TLR-driven early glycolytic reprogramming via the kina demands of dendritic cell activation

Nature Immunology 15, 323-332 DOI: 10.1038/ni.2833

Citation Report

#	Article	IF	CITATIONS
1	Asparagine endopeptidase cleaves tau and promotes neurodegeneration. Nature Medicine, 2014, 20, 1236-1238.	30.7	10
2	Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types. Frontiers in Immunology, 2014, 5, 526.	4.8	54
3	Priming Dendritic Cells for Th2 Polarization: Lessons Learned from Helminths and Implications for Metabolic Disorders. Frontiers in Immunology, 2014, 5, 499.	4.8	56
4	Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.	28.9	54
5	Analysis and Interpretation of Microplate-Based Oxygen Consumption and pH Data. Methods in Enzymology, 2014, 547, 309-354.	1.0	351
6	Dendritic cells during Staphylococcus aureus infection: subsets and roles. Journal of Translational Medicine, 2014, 12, 358.	4.4	15
7	Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Frontiers in Immunology, 2014, 5, 203.	4.8	112
8	Glycolytic reprogramming by TLRs in dendritic cells. Nature Immunology, 2014, 15, 314-315.	14.5	39
9	TLR agonists trigger rapid metabolic changes. Nature Reviews Immunology, 2014, 14, 209-209.	22.7	3
10	Translating Glycolytic Metabolism to Innate Immunity in Dendritic Cells. Cell Metabolism, 2014, 19, 737-739.	16.2	24
11	Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO Journal, 2014, 33, 1104-1116.	7.8	316
12	Development and Function of Dendritic Cell Subsets. Immunity, 2014, 40, 642-656.	14.3	637
13	Fatty acid synthesis tips the TH17-Treg cell balance. Nature Medicine, 2014, 20, 1235-1236.	30.7	13
14	Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2509-2519.	2.4	30
15	Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, 345, 1251086.	12.6	1,338
16	Homeostatic inflammation in innate immunity. Current Opinion in Immunology, 2014, 30, 85-90.	5.5	30
17	The interplay between central metabolism and innate immune responses. Cytokine and Growth Factor Reviews, 2014, 25, 707-713.	7.2	81
18	De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nature Medicine, 2014, 20, 1327-1333.	30.7	694

	CITATION	Report	
# 19	ARTICLE Metabolic regulation of natural killer cells. Biochemical Society Transactions, 2015, 43, 758-762.	IF 3.4	Citations 29
20	UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. Journal of Clinical Investigation, 2015, 125, 665-680.	8.2	223
21	Carbon monoxide impairs mitochondriaâ€dependent endosomal maturation and antigen presentation in dendritic cells. European Journal of Immunology, 2015, 45, 3269-3288.	2.9	17
22	Time and Demand are Two Critical Dimensions of Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate Pathway. Frontiers in Immunology, 2015, 6, 164.	4.8	129
23	Role of Dendritic Cells in the Induction of Lymphocyte Tolerance. Frontiers in Immunology, 2015, 6, 535.	4.8	54
24	Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research, 2015, 25, 771-784.	12.0	1,265
25	Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity, 2015, 43, 974-986.	14.3	50
26	Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1. Cell Reports, 2015, 13, 122-131.	6.4	96
27	Autophagy Controls Acquisition of Aging Features in Macrophages. Journal of Innate Immunity, 2015, 7, 375-391.	3.8	115
28	Dynamic profiling of the protein life cycle in response to pathogens. Science, 2015, 347, 1259038.	12.6	408
29	The Varieties of Immunological Experience: Of Pathogens, Stress, and Dendritic Cells. Annual Review of Immunology, 2015, 33, 563-606.	21.8	103
30	Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways. Cell Reports, 2015, 10, 711-725.	6.4	228
31	Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunology and Cell Biology, 2015, 93, 233-244.	2.3	60
32	Fatty acid metabolism in the regulation of T cell function. Trends in Immunology, 2015, 36, 81-91.	6.8	324
33	4â€1 <scp>BBL</scp> signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages. FEBS Journal, 2015, 282, 1468-1480.	4.7	21
34	Mitochondria: A target for bacteria. Biochemical Pharmacology, 2015, 94, 173-185.	4.4	74
35	Enhanced M1 and Impaired M2 Macrophage Polarization and Reduced Mitochondrial Biogenesis via Inhibition of AMP Kinase in Chronic Kidney Disease. Cellular Physiology and Biochemistry, 2015, 36, 358-372.	1.6	61
36	IL-10 Production in Macrophages Is Regulated by a TLR-Driven CREB-Mediated Mechanism That Is Linked to Genes Involved in Cell Metabolism. Journal of Immunology, 2015, 195, 1218-1232.	0.8	92

#	Article	IF	Citations
38	Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation. Immunity, 2015, 43, 80-91.	14.3	106
39	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	12.4	502
40	Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Medical Microbiology and Immunology, 2015, 204, 395-407.	4.8	17
41	Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity, 2015, 42, 419-430.	14.3	1,423
43	Pyruvate Dehydrogenase Kinase 1 Participates in Macrophage Polarization via Regulating Glucose Metabolism. Journal of Immunology, 2015, 194, 6082-6089.	0.8	251
44	Mitochondria in the Regulation of Innate and Adaptive Immunity. Immunity, 2015, 42, 406-417.	14.3	693
45	High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells. Journal of Immunology, 2015, 194, 5174-5186.	0.8	183
46	Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish and Shellfish Immunology, 2015, 47, 664-673.	3.6	28
47	Regulation of innate immune cell function by mTOR. Nature Reviews Immunology, 2015, 15, 599-614.	22.7	612
48	Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in Immunology, 2015, 27, 267-275.	5.6	150
49	Response of Mammalian Macrophages to Challenge with the Chlorovirus Acanthocystisturfacea Chlorella Virus 1. Journal of Virology, 2015, 89, 12096-12107.	3.4	18
50	Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in Immunology, 2015, 27, 286-296.	5.6	269
51	Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity, 2015, 43, 435-449.	14.3	480
52	Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Molecular Immunology, 2015, 68, 575-584.	2.2	23
53	Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. Journal of Applied Physiology, 2015, 119, 1164-1172.	2.5	76
54	Dendritic cell metabolism. Nature Reviews Immunology, 2015, 15, 18-29.	22.7	423
55	The Monocarboxylate Transporter 4 Is Required for Glycolytic Reprogramming and Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2015, 290, 46-55.	3.4	146
56	Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 2015, 220, 305-314.	1.9	34

#	Article	IF	CITATIONS
57	mTOR trains heightened macrophage responses. Trends in Immunology, 2015, 36, 1-2.	6.8	17
58	Immune System Disorders and Epigenetics. , 2016, , 199-219.		2
59	Metabolic Regulation of Natural Killer Cell IFN-Î ³ Production. Critical Reviews in Immunology, 2016, 36, 131-147.	0.5	101
60	Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. ELife, 2016, 5, .	6.0	324
61	Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in Immunology, 2016, 7, 52.	4.8	364
62	Immunometabolism in Tuberculosis. Frontiers in Immunology, 2016, 7, 150.	4.8	82
63	Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Frontiers in Immunology, 2016, 7, 651.	4.8	63
64	A guide to immunometabolism for immunologists. Nature Reviews Immunology, 2016, 16, 553-565.	22.7	2,100
65	Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transplant International, 2016, 29, 930-940.	1.6	4
66	Gene expression analysis during acute hepatitis C virus infection associates dendritic cell activation with viral clearance. Journal of Medical Virology, 2016, 88, 843-851.	5.0	3
67	Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 2016, 24, 158-166.	16.2	944
68	Initiation of innate immune responses by surveillance of homeostasis perturbations. FEBS Journal, 2016, 283, 2448-2457.	4.7	32
69	miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood, 2016, 128, 3125-3136.	1.4	71
70	Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARÎ ³ directs early activation of T cells. Nature Communications, 2016, 7, 13683.	12.8	194
71	Mitochondria and Antiviral Immunity. , 2016, , 187-212.		3
73	Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production. Redox Biology, 2016, 10, 12-23.	9.0	86
74	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	14.5	402
75	Abnormal regulation of the antiviral response in neurological/neurodegenerative diseases. Cytokine, 2016, 88, 251-258.	3.2	7

#	Article	IF	CITATIONS
76	The Transcriptional Repressor Polycomb Group Factor 6, PCGF6, Negatively Regulates Dendritic Cell Activation and Promotes Quiescence. Cell Reports, 2016, 16, 1829-1837.	6.4	32
77	When Hexokinase Gets that NAG-ing Feeling…. Cell Metabolism, 2016, 24, 198-200.	16.2	3
78	Vitamin D immunoregulation through dendritic cells. Immunology, 2016, 148, 227-236.	4.4	105
79	PFKFB3-Driven Macrophage Glycolytic Metabolism Is a Crucial Component of Innate Antiviral Defense. Journal of Immunology, 2016, 197, 2880-2890.	0.8	96
80	Innate recognition of microbial-derived signals in immunity and inflammation. Science China Life Sciences, 2016, 59, 1210-1217.	4.9	50
81	Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against <i>Mycobacterium tuberculosis</i> in human and murine cells. European Journal of Immunology, 2016, 46, 2574-2586.	2.9	118
82	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	28.9	1,396
83	Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2. Toxicology and Applied Pharmacology, 2016, 313, 170-179.	2.8	19
84	Integrating immunometabolism and macrophage diversity. Seminars in Immunology, 2016, 28, 417-424.	5.6	137
85	Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Seminars in Immunology, 2016, 28, 450-468.	5.6	53
86	Metabolism and acetylation in innate immune cell function and fate. Seminars in Immunology, 2016, 28, 408-416.	5.6	39
87	Cellular and molecular regulation of innate inflammatory responses. Cellular and Molecular Immunology, 2016, 13, 711-721.	10.5	134
88	Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation. Nature Communications, 2016, 7, 13324.	12.8	95
89	GM-CSF Induces Inflammatory Macrophages by Regulating Glycolysis and Lipid Metabolism. Journal of Immunology, 2016, 197, 4101-4109.	0.8	76
90	Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity, 2016, 45, 817-830.	14.3	453
91	Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature, 2016, 539, 294-298.	27.8	213
92	Translating nutritional immunology into drug development for inflammatory bowel disease. Current Opinion in Gastroenterology, 2016, 32, 443-449.	2.3	4
93	Neonatal monocytes exhibit a unique histone modification landscape. Clinical Epigenetics, 2016, 8, 99.	4.1	39

#	Article	IF	Citations
94	pDCs Take a Deep Breath to Fight Viruses. Immunity, 2016, 44, 1246-1248.	14.3	3
95	Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 2016, 44, 1325-1336.	14.3	248
96	Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1191731.	4.6	178
97	Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Reports, 2016, 14, 572-585.	6.4	124
98	Metabolic Reprogramming of Host Cells by Virulent <i>Francisella tularensis</i> for Optimal Replication and Modulation of Inflammation. Journal of Immunology, 2016, 196, 4227-4236.	0.8	29
99	Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer. Current Protocols in Immunology, 2016, 113, 3.16B.1-3.16B.14.	3.6	123
100	Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10.	3.4	332
101	An Immunological Perspective on Neonatal Sepsis. Trends in Molecular Medicine, 2016, 22, 290-302.	6.7	74
102	Cutting Edge: Critical Role of Glycolysis in Human Plasmacytoid Dendritic Cell Antiviral Responses. Journal of Immunology, 2016, 196, 2004-2009.	0.8	95
103	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	8.5	403
104	Pharmacological inhibition of eicosanoids and platelet-activating factor signaling impairs zymosan-induced release of IL-23 by dendritic cells. Biochemical Pharmacology, 2016, 102, 78-96.	4.4	15
105	Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine, 2016, 213, 15-23.	8.5	1,206
106	Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. Journal of Biological Chemistry, 2016, 291, 3932-3946.	3.4	203
107	Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nature Reviews Immunology, 2016, 16, 35-50.	22.7	477
108	Microglial <scp>M1/M2</scp> polarization and metabolic states. British Journal of Pharmacology, 2016, 173, 649-665.	5.4	1,308
109	TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Scientific Reports, 2017, 7, 40791.	3.3	105
110	Energy Homeostasis of Immune Cells: Translating Cell Bioenergetics into Clinical Application in Rheumatoid Arthritis. , 2017, , 123-144.		0
111	The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infection and Immunity, 2017, 85, .	2.2	38

#	Article	IF	CITATIONS
112	Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. Journal of Immunology, 2017, 198, 999-1005.	0.8	82
113	Immunogenicity is preferentially induced in sparse dendritic cell cultures. Scientific Reports, 2017, 7, 43989.	3.3	6
114	The Cytokine Response to Lipopolysaccharide Does Not Predict the Host Response to Infection. Journal of Immunology, 2017, 198, 3264-3273.	0.8	33
115	Therapeutic implications of tumor interstitial acidification. Seminars in Cancer Biology, 2017, 43, 119-133.	9.6	82
116	3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Scientific Reports, 2017, 7, 42412.	3.3	84
117	The bioenergetics of inflammation: insights into obesity and type 2 diabetes. European Journal of Clinical Nutrition, 2017, 71, 904-912.	2.9	40
118	Mitochondria are the powerhouses of immunity. Nature Immunology, 2017, 18, 488-498.	14.5	704
119	Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity, 2017, 46, 703-713.	14.3	107
120	Enhanced glycolysis, regulated by HIF-1 \hat{l} ± via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis, 2017, 38, 615-626.	2.8	54
121	Vitamin D endocrinology on the cross-road between immunity and metabolism. Molecular and Cellular Endocrinology, 2017, 453, 52-67.	3.2	82
122	A novel function of <scp>TBK</scp> 1 as a target of Cdon in oligodendrocyte differentiation and myelination. Journal of Neurochemistry, 2017, 140, 451-462.	3.9	1
123	NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. Journal of Experimental Medicine, 2017, 214, 2405-2420.	8.5	90
124	Energy metabolic pathways control the fate and function of myeloid immune cells. Journal of Leukocyte Biology, 2017, 102, 369-380.	3.3	49
125	We Know More Than We Can Tell About Diabetes and Vascular Disease: The 2016 Edwin Bierman Award Lecture. Diabetes, 2017, 66, 1735-1741.	0.6	13
126	Glucose represses dendritic cell-induced T cell responses. Nature Communications, 2017, 8, 15620.	12.8	116
127	<scp>mTORC</scp> 1 and <scp>mTORC</scp> 2 as regulators of cell metabolism in immunity. FEBS Letters, 2017, 591, 3089-3103.	2.8	194
128	SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1Î ² Production and to Prevent DSS-Induced Colitis in Mice. Cell Reports, 2017, 19, 2331-2344.	6.4	215
129	How do viruses interfere with Toll-like receptor 4?. Future Virology, 2017, 12, 243-246.	1.8	Ο

ARTICLE IF CITATIONS # Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews 130 8.0 58 Rheumatology, 2017, 13, 313-320. Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Reports, 6.4 2017, 18, 2742-2751. 132 Metabolic regulation of inflammation. Nature Reviews Rheumatology, 2017, 13, 267-279. 8.0 211 Metabolites: deciphering the molecular language between DCs and their environment. Seminars in 6.1 Immunopathology, 2017, 39, 177-198. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic 134 13.3 228 programmes in human monocytes. Nature Microbiology, 2017, 2, 16246. Carbon monoxide regulates glycolysis-dependent NLRP3 inflammasome activation in macrophages. 2.1 Biochemical and Biophysical Research Communications, 2017, 493, 957-963. Metabolic regulation of macrophage phenotype and function. Immunological Reviews, 2017, 280, 137 6.0 164 102-111. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. 1.2 Annals of Oncology, 2017, 28, xii44-xii55. TRIF-dependent Toll-like receptor signaling suppresses <i>Scd1</i> transcription in hepatocytes and 139 3.6 16 prevents diet-induced hepatic steatosis. Science Signaling, 2017, 10, . Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 2017, 140 14.3 340 47, 406-420. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic 141 16.2 188 Cell Immune Résponses. Cell Metabolism, 2017, 26, 558-567.e5. Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and 1.6 Biology, 2017, 1011, 1-85. Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 143 1.6 23 2017, 1011, 163-196. Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental 144 1.6 Medicine and Biology, 2017, 1011, 211-223. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Letters, 2017, 591, 145 2.8 110 2992-3006. Opposing regulation and roles for PHD3 in lung dendritic cells and alveolar macrophages. Journal of 146 Leukocyte Biology, 2017, 102, 1115-1126. UV Irradiation of Skin Enhances Glycolytic Flux and Reduces Migration Capabilities in Bone 147 3.8 12 Marrow–Differentiated Dendritic Cells. American Journal of Pathology, 2017, 187, 2046-2059. Maternal modifiers of the infant gut microbiota: metabolic consequences. Journal of Endocrinology, 148 2017, 235, R1-R12.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
149	Mevalonate metabolism governs cancer immune surveillance. Oncolmmunology, 2017,	5, e1342917.	4.6	29
150	Macrophage metabolism in atherosclerosis. FEBS Letters, 2017, 591, 3042-3060.		2.8	103
152	Roles of PFKFB3 in cancer. Signal Transduction and Targeted Therapy, 2017, 2, 17044.		17.1	189
153	Metabolic abnormalities and oxidative stress in lupus. Current Opinion in Rheumatology 442-449.	, 2017, 29,	4.3	67
154	BCAT1 controls metabolic reprogramming in activated human macrophages and is associated inflammatory diseases. Nature Communications, 2017, 8, 16040.	iated with	12.8	156
155	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tur Metabolism, 2017, 26, 49-70.	nors. Cell	16.2	268
156	Ancillary Activity: Beyond Core Metabolism in Immune Cells. Cell Metabolism, 2017, 26,	131-141.	16.2	95
157	Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Inn Responses. Cell Metabolism, 2017, 26, 142-156.	ate Immune	16.2	144
158	Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Contro Metabolism, 2017, 26, 71-93.	l. Cell	16.2	223
159	The immunoregulatory role of alpha enolase in dendritic cell function during Chlamydia i BMC Immunology, 2017, 18, 27.	nfection.	2.2	42
160	Metabolic control of type 2 immunity. European Journal of Immunology, 2017, 47, 1266	-1275.	2.9	21
161	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17,	608-620.	22.7	306
162	Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death t regulation of microglial metabolic reprogramming. Brain, Behavior, and Immunity, 2017,	hrough 60, 206-219.	4.1	42
163	Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Bic Chemistry, 2017, 398, 303-317.	logical	2.5	13
164	Mitochondrial function, ornamentation, and immunocompetence. Biological Reviews, 20 1459-1474.)17, 92,	10.4	93
165	Interaction between gut microbiota and toll-like receptor: from immunity to metabolism Molecular Medicine, 2017, 95, 13-20.	. Journal of	3.9	143
166	Immune and Metabolic Regulation Mechanism of Dangguiliuhuang Decoction against In Resistance and Hepatic Steatosis. Frontiers in Pharmacology, 2017, 8, 445.	sulin	3.5	28
167	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimu Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infe Microbiology, 2017, 7, 351.	lated by ection	3.9	138

		CITATION REP	ORT	
#	Article		IF	CITATIONS
168	Metabolism Supports Macrophage Activation. Frontiers in Immunology, 2017, 8, 61.		4.8	137
169	Innate Immune Function of Mitochondrial Metabolism. Frontiers in Immunology, 2017, 8,	527.	4.8	40
170	Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendrit Frontiers in Immunology, 2017, 8, 639.	tic Cells.	4.8	33
171	Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma. Immunology, 2017, 8, 1594.	Frontiers in	4.8	48
172	Mevalonate Metabolism in Immuno-Oncology. Frontiers in Immunology, 2017, 8, 1714.		4.8	44
173	Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. Journal of Immunology Research, 2017, 2017, 1-12.		2.2	17
174	An unexpected link between fatty acid synthase and cholesterol synthesis in proinflamma macrophage activation. Journal of Biological Chemistry, 2018, 293, 5509-5521.	tory	3.4	136
175	Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic stea metabolic syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 18	tosis and 64, 1883-1895.	3.8	30
176	Lipid Droplets as Immune Modulators in Myeloid Cells. Trends in Immunology, 2018, 39, 3	80-392.	6.8	138
177	Interferon Camma Induces Reversible Metabolic Reprogramming of M1 Macrophages to S Viability and Pro-Inflammatory Activity. EBioMedicine, 2018, 30, 303-316.	ustain Cell	6.1	184
178	FcαRI co-stimulation converts human intestinal CD103+ dendritic cells into pro-inflamma through glycolytic reprogramming. Nature Communications, 2018, 9, 863.	tory cells	12.8	41
179	PPARÎ ³ Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. C Immunology Research, 2018, 6, 723-732.	ancer	3.4	21
180	The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynam Reprogramming of Macrophage Metabolism. Journal of Immunology, 2018, 200, 3777-37	iic 89.	0.8	63
181	Analysis of glycogen metabolic pathway utilization by dendritic cells and T cells using cust phenotype metabolic assays. Journal of Immunological Methods, 2018, 458, 53-57.	om	1.4	1
182	Interplay Between Metabolic Sensors and Immune Cell Signaling. Experientia Supplement 2018, 109, 115-196.	um (2012),	0.9	2
183	SLAMF1 is required for TLR4-mediated TRAM-TRIF–dependent signaling in human macro of Cell Biology, 2018, 217, 1411-1429.	phages. Journal	5.2	38
184	Blockade of Host β2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Mo APCs. Journal of Immunology, 2018, 200, 2479-2488.	odulating	0.8	17
185	OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasom the metabolic cost of inflammation. Proceedings of the National Academy of Sciences of t States of America, 2018, 115, E1530-E1539.	e and reverses he United	7.1	346

#	Article	IF	CITATIONS
186	Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization. Immunity, 2018, 48, 147-160.e7.	14.3	185
187	Metabolomics in Immunology Research. Methods in Molecular Biology, 2018, 1730, 29-42.	0.9	29
188	TLR3 Mediates Repair and Regeneration of Damaged Neonatal Heart through Glycolysis Dependent YAP1 Regulated miR-152 Expression. Cell Death and Differentiation, 2018, 25, 966-982.	11.2	70
189	Metabolism as a signal generator across trans-omic networks at distinct time scales. Current Opinion in Systems Biology, 2018, 8, 59-66.	2.6	21
190	Cancer, obesity and immunometabolism $\hat{a} \in \mathcal{C}$ Connecting the dots. Cancer Letters, 2018, 417, 11-20.	7.2	36
191	Nutritional metabolomics in critical illness. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 121-125.	2.5	21
192	A multi-omics analysis reveals metabolic reprogramming in THP-1 cells upon treatment with the contact allergen DNCB. Toxicology and Applied Pharmacology, 2018, 340, 21-29.	2.8	9
193	Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis. Journal of Neuroinflammation, 2018, 15, 51.	7.2	48
195	Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 2018, 17, 712-721.	2.6	76
196	Impact of Mitochondrial Permeability on Endothelial Cell Immunogenicity in Transplantation. Transplantation, 2018, 102, 935-944.	1.0	10
197	The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cellular and Molecular Immunology, 2018, 15, 421-427.	10.5	26
198	Lysine Deacetylases and Regulated Glycolysis in Macrophages. Trends in Immunology, 2018, 39, 473-488.	6.8	61
199	TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cellular and Molecular Immunology, 2018, 15, 428-437.	10.5	116
200	IFN Regulatory Factor 2 Inhibits Expression of Glycolytic Genes and Lipopolysaccharide-Induced Proinflammatory Responses in Macrophages. Journal of Immunology, 2018, 200, 3218-3230.	0.8	41
201	The mitochondrial respiratory chain: A metabolic rheostat of innate immune cell-mediated antibacterial responses. Mitochondrion, 2018, 41, 28-36.	3.4	30
202	Immunometabolism, pregnancy, and nutrition. Seminars in Immunopathology, 2018, 40, 157-174.	6.1	32
203	Emerging Concepts in Innate Immunity. Methods in Molecular Biology, 2018, 1714, 1-18.	0.9	12
204	IL-1/inhibitory κB kinase ε–induced glycolysis augment epithelial effector function and promote allergic airways disease. Journal of Allergy and Clinical Immunology, 2018, 142, 435-450.e10.	2.9	41

#	Article	IF	CITATIONS
205	Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. Journal of Immunology, 2018, 200, 643-656.	0.8	26
206	NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. International Immunopharmacology, 2018, 54, 385-400.	3.8	23
207	Hexokinase 2â€dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. Journal of Neurochemistry, 2018, 144, 186-200.	3.9	80
208	The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Letters, 2018, 412, 236-242.	7.2	77
209	The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages. Cytokine, 2018, 102, 83-93.	3.2	6
210	Immunometabolism in rheumatoid arthritis. Immunological Medicine, 2018, 41, 89-97.	2.6	14
211	Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Frontiers in Immunology, 2018, 9, 2418.	4.8	31
212	Harnessing the Induction of CD8+ T-Cell Responses Through Metabolic Regulation by Pathogen-Recognition-Receptor Triggering in Antigen Presenting Cells. Frontiers in Immunology, 2018, 9, 2372.	4.8	25
213	Cellular metabolism constrains innate immune responses in early human ontogeny. Nature Communications, 2018, 9, 4822.	12.8	35
214	Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Frontiers in Immunology, 2018, 9, 2489.	4.8	86
215	Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Reports, 2018, 25, 1800-1815.e4.	6.4	46
216	Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Frontiers in Immunology, 2018, 9, 2914.	4.8	42
217	Inhibiting Glycolysis and ATP Production Attenuates IL-33-Mediated Mast Cell Function and Peritonitis. Frontiers in Immunology, 2018, 9, 3026.	4.8	47
218	Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Frontiers in Immunology, 2018, 9, 3070.	4.8	28
219	O-GlcNAc Transferase Links Glucose Metabolism to MAVS-Mediated Antiviral Innate Immunity. Cell Host and Microbe, 2018, 24, 791-803.e6.	11.0	81
220	Emerging Roles of Cellular Metabolism in Regulating Dendritic Cell Subsets and Function. Frontiers in Cell and Developmental Biology, 2018, 6, 152.	3.7	39
221	Modulating Iron for Metabolic Support of TB Host Defense. Frontiers in Immunology, 2018, 9, 2296.	4.8	35
222	Glycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation. Cell Metabolism, 2018, 28, 463-475.e4.	16.2	230

~			<u> </u>	
C	ΙΤΑΤΙ	ON	REPC	DRT

#	Article	IF	CITATIONS
223	Regulation of fatty acid synthesis in immune cells. Scandinavian Journal of Immunology, 2018, 88, e12713.	2.7	37
224	TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation. Blood Advances, 2018, 2, 1146-1156.	5.2	32
225	Regulation of macrophage immunometabolism in atherosclerosis. Nature Immunology, 2018, 19, 526-537.	14.5	336
226	Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen. Journal of Immunology Research, 2018, 2018, 1-21.	2.2	8
227	Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Systems, 2018, 7, 49-62.e8.	6.2	249
228	Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nature Communications, 2018, 9, 2463.	12.8	144
229	Identification of Discriminating Metabolic Pathways and Metabolites in Human PBMCs Stimulated by Various Pathogenic Agents. Frontiers in Physiology, 2018, 9, 139.	2.8	3
230	Toll-like Receptor 4–Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression. Journal of Immunology, 2018, 201, 1510-1521.	0.8	55
231	The impact of metabolic reprogramming on dendritic cell function. International Immunopharmacology, 2018, 63, 84-93.	3.8	14
232	A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Frontiers in Immunology, 2018, 9, 141.	4.8	363
233	TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity. Frontiers in Immunology, 2018, 9, 434.	4.8	57
234	De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the Function of Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages. Frontiers in Immunology, 2018, 9, 495.	4.8	36
235	Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last?. EMBO Molecular Medicine, 2018, 10, .	6.9	164
236	Regulation of Immune Cell Function by PPARs and the Connection with Metabolic and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2018, 19, 1575.	4.1	41
237	STAT3 in Tumor-Associated Myeloid Cells: Multitasking to Disrupt Immunity. International Journal of Molecular Sciences, 2018, 19, 1803.	4.1	77
238	Dendritic cells in sepsis: Potential immunoregulatory cells with therapeutic potential. Molecular Immunology, 2018, 101, 615-626.	2.2	33
239	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	46
240	Mannose Metabolism Is Essential for Th1 Cell Differentiation and IFN-Î ³ Production. Journal of Immunology, 2018, 201, 1400-1411.	0.8	6

#	Article	IF	CITATIONS
241	PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. Journal of Molecular Medicine, 2018, 96, 585-600.	3.9	56
242	Role of Innate Immune Signaling in Non-Alcoholic Fatty Liver Disease. Trends in Endocrinology and Metabolism, 2018, 29, 712-722.	7.1	66
243	Role of Cellular Metabolism in Pulmonary Diseases. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 127-129.	2.9	0
244	From Nutritional Immunology to Drug Development. , 2018, , 41-56.		0
245	The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2019, 30, 1553-1598.	5.4	82
246	Coherent Raman spectroscopic imaging to characterize microglia activation pathway. Journal of Biophotonics, 2019, 12, e201800133.	2.3	6
247	Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biology, 2019, 17, e3000398.	5.6	55
248	TSC1/mTOR-controlled metabolic–epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biology, 2019, 17, e3000420.	5.6	25
249	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	46.4	176
250	Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nature Immunology, 2019, 20, 1186-1195.	14.5	126
251	Pyruvate kinase M2: A simple molecule with complex functions. Free Radical Biology and Medicine, 2019, 143, 176-192.	2.9	82
252	New Roles for Glycogen in Tumor Progression. Trends in Cancer, 2019, 5, 396-399.	7.4	34
253	Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation InÂVivo. Cell Reports, 2019, 28, 498-511.e5.	6.4	75
254	Dendritic Cell Metabolism and Function in Tumors. Trends in Immunology, 2019, 40, 699-718.	6.8	131
255	mTORC2 Deficiency Alters the Metabolic Profile of Conventional Dendritic Cells. Frontiers in Immunology, 2019, 10, 1451.	4.8	13
256	Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria?. Current Opinion in Immunology, 2019, 60, 117-123.	5.5	36
257	Chaetocin attenuates gout in mice through inhibiting HIF-1Î \pm and NLRP3 inflammasome-dependent IL-1Î ² secretion in macrophages. Archives of Biochemistry and Biophysics, 2019, 670, 94-103.	3.0	33
258	Chromatin Architecture as an Essential Determinant of Dendritic Cell Function. Frontiers in Immunology, 2019, 10, 1119.	4.8	14

#	Article	IF	CITATIONS
259	CFTR-PTEN–dependent mitochondrial metabolic dysfunction promotes <i>Pseudomonas aeruginosa</i> airway infection. Science Translational Medicine, 2019, 11, .	12.4	65
260	Induction of memory-like dendritic cell responses in vivo. Nature Communications, 2019, 10, 2955.	12.8	113
261	Polymerase III transcription is necessary for T cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22721-22729.	7.1	15
262	Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE1α to Promote Fatty Acid Oxidation for Immune Function. Frontiers in Immunology, 2019, 10, 2386.	4.8	20
263	Syk-dependent glycolytic reprogramming in dendritic cells regulates IL-1β production to β-glucan ligands in a TLR-independent manner. Journal of Leukocyte Biology, 2019, 106, 1325-1335.	3.3	24
264	CD137L-DCs, Potent Immune-Stimulators—History, Characteristics, and Perspectives. Frontiers in Immunology, 2019, 10, 2216.	4.8	21
265	Heterozygous <i>Tbk1</i> loss has opposing effects in early and late stages of ALS in mice. Journal of Experimental Medicine, 2019, 216, 267-278.	8.5	57
266	Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165542.	3.8	68
267	Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2019, 183, 111686.	5.5	35
268	Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Frontiers in Immunology, 2019, 10, 2191.	4.8	42
269	Multi-Omics Studies Demonstrate Toxoplasma gondii-Induced Metabolic Reprogramming of Murine Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2019, 9, 309.	3.9	25
270	Immunometabolism and Sepsis: A Role for HIF?. Frontiers in Molecular Biosciences, 2019, 6, 85.	3.5	51
271	Detection of Cell Surface Ligands for Human Synovial Î ³ δT Cells. Journal of Immunology, 2019, 203, 2369-2376.	0.8	4
272	Malonylation of GAPDH is an inflammatory signal in macrophages. Nature Communications, 2019, 10, 338.	12.8	129
273	Regulation of Dendritic Cell Immune Function and Metabolism by Cellular Nutrient Sensor Mammalian Target of Rapamycin (mTOR). Frontiers in Immunology, 2018, 9, 3145.	4.8	42
274	Intranasal Treatment With 1, 25-Dihydroxyvitamin D3 Alleviates Allergic Rhinitis Symptoms in a Mouse Model. Allergy, Asthma and Immunology Research, 2019, 11, 267.	2.9	9
275	Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 2019, 19, 291-304.	22.7	285
276	Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. Journal of Leukocyte Biology, 2019, 106, 563-580.	3.3	68

#	Article	IF	CITATIONS
277	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.	9.0	187
278	Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. Journal of Leukocyte Biology, 2019, 106, 853-862.	3.3	9
279	Immunometabolism around the Clock. Trends in Molecular Medicine, 2019, 25, 612-625.	6.7	47
280	Understanding the Metabolic Profile of Macrophages During the Regenerative Process in Zebrafish. Frontiers in Physiology, 2019, 10, 617.	2.8	11
281	Increased Akt-Driven Glycolysis Is the Basis for the Higher Potency of CD137L-DCs. Frontiers in Immunology, 2019, 10, 868.	4.8	11
282	C-Reactive Protein Promotes Inflammation through FcÎ ³ R-Induced Glycolytic Reprogramming of Human Macrophages. Journal of Immunology, 2019, 203, 225-235.	0.8	30
283	Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 333-343.	3.7	106
284	Competition for nutrients and its role in controlling immune responses. Nature Communications, 2019, 10, 2123.	12.8	174
285	Inflammation research sails through the sea of immunology to reach immunometabolism. International Immunopharmacology, 2019, 73, 128-145.	3.8	27
286	Protosappanin A protects against experimental autoimmune myocarditis, and induces metabolically reprogrammed tolerogenic DCs. Pharmacological Research, 2019, 146, 104269.	7.1	8
287	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	28.9	100
288	Immunometabolism: A new target for improving cancer immunotherapy. Advances in Cancer Research, 2019, 143, 195-253.	5.0	30
289	Akt and STAT5 mediate naÃ⁻ve human CD4+ T-cell early metabolic response to TCR stimulation. Nature Communications, 2019, 10, 2042.	12.8	60
290	FcÎ ³ R-TLR Cross-Talk Enhances TNF Production by Human Monocyte-Derived DCs via IRF5-Dependent Gene Transcription and Glycolytic Reprogramming. Frontiers in Immunology, 2019, 10, 739.	4.8	26
291	STING pathway stimulation results in a differentially activated innate immune phenotype associated with low nitric oxide and enhanced antibody titers in young and aged mice. Vaccine, 2019, 37, 2721-2730.	3.8	19
292	Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology, 2019, 10, 775.	4.8	151
293	Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 295.	4.8	20
294	LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Research, 2019, 29, 391-405.	12.0	45

#	Article	IF	CITATIONS
295	Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell, 2019, 177, 384-398.e11.	28.9	86
296	Amlexanox attenuates experimental autoimmune encephalomyelitis by inhibiting dendritic cell maturation and reprogramming effector and regulatory T cell responses. Journal of Neuroinflammation, 2019, 16, 52.	7.2	27
297	High fructose-induced metabolic changes enhance inflammation in human dendritic cells. Clinical and Experimental Immunology, 2019, 197, 237-249.	2.6	31
298	Metabolic regulation of inflammasomes in inflammation. Immunology, 2019, 157, 95-109.	4.4	41
299	Plant-Derived Polyphenols Modulate Human Dendritic Cell Metabolism and Immune Function via AMPK-Dependent Induction of Heme Oxygenase-1. Frontiers in Immunology, 2019, 10, 345.	4.8	42
300	Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Current Opinion in Immunology, 2019, 58, 16-23.	5.5	48
301	Lipid droplets participate in modulating innate immune genes in Ctenopharyngodon idella kidney cells. Fish and Shellfish Immunology, 2019, 88, 595-605.	3.6	7
302	Tricarboxylic Acid Cycle Activity and Remodeling of Glycerophosphocholine Lipids Support Cytokine Induction in Response to Fungal Patterns. Cell Reports, 2019, 27, 525-536.e4.	6.4	31
303	AMPK-Targeted Effector Networks in Mycobacterial Infection. Frontiers in Microbiology, 2019, 10, 520.	3.5	20
304	LKB1 expressed in dendritic cells governs the development and expansion of thymus-derived regulatory T cells. Cell Research, 2019, 29, 406-419.	12.0	34
305	Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cellular and Molecular Life Sciences, 2019, 76, 3407-3432.	5.4	18
306	Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Frontiers in Immunology, 2019, 10, 227.	4.8	39
307	Regulation of leukocyte function by citric acid cycle intermediates. Journal of Leukocyte Biology, 2019, 106, 105-117.	3.3	27
308	CCR7 Chemokine Receptor-Inducible Inc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-11±-Mediated Clycolysis. Immunity, 2019, 50, 600-615.e15.	14.3	200
309	Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. Journal of Leukocyte Biology, 2019, 106, 359-367.	3.3	39
310	O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Immunity, 2019, 50, 576-590.e6.	14.3	111
311	Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery of Antigen and Improve Vaccine Efficacy while Inducing Low Inflammation. ACS Biomaterials Science and Engineering, 2019, 5, 1332-1342.	5.2	13
312	The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cellular and Molecular Immunology, 2019, 16, 350-356.	10.5	65

#	Article	IF	Citations
313	Immunometabolism regulates TCR recycling and iNKT cell functions. Science Signaling, 2019, 12, .	3.6	22
314	Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metabolism, 2019, 30, 1075-1090.e8.	16.2	71
315	Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia. Infection and Immunity, 2019, 87, .	2.2	16
316	Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Scientific Reports, 2019, 9, 18801.	3.3	18
317	Tetramethylpyrazine Analogue T-006 Exerts Neuroprotective Effects against 6-Hydroxydopamine-Induced Parkinson's Disease <i>In Vitro</i> and <i>In Vivo</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	15
318	Understanding the Role of the Unfolded Protein Response Sensor IRE1 in the Biology of Antigen Presenting Cells. Cells, 2019, 8, 1563.	4.1	13
319	Understanding the tumour microâ€environment communication network from an NOS2/COX2 perspective. British Journal of Pharmacology, 2019, 176, 155-176.	5.4	26
320	Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 134-145.	2.5	71
321	Obesity and dysregulated central and peripheral macrophage–neuron crossâ€ŧalk. European Journal of Immunology, 2019, 49, 19-29.	2.9	15
322	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	14.3	1,351
323	Extracellular vesicles can act as a potent immunomodulators of human microglial cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 309-318.	2.7	13
324	Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. Journal of Leukocyte Biology, 2019, 106, 301-308.	3.3	8
325	Ethyl Pyruvate Modulates Murine Dendritic Cell Activation and Survival Through Their Immunometabolism. Frontiers in Immunology, 2019, 10, 30.	4.8	15
326	Lipopolysaccharideâ€induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67, 1047-1061.	4.9	155
327	Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clinical and Experimental Immunology, 2019, 197, 170-180.	2.6	50
328	18β-glycyrrhetinic acid inhibited mitochondrial energy metabolism and gastric carcinogenesis through methylation-regulated TLR2 signaling pathway. Carcinogenesis, 2019, 40, 234-245.	2.8	19
329	TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy. Cell Metabolism, 2019, 29, 103-123.e5.	16.2	149
330	Glycolipid iGb3 feedback amplifies innate immune responses via CD1d reverse signaling. Cell Research, 2019, 29, 42-53.	12.0	30

		CITATION R	EPORT	
#	Article		IF	Citations
331	The inflammatory function of human IgA. Cellular and Molecular Life Sciences, 2019, 7	6, 1041-1055.	5.4	99
332	Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leuk 2018, 105, 37-48.	ocyte Biology,	3.3	42
333	Commitment to Aerobic Glycolysis Sustains Immunosuppression of Human Mesenchy Stem Cells Translational Medicine, 2019, 8, 93-106.	mal Stem Cells.	3.3	65
334	Reprogramming of mitochondrial metabolism by innate immunity. Current Opinion in 2019, 56, 17-23.	Immunology,	5.5	26
335	Molecular regulation of dendritic cell development and function in homeostasis, inflan cancer. Molecular Immunology, 2019, 110, 24-39.	imation, and	2.2	38
336	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications f Physiological Reviews, 2020, 100, 1-102.	or Immunotherapy.	28.8	190
337	Mycobacterium tuberculosis Limits Host Glycolysis and IL-1Î ² by Restriction of PFK-M v Cell Reports, 2020, 30, 124-136.e4.	ia MicroRNA-21.	6.4	97
338	Impairment of mitochondrial dynamics involved in iron oxide nanoparticleâ€induced d dendritic cells was alleviated by autophagy inhibitor 3â€methyladenine. Journal of App 2020, 40, 631-642.	ysfunction of lied Toxicology,	2.8	12
339	Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolis M1 macrophage polarization. Osteoarthritis and Cartilage, 2020, 28, 603-612.	sm and promote	1.3	53
340	Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatric 87, 399-405.	Research, 2020,	2.3	28
341	Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in Journal of Molecular Cell Biology, 2020, 12, 543-555.	macrophages.	3.3	24
342	Inflammation Triggers Liver X Receptor-Dependent Lipogenesis. Molecular and Cellular 40, .	Biology, 2020,	2.3	17
343	Innate immunity to malaria—The role of monocytes. Immunological Reviews, 2020, 2	293, 8-24.	6.0	46
344	Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lu Journal of Innate Immunity, 2020, 12, 31-46.	ng Diseases.	3.8	58
345	Immunomodulatory activity of hyaluronidase is associated with metabolic adaptations inflammation. Inflammation Research, 2020, 69, 105-113.	during acute	4.0	11
346	Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochimica Et Bio Reviews on Cancer, 2020, 1873, 188332.	ophysica Acta:	7.4	36
347	B cell-derived anti-beta 2 glycoprotein I antibody contributes to hyperhomocysteinaem abdominal aortic aneurysm. Cardiovascular Research, 2020, 116, 1897-1909.	nia-aggravated	3.8	16
348	Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinf Nature Immunology, 2020, 21, 42-53.	flammation.	14.5	112

#	Article	IF	CITATIONS
349	Metabolic Reprogramming in Mitochondria of Myeloid Cells. Cells, 2020, 9, 5.	4.1	56
350	Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in nonâ€ŧransformed and cancer cells. FASEB Journal, 2020, 34, 13106-13124.	0.5	145
351	Metabolic needs of brainâ€infiltrating leukocytes and microglia in multiple sclerosis. Journal of Neurochemistry, 2021, 158, 14-24.	3.9	8
352	Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Frontiers in Immunology, 2020, 11, 552988.	4.8	23
353	Implications of cellular metabolism for immune cell migration. Immunology, 2020, 161, 200-208.	4.4	14
354	Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. Journal of the American Society of Nephrology: JASN, 2020, 31, 2705-2724.	6.1	29
355	Polyinosinic:polycytidylic acid in vivo enhances Chinook salmon (Oncorhynchus tshawytscha) immunity and alters the fish metabolome. Aquaculture International, 2020, 28, 2437-2463.	2.2	1
356	Novel Anti-inflammatory Effects of Canagliflozin Involving Hexokinase II in Lipopolysaccharide-Stimulated Human Coronary Artery Endothelial Cells. Cardiovascular Drugs and Therapy, 2021, 35, 1083-1094.	2.6	44
357	Ueg Week 2020 Poster Presentations. United European Gastroenterology Journal, 2020, 8, 144-887.	3.8	7
358	Immunometabolism in the Single-Cell Era. Cell Metabolism, 2020, 32, 710-725.	16.2	116
359	Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine, 2021, 147, 155267.	3.2	7
360	Lipid Metabolism in Regulation of Macrophage Functions. Trends in Cell Biology, 2020, 30, 979-989.	7.9	198
361	Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Reports, 2020, 32, 107848.	6.4	100
362	BCG Vaccinations Upregulate Myc, a Central Switch for Improved Glucose Metabolism in Diabetes. IScience, 2020, 23, 101085.	4.1	14
363	Enzalutamide, an Androgen Receptor Antagonist, Enhances Myeloid Cell–Mediated Immune Suppression and Tumor Progression. Cancer Immunology Research, 2020, 8, 1215-1227.	3.4	26
364	Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2020, 7, 602088.	2.4	49
365	Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Frontiers in Immunology, 2020, 11, 585146.	4.8	94
366	Thrombospondin 2/Toll-Like Receptor 4 Axis Contributes to HIF-11±-Derived Glycolysis in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 557730.	2.8	15

#	Apticie	IE	CITATIONS
π 367	IgG Subclasses Shape Cytokine Responses by Human Myeloid Immune Cells through Differential Metabolic Reprogramming, Journal of Immunology, 2020, 205, 3400-3407.	0.8	15
368	Induction of ketosis as a potential therapeutic option to limit hyperglycemia and prevent cytokine storm in COVID-19. Nutrition, 2020, 79-80, 110967.	2.4	26
369	IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nature Immunology, 2020, 21, 1219-1231.	14.5	32
370	Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1990-2001.	2.4	53
371	Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Annals of the Rheumatic Diseases, 2020, 79, 1506-1514.	0.9	72
372	STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1Î ² expression. Nature Communications, 2020, 11, 3816.	12.8	78
373	The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells, 2020, 9, 1808.	4.1	96
374	Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Frontiers in Immunology, 2020, 11, 592949.	4.8	11
375	Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells. Vaccines, 2020, 8, 539.	4.4	2
376	Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation. Cell Host and Microbe, 2020, 28, 683-698.e6.	11.0	43
377	Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Frontiers in Endocrinology, 2020, 11, 555.	3.5	28
378	Regulation of RLR-Mediated Antiviral Responses of Human Dendritic Cells by mTOR. Frontiers in Immunology, 2020, 11, 572960.	4.8	12
379	Pathological Change of Chronic Hepatitis B Patients with Different Tongue Coatings by Circular Multi-Omics Integrated Analysis. Chinese Journal of Integrative Medicine, 2022, 28, 28-35.	1.6	2
380	<p>Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8⁺ T Cell Memory and Delayed Tumor Progression</p> . International Journal of Nanomedicine, 2020, Volume 15, 6579-6592.	6.7	10
381	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	12.8	127
382	Autophagic protein ATG5 controls antiviral immunity via glycolytic reprogramming of dendritic cells against respiratory syncytial virus infection. Autophagy, 2021, 17, 2111-2127.	9.1	17
383	Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut–Liver Axis. Frontiers in Microbiology, 2020, 11, 588666.	3.5	19
384	Lipid-mediated regulation of the cancer-immune crosstalk. Pharmacological Research, 2020, 161, 105131.	7.1	12

		CITATION F	Report	
#	Article		IF	Citations
385	The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites, 2020, 10), 426.	2.9	11
386	Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites, 2020	0, 10, 429.	2.9	90
387	The iron–sulfur protein subunit of succinate dehydrogenase is critical in driving mitocl reactive oxygen species generation in Apostichopus japonicus. Fish and Shellfish Immun 102, 350-360.	10ndrial ology, 2020,	3.6	8
388	Basic mechanism of immune system activation by mitochondria. Immunological Medicir 142-147.	e, 2020, 43,	2.6	26
389	Glycolytic activation of monocytes regulates the accumulation and function of neutropl hepatocellular carcinoma. Journal of Hepatology, 2020, 73, 906-917.	ils in human	3.7	73
390	Sedoheptulose kinase bridges the pentose phosphate pathway and immune responses i pathogen-challenged sea cucumber Apostichopus japonicus. Developmental and Compa Immunology, 2020, 109, 103694.	n arative	2.3	6
391	The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. S Arthritis and Rheumatism, 2020, 50, 627-635.	Seminars in	3.4	6
392	Pyruvate Kinase M2 Promotes the Activation of Dendritic Cells by Enhancing IL-12p35 E Reports, 2020, 31, 107690.	kpression. Cell	6.4	31
393	TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Bioch Biophysica Sinica, 2020, 52, 757-767.	iimica Et	2.0	53
394	Role of dendritic cell metabolic reprogramming in tumor immune evasion. International 2020, 32, 485-491.	lmmunology,	4.0	11
395	Cell Type– and Stimulation-Dependent Transcriptional Programs Regulated by Atg16L Disease Risk Variant T300A. Journal of Immunology, 2020, 205, 414-424.	1 and Its Crohn's	0.8	7
396	Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in imr subpopulations. Communications Biology, 2020, 3, 305.	nune	4.4	82
397	Glucose metabolism pattern of peripheral blood immune cells in myasthenia gravis patie Translational Medicine, 2020, 8, 577-577.	nts. Annals of	1.7	8
398	Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Perspective. International Journal of Molecular Sciences, 2020, 21, 4030.	Clinical	4.1	7
399	Rheumatoid arthritis synovial microenvironment induces metabolic and functional adapt dendritic cells. Clinical and Experimental Immunology, 2020, 202, 226-238.	tations in	2.6	20
400	Metabolic heterogeneity and adaptability in brain tumors. Cellular and Molecular Life Sci 77, 5101-5119.	iences, 2020,	5.4	34
401	Metabolic Traits in Cutaneous Melanoma. Frontiers in Oncology, 2020, 10, 851.		2.8	18
402	Immunometabolism: new insights and lessons from antigen-directed cellular immune res Seminars in Immunopathology, 2020, 42, 279-313.	sponses.	6.1	37

#	Article	IF	CITATIONS
403	Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clinical and Translational Medicine, 2020, 10, 374-411.	4.0	33
404	Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm, 2020, 1, 47-68.	7.2	93
405	ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Archives of Toxicology, 2020, 94, 2293-2317.	4.2	30
406	Toll-like Receptors and the Control of Immunity. Cell, 2020, 180, 1044-1066.	28.9	1,099
407	Activation of the C-Type Lectin MGL by Terminal GalNAc Ligands Reduces the Glycolytic Activity of Human Dendritic Cells. Frontiers in Immunology, 2020, 11, 305.	4.8	22
408	Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 2020, 11, 493.	4.8	152
409	Glycogen Metabolism Supports Early Glycolytic Reprogramming and Activation in Dendritic Cells in Response to Both TLR and Syk-Dependent CLR Agonists. Cells, 2020, 9, 715.	4.1	12
410	Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells, 2020, 9, 562.	4.1	24
411	Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.	12.0	285
412	Classical Activation of Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis. Frontiers in Immunology, 2020, 11, 131.	4.8	46
413	SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathologica, 2020, 140, 317-339.	7.7	45
414	Pyruvate kinase M2 in lung APCs regulates Alternaria-induced airway inflammation. Immunobiology, 2020, 225, 151956.	1.9	9
415	Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nature Communications, 2020, 11, 698.	12.8	232
416	The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1486.	6.6	60
417	Histone hyperacetylation mediates enhanced ILâ€1β production in LPS/IFNâ€Î³â€stimulated macrophages. Immunology, 2020, 160, 183-197.	4.4	7
418	Standardized <i>Xylocarpus moluccensis</i> fruit fraction mitigates collagen-induced arthritis in mice by regulating immune response. Journal of Pharmacy and Pharmacology, 2020, 72, 619-632.	2.4	1
419	Metabolic Adaptations to Infections at the Organismal Level. Trends in Immunology, 2020, 41, 113-125.	6.8	56
420	Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells, 2020, 9, 161.	4.1	25

	CITATION	KEPORT	
#	Article	IF	CITATIONS
421	Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers, 2020, 12, 852.	3.7	19
422	Glycolysis – a key player in the inflammatory response. FEBS Journal, 2020, 287, 3350-3369.	4.7	250
423	Cellâ€intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunological Reviews, 2020, 295, 54-67.	6.0	45
424	Hypoxia-inducible factor-1α shifts metabolism from oxidative phosphorylation to glycolysis in response to pathogen challenge in Apostichopus japonicus. Aquaculture, 2020, 526, 735393.	3.5	10
425	<i>O</i> -GlcNAc transferase promotes influenza A virus–induced cytokine storm by targeting interferon regulatory factor–5. Science Advances, 2020, 6, eaaz7086.	10.3	93
426	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	6.0	14
427	Friend turned foe: A curious case of disrupted endosymbiotic homeostasis promoting the Warburg effect in sepsis. Medical Hypotheses, 2020, 141, 109702.	1.5	2
428	Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Frontiers in Immunology, 2020, 11, 385.	4.8	32
429	Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection. Mucosal Immunology, 2021, 14, 164-176.	6.0	19
430	How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?. International Reviews of Immunology, 2021, 40, 72-107.	3.3	33
431	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	3.0	8
432	Targeting immunometabolism in host defence against <i>Mycobacterium tuberculosis</i> . Immunology, 2021, 162, 145-159.	4.4	34
433	Regulation of glycolysis by the hypoxiaâ€inducible factor (HIF): implications for cellular physiology. Journal of Physiology, 2021, 599, 23-37.	2.9	371
434	Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cellular and Molecular Life Sciences, 2021, 78, 2857-2876.	5.4	5
435	Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cellular and Molecular Immunology, 2021, 18, 829-841.	10.5	21
436	TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2021, 78, 1233-1261.	5.4	535
437	Opposing Roles of Type I Interferons in Cancer Immunity. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 167-198.	22.4	88
438	Modification of Proteins by Metabolites in Immunity. Immunity, 2021, 54, 19-31.	14.3	86

#	Article	IF	CITATIONS
439	Bridging the gap – a new role for STAT3 in TLR4â€mediated metabolic reprogramming. Immunology and Cell Biology, 2021, 99, 122-125.	2.3	3
440	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	4.5	28
441	Redox regulation of immunometabolism. Nature Reviews Immunology, 2021, 21, 363-381.	22.7	225
442	The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. Agents and Actions Supplements, 2021, , .	0.2	2
443	Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cellular and Molecular Life Sciences, 2021, 78, 1887-1907.	5.4	11
444	Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation, 2021, 44, 129-147.	3.8	21
445	Neuroinflammatory inhibition of synaptic longâ€ŧerm potentiation requires immunometabolic reprogramming of microglia. Glia, 2021, 69, 567-578.	4.9	38
447	Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncology Reports, 2021, 45, 846-856.	2.6	4
448	Cancer-associated adipocytes as immunomodulators in cancer. Biomarker Research, 2021, 9, 2.	6.8	44
449	Lipid Droplets as Regulators of Metabolism and Immunity. Immunometabolism, 2021, , .	1.6	10
450	Influence of streptococcal arginine deiminase on the leukocyte infiltration in murine air pouch model. Medical Immunology (Russia), 2021, 22, 1121-1130.	0.4	2
451	Genome scale metabolic model driven strategy to delineate host response to <i>Mycobacterium tuberculosis</i> infection. Molecular Omics, 2021, 17, 296-306.	2.8	1
452	mTORC1 Signalling in Antigen-Presenting Cells of the Skin Restrains CD8+ T Cell Priming. SSRN Electronic Journal, 0, , .	0.4	0
453	Reprogramming of Central Carbon Metabolism in Myeloid Cells upon Innate Immune Receptor Stimulation. Immuno, 2021, 1, 1-14.	1.5	2
454	Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocrine Reviews, 2021, 42, 407-435.	20.1	21
455	Exploring the Role of ATP-Citrate Lyase in the Immune System. Frontiers in Immunology, 2021, 12, 632526.	4.8	28
456	Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage. Science Immunology, 2021, 6, .	11.9	31
457	Glycolysis is integral to histamineâ€induced endothelial hyperpermeability. FASEB Journal, 2021, 35, e21425.	0.5	10

#	Article	IF	CITATIONS
458	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research, 2021, 2021, 4189516.	5.7	35
459	More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS Journal, 2021, 288, 3694-3714.	4.7	83
460	Metabolism of Innate Immune Cells in Cancer. Cancers, 2021, 13, 904.	3.7	29
461	Metabolic Alterations in SARS-CoV-2 Infection and Its Implication in Kidney Dysfunction. Frontiers in Physiology, 2021, 12, 624698.	2.8	33
462	The Glioblastoma Microenvironment: Morphology, Metabolism, and Molecular Signature of Glial Dynamics to Discover Metabolic Rewiring Sequence. International Journal of Molecular Sciences, 2021, 22, 3301.	4.1	33
463	Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Archives of Toxicology, 2021, 95, 1161-1178.	4.2	35
464	Hypoxia/HIF Modulates Immune Responses. Biomedicines, 2021, 9, 260.	3.2	40
465	The Contact Allergen NiSO4 Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS. Frontiers in Immunology, 2021, 12, 644700.	4.8	9
466	Tear Lipid Metabolites As Potential Diagnostic Biomarkers for Ocular Chronic Graft-Versus-Host Disease. Transplantation and Cellular Therapy, 2021, 27, 232.e1-232.e6.	1.2	7
467	Expanding the View of IKK: New Substrates and New Biology. Trends in Cell Biology, 2021, 31, 166-178.	7.9	54
468	The Centrality of Obesity in the Course of Severe COVID-19. Frontiers in Endocrinology, 2021, 12, 620566.	3.5	14
469	In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 621744.	4.8	31
470	Development and Validation of a Metabolic Gene-Based Prognostic Signature for Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 193-209.	3.7	3
471	Dooming Phagocyte Responses: Inflammatory Effects of Endogenous Oxidized Phospholipids. Frontiers in Endocrinology, 2021, 12, 626842.	3.5	18
472	Interplay between NOD1 and TLR4 Receptors in Macrophages: Nonsynergistic Activation of Signaling Pathways Results in Synergistic Induction of Proinflammatory Gene Expression. Journal of Immunology, 2021, 206, 2206-2220.	0.8	9
473	Bağırsak mikrobiyotası ve toll benzeri reseptörler arasındaki ilişki: bağışıklık ve metabolizma. J Biotechnology and Strategic Health Research, 0, , .	ourgal of	0
474	Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms. Current Opinion in Biotechnology, 2021, 68, 202-212.	6.6	7
475	Immune metabolism: a bridge of dendritic cells function. International Reviews of Immunology, 2022, 41, 313-325.	3.3	8

#	Article	IF	CITATIONS
476	Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. European Journal of Immunology, 2021, 51, 1628-1640.	2.9	8
477	Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. Advanced Therapeutics, 2021, 4, 2100032.	3.2	10
478	Reduction of host cell mitochondrial activity as <i>Mycobacterium leprae's</i> strategy to evade host innate immunity. Immunological Reviews, 2021, 301, 193-208.	6.0	18
479	Glutathionylation chemistry promotes interleukinâ€1 betaâ€mediated glycolytic reprogramming and proâ€inflammatory signaling in lung epithelial cells. FASEB Journal, 2021, 35, e21525.	0.5	9
480	Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions. Cell Biology and Toxicology, 2021, 37, 653-678.	5.3	14
481	Immune metabolism in allergies, does it matter?—A review of immune metabolic basics and adaptations associated with the activation of innate immune cells in allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3314-3331.	5.7	15
482	PRMT5 inhibition modulates murine dendritic cells activation by inhibiting the metabolism switch: a new therapeutic target in periodontitis. Annals of Translational Medicine, 2021, 9, 755-755.	1.7	4
483	Dendritic Cells: Versatile Players in Renal Transplantation. Frontiers in Immunology, 2021, 12, 654540.	4.8	10
484	Acetylâ€CoA carboxylaseâ€1/2 blockade locks dendritic cells in the semimature state associated with FA deprivation by favoring FAO. Journal of Leukocyte Biology, 2021, , .	3.3	4
485	Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Frontiers in Immunology, 2021, 12, 661241.	4.8	12
486	ILF3 Is a Negative Transcriptional Regulator of Innate Immune Responses and Myeloid Dendritic Cell Maturation. Journal of Immunology, 2021, 206, 2949-2965.	0.8	7
487	Rapamycin Alternatively Modifies Mitochondrial Dynamics in Dendritic Cells to Reduce Kidney Ischemic Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 5386.	4.1	8
488	Immune and metabolic checkpoints blockade: Dual wielding against tumors. International Immunopharmacology, 2021, 94, 107461.	3.8	13
489	Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunology, 2021, 14, 1224-1234.	6.0	16
490	Methylglyoxal Drives a Distinct, Nonclassical Macrophage Activation Status. Thrombosis and Haemostasis, 2021, 121, 1464-1475.	3.4	4
491	Metabolic Control of Smoldering Neuroinflammation. Frontiers in Immunology, 2021, 12, 705920.	4.8	19
492	Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Reports, 2021, 35, 109195.	6.4	63
493	Early glycolytic reprogramming controls microglial inflammatory activation. Journal of Neuroinflammation, 2021, 18, 129.	7.2	73

#	ARTICLE	IF	Citations
494	Pleiotropic effects of PPAR-α – from benchside to bedside. Medical Immunology (Russia), 2021, 23, 439-454.	0.4	2
495	The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Frontiers in Immunology, 2021, 12, 670931.	4.8	3
496	Metabolic analysis of mouse bone-marrow-derived dendritic cells using an extracellular flux analyzer. STAR Protocols, 2021, 2, 100401.	1.2	8
497	β-(1→4)-Mannobiose Acts as an Immunostimulatory Molecule in Murine Dendritic Cells by Binding the TLR4/MD-2 Complex. Cells, 2021, 10, 1774.	4.1	7
498	Tolerogenic effects of 1,25-dihydroxyvitamin D on dendritic cells involve induction of fatty acid synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105891.	2.5	11
499	Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Seminars in Liver Disease, 2022, 42, 077-086.	3.6	9
500	The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Frontiers in Immunology, 2021, 12, 692004.	4.8	17
501	Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Frontiers in Cell and Developmental Biology, 2021, 9, 673839.	3.7	28
502	Perspectives on immunometabolism at the biomaterials interface. Molecular Aspects of Medicine, 2022, 83, 100992.	6.4	1
503	A role for metabolism in determining neonatal immune function. Pediatric Allergy and Immunology, 2021, 32, 1616-1628.	2.6	5
504	Dendritic cell migration in inflammation and immunity. Cellular and Molecular Immunology, 2021, 18, 2461-2471.	10.5	152
505	Identification and validation of a metabolism-related model and associated with tumor-infiltrating lymphocytes in p53 mutant lung adenocarcinoma patients. Annals of Translational Medicine, 2021, 9, 1312-1312.	1.7	3
506	A genome-wide screen uncovers multiple roles for mitochondrial nucleoside diphosphate kinase D in inflammasome activation. Science Signaling, 2021, 14, .	3.6	13
507	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	4.4	12
508	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular and Molecular Immunology, 2022, 19, 370-383.	10.5	38
509	Nanocages displaying SIRP gamma clusters combined with prophagocytic stimulus of phagocytes potentiate anti-tumor immunity. Cancer Gene Therapy, 2021, 28, 960-970.	4.6	4
510	Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. International Journal of Molecular Sciences, 2021, 22, 8340.	4.1	42
511	Effects of Fatty Acid Oxidation and Its Regulation on Dendritic Cell-Mediated Immune Responses in Allergies: An Immunometabolism Perspective. Journal of Immunology Research, 2021, 2021, 1-10.	2.2	4

#	Article	IF	CITATIONS
512	Role of Mitochondrial Dynamics in Microglial Activation and Metabolic Switch. ImmunoHorizons, 2021, 5, 615-626.	1.8	9
513	Deep Succinylproteomics of Brain Tissues from Intracerebral Hemorrhage with Inhibition of Toll-Like Receptor 4 Signaling. Cellular and Molecular Neurobiology, 2022, 42, 2791-2804.	3.3	2
514	Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathogens, 2021, 17, e1009943.	4.7	10
515	Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Frontiers in Cellular and Infection Microbiology, 2021, 11, 696554.	3.9	22
516	Transcription Coactivator BCL3 Acts as a Potential Regulator of Lipid Metabolism Through the Effects on Inflammation. Journal of Inflammation Research, 2021, Volume 14, 4915-4926.	3.5	9
517	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	16.2	101
519	Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 10268.	4.1	11
520	Sphingolipid metabolism during Tollâ€like receptor 4 (TLR4)â€mediated macrophage activation. British Journal of Pharmacology, 2021, 178, 4575-4587.	5.4	33
521	Interplay of Immunometabolism and Epithelial–Mesenchymal Transition in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 9878.	4.1	12
522	Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunology, 2022, 15, 96-108.	6.0	25
523	Solute carrier transporters: emerging central players in tumour immunotherapy. Trends in Cell Biology, 2022, 32, 186-201.	7.9	21
524	Metabolomic and lipidomic signatures associated with activation of human cDC1 (BDCA3 ⁺ /CD141 ⁺) dendritic cells. Immunology, 2022, 165, 99-109.	4.4	8
525	PET/CT metabolic patterns in systemic immune activation: A new perspective on the assessment of immunotherapy response and efficacy. Cancer Letters, 2021, 520, 91-99.	7.2	14
526	Leptin promotes glycolytic metabolism to induce dendritic cells activation via STAT3-HK2 pathway. Immunology Letters, 2021, 239, 88-95.	2.5	7
527	Dynamic changes in macrophage metabolism modulate induction and suppression of Type I inflammatory responses. Current Opinion in Immunology, 2021, 73, 9-15.	5.5	7
528	Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life, 2021, 11, 69.	2.4	66
529	Lipid Metabolism and Tumor Antigen Presentation. Advances in Experimental Medicine and Biology, 2021, 1316, 169-189.	1.6	4
530	Carbomer-based adjuvant elicits CD8 T-cell immunity by inducing a distinct metabolic state in cross-presenting dendritic cells. PLoS Pathogens, 2021, 17, e1009168.	4.7	19

	Сітат	ion Report	
#	Article	IF	CITATIONS
531	Mechanical Stiffness Controls Dendritic Cell Metabolism and Function. Cell Reports, 2021, 34, 108609.	6.4	98
532	Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XFe96 Extracellular Flux Analyzer. Methods in Molecular Biology, 2016, 1390, 273-285.	0.9	42
533	Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacological Research, 2020, 159, 104916.	7.1	56
534	Characterization of activation induced [18]F-FDG uptake in Dendritic Cells. Nuklearmedizin - NuclearMedicine, 2021, 60, 90-98.	0.7	2
535	TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30628-30638.	7.1	129
536	Glycolytic reprogramming of macrophages activated by NOD1 and TLR4 agonists: No association with proinflammatory cytokine production in normoxia. Journal of Biological Chemistry, 2020, 295, 3099-3114.	3.4	22
543	Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Proliferation, 2020, 53, e12772.	5.3	80
544	Particles from the Echinococcus granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells by Interfering with Akt Activation. Infection and Immunity, 2019, 87, .	2.2	9
545	COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-34.	4.0	43
546	Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight, 2017, 2, .	5.0	90
547	miR-142 controls metabolic reprogramming that regulates dendritic cell activation. Journal of Clinical Investigation, 2019, 129, 2029-2042.	8.2	41
548	High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. Journal of Clinical Investigation, 2015, 125, 4223-4238.	8.2	229
549	Metabolic regulation of immune responses: therapeutic opportunities. Journal of Clinical Investigation, 2016, 126, 2031-2039.	8.2	78
550	The transcription factor NR4A3 controls CD103+ dendritic cell migration. Journal of Clinical Investigation, 2016, 126, 4603-4615.	8.2	30
551	Muscle-Specific Deletion of Toll-like Receptor 4 Impairs Metabolic Adaptation to Wheel Running in Mice. Medicine and Science in Sports and Exercise, 2021, 53, 1161-1169.	0.4	6
552	Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Computational Biology, 2016, 12, e1005018.	3.2	40
553	Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genetics, 2020, 16, e1009192.	3.5	43
554	Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism. PLoS ONE, 2016, 11, e0157175.	2.5	43

#	Article	IF	CITATIONS
555	Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS ONE, 2018, 13, e0193104.	2.5	20
556	Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.	4.7	13
557	Single Cell Glucose Uptake Assays: A Cautionary Tale. Immunometabolism, 2020, 2, e200029.	1.6	45
558	Metabolic Routes in Inflammation: The Citrate Pathway and its Potential as Therapeutic Target. Current Medicinal Chemistry, 2020, 26, 7104-7116.	2.4	54

559 ĐšĐ¾Ñ€Ñ€ĐμĐ⁰цÐ,Ñ•Đ¼ĐμÑ,абĐ¾Đ»Đ,҇ĐμŇĐ⁰Đ,Ň... Đ½Đ°Ň€ŇfŇ^ĐμĐ½D,Đ¹ Đ¿Ñ€Đ, Đ²Ñ,Đ¾Ñ€Đ,҇Đ¢⁄2Đ¾Đ½Đ°Ň†ĐμŇ,

560	FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Frontiers in Immunology, 2020, 11, 1278.	4.8	19
561	Acidosis-Induced TGF-β2 Production Promotes Lipid Droplet Formation in Dendritic Cells and Alters Their Potential to Support Anti-Mesothelioma T Cell Response. Cancers, 2020, 12, 1284.	3.7	25
562	Natural products that target macrophages in treating non-alcoholic steatohepatitis. World Journal of Gastroenterology, 2020, 26, 2155-2165.	3.3	6
563	Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Molecular Medicine Reports, 2020, 22, 4981-4991.	2.4	10
564	Altered metabolism for neuroprotection provided by mesenchymal stem cells. Brain Circulation, 2019, 5, 140.	1.8	6
565	Metabolic influence on macrophage polarization and pathogenesis. BMB Reports, 2019, 52, 360-372.	2.4	136
566	Impact of intracellular innate immune receptors on immunometabolism. Cellular and Molecular Immunology, 2022, 19, 337-351.	10.5	61
567	Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Frontiers in Immunology, 2021, 12, 748325.	4.8	24
568	lrg1/itaconate metabolic pathway is a crucial determinant of dendritic cells immune-priming function and contributes to resolute allergen-induced airway inflammation. Mucosal Immunology, 2022, 15, 301-313.	6.0	34
569	Metabolic Profile of Innate Immune Cells. , 2022, , 83-114.		0
570	Lipid droplets diversity and functions in inflammation and immune response. Expert Review of Proteomics, 2021, 18, 809-825.	3.0	13
571	The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends in Molecular Medicine, 2021, 27, 1095-1105.	6.7	17
572	Role of PKM2-Mediated Immunometabolic Reprogramming on Development of Cytokine Storm. Frontiers in Immunology, 2021, 12, 748573.	4.8	20

#	Article	IF	CITATIONS
573	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
574	Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nature Immunology, 2021, 22, 1440-1451.	14.5	22
575	Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2021, 144, 112230.	5.6	33
576	Neuro-immune-metabolism: The tripod system of homeostasis. Immunology Letters, 2021, 240, 77-97.	2.5	3
578	Immunometabolism of lymphocytes and its changes in experimental diabetes mellitus. Patolog $ ilde{A}$ a, 2016, .	0.1	0
579	mTORC1 Links Cellular Metabolism and Immune Functions in Mycobacterium tuberculosis Infection and BCG Vaccination. , 2018, , 155-170.		2
580	Regulation of Innate Inflammatory Responses. , 2018, , 635-658.		0
581	Immunometabolism of Dendritic Cells and T Cells. , 2018, , 837-844.		0
584	T Cell Metabolism Is Dependent on Anatomical Location within the Lung. ImmunoHorizons, 2019, 3, 433-439.	1.8	1
590	The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Reports, 2020, 21, e48260.	4.5	6
591	Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers. Frontiers in Oral Health, 2020, 1, 585710.	3.0	5
593	Lipid scavenging macrophages and inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159066.	2.4	8
594	Myeloid Cell Diversity and Impact of Metabolic Cues during Atherosclerosis. Immunometabolism, 2020, , .	1.6	1
598	HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow–Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. Journal of Immunology, 2021, 207, 2813-2827.	0.8	3
599	Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. ELife, 2021, 10, .	6.0	14
601	Dichloroacetate-induced metabolic reprogramming improves lifespan in a Drosophila model of surviving sepsis. PLoS ONE, 2020, 15, e0241122.	2.5	8
602	Dynamic Metabolism in Immune Response. Journal of Immunology Research and Therapy, 2016, 1, 37-48.	1.0	1
603	Dietary Enteromorpha Polysaccharide Enhances Intestinal Immune Response, Integrity, and Caecal Microbial Activity of Broiler Chickens. Frontiers in Nutrition, 2021, 8, 783819.	3.7	23

#	Article	IF	CITATIONS
604	Inhibition of O-GlcNAc Transferase Alters the Differentiation and Maturation Process of Human Monocyte Derived Dendritic Cells. Cells, 2021, 10, 3312.	4.1	7
605	Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. International Immunopharmacology, 2021, 101, 108364.	3.8	9
606	Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-22.	4.0	32
607	Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metabolism, 2021, 33, 2355-2366.e8.	16.2	40
608	Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2021, 22, 12803.	4.1	26
609	The Triangle Relationship Between Long Noncoding RNA, RIC-I-like Receptor Signaling Pathway, and Glycolysis. Frontiers in Microbiology, 2021, 12, 807737.	3.5	10
611	Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) level determines steroid-resistant airway inflammation in aging. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L102-L115.	2.9	5
613	Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Molecular Cancer, 2022, 21, 27.	19.2	35
614	Myeloid cell TBK1 restricts inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
615	PP2CδControls the Differentiation and Function of Dendritic Cells Through Regulating the NSD2/mTORC2/ACLY Pathway. Frontiers in Immunology, 2021, 12, 751409.	4.8	2
616	Immunometabolism in the Bladder Cancer Microenvironment. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1201-1216.	1.2	4
617	A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Frontiers in Aging Neuroscience, 2021, 13, 788055.	3.4	3
619	The Influence of Obesity and Weight Loss on the Bioregulation of Innate/Inflammatory Responses: Macrophages and Immunometabolism. Nutrients, 2022, 14, 612.	4.1	6
620	The effects of 1,25(OH) 2 D 3 treatment on immune responses and intracellular metabolic pathways of bone marrowâ€derived dendritic cells from lean and obese mice. IUBMB Life, 2021, , .	3.4	7
621	Intertwining roles of circadian and metabolic regulation of the innate immune response. Seminars in Immunopathology, 2022, 44, 225-237.	6.1	7
622	Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L243-L257.	2.9	6
623	Cassiaside C Inhibits M1 Polarization of Macrophages by Downregulating Glycolysis. International Journal of Molecular Sciences, 2022, 23, 1696.	4.1	5
624	Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacological Research, 2022, 177, 106092.	7.1	26

#	Article	IF	CITATIONS
625	Metformin attenuated sepsis-associated liver injury and inflammatory response in aged mice. Bioengineered, 2022, 13, 4598-4609.	3.2	10
626	Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Frontiers in Immunology, 2022, 13, 751296.	4.8	6
627	IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 TÂcells cross-primed by liver sinusoidal endothelial cells. Cell Reports, 2022, 38, 110389.	6.4	10
628	New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 2022, 11, 768.	4.1	14
629	Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 843342.	4.8	23
630	Lipid Metabolism Interplay in CRC—An Update. Metabolites, 2022, 12, 213.	2.9	11
631	New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Frontiers in Pharmacology, 2022, 13, 841687.	3.5	21
632	Fast Maturation of Splenic Dendritic Cells Upon TBI Is Associated With FLT3/FLT3L Signaling. Frontiers in Immunology, 2022, 13, 824459.	4.8	2
633	The molecular regulation of autophagy in antimicrobial immunity. Journal of Molecular Cell Biology, 2022, 14, .	3.3	7
634	Fatty Acid Metabolism and Cancer Immunotherapy. Current Oncology Reports, 2022, 24, 659-670.	4.0	23
635	MYCT1 alters the glycogen shunt by regulating selective translation of RACK1-mediated enzymes. IScience, 2022, 25, 103955.	4.1	4
636	Metabolic Landscape of Bronchoalveolar Lavage Fluid in Coronavirus Disease 2019 at Single Cell Resolution. Frontiers in Immunology, 2022, 13, 829760.	4.8	1
637	Circadian Control of Redox Reactions in the Macrophage Inflammatory Response. Antioxidants and Redox Signaling, 2022, 37, 664-678.	5.4	5
638	Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Frontiers in Immunology, 2022, 13, 868343.	4.8	16
639	The role of endoplasmic reticulum stress in the MHC class I antigen presentation pathway of dendritic cells. Molecular Immunology, 2022, 144, 44-48.	2.2	7
640	Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82, 1261-1277.e9.	9.7	42
641	pH Low Insertion Peptide-Modified Programmed Cell Death-Ligand 1 Potently Suppresses T-Cell Activation Under Acidic Condition. Frontiers in Immunology, 2021, 12, 794226.	4.8	2
642	Long noncoding RNA GSEC promotes neutrophil inflammatory activation by supporting PFKFB3-involved glycolytic metabolism in sepsis. Cell Death and Disease, 2021, 12, 1157.	6.3	13

#	Article	IF	CITATIONS
643	Divergent Genetic Regulation of Nitric Oxide Production between C57BL/6J and Wild-Derived PWD/PhJ Mice Controls Postactivation Mitochondrial Metabolism, Cell Survival, and Bacterial Resistance in Dendritic Cells. Journal of Immunology, 2022, 208, 97-109.	0.8	2
644	Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Frontiers in Physiology, 2021, 12, 746749.	2.8	21
645	Identification of Profound Metabolic Alterations in Human Dendritic Cells by Progesterone Through Integrated Bioinformatics Analysis. Frontiers in Immunology, 2021, 12, 806110.	4.8	4
647	Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nature Reviews Rheumatology, 2022, 18, 398-414.	8.0	21
648	Cyclosporine A regulates PMN-MDSCs viability and function through MPTP in acute GVHD: old medication, new target. Transplantation and Cellular Therapy, 2022, , .	1.2	2
685	Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clinical Science, 2022, 136, 435-454.	4.3	8
686	Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. International Journal of Molecular Sciences, 2022, 23, 4885.	4.1	12
687	Dendritic cells metabolism: a strategic path to improve antitumoral DC vaccination. Clinical and Experimental Immunology, 2022, 208, 193-201.	2.6	6
688	Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Frontiers in Immunology, 2022, 13, .	4.8	5
689	Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166425.	3.8	5
690	A potent PCK1 antagonist reveals PCK1 regulates the production of IL-1β and IL-6. Acta Pharmaceutica Sinica B, 2022, 12, 4180-4192.	12.0	9
693	IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice. Nature Communications, 2022, 13, 2748.	12.8	5
696	Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
697	Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms, 2022, 10, 1271.	3.6	6
698	ATP citrate lyase links increases in glycolysis to diminished release of vesicular suppressor of cytokine signaling 3 by alveolar macrophages. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166458.	3.8	2
699	Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Frontiers in Immunology, 0, 13, .	4.8	4
700	mTORC1 signaling in antigen-presenting cells of the skin restrains CD8+ TÂcell priming. Cell Reports, 2022, 40, 111032.	6.4	3
701	Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells. PLoS Pathogens, 2022, 18, e1010608.	4.7	11

		15	0
#	ARTICLE	IF	CITATIONS
702	Respiratory Immunity. Frontiers in Immunology, 0, 13, .	4.8	5
703	TOLLIP Optimizes Dendritic Cell Maturation to Lipopolysaccharide and <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2022, 209, 435-445.	0.8	5
704	Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .	12.6	59
705	MiRâ€146aâ€5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	3.0	6
706	Lipid-loaded macrophages as new therapeutic target in cancer. , 2022, 10, e004584.		13
707	Inhibition of Glycolysis Impairs Retinoic Acid-Inducible Gene I–Mediated Antiviral Responses in Primary Human Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	4
708	Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Frontiers in Immunology, 0, 13, .	4.8	5
709	Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nature Reviews Nephrology, 2022, 18, 588-603.	9.6	32
710	Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	9
711	Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	21
712	Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. Journal of Personalized Medicine, 2022, 12, 1301.	2.5	3
714	The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Frontiers in Endocrinology, 0, 13, .	3.5	16
715	Lactic Acid Regulation: A Potential Therapeutic Option in Rheumatoid Arthritis. Journal of Immunology Research, 2022, 2022, 1-11.	2.2	2
716	Tuning immunity through tissue mechanotransduction. Nature Reviews Immunology, 2023, 23, 174-188.	22.7	62
717	Vaccine adjuvants to engage the cross-presentation pathway. Frontiers in Immunology, 0, 13, .	4.8	33
718	Carbon source availability drives nutrient utilization in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1298-1311.e6.	16.2	47
719	Autoantibodies targeting malondialdehyde-modifications in rheumatoid arthritis regulate osteoclasts via inducing glycolysis and lipid biosynthesis. Journal of Autoimmunity, 2022, 133, 102903.	6.5	5
720	The Effects of Vitamin D on Metabolic Reprogramming and Maturation in Bone Marrow-Derived Dendritic Cells from Control and Diabetic Mice. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
721	Jingfang Granules Improve Glucose Metabolism Disturbance and Inflammation in Mice with Urticaria by Up-Regulating LKB1/AMPK/SIRT1 Axis. SSRN Electronic Journal, 0, , .	0.4	0
722	General and Emerging Concepts of Immunity. , 2022, , .		0
723	The effects of 1,25(OH)2D3 treatment on metabolic reprogramming and maturation in bone marrow-derived dendritic cells from control and diabetic mice. Journal of Steroid Biochemistry and Molecular Biology, 2023, 225, 106197.	2.5	1
724	Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. Journal of Experimental Medicine, 2022, 219, .	8.5	12
725	PGC-1β maintains mitochondrial metabolism and restrains inflammatory gene expression. Scientific Reports, 2022, 12, .	3.3	4
726	Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nature Communications, 2022, 13, .	12.8	30
727	Ketone body augmentation decreases methacholine hyperresponsiveness in mouse models of allergic asthma. , 2022, 1, 282-298.		0
728	Activation and Functions of Plasmacytoid Dendritic Cells. , 2022, , 25-60.		0
729	Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells, 2022, 11, 3174.	4.1	15
730	Tumor metabolic and secondary lymphoid organ metabolic markers on 18F-fludeoxyglucose positron emission tomography predict prognosis of immune checkpoint inhibitors in advanced lung cancer. Frontiers in Immunology, 0, 13, .	4.8	0
731	Increased stromal PFKFB3-mediated glycolysis in inflammatory bowel disease contributes to intestinal inflammation. Frontiers in Immunology, 0, 13, .	4.8	6
732	Jingfang Granules improve glucose metabolism disturbance and inflammation in mice with urticaria by up-regulating LKB1/AMPK/SIRT1 axis. Journal of Ethnopharmacology, 2023, 302, 115913.	4.1	10
733	AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity. Molecular Cell, 2022, 82, 4519-4536.e7.	9.7	12
734	What role for cellular metabolism in the control of hepatitis viruses?. Frontiers in Immunology, 0, 13,	4.8	4
735	Mechanosensing in macrophages and dendritic cells in steady-state and disease. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	13
736	The NLRP3 inflammasome: regulation by metabolic signals. Trends in Immunology, 2022, 43, 978-989.	6.8	20
737	A Global Picture of Molecular Changes Associated to LPS Treatment in THP-1 Derived Human Macrophages by Fourier Transform Infrared Microspectroscopy. International Journal of Molecular Sciences, 2022, 23, 13447.	4.1	1
738	Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Seminars in Cancer Biology, 2023, 88, 32-45.	9.6	12

#	Article	IF	CITATIONS
739	NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biology, 2023, 59, 102575.	9.0	10
740	The intracellular signaling pathways governing macrophage activation and function in human atherosclerosis. Biochemical Society Transactions, 2022, 50, 1673-1682.	3.4	5
741	Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment — Disease-Specific Findings (Part 1). Current Allergy and Asthma Reports, 2023, 23, 29-40.	5.3	6
744	Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nature Communications, 2022, 13, .	12.8	16
745	Ironing out macrophages in atherosclerosis. Acta Biochimica Et Biophysica Sinica, 2022, , .	2.0	0
746	Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism. Science Advances, 2022, 8, .	10.3	15
747	The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nature Communications, 2022, 13, .	12.8	22
748	Lower Metabolic Potential and Impaired Metabolic Flexibility in Human Lymph Node Stromal Cells from Patients with Rheumatoid Arthritis. Cells, 2023, 12, 1.	4.1	8
749	Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nature Metabolism, 2022, 4, 1756-1774.	11.9	23
750	Endogenous drivers of altered immune cell metabolism. Experimental Biology and Medicine, 2022, 247, 2192-2200.	2.4	1
751	Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients, 2023, 15, 411.	4.1	4
752	Nanosecond pulsed electric field ablationâ€induced modulation of sphingolipid metabolism is associated with <i>Ly6c2</i> ⁺ mononuclear phagocyte differentiation in liver cancer. Molecular Oncology, 2023, 17, 1093-1111.	4.6	1
753	Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunology, 2023, 16, 72-85.	6.0	5
754	Urine Metabolite of Mice with Orientia tsutsugamushi Infection. American Journal of Tropical Medicine and Hygiene, 2023, , .	1.4	0
755	Glycolysis and <i>de novo</i> fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia. Journal of Pathology, 2023, 259, 388-401.	4.5	6
756	Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. Journal of Leukocyte Biology, 2023, 113, 164-190.	3.3	3
757	Regulation of DC metabolism by nitric oxide in murine GM SF cultures. European Journal of Immunology, 2023, 53, .	2.9	0
758	Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Frontiers in Oncology, 0, 12, .	2.8	7

#	Article	IF	CITATIONS
759	Inhibition of specific signaling pathways rather than epigenetic silencing of effector genes is the leading mechanism of innate tolerance. Frontiers in Immunology, 0, 14, .	4.8	2
761	Diluent pH affects sperm motility via GSK3 $\hat{l} \pm / \hat{l}^2$ -hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats. Theriogenology, 2023, 201, 1-11.	2.1	1
762	HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2023, 46, 101071.	1.0	1
763	TLR7/8 agonist (R848) inhibit bovine X sperm motility via PI3K/GSK3α/β and PI3K/NFκB pathways. International Journal of Biological Macromolecules, 2023, 232, 123485.	7.5	1
764	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	3.3	2
765	Regulation of innate immune signaling by IRAK proteins. Frontiers in Immunology, 0, 14, .	4.8	12
766	Hexokinase 2-mediated glycolysis supports inflammatory responses to Porphyromonas gingivalis in gingival fibroblasts. BMC Oral Health, 2023, 23, .	2.3	1
767	Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related Metabolism in Unchallenged Zebrafish Larvae (Danio rerio). Biology, 2023, 12, 323.	2.8	0
769	NF- $\hat{I}^{\circ}B$ activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Reports, 2023, 42, 112185.	6.4	29
770	Metabolic regulation of dendritic cell activation and immune function during inflammation. Frontiers in Immunology, 0, 14, .	4.8	3
771	Characterization of Dendritic Cell Metabolism by Flow Cytometry. Methods in Molecular Biology, 2023, , 219-237.	0.9	0
772	Targeting immunometabolism against acute lung injury. Clinical Immunology, 2023, 249, 109289.	3.2	10
773	Regulation of the immune system by the insulin receptor in health and disease. Frontiers in Endocrinology, 0, 14, .	3.5	7
774	Brain endothelial cells exposure to malaria parasites links type I interferon signalling to antigen presentation, immunoproteasome activation, endothelium disruption, and cellular metabolism. Frontiers in Immunology, 0, 14, .	4.8	1
775	Interactions between gut microbes and NLRP3 inflammasome in the gut-brain axis. Computational and Structural Biotechnology Journal, 2023, 21, 2215-2227.	4.1	4
776	The circadian neutrophil, inside-out. Journal of Leukocyte Biology, 0, , .	3.3	1
778	Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Communications Biology, 2023, 6, .	4.4	3
779	Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Frontiers in Immunology, 0, 14, .	4.8	0

#	Article	IF	Citations
780	Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA. Acta Pharmaceutica Sinica B, 2023, 13, 2585-2600.	12.0	1
781	Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomaterials Science, 2023, 11, 4151-4183.	5.4	10
782	Rapid glycolytic activation accompanying innate immune responses: mechanisms and function. Frontiers in Immunology, 0, 14, .	4.8	3
783	Immunometabolism at the Heart ofÂCardiovascular Disease. JACC Basic To Translational Science, 2023, 8, 884-904.	4.1	8
784	Systems Immunology Approaches to Metabolism. Annual Review of Immunology, 2023, 41, 317-342.	21.8	1
785	Immunometabolic reprogramming, another cancer hallmark. Frontiers in Immunology, 0, 14, .	4.8	6
786	Lipid metabolism in dendritic cell biology. Immunological Reviews, 2023, 317, 137-151.	6.0	8
787	The Role of TLR4 in the Immunotherapy of Hepatocellular Carcinoma: Can We Teach an Old Dog New Tricks?. Cancers, 2023, 15, 2795.	3.7	10
788	Discovery of highly immunogenic spleen-resident FCGR3+CD103+ cDC1s differentiated by IL-33-primed ST2+ basophils. , 2023, 20, 820-834.		0
790	A Biological Perspective of TLR8 Signaling in Host Defense and Inflammation. Infectious Microbes & Diseases, 2023, 5, 44-55.	1.3	2
791	The Unfolded Protein Response Sensor IRE1 Regulates Activation of In Vitro Differentiated Type 1 Conventional DCs with Viral Stimuli. International Journal of Molecular Sciences, 2023, 24, 10205.	4.1	0
792	Role of inflammation and immune response in atherosclerosis: Mechanisms, modulations, and therapeutic targets. Human Immunology, 2023, 84, 439-449.	2.4	1
793	Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Research Reviews, 2023, 90, 101993.	10.9	1
795	Peptidoglycan-induced modulation of metabolic and inflammatory responses. Immunometabolism, 2023, 5, e00024.	1.6	3
796	Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Human Cell, 2023, 36, 1265-1282.	2.7	3
797	Toll-Like Receptors in Pain and Itch. , 2023, , 197-222.		0
798	A cellular overview of immunometabolism in systemic lupus erythematosus. Oxford Open Immunology, 2023, 4, .	2.8	0
799	Succinate based polymers drive immunometabolism in dendritic cells to generate cancer immunotherapy. Journal of Controlled Release, 2023, 358, 541-554.	9.9	3

#	Article	IF	CITATIONS
800	The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. Journal of Leukocyte Biology, 0, , .	3.3	0
801	Itaconate attenuates autoimmune hepatitis via PI3K/AKT/mTOR pathway-mediated inhibition of dendritic cell maturation and autophagy. Heliyon, 2023, 9, e17551.	3.2	0
803	Glucose metabolism and its role in the maturation and migration of human CD1c+ dendritic cells following exposure to BCG. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
804	Glycolytic Activation of CD14+ Intestinal Macrophages Contributes to the Inflammatory Responses via Exosomal Membrane Tumor Necrosis Factor in Crohn's Disease. Inflammatory Bowel Diseases, 0, , .	1.9	0
805	Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Frontiers in Immunology, 0, 14, .	4.8	0
806	Knockdown of DEC2 expression inhibits the proliferation of mesangial cells through suppressed glycolysis and p38 MAPK/Erk pathway in lupus nephritis. Molecular Medicine, 2023, 29, .	4.4	1
807	A comparative proteomics analysis of four contact allergens in THP-1 cells shows distinct alterations in key metabolic pathways. Toxicology and Applied Pharmacology, 2023, 475, 116650.	2.8	0
808	Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. American Journal of Physiology - Cell Physiology, 2023, 325, C731-C749.	4.6	2
809	Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants, 2023, 12, 1667.	5.1	2
810	Gene expression flux analysis reveals specific regulatory modalities of gene expression. IScience, 2023, 26, 107758.	4.1	0
811	Impact of SGLT2 Inhibitors on Corneal Nerve Morphology and Dendritic Cell Density in Type 2 Diabetes. Ocular Immunology and Inflammation, 2024, 32, 234-241.	1.8	1
812	Metformin induces tolerogenicity of dendritic cells by promoting metabolic reprogramming. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	1
813	Direct Immunoactivation by Chemotherapeutic Drugs in Cancer Treatment. Advanced Therapeutics, 2023, 6, .	3.2	0
814	The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Research and Therapy, 2023, 25, .	3.5	0
815	Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection. Cell Metabolism, 2023, 35, 1767-1781.e6.	16.2	2
816	Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chemical Biology, 2023, 30, 1015-1032.	5.2	2
817	Macrophage Metabolic Reprogramming After Myocardial Infarction. Cardiometabolic Syndrome Journal, 2023, 3, 110.	0.6	0
818	TNFα increases the degradation of pyruvate dehydrogenase kinase 4 by the Lon protease to support proinflammatory genes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2

ARTICLE IF CITATIONS # An early glycolysis burst in microglia regulates mitochondrial dysfunction in oligodendrocytes 819 4.1 1 under neuroinflammation. IScience, 2023, 26, 107921. Dietary fat and lipid metabolism in the tumor microenvironment. Biochimica Et Biophysica Acta: 7.4 Reviews on Cancer, 2023, 1878, 188984. New Insights in Immunometabolism in Neonatal Monocytes and Macrophages in Health and Disease. 821 0 4.1 International Journal of Molecular Sciences, 2023, 24, 14173. Myo9b mutations are associated with altered dendritic cell functions and increased susceptibility to autoimmune diabetes onset. Nature Communications, 2023, 14, . Neudesin, A Secretory Protein, Suppresses Cytokine Production in Bone Marrow-Derived Dendritic 823 0.3 0 Cells Stimulated by Lipopolysaccharide. BPB Reports, 2023, 6, 155-162. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Frontiers in 824 3.5 Endocrinology, 0, 14, . Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate 825 3.8 5 Immunity. Journal of Innate Immunity, 2023, 15, 665-679. Immunometabolism of dendritic cells in health and disease. Advances in Immunology, 2023, , . 826 827 The immunometabolic landscape of bone marrow cells in multiple sclerosis. FASEB Journal, 2023, 37, . 0.5 0 Advanced nanomaterials for enhanced immunotherapy via metabolic regulation. Coordination 18.8 Chemistry Reviews, 2024, 500, 215540. Immuno-metabolic dendritic cell vaccine signatures associate with overall survival in vaccinated 829 12.8 2 melanoma patients. Nature Communications, 2023, 14, . <scp>HK2</scp> in microglia and macrophages contribute to the development of neuropathic pain. 830 Glia, 2024, 72, 396-410. Metabolic Modulators in Cardiovascular Complications of Systemic Lupus Erythematosus. 831 3.2 0 Biomedicines, 2023, 11, 3142. Adipsin inhibits Irak2 mitochondrial translocation and improves fatty acid Î2-oxidation to alleviate 3.4 diabetic cardiomyopathy. Military Medical Research, 2023, 10, . RÃ1e du métabolisme cellulaire dans le contrÃ1e des hépatites virales chroniques. Medecine/Sciences, 833 0.2 0 2023, 39, 754-762. CD_99 G1 neutrophils modulate osteogenic differentiation of mesenchymal stem cells in the 834 pathological process of ankylosing spondylitis. Annals of the Rheumatic Diseases, 2024, 83, 324-334. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. European 836 5.50 Journal of Medicinal Chemistry, 2024, 264, 115986. Metabolic and senescence characteristics associated with the immune microenvironment in ovarian cancer. Frontiers in Endocrinology, 0, 14, .

#	Article	IF	CITATIONS
838	Lipid metabolism in B cell biology. Molecular Oncology, 0, , .	4.6	0
839	Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). International Journal of Molecular Medicine, 2023, 53, .	4.0	1
841	Ligand Recognition by the Macrophage Galactose-Type C-Type Lectin: Self or Non-Self?—A Way to Trick the Host's Immune System. International Journal of Molecular Sciences, 2023, 24, 17078.	4.1	0
842	The multi-faceted role of NADPH in regulating inflammation in activated myeloid cells. Frontiers in Immunology, 0, 14, .	4.8	0
843	The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses, 2023, 15, 2399.	3.3	1
844	Cutting Edge: STING Induces ACLY Activation and Metabolic Adaptations in Human Macrophages through TBK1. Journal of Immunology, 2024, 212, 7-11.	0.8	1
845	NLRX1 Prevents M2 Macrophage Polarization and Excessive Renal Fibrosis in Chronic Obstructive Nephropathy. Cells, 2024, 13, 23.	4.1	0
846	Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regeneration Research, 2024, 19, 2189-2201.	3.0	0
847	Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 0, , .	2.6	0
848	GRIM-19 deficiency promotes macrophage polarization to the M1 phenotype partly through glycolysis in unexplained recurrent spontaneous abortion. Biology of Reproduction, 2024, 110, 739-749.	2.7	0
849	Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discovery, 2024, 10, .	4.7	1
850	Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Frontiers in Immunology, 0, 14, .	4.8	0
851	Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl–Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation. ImmunoHorizons, 2024, 8, 57-73.	1.8	0
852	Does oncolytic virusesâ€mediated metabolic reprogramming benefit or harm the immune microenvironment?. FASEB Journal, 2024, 38, .	0.5	0
853	Immmunometabolism of systemic lupus erythematosus. Clinical Immunology, 2024, 261, 109939.	3.2	0
854	Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Frontiers in Pharmacology, 0, 15, .	3.5	0
855	Detection of nitric oxide-mediated metabolic effects using real-time extracellular flux analysis. PLoS ONE, 2024, 19, e0299294.	2.5	0
857	High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Molecular Neurobiology, 0, , .	4.0	0

#	Article	IF	CITATIONS
858	Deoxynivalenol triggers the expression of IL-8-related signaling cascades and decreases protein biosynthesis in primary monocyte-derived cells. Mycotoxin Research, 2024, 40, 279-293.	2.3	0
859	Activation of Cannabinoid Type 2 Receptor in Microglia Reduces Neuroinflammation through Inhibiting Aerobic Clycolysis to Relieve Hypertension. Biomolecules, 2024, 14, 333.	4.0	0
860	Tricarboxylic acid cycle metabolites: new players in macrophage. Inflammation Research, 2024, 73, 531-539.	4.0	0
861	The role of foam cells in spinal cord injury: challenges and opportunities for intervention. Frontiers in Immunology, 0, 15, .	4.8	0