of solid tumours. Clinical Science, 2020, 134, 1377-1397. TAM kinase inhibition and immune checkpoint blockade– a winning combination in cancer treatment?. Expert Opinion on Therapeutic Targets, 2021, 25, 141-151. Clinical correlates for immune checkpoint therapy: significance for CNS malignancies. Neuro-Oncology Advances, 2021, 3, vdaa161. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells. Molecular Cancer Research, 2021, 19, 702-716. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. Journal of	1.8 1.5 0.4 1.5	22 15 17 11 32

# 308	ARTICLE Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015, 125, 3365-3376.	IF 3.9	CITATIONS
309	Immune Checkpoint Inhibitors in the Treatment of Melanoma: From Basic Science to Clinical Application. , 0, , 121-142.		31
310	Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 2017, 8, 21539-21553.	0.8	103
311	Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. , 2019, 2, 744-761.		3
312	Drug resistance in cancer immunotherapy: new strategies to improve checkpoint inhibitor therapies. , 2019, 2, 980-993.		9
313	A review of mechanisms of resistance to immune checkpoint inhibitors and potential strategies for therapy. , 2020, 3, 252-275.		18
314	Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality?. , 2020, 3, 276-286.		3
315	Current state and future of co-inhibitory immune checkpoints for the treatment of glioblastoma. Cancer Biology and Medicine, 2020, 17, 555-568.	1.4	14
316	Predictive factors of response to immunotherapy—a review from the Spanish Melanoma Group (GEM). Annals of Translational Medicine, 2017, 5, 389-389.	0.7	26
317	Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Current Medicinal Chemistry, 2020, 27, 2402-2448.	1.2	12
318	Combinations using checkpoint blockade to overcome resistance. Ecancermedicalscience, 2020, 14, 1148.	0.6	11
319	Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discovery, 2021, 11, 2693-2706.	7.7	89
320	Effect of Immune Checkpoint Blockade on Myeloid-Derived Suppressor Cell Populations in Patients With Melanoma. Frontiers in Immunology, 2021, 12, 740890.	2.2	15
321	Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. Journal of Clinical Investigation, 2021, 131, .	3.9	40
322	Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184, 5309-5337.	13.5	588
323	Overcoming Resistance to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma. Cancers, 2021, 13, 5134.	1.7	8
324	High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy. Genes, 2021, 12, 1629.	1.0	8
325	Controversies in Neoplastic Myeloplasia. SpringerBriefs in Immunology, 2016, , 1-24.	0.1	Ο

#	ARTICLE Immunotherapy for Renal Cell Cancer (RCC). , 2017, , 295-317.	IF	CITATIONS
326 327	Front line of cancer immunotherapy development. The Journal of the Japanese Society of Internal Medicine, 2017, 106, 2645-2658.	0.0	0
329	Innate and Adaptive Immune Responses to Cancer. , 2019, , 111-159.		3
330	Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2019, , 1-24.		0
331	Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2020, , 1141-1164.		0
332	Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells. Nature Biomedical Engineering, 2021, 5, 1306-1319.	11.6	21
333	Correlation analysis of the proportion of monocytic myeloid-derived suppressor cells in colorectal cancer patients. PLoS ONE, 2020, 15, e0243643.	1.1	6
334	The Immune Landscape in Women Cancers. Cancer Treatment and Research, 2020, 180, 215-249.	0.2	3
336	Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors. Onkologie (Czech Republic), 2020, 14, 205-212.	0.0	0
337	Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. American Journal of Cancer Research, 2016, 6, 2514-2531.	1.4	35
338	The diverse roles of the TNF axis in cancer progression and metastasis. Trends in Cancer Research, 2016, 11, 1-27.	1.6	77
339	Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Frontiers in Oncology, 2021, 11, 771335.	1.3	15
340	Immunotherapy in Breast Cancer: When, How, and What Challenges?. Biomedicines, 2021, 9, 1687.	1.4	31
341	Cholangiocarcinoma: what are the most valuable therapeutic targets – cancer-associated fibroblasts, immune cells, or beyond T cells?. Expert Opinion on Therapeutic Targets, 2021, 25, 835-845.	1.5	8
342	Resistance to Immunotherapy: Mechanisms and Means for Overcoming. Advances in Experimental Medicine and Biology, 2021, 1342, 45-80.	0.8	2
343	Interacting Genetic Lesions of Melanoma in the Tumor Microenvironment: Defining a Viable Therapy. Advances in Experimental Medicine and Biology, 2021, 1350, 123-143.	0.8	0
344	Modulation of Myeloid-Derived Suppressor Cells Amplification by Tumor Microenvironment. Advances in Clinical Medicine, 2021, 11, 5039-5047.	0.0	0
345	Current progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Bioscience Reports, 2022, 42, .	1.1	13

#	Article	IF	CITATIONS
346	Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer: Treatment and Novel Strategies. Journal of Clinical Oncology, 2022, 40, 598-610.	0.8	94
347	Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Seminars in Cancer Biology, 2022, 86, 799-815.	4.3	28
348	Defining unique clinical hallmarks for immune checkpoint inhibitor-based therapies. , 2022, 10, e003024.		15
349	Innate Immunity and Cancer Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 425-457.	9.6	41
350	Biomarkers related to immune checkpoint inhibitors therapy. Biomedicine and Pharmacotherapy, 2022, 147, 112470.	2.5	14
351	Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing Î ³ δT cells. Nature Communications, 2022, 13, 231.	5.8	14
352	Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy. Frontiers in Immunology, 2022, 13, 781660.	2.2	21
353	CC-01 (chidamide plus celecoxib) modifies the tumor immune microenvironment and reduces tumor progression combined with immune checkpoint inhibitor. Scientific Reports, 2022, 12, 1100.	1.6	7
354	Mutational and immunologic Landscape in malignant Salivary Gland Tumors harbor the potential for novel therapeutic strategies. Critical Reviews in Oncology/Hematology, 2022, 170, 103592.	2.0	4
355	Predictive Biomarkers for Outcomes of Immune Checkpoint Inhibitors (ICIs) in Melanoma: A Systematic Review. Cancers, 2021, 13, 6366.	1.7	10
356	Emerging mechanisms of immunotherapy resistance in sarcomas. Cancer Drug Resistance (Alhambra,) Tj ETQqO	0 0 rgBT /	Overlock 10 T
357	The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. Experientia Supplementum (2012), 2022, 113, 189-217.	0.5	6
358	Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life, 2022, 12, 409.	1.1	8
359	Retinoic Acid Induces an IFN-Driven Inflammatory Tumour Microenvironment, Sensitizing to Immune Checkpoint Therapy. Frontiers in Oncology, 2022, 12, 849793.	1.3	7
360	Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. International Journal of Molecular Sciences, 2022, 23, 3218.	1.8	20
361	Immunomodulatory effect of splenectomy in lung cancer mouse xenograft models receiving radiation therapy. Radiation Oncology Journal, 2022, 40, 53-65.	0.7	2
362	PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment. , 2022, 10, e003402.		21
363	Novel Biomarkers and Druggable Targets in Advanced Melanoma. Cancers, 2022, 14, 81.	1.7	5

#	Article	IF	CITATIONS
364	Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 740827.	1.8	14
365	Sustained Drug Release From Liposomes for the Remodeling of Systemic Immune Homeostasis and the Tumor Microenvironment. Frontiers in Immunology, 2022, 13, 829391.	2.2	5
366	<i>Fusobacterium nucleatum</i> induces MDSCs enrichment <i>via</i> activation the NLRP3 inflammosome in ESCC cells, leading to cisplatin resistance. Annals of Medicine, 2022, 54, 989-1003.	1.5	15
367	Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opinion on Biological Therapy, 2022, 22, 627-641.	1.4	19
375	Potential Predictive and Prognostic Value of Biomarkers Related to Immune Checkpoint Inhibitor Therapy of Triple-Negative Breast Cancer. Frontiers in Oncology, 2022, 12, .	1.3	9
377	Activation of Host-NLRP3 Inflammasome in Myeloid Cells Dictates Response to Anti-PD-1 Therapy in Metastatic Breast Cancers. Pharmaceuticals, 2022, 15, 574.	1.7	9
378	Peripheral Blood Monocyte Abundance Predicts Outcomes in Patients with Breast Cancer. Cancer Research Communications, 2022, 2, 286-292.	0.7	2
380	Intranasal Delivery of Recombinant S100A8 Protein Delays Lung Cancer Growth by Remodeling the Lung Immune Microenvironment. Frontiers in Immunology, 2022, 13, .	2.2	6
381	Baseline circulating unswitched memory B cells and B-cell related soluble factors are associated with overall survival in patients with clear cell renal cell carcinoma treated with nivolumab within the NIVOREN GETUG-AFU 26 study. , 2022, 10, e004885.		13
382	Combination of SABR With Anti-PD-1 in Oligoprogressive Non-Small Cell Lung Cancer and Melanoma: Results of a Prospective Multicenter Observational Study. International Journal of Radiation Oncology Biology Physics, 2022, 114, 655-665.	0.4	15
383	Rapid Profiling of Tumorâ€Immune Interaction Using Acoustically Assembled Patientâ€Derived Cell Clusters. Advanced Science, 2022, 9, .	5.6	21
384	PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. International Journal of Molecular Sciences, 2022, 23, 5837.	1.8	7
385	Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nature Immunology, 2022, 23, 971-984.	7.0	79
387	Circulating Low Density Neutrophils are Associated with Resistance to First-Line Anti-PD1/PDL1 Immunotherapy in Non-Small Cell Lung Cancer. SSRN Electronic Journal, 0, , .	0.4	0
388	Methods for the Detection of Circulating Biomarkers in Cancer Patients. Advances in Experimental Medicine and Biology, 2022, , 525-552.	0.8	3
390	Bv8 Blockade Sensitizes Anti-PD1 Therapy Resistant Tumors. Frontiers in Immunology, 0, 13, .	2.2	0
391	Immune-based therapies in penile cancer. Nature Reviews Urology, 2022, 19, 457-474.	1.9	14
393	Circulating Low Density Neutrophils Are Associated with Resistance to First Line Anti-PD1/PDL1 Immunotherapy in Non-Small Cell Lung Cancer. Cancers, 2022, 14, 3846.	1.7	15

ARTICLE IF CITATIONS # New Immuno-oncology Targets and Resistance Mechanisms. Current Treatment Options in Oncology, 394 1.3 10 2022, 23, 1201-1218. Immunotherapeutic targets in nonâ€small cell lung cancer. Immunology, 2023, 168, 256-272. Increased frequency of CD14+HLA-DR-/low cells in type 2 diabetes patients with poor glycemic control. 396 1.2 0 Human Immunology, 2022, , . Tumor-Infiltrating Myeloid Cells Confer <i>De Novo</i> Resistance to PD-L1 Blockade through 1.9 EMT–Stromal and Tgfl²-Dependent Mechanisms. Molecular Cancer Therapeutics, 2022, 21, 1729-1741. Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo 398 Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy. Journal of Medicinal 2.9 2 Chemistry, 2022, 65, 12895-12924. Understanding the functional inflammatory factors involved in therapeutic response to immune 399 1.6 checkpoint inhibitors for pan-cancer. Frontiers in Pharmacology, 0, 13, . 400 HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling., 2022, 10, e005551. 8 Phenotypic and functional heterogeneity of monocytes in health and cancer in the era of high dimensional technologies. Blood Reviews, 2022, , 101012. 2.8 Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to 402 2.2 11 overcome resistance. Frontiers in Immunology, 0, 13, . Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. International 1.8 Journal of Molecular Sciences, 2022, 23, 10906. Drug Resistance in Cancers: A Free Pass for Bullying. Cells, 2022, 11, 3383. 404 12 1.8 Targeting tumour-intrinsic N⁷-methylguanosine tRNA modification inhibits MDSC 6.1 recruitment and improves anti-PD-1 efficacy. Gut, 2023, 72, 1555-1567. Myeloid-derived Suppressor Cells Activate Liver Natural Killer Cells in a Murine Model in Uveal 406 0.7 0 Melanoma. Current Medical Science, 2022, 42, 1071-1078. Monocyte programming by cancer therapy. Frontiers in Immunology, 0, 13, . 2.2 A Phase II Clinical Trial of Nivolumab and Temozolomide for Neuroendocrine Neoplasms. Clinical 408 3.2 11 Cancer Research, 2023, 29, 731-741. Protein kinase CÎ¹ mediates immunosuppression in lung adenocarcinoma. Science Translational 409 5.8 Medicine, 2022, 14, . Myeloid-derived suppressor cells: Cancer, autoimmune diseases, and more. Oncotarget, 2022, 13, 410 0.8 2 1273-1285. Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic 1.3 lesions. Frontiers in Oncology, 0, 12, .

#	Article	IF	CITATIONS
412	Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nature Reviews Cancer, 2023, 23, 173-188.	12.8	37
413	Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates. International Journal of Molecular Sciences, 2023, 24, 41.	1.8	6
414	Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Reports, 2022, 41, 111769.	2.9	8
415	Identification of DDX60 as a Regulator of MHC-I Class Molecules in Colorectal Cancer. Biomedicines, 2022, 10, 3092.	1.4	5
417	Role of myeloid-derived suppressor cells in tumor recurrence. Cancer and Metastasis Reviews, 2023, 42, 113-142.	2.7	7
419	Modified method for differentiation of myeloid-derived suppressor cells in vitro enhances immunosuppressive ability via glutathione metabolism. Biochemistry and Biophysics Reports, 2023, 33, 101416.	0.7	1
420	The ratio of adaptive to innate immune cells differs between genders and associates with improved prognosis and response to immunotherapy. PLoS ONE, 2023, 18, e0281375.	1.1	0
422	Checkpoint Blockade in Hematologic Malignancies. , 2022, , 1-42.		0
423	The Receptor for Advanced Glycation Endproducts (RAGE) and Its Ligands S100A8/A9 and High Mobility Group Box Protein 1 (HMGB1) Are Key Regulators of Myeloid-Derived Suppressor Cells. Cancers, 2023, 15, 1026.	1.7	5
424	How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. International Journal of Cancer, 2023, 153, 709-722.	2.3	3
425	Peripheral immune factors aiding clinical parameter for better early recurrence prediction of hepatocellular carcinoma after thermal ablation. International Journal of Hyperthermia, 2023, 40, .	1.1	2
426	Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. Cancer Research Communications, 2023, 3, 404-419.	0.7	1
427	Inhibition of myeloperoxidase enhances immune checkpoint therapy for melanoma. , 2023, 11, e005837.		11
428	VISTA expression and patient selection for immune-based anticancer therapy. Frontiers in Immunology, 0, 14, .	2.2	6
429	Myeloid-Derived Suppressor Cells (MDSC) in Melanoma Patients Treated with Anti-PD-1 Immunotherapy. Cells, 2023, 12, 789.	1.8	2
430	Low-Baseline PD1+ Granulocytes Predict Responses to Atezolizumab–Bevacizumab in Hepatocellular Carcinoma. Cancers, 2023, 15, 1661.	1.7	4
431	Invasive margin tissue-resident macrophages of high CD163 expression impede responses to T cell-based immunotherapy. , 2023, 11, e006433.		4
432	Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Frontiers in Immunology, 0, 14, .	2.2	3

	Сітатіої	N REPORT	
#	Article	IF	Citations
433	Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. , 2023, 244, 108387.		12
434	Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Frontiers in Oncology, 0, 13, .	1.3	5
435	Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Frontiers in Genetics, 0, 14, .	1.1	5
436	FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. Journal of Translational Medicine, 2023, 21, .	1.8	11
437	Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. , 2023, 20, 694-713.		8