A temporal requirement for Hippo signaling in mamma and tumorigenesis

Genes and Development 28, 432-437

DOI: 10.1101/gad.233676.113

Citation Report

#	Article	IF	CITATIONS
1	α-catenin. Cell Cycle, 2014, 13, 2334-2339.	1.3	29
2	Neuregulin 1–activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Science Signaling, 2014, 7, ra116.	1.6	153
3	The role of the Hippo pathway in human disease and tumorigenesis. Clinical and Translational Medicine, 2014, 3, 25.	1.7	53
4	The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 2014, 94, 1287-1312.	13.1	1,336
5	The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Reviews in Molecular Medicine, 2015, 17, e14.	1.6	75
6	Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4. PLoS ONE, 2015, 10, e0131113.	1.1	20
7	A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer. Cancer Cell, 2015, 28, 743-757.	7.7	122
8	Cell density regulates cancer metastasis via the Hippo pathway. Future Oncology, 2015, 11, 3253-3260.	1.1	21
9	A basal-like breast cancer-specific role for SRF–IL6 in YAP-induced cancer stemness. Nature Communications, 2015, 6, 10186.	5.8	144
10	14-3-3ζ Turns TGF-β's Function from Tumor Suppressor to Metastasis Promoter in Breast Cancer by Contextual Changes of Smad Partners from p53 to Gli2. Cancer Cell, 2015, 27, 177-192.	7.7	158
11	YAP Regulates the Expression of <i>Hoxa1</i> and <i>Hoxc13</i> in Mouse and Human Oral and Skin Epithelial Tissues. Molecular and Cellular Biology, 2015, 35, 1449-1461.	1.1	33
12	Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nature Communications, 2015, 6, 6239.	5.8	129
13	Disease implications of the Hippo/YAP pathway. Trends in Molecular Medicine, 2015, 21, 212-222.	3.5	191
14	The origin of breast tumor heterogeneity. Oncogene, 2015, 34, 5309-5316.	2.6	125
15	Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene, 2015, 34, 5879-5889.	2.6	62
16	Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio, 2015, 5, 542-549.	1.0	153
17	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the <i>Drosophila</i> eye. Development (Cambridge), 2015, 142, 2002-2013.	1.2	32
18	The emerging molecular machinery and therapeutic targets of metastasis. Trends in Pharmacological Sciences, 2015, 36, 349-359.	4.0	52

#	Article	IF	CITATIONS
19	Transcriptional Co-repressor Function of the Hippo Pathway Transducers YAP and TAZ. Cell Reports, 2015, 11, 270-282.	2.9	234
20	YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Molecular Cell, 2015, 60, 328-337.	4.5	228
21	Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015, 163, 811-828.	13.5	1,716
22	Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Molecular Biology of the Cell, 2015, 26, 3578-3595.	0.9	46
23	Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5169-78.	3.3	45
24	Signaling Pathways Regulating Pituitary Lactotrope Homeostasis and Tumorigenesis. Advances in Experimental Medicine and Biology, 2015, 846, 37-59.	0.8	15
25	Hippo pathway in mammary gland development and breast cancer. Acta Biochimica Et Biophysica Sinica, 2015, 47, 53-59.	0.9	61
26	Verteporfin, a suppressor of YAP–TEAD complex, presents promising antitumor properties on ovarian cancer. OncoTargets and Therapy, 2016, Volume 9, 5371-5381.	1.0	106
27	Transformation by Polyomavirus Middle T Antigen Involves a Unique Bimodal Interaction with the Hippo Effector YAP. Journal of Virology, 2016, 90, 7032-7045.	1.5	13
28	YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development (Cambridge), 2016, 143, 2398-2409.	1.2	91
29	YAP/TAZ as therapeutic targets in cancer. Current Opinion in Pharmacology, 2016, 29, 26-33.	1.7	174
30	Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mammalian Genome, 2016, 27, 556-564.	1.0	14
31	The roles of the Hippo pathway in cancer metastasis. Cellular Signalling, 2016, 28, 1761-1772.	1.7	93
32	TEAD activity is restrained by MYC and stratifies human breast cancer subtypes. Cell Cycle, 2016, 15, 2551-2556.	1.3	9
33	Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nature Cell Biology, 2016, 18, 1221-1232.	4.6	90
34	Enhanced osteogenic differentiation of MC3T3â€E1 cells on gridâ€ŧopographic surface and evidence for involvement of YAP mediator. Journal of Biomedical Materials Research - Part A, 2016, 104, 1143-1152.	2.1	31
35	The SRF-YAP-IL6 axis promotes breast cancer stemness. Cell Cycle, 2016, 15, 1311-1312.	1.3	21
36	Topographic expression of the Hippo transducers TAZ and YAP in triple-negative breast cancer treated with neoadjuvant chemotherapy. Journal of Experimental and Clinical Cancer Research, 2016, 35, 62.	3.5	24

#	Article	IF	CITATIONS
37	Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Research, 2016, 18, 19.	2.2	99
38	YAP/TAZ at the Roots of Cancer. Cancer Cell, 2016, 29, 783-803.	7.7	1,409
39	Nuclear Lamins in Cancer. Cellular and Molecular Bioengineering, 2016, 9, 258-267.	1.0	95
40	Hippo pathway and breast cancer stem cells. Critical Reviews in Oncology/Hematology, 2016, 99, 115-122.	2.0	48
41	Mechanisms of Hippo pathway regulation. Genes and Development, 2016, 30, 1-17.	2.7	1,224
42	Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Molecular Cancer Research, 2016, 14, 127-140.	1.5	116
43	Markers of Hippo-Pathway Activity in Tumor Forming Liver Lesions. Pathology and Oncology Research, 2017, 23, 33-39.	0.9	5
44	The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature, 2017, 541, 541-545.	13.7	114
45	Hippo vs. Crab: tissueâ€specific functions of the mammalian Hippo pathway. Genes To Cells, 2017, 22, 6-31.	0.5	17
46	YAP and WWTR1: New targets for skin cancer treatment. Cancer Letters, 2017, 396, 30-41.	3.2	24
47	An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell, 2017, 21, 91-106.e6.	5.2	176
48	YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nature Communications, 2017, 8, 15206.	5.8	225
49	Roles of RUNX in Hippo Pathway Signaling. Advances in Experimental Medicine and Biology, 2017, 962, 435-448.	0.8	36
50	In Vitro Validation of the Hippo Pathway as a Pharmacological Target for Canine Mammary Gland Tumors. Journal of Mammary Gland Biology and Neoplasia, 2017, 22, 203-214.	1.0	8
51	Expression of YES-associated protein (YAP) and its clinical significance in breast cancer tissues. Human Pathology, 2017, 68, 166-174.	1.1	47
52	A forceful connection: mechanoregulation of oncogenic YAP. EMBO Journal, 2017, 36, 2467-2469.	3.5	2
53	YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC. Neoplasia, 2017, 19, 1012-1021.	2.3	77
54	TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway. Oncogene, 2017, 36, 2377-2393.	2.6	30

#	Article	IF	Citations
55	The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology, 2017, 49, 99-107.	2.6	176
56	Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Frontiers in Physiology, 2017, 8, 942.	1.3	39
57	Expression of YAP/TAZ in Keratocystic Odontogenic Tumors and Its Possible Association with Proliferative Behavior. BioMed Research International, 2017, 2017, 1-7.	0.9	4
58	The Hippo Signaling Transducer TAZ Regulates Mammary Gland Morphogenesis and Carcinogen-induced Mammary Tumorigenesis. Scientific Reports, 2018, 8, 6449.	1.6	7
59	The Hippo pathway as a drug target in gastric cancer. Cancer Letters, 2018, 420, 14-25.	3.2	62
60	The Hippo pathway in normal development and cancer. , 2018, 186, 60-72.		134
61	High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia. Cell Reports, 2018, 23, 1205-1219.	2.9	39
62	Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. Annual Review of Cancer Biology, 2018, 2, 59-79.	2.3	14
63	Neuregulin1 acts as a suppressor in human lung adenocarcinoma via AKT and ERK1/2 pathway. Journal of Thoracic Disease, 2018, 10, 3166-3179.	0.6	10
64	Mechanoregulation and pathology of YAP/TAZ via Hippo and nonâ€Hippo mechanisms. Clinical and Translational Medicine, 2018, 7, 23.	1.7	113
65	miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution. Stem Cells, 2018, 36, 1875-1889.	1.4	11
66	NUAK2 is a critical YAP target in liver cancer. Nature Communications, 2018, 9, 4834.	5.8	88
67	Expression of the Hippo signalling effectors YAP and TAZ in canine mammary gland hyperplasia and malignant transformation of mammary tumours. Veterinary and Comparative Oncology, 2018, 16, 630-635.	0.8	7
68	WW-Domain Containing Protein Roles in Breast Tumorigenesis. Frontiers in Oncology, 2018, 8, 580.	1.3	8
69	Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO Journal, 2018, 37, .	3 . 5	73
70	Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nature Medicine, 2018, 24, 1599-1610.	15.2	228
71	Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS ONE, 2018, 13, e0201628.	1,1	22
72	Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications, 2018, 9, 2961.	5.8	193

#	Article	IF	Citations
73	YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 2018, 20, 888-899.	4.6	647
74	Breast Cancer Stem Cells. Biomedicines, 2018, 6, 77.	1.4	55
75	The role of Hippo signal pathway in breast cancer metastasis. OncoTargets and Therapy, 2018, Volume 11, 2185-2193.	1.0	63
76	A RhoA–YAP–c-Myc signaling axis promotes the development of polycystic kidney disease. Genes and Development, 2018, 32, 781-793.	2.7	94
77	SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nature Communications, 2018, 9, 2269.	5.8	117
78	Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. Journal of Cellular Physiology, 2019, 234, 1578-1587.	2.0	51
79	Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO Journal, 2019, 38, e100852.	3.5	69
80	The Hippo Signaling Pathway in Development and Disease. Developmental Cell, 2019, 50, 264-282.	3.1	522
81	Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Genes and Diseases, 2019, 6, 335-341.	1.5	10
82	YAP and TAZ: a signalling hub of the tumour microenvironment. Nature Reviews Cancer, 2019, 19, 454-464.	12.8	252
83	Safety Considerations in the Development of Hippo Pathway Inhibitors in Cancers. Frontiers in Cell and Developmental Biology, 2019, 7, 156.	1.8	23
84	CCT3 acts upstream of YAP and TFCP2 as a potential target and tumour biomarker in liver cancer. Cell Death and Disease, 2019, 10, 644.	2.7	45
85	Hippo signalling during development. Development (Cambridge), 2019, 146, .	1.2	83
86	p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Research, 2019, 21, 13.	2.2	15
87	WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis. Frontiers in Oncology, 2019, 9, 60.	1.3	116
88	Linking YAP to Mýller Glia Quiescence Exit in the Degenerative Retina. Cell Reports, 2019, 27, 1712-1725.e6.	2.9	75
89	Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell Stem Cell, 2019, 25, 23-38.e8.	5. 2	176
90	Role of cytoplasmic IncRNAs in regulating cancer signaling pathways. Journal of Zhejiang University: Science B, 2019, 20, 1-8.	1.3	35

#	Article	IF	CITATIONS
91	Analysis of the role of the Hippo pathway in cancer. Journal of Translational Medicine, 2019, 17, 116.	1.8	197
92	<scp>YAP</scp> 1― <scp>LATS</scp> 2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. EMBO Reports, 2019, 20, .	2.0	44
93	Biophysical properties of cells for cancer diagnosis. Journal of Biomechanics, 2019, 86, 1-7.	0.9	15
94	Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck. Journal of Clinical Medicine, 2019, 8, 2131.	1.0	23
95	Fry Is Required for Mammary Gland Development During Pregnant Periods and Affects the Morphology and Growth of Breast Cancer Cells. Frontiers in Oncology, 2019, 9, 1279.	1.3	9
96	RNA-binding protein QKI regulates contact inhibition via Yes-associate protein in ccRCC. Acta Biochimica Et Biophysica Sinica, 2018, 51, 9-19.	0.9	8
97	Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO Journal, 2019, 38, e100330.	3.5	35
98	Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019, 24, 65-78.	5. 2	399
99	Hippoâ€"YAP/TAZ signalling in organ regeneration and regenerative medicine. Nature Reviews Molecular Cell Biology, 2019, 20, 211-226.	16.1	552
100	The posttranslational modifications of Hippo-YAP pathway in cancer. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129397.	1.1	45
101	Network-based multi-task learning models for biomarker selection and cancer outcome prediction. Bioinformatics, 2020, 36, 1814-1822.	1.8	13
102	Loss of ANCO1 repression at AIB1/YAP targets drives breast cancer progression. EMBO Reports, 2020, 21, e48741.	2.0	15
103	Initiation of human mammary cell tumorigenesis by mutant KRAS requires YAP inactivation. Oncogene, 2020, 39, 1957-1968.	2.6	18
104	Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cellular and Molecular Neurobiology, 2020, 40, 495-510.	1.7	50
105	Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development (Cambridge), 2020, 147, .	1.2	19
106	The Hippo Transducer YAP/TAZ as a Biomarker of Therapeutic Response and Prognosis in Trastuzumab-Based Neoadjuvant Therapy Treated HER2-Positive Breast Cancer Patients. Frontiers in Pharmacology, 2020, 11, 537265.	1.6	9
107	YAP increases response to Trastuzumab in HER2-positive Breast Cancer by enhancing P73-induced apoptosis. Journal of Cancer, 2020, 11, 6748-6759.	1.2	5
108	Organotypic culture assays for murine and human primary and metastatic-site tumors. Nature Protocols, 2020, 15, 2413-2442.	5.5	40

#	Article	IF	CITATIONS
109	Yes‑associated protein protects and rescues SH‑SY5Y cells from ketamine‑induced apoptosis. Molecular Medicine Reports, 2020, 22, 2342-2350.	1.1	6
110	The Tumor Microenvironment of Primitive and Metastatic Breast Cancer: Implications for Novel Therapeutic Strategies. International Journal of Molecular Sciences, 2020, 21, 8102.	1.8	24
111	Verteporfin inhibits cell proliferation and induces apoptosis in different subtypes of breast cancer cell lines without light activation. BMC Cancer, 2020, 20, 1042.	1.1	29
112	Contributions of Yap and Taz dysfunction to breast cancer initiation, progression, and agingâ€related susceptibility. Aging and Cancer, 2020, 1, 5-18.	0.5	5
113	Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Frontiers in Oncology, 2020, 10, 1533.	1.3	27
114	A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Frontiers in Oncology, 2020, 10, 928.	1.3	61
115	The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene, 2020, 39, 5267-5281.	2.6	53
116	YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. BioEssays, 2020, 42, e1900162.	1.2	155
117	Multiple roles and context-specific mechanisms underlying YAP and TAZ-mediated resistance to anti-cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188341.	3.3	20
118	IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells, 2020, 9, 1010.	1.8	58
119	YAP and TAZ Are Not Identical Twins. Trends in Biochemical Sciences, 2021, 46, 154-168.	3.7	82
120	Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cellular Signalling, 2021, 78, 109858.	1.7	21
121	Neuronal Hippo signaling: From development to diseases. Developmental Neurobiology, 2021, 81, 92-109.	1.5	33
122	Integrin-mediated adhesion and mechanosensing in the mammary gland. Seminars in Cell and Developmental Biology, 2021, 114, 113-125.	2.3	12
123	Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Scientific Reports, 2021, 11, 2367.	1.6	36
124	YAP and \hat{I}^2 -Catenin Cooperate to Drive Oncogenesis in Basal Breast Cancer. Cancer Research, 2021, 81, 2116-2127.	0.4	44
125	The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1287-1297.	1.2	8
126	LncRNAs and microRNAs as Essential Regulators of Stemness in Breast Cancer Stem Cells. Biomolecules, 2021, 11, 380.	1.8	11

#	Article	IF	CITATIONS
127	Biomechanical regulation of breast cancer metastasis and progression. Scientific Reports, 2021, 11, 9838.	1.6	10
128	Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Letters, 2021, 507, 112-123.	3.2	52
129	The two sides of Hippo pathway in cancer. Seminars in Cancer Biology, 2022, 85, 33-42.	4.3	34
130	TAZ inhibits acinar cell differentiation but promotes immature ductal cell proliferation in adult mouse salivary glands. Genes To Cells, 2021, 26, 714-726.	0.5	4
131	YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell, 2021, 20, e13465.	3.0	37
132	YAP1/MMP7/CXCL16 axis affects efficacy of neoadjuvant chemotherapy via tumor environment immunosuppression in triple-negative breast cancer. Gland Surgery, 2021, 10, 2799-2814.	0.5	3
134	Epigenetic Regulation of the Wnt/ \hat{l}^2 -Catenin Signaling Pathway in Cancer. Frontiers in Genetics, 2021, 12, 681053.	1.1	31
135	Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochimica Et Biophysica Sinica, 2020, 52, 736-748.	0.9	17
136	YAP Enhances Autophagic Flux to Promote Breast Cancer Cell Survival in Response to Nutrient Deprivation. PLoS ONE, 2015, 10, e0120790.	1.1	48
137	Repression of YAP by NCTD disrupts NSCLC progression. Oncotarget, 2017, 8, 2307-2319.	0.8	41
138	The Hippo transducers TAZ/YAP and their target CTGF in male breast cancer. Oncotarget, 2016, 7, 43188-43198.	0.8	35
139	LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Science Alliance, 2018, 1, e201800171.	1.3	26
140	Downregulation of PDâ€'L1 via amide analogues of brefelamide: Alternatives to antibodyâ€'based cancer immunotherapy. Experimental and Therapeutic Medicine, 2020, 19, 3150-3158.	0.8	5
141	Plateletâ€'derived growth factorâ€'BB mediates pancreatic cancer malignancy via regulation of the Hippo/Yesâ€'associated protein signaling pathway. Oncology Reports, 2020, 45, 83-94.	1.2	20
142	YAP controls retinal stem cell DNA replication timing and genomic stability. ELife, 2015, 4, e08488.	2.8	46
143	Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. ELife, 2019, 8, .	2.8	23
145	TAZ oncogene as aÂprognostic factor in breast cancer. Journal of Medical Science, 2015, 84, 107-112.	0.2	0
150	BNIP-2 Activation of Cellular Contractility Inactivates YAP for Cardiomyogenesis. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	CITATIONS
151	Determination of the migration effect and molecular docking of verteporfin in different subtypes of breast cancer cells. Molecular Medicine Reports, 2020, 22, 3955-3961.	1.1	4
152	Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Reports, 2022, 38, 110240.	2.9	24
153	Parallels in signaling between development and regeneration in ectodermal organs. Current Topics in Developmental Biology, 2022, , 373-419.	1.0	4
154	The prognostic effect of HER2 heterogeneity and YAP1 expression in HER2 positive breast cancer patients: a retrospective study. Gland Surgery, 2022, 11, 451-465.	0.5	0
155	Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature Communications, 2022, 13, 1061.	5.8	55
156	Dynamic miRNA Landscape Links Mammary Gland Development to the Regulation of Milk Protein Expression in Mice. Animals, 2022, 12, 727.	1.0	4
157	Hippo Signaling in the Endometrium. International Journal of Molecular Sciences, 2022, 23, 3852.	1.8	7
158	Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. Journal of Biological Chemistry, 2022, 298, 101779.	1.6	12
159	HIF-Dependent CKB Expression Promotes Breast Cancer Metastasis, Whereas Cyclocreatine Therapy Impairs Cellular Invasion and Improves Chemotherapy Efficacy. Cancers, 2022, 14, 27.	1.7	9
161	Hippo in Gastric Cancer: From Signalling to Therapy. Cancers, 2022, 14, 2282.	1.7	10
163	Mechanical regulation of chromatin and transcription. Nature Reviews Genetics, 2022, 23, 624-643.	7.7	64
164	Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
165	YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188756.	3.3	9
166	Expression of Key Factors of the Hippo Signaling Pathway in Yak (Bos grunniens) Mammary Gland. Animals, 2022, 12, 2103.	1.0	1
168	BNIPâ€⊋ Activation of Cellular Contractility Inactivates YAP for H9c2 Cardiomyoblast Differentiation. Advanced Science, 0, , 2202834.	5.6	3
169	A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. European Journal of Medicinal Chemistry, 2022, 243, 114684.	2.6	12
170	The Hippo signalling pathway and its implications in human health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	73
171	Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas. Nature Communications, 2022, 13, .	5.8	5

#	Article	IF	CITATION
172	YAP/TAZ as master regulators in cancer: modulation, function and the rapeutic approaches. Nature Cancer, 0 , , .	5.7	10
173	Progress in Anticancer Drug Development Targeting Ubiquitination-Related Factors. International Journal of Molecular Sciences, 2022, 23, 15104.	1.8	4
174	<scp>HERC3</scp> promotes <scp>YAP</scp> / <scp>TAZ</scp> stability and tumorigenesis independently of its ubiquitin ligase activity. EMBO Journal, 2023, 42, .	3.5	9
175	<scp>CCDC115 /scp> inhibits autophagyâ€mediated degradation of <scp>YAP /scp> to promote cell proliferation. FEBS Letters, 2023, 597, 618-630.</scp></scp>	1.3	O
176	Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomaterialia, 2023, 161, 80-99.	4.1	16
177	The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. British Journal of Cancer, 2023, 128, 1611-1624.	2.9	13
178	CTNNA1, a New HDGC Gene: Inactivating Mechanisms and Driven Phenotypes., 2023,, 55-78.		0