The present and future role of microfluidics in biomedic

Nature

507, 181-189

DOI: 10.1038/nature13118

Citation Report

#	Article	IF	CITATIONS
1	Predictable Duty Cycle Modulation through Coupled Pairing of Syringes with Microfluidic Oscillators. Micromachines, 2014, 5, 1254-1269.	1.4	8
2	Microfluidic preparation of polymer nanospheres. Journal of Nanoparticle Research, 2014, 16, 2626.	0.8	19
3	Systematic analysis of microfluidic probe design and operation. , 2014, 2014, 1567-70.		1
4	Advanced human <i>in vitro</i> models to assess metal oxide nanoparticle-cell interactions. MRS Bulletin, 2014, 39, 984-989.	1.7	15
5	Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics, 2014, 8, 064105.	1.2	6
6	Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass. Sensors, 2014, 14, 19402-19440.	2.1	70
7	Millimetre-wave dielectric spectroscopy for cell analysis. , 2014, , .		2
8	The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, 0408011-408016.	0.8	60
9	Bottom-Up Fabrication of Paper-Based Microchips by Blade Coating of Cellulose Microfibers on a Patterned Surface. Langmuir, 2014, 30, 15041-15046.	1.6	23
10	Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics, 2014, 8, 052112.	1.2	114
11	Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 2014, 8, 051501.	1.2	271
12	Methods to study the tumor microenvironment under controlled oxygen conditions. Trends in Biotechnology, 2014, 32, 556-563.	4.9	90
14	Emerging microengineered tools for functional analysis and phenotyping of blood cells. Trends in Biotechnology, 2014, 32, 586-594.	4.9	18
15	Vascular smooth muscle cell culture in microfluidic devices. Biomicrofluidics, 2014, 8, 046504.	1.2	8
16	A Vision for Thermally Integrated Photonics Systems. Bell Labs Technical Journal, 2014, 19, 31-45.	0.7	46
17	Single-cell RNA-seq: advances and future challenges. Nucleic Acids Research, 2014, 42, 8845-8860.	6.5	695
18	Polyelectrolyte Multilayers in Microfluidic Systems for Biological Applications. Polymers, 2014, 6, 2100-2115.	2.0	9
19	Microfluidic ELISA for sensing of prostate cancer biomarkers using integrated a-Si:H p-i-n photodiodes., 2014,,.		2

#	ARTICLE	IF	CITATIONS
20	Multiplex Microfluidic Paper-based Immunoassay for the Diagnosis of Hepatitis C Virus Infection. Analytical Chemistry, 2014, 86, 5338-5344.	3.2	106
21	A chemo-mechanical switch for controllable water transportation based on a thermally responsive block copolymer. Chemical Communications, 2014, 50, 10265-10268.	2.2	10
22	Laser-induced vibration of a thin soap film. Lab on A Chip, 2014, 14, 3525-3529.	3.1	8
23	A sensitive microfluidic platform for a high throughput DNA methylation assay. Lab on A Chip, 2014, 14, 2354-2362.	3.1	24
24	Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab on A Chip, 2014, 14, 3589-3593.	3.1	18
25	Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chemical Reviews, 2014, 114, 10654-10696.	23.0	166
26	Pneumatic valves in folded 2D and 3D fluidic devices made from plastic films and tapes. Lab on A Chip, 2014, 14, 1665-1668.	3.1	28
27	Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells. Advanced Materials Interfaces, 2014, 1, 1400158.	1.9	6
28	Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochimica Acta, 2014, 146, 518-524.	2.6	52
29	Screening Technologies for Small Molecule Discovery: The State of the Art. Chemistry and Biology, 2014, 21, 1162-1170.	6.2	125
30	The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab on A Chip, 2014, 14, 4616-4628.	3.1	95
31	Fabrication of 3D Controlled in vitro Microenvironments. MethodsX, 2014, 1, 60-66.	0.7	6
32	Integrated Biodetection in a Nanofluidic Device. ACS Nano, 2014, 8, 8278-8284.	7.3	57
33	A simple, low-cost, and rapid device for a DNA methylation-specific amplification/detection system using a flexible plastic and silicon complex. Lab on A Chip, 2014, 14, 4220-4229.	3.1	27
34	Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346, 1247390.	6.0	842
35	Discrete elements for 3D microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15013-15018.	3.3	254
36	Commercialization of microfluidic devices. Trends in Biotechnology, 2014, 32, 347-350.	4.9	348
37	PDMS nanocomposites for heat transfer enhancement in microfluidic platforms. Lab on A Chip, 2014, 14, 3419-3426.	3.1	78

#	ARTICLE	IF	CITATIONS
38	Gradient generation platforms: new directions for an established microfluidic technology. Lab on A Chip, 2014, 14, 3241-3247.	3.1	49
39	Fluorescence-Based Assessment of Plasma-Induced Hydrophilicity in Microfluidic Devices via Nile Red Adsorption and Depletion. Analytical Chemistry, 2014, 86, 7258-7263.	3.2	6
40	Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. Lab on A Chip, 2014, 14, 3729-3738.	3.1	18
41	Patent protection and licensing in microfluidics. Lab on A Chip, 2014, 14, 2217.	3.1	33
42	Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chemical Society Reviews, 2014, 43, 6239-6253.	18.7	290
43	Simple 3D Printed Scaffoldâ€Removal Method for the Fabrication of Intricate Microfluidic Devices. Advanced Science, 2015, 2, 1500125.	5.6	195
44	Holographic imaging of unlabelled sperm cells for semen analysis: a review. Journal of Biophotonics, 2015, 8, 779-789.	1.1	56
45	Mesoporous-silica nanofluidic channels for quick enrichment/extraction of trace pesticide molecules. Scientific Reports, 2015, 5, 17171.	1.6	13
46	New Technologies for Studying Biofilms. Microbiology Spectrum, 2015, 3, .	1.2	83
47	A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration. Scientific Reports, 2015, 5, 14049.	1.6	29
48	Multi-Layer Construction Process for Fabricating Electrospun Fiber Embedded Microfluidic Devices. , 2015, , .		0
49	Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration. Biomicrofluidics, 2015, 9, 064107.	1.2	6
50	Enhanced H-filter based on FÃ \pm hrÃ \pm lus-Lindqvist effect for efficient and robust dialysis without membrane. Biomicrofluidics, 2015, 9, 044112.	1.2	4
51	Active porous transition towards spatiotemporal control of molecular flow in a crystal membrane. Nature Communications, 2015, 6, 8934.	5.8	31
52	A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Scientific Reports, 2015, 5, 11937.	1.6	17
53	Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging. Scientific Reports, 2015, 5, 13584.	1.6	15
54	Investigation of monodisperse droplet generation in liquids by inkjet. Sensors and Actuators B: Chemical, 2015, 220, 958-961.	4.0	14
56	Phenylalanine Ammoniaâ€Lyaseâ€Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. ChemBioChem, 2015, 16, 2283-2288.	1.3	46

#	Article	IF	Citations
57	Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surfaceâ€Enhanced Raman Scattering: The Case of Cytosine. Angewandte Chemie - International Edition, 2015, 54, 13650-13654.	7.2	60
59	Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis, 2015, 36, 1744-1753.	1.3	62
60	Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small, 2015, 11, 4423-4444.	5.2	61
61	Point-of-Care Testing. Point of Care, 2015, 14, 157-164.	0.5	2
62	3-D Tissue Modelling and Virtual Pathology as New Approaches to Study Ductal Carcinoma In Situ. ATLA Alternatives To Laboratory Animals, 2015, 43, 377-383.	0.7	6
63	Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysisand Recovery. Micromachines, 2015, 6, 1469-1482.	1.4	46
64	Indo-Tibetan Philosophical and Medical Systems: Perspectives on the Biofield. Global Advances in Health and Medicine, 2015, 4, gahmj.2015.026	0.7	7
65	New Technologies for Studying Biofilms. , 2015, , 1-32.		5
66	Microfluidic Bioreactors for Cellular Microarrays. Fermentation, 2015, 1, 38-78.	1.4	12
67	Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 2015, 15, 30011-30031.	2.1	385
68	Point-of-care diagnosis of periodontitis using saliva: technically feasible but still a challenge. Frontiers in Cellular and Infection Microbiology, 2015, 5, 65.	1.8	53
69	Automated, Miniaturized, and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Cell-Based Cancer Therapy Applications. Frontiers in Materials, 2015, 2, .	1.2	22
70	The potential power of dynamics in epistasis analysis. , 2015, , .		1
71	Microfluidic Induced Controllable Microdroplets Assembly in Confined Channels. Micromachines, 2015, 6, 1331-1345.	1.4	12
72	Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics. PLoS ONE, 2015, 10, e0116925.	1.1	8
7 3	Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Advances, 2015, 5, 8377-8388.	1.7	53
74	A microfluidic immunoassay platform for the detection of free prostate specific antigen: a systematic and quantitative approach. Analyst, The, 2015, 140, 4423-4433.	1.7	21
7 5	MicroC ³ : an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells. Integrative Biology (United Kingdom), 2015, 7, 643-654.	0.6	42

#	Article	IF	CITATIONS
76	Imaging and Visualization in The Modern Operating Room., 2015,,.		7
77	Cell Chemotaxis on Paper for Diagnostics. Analytical Chemistry, 2015, 87, 5505-5510.	3.2	15
78	Laser treated glass platform with rapid wicking-driven transport and particle separation capabilities. , 2015, , .		0
79	Stem cell niche engineering through droplet microfluidics. Current Opinion in Biotechnology, 2015, 35, 86-93.	3.3	73
80	Molecular Typing of Blood Cell Antigens. Methods in Molecular Biology, 2015, , .	0.4	3
82	Transportation, dispersion and ordering of dense colloidal assemblies by magnetic interfacial rotaphoresis. Lab on A Chip, 2015, 15, 2864-2871.	3.1	15
83	Thermocouples on trench sidewall in channel fronting on flowing material. , 2015, , .		2
84	Bubble pump: scalable strategy for in-plane liquid routing. Lab on A Chip, 2015, 15, 2842-2853.	3.1	13
85	Fabrication and characterization of all-plastic flexible microfluidic chip using thermal., 2015,,.		0
86	Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system. AICHE Journal, 2015, 61, 3804-3811.	1.8	25
87	Microfluidic wound model for studying the behaviors of <i>Pseudomonas aeruginosa</i> in polymicrobial biofilms. Biotechnology and Bioengineering, 2015, 112, 2351-2359.	1.7	20
88	Hepcidin determination in dried blood by microfluidic LC–MS/MS: comparison of DBS and volumetric absorptive microsampling for matrix effect and recovery. Bioanalysis, 2015, 7, 2789-2799.	0.6	27
89	Digital Microfluidic Cell Culture. Annual Review of Biomedical Engineering, 2015, 17, 91-112.	5.7	65
90	INTEGRATED 3D MULTI-PHYSICAL SIMULATION OF A MICROFLUIDIC SYSTEM USING FINITE ELEMENT ANALYSIS. Journal of Mechanics in Medicine and Biology, 2015, 15, 1540043.	0.3	2
91	Photonic Crystal Microbubbles as Suspension Barcodes. Journal of the American Chemical Society, 2015, 137, 15533-15539.	6.6	117
92	Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nature Reviews Microbiology, 2015, 13, 761-775.	13.6	134
93	Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping. Journal of Micromechanics and Microengineering, 2015, 25, 105015.	1.5	10
94	On-chip terahertz spectroscopy of liquid mixtures. , 2015, , .		3

#	ARTICLE	IF	CITATIONS
95	Paper-Based Microfluidic Approach for Surface-Enhanced Raman Spectroscopy and Highly Reproducible Detection of Proteins beyond Picomolar Concentration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 996-1003.	4.0	44
96	Development of a microfluidicâ€based assay on a novel nitrocellulose platform. Electrophoresis, 2015, 36, 884-888.	1.3	19
97	Microscale and miniscale fermentation and screening. Current Opinion in Biotechnology, 2015, 35, 1-6.	3.3	66
98	High-efficiency nano/micro-reactors for protein analysis. RSC Advances, 2015, 5, 1331-1342.	1.7	33
99	A SERSâ€Assisted 3D Barcode Chip for Highâ€Throughput Biosensing. Small, 2015, 11, 2798-2806.	5.2	51
100	Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review. Analytica Chimica Acta, 2015, 884, 1-18.	2.6	31
101	A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization mass spectrometry. Analyst, The, 2015, 140, 1495-1501.	1.7	30
102	Dielectrophoretic concentrator enhancement based on dielectric poles for continuously flowing samples. Electrophoresis, 2015, 36, 1405-1413.	1.3	5
103	Osteocyte culture in microfluidic devices. Biomicrofluidics, 2015, 9, 014109.	1.2	12
104	Label-Free DNA Sensing Platform with Low-Voltage Electrolyte-Gated Transistors. Analytical Chemistry, 2015, 87, 1861-1866.	3.2	63
105	Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device ($\hat{1}$ /4CAD) for effective point-of-care diagnostic. Microfluidics and Nanofluidics, 2015, 19, 317-333.	1.0	49
106	Multifunctional reversibly sealable microfluidic devices for patterned material deposition approaches. RSC Advances, 2015, 5, 11806-11811.	1.7	5
107	Screening of polychlorinated biphenyls in insulating oil using a microfluidic based pretreatment and immunoassay. Analytical Chemistry Research, 2015, 3, 13-19.	2.0	2
108	Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays. Measurement Science and Technology, 2015, 26, 015701.	1.4	7
110	Rapid, Sensitive and Real-Time Multiplexing Platform for the Analysis of Protein and Nucleic-Acid Biomarkers. Analytical Chemistry, 2015, 87, 1582-1589.	3.2	35
111	Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab on A Chip, 2015, 15, 1230-1249.	3.1	811
112	On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation. Analytical and Bioanalytical Chemistry, 2015, 407, 737-747.	1.9	24
113	A paper-based invasion assay: Assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials, 2015, 52, 262-271.	5.7	132

#	Article	IF	CITATIONS
114	Elucidating organ-specific metabolic toxicity chemistry from electrochemiluminescent enzyme/DNA arrays and bioreactor bead-LC-MS/MS. Chemical Science, 2015, 6, 2457-2468.	3.7	30
115	3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomedical Microdevices, 2015, 17, 36.	1.4	159
116	Thermocouples fabricated on trench sidewall in microfluidic channel bonded with film cover. Japanese Journal of Applied Physics, 2015, 54, 030219.	0.8	5
117	A microfluidic approach for flexible and efficient operation of a cross-coupling reactive flow. RSC Advances, 2015, 5, 63786-63792.	1.7	15
118	Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology, 2015, 84, 1367-1377.	0.9	37
119	Entrepreneurship. Lab on A Chip, 2015, 15, 3638-3660.	3.1	28
120	Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab on A Chip, 2015, 15, 3785-3792.	3.1	45
121	High-strength thermoplastic bonding for multi-channel, multi-layer lab-on-chip devices for ocean and environmental applications. Microfluidics and Nanofluidics, 2015, 19, 913-922.	1.0	11
122	Long-wave interface instabilities of a two-liquid DC electroosmotic system for thin films. Microfluidics and Nanofluidics, 2015, 19, 813-827.	1.0	3
123	Point-of-care (POC) devices by means of advanced MEMS. Talanta, 2015, 145, 55-59.	2.9	19
124	Recent advances and future applications of microfluidic live-cell microarrays. Biotechnology Advances, 2015, 33, 948-961.	6.0	57
125	Ultrasonic welding for fast bonding of self-aligned structures in lab-on-a-chip systems. Lab on A Chip, 2015, 15, 1998-2001.	3.1	32
126	Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine, 2015, 10, 2289-2305.	1.7	11
127	Isopentenyl pyrophosphate secreted from Zoledronate-stimulated myeloma cells, activates the chemotaxis of $\hat{l}^3\hat{l}^{\dagger}$ cells. Biochemical and Biophysical Research Communications, 2015, 463, 650-655.	1.0	15
128	High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nature Protocols, 2015, 10, 1181-1197.	5.5	84
129	3D printed microfluidics for biological applications. Lab on A Chip, 2015, 15, 3627-3637.	3.1	574
130	Patchiness in a microhabitat chip affects evolutionary dynamics of bacterial cooperation. Lab on A Chip, 2015, 15, 3723-3729.	3.1	6
131	Sn(OTf) < sub > 2 < /sub > catalyzed continuous flow ring-opening polymerization of $\hat{l}\mu$ -caprolactone. RSC Advances, 2015, 5, 31554-31557.	1.7	19

#	Article	IF	CITATIONS
132	A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab on A Chip, 2015, 15, 3300-3306.	3.1	44
133	Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. International Journal of Molecular Sciences, 2015, 16, 9804-9830.	1.8	125
134	Advancing rapid point-of-care viral diagnostics to a clinical setting. Future Virology, 2015, 10, 313-328.	0.9	18
135	Emerging single-cell technologies in immunology. Journal of Leukocyte Biology, 2015, 98, 23-32.	1.5	19
136	Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development. Biomaterials, 2015, 52, 347-357.	5.7	66
137	ALA-induced fluorescence detection with photoresist-based microfluidic cell sorter for bladder cancer diagnosis. Sensors and Actuators B: Chemical, 2015, 213, 547-557.	4.0	13
138	Gravity-driven hydrodynamic particle separation in digital microfluidic systems. RSC Advances, 2015, 5, 35966-35975.	1.7	13
139	The emerging field of mobile health. Science Translational Medicine, 2015, 7, 283rv3.	5.8	570
140	Controllable trajectory of inertial focusing in microfluidics. Microelectronic Engineering, 2015, 139, 48-52.	1.1	5
141	Simple microfluidic device for studying chemotaxis in response to dual gradients. Biomedical Microdevices, 2015, 17, 9955.	1.4	22
142	Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab on A Chip, 2015, 15, 2606-2614.	3.1	55
143	Anisotropic Crystalline Protein Nanolayers as Multiâ€Functional Biointerface for Patterned Coâ€Cultures of Adherent and Nonâ€Adherent Cells in Microfluidic Devices. Advanced Materials Interfaces, 2015, 2, 1400309.	1.9	16
144	Microfluidics for sperm research. Trends in Biotechnology, 2015, 33, 221-229.	4.9	107
145	Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. Journal of Clinical Periodontology, 2015, 42, 1-11.	2.3	69
146	Competitive Volumetric Bar-Chart Chip with Real-Time Internal Control for Point-of-Care Diagnostics. Analytical Chemistry, 2015, 87, 3771-3777.	3.2	36
147	Controllable construction of micro/nanostructured NiO arrays in confined microchannels via microfluidic chemical fabrication for highly efficient and specific absorption of abundant proteins. Journal of Materials Chemistry B, 2015, 3, 4272-4281.	2.9	19
148	Microparticle image velocimetry (\hat{l} /4PIV) study of microcavity flow at low Reynolds number. Microfluidics and Nanofluidics, 2015, 19, 403-417.	1.0	30
149	Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Applied Physics Letters, 2015, 106, .	1.5	41

#	Article	IF	CITATIONS
150	Building bio-assays with magnetic particles on a digital microfluidic platform. New Biotechnology, 2015, 32, 485-503.	2.4	29
151	Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 2015, 14, 248-260.	21.5	930
152	Imaging Flow Cytometry With Femtosecond Laser-Micromachined Glass Microfluidic Channels. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 370-375.	1.9	19
153	Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Advances, 2015, 5, 24072-24080.	1.7	93
154	A novel density-based dielectrophoretic particle focusing technique for digital microfluidics. , 2015, , .		0
155	Microfluidic enzymatic biosensing systems: A review. Biosensors and Bioelectronics, 2015, 70, 376-391.	5. 3	68
156	Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on A Chip, 2015, 15, 2364-2378.	3.1	394
157	Effect of reactive ion etching on the surface of polymethylmethacrylate. Journal of Surface Investigation, 2015, 9, 457-461.	0.1	3
158	Application of microfluidic "lab-on-a-chip―for the detection of mycotoxins in foods. Trends in Food Science and Technology, 2015, 46, 252-263.	7.8	75
159	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	3.1	60
160	A reusable biosensor chip for SERS-fluorescence dual mode immunoassay. Proceedings of SPIE, 2015, , .	0.8	2
161	The art of signal transforming: electrodes and their smart applications in electrochemical sensing. Analytical Methods, 2015, 7, 9732-9743.	1.3	14
162	Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications. Lab on A Chip, 2015, 15, 4542-4554.	3.1	98
163	Possibilities in Germ Cell Research: An Engineering Insight. Trends in Biotechnology, 2015, 33, 735-746.	4.9	7
164	Development of inexpensive blood imaging systems: where are we now?. Expert Review of Medical Devices, 2015, 12, 613-627.	1.4	7
165	Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 367-382.	1.4	37
166	A tubing-free microfluidic wound-healing assay quantifying vascular smooth muscle cell migration. , 2015, , .		1
167	Lab-on-Chip-Based Platform for Fast Molecular Diagnosis of Multidrug-Resistant Tuberculosis. Journal of Clinical Microbiology, 2015, 53, 3876-3880.	1.8	41

#	Article	IF	CITATIONS
168	Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices. Journal of Micromechanics and Microengineering, 2015, 25, 095005.	1.5	28
169	Vizardous: interactive analysis of microbial populations with single cell resolution. Bioinformatics, 2015, 31, 3875-3877.	1.8	9
170	Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomedical Microdevices, 2015, 17, 89.	1.4	20
171	Direct DNA Analysis with Paper-Based Ion Concentration Polarization. Journal of the American Chemical Society, 2015, 137, 13913-13919.	6.6	121
172	Rapid assay of stem cell functionality and potency using electric cell-substrate impedance sensing. Stem Cell Research and Therapy, 2015, 6, 192.	2.4	7
173	3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation. Analytical Chemistry, 2015, 87, 10770-10778.	3.2	45
174	Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology, 2015, 33, 1165-1172.	9.4	748
175	Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Advances, 2015, 5, 89745-89762.	1.7	38
176	Organ-on-a-chip and the kidney. Kidney Research and Clinical Practice, 2015, 34, 165-169.	0.9	70
177	Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering, 2015, 25, 083001.	1.5	102
178	Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjugate Chemistry, 2015, 26, 1984-2001.	1.8	111
179	Acoustic bubble enhanced pinched flow fractionation for microparticle separation. Journal of Micromechanics and Microengineering, 2015, 25, 084005.	1.5	23
180	Quick and simple integration of optical oxygen sensors into glass-based microfluidic devices. RSC Advances, 2015, 5, 70808-70816.	1.7	31
181	On-chip single cell funneling operated by microfabricated thermo-responsive hydrogel layers. Journal of Micromechanics and Microengineering, 2015, 25, 075004.	1.5	2
182	Continuous-flow focusing of microparticles using induced-charge electroosmosis in a microfluidic device with 3D AgPDMS electrodes. RSC Advances, 2015, 5, 66602-66610.	1.7	22
183	Quantitative impedimetric monitoring of cell migration under the stimulation of cytokine or anti-cancer drug in a microfluidic chip. Biomicrofluidics, 2015, 9, 034109.	1.2	12
184	A â€~bioproduction breadboard': programming, assembling, and actuating cellular networks. Current Opinion in Biotechnology, 2015, 36, 154-160.	3.3	10
185	A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. Lab on A Chip, 2015, 15, 4166-4176.	3.1	49

#	Article	IF	CITATIONS
186	Contact Lens Sensors in Ocular Diagnostics. Advanced Healthcare Materials, 2015, 4, 792-810.	3.9	361
187	Nephron reconstitution from pluripotent stem cells. Kidney International, 2015, 87, 894-900.	2.6	32
188	In vitro micro-physiological models for translational immunology. Lab on A Chip, 2015, 15, 614-636.	3.1	35
189	Lab-on-a-chip devices: How to close and plug the lab?. Microelectronic Engineering, 2015, 132, 156-175.	1.1	388
190	Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectronic Engineering, 2015, 132, 135-155.	1.1	187
191	Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015, 63, 218-231.	5.3	786
192	Selective infiltration and storage of picoliter volumes of liquids into sealed SU-8 microwells. Optofluidics, Microfluidics and Nanofluidics, 2016, 3, .	0.5	0
193	Microfluidic Autologous Serum Eye-Drops Preparation as a Potential Dry Eye Treatment. Micromachines, 2016, 7, 113.	1.4	1
194	The Role of Chemokine and Glycosaminoglycan Interaction in Chemokine-Mediated Migration In Vitro and In Vivo. Methods in Enzymology, 2016, 570, 309-333.	0.4	8
195	Microfluidics and Artificial Blood Vessels as Vascular Prostheses: One Small Step for Vascular Research, One Giant Leap for Patient-Kind. Journal of Biomolecular Research & Therapeutics, 2016, 05, .	0.2	0
196	From Development to Regeneration. , 2016, , 463-472.		0
197	Detection of Foodborne Pathogens Using Nanoparticles. Advantages and Trends. , 2016, , 183-201.		9
198	Features of Microsystems for Cultivation and Characterization of Stem Cells with the Aim of Regenerative Therapy. Stem Cells International, 2016, 2016, 1-13.	1.2	4
199	The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances. Molecules, 2016, 21, 798.	1.7	14
200	Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms. Biosensors, 2016, 6, 14.	2.3	44
201	Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics, 2016, 6, 43.	1.3	101
202	Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching. Materials, 2016, 9, 196.	1.3	15
203	Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects. Micromachines, 2016, 7, 195.	1.4	19

#	Article	IF	CITATIONS
204	The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics. Micromachines, 2016, 7, 215.	1.4	26
205	Microfabricated Physiological Models for In Vitro Drug Screening Applications. Micromachines, 2016, 7, 233.	1.4	19
206	Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules, 2016, 21, 1128.	1.7	39
207	Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. Sensors, 2016, 16, 232.	2.1	22
209	Fabrication of Hierarchically Porous Reduced Graphene Oxide/SnIn4S8 Composites by a Low-Temperature Co-Precipitation Strategy and Their Excellent Visible-Light Photocatalytic Mineralization Performance. Catalysts, 2016, 6, 113.	1.6	40
210	Droplet Microarray Based on Superhydrophobic-Superhydrophilic Patterns for Single Cell Analysis. Microarrays (Basel, Switzerland), 2016, 5, 28.	1.4	29
211	In Situ Patterning of Microfluidic Networks in 3D Cell‣aden Hydrogels. Advanced Materials, 2016, 28, 7450-7456.	11.1	145
212	Applications of microfluidics in microalgae biotechnology: A review. Biotechnology Journal, 2016, 11, 327-335.	1.8	45
213	Single-cell approaches for molecular classification of endocrine tumors. Current Opinion in Oncology, 2016, 28, 43-49.	1.1	5
214	Controlled Drug Release and Chemotherapy Response in a Novel Acoustofluidic 3D Tumor Platform. Small, 2016, 12, 2616-2626.	5.2	33
215	Plug and measure $\hat{a} \in \hat{a}$ a chip-to-world interface for photonic lab-on-a-chip applications. Lab on A Chip, 2016, 16, 3220-3226.	3.1	4
216	Surface modification of polydimethylsiloxane microfluidic chips by polyamidoamine dendrimers for amino acid separation. Journal of Applied Polymer Science, 2016, 133, .	1.3	25
217	The Microphysiology Systems Database for Analyzing and Modeling Compound Interactions with Human and Animal Organ Models. Applied in Vitro Toxicology, 2016, 2, 103-117.	0.6	27
218	Cardiac screening of intact Drosophila melanogaster larvae under exposure to aqueous and gaseous toxins in a microfluidic device. RSC Advances, 2016, 6, 65714-65724.	1.7	10
219	Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review. Electroanalysis, 2016, 28, 1658-1678.	1.5	241
220	3Dâ€Printed Microfluidics. Angewandte Chemie - International Edition, 2016, 55, 3862-3881.	7.2	616
221	Hydrodynamics of Newtonian and power-law fluids in microchannel with superhydrophobic wall. Journal of Physics: Conference Series, 2016, 774, 012027.	0.3	7
222	Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. Biochip Journal, 2016, 10, 331-345.	2.5	18

#	Article	IF	CITATIONS
223	Active bioparticle manipulation in microfluidic systems. RSC Advances, 2016, 6, 113066-113094.	1.7	28
224	Application of Microfluidic Technique in Drug Delivery. Nano LIFE, 2016, 06, 1642009.	0.6	3
225	A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. Biomicrofluidics, 2016, 10, 044109.	1.2	5
226	Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels. Biomicrofluidics, 2016, 10, 054118.	1.2	7
227	Characterization of enzymatic micromachining for construction of variable cross-section microchannel topologies. Biomicrofluidics, 2016, 10, 033102.	1.2	3
228	Highly efficient and gentle trapping of single cells in large microfluidic arrays for time-lapse experiments. Biomicrofluidics, 2016, 10, 014120.	1.2	23
229	Microfluidic extensional rheometry using stagnation point flow. Biomicrofluidics, 2016, 10, 043401.	1.2	77
230	Engineering a 3D microfluidic culture platform for tumor-treating field application. Scientific Reports, 2016, 6, 26584.	1.6	73
231	Development and simulation of microfluidic Wheatstone bridge for high-precision sensor. Journal of Physics: Conference Series, 2016, 738, 012071.	0.3	1
232	Surface micromachining of polydimethylsiloxane for microfluidics applications. Biomicrofluidics, 2016, 10, 054114.	1.2	13
233	Inertial Focusing of Microparticles in Curvilinear Microchannels. Scientific Reports, 2016, 6, 38809.	1.6	42
234	Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device. Scientific Reports, 2016, 6, 25557.	1.6	36
235	Lab-on-a-chip workshop activities for secondary school students. Biomicrofluidics, 2016, 10, 011301.	1.2	13
236	Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems. Applied Physics Letters, 2016, 108, 014101.	1.5	3
237	Dissolution and mixing of flavin mononucleotide in microfluidic chips for bioassay. Journal of Physics: Conference Series, 2016, 741, 012058.	0.3	2
238	Effects of Process Parameters on Direct Deposition Hydrogel Molding for the Fabrication Microfluidic Devices. , 2016, , .		0
239	Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Scientific Reports, 2016, 6, 29410.	1.6	51
240	Biocompatibility of fluids for multiphase drops-in-drops microfluidics. Biomedical Microdevices, 2016, 18, 114.	1.4	19

#	Article	IF	Citations
241	Ionic imbalance induced self-propulsion of liquid metals. Nature Communications, 2016, 7, 12402.	5.8	158
242	Magnetic Shape Memory Micropump for Submicroliter Intracranial Drug Delivery in Rats. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.4	19
243	Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics, 2016, 10, 043508.	1.2	32
244	Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale. Applied Microbiology and Biotechnology, 2016, 100, 3853-3863.	1.7	36
245	Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination. Integrative Biology (United Kingdom), 2016, 8, 603-615.	0.6	18
246	Digital microfluidics for spheroid-based invasion assays. Lab on A Chip, 2016, 16, 1505-1513.	3.1	40
247	Optimization and development of a universal flow-based microfluidic gradient generator. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	8
248	Confinement of water droplets on rectangular micro/nano-arrayed surfaces. Lab on A Chip, 2016, 16, 2487-2493.	3.1	8
249	Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. Journal of the Association for Laboratory Automation, 2016, 21, 599-608.	2.8	141
250	A microfluidic galvanic cell on a single layer of paper. Journal of Power Sources, 2016, 318, 163-169.	4.0	31
251	Microfluidic Platforms for Quantitative Biology Studies in Model Organisms., 2016,, 1-18.		3
252	Droplet Microfluidics for Screening of Surface-Marker and Secretory Protein Expression. , 2016, , 219-233.		1
253	Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discovery Today, 2016, 21, 1472-1478.	3.2	63
254	3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on A Chip, 2016, 16, 2287-2294.	3.1	216
255	Microfluidic Methods for Molecular Biology. , 2016, , .		4
256	Microfluidics for Cell Culture. , 2016, , 323-347.		1
257	Kinetic Study of Reactions of Aniline and Benzoyl Chloride Using NH ₃ as Acid Absorbent in a Microstructured Chemical System. Industrial & Engineering Chemistry Research, 2016, 55, 6310-6316.	1.8	4
258	Chip-based monolithic microextraction combined with ICP-MS for the determination of bismuth in HepG2 cells. Journal of Analytical Atomic Spectrometry, 2016, 31, 1391-1399.	1.6	17

#	Article	IF	CITATIONS
259	Personalized in vitro cancer models to predict the rapeutic response: Challenges and a framework for improvement., 2016, 165, 79-92.		60
260	The upcoming 3D-printing revolution in microfluidics. Lab on A Chip, 2016, 16, 1720-1742.	3.1	848
261	Microfluidics and biomaterials to study angiogenesis. Current Opinion in Chemical Engineering, 2016, 11, 114-122.	3.8	10
262	Complex Tissue and Disease Modeling using hiPSCs. Cell Stem Cell, 2016, 18, 309-321.	5.2	121
263	A bactericidal microfluidic device constructed using nano-textured black silicon. RSC Advances, 2016, 6, 26300-26306.	1.7	44
264	Continuous flow copper-mediated reversible deactivation radical polymerizations. European Polymer Journal, 2016, 80, 177-185.	2.6	30
265	3D compartmented model to study the neurite-related toxicity of $\hat{Al^2}$ aggregates included in collagen gels of adaptable porosity. Acta Biomaterialia, 2016, 37, 38-49.	4.1	19
266	Modeling Barrier Tissues In Vitro: Methods, Achievements, and Challenges. EBioMedicine, 2016, 5, 30-39.	2.7	94
267	Motorized actuation system to perform droplet operations on printed plastic sheets. Lab on A Chip, 2016, 16, 1861-1872.	3.1	24
268	Exploiting plug-and-play electrochemistry for drug discovery. Future Medicinal Chemistry, 2016, 8, 567-577.	1.1	16
269	Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	54
270	Microfluidics: The future of microdissection TESE?. Systems Biology in Reproductive Medicine, 2016, 62, 161-170.	1.0	32
271	Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnology Advances, 2016, 34, 845-858.	6.0	55
272	Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices. Sensors and Actuators B: Chemical, 2016, 234, 209-221.	4.0	32
273	2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization. Analyst, The, 2016, 141, 3866-3873.	1.7	69
274	Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochemistry and Biophysics Reports, 2016, 6, 149-157.	0.7	22
275	Tetra-sensitive graft copolymer gels with high volume changes. RSC Advances, 2016, 6, 34809-34817.	1.7	8
276	Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core–Shell Nanosensors. Analytical Chemistry, 2016, 88, 9796-9804.	3.2	40

#	ARTICLE	IF	CITATIONS
277	Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics. Journal of Micromechanics and Microengineering, 2016, 26, 097001.	1.5	7
278	Efficient cell capture in an agarose–PDMS hybrid chip for shaped 2D culture under temozolomide stimulation. RSC Advances, 2016, 6, 75215-75222.	1.7	10
279	Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016, 537, 179-184.	13.7	805
280	Microfluidic Platforms for Yeastâ€Based Aging Studies. Small, 2016, 12, 5787-5801.	5.2	14
281	Spontaneous transfer of droplets across microfluidic laminar interfaces. Lab on A Chip, 2016, 16, 4326-4332.	3.1	17
282	Magnetic-adhesive based valves for microfluidic devices used in low-resource settings. Lab on A Chip, 2016, 16, 4142-4151.	3.1	12
283	On-chip fluorescent labeling using reversed-phase monoliths and microchip electrophoretic separations of selected preterm birth biomarkers. Analytical Methods, 2016, 8, 7739-7746.	1.3	14
284	Adaptation of Biochemical Protocols to Handle Technology-Change for Digital Microfluidics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, , 1-1.	1.9	3
285	Mathematics of Experimentally Generated Chemoattractant Gradients. Methods in Molecular Biology, 2016, 1407, 381-396.	0.4	6
286	Development of a microfluidic design for an automatic lab-on-chip operation. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	5
287	Universal microfluidic platform for bioassays in anchored droplets. Lab on A Chip, 2016, 16, 4200-4211.	3.1	49
288	Controlled evacuation using the biocompatible and energy efficient microfluidic ejector. Biomedical Microdevices, 2016, 18, 96.	1.4	10
289	Diagnosis of human enteroviruses that cause hand, foot and mouth disease. Expert Review of Anti-Infective Therapy, 2016, 14, 443-445.	2.0	6
290	A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control. Analytica Chimica Acta, 2016, 935, 207-212.	2.6	17
291	A smart multi-pipette for hand-held operation of microfluidic devices. Analyst, The, 2016, 141, 5753-5758.	1.7	14
292	A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends in Biotechnology, 2016, 34, 757-769.	4.9	57
293	Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Molecular and Cellular Probes, 2016, 30, 331-341.	0.9	31
294	Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes. Molecular Pharmacology, 2016, 90, 162-176.	1.0	23

#	Article	IF	CITATIONS
295	Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L453-L466.	1.3	55
296	A paper-based lanthanide smart device for acid–base vapour detection, anti-counterfeiting and logic operations. Inorganic Chemistry Frontiers, 2016, 3, 1014-1020.	3.0	50
297	Microfluidic tools toward industrial biotechnology. Biotechnology Progress, 2016, 32, 1372-1389.	1.3	32
298	Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique. Analyst, The, 2016, 141, 6073-6079.	1.7	25
299	Innovative Micro Gas Pumping Via Liquid Dielectrophoresis With Zero-Dead Volume and Leak-tight Features. Journal of Microelectromechanical Systems, 2016, 25, 884-889.	1.7	2
300	A multiscale study of the boundary layer development for microfluidic system. Molecular Simulation, 2016, 42, 1370-1378.	0.9	2
301	Development and characterization of a microfluidic model of the tumour microenvironment. Scientific Reports, 2016, 6, 36086.	1.6	95
302	Detection of activity of single microalgae cells in a new microfluidic cell capturing chip. Measurement Science and Technology, 2016, 27, 125701.	1.4	11
303	Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of <i>In Vitro </i> Tools for Neurobiological Research. Journal of Neuroscience, 2016, 36, 11573-11584.	1.7	104
304	Circulating Tumor Cells, Cancer Stem Cells, and Emerging Microfluidic Detection Technologies With Clinical Applications., 2016,, 473-497.		2
305	Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection.	4.0	18
306	Degassed PDMS pump for controlled extraction from dried filter samples in microfluidic devices. Analytical Methods, 2016, 8, 8266-8271.	1.3	3
307	Precisely tailored solid state nanopores for molecule recognition. , 2016, , .		1
308	Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Lab on A Chip, 2016, 16, 4106-4120.	3.1	27
309	Simple and Rapid Fabrication of PDMS Microfluidic Devices Compatible with FTIR Microspectroscopy. Bulletin of the Chemical Society of Japan, 2016, 89, 195-202.	2.0	12
310	Fabrication of complex PDMS microfluidic structures and embedded functional substrates by one-step injection moulding. RSC Advances, 2016, 6, 87988-87994.	1.7	31
311	Lab-on-chip systems for integrated bioanalyses. Essays in Biochemistry, 2016, 60, 121-131.	2.1	32
312	The effect of wall slip on the dynamics of a spherical particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 123-131.	1.0	6

#	Article	IF	CITATIONS
313	Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. Lab on A Chip, 2016, 16, 3977-3989.	3.1	19
315	Study of internal flow and evaporation characteristics inside a water droplet on a vertically vibrating hydrophobic surface. Experimental Thermal and Fluid Science, 2016, 78, 112-123.	1.5	13
316	Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks. Journal of Molecular Biology, 2016, 428, 3669-3682.	2.0	32
317	Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. Journal of Biological Physics, 2016, 42, 551-569.	0.7	28
318	Engineered Models of Confined Cell Migration. Annual Review of Biomedical Engineering, 2016, 18, 159-180.	5.7	115
319	Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology, 2016, 34, 1137-1144.	9.4	178
320	Microchip-based ultrafast serodiagnostic assay for tuberculosis. Scientific Reports, 2016, 6, 35845.	1.6	25
321	Gas Supply through Agarose Walls in Cell Culturing Microchips. Advances in Science and Technology, 2016, 100, 115-119.	0.2	0
322	Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light: Science and Applications, 2016, 5, e16164-e16164.	7.7	76
323	Design of problem-based learning activities in the field of microfluidics for 12 - to 13 -year-old participants $\hat{a}\in$ "Small Plumbing!: empowering the next generation of microfluidic engineers. Microfluidics and Nanofluidics, 2016 , 20 , 1 .	1.0	12
324	Cell biology is different in small volumes: endogenous signals shape phenotype of primary hepatocytes cultured in microfluidic channels. Scientific Reports, 2016, 6, 33980.	1.6	37
325	Fundamentals of Fluidics. , 2016, , 1-32.		2
326	A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. Chemical Communications, 2016, 52, 13377-13380.	2.2	29
327	Dynamic Flow Impacts Cell–Particle Interactions: Sedimentation and Particle Shape Effects. Langmuir, 2016, 32, 10995-11001.	1.6	33
328	Microfluidic advances in phenotypic antibiotic susceptibility testing. Biomedical Microdevices, 2016, 18, 103.	1.4	30
329	Development and Characterization of $<$ em $>$ In Vitro $<$ /em $>$ Microvessel Network and Quantitative Measurements of Endothelial [Ca $<$ sup $>$ 2+ $<$ /sup $>$] $<$ sub $>$ i $<$ /sub $>$ and Nitric Oxide Production. Journal of Visualized Experiments, 2016, , .	0.2	4
330	High stability and rapid response Pneumatic Supply System for microdroplets. , 2016, , .		0
331	Multimodal microchannel and nanowell-based microfluidic platforms for bioimaging. , 2016, , .		O

#	Article	IF	CITATIONS
332	Making new kidneys. Current Opinion in Organ Transplantation, 2016, 21, 574-580.	0.8	7
333	Fabrication Techniques for Production of Thermoplastic-Based Microfluidics Devices. Journal of Molecular and Engineering Materials, 2016, 04, 1640016.	0.9	1
334	Insights from synthetic yeasts. Yeast, 2016, 33, 483-492.	0.8	3
335	Mikrofluidik aus dem 3Dâ€Drucker. Angewandte Chemie, 2016, 128, 3926-3946.	1.6	19
336	Microfluidics in systems biology â€" hype or truly useful?. Current Opinion in Biotechnology, 2016, 39, 215-220.	3.3	18
337	Analyzing Neutrophil Morphology, Mechanics, and Motility in Sepsis. Critical Care Medicine, 2016, 44, 218-228.	0.4	29
338	Tactic, reactive, and functional droplets outside of equilibrium. Chemical Society Reviews, 2016, 45, 4766-4796.	18.7	69
339	Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. Lab on A Chip, 2016, 16, 2759-2774.	3.1	19
340	Concentration-dependent viscous mixing in microfluidics: modelings and experiments. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	13
341	Electrochemical microfluidic devices for evaluation of drug metabolism. Journal of Electroanalytical Chemistry, 2016, 779, 86-91.	1.9	7
342	Microfluidic systems for stem cell-based neural tissue engineering. Lab on A Chip, 2016, 16, 2551-2571.	3.1	100
343	Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection. Journal of the Association for Laboratory Automation, 2016, 21, 166-177.	2.8	32
344	Making the invisible visible: a microfluidic chip using a low refractive index polymer. Lab on A Chip, 2016, 16, 2481-2486.	3.1	21
345	Detection and sizing of single droplets flowing in a lab-on-a-chip device by measuring impedance fluctuations. Sensors and Actuators B: Chemical, 2016, 236, 794-804.	4.0	16
346	Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. Journal of Colloid and Interface Science, 2016, 478, 227-235.	5.0	12
347	Deterministic sequential isolation of floating cancer cells under continuous flow. Lab on A Chip, 2016, 16, 2813-2819.	3.1	27
348	Recent Progress of Microfluidics in Translational Applications. Advanced Healthcare Materials, 2016, 5, 871-888.	3.9	30
349	Detection of specific single-stranded DNA molecules through SiNW surface modulation. Microsystem Technologies, 2016, 22, 269-273.	1.2	13

#	Article	IF	CITATIONS
350	Design and fabrication of micro-mixer with short turns angles for self-generated turbulent structures. Microsystem Technologies, 2016, 22, 433-440.	1.2	14
351	Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomaterials Science and Engineering, 2016, 2, 278-294.	2.6	141
352	Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution. Analytical Chemistry, 2016, 88, 1601-1609.	3.2	17
353	A Role for 3D Printing in Kidney-on-a-Chip Platforms. Current Transplantation Reports, 2016, 3, 82-92.	0.9	39
354	Paper-Based Quantification of Male Fertility Potential. Clinical Chemistry, 2016, 62, 458-465.	1.5	60
355	Sensitive biomolecule detection in lateral flow assay with a portable temperature–humidity control device. Biosensors and Bioelectronics, 2016, 79, 98-107.	5. 3	75
356	Single-Cell Mechanical Properties: Label-Free Biomarkers for Cell Status Evaluation. Series in Bioengineering, 2016, , 213-234.	0.3	2
357	Essentials of Single-Cell Analysis. Series in Bioengineering, 2016, , .	0.3	29
358	Digital droplet PCR on disk. Lab on A Chip, 2016, 16, 208-216.	3.1	114
359	Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. Lab on A Chip, 2016, 16, 409-431.	3.1	43
360	Powering point-of-care diagnostic devices. Biotechnology Advances, 2016, 34, 321-330.	6.0	97
361	High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device. Sensors and Actuators B: Chemical, 2016, 225, 563-571.	4.0	41
362	A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion. Analyst, The, 2016, 141, 2940-2947.	1.7	70
363	Paper-based analytical devices for environmental analysis. Analyst, The, 2016, 141, 1874-1887.	1.7	238
364	A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Lab on A Chip, 2016, 16, 1224-1233.	3.1	49
365	Pyrosequencing on a glass surface. Lab on A Chip, 2016, 16, 1063-1071.	3.1	10
366	The incorporation of microfluidics into circulating tumor cell isolation for clinical applications. Current Opinion in Chemical Engineering, 2016, 11, 59-66.	3.8	12
367	Online Monitoring of Lactate Efflux by Multi-Channel Microfluidic Chip-Mass Spectrometry for Rapid Drug Evaluation. ACS Sensors, 2016, 1, 344-347.	4.0	35

#	Article	IF	CITATIONS
368	Fish-on-a-chip: microfluidics for zebrafish research. Lab on A Chip, 2016, 16, 1106-1125.	3.1	71
369	Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment. Applied in Vitro Toxicology, 2016, 2, 74-81.	0.6	16
370	Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology Advances, 2016, 34, 305-320.	6.0	128
371	Explicit numerical simulation-based study of the hydrodynamics of micro-packed beds. Chemical Engineering Science, 2016, 145, 71-79.	1.9	9
372	Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. Lab on A Chip, 2016, 16, 812-819.	3.1	59
373	Microfluidic Assembly of pDNA/Cationic Liposome Lipoplexes with High pDNA Loading for Gene Delivery. Langmuir, 2016, 32, 1799-1807.	1.6	36
374	Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. Trends in Cancer, 2016, 2, 6-19.	3.8	163
375	Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (νMi-REM) technique. Biomedical Microdevices, 2016, 18, 4.	1.4	36
376	High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst, The, 2016, 141, 1888-1905.	1.7	24
377	Characterization of neutrophil function in Papillon-LefÃ"vre syndrome. Journal of Leukocyte Biology, 2016, 100, 433-444.	1.5	74
378	Chemistry pumps: a review of chemically powered micropumps. Lab on A Chip, 2016, 16, 1797-1811.	3.1	98
379	Biomimetic on-a-chip platforms for studying cancer metastasis. Current Opinion in Chemical Engineering, 2016, $11, 20$ -27.	3.8	47
380	Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on A Chip, 2016, 16, 660-667.	3.1	131
381	3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab on A Chip, 2016, 16, 668-678.	3.1	184
382	A review of chemical gradient systems for cell analysis. Analytica Chimica Acta, 2016, 907, 7-17.	2.6	92
383	Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection. Annals of Biomedical Engineering, 2016, 44, 847-862.	1.3	13
384	A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Analytica Chimica Acta, 2016, 906, 7-21.	2.6	76
385	Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of Biomechanics, 2016, 49, 2280-2292.	0.9	239

#	Article	IF	Citations
386	Microfluidics as a new tool in radiation biology. Cancer Letters, 2016, 371, 292-300.	3.2	15
387	Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Letters, 2016, 380, 319-329.	3.2	41
388	Microfluidics: The Challenge Is to Bridge the Gap Instead of Looking for a \hat{a} € Killer App \hat{a} € Trends in Biotechnology, 2016, 34, 1-3.	4.9	38
389	Microfluidics and microbial engineering. Lab on A Chip, 2016, 16, 432-446.	3.1	62
390	Controlled microfluidics to examine growth-factor induced migration of neural progenitors in the Drosophila visual system. Journal of Neuroscience Methods, 2016, 262, 32-40.	1.3	8
391	Real-time imaging of cancer cell chemotaxis in paper-based scaffolds. Analyst, The, 2016, 141, 661-668.	1.7	41
392	Cultivation of yeast in diffusion-based microfluidic device. Biochemical Engineering Journal, 2016, 105, 288-295.	1.8	14
393	Fundamentals and applications of inertial microfluidics: a review. Lab on A Chip, 2016, 16, 10-34.	3.1	737
394	A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment. ACS Synthetic Biology, 2016, 5, 8-14.	1.9	33
395	Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Materials Today, 2016, 19, 19-28.	8.3	249
396	In-situ measurement of magnetic nanoparticle quantity in a microfluidic device. Microsystem Technologies, 2017, 23, 3979-3990.	1.2	17
397	In vitro models of axon regeneration. Experimental Neurology, 2017, 287, 423-434.	2.0	47
398	A microfluidic platform for physical entrapment of yeast cells with continuous production of invertase. Journal of Chemical Technology and Biotechnology, 2017, 92, 334-341.	1.6	15
399	Advances in i>Candida i>detection platforms for clinical and point-of-care applications. Critical Reviews in Biotechnology, 2017, 37, 441-458.	5.1	46
400	Microfluidic technologies for yeast replicative lifespan studies. Mechanisms of Ageing and Development, 2017, 161, 262-269.	2.2	65
401	Bioinspired Multifunctional Spindleâ€Knotted Microfibers from Microfluidics. Small, 2017, 13, 1600286.	5.2	101
402	Applications of Micro/Nano Automation Technology in Detecting Cancer Cells for Personalized Medicine. IEEE Nanotechnology Magazine, 2017, 16, 217-229.	1.1	25
403	Electrokinetic motion of single nanoparticles in single PDMS nanochannels. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	10

#	Article	IF	CITATIONS
404	Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids and Surfaces B: Biointerfaces, 2017, 152, 406-413.	2.5	29
405	Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale, 2017, 9, 4366-4382.	2.8	102
406	Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device. Nanoscale, 2017, 9, 2009-2019.	2.8	29
407	Paper-based microfluidic devices by asymmetric calendaring. Biomicrofluidics, 2017, 11, 014104.	1.2	19
408	Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. Biochip Journal, 2017, 11, 109-115.	2.5	17
409	Electrochemical Biosensors in Pointâ€ofâ€Care Devices: Recent Advances and Future Trends. ChemElectroChem, 2017, 4, 778-794.	1.7	230
410	Mild Photochemical Biofunctionalization of Glass Microchannels. Langmuir, 2017, 33, 8624-8631.	1.6	10
411	Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosensors and Bioelectronics, 2017, 91, 489-496.	5.3	91
412	A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst, The, 2017, 142, 858-882.	1.7	72
413	Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annual Review of Immunology, 2017, 35, 337-370.	9.5	69
414	Enabling Microfluidics: from Clean Rooms to Makerspaces. Trends in Biotechnology, 2017, 35, 383-392.	4.9	130
415	Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel. Journal of Colloid and Interface Science, 2017, 493, 317-326.	5.0	10
416	A microfluidic device for characterizing nuclear deformations. Lab on A Chip, 2017, 17, 805-813.	3.1	33
417	Droplet-based microfluidics detector for bioaerosol detection. Aerosol Science and Technology, 2017, 51, 488-500.	1.5	26
418	Compression Induced Chondrogenic Differentiation of Embryonic Stem Cells in Three-Dimensional Polydimethylsiloxane Scaffolds. Tissue Engineering - Part A, 2017, 23, 426-435.	1.6	34
419	Normal saline is associated with increased sickle red cell stiffness and prolonged transit times in a microfluidic model of the capillary system. Microcirculation, 2017, 24, e12353.	1.0	23
420	Fabricating devices with improved adhesion between PDMS and gold-patterned glass. Sensors and Actuators B: Chemical, 2017, 246, 904-909.	4.0	20
421	Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics Condensed Matter, 2017, 29, 133003.	0.7	140

#	Article	IF	CITATIONS
422	Computer Aided Design of a Microscale Digitally Controlled Hydraulic Resistor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 508-512.	1.9	3
423	Onâ€chip laser processing for the development of multifunctional microfluidic chips. Laser and Photonics Reviews, 2017, 11, 1600116.	4.4	57
424	The lab-on-PCB approach: tackling the \hat{l} /4TAS commercial upscaling bottleneck. Lab on A Chip, 2017, 17, 1388-1405.	3.1	123
425	Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab on A Chip, 2017, 17, 1436-1441.	3.1	36
426	AC electrothermal technique in microchannels. , 2017, , .		1
427	Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. Microsystems and Nanoengineering, 2017, 3, 16078.	3.4	28
428	Microfluidic detection of soil nitrate ions using novel electrochemical foam electrode., 2017,,.		2
429	Printed Microfluidics. Advanced Functional Materials, 2017, 27, 1604824.	7.8	41
430	A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis. MBio, 2017, 8, .	1.8	47
431	Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Scientific Reports, 2017, 7, 42296.	1.6	193
432	Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomaterials Science, 2017, 5, 752-761.	2.6	73
433	Magnetomechanics of superparamagnetic beads on a magnetic merry-go-round: from micromagnetics to radial looping. Journal Physics D: Applied Physics, 2017, 50, 135003.	1.3	6
434	Microfluidic approaches to the study of angiogenesis and the microcirculation. Microcirculation, 2017, 24, e12363.	1.0	42
435	An automated and compartmented fluidic reactor device for multi-step sample-to-answer processes using magnetic particles. Reaction Chemistry and Engineering, 2017, 2, 349-365.	1.9	4
436	Tetra-Sensitive Graft Copolymer Gels as Active Material of Chemomechanical Valves. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7565-7576.	4.0	16
437	Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Mikrochimica Acta, 2017, 184, 835-841.	2.5	9
439	Resonance Raman and UVâ€Visible Microscopy Reveals that Conditioning Red Blood Cells with Repeated Doses of Sodium Dithionite Increases Haemoglobin Oxygen Uptake. ChemistrySelect, 2017, 2, 3342-3346.	0.7	9
440	UVâ€Blocking Photoluminescent Silicon Nanocrystal/Polydimethylsiloxane Composites. Advanced Optical Materials, 2017, 5, 1700237.	3.6	17

#	Article	IF	CITATIONS
441	The physicochemical properties of liquid Ga-Zn alloys. Fluid Phase Equilibria, 2017, 442, 119-124.	1.4	28
442	Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine. Stem Cell Reviews and Reports, 2017, 13, 381-406.	5.6	96
443	A droplet-chip/mass spectrometry approach to study organic synthesis at nanoliter scale. Lab on A Chip, 2017, 17, 1996-2002.	3.1	41
444	Isolation of functional mitochondria by inertial microfluidics – a new method to sort intracellular organelles from a small scale biological sample. RSC Advances, 2017, 7, 23735-23741.	1.7	8
445	The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Experimental Cell Research, 2017, 357, 107-115.	1.2	21
446	Silicon based solvent immersion imprint lithography for rapid polystyrene microfluidic chip prototyping. Sensors and Actuators B: Chemical, 2017, 248, 311-317.	4.0	6
447	Cross-stream migration of asymmetric particles driven by oscillating shear. Europhysics Letters, 2017, 117, 44001.	0.7	10
448	3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope. Measurement Science and Technology, 2017, 28, 015402.	1.4	3
449	Optimized AC electrothermal micromixing design for biofluid systems. , 2017, , .		0
450	Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab on A Chip, 2017, 17, 1856-1883.	3.1	183
451	Multiplexed Point-of-Care Testing – xPOCT. Trends in Biotechnology, 2017, 35, 728-742.	4.9	386
452	Development of a point-of-care diagnostic for influenza detection with antiviral treatment effectiveness indication. Lab on A Chip, 2017, 17, 332-340.	3.1	17
453	Recent advances in microfluidic 3D cellular scaffolds for drug assays. TrAC - Trends in Analytical Chemistry, 2017, 87, 19-31.	5.8	82
454	Quantitative self-powered electrochromic biosensors. Chemical Science, 2017, 8, 1995-2002.	3.7	58
455	Development of a 2-chamber culture system for impedimetric monitoring of cell-cell interaction. Biochip Journal, 2017, 11, 139-145.	2.5	0
456	Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices. Lab on A Chip, 2017, 17, 2581-2594.	3.1	39
457	Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology, 2017, 32, 266-277.	1.6	1,069
458	Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chemical Reviews, 2017, 117, 8447-8480.	23.0	439

#	Article	IF	CITATIONS
459	Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices. Scientific Reports, 2017, 7, 3100.	1.6	21
460	Optofluidic device for the quantification of circulating tumor cells in breast cancer. Scientific Reports, 2017, 7, 3677.	1.6	23
461	Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017, 5, 16467-16497.	5. 2	207
462	3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Scientific Reports, 2017, 7, 1093.	1.6	130
463	Precision control of flow rate in microfluidic channels using photoresponsive soft polymer actuators. Lab on A Chip, 2017, 17, 2013-2021.	3.1	40
464	Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation. Microsystem Technologies, 2017, 23, 5063-5069.	1.2	21
465	Non-modal stability of Jeffery-Hamel flow. Physics of Fluids, 2017, 29, .	1.6	9
466	A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection. Small, 2017, 13, 1700425.	5.2	66
467	Immunomagnetic separation of tumor initiating cells by screening two surface markers. Scientific Reports, 2017, 7, 40632.	1.6	23
468	Droplet control technologies for microfluidic high throughput screening (\hat{l} /4HTS). Lab on A Chip, 2017, 17, 2372-2394.	3.1	82
469	Low voltage driven surface micro-flow by Joule heating. RSC Advances, 2017, 7, 29464-29468.	1.7	1
470	Patterned Plasmonic Surfaces—Theory, Fabrication, and Applications in Biosensing. Journal of Microelectromechanical Systems, 2017, 26, 718-739.	1.7	17
471	Emerging Droplet Microfluidics. Chemical Reviews, 2017, 117, 7964-8040.	23.0	1,109
472	Flow chamber and microfluidic approaches for measuring thrombus formation in genetic bleeding disorders. Platelets, 2017, 28, 463-471.	1.1	21
473	Microfluidic Capillaric Circuit for Rapid and Facile Bacteria Detection. Analytical Chemistry, 2017, 89, 6846-6853.	3.2	45
474	Concentration gradient generation methods based on microfluidic systems. RSC Advances, 2017, 7, 29966-29984.	1.7	150
475	Multi-channel microfluidic chip-mass spectrometry platform for cell analysis. Chinese Chemical Letters, 2017, 28, 1625-1630.	4.8	49
476	Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science, 2017, 504, 751-757.	5.0	13

#	Article	IF	CITATIONS
477	Density, surface tension and viscosity of Ga-Sn alloys. Journal of Molecular Liquids, 2017, 241, 231-236.	2.3	45
478	A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities. Scientific Reports, 2017, 7, 43390.	1.6	2
479	Utility of microfluidic devices to study the plateletâ€"endothelium interface. Platelets, 2017, 28, 449-456.	1.1	10
480	A dual-docking microfluidic cell migration assay (D ² -Chip) for testing neutrophil chemotaxis and the memory effect. Integrative Biology (United Kingdom), 2017, 9, 303-312.	0.6	27
481	Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Science OA, 2017, 3, FSO173.	0.9	38
482	Chemical and Biological Dynamics Using Droplet-Based Microfluidics. Annual Review of Analytical Chemistry, 2017, 10, 1-24.	2.8	77
483	Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips. , 2017, , .		9
484	Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews, 2017, 46, 3615-3660.	18.7	195
485	Particle manipulations in non-Newtonian microfluidics: A review. Journal of Colloid and Interface Science, 2017, 500, 182-201.	5.0	214
486	Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application. AIP Conference Proceedings, 2017, , .	0.3	1
487	Commercialization of 3D-printed microfluidic devices. Journal of 3D Printing in Medicine, 2017, 1, 85-89.	1.0	13
488	Faradaic Ion Concentration Polarization on a Paper Fluidic Platform. Analytical Chemistry, 2017, 89, 4294-4300.	3.2	31
489	Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. Annual Review of Analytical Chemistry, 2017, 10, 71-92.	2.8	84
490	Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technology, 2017, 22, 507-517.	1.0	12
491	Materials for Microfluidic Immunoassays: A Review. Advanced Healthcare Materials, 2017, 6, 1601403.	3.9	112
492	The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomaterialia, 2017, 54, 35-44.	4.1	51
493	Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. Journal of Immunology, 2017, 198, 1023-1033.	0.4	38
494	Plasma free reversible and irreversible microfluidic bonding. Lab on A Chip, 2017, 17, 267-273.	3.1	18

#	Article	IF	CITATIONS
495	Flow physics exploration of surface tension driven flows. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 30-45.	2.3	5
496	Manipulating Electrical and Fluidic Access in Integrated Nanoporeâ€Microfluidic Arrays Using Microvalves. Small, 2017, 13, 1602601.	5.2	30
497	A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab on A Chip, 2017, 17, 448-459.	3.1	338
498	In situ integration of graphene foam–titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors. Lab on A Chip, 2017, 17, 274-285.	3.1	57
499	Crossed flow microfluidics for high throughput screening of bioactive chemical–cell interactions. Lab on A Chip, 2017, 17, 501-510.	3.1	20
500	Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate―Process. Methods in Molecular Biology, 2017, 1547, 25-36.	0.4	3
501	Precision nutrition — review of methods for point-of-care assessment of nutritional status. Current Opinion in Biotechnology, 2017, 44, 103-108.	3.3	23
502	Facile in situ hydrothermal synthesis of g-C 3 N 4 /SnS 2 composites with excellent visible-light photocatalytic activity. Materials Chemistry and Physics, 2017, 189, 169-175.	2.0	37
503	Quantitative Chemical Imaging of Nonplanar Microfluidics. Analytical Chemistry, 2017, 89, 1716-1723.	3.2	14
504	Point-of-Care Diagnostics: Recent Developments in a Connected Age. Analytical Chemistry, 2017, 89, 102-123.	3.2	386
505	The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules. Methods, 2017, 116, 112-124.	1.9	45
506	Lab-on-Chip Devices: Gaining Ground Losing Size. ACS Nano, 2017, 11, 10659-10664.	7.3	49
507	Planar and Cell Aggregate-Like Assemblies Consisting of Microreactors and HepG2 Cells. ACS Omega, 2017, 2, 7085-7095.	1.6	18
508	Emerging microreaction systems based on 3D printing techniques and separation technologies. Journal of Flow Chemistry, 2017, 7, 72-81.	1.2	26
509	A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis assay. Integrative Biology (United Kingdom), 2017, 9, 844-856.	0.6	3
510	Microfluidics for sperm analysis and selection. Nature Reviews Urology, 2017, 14, 707-730.	1.9	144
511	Quantitative analysis of clonidine and ephedrine by a microfluidic system: On-chip electromembrane extraction followed by high performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1068-1069, 313-321.	1.2	37
512	Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms. Biomicrofluidics, 2017, 11, 054104.	1.2	4

#	Article	IF	CITATIONS
513	Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood, 2017, 130, 2654-2663.	0.6	47
514	Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs PDMS Microfluidic Devices. Analytical Chemistry, 2017, 89, 11391-11398.	3.2	37
515	Microfluidics with fluid walls. Nature Communications, 2017, 8, 816.	5.8	96
516	A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles. Lab on A Chip, 2017, 17, 3921-3933.	3.1	20
517	Lab-on-chip components for molecular detection. AIP Conference Proceedings, 2017, , .	0.3	0
518	Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. Lab on A Chip, 2017, 17, 3578-3591.	3.1	88
519	Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technology, 2017, 22, 507-517.	1.0	14
520	Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit. Lab on A Chip, 2017, 17, 3891-3897.	3.1	1
521	Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme. ACS Applied Materials & Amp; Interfaces, 2017, 9, 37839-37847.	4.0	26
522	Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture. Analytical Biochemistry, 2017, 539, 48-53.	1.1	29
523	Nanowire sensors monitor bacterial growth kinetics and response to antibiotics. Lab on A Chip, 2017, 17, 4283-4293.	3.1	47
524	Darwin was right: where now for experimental evolution?. Current Opinion in Genetics and Development, 2017, 47, 102-109.	1.5	44
525	Hydrodynamic lift forces on solutes in a tilted nanopillar array: A computer simulation study. Electrophoresis, 2017, 38, 2479-2487.	1.3	2
526	Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics. Nature Protocols, 2017, 12, 1912-1932.	5 . 5	39
527	Roadmap for optofluidics. Journal of Optics (United Kingdom), 2017, 19, 093003.	1.0	78
528	Evaluation of drug combination for glioblastoma based on an intestine–liver metabolic model on microchip. Analyst, The, 2017, 142, 3629-3638.	1.7	30
529	Enhancement of bacterial growth with the help of immiscible oxygenated oils. RSC Advances, 2017, 7, 40990-40995.	1.7	25
530	Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. Soft Matter, 2017, 13, 6858-6869.	1.2	10

#	ARTICLE	IF	Citations
531	High-Speed Melting Analysis: The Effect of Melting Rate on Small Amplicon Microfluidic Genotyping. Clinical Chemistry, 2017, 63, 1624-1632.	1.5	13
532	SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir, 2017, 33, 9711-9730.	1.6	121
533	Fabrication of microfluidic paper-based analytical devices by filtration-assisted screen printing. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 71-75.	2.7	22
534	Soft tubular microfluidics for 2D and 3D applications. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10590-10595.	3.3	63
535	Suspended particle transport through constriction channel with Brownian motion. Physical Review E, 2017, 96, 023109.	0.8	2
536	On the role of initial velocities in pair dispersion in a microfluidic chaotic flow. Nature Communications, 2017, 8, 468.	5.8	14
537	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	3.9	38
538	Microporous Nanocomposite Enabled Microfluidic Biochip for Cardiac Biomarker Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS	4.0	63
539	One-step trapping of droplets and surface functionalization of sensors using gold-patterned structures for multiplexing in biochips. RSC Advances, 2017, 7, 43273-43282.	1.7	2
540	Droplet Transport in a Nanochannel Coated by Hydrophobic Semiflexible Polymer Brushes: The Effect of Chain Stiffness. Langmuir, 2017, 33, 10753-10763.	1.6	7
541	The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications. Lab on A Chip, 2017, 17, 3979-3999.	3.1	49
542	Embryonic body culturing in an all-glass microfluidic device with laser-processed $4\hat{A}\hat{l}^{1}/4$ m thick ultra-thin glass sheet filter. Biomedical Microdevices, 2017, 19, 85.	1.4	14
543	Cell migration in microengineered tumor environments. Lab on A Chip, 2017, 17, 4171-4185.	3.1	51
544	A Controllable and Integrated Pump-enabled Microfluidic Chip and Its Application in Droplets Generating. Scientific Reports, 2017, 7, 11319.	1.6	42
545	Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design. ACS Biomaterials Science and Engineering, 2017, 3, 2606-2616.	2.6	29
546	Dual-Mode Electro-photonic Silicon Biosensors. Springer Theses, 2017, , .	0.0	2
547	Biosensors-on-chip: a topical review. Journal of Micromechanics and Microengineering, 2017, 27, 083001.	1.5	75
548	Easy-to-use microfluidic chip for long-term 3D-cell cultures. , 2017, , .		0

#	ARTICLE	IF	CITATIONS
549	Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis. Journal of Micromechanics and Microengineering, 2017, 27, 084002.	1.5	9
550	Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends in Biotechnology, 2017, 35, 954-970.	4.9	37
551	An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood. Journal of Visualized Experiments, 2017, , .	0.2	7
553	Selenocystine against methyl mercury cytotoxicity in HepG2 cells. Scientific Reports, 2017, 7, 147.	1.6	20
554	Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. Journal of Visualized Experiments, 2017, , .	0.2	15
555	Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. Lab on A Chip, 2017, 17, 3221-3233.	3.1	45
556	Direct spraying method for fabrication of paper-based microfluidic devices. Journal of Micromechanics and Microengineering, 2017, 27, 104001.	1.5	20
557	A novel on-chip element to provide mammalian cell cultivation and passaging to Labs-on-Chips. , 2017, , .		0
558	Toward the commercialization of optofluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	12
559	A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Analytical Chemistry, 2017, 89, 9583-9592.	3.2	72
560	Bioprinting of three-dimensional culture models and organ-on-a-chip systems. MRS Bulletin, 2017, 42, 593-599.	1.7	11
561	Solvent-assisted low-temperature and low-pressure poly(methylmethacrylate) bonding coupled with selective microchannel hydrophobic coating for reliable sealing. Sensors and Actuators A: Physical, 2017, 265, 168-173.	2.0	8
562	Modification of lubricant infused porous surface for low-voltage reversible electrowetting. Journal of Materials Chemistry A, 2017, 5, 19159-19167.	5.2	38
563	Solvent immersion imprint lithography: A high-performance, semi-automated procedure. Biomicrofluidics, 2017, 11, 024111.	1.2	3
564	Migration reversal of soft particles in vertical flows. Europhysics Letters, 2017, 119, 64003.	0.7	6
565	Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography. Sensors and Actuators A: Physical, 2017, 268, 126-132.	2.0	3
567	PDMS membranes as sensing element in optical sensors for gas detection in water. Sensing and Bio-Sensing Research, 2017, 16, 74-78.	2.2	20
568	A microfluidic in-line ELISA for measuring secreted protein under perfusion. Biomedical Microdevices, 2017, 19, 101.	1.4	9

#	ARTICLE	IF	Citations
569	Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. Scientific Reports, 2017, 7, 15109.	1.6	39
570	Microfluidics for Combating Antimicrobial Resistance. Trends in Biotechnology, 2017, 35, 1129-1139.	4.9	33
571	UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment. Journal of Micromechanics and Microengineering, 2017, 27, 125008.	1.5	12
572	Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab on A Chip, 2017, 17, 4273-4282.	3.1	112
573	Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. RSC Advances, 2017, 7, 49633-49648.	1.7	16
574	Laser-induced fluorescence detection platform for point-of-care testing. Measurement Science and Technology, 2017, 28, 085701.	1.4	15
575	Application of a strain rate gradient microfluidic device to von Willebrand's disease screening. Lab on A Chip, 2017, 17, 2595-2608.	3.1	17
576	Paperâ€based Invasion Assays for Quantifying Cellular Movement in Threeâ€dimensional Tissueâ€like Structures. Current Protocols in Chemical Biology, 2017, 9, 75-95.	1.7	17
577	The case for semi-automated design of microfluidic very large scale integration (mVLSI) chips. , 2017, , .		3
578	Biomimetic Bioactive Biomaterials: The Next Generation of Implantable Devices. ACS Biomaterials Science and Engineering, 2017, 3, 1172-1174.	2.6	18
579	Detecting cell-secreted growth factors in microfluidic devices using bead-based biosensors. Microsystems and Nanoengineering, 2017, 3, .	3.4	48
580	Cell migration: Arraying neutrophils in swarms. Nature Biomedical Engineering, 2017, $1, \ldots$	11.6	3
581	Fast, Sensitive, and Quantitative Point-of-Care Platform for the Assessment of Drugs of Abuse in Urine, Serum, and Whole Blood. Analytical Chemistry, 2017, 89, 8273-8281.	3.2	28
582	Advances in point-of-care technologies for molecular diagnostics. Biosensors and Bioelectronics, 2017, 98, 494-506.	5.3	129
583	Microfluidic technologies for anticancer drug studies. Drug Discovery Today, 2017, 22, 1654-1670.	3.2	63
584	On-Chip Terahertz-Frequency Measurements of Liquids. Analytical Chemistry, 2017, 89, 7981-7987.	3.2	22
585	Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sensors and Actuators B: Chemical, 2017, 253, 738-744.	4.0	32
586	Acoustic energy distribution in microfluidics chip via a secondary channel. Sensors and Actuators B: Chemical, 2017, 252, 359-366.	4.0	2

#	Article	IF	CITATIONS
587	Numerical modelling of the shear banding flow in the proximity of micro-structures. , 2017, , .		2
588	Near-Zero-Power Temperature Sensing via Tunneling Currents Through Complementary Metal-Oxide-Semiconductor Transistors. Scientific Reports, 2017, 7, 4427.	1.6	31
589	A Platform for Electric Field Aided and Wireâ€Guided Droplet Manipulation. Small, 2017, 13, 1601691.	5.2	20
590	Antigen detection using fluorophore-modified antibodies and magnetic microparticles. Sensors and Actuators B: Chemical, 2017, 238, 441-446.	4.0	3
591	Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sensors and Actuators B: Chemical, 2017, 242, 35-40.	4.0	112
592	Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems, 2017, , .	0.1	10
593	Mechanically Defined Microgels by Droplet Microfluidics. Macromolecular Chemistry and Physics, 2017, 218, 1600418.	1.1	31
594	Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 2017, 114, 121-143.	5.7	287
595	Translating microfluidics: Cell separation technologies and their barriers to commercialization. Cytometry Part B - Clinical Cytometry, 2017, 92, 115-125.	0.7	62
596	Sample pre-treatment techniques for use with ICP-MS hyphenated techniques for elemental speciation in biological samples. Journal of Analytical Atomic Spectrometry, 2017, 32, 58-77.	1.6	31
597	Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosensors and Bioelectronics, 2017, 90, 459-474.	5.3	209
598	Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst, The, 2017, 142, 421-441.	1.7	56
599	Biocompatibility assay of cellular behavior inside a leaf-inspired biomimetic microdevice at the single-cell level. RSC Advances, 2017, 7, 32710-32720.	1.7	6
600	A planar surface acoustic wave micropump for closed-loop microfluidics. Applied Physics Letters, 2017, 111, .	1.5	12
601	Design of PDMS membrane for CTC separation. , 2017, , .		0
602	Adjustable gain for steering between high-speed and high-resolution cell manipulation. , 2017, , .		0
603	Stochastic time response of adsorption-based micro/nanobiosensors with a fluidic reaction chamber: The influence of mass transfer. , 2017 , , .		1
604	Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express, 2017, 25, 16739.	1.7	27

#	Article	IF	CITATIONS
605	Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA. Optics Express, 2017, 25, 18442.	1.7	34
606	Preparation and Characterization of Supported Lipid Bilayers for Biomolecular Interaction Studies by Dual Polarization Interferometry. Advances in Biomembranes and Lipid Self-Assembly, 2017, 25, 125-159.	0.3	1
607	Application of nanodiagnostics in point-of-care tests for infectious diseases. International Journal of Nanomedicine, 2017, Volume 12, 4789-4803.	3.3	88
608	Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Current Pharmaceutical Design, 2017, 23, 3845-3857.	0.9	25
609	Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues. Micromachines, 2017, 8, 287.	1.4	18
610	Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production. Micromachines, 2017, 8, 209.	1.4	12
611	Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis. Molecules, 2017, 22, 1951.	1.7	83
612	Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials, 2017, 7, 171.	1.9	45
613	Self-Assembled InAs Nanowires as Optical Reflectors. Nanomaterials, 2017, 7, 400.	1.9	20
614	Study on Cell-Capturing Microfluidic Device in High Flow Rates through Controlling Shape of Microstructures and Their Alignments. Proceedings (mdpi), 2017, 1, .	0.2	0
615	Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications. Proceedings (mdpi), 2017, 1, .	0.2	0
616	In Vitro Studies on a Microfluidic Sensor with Embedded Obstacles Using New Antibacterial Synthetic Compounds (1-TDPPO) Mixed Prop-2-en-1-one with Difluoro Phenyl. Sensors, 2017, 17, 803.	2.1	3
617	Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications. Sensors, 2017, 17, 1603.	2.1	22
618	Recent Advancements towards Full-System Microfluidics. Sensors, 2017, 17, 1707.	2.1	8
619	Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 2017, 17, 2934.	2.1	60
620	Smart devices. , 2017, , 331-369.		4
621	Chemical sensors based on Ahybrid nanomaterials for food analysis., 2017,, 205-244.		12
622	Integrated Polymerase Chain Reaction Technologies (Sample-to-Answer Technologies)., 2017,, 59-78.		3

#	Article	IF	CITATIONS
623	3D Printing of Organs-On-Chips. Bioengineering, 2017, 4, 10.	1.6	140
624	The Role of Microfluidics for Organ on Chip Simulations. Bioengineering, 2017, 4, 39.	1.6	56
625	Microdevices for Non-Invasive Detection of Bladder Cancer. Chemosensors, 2017, 5, 30.	1.8	8
626	Cavity-Enhanced Spectroscopy in Condensed Phases: Recent Literature and Remaining Challenges. Journal of Spectroscopy, 2017, 2017, 1-10.	0.6	5
627	Fabrication of micro fluidic channels for functionalizing lead selenide quantum dots for photovoltaic application. , 2017, , .		0
628	Microfluidics technology: future prospects for molecular diagnostics. Advanced Health Care Technologies, 0, Volume 3, 3-17.	1.4	10
629	Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnology, 2017, 8, .	1.9	55
630	Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biology, 2017, 15, 121.	1.7	126
631	The recent development and applications of fluidic channels by 3D printing. Journal of Biomedical Science, 2017, 24, 80.	2.6	34
632	Linear array of multi-substrate tracts for simultaneous assessment of cell adhesion, migration, and differentiation. BioTechniques, 2017, 63, 267-274.	0.8	0
633	Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget, 2017, 8, 53763-53779.	0.8	76
634	Recent Advances in Biosensor Development for Foodborne Virus Detection. Nanotheranostics, 2017, 1, 272-295.	2.7	38
635	Application of polydopamine in biomedical microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	18
636	Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on A Chip, 2018, 18, 1121-1129.	3.1	47
637	Perspectives on cavitation enhanced endothelial layer permeability. Colloids and Surfaces B: Biointerfaces, 2018, 168, 83-93.	2.5	39
638	Fluid-structure interaction with the entropic lattice Boltzmann method. Physical Review E, 2018, 97, 023305.	0.8	26
639	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie - International Edition, 2018, 57, 7503-7507.	7.2	77
640	Desktop micromilled microfluidics. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	33

#	Article	IF	CITATIONS
641	Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays. Analytical Chemistry, 2018, 90, 3697-3702.	3.2	13
642	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. Computers and Fluids, 2018, 167, 33-39.	1.3	33
643	Uniform, stable supply of medium for <i>in vitro</i> cell culture using a robust chamber. Journal of Micromechanics and Microengineering, 2018, 28, 065006.	1.5	4
644	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie, 2018, 130, 7625-7629.	1.6	10
645	3D MRI velocimetry of non-transparent 3D-printed staggered herringbone mixers. Chemical Engineering Journal, 2018, 343, 54-60.	6.6	24
646	Automated fluid delivery from multiwell plates to microfluidic devices for high-throughput experiments and microscopy. Scientific Reports, 2018, 8, 6217.	1.6	15
647	The study of atmospheric ice-nucleating particles via microfluidically generated droplets. Microfluidics and Nanofluidics, 2018, 22, 52.	1.0	32
648	Determination of dynamic contact angles within microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	9
649	Nanostructure and Microstructure Fabrication: From Desired Properties to Suitable Processes. Small, 2018, 14, e1703401.	5.2	55
650	Hybrid Surface and Bulk Resonant Acoustics for Concurrent Actuation and Sensing on a Single Microfluidic Device. Analytical Chemistry, 2018, 90, 5335-5342.	3.2	9
651	Lab-on-chip technology for chronic disease diagnosis. Npj Digital Medicine, 2018, 1, 7.	5.7	99
652	Cyber–Physical Digital-Microfluidic Biochips: Bridging the Gap Between Microfluidics and Microbiology. Proceedings of the IEEE, 2018, 106, 1717-1743.	16.4	14
653	Outstanding telechelic perfluoropolyalkylethers and applications therefrom. Progress in Polymer Science, 2018, 81, 238-280.	11.8	53
654	Microfluidic liquid-air dual-gradient chip for synergic effect bio-evaluation of air pollutant. Talanta, 2018, 182, 202-209.	2.9	9
655	Novel approach for accurate minute DNA quantification on microvolumetric solutions. Microchemical Journal, 2018, 138, 540-549.	2.3	8
656	Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta, 2018, 182, 544-548.	2.9	37
657	Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. International Materials Reviews, 2018, 63, 461-487.	9.4	76
658	Regulating Secondary Flow in Ultra‣ow Aspect Ratio Microchannels by Dimensional Confinement. Advanced Theory and Simulations, 2018, 1, 1700034.	1.3	12

#	Article	IF	CITATIONS
659	Fabrication of microfluidic channels based on melt-electrospinning direct writing. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	16
660	3D printed Lego <code>[®]</code> -like modular microfluidic devices based on capillary driving. Biofabrication, 2018, 10, 035001.	3.7	61
661	Collective spreading of red blood cells flowing in a microchannel. Journal of Biomechanics, 2018, 69, 64-69.	0.9	4
662	Microfluidic switchboards with integrated inertial pumps. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	6
663	Fast Prototyping of Silica Glass Microfluidic Chips: The Sol-Gel Route. Advanced Materials Technologies, 2018, 3, 1700267.	3.0	2
664	Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids. Lab on A Chip, 2018, 18, 610-619.	3.1	81
665	A Platform for Highâ€Throughput Assessments of Environmental Multistressors. Advanced Science, 2018, 5, 1700677.	5.6	8
666	Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. Energy, Environment, and Sustainability, 2018, , 315-341.	0.6	10
667	Design of Nanofibrous and Microfibrous Channels for Fast Capillary Flow. Langmuir, 2018, 34, 1235-1241.	1.6	60
668	Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 2018, 14, 1702153.	5.2	335
669	Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Archives of Oral Biology, 2018, 87, 115-124.	0.8	109
670	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sensors and Actuators B: Chemical, 2018, 262, 625-636.	4.0	54
671	Millifluidic chip with a modular design used as a sample pretreatment cartridge for flour and flour food products. Talanta, 2018, 179, 719-725.	2.9	8
672	Microfluidic actuators based on temperature-responsive hydrogels. Microsystems and Nanoengineering, 2018, 4, .	3.4	65
673	Sensing Using Microfluidic Platform. Energy, Environment, and Sustainability, 2018, , 115-136.	0.6	1
674	Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators. Advanced Functional Materials, 2018, 28, 1705484.	7.8	71
675	Lab-on-a-chip device made by autohesion-bonded polymers. Biomedical Microdevices, 2018, 20, 7.	1.4	9
676	3D printed microfluidics and microelectronics. Microelectronic Engineering, 2018, 189, 52-68.	1.1	162

#	Article	IF	CITATIONS
677	Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices. Analytical Chemistry, 2018, 90, 2277-2284.	3.2	6
678	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. , 2018, , 1-92.		10
679	Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst, The, 2018, 143, 1015-1035.	1.7	33
680	A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. Lab on A Chip, 2018, 18, 522-531.	3.1	41
681	Replication of surface microâ€features using variothermal injection molding: Application to microâ€fluidics. Polymer Engineering and Science, 2018, 58, 1726-1738.	1.5	6
682	Computer-aided design of resistance micro-fluidic circuits for 3D printing. CAD Computer Aided Design, 2018, 98, 12-23.	1.4	6
683	Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab on A Chip, 2018, 18, 496-504.	3.1	70
686	Razor-printed sticker microdevices for cell-based applications. Lab on A Chip, 2018, 18, 451-462.	3.1	30
687	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	5.2	31
688	"Connecting worlds – a view on microfluidics for a wider application― Biotechnology Advances, 2018, 36, 1341-1366.	6.0	36
689	Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds. Electrochimica Acta, 2018, 287, 135-148.	2.6	19
690	Pressureâ€Stable Airâ€Retaining Nanostructured Surfaces Inspired by Natural Air Plastrons. Advanced Materials Interfaces, 2018, 5, 1800125.	1.9	13
691	Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Applied Catalysis B: Environmental, 2018, 238, 61-69.	10.8	203
692	Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Scientific Reports, 2018, 8, 6971.	1.6	92
693	Experimental and numerical study on a novel microfluidic method to fabricate curcumin loaded calcium alginate microfibres. Canadian Journal of Chemical Engineering, 2018, 96, 2342-2351.	0.9	6
694	Detection and Automation Technologies for the Mass Production of Droplet Biomicrofluidics. IEEE Reviews in Biomedical Engineering, 2018, 11, 260-274.	13.1	7
695	Roll-to-roll fabrication of integrated PDMS–paper microfluidics for nucleic acid amplification. Lab on A Chip, 2018, 18, 1552-1559.	3.1	71
696	Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends in Biotechnology, 2018, 36, 923-937.	4.9	55

#	ARTICLE	IF	CITATIONS
697	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	5.8	94
698	Cell-based assay for characterizing cell adhesion properties of active targeted nanoparticles under static and flow condition using an integrated flow chamber. Journal of Drug Delivery Science and Technology, 2018, 45, 296-302.	1.4	0
699	Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology, 2018, 06, 1-23.	1.4	34
700	From waste to watts in micro-devices: Review on development of Membraned and Membraneless Microfluidic Microbial Fuel Cell. Applied Materials Today, 2018, 11, 270-279.	2.3	54
701	A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Scientific Reports, 2018, 8, 4791.	1.6	81
702	Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Advanced Drug Delivery Reviews, 2018, 128, 84-100.	6.6	215
703	Migration of blood cells and phospholipid vesicles induced by concentration gradients in microcavities. New Biotechnology, 2018, 47, 60-66.	2.4	23
704	Effects of geometry factors on microvortices evolution in confined square microcavities. Microfluidics and Nanofluidics, $2018, 22, 1.$	1.0	14
705	Thermophysical properties of the liquid Ga–Sn–Zn eutectic alloy. Fluid Phase Equilibria, 2018, 465, 1-9.	1.4	37
706	Microfluidic Coculture Device for Monitoring of Inflammation-Induced Myocardial Injury Dynamics. Analytical Chemistry, 2018, 90, 4485-4494.	3.2	20
707	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	3.1	27
708	Dynamics in Epistasis Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 878-891.	1.9	0
709	Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018, 255, 100-109.	4.0	104
710	Emerging microalgae technology: a review. Sustainable Energy and Fuels, 2018, 2, 13-38.	2.5	74
711	Microfluidics Engineering: Recent Trends, Valorization, and Applications. Arabian Journal for Science and Engineering, 2018, 43, 23-32.	1.7	14
712	A Rayleigh surface acoustic wave (R-SAW) resonator biosensor based on positive and negative reflectors with sub-nanomolar limit of detection. Sensors and Actuators B: Chemical, 2018, 254, 1-7.	4.0	35
713	Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. Journal of Bone and Mineral Metabolism, 2018, 36, 529-536.	1.3	21
714	Design and Preparation of Microfluidics Device. Integrated Analytical Systems, 2018, , 1-42.	0.4	1

#	Article	IF	Citations
715	Microfluidic Cell Culture Systems for Drug Research. Integrated Analytical Systems, 2018, , 339-370.	0.4	1
716	Microfluidic Platforms for Microbial. Integrated Analytical Systems, 2018, , 397-423.	0.4	0
717	Recent Development of Cell Analysis on Microfludics. Integrated Analytical Systems, 2018, , 43-93.	0.4	1
718	Microfluidic Cell Isolation and Recognition for Biomedical Applications. Integrated Analytical Systems, 2018, , 95-118.	0.4	2
719	Integrated obstacle microstructures for gas-liquid separation and flow switching in microfluidic networks. Sensors and Actuators B: Chemical, 2018, 256, 735-743.	4.0	10
720	Applications of Microfluidics in Quantitative Biology. Biotechnology Journal, 2018, 13, e1700170.	1.8	32
721	Directional transport of droplets on wettability patterns at high temperature. Applied Surface Science, 2018, 428, 432-438.	3.1	21
722	Polydopamineâ€collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining longâ€term culture of L929 fibroblasts and tendon stem cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 408-418.	2.1	27
723	Advances in paper-analytical methods for pharmaceutical analysis. European Journal of Pharmaceutical Sciences, 2018, 111, 46-56.	1.9	34
724	Flow injection analysis in lab-on-paper format. Sensors and Actuators B: Chemical, 2018, 257, 16-22.	4.0	16
725	A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements. Analytical Chemistry, 2018, 90, 737-744.	3.2	11
726	Creasensor: SIMPLE technology for creatinine detection in plasma. Analytica Chimica Acta, 2018, 1000, 191-198.	2.6	34
727	Cardiac Cell Culture Technologies. , 2018, , .		2
728	Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	16
729	Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device. Analytica Chimica Acta, 2018, 1000, 239-247.	2.6	37
730	A microfabricated platform for the study of chondrogenesis under different compressive loads. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 404-413.	1.5	9
731	Advances in Microfluidics Applied to Single Cell Operation. Biotechnology Journal, 2018, 13, 1700416.	1.8	22
732	Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology. Lab on A Chip, 2018, 18, 406-411.	3.1	22

#	Article	IF	CITATIONS
733	High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab on A Chip, 2018, 18, 890-901.	3.1	89
734	Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosensors and Bioelectronics, 2018, 102, 531-539.	5.3	39
735	Self-formation of polymer nanostructures in plasma etching: mechanisms and applications. Journal of Micromechanics and Microengineering, 2018, 28, 014006.	1.5	14
736	Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab on A Chip, 2018, 18, 442-450.	3.1	35
737	Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy. , 2018, , 229-247.		2
738	A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Science and Technology, 2018, 52, 310-329.	1.5	43
739	The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR in Biomedicine, 2018, 31, e3831.	1.6	32
740	Microfluidic device as a facile in vitro tool to generate and investigate lipid gradients. Chemistry and Physics of Lipids, 2018, 210, 109-121.	1.5	1
741	An open-source, programmable pneumatic setup for operation and automated control of single- and multi-layer microfluidic devices. HardwareX, 2018, 3, 117-134.	1.1	35
742	Neurturin is a PGC- $1\hat{i}\pm1$ -controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation. Molecular Metabolism, 2018, 7, 12-22.	3.0	40
743	Innovative technologies for pointâ€ofâ€care testing of viral hepatitis in lowâ€resource and decentralized settings. Journal of Viral Hepatitis, 2018, 25, 108-117.	1.0	34
744	Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function. Biomaterials Science, 2018, 6, 115-124.	2.6	10
745	Mkit: A cell migration assay based on microfluidic device and smartphone. Biosensors and Bioelectronics, 2018, 99, 259-267.	5.3	27
746	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
747	Simple disposable microfluidic device for Salmonella typhimurium detection by magneto-immunoassay. Sensors and Actuators B: Chemical, 2018, 255, 684-691.	4.0	57
748	MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. Brazilian Journal of Chemical Engineering, 2018, 35, 1163-1182.	0.7	14
749	PDMS-Based Microfluidic Devices for Cell Culture. Inventions, 2018, 3, 65.	1.3	85
750	Microchannel-based capillary microfluidics: From simple networks to capillaric circuits. , 2018, , .		1

#	Article	IF	Citations
751	Fabrication of Metallic Micromixers Using WEDM and EDM for Application in Microfluidic Devices and Circuitries. Micro and Nanosystems, 2018, 10, 137-147.	0.3	6
752	A Microfluidic Platform for the Development of a Biosensor Based on Genetically Modified Helicobacter pylori Single Cells. Biophysics (Russian Federation), 2018, 63, 735-742.	0.2	6
753	Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper. Biotechnology and Bioprocess Engineering, 2018, 23, 686-692.	1.4	30
754	Biosensing System for Concentration Quantification of Magnetically Labeled E. coli in Water Samples. Sensors, 2018, 18, 2250.	2.1	8
755	Recent advances in organ-on-a-chip technologies and future challenges: a review. Turkish Journal of Chemistry, 2018, 42, .	0.5	10
756	SLE, An Overlooked Disease: Possibilities for Early Rescue by Early Diagnosis. , 2018, , .		0
757	3. Three-dimensional integration of hybrid functionalities in transparent dielectrics by femtosecond laser direct writing., 2018,, 111-248.		1
759	PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide. Biomedical Microdevices, 2018, 20, 98.	1.4	9
760	Viable cell culture in PDMS-based microfluidic devices. Methods in Cell Biology, 2018, 148, 3-33.	0.5	29
761	Reinventing (Bio)chemical Analysis with Paper. Analytical Chemistry, 2018, 90, 13815-13825.	3.2	58
762	Cyclic Block Copolymer Microchannel Fabrication and Sealing for Microfluidics Applications. Inventions, 2018, 3, 49.	1.3	7
763	Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures. Micromachines, 2018, 9, 469.	1.4	11
764	Numerical Demonstration of In-Tube Liquid-Column Migration Driven by Photoisomerization. Micromachines, 2018, 9, 533.	1.4	1
765	Design of Controllable Novel Piezoelectric Components for Microfluidic Applications. Sensors, 2018, 18, 4049.	2.1	8
766	Health care in a technological world. British Journal of Nursing, 2018, 27, 1172-1177.	0.3	10
767	High-throughput three-dimensional chemotactic assays reveal steepness-dependent complexity in neuronal sensation to molecular gradients. Nature Communications, 2018, 9, 4745.	5.8	33
768	High-speed transport of liquid droplets in magnetic tubular microactuators. Science Advances, 2018, 4, eaau8767.	4.7	72
769	In Vitro Immune Organs-on-Chip for Drug Development: A Review. Pharmaceutics, 2018, 10, 278.	2.0	54

#	ARTICLE	IF	CITATIONS
770	Softâ∈Matter Engineering for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1800477.	3.0	201
771	Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System. ACS Sensors, 2018, 3, 2716-2725.	4.0	25
772	Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array. Sensors, 2018, 18, 4223.	2.1	2
773	Emerging Concepts and Techniques. , 2018, , 729-743.		O
774	Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations. EBioMedicine, 2018, 37, 144-157.	2.7	68
775	Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Electrophoresis, 2019, 40, 401-409.	1.3	1
776	Advanced model systems and tools for basic and translational human immunology. Genome Medicine, 2018, 10, 73.	3 . 6	68
777	Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review. Ultrasound in Medicine and Biology, 2018, 44, 2441-2460.	0.7	35
778	Formation dynamics of elastic droplets in a microfluidic T-junction. Chemical Engineering Research and Design, 2018, 139, 188-196.	2.7	23
779	Temperature-regulated directional bounce of impacting droplets on gradient grooves. Surface and Coatings Technology, 2018, 356, 132-137.	2.2	9
780	Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Frontiers in Immunology, 2018, 9, 2373.	2.2	54
781	Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles. Beilstein Journal of Nanotechnology, 2018, 9, 2413-2420.	1.5	20
782	Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37417-37425.	4.0	37
783	Asymmetrical Induced Charge Electroosmotic Flow on a Herringbone Floating Electrode and Its Application in a Micromixer. Micromachines, 2018, 9, 391.	1.4	7
784	Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 2018, 8, 14359.	1.6	132
785	Thermophoretic Manipulation of Micro- and Nanoparticle Flow through a Sudden Contraction in a Microchannel with Near-Infrared Laser Irradiation. Physical Review Applied, 2018, 10, .	1.5	24
786	3D Biomimetic Chips for Cancer Cell Migration in Nanometer-Sized Spaces Using "Ship-in-a-Bottle― Femtosecond Laser Processing. ACS Applied Bio Materials, 2018, 1, 1667-1676.	2.3	15
787	Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines, 2018, 9, 536.	1.4	155

#	Article	IF	CITATIONS
788	Modular microfluidics for double emulsion formation. Methods in Cell Biology, 2018, 148, 161-176.	0.5	5
789	The Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome Amplification in Microfluidic Platforms. Micromachines, 2018, 9, 367.	1.4	31
790	An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces. Micromachines, 2018, 9, 504.	1.4	8
791	Multi-frequency dielectrophoretic characterization of single cells. Microsystems and Nanoengineering, 2018, 4, 23.	3.4	15
792	Plasmonic nano-arrays for ultrasensitive bio-sensing. Nanophotonics, 2018, 7, 1517-1531.	2.9	68
793	Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips., 2018,,.		7
794	An integrated micro-millifluidic processing system. Lab on A Chip, 2018, 18, 3393-3404.	3.1	12
795	Wetting controls of droplet formation in step emulsification. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9479-9484.	3.3	74
796	Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infection and Immunity, $2018, 86, \ldots$	1.0	108
797	Ferulic acid and PDMS modified medical carbon materials for artificial joint prosthesis. PLoS ONE, 2018, 13, e0203542.	1.1	5
798	A Microfluidic Chip with Double-Slit Arrays for Enhanced Capture of Single Cells. Micromachines, 2018, 9, 157.	1.4	9
799	Integrated Fiber Flow Sensors for Microfluidic Interconnects. Advanced Materials Technologies, 2018, 3, 1800175.	3.0	6
800	Three-dimensional Printing of Thermoplastic Materials to Create Automated Syringe Pumps with Feedback Control for Microfluidic Applications. Journal of Visualized Experiments, 2018, , .	0.2	1
801	Open multi-culture platform for simple and flexible study of multi-cell type interactions. Lab on A Chip, 2018, 18, 3184-3195.	3.1	12
802	Principles and applications of medical nanotechnology devices. , 2018, , 275-301.		1
803	Origami Biosystems: 3D Assembly Methods for Biomedical Applications. Advanced Biology, 2018, 2, 1800230.	3.0	57
804	Multi-criteria optimization of curved and baffle-embedded micromixers for bio-applications. Chemical Engineering and Processing: Process Intensification, 2018, 132, 175-186.	1.8	35
805	Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates. Micromachines, 2018, 9, 409.	1.4	42

#	Article	IF	CITATIONS
807	Aptamer-based colorimetric determination of Pb ²⁺ using a paper-based microfluidic platform. Analytical Methods, 2018, 10, 4438-4444.	1.3	52
808	To study surface and sub-surface nanomechanical properties of electrospun polyacrylonitrile (PAN) nanofibers/polydimethylsiloxane (PDMS) composites. Soft Matter, 2018, 14, 7829-7838.	1.2	4
809	Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synthetic Biology, 2018, 3, ysy005.	1.2	26
810	Microfluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices. Scientific Reports, 2018, 8, 8031.	1.6	21
811	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
812	Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews, 2018, 118, 5392-5487.	23.0	61
813	Detection of Urothelial Bladder Carcinoma via Microfluidic Immunoassay and Single-Cell DNA Copy-Number Alteration Analysis of Captured Urinary-Exfoliated Tumor Cells. Cancer Research, 2018, 78, 4073-4085.	0.4	34
814	Microfluidic Mimic for Colloid Membrane Filtration: A Review. Journal of the Indian Institute of Science, 2018, 98, 137-157.	0.9	11
815	Controlling interfacial mixing zone for microfluidic flow of liquid streams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	9
816	Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 2018, 117, 112-128.	5.3	292
817	Approach for Downscaling of Electromembrane Extraction as a Lab on-a-Chip Device Followed by Sensitive Red-Green-Blue Detection. Analytical Chemistry, 2018, 90, 8478-8486.	3.2	42
818	Multidimensional Paper Networks: A New Generation of Low-Cost Pump-Free Microfluidic Devices. Journal of the Indian Institute of Science, 2018, 98, 103-136.	0.9	7
819	Biomimetics of the pulmonary environment <i>in vitro</i> : A microfluidics perspective. Biomicrofluidics, 2018, 12, 042209.	1.2	43
820	Novel SERS labels: Rational design, functional integration and biomedical applications. Coordination Chemistry Reviews, 2018, 371, 11-37.	9.5	112
821	Microfluidic Techniques for Platelet Separation and Enrichment. Journal of the Indian Institute of Science, 2018, 98, 185-200.	0.9	15
822	A novel zero-dead-volume sample loading interface for microfluidic devices: flexible hydraulic reservoir (FHR). Journal of Micromechanics and Microengineering, 2018, 28, 097001.	1.5	4
823	Acoustofluidics-based enzymatic constant determination by rapid and stable in situ mixing. Sensors and Actuators B: Chemical, 2018, 272, 494-501.	4.0	14
824	The Welzmann Supercooled Droplets Observation on aÂMicroarray (WISDOM) and application for ambient dust. Atmospheric Measurement Techniques, 2018, 11, 233-248.	1.2	57

#	Article	IF	CITATIONS
825	Miniaturised total chemical-analysis systems ($1\frac{1}{4}$ TAS) that periodically convert chemical into electronic information. Sensors and Actuators B: Chemical, 2018, 273, 1334-1345.	4.0	20
826	Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics, 2018, 12, 041501.	1.2	16
827	Condensed Phase Membrane Introduction Mass Spectrometry– Continuous, Direct and Online Measurements in Complex Samples. Comprehensive Analytical Chemistry, 2018, 79, 173-203.	0.7	13
828	Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Analytica Chimica Acta, 2018, 1044, 29-65.	2.6	69
829	Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sensors, 2018, 3, 1376-1384.	4.0	58
830	Single File Flow of Biomimetic Beads for Continuous SERS Recording in a Microfluidic Device. Advances in Condensed Matter Physics, 2018, 2018, 1-9.	0.4	5
831	Vascularized Liver Organoids Generated Using Induced Hepatic Tissue and Dynamic Liverâ€Specific Microenvironment as a Drug Testing Platform. Advanced Functional Materials, 2018, 28, 1801954.	7.8	100
832	Evaluation of siRNA and cationic liposomes complexes as a model for in vitro siRNA delivery to cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 280-289.	2.3	10
833	Nanochannel-Assisted Perovskite Nanowires: From Growth Mechanisms to Photodetector Applications. ACS Nano, 2018, 12, 8406-8414.	7.3	56
834	Microfluidics and Interfacial Chemistry in the Atmosphere. , 2018, , 245-270.		4
835	Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosensors and Bioelectronics, 2018, 117, 651-658.	5.3	71
836	Future Directions and Challenges Involved in Cancer Noncoding RNomics., 2018,, 509-524.		0
837	An all thiol–ene microchip for solid phase extraction featuring an ⟨i⟩in situ⟨ i⟩ polymerized monolith and integrated 3D replica-molded emitter for direct electrospray mass spectrometry. Analytical Methods, 2018, 10, 2854-2862.	1.3	10
838	Liquid biopsies for management of pancreatic cancer. Translational Research, 2018, 201, 98-127.	2.2	49
839	Integrated multichannel all-fiber optofluidic biosensing platform for sensitive and simultaneous detection of trace analytes. Analytica Chimica Acta, 2018, 1040, 112-119.	2.6	13
840	A self-sufficient micro-droplet generation system using highly porous elastomeric sponges: A versatile tool for conducting cellular assays. Sensors and Actuators B: Chemical, 2018, 274, 645-653.	4.0	23
841	Deformation of Microchannels Embedded in an Elastic Medium. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	5
842	Robust microfluidic construction of hybrid microfibers based on konjac glucomannan and their drug release performance. RSC Advances, 2018, 8, 26432-26439.	1.7	20

#	Article	IF	CITATIONS
843	Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors. ACS Sensors, 2018, 3, 1584-1591.	4.0	9
844	Double-exclusive liquid repellency (double-ELR): an enabling technology for rare phenotype analysis. Lab on A Chip, 2018, 18, 2710-2719.	3.1	20
845	Multiphase Microfluidic Processes to Produce Alginate-Based Microparticles and Fibers. Journal of Chemical Engineering of Japan, 2018, 51, 318-330.	0.3	17
846	Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial. Frontiers in Microbiology, 2018, 9, 496.	1.5	27
847	Theoretical and experimental study of a membrane-based microfluidics for loading and unloading of cryoprotective agents. International Journal of Heat and Mass Transfer, 2018, 127, 637-644.	2.5	8
848	Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices. Applied Sciences (Switzerland), 2018, 8, 147.	1.3	18
849	Micro- and Nanoscale Approaches in Antifungal Drug Discovery. Fermentation, 2018, 4, 43.	1.4	6
850	Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes, 2018, 9, 103.	1.0	252
851	Journey into Bone Models: A Review. Genes, 2018, 9, 247.	1.0	80
852	In Vitro Culture of Single Bovine Embryos with Microwell Plates Made of Poly(dimethylsiloxane) Cured under Low Pressure. International Journal of Biomaterials, 2018, 2018, 1-7.	1.1	2
853	Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls. Micromachines, 2018, 9, 8.	1.4	40
854	Mixing Enhancement in Serpentine Micromixers with a Non-Rectangular Cross-Section. Micromachines, 2018, 9, 107.	1.4	65
855	Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography. Micromachines, 2018, 9, 125.	1,4	39
856	Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements. Micromachines, 2018, 9, 151.	1.4	70
857	Fabrication of a Metal Micro Mold by Using Pulse Micro Electroforming. Micromachines, 2018, 9, 203.	1.4	11
858	Liquid Biopsy in Colorectal Cancer-Current Status and Potential Clinical Applications. Micromachines, 2018, 9, 300.	1.4	26
859	Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors, 2018, 18, 1621.	2.1	41
860	A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology. Biotechnology Progress, 2018, 34, 1438-1446.	1.3	46

#	Article	IF	Citations
861	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
862	From Mouth Pipetting to Microfluidics: The Evolution of Technologies for Picking Healthy Single Cells. Advanced Biology, 2018, 2, 1800099.	3.0	2
863	Integrated Circuits Comprising Patterned Functional Liquids. Advanced Materials, 2018, 30, e1802598.	11.1	10
864	Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 348-362.	1.4	22
865	Selective fabrication of hollow and solid polysaccharide composite fibers using a microfluidic device by controlling polyion complex formation. Polymer Journal, 2018, 50, 1187-1198.	1.3	10
866	3D Cell Migration Studies for Chemotaxis on Microfluidic-Based Chips: A Comparison between Cardiac and Dermal Fibroblasts. Bioengineering, 2018, 5, 45.	1.6	18
867	Microwave Sensors for Breast Cancer Detection. Sensors, 2018, 18, 655.	2.1	94
868	Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels Using Metallic Nano-Islands on Graphene. Nano Letters, 2018, 18, 5306-5311.	4.5	14
869	An easy-to-build and re-usable microfluidic system for live-cell imaging. BMC Cell Biology, 2018, 19, 8.	3.0	9
870	Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 47.	2.0	132
871	Engineering Breast Cancer Microenvironments and 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 2018, 6, 66.	2.0	77
872	In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 373-394.	0.8	10
873	Photochemical device for selective detection of phenol in aqueous solutions. Lab on A Chip, 2018, 18, 1621-1632.	3.1	24
874	Integrated LAMP and immunoassay platform for diarrheal disease detection. Biosensors and Bioelectronics, 2018, 120, 93-101.	5.3	26
875	High Repetition Rate UV versus VIS Picosecond Laser Fabrication of 3D Microfluidic Channels Embedded in Photosensitive Glass. Nanomaterials, 2018, 8, 583.	1.9	12
876	Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method. Journal of Physics Condensed Matter, 2018, 30, 384001.	0.7	0
877	Surface topography and hydrophilicity regulate macrophage phenotype in milled microfluidic systems. Lab on A Chip, 2018, 18, 3011-3017.	3.1	25
878	Technology of Stearine Transfer Using Laser-Heating for Lab-On-Paper Development. , 2018, , .		O

#	Article	IF	CITATIONS
879	Progressive mechanical confinement of chemotactic neutrophils induces arrest, oscillations, and retrotaxis. Journal of Leukocyte Biology, 2018, 104, 1253-1261.	1.5	12
880	Applications of tumor chip technology. Lab on A Chip, 2018, 18, 2893-2912.	3.1	86
881	Electrospinning and microfluidics. , 2018, , 139-155.		12
882	Microfluidic-based vascularized microphysiological systems. Lab on A Chip, 2018, 18, 2686-2709.	3.1	74
883	Inertial focusing of microparticles in curvilinear microchannels with different curvature angles. Microfluidics and Nanofluidics, $2018, 22, 1$.	1.0	15
884	Controlled microenvironments to evaluate chemotactic properties of cultured M $\tilde{A}^{1/4}$ ller glia. Experimental Eye Research, 2018, 173, 129-137.	1.2	14
885	PDMS with designer functionalitiesâ€"Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	11.8	478
886	Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sensors, 2018, 3, 1392-1400.	4.0	36
887	Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles. Scientific Reports, 2018, 8, 8763.	1.6	24
888	Microfluidic chambers using fluid walls for cell biology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5926-E5933.	3.3	47
889	Recent Advances and Trends in Microfluidic Platforms for <i>C. elegans</i> Biological Assays. Annual Review of Analytical Chemistry, 2018, 11, 245-264.	2.8	15
890	Multi-scale, multi-depth lithography using optical fibers for microfluidic applications. Microfluidics and Nanofluidics, 2018, 22, 1 .	1.0	11
891	Poisson's ratio of PDMS thin films. Polymer Testing, 2018, 69, 375-384.	2.3	70
892	Dehydration-triggered shape morphing based on asymmetric bubble hydrogel microfibers. Soft Matter, 2018, 14, 6623-6626.	1.2	13
893	Stem cells technology: a powerful tool behind new brain treatments. Drug Delivery and Translational Research, 2018, 8, 1564-1591.	3.0	4
894	Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology. , 2018, , 375-394.		33
895	An adaptive neural-fuzzy approach for microfluidic droplet size prediction. Microelectronics Journal, 2018, 78, 73-80.	1.1	14
896	Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab on A Chip, 2018, 18, 1952-1996.	3.1	198

#	Article	IF	CITATIONS
897	Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment. Journal of Bioscience and Bioengineering, 2019, 127, 114-120.	1.1	4
898	Toward Secure and Trustworthy Cyberphysical Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 589-603.	1.9	23
899	Efficient Generation of Dilution Gradients With Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 874-887.	1.9	8
900	Mass-producible microporous silicon membranes for specific leukocyte subset isolation, immunophenotyping, and personalized immunomodulatory drug screening <i>in vitro</i> . Lab on A Chip, 2019, 19, 3065-3076.	3.1	6
901	What human blood-brain barrier models can tell us about BBB function and drug discovery?. Expert Opinion on Drug Discovery, 2019, 14, 1113-1123.	2.5	9
902	Partitioning of hydrogels in 3D-printed microchannels. Lab on A Chip, 2019, 19, 3086-3093.	3.1	30
903	Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices. Lab on A Chip, 2019, 19, 3104-3115.	3.1	18
904	Ultraminiature and Flexible Sensor Based on Interior Corner Flow for Direct Pressure Sensing in Biofluids. Small, 2019, 15, e1900950.	5 . 2	11
905	Electrospun Nanofibers for Drug Delivery and Biosensing. ACS Biomaterials Science and Engineering, 2019, 5, 4183-4205.	2.6	114
906	Sensing and memorising liquids with polarity-interactive ferroelectric sound. Nature Communications, 2019, 10, 3575.	5.8	25
907	A fast electrochemical actuator in the non-explosive regime. Journal of Micromechanics and Microengineering, 2019, 29, 114001.	1.5	5
908	From kirigami to three-dimensional paper-based micro-analytical device: cut-and-paste fabrication and mobile app quantitation. RSC Advances, 2019, 9, 23267-23275.	1.7	8
909	Compound micromachines powered by acoustic streaming. , 2019, , .		5
910	Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS ONE, 2019, 14, e0219708.	1.1	10
911	A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials, 2019, 219, 119367.	5.7	53
912	Microfluidic tools for lipid production and modification: a review. Environmental Science and Pollution Research, 2019, 26, 35482-35496.	2.7	5
913	Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication, 2019, 11, 045013.	3.7	24
914	Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosensors and Bioelectronics, 2019, 142, 111515.	5.3	22

#	ARTICLE	IF	CITATIONS
915	Micromixers and their applications in kinetic analysis of biochemical reactions. Talanta, 2019, 205, 120136.	2.9	39
916	Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Analytical Chemistry, 2019, 91, 10328-10334.	3.2	98
917	$3D\hat{1}$ /4F - Interactive Design Environment for Continuous Flow Microfluidic Devices. Scientific Reports, 2019, 9, 9166.	1.6	19
918	Macroporous Silicone Sheets Integrated with Meshes for Various Applications. ACS Applied Polymer Materials, 2019, 1, 2077-2082.	2.0	6
919	Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Accounts of Chemical Research, 2019, 52, 2113-2123.	7.6	32
920	Magnetic microboats for floating, stiffness tunable, air–liquid interface epithelial cultures. Lab on A Chip, 2019, 19, 2786-2798.	3.1	15
921	MMHelper: An automated framework for the analysis of microscopy images acquired with the mother machine. Scientific Reports, 2019, 9, 10123.	1.6	33
922	Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. Lab on A Chip, 2019, 19, 2915-2924.	3.1	56
923	An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification. Chemical Science, 2019, 10, 8571-8576.	3.7	22
924	Fire-shaped cylindrical glass micronozzles to measure cell deformability. Journal of Micromechanics and Microengineering, 2019, 29, 105001.	1.5	9
925	Tissue Papers: Leveraging Paper-Based Microfluidics for the Next Generation of 3D Tissue Models. Analytical Chemistry, 2019, 91, 10916-10926.	3.2	31
926	A Prototype Antibody-based Biosensor for Measurement of Salivary MMP-8 in Periodontitis using Surface Acoustic Wave Technology. Scientific Reports, 2019, 9, 11034.	1.6	18
927	Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab on A Chip, 2019, 19, 2822-2833.	3.1	135
928	Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. Biomicrofluidics, 2019, 13, 034109.	1.2	10
929	Impact of electrode design and voltage waveform on low-potential magnetohydrodynamic fluid actuation. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	1
930	Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC - Trends in Analytical Chemistry, 2019, 117, 215-230.	5.8	49
931	Omni‣iquid Droplet Manipulation Platform. Advanced Materials Interfaces, 2019, 6, 1900653.	1.9	33
932	Whole System Design of a Wearable Magnetic Induction Sensor for Physical Rehabilitation. Advanced Intelligent Systems, 2019, 1, 1900037.	3.3	15

#	Article	IF	Citations
933	A Macroscopic Diffusion-Based Gradient Generator to Establish Concentration Gradients of Soluble Molecules Within Hydrogel Scaffolds for Cell Culture. Frontiers in Chemistry, 2019, 7, 638.	1.8	9
934	Fabrication on bioinspired surfaces. , 2019, , 99-146.		15
935	On the Simulation of Organ-on-Chip Cell Processes. , 2019, , 313-341.		1
936	The effect of curing and zirconium content on the wettability and structure of a silicate hybrid sol-gel material. Journal of Non-Crystalline Solids, 2019, 525, 119658.	1.5	8
937	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 17465-17473.	7.2	89
939	3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels. Nanomaterials, 2019, 9, 1451.	1.9	17
940	Excellent quality microchannels for rapid microdevice prototyping: direct CO2 laser writing with efficient chemical postprocessing. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	12
941	Roll-To-Roll Screen-Printed Silver Conductors on a Polydimethyl Siloxane Substrate for Stretchable Electronics. Industrial & Engineering Chemistry Research, 2019, 58, 19909-19916.	1.8	34
942	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	1.8	11
943	Microfluidic Immunoassay System for Rapid Detection and Semi-Quantitative Determination of a Potential Serum Biomarker Mesothelin. ACS Sensors, 2019, 4, 2952-2957.	4.0	11
944	Microfluidic-CFPA Chip for the Point-of-Care Detection of African Swine Fever Virus with a Median Time to Threshold in about 10 min. ACS Sensors, 2019, 4, 3066-3071.	4.0	31
945	Cell Migrations: Causes and Functions. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6
946	Fusion dynamics of cubosome nanocarriers with model cell membranes. Nature Communications, 2019, 10, 4492.	5.8	73
947	Development of MEMS liquid cell to visualize the dynamics of bubbles and droplets at the microscale. Electronics and Communications in Japan, 2019, 102, 55-60.	0.3	3
948	Hybrid elastomer–plastic microfluidic device as a convenient model for mimicking the blood–brain barrier in vitro. Biomedical Microdevices, 2019, 21, 90.	1.4	12
949	Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk <i>via</i> a Surface Energy Gradient. ACS Nano, 2019, 13, 13100-13108.	7.3	15
950	Flow with nanoparticle clustering controlled by optical forces in quartz glass nanoslits. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	4
951	Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomedical Microdevices, 2019, 21, 93.	1.4	24

#	Article	IF	Citations
952	Flow Structure and Mixing Efficiency of Viscous Fluids in Microchannel with a Striped Superhydrophobic Wall. Langmuir, 2019, 35, 16388-16399.	1.6	8
953	Single and Multi-Objective Optimization of a Three-Dimensional Unbalanced Split-and-Recombine Micromixer. Micromachines, 2019, 10, 711.	1.4	6
954	A Bioinspired Photothermal Pneumatic Device Enabling Optical Manipulation of Microfluid toward Precise Control of Microreactions. Advanced Engineering Materials, 2019, 21, 1900977.	1.6	12
955	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie, 2019, 131, 17626-17634.	1.6	13
956	A Multiplexed Serologic Test for Diagnosis of Lyme Disease for Point-of-Care Use. Journal of Clinical Microbiology, 2019, 57, .	1.8	27
957	Invertebrate Retinal Progenitors as Regenerative Models in a Microfluidic System. Cells, 2019, 8, 1301.	1.8	12
958	Tubular Microcapsules with Polysaccharide Membranes Based on a Co-axial Microfluidic Chip. ACS Biomaterials Science and Engineering, 2019, 5, 6281-6289.	2.6	7
959	Robust Flow Control of a Syringe Pump Based on Dual-Loop Disturbance Observers. IEEE Access, 2019, 7, 135427-135438.	2.6	6
960	River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment. Sensors and Actuators B: Chemical, 2019, 301, 127125.	4.0	13
961	Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, 2019, , .	0.8	38
963	Microfluidics Chip for Directional Solvent Extraction Desalination of Seawater. Scientific Reports, 2019, 9, 12576.	1.6	8
964	Polydimethylsiloxane (PDMS) irreversible bonding to untreated plastics and metals for microfluidics applications. APL Materials, 2019, 7, .	2.2	33
965	Numerical simulation of a multi-inlet microfluidic device for biosensing purposes in osteoporosis management. Journal of Diabetes and Metabolic Disorders, 2019, 18, 341-348.	0.8	1
966	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	11.8	120
967	Modular microfluidic systems cast from 3D-printed molds for imaging leukocyte adherence to differentially treated endothelial cultures. Scientific Reports, 2019, 9, 11321.	1.6	17
968	Engineering passive swimmers by shaking liquids. New Journal of Physics, 2019, 21, 073012.	1.2	3
969	Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Scientific Reports, 2019, 9, 12694.	1.6	16
970	Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Frontiers in Bioengineering and Biotechnology, 2019, 7, 196.	2.0	33

#	Article	IF	CITATIONS
971	Pressure-controlled microfluidic sub-picoliter ultramicro-volume syringes based on integrated micro-nanostructure arrays. Lab on A Chip, 2019, 19, 3368-3374.	3.1	2
972	High-performance multiplex microvalves fabrication and using for tumor cells staining on a microfluidic chip. Biomedical Microdevices, 2019, 21, 87.	1.4	7
973	Essential regulators of iron chemical speciation distributions in anaerobic digestion of pretreated food waste: Organic volatile fatty acids or inorganic acid radicals?. Bioresource Technology, 2019, 293, 122051.	4.8	8
974	Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics. RSC Advances, 2019, 9, 19531-19538.	1.7	5
975	Chip-Scale Electrodeposition and Analysis of Poly(3,4-ethylenedioxythiophene) (PEDOT) Films for Enhanced and Sustained Microfluidics Using DC-Redox-Magnetohydrodynamics. Journal of the Electrochemical Society, 2019, 166, H615-H627.	1.3	9
976	Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Applied Bio Materials, 2019, 2, 5460-5491.	2.3	93
977	Progress of the discovery, application, and control technologies of chemical pesticides in China. Journal of Integrative Agriculture, 2019, 18, 840-853.	1.7	73
978	Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications. Analytical Chemistry, 2019, 91, 12358-12368.	3.2	20
979	Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform. Analytical Chemistry, 2019, 91, 13601-13610.	3.2	16
980	Nozzle-Shaped Electrode Configuration for Dielectrophoretic 3D-Focusing of Microparticles. Micromachines, 2019, 10, 585.	1.4	3
981	Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing. Carbohydrate Polymers, 2019, 225, 115235.	5.1	14
982	Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Scientific Reports, 2019, 9, 14297.	1.6	36
983	An Integrated Portable Multiplex Microchip Device for Fingerprinting Chemical Warfare Agents. Micromachines, 2019, 10, 617.	1.4	11
984	Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system. Lab on A Chip, 2019, 19, 654-664.	3.1	20
985	Development of a microfluidic device ($\hat{l}\frac{1}{4}$ PADs) for forensic serological analysis. Analytical Methods, 2019, 11, 587-595.	1.3	15
986	Latchable microfluidic valve arrays based on shape memory polymer actuators. Lab on A Chip, 2019, 19, 608-617.	3.1	19
987	Simple Isolation of Single Cell: Thin Glass Microfluidic Device for Observation of Isolated Single Euglena gracilis Cells. Analytical Sciences, 2019, 35, 577-583.	0.8	8
989	Microfluidic platforms for cell cultures and investigations. Microelectronic Engineering, 2019, 208, 14-28.	1.1	139

#	Article	IF	CITATIONS
990	Simultaneous Pumping and Mixing of Biological Fluids in a Double-Array Electrothermal Microfluidic Device. Micromachines, 2019, 10, 92.	1.4	14
991	Geometric Determinants of In-Situ Direct Laser Writing. Scientific Reports, 2019, 9, 394.	1.6	43
992	Analysis of Leukocyte Behaviors on Microfluidic Chips. Advanced Healthcare Materials, 2019, 8, e1801406.	3.9	13
993	Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip. Frontiers in Bioengineering and Biotechnology, 2019, 7, 3.	2.0	71
994	30 years of microfluidics. Micro and Nano Engineering, 2019, 2, 76-91.	1.4	357
995	Free-Flowing Shear-Thinning Liquid Film in Inclined ν-Channels. Fluids, 2019, 4, 8.	0.8	1
996	A skin-over-liquid platform with compliant microbumps actuated by pyro-EHD pressure. NPG Asia Materials, 2019, 11 , .	3.8	132
997	Applications of Light-Sheet Microscopy in Microdevices. Frontiers in Neuroanatomy, 2019, 13, 1.	0.9	81
998	High-throughput screening of high lactic acid-producing <i>Bacillus coagulans</i> by droplet microfluidic based flow cytometry with fluorescence activated cell sorting. RSC Advances, 2019, 9, 4507-4513.	1.7	29
999	Multistep SlipChip for the Generation of Serial Dilution Nanoliter Arrays and Hepatitis B Viral Load Quantification by Digital Loop Mediated Isothermal Amplification. Analytical Chemistry, 2019, 91, 8751-8755.	3.2	32
1000	Separation of Nano- and Microparticle Flows Using Thermophoresis in Branched Microfluidic Channels. Micromachines, 2019, 10, 321.	1.4	9
1001	Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie, 2019, 131, 13838-13843.	1.6	6
1002	Biological growth and synthetic fabrication of structurally colored materials. Journal of Optics (United Kingdom), 2019, 21, 073001.	1.0	37
1003	Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. International Journal of Pharmaceutics, 2019, 566, 687-696.	2.6	32
1004	Reversible Mechanical Deformations of Soft Microchannel Networks for Sensing in Soft Robotic Systems. Advanced Intelligent Systems, 2019, 1, 1900027.	3.3	8
1005	Fabrication of 3D printed modular microfluidic system for generating and manipulating complex emulsion droplets. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	31
1006	Micromotors from Microfluidics. Chemistry - an Asian Journal, 2019, 14, 2417-2430.	1.7	14
1007	Numerical study of a bubble driven micromixer based on thermal inkjet technology. Physics of Fluids, 2019, 31, 062006.	1.6	19

#	Article	IF	CITATIONS
1008	Electronically actuated microfluidic valves with zero static-power consumption using electropermanent magnets. Sensors and Actuators A: Physical, 2019, 296, 316-323.	2.0	9
1009	Digital microfluidics for cell manipulation. TrAC - Trends in Analytical Chemistry, 2019, 117, 291-299.	5.8	34
1010	Bacterial Single Cell Whole Transcriptome Amplification in Microfluidic Platform Shows Putative Gene Expression Heterogeneity. Analytical Chemistry, 2019, 91, 8036-8044.	3.2	26
1011	Bioprinters for organs-on-chips. Biofabrication, 2019, 11, 042002.	3.7	71
1012	Raising fluid walls around living cells. Science Advances, 2019, 5, eaav8002.	4.7	32
1013	Mesoscale modelling of near-contact interactions for complex flowing interfaces. Journal of Fluid Mechanics, 2019, 872, 327-347.	1.4	48
1014	Dynamic Liquid Surface Enhanced Raman Scattering Platform Based on Soft Tubular Microfluidics for Label-Free Cell Detection. Analytical Chemistry, 2019, 91, 7973-7979.	3.2	32
1015	Precise morphology control and fast merging of a complex multi-emulsion system: the effects of AC electric fields. Soft Matter, 2019, 15, 5614-5625.	1.2	10
1016	Acoustically Driven Micromixing: Effect of Transducer Geometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1387-1394.	1.7	11
1017	Microfluidics for studying metastatic patterns of lung cancer. Journal of Nanobiotechnology, 2019, 17, 71.	4.2	64
1018	Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing. IEEE Access, 2019, 7, 70901-70909.	2.6	28
1019	Microfluidic chip and its application in autophagy detection. TrAC - Trends in Analytical Chemistry, 2019, 117, 300-315.	5.8	27
1020	An electro-osmotic microfluidic system to characterize cancer cell migration under confinement. Journal of the Royal Society Interface, 2019, 16, 20190062.	1.5	13
1021	Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie - International Edition, 2019, 58, 13700-13705.	7.2	21
1022	Tunable microfluidic standing air bubbles and its application in acoustic microstreaming. Biomicrofluidics, 2019, 13, 034114.	1.2	6
1023	Recent advances in microfluidic technologies for organ-on-a-chip. TrAC - Trends in Analytical Chemistry, 2019, 117, 146-156.	5.8	61
1024	Vortex generation by viscoelastic sheath flow in flow-focusing microchannel. Korean Journal of Chemical Engineering, 2019, 36, 837-842.	1.2	13
1025	Human Ocular Angiogenesisâ€Inspired Vascular Models on an Injectionâ€Molded Microfluidic Chip. Advanced Healthcare Materials, 2019, 8, e1900328.	3.9	34

#	Article	IF	Citations
1026	Human-Derived Organ-on-a-Chip for Personalized Drug Development. Current Pharmaceutical Design, 2019, 24, 5471-5486.	0.9	72
1027	Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring. Biotechnology and Bioengineering, 2019, 116, 2393-2411.	1.7	26
1028	Comparison of Storage Methods for Microfluidically Produced Waterâ€inâ€Oil Droplets. Chemical Engineering and Technology, 2019, 42, 2028-2034.	0.9	3
1029	Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics, 2019, 9, 49.	1.3	239
1030	CRISPR/Cas Powered Multiplexed Biosensing. Trends in Biotechnology, 2019, 37, 791-792.	4.9	68
1031	Controllable superhydrophobic surfaces with tunable adhesion fabricated by laser interference lithography. Surface and Coatings Technology, 2019, 372, 434-441.	2.2	32
1032	The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: a systematic study for time-lapse microscopy applications. Scientific Reports, 2019, 9, 6789.	1.6	25
1033	Recent trends in mechanical micropumps and their applications: A review. Mechatronics, 2019, 60, 34-55.	2.0	130
1034	Spatial presentation of biological molecules to cells by localized diffusive transfer. Lab on A Chip, 2019, 19, 2114-2126.	3.1	1
1035	Cotton fiber-based assay with time-based microfluidic absorption sampling for point-of-care applications. Bioanalysis, 2019, 11, 855-873.	0.6	2
1036	Fabrication of all glass microfluidic device with superior chemical and mechanical resistances by glass molding with vitreous carbon mold. Journal of Micromechanics and Microengineering, 2019, 29, 075010.	1.5	15
1037	Manipulation of Microscale Fluid Using Laser-Irradiated Nanoparticle Arrays. Plasmonics, 2019, 14, 1555-1563.	1.8	8
1038	A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip. Biofabrication, 2019, 11, 045001.	3.7	20
1039	Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Scientific Reports, 2019, 9, 6199.	1.6	33
1040	Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells. Scientific Reports, 2019, 9, 6723.	1.6	24
1041	Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems. Biomicrofluidics, 2019, 13, 024111.	1.2	16
1042	Automated detection and sorting of microencapsulation <i>via</i> machine learning. Lab on A Chip, 2019, 19, 1808-1817.	3.1	35
1043	Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis. Analytical Chemistry, 2019, 91, 6304-6314.	3.2	62

#	ARTICLE	IF	CITATIONS
1044	Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. Advanced Materials, 2019, 31, 1900284.	11.1	30
1045	Noble microfluidic system for bioceramic nanoparticles engineering. Materials Science and Engineering C, 2019, 102, 221-227.	3.8	19
1046	Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. Journal of Analysis and Testing, 2019, 3, 50-60.	2.5	18
1047	Performance Evaluation of Free-Space Fibre Optic Detection in a Lab-on-Chip for Microorganism. Journal of Sensors, 2019, 2019, 1-10.	0.6	3
1048	A Novel PZT Pump with Built-in Compliant Structures. Sensors, 2019, 19, 1301.	2.1	32
1049	Ultrasonically-guided flow focusing generates precise emulsion droplets for high-throughput single cell analyses. Journal of Bioscience and Bioengineering, 2019, 128, 226-233.	1.1	21
1050	Microfluidic oxygen sensor system as a tool to monitor the metabolism of mammalian cells. Sensors and Actuators B: Chemical, 2019, 289, 24-31.	4.0	13
1051	A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nature Biomedical Engineering, 2019, 3, 509-519.	11.6	403
1052	Single-Cell Omics Analyses Enabled by Microchip Technologies. Annual Review of Biomedical Engineering, 2019, 21, 365-393.	5.7	49
1053	Engineering biological gradients. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001982902.	0.7	19
1054	Recent advances in the fabrication and application of nanomaterial-based enzymatic microsystems in chemical and biological sciences. Analytica Chimica Acta, 2019, 1067, 31-47.	2.6	43
1055	Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomaterials Science and Engineering, 2019, 5, 3688-3702.	2.6	18
1056	Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Analytical Chemistry, 2019, 91, 4995-5003.	3.2	36
1057	Recent advances in thread-based microfluidics for diagnostic applications. Biosensors and Bioelectronics, 2019, 132, 171-185.	5.3	78
1058	Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. Microsystem Technologies, 2019, 25, 3923-3932.	1.2	7
1059	Reconfigurable Acrylic-tape Hybrid Microfluidics. Scientific Reports, 2019, 9, 4824.	1.6	22
1060	Emerging Attractor in Wavy Poiseuille Flows Triggers Sorting of Biological Cells. Physical Review Letters, 2019, 122, 128002.	2.9	14
1061	Targeted Detection of Single-Nucleotide Variations: Progress and Promise. ACS Sensors, 2019, 4, 792-807.	4.0	42

#	Article	IF	CITATIONS
1062	Pore network model for permeability characterization of three-dimensionally-printed porous materials for passive microfluidics. Physical Review E, 2019, 99, 033107.	0.8	28
1063	Effect of microchannel structure and fluid properties on non-inertial particle migration. Soft Matter, 2019, 15, 2648-2656.	1.2	6
1064	A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. Analyst, The, 2019, 144, 2755-2764.	1.7	35
1065	Interface height fluctuations and surface tension of driven liquids with time-dependent dynamics. Journal of Chemical Physics, 2019, 150, 094708.	1.2	9
1066	From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Frontiers in Pharmacology, 2019, 10, 100.	1.6	26
1067	In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening. Sensors and Actuators A: Physical, 2019, 292, 149-157.	2.0	24
1068	Characterization and Neutral Atom Beam Surface Modification of a Clear Castable Polyurethane for Biomicrofluidic Applications. Surfaces, 2019, 2, 100-116.	1.0	2
1069	A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. Journal of Materials Chemistry B, 2019, 7, 3826-3839.	2.9	36
1070	Directional motion of dielectric droplets on polymer-coated conductor driven by electric corona discharge. Applied Physics Letters, 2019, 114, .	1.5	6
1071	A Solidâ€Stateâ€Emissive 1,8â€Naphthalimide Probe Based on Photoinduced Electron Transfer and Aggregationâ€Induced Emission. ChemistrySelect, 2019, 4, 4163-4167.	0.7	12
1072	Microfluidic devices and biological lasers for biophotonic applications. Journal of Physics: Conference Series, 2019, 1151, 012001.	0.3	3
1073	Rapid Assessment of Nanoparticle Extravasation in a Microfluidic Tumor Model. ACS Applied Nano Materials, 2019, 2, 1844-1856.	2.4	36
1074	lonic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices. Colloids and Surfaces B: Biointerfaces, 2019, 179, 233-241.	2.5	12
1075	Acoustopipetting: Tunable Nanoliter Sample Dispensing Using Surface Acoustic Waves. Analytical Chemistry, 2019, 91, 5621-5628.	3.2	17
1076	Static pressure-driven microfluidic gradient generator for long-term cell culture and adaptive cytoprotection analysis. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	9
1077	Microfluidic bioprinting for organ-on-a-chip models. Drug Discovery Today, 2019, 24, 1248-1257.	3.2	105
1078	Nebulization using ZnO/Si surface acoustic wave devices with focused interdigitated transducers. Surface and Coatings Technology, 2019, 367, 127-134.	2.2	24
1079	A novel wide-range microfluidic dilution device for drug screening. Biomicrofluidics, 2019, 13, 024105.	1.2	2

#	ARTICLE	IF	CITATIONS
1080	Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Convergence, 2019, 6, 3.	6.3	57
1081	Ultra-multiplexed analysis of single-cell dynamics reveals logic rules in differentiation. Science Advances, 2019, 5, eaav7959.	4.7	40
1082	Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, ,		10
1083	Numerical evaluation and experimental validation of cross-flow microfiltration device design. Biomedical Microdevices, 2019, 21, 21.	1.4	0
1084	Sperm selection methods in the 21st century. Biology of Reproduction, 2019, 101, 1076-1082.	1.2	56
1085	Microphysiological Systems as Enabling Tools for Modeling Complexity in the Tumor Microenvironment and Accelerating Cancer Drug Development. Advanced Functional Materials, 2019, 29, 1807553.	7.8	32
1086	Advances of Microfluidics in Biomedical Engineering. Advanced Materials Technologies, 2019, 4, 1800663.	3.0	53
1087	Quantitative Detection of Digoxin in Plasma Using Smallâ€Molecule Immunoassay in a Recyclable Gravityâ€Driven Microfluidic Chip. Advanced Science, 2019, 6, 1802051.	5.6	11
1088	Glucose biosensor based on open-source wireless microfluidic potentiostat. Sensors and Actuators B: Chemical, 2019, 290, 616-624.	4.0	32
1089	Microfluidic reactors for advancing the MS analysis of fast biological responses. Microsystems and Nanoengineering, 2019, 5, 7.	3.4	10
1090	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
1091	Microfluidic study of sustainable gold leaching using glycine solution. Hydrometallurgy, 2019, 185, 186-193.	1.8	8
1092	On-chip plasmonic immunoassay based on targeted assembly of gold nanoplasmonic particles. Analyst, The, 2019, 144, 2820-2826.	1.7	7
1093	Integration of CMOS Image Sensor and Microwell Array Using 3-D WLCSP Technology for Biodetector Application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 624-632.	1.4	6
1094	Multiplex Immunoassays. , 2019, , 177-196.		0
1095	In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. Lab on A Chip, 2019, 19, 934-940.	3.1	9
1096	Grow with the Flow: When Morphogenesis Meets Microfluidics. Advanced Materials, 2019, 31, e1805764.	11.1	42
1097	Effect of Surface Modification of Heterogeneous Anion-Exchange Membranes on the Intensity of Electroconvection at Their Surfaces. Russian Journal of Electrochemistry, 2019, 55, 1203-1220.	0.3	14

#	Article	IF	CITATIONS
1098	Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels. Micro and Nano Systems Letters, 2019, 7, .	1.7	28
1099	Simulation and Fabrication of Piezoelectrically Actuated Nozzle/Diffuser Micropump., 2019, , .		3
1100	Microanalysis Using Acoustically Actuated Droplets Pinned Onto a Thread. IEEE Access, 2019, 7, 154743-154749.	2.6	7
1101	Analysis of Intrinsic Stochastic Fluctuations of the Time Response of Adsorption-Based Microfluidic Bio/Chemical Sensors: the Case of Bianalyte Mixtures. , 2019, , .		0
1102	Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics, 2019, 13, 064116.	1.2	18
1103	Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Scientific Reports, 2019, 9, 20215.	1.6	67
1104	A Fully Integrated In Vitro Diagnostic Microsystem for Pathogen Detection Developed Using a "3D Extensible―Microfluidic Design Paradigm. Micromachines, 2019, 10, 873.	1.4	8
1105	Enzyme-linked immunosorbent assay utilizing thin-layered microfluidics. Analyst, The, 2019, 144, 6625-6634.	1.7	10
1106	Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors, 2019, 4, 3298-3307.	4.0	73
1107	Controlled Focused Ion Beam Milling of Composite Solid State Nanopore Arrays for Molecule Sensing. Micromachines, 2019, 10, 774.	1.4	13
1108	Strong Modulations of Optical Reflectance in Tapered Core–Shell Nanowires. Materials, 2019, 12, 3572.	1.3	11
1109	Reversible Cavitationâ€Induced Junctional Opening in an Artificial Endothelial Layer. Small, 2019, 15, e1905375.	5.2	27
1110	A Potential Application of Triangular Microwells to Entrap Single Cancer Cells: A Canine Cutaneous Mast Cell Tumor Model. Micromachines, 2019, 10, 841.	1.4	3
1111	Asymmetrical Split-and-Recombine Micromixer with Baffles. Micromachines, 2019, 10, 844.	1.4	23
1112	Collective behaviors of Drosophila-derived retinal progenitors in controlled microenvironments. PLoS ONE, 2019, 14, e0226250.	1.1	4
1113	Rapid Fabrication of Custom Microfluidic Devices for Research and Educational Applications. Journal of Visualized Experiments, 2019, , .	0.2	2
1114	Braess's paradox and programmable behaviour in microfluidic networks. Nature, 2019, 574, 647-652.	13.7	26
1115	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	1.4	130

#	Article	IF	CITATIONS
1116	Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Analyst, The, 2019, 144, 7200-7208.	1.7	39
1117	Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis, 2019, 22, 157-165.	3.7	147
1118	Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. Tissue Engineering - Part B: Reviews, 2019, 25, 30-45.	2.5	7
1119	Monitoring phase transition of aqueous biomass model substrates by highâ€pressure and highâ€temperature microfluidics. Electrophoresis, 2019, 40, 563-570.	1.3	2
1120	A novel dual-color total internal reflection fluorescence detecting platform using compact optical structure and silicon-based photodetector. Talanta, 2019, 196, 78-84.	2.9	10
1121	Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles. Advanced Materials, 2019, 31, e1805344.	11.1	81
1122	Preparation of orthogonal physicochemical gradients on PDMS surface using microfluidic concentration gradient generator. Applied Surface Science, 2019, 471, 213-221.	3.1	14
1123	Microfluidic synthesis and on-chip enrichment application of two-dimensional hollow sandwich-like mesoporous silica nanosheet with water ripple-like surface. Journal of Colloid and Interface Science, 2019, 539, 87-94.	5.0	16
1124	Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncolmmunology, 2019, 8, 1553477.	2.1	103
1125	Stem cell niche: Dynamic neighbor of stem cells. European Journal of Cell Biology, 2019, 98, 65-73.	1.6	33
1126	Recent advances on open fluidic systems for biomedical applications: A review. Materials Science and Engineering C, 2019, 97, 851-863.	3.8	56
1127	Transepithelial/Transendothelial Electrical Resistance (TEER) to Measure the Integrity of Blood-Brain Barrier. Neuromethods, 2019, , 99-114.	0.2	14
1128	Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication, 2019, 11, 025001.	3.7	125
1129	Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 2019, 12, 34-71.	13.1	52
1130	Microfluidic device for generating regionalized concentration gradients under a stable and uniform fluid microenvironment. Journal of Micromechanics and Microengineering, 2019, 29, 015008.	1.5	6
1131	A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta, 2019, 195, 62-68.	2.9	70
1132	A versatile loop-mediated isothermal amplification microchip platform for Streptococcus pneumoniae and Mycoplasma pneumoniae testing at the point of care. Biosensors and Bioelectronics, 2019, 126, 373-380.	5.3	48
1133	Soft Thermoplastic Elastomer for Easy and Rapid Spinâ€Coating Fabrication of Microfluidic Devices with High Hydrophilization and Bonding Performances. Advanced Materials Technologies, 2019, 4, 1800308.	3.0	10

#	Article	IF	CITATIONS
1135	A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators. Chemical Engineering Science, 2019, 195, 120-126.	1.9	22
1136	New Frontiers in Cardiovascular Research: Microfluidic Modeling of Cardiovascular Diseases and Applications for Hypertension Research. , 2019, , 293-302.		0
1137	Microfluidics for Porous Systems: Fabrication, Microscopy and Applications. Transport in Porous Media, 2019, 130, 277-304.	1.2	43
1138	Reconstruction of in vivo-like in vitro model: Enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectronic Engineering, 2019, 203-204, 6-24.	1.1	19
1139	A micro-dispenser for long-term storage and controlled release of liquids. Nature Communications, 2019, 10, 189.	5.8	19
1140	Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist. Micromachines, 2019, 10, 9.	1.4	8
1141	Whole-System Ultrasound Resonances as the Basis for Acoustophoresis in All-Polymer Microfluidic Devices. Physical Review Applied, 2019, 11, .	1.5	37
1142	Capillarity-driven migration of small objects: A critical review. European Physical Journal E, 2019, 42, 1.	0.7	45
1143	Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies, 2019, 4, 1800611.	3.0	14
1144	Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip. Journal of Thermal Analysis and Calorimetry, 2019, 137, 831-839.	2.0	8
1145	A Microfluidic-Based Microscopy Platform for Continuous Interrogation of Trypanosoma brucei during Environmental Perturbation. Biochemistry, 2019, 58, 875-882.	1.2	6
1146	Two-dimensional modal and non-modal instabilities in straight-diverging-straight channel flow. Physics of Fluids, 2019, 31, .	1.6	11
1147	Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood. AIP Advances, 2019, 9, 015003.	0.6	4
1148	Aptasensors for pesticide detection. Biosensors and Bioelectronics, 2019, 130, 174-184.	5.3	210
1149	On-chip mobile microrobotic transducer for high-temporal resolution sensing using dynamics analysis. Sensors and Actuators A: Physical, 2019, 288, 27-38.	2.0	3
1150	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
1151	Mechanics of fluid-elastomer systems in soft robotics. , 2019, , 425-448.		5
1152	Microfluidicsâ€Based Biomaterials and Biodevices. Advanced Materials, 2019, 31, e1805033.	11.1	102

#	Article	IF	CITATIONS
1153	Lab-on-a-chip technology and microfluidics. , 2019, , 3-36.		11
1154	Future of microfluidics in research and in the market. , 2019, , 425-465.		12
1155	A dry film technology for the manufacturing of 3-D multi-layered microstructures and buried channels for lab-on-chip. Microsystem Technologies, 2019, 25, 3219-3233.	1.2	7
1156	REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature Microbiology, 2019, 4, 46-54.	5.9	437
1157	Nonlinear Microfluidics. Analytical Chemistry, 2019, 91, 296-314.	3.2	137
1158	Atomic Force Microscopy in Probing Tumor Physics for Nanomedicine. IEEE Nanotechnology Magazine, 2019, 18, 83-113.	1.1	24
1159	A Microfluidic Model with Hydrogel Barriers for the Construction of Shearâ€Free Attractive and Repulsive Cue Gradients. Advanced Materials Technologies, 2019, 4, 1800434.	3.0	3
1160	Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects. Renewable and Sustainable Energy Reviews, 2019, 101, 548-558.	8.2	59
1161	An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform. Analytical and Bioanalytical Chemistry, 2019, 411, 5393-5403.	1.9	5
1162	Deep Learning with Microfluidics for Biotechnology. Trends in Biotechnology, 2019, 37, 310-324.	4.9	160
1163	Assessing reusability of microfluidic devices: Urinary protein uptake by PDMS-based channels after long-term cyclic use. Talanta, 2019, 192, 455-462.	2.9	5
1164	Inexpensive Design of a Bio-Chip for Disease Diagnostics: Molecular Biomarker Sensing Microchip Patterned from a Soft Oxometalate-Perylene-Based Hybrid Composite using Thermo-Optical Laser Tweezers. European Journal of Inorganic Chemistry, 2019, 2019, 469-476.	1.0	4
1165	Nanomaterials in microfluidics for disease diagnosis and therapy development. Materials Technology, 2019, 34, 92-116.	1.5	22
1166	Droplet Microfluidics as a Tool for the Generation of Granular Matters and Functional Emulsions. KONA Powder and Particle Journal, 2019, 36, 50-71.	0.9	15
1167	Unbalanced Split and Recombine Micromixer with Three-Dimensional Steps. Industrial & Engineering Chemistry Research, 2020, 59, 3744-3756.	1.8	35
1168	Cyberphysical Microfluidic Biochips. , 2020, , 1-17.		3
1169	Numerical study of a membrane-type micro check-valve for microfluidic applications. Microsystem Technologies, 2020, 26, 367-376.	1.2	3
1171	Photofabrication of polymeric biomicrofluidics: New insights into material selection. Materials Science and Engineering C, 2020, 106, 110166.	3.8	5

#	Article	IF	CITATIONS
1172	Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips. SLAS Technology, 2020, 25, 82-87.	1.0	1
1173	Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Materials Horizons, 2020, 7, 638-666.	6.4	101
1174	Fabrication of a Three-Layer PDMS Pneumatic Microfluidic Chip for Micro Liquid Sample Operation. SLAS Technology, 2020, 25, 151-161.	1.0	8
1175	Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis. Biomechanics and Modeling in Mechanobiology, 2020, 19, 389-400.	1.4	11
1176	Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta, 2020, 208, 120304.	2.9	30
1177	Brain-on-a-chip systems for modeling disease pathogenesis. , 2020, , 215-232.		6
1178	High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Methods in Enzymology, 2020, 632, 479-502.	0.4	7
1179	Application of Nanodiagnostics in Viral Infectious Diseases. , 2020, , 179-195.		4
1180	Paperâ€Based Microfluidics for Electrochemical Applications. ChemElectroChem, 2020, 7, 10-30.	1.7	40
1181	Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, e1904673.	5.2	63
1182	Microfluidic Cell Trap Arrays for Single Hematopoietic Stem/Progenitor Cell Behavior Analysis. Proteomics, 2020, 20, e1900223.	1.3	8
1183	Determination of kinetic parameters of homogenous continuous flow esterification of monobutyl chlorophosphate in a microreactor. Canadian Journal of Chemical Engineering, 2020, 98, 1139-1147.	0.9	3
1184	Colloidal Crystals from Microfluidics. Small, 2020, 16, e1903931.	5.2	37
1185	Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow. Microsystem Technologies, 2020, 26, 751-763.	1.2	17
1186	Microfluidicsâ€Implemented Biochemical Assays: From the Perspective of Readout. Small, 2020, 16, e1903388.	5.2	27
1187	Onâ€Chip Generation of Vortical Flows for Microfluidic Centrifugation. Small, 2020, 16, e1903605.	5.2	30
1188	Pulsatile Flow in Microfluidic Systems. Small, 2020, 16, e1904032.	5. 2	50
1189	Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood. Lab on A Chip, 2020, 20, 244-252.	3.1	40

#	Article	IF	CITATIONS
1190	Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. TrAC - Trends in Analytical Chemistry, 2020, 124, 115806.	5.8	65
1191	Generating linear oxygen gradients across 3D cell cultures with block-layered oxygen controlled chips (BLOCCs). Analytical Methods, 2020, 12, 18-24.	1.3	11
1192	Injection molded open microfluidic well plate inserts for user-friendly coculture and microscopy. Lab on A Chip, 2020, 20, 107-119.	3.1	20
1193	Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. Lab on A Chip, 2020, 20, 760-777.	3.1	36
1194	Focusing of sub-micrometer particles in microfluidic devices. Lab on A Chip, 2020, 20, 35-53.	3.1	77
1195	Digital microfluidic meter-on-chip. Lab on A Chip, 2020, 20, 722-733.	3.1	17
1196	Droplet-based optofluidic systems for measuring enzyme kinetics. Analytical and Bioanalytical Chemistry, 2020, 412, 3265-3283.	1.9	27
1197	Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping. Nano Energy, 2020, 69, 104407.	8.2	33
1198	Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885, .	1.4	19
1199	Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers. Analytical Chemistry, 2020, 92, 940-946.	3.2	40
1200	A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model. Langmuir, 2020, 36, 340-353.	1.6	7
1201	Continuous aqueous two-phase extraction: From microfluidics to integrated biomanufacturing. Fluid Phase Equilibria, 2020, 508, 112438.	1.4	13
1202	Viscoelastic fluid flow simulations in the e-VROCTM geometry. Journal of Non-Newtonian Fluid Mechanics, 2020, 278, 104222.	1.0	15
1203	Frequent inappropriate use of unweighted summary statistics in systematic reviews of pathogen genotypes or genogroups. Journal of Clinical Epidemiology, 2020, 119, 26-35.	2.4	0
1204	3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosensors and Bioelectronics, 2020, 150, 111900.	5.3	56
1205	Development of a rapid phenotypic test on a microfluidic device for carbapenemase detection using the chromogenic compound nitrocefin. Diagnostic Microbiology and Infectious Disease, 2020, 96, 114926.	0.8	2
1206	Biosensors for Personal Mobile Health: A System Architecture Perspective. Advanced Materials Technologies, 2020, 5, 1900720.	3.0	18
1207	An integrated fluidic electrochemical sensor manufactured using fused filament fabrication and supersonic cluster beam deposition. Sensors and Actuators A: Physical, 2020, 301, 111706.	2.0	5

#	Article	IF	CITATIONS
1208	Pressureâ€Driven Twoâ€Input 3D Microfluidic Logic Gates. Advanced Science, 2020, 7, 1903027.	5 . 6	12
1209	Harnessing the Granularity of Micro-Electrode-Dot-Array Architectures for Optimizing Droplet Routing in Biochips. ACM Transactions on Design Automation of Electronic Systems, 2020, 25, 1-37.	1.9	4
1210	Rivalry of diffusion, external field and gravity in micro-convection of magnetic colloids. Journal of Magnetism and Magnetic Materials, 2020, 498, 166247.	1.0	2
1211	Flexible topological liquid diode catheter. Materials Today Physics, 2020, 12, 100170.	2.9	8
1212	Purely Elastic Fluid–Structure Interactions in Microfluidics: Implications for Mucociliary Flows. Small, 2020, 16, e1903872.	5.2	27
1213	Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood. Analytical Chemistry, 2020, 92, 1574-1581.	3.2	52
1214	A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Analytica Chimica Acta, 2020, 1100, 215-224.	2.6	59
1215	Long-term hydrophilization of polydimethylsiloxane (PDMS) for capillary filling microfluidic chips. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	16
1216	Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small, 2020, 16, e1905318.	5.2	30
1217	Reduced nonspecific protein adsorption by application of diethyldithiocarbamate in receptor layer of diphtheria toxoid electrochemical immunosensor. Bioelectrochemistry, 2020, 132, 107415.	2.4	10
1218	Design, fabrication and experimental characterization of whole-thermoplastic microvalves and micropumps having micromilled liquid channels of rectangular and half-elliptical cross-sections. Sensors and Actuators A: Physical, 2020, 301, 111713.	2.0	16
1219	An integrated microfluidic device for solid-phase extraction and spectrophotometric detection of opium alkaloids in urine samples. Analytical and Bioanalytical Chemistry, 2020, 412, 129-138.	1.9	24
1220	Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Molecular Aspects of Medicine, 2020, 72, 100832.	2.7	48
1221	A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing. Micromachines, 2020, 11, 2.	1.4	14
1222	Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like― Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570692.	2.0	5
1223	Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Frontiers in Medicine, 2020, 7, 537.	1.2	3
1224	Direct Laser Writing for Deterministic Lateral Displacement of Submicron Particles. Journal of Microelectromechanical Systems, 2020, 29, 906-911.	1.7	8
1225	MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors, 2020, 5, 3297-3305.	4.0	28

#	Article	IF	Citations
1226	Independent and grouped 3D cell rotation in a microfluidic device for bioimaging applications. Biosensors and Bioelectronics, 2020, 170, 112661.	5.3	16
1227	Trace multi-class organic explosives analysis in complex matrices enabled using LEGO®-inspired clickable 3D-printed solid phase extraction block arrays. Journal of Chromatography A, 2020, 1629, 461506.	1.8	15
1228	3D printing promotes the development of drugs. Biomedicine and Pharmacotherapy, 2020, 131, 110644.	2.5	49
1229	Concentration Determination at a Countable Molecular Level in Nanofluidics by Solvent-Enhanced Photothermal Optical Diffraction. Analytical Chemistry, 2020, 92, 14366-14372.	3.2	5
1230	Microfluidics in Gas Sensing and Artificial Olfaction. Sensors, 2020, 20, 5742.	2.1	22
1231	Fabrication of a 3D microfluidic cell culture device for bone marrow-on-a-chip. Micro and Nano Engineering, 2020, 9, 100075.	1.4	17
1232	Numerical simulation of oscillating plates at the visco-inertial regime for bio-inspired pumping and mixing applications. Physics of Fluids, 2020, 32, 101906.	1.6	8
1233	Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study. SN Applied Sciences, 2020, 2, 1.	1.5	3
1234	High DNA integrity sperm selection using surface acoustic waves. Lab on A Chip, 2020, 20, 4262-4272.	3.1	32
1235	Fabrication of high-quality glass microfluidic devices for bioanalytical and space flight applications. MethodsX, 2020, 7, 101043.	0.7	12
1236	The Microfluidic Trainer: Design, Fabrication and Validation of a Tool for Testing and Improving Manual Skills. Micromachines, 2020, 11, 872.	1.4	0
1237	Inertial microfluidics: Recent advances. Electrophoresis, 2020, 41, 2166-2187.	1.3	41
1238	Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosensors and Bioelectronics, 2020, 170, 112682.	5.3	20
1239	Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Scientific Reports, 2020, 10, 15915.	1.6	27
1240	Surface tension driven flow of blood in a rectangular microfluidic channel: Effect of erythrocyte aggregation. Physics of Fluids, 2020, 32, .	1.6	17
1241	CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Applied Surface Science, 2020, 530, 147116.	3.1	88
1242	iQPrep Kit: A milli-fluidic test kit for immunodiagnostics. , 2020, , .		1
1243	An affordable 3D-printed positioner fixture improves the resolution of conventional milling for easy prototyping of acrylic microfluidic devices. Lab on A Chip, 2020, 20, 3179-3186.	3.1	6

#	Article	IF	CITATIONS
1244	On-chip analysis of atmospheric ice-nucleating particles in continuous flow. Lab on A Chip, 2020, 20, 2889-2910.	3.1	24
1245	Surface Patterning., 2020, , 553-573.		7
1246	Jetâ€Printing Microfluidic Devices on Demand. Advanced Science, 2020, 7, 2001854.	5.6	17
1247	Advances in Microtechnology for Improved Cytotoxicity Assessment. Frontiers in Materials, 2020, 7, .	1.2	5
1248	Organâ€onâ€aâ€Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small, 2020, 16, e2003517.	5.2	80
1249	Influence of operating parameters in particle spreading, separation, and capturing in a hybrid free flow magnetophoretic bio-separator. Physics of Fluids, 2020, 32, .	1.6	6
1250	Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications. Tissue Engineering and Regenerative Medicine, 2020, 17, 787-800.	1.6	14
1251	The mixing performance of passive micromixers with smart-rhombic units. Journal of Dispersion Science and Technology, 2022, 43, 439-445.	1.3	4
1252	Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. Journal of Personalized Medicine, 2020, 10, 249.	1.1	23
1253	PLGA Nanofiber/PDMS Microporous Composite Membrane-Sandwiched Microchip for Drug Testing. Micromachines, 2020, 11, 1054.	1.4	11
1254	Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. Scientific Reports, 2020, 10, 21193.	1.6	17
1255	Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589074.	2.0	62
1256	3D design and numerical simulation of a check-valve micropump for lab-on-a-chip applications. Journal of Micro-Bio Robotics, 2020, 16, 237-248.	2.1	4
1257	Newly emerged engineering of in vitro 3D tumor models using biomaterials for chemotherapy. , 2020, , 533-550.		0
1258	Effect of Deformation on Droplet Contact Charge Electrophoresis. Langmuir, 2020, 36, 10379-10386.	1.6	3
1259	A signal amplification of p DNA@Ag2S based photoelectrochemical competitive sensor for the sensitive detection of OTA in microfluidic devices. Biosensors and Bioelectronics, 2020, 168, 112503.	5.3	33
1260	A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control. Lab on A Chip, 2020, 20, 4433-4441.	3.1	8
1261	Artâ€onâ€aâ€Chip: Preserving Microfluidic Chips for Visualization and Permanent Display. Small, 2020, 16, e2002035.	5. 2	9

#	Article	IF	CITATIONS
1262	High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. IScience, 2020, 23, 101272.	1.9	32
1263	Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a softâ€embossing protocol. Electrophoresis, 2020, 41, 1641-1650.	1.3	7
1265	Era of nano-lab-on-a-chip (LOC) technology. , 2020, , 1-17.		0
1266	Advances in numerical approaches for microfluidic cell analysis platforms. Journal of Science: Advanced Materials and Devices, 2020, 5, 295-307.	1.5	11
1267	Optimization of hybrid microfluidic chip fabrication methods for biomedical application. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	10
1268	Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews, 2020, 120, 9482-9553.	23.0	49
1269	Droplet microfluidics: fundamentals and its advanced applications. RSC Advances, 2020, 10, 27560-27574.	1.7	144
1270	Genomic Cytometry and New Modalities for Deep Singleâ€Cell Interrogation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1007-1016.	1.1	2
1271	An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation. Analyst, The, 2020, 145, 6447-6455.	1.7	6
1272	Effect of microfluidic processing on the viability of boar and bull spermatozoa. Biomicrofluidics, 2020, 14, 044111.	1.2	3
1273	Microfluidic devices powered by integrated elasto-magnetic pumps. Lab on A Chip, 2020, 20, 4285-4295.	3.1	7
1274	The future of microfluidics in immune checkpoint blockade. Cancer Gene Therapy, 2021, 28, 895-910.	2.2	8
1275	Recent Trends in Nanomaterial-Based Biosensors for Point-of-Care Testing. Frontiers in Chemistry, 2020, 8, 586702.	1.8	25
1276	Diagnostic Accuracy of Oral Fluids Biomarker Profile to Determine the Current and Future Status of Periodontal and Peri-Implant Diseases. Diagnostics, 2020, 10, 838.	1.3	36
1277	Prussian Blue (bio)sensing device for distance-based measurements. Analytica Chimica Acta, 2020, 1136, 125-133.	2.6	11
1278	Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. Nature Communications, 2020, 11, 5221.	5.8	10
1279	A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method. Scientific Reports, 2020, 10, 17143.	1.6	16
1280	Integrating Biosensors in Organs-on-Chip Devices: A Perspective on Current Strategies to Monitor Microphysiological Systems. Biosensors, 2020, 10, 110.	2.3	65

#	Article	IF	CITATIONS
1281	Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. Lab on A Chip, 2020, 20, 3665-3689.	3.1	65
1282	Organ-on-a-Chip. Advances in Biochemical Engineering/Biotechnology, 2020, , 311-342.	0.6	7
1283	Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems. Advanced Science, 2020, 7, 2001120.	5.6	52
1284	Experimental fluid dynamics characterization of a novel micropump-mixer. Biomicrofluidics, 2020, 14, 044116.	1.2	1
1285	Automation of Amplicon-Based Library Preparation for Next-Generation Sequencing by Centrifugal Microfluidics. Analytical Chemistry, 2020, 92, 12833-12841.	3.2	15
1286	Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46557-46564.	4.0	27
1287	Physically Active Bioreactors for Tissue Engineering Applications. Advanced Biology, 2020, 4, e2000125.	3.0	29
1288	Quantifying active diffusion in an agitated fluid. Physical Chemistry Chemical Physics, 2020, 22, 21678-21684.	1.3	2
1289	Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics. Lab on A Chip, 2020, 20, 3709-3719.	3.1	16
1290	Advances in Continuous Microfluidics-Based Technologies for the Study of HIV Infection. Viruses, 2020, 12, 982.	1.5	9
1291	Channel innovations for inertial microfluidics. Lab on A Chip, 2020, 20, 3485-3502.	3.1	126
1292	Bonding of thermoplastic microfluidics by using dry adhesive tape. RSC Advances, 2020, 10, 30289-30296.	1.7	27
1293	Microfluidics Technology for Label-Free Isolation of Circulating Tumor Cells. Journal of the Institution of Engineers (India): Series C, 2020, 101, 1051-1071.	0.7	4
1294	Rapid and even spreading of complex fluids over a large area in porous substrates. Applied Physics Letters, 2020, 117, .	1.5	3
1295	On the thin-film asymptotics of surface tension driven microfluidics. Journal of Fluid Mechanics, 2020, 901, .	1.4	8
1296	Generation of microfluidic gradients and their effects on cells behaviours. Bio-Design and Manufacturing, 2020, 3, 427-431.	3.9	3
1297	Development Of a Microfluidic Colorectal Cancer Cell Culture System with Integrated Optical Sensors for Rapid Phage Selection. , 2020, , .		0
1298	Picosecond Laser Processing of Photosensitive Glass for Generation of Biologically Relevant Microenvironments. Applied Sciences (Switzerland), 2020, 10, 8947.	1.3	5

#	Article	IF	CITATIONS
1299	Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors, 2020, 10, 205.	2.3	63
1300	Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles. Materials, 2020, 13, 5477.	1.3	3
1301	Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. Micromachines, 2020, 11, 1089.	1.4	6
1302	A Review of Passive Constant Flow Regulators for Microfluidic Applications. Applied Sciences (Switzerland), 2020, 10, 8858.	1.3	16
1303	Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing. Micromachines, 2020, 11, 1082.	1.4	8
1304	Increasing silicone mold longevity: a review of surface modification techniques for PDMS-PDMS double casting. Soft Materials, 2021, 19, 388-399.	0.8	15
1305	Femtosecond Laser Direct Writing for 3D Microfluidic Biochip Fabrication. Springer Series in Materials Science, 2020, , 247-272.	0.4	1
1306	Microfluidic-Based Detection of AML-Specific Biomarkers Using the Example of Promyelocyte Leukemia. International Journal of Molecular Sciences, 2020, 21, 8942.	1.8	3
1307	Application of microfluidic technology in cancer research and therapy. Advances in Clinical Chemistry, 2020, 99, 193-235.	1.8	8
1308	A 3D Nanoprinted Normally Closed Microfluidic Transistor. , 2020, , .		3
1309	The Liberalization of Microfluidics: Form 2 Benchtop 3D Printing as an Affordable Alternative to Established Manufacturing Methods. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900935.	0.8	15
1310	High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Progress in Biomedical Engineering, 2020, 2, 022001.	2.8	12
1311	Microfluidic platform for integrated plasmonic detection in laminal flow. Nanotechnology, 2020, 31, 335502.	1.3	4
1312	An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst, The, 2020, 145, 4494-4503.	1.7	51
1313	A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nature Biomedical Engineering, 2020, 4, 591-600.	11.6	87
1314	Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12, 15512-15527.	2.8	58
1315	Open microfluidic coculture reveals paracrine signaling from human kidney epithelial cells promotes kidney specificity of endothelial cells. American Journal of Physiology - Renal Physiology, 2020, 319, F41-F51.	1.3	8
1316	High-throughput cell and spheroid mechanics in virtual fluidic channels. Nature Communications, 2020, 11, 2190.	5.8	29

#	Article	IF	CITATIONS
1317	Rapid Prototyping of Multilayer Microphysiological Systems. ACS Biomaterials Science and Engineering, 2021, 7, 2949-2963.	2.6	28
1318	Discovery of alternative polyadenylation dynamics from single cell types. Computational and Structural Biotechnology Journal, 2020, 18, 1012-1019.	1.9	9
1319	Effect of additives on the growth of HKUST-1 crystals synthesized by microfluidic chips with concentration gradient. Biomicrofluidics, 2020, 14, 034110.	1.2	4
1320	Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave Microcentrifuge. Analytical Chemistry, 2020, 92, 10024-10032.	3.2	37
1321	4D synchrotron microtomography and pore-network modelling for direct <i>in situ</i> capillary flow visualization in 3D printed microfluidic channels. Lab on A Chip, 2020, 20, 2403-2411.	3.1	7
1322	Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Physical Prototyping, 2020, 15, 340-358.	5. 3	79
1323	Innovative Visualization and Quantification of Extracellular Vesicles Interaction with and Incorporation in Target Cells in 3D Microenvironments. Cells, 2020, 9, 1180.	1.8	14
1324	Driving Smart Molecular Systems by Artificial Molecular Machines. Advanced Intelligent Systems, 2020, 2, 1900169.	3.3	17
1325	Spontaneous oscillations and negative-conductance transitions in microfluidic networks. Science Advances, 2020, 6, eaay6761.	4.7	4
1326	Multiple Zones Modification of Open Off-Stoichiometry Thiol-Ene Microchannel by Aptamers: A Methodological Study & A Proof of Concept. Chemosensors, 2020, 8, 24.	1.8	4
1327	A Micro-Optic Stalk ($\hat{1}$ /4OS) System to Model the Collective Migration of Retinal Neuroblasts. Micromachines, 2020, 11, 363.	1.4	2
1328	Emerging technologies for profiling extracellular vesicle heterogeneity. Lab on A Chip, 2020, 20, 2423-2437.	3.1	54
1329	Acoustic Characterization of Polydimethylsiloxane for Microscale Acoustofluidics. Physical Review Applied, 2020, 13, .	1.5	16
1330	Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward High-Performance Flexible Sensor. Nano-Micro Letters, 2020, 12, 117.	14.4	20
1331	Mechanical and Optical Properties of Stretchable Silicon Nanocrystal/Polydimethylsiloxane Nanocomposites. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000015.	0.8	8
1332	Continuous Flow Reactor for the Controlled Synthesis and Inline Photocatalysis of Antibacterial Ag ₂ S Nanoparticles. Photochemistry and Photobiology, 2020, 96, 1273-1282.	1.3	14
1333	Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosensors and Bioelectronics, 2020, 168, 112391.	5.3	24
1334	A one-step polymer screen-printing method for fabrication of microfluidic cloth-based analytical devices. Microchemical Journal, 2020, 158, 105078.	2.3	11

#	Article	IF	CITATIONS
1335	Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 167, 78-88.	6.6	66
1336	Development of Cell Spheroids by Advanced Technologies. Advanced Materials Technologies, 2020, 5, 2000183.	3.0	32
1337	Performance analysis of a novel piezo actuated valveless micropump for biomedical application. AIP Conference Proceedings, 2020, , .	0.3	3
1338	Laser-Engraved Textiles for Engineering Capillary Flow and Application in Microfluidics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29908-29916.	4.0	5
1339	Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Scientific Reports, 2020, 10, 9215.	1.6	36
1340	Experimental and modelâ€based study of biohydration of acrylonitrile to acrylamide in a microstructured chemical system. AICHE Journal, 2020, 66, e16298.	1.8	7
1341	The passage of a bubble or a drop past an obstruction in a channel. Physics of Fluids, 2020, 32, .	1.6	7
1342	Engineered tumor models for cancer biology and treatment. , 2020, , 423-443.		4
1343	"Development and application of analytical detection techniques for droplet-based microfluidics―A review. Analytica Chimica Acta, 2020, 1113, 66-84.	2.6	61
1344	Detection and extraction of heavy metal ions using paper-based analytical devices fabricated via atom stamp printing. Microsystems and Nanoengineering, 2020, 6, 14.	3.4	39
1345	Integrated Microfluidic Sample-to-Answer System for Direct Nucleic Acid-Based Detection of Group B <i>Streptococci</i> in Clinical Vaginal/Anal Swab Samples. ACS Sensors, 2020, 5, 1132-1139.	4.0	19
1346	Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered, 2020, 11, 328-355.	1.4	136
1347	Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	35
1348	Efficient Separation of Photogenerated Charges in Sandwiched Bi ₂ S ₃ â^BiOCl Nanoarrays/BiVO ₄ Nanosheets Composites for Enhanced Photocatalytic Activity. ChemCatChem, 2020, 12, 3223-3229.	1.8	5
1349	Is sickle cell disease-related neurotoxicity a systemic endotheliopathy?. Hematology/ Oncology and Stem Cell Therapy, 2020, 13, 111-115.	0.6	1
1350	Recreating the sizeâ€dependent reabsorption function of proximal convoluted tubule towards artificial kidney applications: Structural analysis and computational study. Artificial Organs, 2020, 44, E369-E381.	1.0	6
1351	Emerging applications of paper-based analytical devices for drug analysis: A review. Analytica Chimica Acta, 2020, 1116, 70-90.	2.6	113
1352	Silk Particle Production Based on Silk/PVA Phase Separation Using a Microfabricated Co-flow Device. Molecules, 2020, 25, 890.	1.7	13

#	Article	IF	CITATIONS
1353	Human mesenchymal stem cell (hMSC) differentiation towards cardiac cells using a new microbioanalytical method. Analyst, The, 2020, 145, 3017-3028.	1.7	8
1354	Determination of void fraction of two-phase flow in slit microchannel. AIP Conference Proceedings, 2020, , .	0.3	0
1355	Targeting Tunable Physical Properties of Materials for Chronic Wound Care. Frontiers in Bioengineering and Biotechnology, 2020, 8, 584.	2.0	20
1356	Magnetic Bead-Based Electrochemical Immunoassays On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis. Biosensors, 2020, 10, 66.	2.3	27
1357	Enabling seamless investigation of fast and complex flow fields in microfluidics via metal lead halide perovskite based micro-particles. Applied Materials Today, 2020, 20, 100736.	2.3	0
1358	Thermokinetic transport of dilatant/pseudoplastic fluids in a hydrophobic patterned micro-slit. Physics of Fluids, 2020, 32, .	1.6	10
1359	Prototyping a Versatile Two-Layer Multi-Channel Microfluidic Device for Direct-Contact Cell-Vessel Co-Culture. Micromachines, 2020, 11, 79.	1.4	14
1360	Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nature Photonics, 2020, 14, 355-360.	15.6	67
1361	Emerging Trends in Microfluidics Based Devices. Biotechnology Journal, 2020, 15, e1900279.	1.8	29
1362	Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. International Journal of Pharmaceutics, 2020, 579, 119167.	2.6	24
1363	PnBA/PDMAAâ€Based Ironâ€Loaded Micropillars Allow for Discrete Cell Adhesion and Analysis of Actuationâ€Related Molecular Responses. Advanced Materials Interfaces, 2020, 7, 1901806.	1.9	14
1364	Improving the longevity of passive microfluidic systems through plasma polymer films with a vertical chemical gradient. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	2
1365	High-throughput electrochemical sensing platform for screening nanomaterial–biomembrane interactions. Review of Scientific Instruments, 2020, 91, 025002.	0.6	9
1366	Knotting and weak knotting in confined, open random walks using virtual knots. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 045001.	0.7	0
1367	Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro. Integrative Biology (United Kingdom), 2020, 12, 21-33.	0.6	9
1368	Antibody-coated microstructures for selective isolation of immune cells in blood. Lab on A Chip, 2020, 20, 1072-1082.	3.1	9
1369	Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips <i>via</i>) commercial 3D-printers. Soft Matter, 2020, 16, 3096-3105.	1.2	13
1370	Neuronal substrates alter the migratory responses of nonmyelinating Schwann cells to controlled brainâ€derived neurotrophic factor gradients. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 609-621.	1.3	3

#	Article	IF	CITATIONS
1371	Consolidation of Clinical Microbiology Laboratories and Introduction of Transformative Technologies. Clinical Microbiology Reviews, 2020, 33, .	5.7	27
1372	A microarray platform designed for high-throughput screening the reaction conditions for the synthesis of micro/nanosized biomedical materials. Bioactive Materials, 2020, 5, 286-296.	8.6	10
1373	Particle-Based Porous Materials for the Rapid and Spontaneous Diffusion of Liquid Metals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11163-11170.	4.0	17
1374	Wearable biosensors and sample handling strategies. , 2020, , 65-88.		10
1375	Mixing Optimization in Grooved Serpentine Microchannels. Micromachines, 2020, 11, 61.	1.4	30
1376	Freeform Microfluidic Networks Encapsulated in Laserâ€Printed 3D Macroscale Glass Objects. Advanced Materials Technologies, 2020, 5, 1900989.	3.0	29
1377	Bioinspired reconfiguration of 3D printed microfluidic hydrogels <i>via</i> automated manipulation of magnetic inks. Lab on A Chip, 2020, 20, 1713-1719.	3.1	7
1378	Computer-Aided Design of Microfluidic Circuits. Annual Review of Biomedical Engineering, 2020, 22, 285-307.	5.7	18
1379	Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. Small, 2020, 16, e2000146.	5.2	21
1380	Self-powered microfluidic pump using evaporation from diatom biosilica thin films. Microfluidics and Nanofluidics, 2020, 24, $1.$	1.0	7
1381	Significance of digital microfluidic techniques in biomedical devices for healthcare., 2020,, 281-303.		0
1382	A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications. Applied Materials Today, 2020, 19, 100635.	2.3	55
1383	Fabrication of a foldable all-in-one point-of-care molecular diagnostic microdevice for the facile identification of multiple pathogens. Sensors and Actuators B: Chemical, 2020, 314, 128057.	4.0	28
1384	Pumpless, "Self-Driven―Microfluidic Channels with Controlled Blood Flow Using an Amphiphilic Silicone. ACS Applied Polymer Materials, 2020, 2, 1731-1738.	2.0	11
1385	Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics. Microsystems and Nanoengineering, 2020, 6, 18.	3.4	15
1386	Rapid lipolytic oscillations in <i>ex vivo</i> adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. Lab on A Chip, 2020, 20, 1503-1512.	3.1	18
1387	Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Advances, 2020, 10, 11652-11680.	1.7	106
1388	Spatially controlled stem cell differentiation via morphogen gradients: A comparison of static and dynamic microfluidic platforms. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033205.	0.9	7

#	Article	IF	CITATIONS
1389	The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes. Sensors, 2020, 20, 2228.	2.1	7
1390	Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue. Annals of Biomedical Engineering, 2020, 48, 2425-2437.	1.3	4
1391	PDMS leaching and its implications for on-chip studies focusing on bone regeneration applications. Organs-on-a-Chip, 2020, 2, 100004.	1.8	40
1392	Investigation of Environmental Pollutant-Induced Lung Inflammation and Injury in a 3D Coculture-Based Microfluidic Pulmonary Alveolus System. Analytical Chemistry, 2020, 92, 7200-7208.	3.2	38
1393	Optofluidic phase-shifting digital holographic microscopy for quantitative measurement of microfluidic diffusion dynamics. Journal of Applied Physics, 2020, 127, .	1.1	10
1394	Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics. Science Advances, 2020, 6, eaay8305.	4.7	25
1395	Under oil open-channel microfluidics empowered by exclusive liquid repellency. Science Advances, 2020, 6, eaay9919.	4.7	34
1396	The promising expedition of the delivery systems for monoclonal antibodies. , 2020, , 69-103.		0
1397	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile Institute, 2021, 112, 568-577.	1.0	0
1398	Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomaterialia, 2021, 120, 20-37.	4.1	7 3
1399	Microfluidic-based models to address the bone marrow metastatic niche complexity. Seminars in Cell and Developmental Biology, 2021, 112, 27-36.	2.3	1
1400	Solventâ€resistant microfluidic paperâ€based analytical device/spray mass spectrometry for quantitative analysis of C ₁₈ â€ceramide biomarker. Journal of Mass Spectrometry, 2021, 56, e4611.	0.7	10
1401	Induced Pluripotent Stem Cells on a Chip: A Self-Contained, Accessible, Pipette-less iPSC Culturing and Differentiation Kit. SLAS Technology, 2021, 26, 80-91.	1.0	1
1402	Mechanical Sciences., 2021, , .		1
1403	Multi-scale generative adversarial network for improved evaluation of cell–cell interactions observed in organ-on-chip experiments. Neural Computing and Applications, 2021, 33, 3671-3689.	3.2	13
1404	All-graphene-based open fluidics for pumpless, small-scale fluid transport <i>via</i> laser-controlled wettability patterning. Nanoscale Horizons, 2021, 6, 24-32.	4.1	12
1405	A Versatile Flexible Polymer Actuator System for Pumps, Valves, and Injectors Enabling Fully Disposable Active Microfluidics. Advanced Materials Technologies, 2021, 6, 2000769.	3.0	2
1406	Engineering organoid microfluidic system for biomedical and health engineering: A review. Chinese Journal of Chemical Engineering, 2021, 30, 244-254.	1.7	5

#	Article	IF	CITATIONS
1407	Recent advances in microfluidic technology and applications for anti-cancer drug screening. TrAC - Trends in Analytical Chemistry, 2021, 134, 116118.	5.8	28
1408	A flexible and cost-effective manual droplet operation platform for miniaturized cell assays and single cell analysis. Talanta, 2021, 224, 121874.	2.9	2
1409	Newly designed dual-mode electrochemical sensor onto a single polydimethylsiloxane-based chip. Talanta, 2021, 221, 121611.	2.9	2
1410	Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical, 2021, 329, 129171.	4.0	28
1411	Image-Based Live Cell Sorting. Trends in Biotechnology, 2021, 39, 613-623.	4.9	37
1412	Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: Review and Perspective. ACS Sensors, 2021, 6, 3-21.	4.0	47
1413	An overview of microfluidic devices. , 2021, , 1-22.		3
1414	Portable microfluidic devices for in-field detection of pharmaceutical residues in water: Recent outcomes and current technological situation – A short review. Case Studies in Chemical and Environmental Engineering, 2021, 3, 100069.	2.9	6
1415	Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC - Trends in Analytical Chemistry, 2021, 135, 116151.	5.8	76
1416	The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media, 2021, 136, 343-367.	1.2	10
1417	Detecting cancer metastasis and accompanying protein biomarkers at single cell levels using a 3D-printed microfluidic immunoarray. Biosensors and Bioelectronics, 2021, 171, 112681.	5.3	43
1418	Smart microfluidic analogue of Wheatstone-bridge for real-time continuous detection with ultrasensitivity and wide dynamic range. Chemical Engineering Journal, 2021, 407, 127138.	6.6	12
1419	Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta, 2021, 224, 121810.	2.9	21
1420	Microfluidic Biomaterials. Advanced Healthcare Materials, 2021, 10, e2001028.	3.9	18
1421	Microfluidic Technologies for Head and Neck Cancer: From Single-Cell Analysis to Tumor-on-a-Chip., 2021,, 43-62.		1
1422	Raman spectroscopy/SERS based immunoassays for cancer diagnostics. , 2021, , 107-124.		1
1423	Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. Lab on A Chip, 2021, 21, 1139-1149.	3.1	22
1424	Early cancer diagnosis using lab-on-a-chip devices: A bibliometric and network analysis. Collnet Journal of Scientometrics and Information Management, 2021, 15, 163-196.	0.4	3

#	Article	IF	CITATIONS
1425	Microfluidics for core–shell drug carrier particles – a review. RSC Advances, 2021, 11, 229-249.	1.7	33
1426	FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection. Lab on A Chip, 2021, 21, 775-783.	3.1	29
1427	Fabrication of Micro-channels on Polymethyl Methacrylate (PMMA) Plates by Thermal Softening Process Using Nichrome Wire: Tool Design and Surface Property Evaluation. Procedia Manufacturing, 2021, 53, 182-188.	1.9	5
1428	Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio. Micromachines, 2021, 12, 81.	1.4	7
1429	Roughness, inertia, and diffusion effects on anomalous transport in rough channel flows. Physical Review Fluids, 2021, 6, .	1.0	23
1430	Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst, The, 2021, 146, 6064-6083.	1.7	23
1431	Journal of Materials Chemistry B and Biomaterials Science Editor's choice web collection: "Recent advances in microfluidicsâ€. Journal of Materials Chemistry B, 2021, 9, 3606-3607.	2.9	1
1432	Microfluidic Chip., 2021, , 357-375.		3
1433	Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection. Nanoscale, 2021, 13, 8855-8863.	2.8	8
1435	Micropump Fluidic Strategy for Fabricating Perovskite Microwire Array-Based Devices Embedded in Semiconductor Platform. Cell Reports Physical Science, 2021, 2, 100304.	2.8	11
1436	Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Lab on A Chip, 2021, 21, 3715-3729.	3.1	53
1437	A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology. RSC Advances, 2021, 11, 20507-20518.	1.7	5
1438	Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. International Journal of Molecular Sciences, 2021, 22, 1195.	1.8	31
1439	A perspective on the isolation and characterization of extracellular vesicles from different biofluids. RSC Advances, 2021, 11, 19598-19615.	1.7	21
1440	Imaging therapeutic peptide transport across intestinal barriers. RSC Chemical Biology, 2021, 2, 1115-1143.	2.0	10
1441	Multi-Compartment Lymph-Node-on-a-Chip Enables Measurement of Immune Cell Motility in Response to Drugs. Bioengineering, 2021, 8, 19.	1.6	9
1442	Bubbles in microfluidics: an all-purpose tool for micromanipulation. Lab on A Chip, 2021, 21, 1016-1035.	3.1	40
1443	Bioengineering Approaches for Placental Research. Annals of Biomedical Engineering, 2021, 49, 1805-1818.	1.3	13

#	Article	IF	CITATIONS
1444	Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Annals of Biomedical Engineering, 2021, 49, 1943-1972.	1.3	14
1445	A pair of particles in inertial microfluidics: effect of shape, softness, and position. Soft Matter, 2021, 17, 4804-4817.	1.2	24
1446	Functional coatings for lab-on-a-chip systems based on phospholipid polymers., 2021,, 555-595.		4
1447	Fabrication and Bonding of Refractive Index Matched Microfluidics for Precise Measurements of Cell Mass. Polymers, 2021, 13, 496.	2.0	2
1448	A microfluidic platform for dissociating clinical scale tissue samples into single cells. Biomedical Microdevices, 2021, 23, 10.	1.4	5
1449	Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics, 2021, 10, 209.	1.5	58
1450	Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology. Clinical and Experimental Otorhinolaryngology, 2021, 14, 29-42.	1.1	1
1451	Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. Science Advances, 2021, 7, .	4.7	82
1452	A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @ carbon composite for human respiration detection. Nanotechnology, 2021, 32, 19LT01.	1.3	12
1453	COMPUTATIONAL STUDY OF GEOMETRIC EFFECTS OF BOTTOM WALL MICROGROOVES ON CELL DOCKING INSIDE MICROFLUIDIC DEVICES. Journal of Mechanics in Medicine and Biology, 2021, 21, 2150017.	0.3	0
1454	Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing. Journal of Micromechanics and Microengineering, 2021, 31, 044001.	1.5	15
1455	Low-cost microfluidic device micromachining and sequential integration with SAW sensor intended for biomedical applications. Sensors and Actuators A: Physical, 2021, 319, 112526.	2.0	11
1456	Oncoimmunology Meets Organs-on-Chip. Frontiers in Molecular Biosciences, 2021, 8, 627454.	1.6	21
1457	Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics, 2021, 15, 024111.	1.2	6
1458	Rapid Formation of Selfâ€Supporting Polydimethylsiloxane Sheets with Periodic Clusters of Embedded Nickel Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2002216.	1.9	1
1459	Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. Micromachines, 2021, 12, 256.	1.4	25
1460	Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals, 2021, 11, 272.	1.0	1
1461	Engineering a Human Pluripotent Stem Cell-Based in vitro Microphysiological System for Studying the Metformin Response in Aortic Smooth Muscle Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 627877.	2.0	4

#	Article	IF	CITATIONS
1462	An innovative and user-friendly smartphone-assisted molecular diagnostic approach for rapid detection of canine vector-borne diseases. Parasitology Research, 2021, 120, 1799-1809.	0.6	2
1463	A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge. Micromachines, 2021, 12, 263.	1.4	11
1464	Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Frontiers in Molecular Biosciences, 2020, 7, 558982.	1.6	9
1465	Photostrictive Effect: Characterization Techniques, Materials, and Applications. Advanced Functional Materials, 2021, 31, 2010706.	7.8	24
1466	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	23.0	89
1467	Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microbial Biotechnology, 2022, 15, 395-414.	2.0	27
1468	Emerging applications of microfluidic techniques for <i>inÂvitro</i> toxicity studies of atmospheric particulate matter. Aerosol Science and Technology, 2021, 55, 623-639.	1.5	5
1469	Continuous Fluidic Techniques for the Precise Synthesis of Metalâ€Organic Frameworks. ChemPlusChem, 2021, 86, 650-661.	1.3	8
1471	A reconfigurable microscale assay enables insights into cancer-associated fibroblast modulation of immune cell recruitment. Integrative Biology (United Kingdom), 2021, 13, 87-97.	0.6	6
1472	A HiPAD Integrated with rGO/MWCNTs Nanoâ€Circuit Heater for Visual Pointâ€ofâ€Care Testing of SARSâ€CoVâ€2. Advanced Functional Materials, 2021, 31, 2100801.	7.8	20
1473	Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Biomedical Microdevices, 2021, 23, 25.	1.4	8
1474	Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections. Langmuir, 2021, 37, 5118-5130.	1.6	35
1475	On-Chip Replication of Extremely Early-Stage Tumor Behavior. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19768-19777.	4.0	17
1476	Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annual Review of Physical Chemistry, 2021, 72, 73-97.	4.8	26
1477	Self-Organized Implanting of Micro/Nanofiltration Membranes in Advanced Flow ν-Reactors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19430-19442.	4.0	1
1478	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
1479	Pressure measurement methods in microchannels: advances and applications. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	6
1480	Plug-and-play acoustic tweezer enables droplet centrifugation on silicon superstrate with surface multi-layered microstructures. Sensors and Actuators A: Physical, 2021, 321, 112432.	2.0	8

#	Article	IF	CITATIONS
1481	Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease. Cells, 2021, 10, 899.	1.8	7
1482	Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. Micromachines, 2021, 12, 472.	1.4	12
1483	Ultrasensitive Exosomal MicroRNA Detection with a Supercharged DNA Framework Nanolabel. Analytical Chemistry, 2021, 93, 5917-5923.	3.2	47
1484	Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Mikrochimica Acta, 2021, 188, 164.	2.5	16
1485	Patterns of bacterial motility in microfluidics-confining environments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
1486	Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Analytical Chemistry, 2021, 93, 5862-5871.	3.2	25
1487	Microswimmer Combing: Controlling Interfacial Dynamics for Openâ€Surface Multifunctional Screening of Small Animals. Advanced Healthcare Materials, 2021, 10, e2001887.	3.9	4
1488	Recent advances in electrode development for biomedical applications. Biomedical Engineering Letters, 2021, 11, 107-115.	2.1	10
1489	A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications. Biotechnology and Bioprocess Engineering, 2021, 26, 165-178.	1.4	16
1490	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	23.0	95
1491	A review on acoustic field-driven micromixers. International Journal of Chemical Reactor Engineering, 2021, 19, 553-569.	0.6	17
1492	Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems, 2021, 3, 2000263.	3.3	50
1493	On the potential of microscale electrokinetic cascade devices. Electrophoresis, 2021, 42, 2474-2482.	1.3	4
1494	Design Artificial Stem Cell Nests for Stem Cell Niche in a Microfluidic Petri Dish Programmed by a Cell Phone. Advanced Materials Technologies, 2021, 6, 2100045.	3.0	3
1495	Multivariate thinking for optical microfluidic analytical devices – A tutorial review. Microchemical Journal, 2021, 164, 105959.	2.3	1
1496	A simple, low cost and reusable microfluidic gradient strategy and its application in modeling cancer invasion. Scientific Reports, 2021, 11, 10310.	1.6	14
1497	Lung on a Chip Development from Off-Stoichiometry Thiol–Ene Polymer. Micromachines, 2021, 12, 546.	1.4	4
1498	Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. Micromachines, 2021, 12, 639.	1.4	5

#	Article	IF	CITATIONS
1499	A Specific Nucleic Acid Microfluidic Capture Device Based on Stable DNA Nanostructure. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24487-24492.	4.0	8
1500	Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology, 2021, 32, 312001.	1.3	26
1501	Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators. Micromachines, 2021, 12, 604.	1.4	5
1502	Microfluidic Adsorption-Based Biosensors: Mathematical Models of Time Response and Noise, Considering Mass Transfer and Surface Heterogeneity. , 0, , .		3
1503	Breaking the Third Wall: Implementing 3D-Printing Techniques to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices. Micromachines, 2021, 12, 627.	1.4	23
1504	Microfluidic Technology and Biomedical Field. NATURENGS MTU Journal of Engineering and Natural Sciences Malatya Turgut Ozal University, 0, , .	0.2	0
1505	Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Scientific Reports, 2021, 11, 9750.	1.6	19
1506	Optically Guided Pyroelectric Manipulation of Water Droplet on a Superhydrophobic Surface. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23181-23190.	4.0	25
1507	A New Direction in Microfluidics: Printed Porous Materials. Micromachines, 2021, 12, 671.	1.4	4
1508	Programmable capillary action controls fluid flows. Nature, 2021, 595, 31-32.	13.7	2
1509	Methods for analyzing neuronal structure and activity in <i>Caenorhabditis elegans</i> . Genetics, 2021, 218, .	1.2	9
1510	Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device. Micromachines, 2021, 12, 662.	1.4	12
1511	Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation. Journal of the Acoustical Society of America, 2021, 149, 4281-4291.	0.5	23
1512	In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. Journal of Controlled Release, 2021, 334, 164-177.	4.8	19
1513	Stochastic Time Response and Ultimate Noise Performance of Adsorption-Based Microfluidic Biosensors. Biosensors, 2021, 11, 194.	2.3	2
1514	Tumor-on-a-chip: from bioinspired design to biomedical application. Microsystems and Nanoengineering, 2021, 7, 50.	3.4	103
1515	Evolving trends in SERS-based techniques for food quality and safety: A review. Trends in Food Science and Technology, 2021, 112, 225-240.	7.8	194
1516	Ultrafast laser manufacturing of nanofluidic systems. Nanophotonics, 2021, 10, 2389-2406.	2.9	16

#	Article	IF	CITATIONS
1517	Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Applied Materials Today, 2021, 23, 101000.	2.3	28
1518	Methods for immobilizing receptors in microfluidic devices: A review. Micro and Nano Engineering, 2021, 11, 100085.	1.4	25
1519	Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia. Scientific Reports, 2021, 11, 13553.	1.6	33
1520	Parallel and largeâ€scale antitumor investigation using stable chemical gradient and heterotypic threeâ€dimensional tumor coculture in a multiâ€layered microfluidic device. Biotechnology Journal, 2021, 16, e2000655.	1.8	6
1521	Composite Elastomer-Enabled Rapid Photofabrication of Microfluidic Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37589-37597.	4.0	5
1522	Microfluidic Flow Sensing Approaches. , 0, , .		6
1523	Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays. Micromachines, 2021, 12, 826.	1.4	33
1524	Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes. Journal of the Acoustical Society of America, 2021, 150, 634-645.	0.5	8
1525	Label-Free Biosensing Using Thin-Film Amorphous Silicon Photodiodes Integrated With Microfluidics. IEEE Sensors Journal, 2021, 21, 15999-16005.	2.4	5
1526	Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement. Journal of Chromatography A, 2021, 1649, 462216.	1.8	15
1527	Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis. Micromachines, 2021, 12, 917.	1.4	7
1528	High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics. Scientific Reports, 2021, 11, 13959.	1.6	6
1529	<i>In Situ</i> Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 2021, 15, 11231-11243.	7.3	47
1530	Micro Milling Process for the Rapid Prototyping of Microfluidic Devices. , 0, , .		1
1531	Recent Advances in Microfluidic Platforms for Programming Cellâ€Based Living Materials. Advanced Materials, 2021, 33, e2005944.	11.1	26
1532	Inertial microfluidics in contraction–expansion microchannels: A review. Biomicrofluidics, 2021, 15, 041501.	1.2	36
1533	Formation and Elimination of Satellite Droplets during Monodisperse Droplet Generation by Using Piezoelectric Method. Micromachines, 2021, 12, 921.	1.4	4
1534	Intensified extraction and separation of zinc from cadmium and manganese by a slug flow capillary microreactor. Separation and Purification Technology, 2021, 267, 118564.	3.9	12

#	Article	IF	CITATIONS
1535	PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors, 2021, 11, 292.	2.3	90
1536	Fabrication for paper-based microfluidic analytical devices and saliva analysis application. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	14
1537	A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems. Micromachines, 2021, 12, 947.	1.4	7
1538	Recent Developments in 3D Printing of Droplet-Based Microfluidics. Biochip Journal, 2021, 15, 313-333.	2.5	30
1539	Microtextured die using silicon stencil mask for micro-machining of stainless steel. Japanese Journal of Applied Physics, 2022, 61, SA1012.	0.8	2
1540	Microfluidics-Based Single-Cell Research for Intercellular Interaction. Frontiers in Cell and Developmental Biology, 2021, 9, 680307.	1.8	6
1541	Fabrication and characteristic study on mixing enhancement of a magnetofluidic mixer. Sensors and Actuators A: Physical, 2021, 326, 112733.	2.0	9
1542	Recent developments in sensors for wearable device applications. Analytical and Bioanalytical Chemistry, 2021, 413, 6037-6057.	1.9	59
1543	Applicability of organ-on-chip systems in toxicology and pharmacology. Critical Reviews in Toxicology, 2021, 51, 540-554.	1.9	13
1544	Coordination array for accurate colorimetric sensing of multiple heavy metal ions. Talanta, 2021, 231, 122357.	2.9	12
1545	Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Advanced Drug Delivery Reviews, 2021, 175, 113791.	6.6	16
1546	A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. Npj Biofilms and Microbiomes, 2021, 7, 62.	2.9	26
1548	Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach. Computers in Biology and Medicine, 2021, 135, 104547.	3.9	9
1549	Numerical Modeling of Flow through the Vertical Rectangular Microchannel for Drug Screening Applications. Journal of Physics: Conference Series, 2021, 1979, 012041.	0.3	0
1550	<i>In vitro</i> model systems for exploring oral biofilms: From singleâ€species populations to complex multiâ€species communities. Journal of Applied Microbiology, 2022, 132, 855-871.	1.4	6
1551	Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives. Chinese Chemical Letters, 2022, 33, 2799-2806.	4.8	16
1552	Lithographically patterned micro-nozzles for controlling fluid flow profiles for drug delivery and in vitro imaging applications. MRS Communications, 0 , 1 .	0.8	1
1553	NIR-responsive structural color hydrogel microchannel for self-regulating microfluidic system. Applied Materials Today, 2021, 24, 101115.	2.3	5

#	Article	IF	CITATIONS
1554	Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. International Journal of Molecular Sciences, 2021, 22, 10098.	1.8	22
1555	Nonlinearity-modulated single molecule trapping and Raman scattering analysis. Optics Express, 2021, 29, 32285.	1.7	1
1556	Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis, 2021, 42, 2230-2237.	1.3	10
1557	Real-time capture of single particles in controlled flow by a rapidly generated foci array with adjustable intensity and pattern. Optics Letters, 2021, 46, 5308.	1.7	2
1558	Progress and challenges in biomarker enrichment for cancer early detection. Progress in Biomedical Engineering, 2021, 3, 043001.	2.8	6
1559	Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Frontiers of Medicine, 2022, 16, 157-175.	1.5	15
1560	Real-time transport kinetics of drug encapsulated nanoparticles into apoptotic cancer cells inside microchannels. Nanotechnology, 2021, 32, 505704.	1.3	1
1561	Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends in Pharmacological Sciences, 2021, 42, 715-728.	4.0	26
1562	Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. Biomicrofluidics, 2021, 15, 054102.	1.2	10
1563	Advances in Magnetic Nanoparticles Engineering for Biomedical Applications—A Review. Bioengineering, 2021, 8, 134.	1.6	21
1564	Photo and Soft Lithography for Organ-on-Chip Applications. Methods in Molecular Biology, 2022, 2373, 1-19.	0.4	15
1565	A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer. Chinese Chemical Letters, 2022, 33, 3083-3086.	4.8	6
1566	Saliva Lab-on-a-chip biosensors: Recent novel ideas and applications in disease detection. Microchemical Journal, 2021, 168, 106506.	2.3	19
1567	Development of 3D+G printing for the design of customizable flow reactors. Chemical Engineering Journal, 2022, 430, 132670.	6.6	15
1568	Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: Recent progress and challenges in biomedicine. Biomedicine and Pharmacotherapy, 2021, 141, 111845.	2.5	19
1569	Microbial fuel cells and their electrified biofilms. Biofilm, 2021, 3, 100057.	1.5	52
1571	Capillary flow control in lateral flow assays via delaminating timers. Science Advances, 2021, 7, eabf9833.	4.7	18
1572	Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation. Ultrasonics, 2021, 117, 106547.	2.1	15

#	Article	IF	Citations
1573	LateralÂporous silicon interferometric transducer for on-chip flow-through sensing applications. Sensors and Actuators A: Physical, 2021, 332, 113089.	2.0	6
1574	Water-repellent surfaces of metallic glasses: fabrication and application. Materials Today Advances, 2021, 12, 100164.	2.5	8
1575	Microfluidic fabrication of fluorescent nanomaterials: A review. Chemical Engineering Journal, 2021, 425, 131511.	6.6	33
1576	Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16, 100136.	2.3	51
1577	Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow. International Journal of Engineering Science, 2021, 169, 103563.	2.7	13
1578	The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. Journal of Molecular Liquids, 2021, 343, 117598.	2.3	5
1579	Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosensors and Bioelectronics, 2021, 194, 113589.	5. 3	15
1580	Segmented flow capillary microreactors for determination of kinetic rate constants of reactive zinc extraction system. Chemical Engineering Science, 2022, 247, 117037.	1.9	4
1581	Cell manipulation and cellular analysis. , 2022, , 145-179.		0
1582	Virtual walls for dielectric fluid manipulation through controllable charge deposition. Experimental Thermal and Fluid Science, 2022, 130, 110512.	1.5	0
1583	Lab-on-a-chip for analysis of blood. , 2022, , 265-283.		2
1584	Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: a critical review. Analyst, The, 2021, 146, 4724-4736.	1.7	13
1585	Microfluidics Technology for Nanoparticles and Equipment. , 2021, , 67-98.		0
1586	Hepatitis C virus (HCV) diagnosis <i>via</i> microfluidics. Analytical Methods, 2021, 13, 740-763.	1.3	18
1587	Regulation of exosome production and cargo sorting. International Journal of Biological Sciences, 2021, 17, 163-177.	2.6	179
1588	Microfluidic Culture Platforms in Neuroscience Research. , 2021, , 1-39.		1
1589	96-Well Oxygen Control Using a 3D-Printed Device. Analytical Chemistry, 2021, 93, 2570-2577.	3.2	8
1590	Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems. Lab on A Chip, 2021, 21, 3979-3990.	3.1	10

#	Article	IF	CITATIONS
1591	Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Physical Chemistry Chemical Physics, 2021, 23, 3693-3706.	1.3	21
1592	Low-cost laser-cut patterned chips for acoustic concentration of micro- to nanoparticles and cells by operating over a wide frequency range. Analyst, The, 2021, 146, 3280-3288.	1.7	5
1593	Surface Modification of PDMS-Based Microfluidic Devices with Collagen Using Polydopamine as a Spacer to Enhance Primary Human Bronchial Epithelial Cell Adhesion. Micromachines, 2021, 12, 132.	1.4	29
1594	Mehr als nur ein Netzwerk: Strukturierung retikulÃ ¤ er Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1595	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1596	Inkjet Printing of Curing Agent on Thin PDMS for Local Tailoring of Mechanical Properties. Macromolecular Rapid Communications, 2020, 41, 1900569.	2.0	4
1597	Fast High-Throughput Screening of H1N1 Virus by Parallel Detection with Multichannel Microchip Electrophoresis. Methods in Molecular Biology, 2015, 1274, 81-92.	0.4	3
1598	Miniaturized Technology for DNA Typing: Cassette PCR. Methods in Molecular Biology, 2015, 1310, 175-191.	0.4	3
1599	Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. Advances in Experimental Medicine and Biology, 2019, 1146, 79-103.	0.8	3
1600	Current and Emerging 3D Models to Study Breast Cancer. Advances in Experimental Medicine and Biology, 2019, 1152, 413-427.	0.8	20
1601	On-Chip Drug Screening Technologies for Nanopharmaceutical and Nanomedicine Applications. Environmental Chemistry for A Sustainable World, 2021, , 311-346.	0.3	3
1602	Microfluidic Platforms for Bio-applications. Microsystems and Nanosystems, 2017, , 253-282.	0.1	9
1604	Microfluidic Systems for Cardiac Cell Cultureâ€"Characterization. , 2018, , 155-167.		1
1605	FDM 3D Printing in Biomedical and Microfluidic Applications. Materials Horizons, 2020, , 127-145.	0.3	2
1606	Current Status of the Development of Blood-Based Point-of-Care Microdevices., 2021,, 169-196.		9
1607	Droplet-Based Microfluidics for Single-Cell Encapsulation and Analysis. Integrated Analytical Systems, 2019, , 119-141.	0.4	4
1608	Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review. Analytica Chimica Acta, 2017, 986, 1-11.	2.6	129
1609	Mirheo: High-performance mesoscale simulations for microfluidics. Computer Physics Communications, 2020, 254, 107298.	3.0	10

#	Article	IF	CITATIONS
1610	3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. International Journal of Pharmaceutics, 2020, 584, 119436.	2.6	22
1611	Chapter 4. Paper-fluidic Based Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 95-120.	0.1	2
1612	Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex. Nanoscale, 2020, 12, 6673-6690.	2.8	13
1613	Engineered fluidic systems to understand lymphatic cancer metastasis. Biomicrofluidics, 2020, 14, 011502.	1.2	22
1614	Microfluidic systems for hydrodynamic trapping of cells and clusters. Biomicrofluidics, 2020, 14, 031502.	1.2	44
1615	Induced-charge electrokinetics in microfluidics: a review on recent advancements. Journal of Micromechanics and Microengineering, 2020, 30, 113001.	1.5	18
1616	Volume-preserving strategies to improve the mixing efficiency of serpentine micromixers. Journal of Micromechanics and Microengineering, 2020, 30, 115022.	1.5	5
1617	Stable 3D inertial focusing by high aspect ratio curved microfluidics. Journal of Micromechanics and Microengineering, 2021, 31, 015008.	1.5	5
1618	A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication, 2020, 12, 045032.	3.7	20
1619	Advances in continuous-flow based microfluidic PCR devicesâ€"a review. Engineering Research Express, 2020, 2, 042001.	0.8	37
1620	Investigation of human trophoblast invasion <i>in vitro</i> . Human Reproduction Update, 2020, 26, 501-513.	5.2	155
1627	Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall. Physical Review E, 2017, 96, 013104.	0.8	20
1628	Modeling pattern formation in soft flowing crystals. Physical Review Fluids, 2019, 4, .	1.0	30
1629	A Comparative Analysis of Mixing Performance of Power-Law Fluid in Cylindrical Microchannels With Sudden Contraction/Expansion. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	7
1630	Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip. , 2018, , .		4
1631	LIDE: high aspect ratio glass processing technology for the mass production of microfluidic devices for biomedical applications. , 2019, , .		7
1632	Recent advances in renal regeneration. F1000Research, 2019, 8, 216.	0.8	2
1634	Directional random laser source consisting of a HC-ARROW reservoir connected to channels for spectroscopic analysis in microfluidic devices. Applied Optics, 2016, 55, 5393.	2.1	20

#	Article	IF	CITATIONS
1635	Light-assisted drying for anhydrous preservation of biological samples: optical characterization of the trehalose preservation matrix. Biomedical Optics Express, 2020, 11, 801.	1.5	9
1636	Rapid, high-quality microfabrication of thermoset polymer PDMS using laser-induced bubbles. Optics Express, 2019, 27, 9429.	1.7	9
1637	A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients. PLoS ONE, 2015, 10, e0126523.	1.1	28
1638	In Vitro Recapitulation of Functional Microvessels for the Study of Endothelial Shear Response, Nitric Oxide and [Ca2+]i. PLoS ONE, 2015, 10, e0126797.	1.1	21
1639	Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor. PLoS ONE, 2015, 10, e0132785.	1.1	28
1640	A Criterion for the Complete Deposition of Magnetic Beads on the Walls of Microchannels. PLoS ONE, 2016, 11, e0151053.	1.1	3
1641	Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS ONE, 2016, 11, e0152023.	1.1	124
1642	Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. PLoS ONE, 2020, 15, e0243840.	1.1	18
1644	Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF- $\hat{\mathbb{P}}$ B and STAT3 signaling in a bionic airway chip culture and in animal models. Oncotarget, 2015, 6, 8900-8913.	0.8	27
1645	The Influence of Electric Parameters on the Manipulation of Biological Cells in a Microfluidic System Using Optically Induced Dielectrophoresis. International Journal of Electrochemical Science, 0, , 905-918.	0.5	11
1646	Surface Microfabrication of Conventional Glass Using Femtosecond Laser for Microfluidic Applications. International Journal of Automation Technology, 2017, 11, 878-882.	0.5	3
1647	Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electronic Advances, 2018, 1, 18000801-18000818.	6.4	43
1648	Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas. Mathematics, 2021, 9, 27.	1.1	1
1649	Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development. Pharmaceutics, 2020, 12, 464.	2.0	42
1650	Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. Research, 2020, 2020, 6925296.	2.8	26
1651	Microfluidic technology for cell hydrodynamic manipulation. AIMS Biophysics, 2017, 4, 178-191.	0.3	6
1652	3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. AIMS Mathematics, 2019, 4, 99-111.	0.7	30
1653	A Review on the Recent Advancement in "Tumour Spheroids-on-a-Chip― Journal of Cancer Research and Practice, 2019, 6, 55.	0.2	9

#	Article	IF	CITATIONS
1655	Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. ELife, 2020, 9, .	2.8	46
1656	Personalized gel-droplet monocyte vaccines for cancer immunotherapy. Lab on A Chip, 2021, 21, 4414-4426.	3.1	8
1657	A low-Reynolds-number actuator driven by instability: rotating or oscillating. Nonlinear Dynamics, 2021, 106, 2005.	2.7	0
1658	Enhanced heat transport in thermal convection with suspensions of rod-like expandable particles. Journal of Fluid Mechanics, 2021, 928, .	1.4	3
1659	Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Science Advances, 2021, 7, eabj3686.	4.7	41
1661	Microfluidics: Recent Advances Toward Labâ€onâ€Chip Applications in Bioanalysis. Advanced Engineering Materials, 2022, 24, 2100738.	1.6	22
1662	Lowâ€cost polymerâ€film spiral inertial microfluidic device for labelâ€free separation of malignant tumor cells. Electrophoresis, 2022, 43, 464-471.	1.3	2
1663	Microfluidics on Standard Petri Dishes for Bioscientists. Small Methods, 2021, 5, 2100724.	4.6	4
1664	In Vitro Disease Models of the Endocrine Pancreas. Biomedicines, 2021, 9, 1415.	1.4	2
1665	Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals, 2021, 11, 2949.	1.0	17
1667	Recent findings and applications of biomedical engineering for COVID-19 diagnosis: a critical review. Bioengineered, 2021, 12, 8594-8613.	1.4	10
1668	A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission. Nature Communications, 2021, 12, 6018.	5.8	11
1669	Estimation of Plasmodial Activity in Response to Electrical Stimulation and the Potential Use of this Measurement as an Environmental Indicator. IEEJ Transactions on Electronics, Information and Systems, 2014, 134, 1755-1759.	0.1	1
1670	Set-up for an optically induced dielectrophoresis platform and its application to micro- and nanoscale material manipulation. International Journal of Automation and Smart Technology, 2014, 4, 208-215.	0.4	0
1671	Research Highlight: Top-Down Nanomachining of Metals. Micro and Nanosystems, 2015, 6, 143-144.	0.3	0
1673	Reconfigurable optical microbubble-on-tip sensor for microfluidic applications. , 2016, , .		0
1674	Digital Bioassay with Femtoliter Reactor Array. , 2016, , 107-116.		0
1675	Miniaturized Fluidic Devices and Their Biophotonic Applications. , 2016, , 1-47.		2

#	Article	IF	CITATIONS
1676	Non-contact reflectometric readout of disposable microfluidic devices by near infra-red low-coherence interferometry. AIMS Biophysics, 2016, 3, 585-595.	0.3	1
1678	Miniaturized Fluidic Devices and Their Biophotonic Applications. , 2017, , 893-939.		0
1680	Fabrication and Experimental Techniques. Springer Theses, 2017, , 37-57.	0.0	0
1684	Microfluidic Impedance Biosensors for Monitoring a Single and Multiple Cancer Cells in Anticancer Drug Treatments. IFMBE Proceedings, 2018, , 681-685.	0.2	2
1686	3D microfluidic fabrication using a low refractive index polymer for clear microscopic observation at the fluid boundary. , 2018, , .		0
1687	Somatic Mutations. Materials and Methods, 0, 8, .	0.0	0
1688	Towards the Commercialization of a Lab-on-a-Chip Device for Soil Nutrient Measurement. Communications in Computer and Information Science, 2019, , 118-130.	0.4	2
1689	Modeling Frictional Characteristics of Water Flowing Through Microchannel. Journal of Applied Fluid Mechanics, 2019, 12, 243-255.	0.4	0
1690	Integrated microfluidic probes for cell manipulation and analysis. , 2019, , .		1
1693	Microfluidic Technologies Using Oral Factors: Saliva-Based Studies. , 2020, , 339-358.		2
1694	Flow and mixing processes in a passive mixing microfluidic chip: Parameters' estimation and colorimetric analysis. Fine Chemical Technologies, 2019, 14, 39-50.	0.1	0
1695	Considerations for Development and Application of Health Monitoring Tools in Space. , 2020, , 407-420.		0
1696	Low-Cost Gravitational Force Based Colorimetric Microfluidic Device for Assaying Blood Glucose. Bioscience Biotechnology Research Communications, 2019, 12, 1005-1012.	0.1	1
1698	Risks associated with the ethical aspects of conducting clinical trials. Kachestvennaya Klinicheskaya Praktika, 2020, , 61-68.	0.2	4
1699	Micro-fabrication by wax spraying for rapid smartphone-based quantification of bio-markers. Analytical Biochemistry, 2020, 603, 113777.	1.1	2
1700	Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. Jacs Au, 2021, 1, 1815-1833.	3.6	9
1701	Droplet microfluidics-based biomedical microcarriers. Acta Biomaterialia, 2022, 138, 21-33.	4.1	35
1702	Computational Study of the Dynamics of the Taylor Bubble. Fluids, 2021, 6, 389.	0.8	5

#	Article	IF	CITATIONS
1703	Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules, 2021, 26, 6606.	1.7	14
1704	Advances and Future Perspective on Detection Technology of Human Norovirus. Pathogens, 2021, 10, 1383.	1.2	8
1705	Wettability-patterned microchip for emerging biomedical materials and technologies. Materials Today, 2021, 51, 273-293.	8.3	32
1706	Study of droplet formation regimes in a pressure control mode in microfluidic chip for screening cell libraries. Journal of Physics: Conference Series, 2020, 1695, 012053.	0.3	0
1707	Microscopic and Spectroscopic Characterization of Elastomer for Microfluidics Application. , 2020, , .		1
1708	Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics, 2021, 11, 10012-10029.	4.6	18
1709	A frugal microfluidic pump. Lab on A Chip, 2021, 21, 4772-4778.	3.1	8
1710	Technologies for Biomarkers in Periodontics. , 2020, , 69-78.		0
1711	A Primer on Microfluidics: From Basic Principles to Microfabrication. Advances in Biochemical Engineering/Biotechnology, 2020, , $1.$	0.6	1
1712	Functional optical immunosensor microfluidic platform for acute myocardial infarction diagnosis. , 2020, , .		0
1713	Light-assisted drying (LAD) for anhydrous preservation of biologics: using Raman spectroscopy to assess the uniformity of drying in processed samples. , 2020, , .		0
1714	Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. Namık Kemal Tıp Dergisi, 0, , .	0.0	0
1715	Towards a fast detection of microbial resistance to antibiotics. Journal of Clinical Microbiology and Biochemical Technology, 2020, 6, 010-013.	0.4	1
1716	Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits. Journal of Physics Condensed Matter, 2022, 34, 063001.	0.7	14
1717	Polymerâ€based microfluidic devices: A comprehensive review on preparation and applications. Polymer Engineering and Science, 2022, 62, 3-24.	1.5	26
1718	Laser Illumination Adjustments for Signal-to-Noise Ratio and Spatial Resolution Enhancement in Static 2D Chemical Images of NbOx/IGZO/ITO/Glass Light-Addressable Potentiometric Sensors. Chemosensors, 2021, 9, 313.	1.8	3
1719	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
1720	Bioengineering – Current Applications and Future Perspectives. Proceedings of the Technical University of Sofia, 2021, 71, .	0.1	O

#	Article	IF	CITATIONS
1724	Advancement in POCT Molecular Testing: The Multiplex PCR POCT Devices for Infectious Diseases. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2018, 29, 205-209.	0.7	7
1725	Research landscape of liquid biopsies in prostate cancer. American Journal of Cancer Research, 2019, 9, 1309-1328.	1.4	13
1726	Investigation on steady regimes in a X-shaped micromixer fed with water and ethanol. Chemical Engineering Science, 2022, 248, 117254.	1.9	15
1727	Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines, 2021, 12, 1443.	1.4	35
1728	Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. Sensors, 2021, 21, 7493.	2.1	1
1729	Dynamic 3D On-Chip BBB Model Design, Development, and Applications in Neurological Diseases. Cells, 2021, 10, 3183.	1.8	20
1730	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	2.3	17
1731	An Effort to Review on Various Therapeutic Strategies Including Effects of Biosensors on the COVID-19 Pandemic. Studies in Autonomic, Data-driven and Industrial Computing, 2022, , 353-364.	0.4	0
1732	Instability of a liquid sheet with viscosity contrast in inertial microfluidics. European Physical Journal E, 2021, 44, 144.	0.7	3
1733	A Unidirectional 96-Well Fluidic Culture Platform for Upstream Cell Dosing with Subsequent Downstream Nonlinear and Ascending Exposure Gradients for Real-Time and Cell-Based Toxicity Screening Environments. Applied in Vitro Toxicology, 2021, 7, 175-191.	0.6	1
1734	Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent advances. Microchemical Journal, 2022, 173, 107042.	2.3	34
1735	Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers, 2021, 13, 6052.	1.7	15
1736	Point-of-care diagnostics: recent developments in a pandemic age. Lab on A Chip, 2021, 21, 4517-4548.	3.1	34
1737	Oxide nanowire microfluidics addressing previously-unattainable analytical methods for biomolecules towards liquid biopsy. Chemical Communications, 2021, 57, 13234-13245.	2.2	10
1738	Rapid prototyping of cell culture microdevices using parylene-coated 3D prints. Lab on A Chip, 2021, 21, 4814-4822.	3.1	12
1739	Multiphysics microfluidics for cell manipulation and separation: a review. Lab on A Chip, 2022, 22, 423-444.	3.1	47
1740	Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. Lab on A Chip, 2022, 22, 476-511.	3.1	13
1741	Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation. Lab on A Chip, 2022, 22, 560-572.	3.1	9

#	Article	IF	CITATIONS
1742	Electrochemical monitoring the effect of drug intervention on PC12Âcell damage model cultured on paper-PLA 3D printed device. Analytica Chimica Acta, 2022, 1194, 339409.	2.6	4
1743	Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate. , 2020, , .		2
1744	Flow rate controlling by capillary micropumps in open biomicrofluidic devices. , 2020, , .		1
1745	Non-Invasive T Cells Adoptive Immunotherapy for Solid Tumor with Gel Anti-Tumor T-Cell Injections. SSRN Electronic Journal, 0, , .	0.4	0
1746	Microfluidic assembly of photonic colloidal structures. , 2021, , .		0
1747	Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. Advances in Biochemical Engineering/Biotechnology, 2021, , 101-127.	0.6	4
1748	Finite Element Simulation of a Microdroplet Generation System for an Implantable Liquid Sampling Probe. , $2021, , .$		0
1749	Oxygen control: the often overlooked but essential piece to create better <i>in vitro</i> systems. Lab on A Chip, 2022, 22, 1068-1092.	3.1	21
1750	Emerging Advances of Detection Strategies for Tumor-Derived Exosomes. International Journal of Molecular Sciences, 2022, 23, 868.	1.8	16
1751	Materials, assemblies and reaction systems under rotation. Nature Reviews Materials, 2022, 7, 338-354.	23.3	13
1752	Microfluidics for single cell analysis. Progress in Molecular Biology and Translational Science, 2022, 186, 203-215.	0.9	1
1753	An integrated plastic microchip for enhancing electrophoretic separation using tunable pressureâ€driven backflows. Electrophoresis, 2022, , .	1.3	3
1754	Enhancement of Binding Kinetics on Affinity Substrates Using Asymmetric Electroosmotic Flow on a Sinusoidal Bipolar Electrode. Micromachines, 2022, 13, 207.	1.4	5
1755	Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Frontiers in Cell and Developmental Biology, 2021, 9, 760667.	1.8	4
1756	Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation. International Journal of Extreme Manufacturing, 2022, 4, 015002.	6.3	34
1757	Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15, 4468-4489.	5.8	50
1758	Separation technologies in microfluidics. , 2022, , 141-162.		0
1759	Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on A Chip, 2022, 22, 665-682.	3.1	42

#	Article	IF	CITATIONS
1760	Antipersister strategies against stress induced bacterial persistence. Microbial Pathogenesis, 2022, 164, 105423.	1.3	13
1761	Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nature Communications, 2022, 13, 37.	5.8	85
1762	Three-dimensional simulation of red blood cell particle sedimentation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110641.	1.1	1
1763	Analysis of preconcentration patterns in microfluidic ion concentration polarization devices. Physics of Fluids, 2022, 34, .	1.6	5
1764	Microfluidics based point-of-care for disease diagnostics. Progress in Molecular Biology and Translational Science, 2022, 187, 241-248.	0.9	2
1765	Nanolayer Laser Absorber for Femtoliter Chemistry in Polymer Reactors. Advanced Materials, 2022, 34, e2108493.	11.1	11
1766	Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomaterials Science and Engineering, 2022, 8, 379-405.	2.6	57
1767	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
1768	Self-ordering and organization of in-line particle chain in a square microchannel. Physics of Fluids, 2022, 34, .	1.6	16
1769	Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers, 2022, 14, 757.	1.7	15
1770	Analysis of annularly excited bossed diaphragm for performance enhancement of mechanical micropump. Sensors and Actuators A: Physical, 2022, 335, 113381.	2.0	1
1771	One-step detection of oral ulcers and oral cancer derived exosomes on wedge-shaped and high magnetic field gradient mediated chip. Sensors and Actuators B: Chemical, 2022, 357, 131403.	4.0	4
1772	Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. Journal of Colloid and Interface Science, 2022, 613, 359-367.	5.0	6
1773	Microfluidic technology and its application in the point-of-care testing field. Biosensors and Bioelectronics: X, 2022, 10, 100109.	0.9	11
1774	From microfluidics to microphysiological systems: Past, present, and future. Organs-on-a-Chip, 2022, 4, 100015.	1.8	15
1775	Miniaturization devices: A nanotechnological approach., 2022,, 241-259.		1
1776	Deep Learning-Enabled Technologies for Bioimage Analysis. Micromachines, 2022, 13, 260.	1.4	9
1777	Preferential flow control in heterogeneous porous media by concentration-manipulated rheology of microgel particle suspension. Journal of Petroleum Science and Engineering, 2022, 212, 110275.	2.1	8

#	Article	IF	CITATIONS
1778	2D Nanosilicate for additive manufacturing: Rheological modifier, sacrificial ink and support bath. Bioprinting, 2022, 25, e00187.	2.9	7
1779	Open-Source Pressure Controller Based on Compact Electro-Pneumatic Regulators for Droplet Microfluidics Applications. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	4
1780	Microscopic artificial cilia – a review. Lab on A Chip, 2022, 22, 1650-1679.	3.1	29
1781	Generation of dynamic vortices in a microfluidic system incorporating stenosis barrier by tube oscillation. Lab on A Chip, 2022, 22, 1917-1928.	3.1	6
1782	Flow-Rate and Particle-Size Insensitive Inertial Focusing in Dimension-Confined Ultra-Low Aspect Ratio Spiral Microchannel. SSRN Electronic Journal, 0, , .	0.4	0
1783	Lab on a chip devices for fertility: from proof-of-concept to clinical impact. Lab on A Chip, 2022, 22, 1680-1689.	3.1	7
1784	Multi-Reagents Dispensing Centrifugal Microfluidics for Point-of-Care Testing. SSRN Electronic Journal, 0, , .	0.4	0
1785	A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment. Neural Regeneration Research, 2022, 17, 2260.	1.6	7
1786	Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Materials Today Bio, 2022, 13, 100218.	2.6	23
1787	Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes, 2022, 12, 217.	1.4	18
1788	Multiscale modelling of capillary imbibition in 3D-printed porous microfluidic channels. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	2
1789	Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal of Immunoassay Operated by a Smartphone. Analytical Chemistry, 2022, 94, 3872-3880.	3.2	24
1790	Normalization of Blood Viscosity According to the Hematocrit and the Shear Rate. Micromachines, 2022, 13, 357.	1.4	7
1791	Recent Advances in Solid-Phase Extraction as a Platform for Sample Preparation in Biomarker Assay. Critical Reviews in Analytical Chemistry, 2023, 53, 199-210.	1.8	7
1792	Magnetically recyclable core–shell structured Co0.5Zn0.5Fe2O4@polyaniline nanocomposite: high stability and rapid photocatalytic degradation of commercial azo dyes and industrial effluents. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1077-1098.	0.8	9
1793	Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors, 2022, 22, 1620.	2.1	65
1794	Nanomaterial-assisted microfluidics for multiplex assays. Mikrochimica Acta, 2022, 189, 139.	2.5	16
1795	Outsourced hearing in an orb-weaving spider that uses its web as an auditory sensor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122789119.	3.3	14

#	Article	IF	CITATIONS
1796	Microfluidic Tissue Engineering and Bioâ€Actuation. Advanced Materials, 2022, 34, e2108427.	11.1	28
1797	Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Advanced Healthcare Materials, 2022, 11, e2102581.	3.9	23
1798	Microfluidic Platforms for the Production of Nanoparticles at Flow Rates Larger Than One Liter Per Hour. Advanced Materials Technologies, 2022, 7, .	3.0	6
1799	Reversible bonding for microfluidic devices with UV release tape. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	7
1800	Machine Learning-Driven Multiobjective Optimization: An Opportunity of Microfluidic Platforms Applied in Cancer Research. Cells, 2022, 11, 905.	1.8	9
1801	Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics, 2022, 16, 021301.	1.2	29
1802	Single-Cell Multiomics Techniques: From Conception to Applications. Frontiers in Cell and Developmental Biology, 2022, 10, 854317.	1.8	25
1803	Microfluidic hotspots in bacteria research: A review of soil and related advances. Soil Ecology Letters, 2023, 5, 21-37.	2.4	2
1804	Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics, 2022, 14, 586.	2.0	23
1805	Microfluidics-based strategies for molecular diagnostics of infectious diseases. Military Medical Research, 2022, 9, 11.	1.9	20
1806	Integration of reinforcement learning to realize functional variability of microfluidic systems. Biomicrofluidics, 2022, 16, 024106.	1.2	5
1808	Essence determines phenomenon: Assaying the material properties of biological condensates. Journal of Biological Chemistry, 2022, 298, 101782.	1.6	29
1809	Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annual Review of Biomedical Engineering, 2022, 24, 231-248.	5.7	9
1810	Understanding glioblastoma invasion using physically-guided neural networks with internal variables. PLoS Computational Biology, 2022, 18, e1010019.	1.5	3
1811	On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta, 2022, 245, 123462.	2.9	2
1812	Parametric study on breakup of liquid jet in a gas-driven flow focusing process upon external excitation. Physics of Fluids, 2022, 34, .	1.6	9
1813	Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors, 2022, 12, 220.	2.3	23
1814	Organ-on-Chip platforms to study tumor evolution and chemosensitivity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188717.	3.3	12

#	Article	IF	CITATIONS
1815	Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosensors and Bioelectronics, 2022, 206, 114130.	5.3	21
1816	Non-invasive T cells adoptive immunotherapy for solid tumor with gel anti-tumor T-cell injections. Chemical Engineering Journal, 2022, 439, 135839.	6.6	3
1817	Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer. Bioactive Materials, 2022, 15, 288-304.	8.6	12
1818	The Bridge Flow Regime in Microchannels. Doklady Physics, 2021, 66, 229-233.	0.2	6
1819	Hand-Powered Inertial Microfluidic Syringe-Tip Centrifuge. Biosensors, 2022, 12, 14.	2.3	4
1820	CRISPR-Powered Microfluidics in Diagnostics: A Review of Main Applications. Chemosensors, 2022, 10, 3.	1.8	12
1821	Al-aided on-chip nucleic acid assay for smart diagnosis of infectious disease. Fundamental Research, 2022, 2, 476-486.	1.6	11
1822	Grouped-seq for integrated phenotypic and transcriptomic screening of patient-derived tumor organoids. Nucleic Acids Research, 2022, 50, e28-e28.	6.5	8
1823	Graphene oxide-doped photothermal heater in microchannel for thermophoretically shifting microand nano-particles. Journal of Applied Physics, 2021, 130, 244901.	1.1	0
1824	Macro-porous Ferro-gel for Regulation of Flow and Drug Release in Bio-microfluidics Using Static Magnetic Field., 2021,,.		0
1825	Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.	23.0	49
1826	Spatial determinates of effector and memory CD8 ⁺ T cell fates*. Immunological Reviews, 2022, 306, 76-92.	2.8	5
1827	Sperm Selection for ICSI: Do We Have a Winner?. Cells, 2021, 10, 3566.	1.8	30
1828	Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays. ACS Sensors, 2021, 6, 4338-4348.	4.0	19
1829	The revolution of PDMS microfluidics in cellular biology. Critical Reviews in Biotechnology, 2023, 43, 465-483.	5.1	24
1830	Deep-learning-assisted extraction of height-averaged velocity from scalar signal transport in a shallow microfluidic channel. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	3
1831	Pilot-scale microfluidic solvent extraction of high-value metals. Minerals Engineering, 2022, 182, 107536.	1.8	3
1832	Effects of surfactant size and concentration on the internal flow fields of moving slug and Disk-like droplets via $\hat{l}\frac{1}{4}$ -PIV. Chemical Engineering Science, 2022, 255, 117668.	1.9	1

#	Article	IF	CITATIONS
1833	Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coordination Chemistry Reviews, 2022, 463, 214538.	9.5	14
1834	A Hands-On Approach to Teaching K-12 Students About Microfluidic Devices (Work in Progress)., 0,,.		0
1842	Shape-based separation of drug-treated <i>Escherichia coli</i> using viscoelastic microfluidics. Lab on A Chip, 2022, 22, 2801-2809.	3.1	15
1843	Development and Implementation of Portable Biosensors in Microfluidic Point-of-Care Devices for Pathogen Detection., 2022,, 99-122.		7
1844	Role of microfluidics in accelerating new space missions. Biomicrofluidics, 2022, 16, 021503.	1.2	4
1845	Recent advances for cancer detection and treatment by microfluidic technology, review and update. Biological Procedures Online, 2022, 24, 5.	1.4	24
1846	Recent Advances in Sandwich SERS Immunosensors for Cancer Detection. International Journal of Molecular Sciences, 2022, 23, 4740.	1.8	19
1847	I-design terahertz microfluidic chip for attomole-level sensing. JPhys Photonics, 2022, 4, 034005.	2.2	5
1848	Effects of biomechanical properties of blood on surface tension-driven flows in superhydrophilic channels. Physics of Fluids, 2022, 34, .	1.6	5
1849	Review of electrochemical and optical biosensors for testosterone measurement. Biotechnology and Applied Biochemistry, 2022, , .	1.4	1
1850	Materials and device design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 2022, 186, 114339.	6.6	24
1851	Plant-inspired TransfOrigami microfluidics. Science Advances, 2022, 8, eabo1719.	4.7	12
1852	All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. Biosensors, 2022, 12, 324.	2.3	13
1853	The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artificial Organs, 2022, 46, 1227-1239.	1.0	7
1854	Boundary condition induced passive chaotic mixing in straight microchannels. Physics of Fluids, 2022, 34, .	1.6	4
1855	Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields. Langmuir, 2022, 38, 5977-5986.	1.6	5
1856	Bioartificial livers: a review of their design and manufacture. Biofabrication, 2022, 14, 032003.	3.7	7
1857	One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112560.	2.5	8

#	Article	IF	CITATIONS
1858	Polymer nanoparticles (nanomedicine) for therapeutic applications. , 2022, , 71-123.		0
1859	Solarâ€Boosted Paperâ€Based Microfluidic Fuel Cells for Miniaturized Power Sources. Advanced Materials Technologies, 2022, 7, .	3.0	4
1860	Structural colour enhanced microfluidics. Nature Communications, 2022, 13, 2281.	5.8	9
1861	Microfluidic chain reaction of structurally programmed capillary flow events. Nature, 2022, 605, 464-469.	13.7	61
1862	Modeling the blood-brain barrier for treatment of central nervous system (CNS) diseases. Journal of Tissue Engineering, 2022, 13, 204173142210959.	2.3	10
1863	Experimental and theoretical studies of cross-stream migration of non-spherical particles in a quadratic flow of a viscoelastic fluid. Soft Matter, 2022, 18, 4613-4624.	1.2	5
1864	High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Frontiers in Microbiology, 2022, 13,	1.5	2
1865	Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. Lab on A Chip, 2022, 22, 3110-3121.	3.1	14
1866	Phototrophic microbial fuel cells. , 2022, , 699-727.		0
1867	A role for microfluidic systems in precision medicine. Nature Communications, 2022, 13, .	5.8	63
1868	Environmentally Friendly Method of Assembly of Cardanol and Cholesterol into Nanostructures Using a Continuous Flow Microfluidic Device. ACS Sustainable Chemistry and Engineering, 2022, 10, 8484-8494.	3.2	3
1870	An overview of nanomaterial-enhanced miniaturized/microfluidic devices for electrochemical sensing., 2022,, 23-42.		1
1871	Non-monotonic wettability effects on displacement in heterogeneous porous media. Journal of Fluid Mechanics, 2022, 942, .	1.4	17
1872	Recent advances in acoustic microfluidics and its exemplary applications. Biomicrofluidics, 2022, 16, .	1.2	8
1873	Microfluidics Facilitates the Development of Single-Cell RNA Sequencing. Biosensors, 2022, 12, 450.	2.3	8
1874	Highly efficient and controllable micromixer through interactions of photothermal multivortices. Physics of Fluids, 2022, 34, .	1.6	9
1875	A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation. Obstetrics and Gynecology Science, 2022, 65, 376-381.	0.6	0
1876	A Raman immunosensor based on SERS and microfluidic chip for all-fiber detection of brain natriuretic peptide. Infrared Physics and Technology, 2022, 125, 104252.	1.3	7

#	Article	IF	CITATIONS
1877	Recent advances in neutrophil chemotaxis abnormalities during sepsis. Chinese Journal of Traumatology - English Edition, 2022, 25, 317-324.	0.7	5
1878	A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. Micromachines, 2022, 13, 968.	1.4	3
1879	Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine. , 0, , .		3
1880	Kinetic analysis of the growth behavior of perovskite CsPbBr ₃ nanocrystals in a microfluidic system. Lab on A Chip, 2022, 22, 2832-2843.	3.1	6
1881	An ion imprinting technology-assisted rotational microfluidic hybrid chip for the fluorescence detection of hexavalent chromium ions. Analyst, The, 2022, 147, 3756-3763.	1.7	6
1882	Microfluidics in Drug Delivery. , 2022, , 135-162.		1
1883	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both., 2022,, 251-295.		1
1884	Surfaceâ€Acousticâ€Wave (SAW) Induced Mixing Enhances the Detection of Viruses: Application to Measles Sensing in Whole Human Saliva with a SAW Labâ€Onâ€aâ€Chip. Advanced Functional Materials, 2022, 32, .	7.8	19
1885	Hydrodynamic metamaterials for flow manipulation: Functions and prospects. Chinese Physics B, 2022, 31, 098101.	0.7	8
1886	Engineering consortia by polymeric microbial swarmbots. Nature Communications, 2022, 13, .	5.8	29
1888	Lab-in-droplet: From glycan sample treatment toward diagnostic screening of congenital disorders of glycosylation. Analytica Chimica Acta, 2022, 1221, 340150.	2.6	5
1889	Fabrication of high-performance microfluidic SERS substrates by metal-assisted chemical etching of silicon scratches. Surface Topography: Metrology and Properties, 2022, 10, 035008.	0.9	5
1890	Immunology and bioinformatics analysis of injectable organic/inorganic microfluidic microspheres for promoting bone repair. Biomaterials, 2022, 288, 121685.	5.7	14
1891	Elucidation of the mechanistic aspects of chemical EOR in viscous oil systems. Journal of Petroleum Science and Engineering, 2022, 216, 110846.	2.1	6
1892	Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery. Biosensors and Bioelectronics: X, 2022, 11, 100194.	0.9	7
1893	Flow-rate and particle-size insensitive inertial focusing in dimension-confined ultra-low aspect ratio spiral microchannel. Sensors and Actuators B: Chemical, 2022, 369, 132284.	4.0	10
1894	Recent advances in organoid engineering: A comprehensive review. Applied Materials Today, 2022, 29, 101582.	2.3	8
1895	Self-Stirring Microcatalysts: Large-Scale, High-Throughput, and Controllable Preparation and Application. Inorganic Chemistry, 0, , .	1.9	2

#	Article	IF	CITATIONS
1896	Design of a versatile microfluidic device for imaging precision-cut-tissue slices. Biofabrication, 2022, 14, 041001.	3.7	5
1897	Microfluidic assembly for biosensing. , 2022, , .		0
1898	A Portable â€~Plug-and-Play' Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. Micromachines, 2022, 13, 1224.	1.4	2
1899	Enhancing Mixing Performance in a Rotating Disk Mixing Chamber: A Quantitative Investigation of the Effect of Euler and Coriolis Forces. Micromachines, 2022, 13, 1218.	1.4	7
1900	Hyperviscosity syndromes; hemorheology for physicians and the use of microfluidic devices. Current Opinion in Hematology, 0, Publish Ahead of Print, .	1.2	1
1901	Hydrodynamically induced helical particle drift due to patterned surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
1902	Deformation-induced actuation of cells in asymmetric periodic flow fields. Physical Review Fluids, 2022, 7, .	1.0	1
1903	Theoretical proposal of a novel multitasking metasurface switched by solid-state plasma and gravity field. Waves in Random and Complex Media, 0, , 1-26.	1.6	1
1904	Emerging microfluidic technologies for microbiome research. Frontiers in Microbiology, 0, 13, .	1.5	6
1905	Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study. MicrobiologyOpen, 2022, 11, .	1.2	6
1906	Manufacturing of Ultra-Thin X-ray-Compatible COC Microfluidic Devices for Optimal In Situ Macromolecular Crystallography Experiments. Micromachines, 2022, 13, 1365.	1.4	4
1907	Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. Small, 2022, 18, .	5.2	21
1908	Mixing Performance of the Modified Tesla Micromixer with Tip Clearance. Micromachines, 2022, 13, 1375.	1.4	6
1909	A comparative study: conventional and modified serpentine micromixers. Chemical Product and Process Modeling, 2023, 18, 521-539.	0.5	1
1910	Emerging techniques for customized fabrication of glass. Journal of Non-Crystalline Solids: X, 2022, 15, 100114.	0.5	2
1911	Viro-fluidics: Real-time analysis of virus production kinetics at the single-cell level. Biophysical Reports, 2022, 2, 100068.	0.7	0
1912	Optimization of microfluidic functionalization of a plasmonic-based device for selective capture of anti-folic acid in solution. Biosensors and Bioelectronics: X, 2022, 12, 100226.	0.9	0
1913	Real-time computer assisted measurement of oocyte and embryo volume for assessment of transport parameters. Cryobiology, 2022, 108, 19-26.	0.3	2

#	Article	IF	CITATIONS
1914	Biotechnology applications in precision food., 2022,, 197-222.		1
1915	A Microfluidic Platform for Proteomics Based on Enzyme Reactor Monolith Incorporated with Mesoporous Molecular Sieve Sba-15. SSRN Electronic Journal, 0, , .	0.4	0
1916	Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip. Lab on A Chip, 2022, 22, 4224-4237.	3.1	3
1917	Terahertz Microfluidics for attomole- and picoliter-level sensing. , 2022, , .		0
1918	A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia. BMC Microbiology, 2022, 22, .	1.3	6
1919	Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Biosensors, 2022, 12, 652.	2.3	11
1920	Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. Analyticaâ€"A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 312-324.	0.8	0
1921	Advanced bioengineering of female germ cells to preserve fertility. Biology of Reproduction, 0, , .	1.2	2
1922	Metasurface optofluidics for dynamic control of light fields. Nature Nanotechnology, 2022, 17, 1097-1103.	15.6	30
1923	Hybrid Hydrogels Based on Methacrylate-Functionalized Gelatin (GelMA) and Synthetic Polymers. , 2023, 1, 191-201.		6
1924	An open microfluidic coculture model of fibroblasts and eosinophils to investigate mechanisms of airway inflammation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1925	Numerical and experimental investigation of aerodynamic heat control of leading edge of hypersonic vehicle's flexible skin. Science China Information Sciences, 2022, 65, .	2.7	3
1926	Microfluidic devices: The application in TME modeling and the potential in immunotherapy optimization. Frontiers in Genetics, $0,13,.$	1.1	4
1927	Nanofiber self-consistent additive manufacturing process for 3D microfluidics. Microsystems and Nanoengineering, 2022, 8, .	3.4	7
1928	Active cell capturing for organ-on-a-chip systems: a review. Biomedizinische Technik, 2022, 67, 443-459.	0.9	3
1929	Microwave induced thermally assisted solvent-based bonding of biodegradable thermoplastics: an eco-friendly rapid approach for fabrication of microfluidic devices and analyte detection. Scientific Reports, 2022, 12, .	1.6	2
1930	Powderâ€Based 3D Printing of Autonomous Concentration Gradient Generators. Advanced Engineering Materials, 2023, 25, .	1.6	2
1931	Latest models for the discovery and development of rheumatoid arthritis drugs. Expert Opinion on Drug Discovery, 0, , .	2.5	0

#	Article	IF	CITATIONS
1932	Recent advances in microfluidic sensors for nutrients detection in water. TrAC - Trends in Analytical Chemistry, 2023, 158, 116790.	5.8	9
1933	Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chemical Reviews, 2022, 122, 16752-16801.	23.0	28
1934	Quantifying the dynamic spreading of a molten sand droplet using multiphase mesoscopic simulations. Physical Review Fluids, 2022, 7, .	1.0	3
1935	Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. TrAC - Trends in Analytical Chemistry, 2023, 158, 116785.	5. 8	20
1936	Micromechanical valve-operated needle-on-a-chip microinjection module for microfluidic large-scale integration. Journal of Micromechanics and Microengineering, 0, , .	1.5	1
1937	Microfluidic devices for the detection of contamination in water samples: A review. Sensors and Actuators A: Physical, 2022, 347, 113926.	2.0	14
1938	Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection. Lab on A Chip, 2022, 22, 4717-4728.	3.1	3
1939	Development of a transferable coarse-grained model of polydimethylsiloxane. Soft Matter, 2022, 18, 7887-7896.	1.2	4
1940	Microfluidic-based functional materials: new prospects for wound healing and beyond. Journal of Materials Chemistry B, 2022, 10, 8357-8374.	2.9	8
1941	From 2D to 3D Co-Culture Systems: A Review of Co-Culture Models to Study the Neural Cells Interaction. International Journal of Molecular Sciences, 2022, 23, 13116.	1.8	10
1942	Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nature Communications, 2022, 13, .	5.8	50
1943	A Selfâ€Powered Dielectrophoretic Microparticle Manipulation Platform Based on a Triboelectric Nanogenerator. Advanced Materials, 2023, 35, .	11.1	6
1944	Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering, 2022, 9, 625.	1.6	8
1945	Numerical investigation of flexible Purcell-like integrated microfluidic pumps. Journal of Applied Physics, 2022, 132, 164701.	1.1	2
1946	Reduced modelling and global instability of finite-Reynolds-number flow in compliant rectangular channels. Journal of Fluid Mechanics, 2022, 950, .	1.4	2
1947	Prebiotic Chemistry Experiments Using Microfluidic Devices. Life, 2022, 12, 1665.	1.1	4
1948	Design and High-Resolution Analysis of an Efficient Periodic Split-and-Recombination Microfluidic Mixer. Micromachines, 2022, 13, 1720.	1.4	0
1949	Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells, 2022, 11, 3101.	1.8	4

#	Article	IF	CITATIONS
1950	Microscale Diffusiophoresis of Proteins. Journal of Physical Chemistry B, 2022, 126, 8913-8920.	1.2	9
1951	Numerical and experimental investigation on a planar passive micromixer embedded with omega-shaped obstacles for rapid fluid mixing. Chemical Engineering and Processing: Process Intensification, 2022, 182, 109203.	1.8	1
1952	Scalable and high-throughput production of an injectable platelet-rich plasma (PRP)/cell-laden microcarrier/hydrogel composite system for hair follicle tissue engineering. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
1953	Production of supramolecular aggregates by microfluidic platforms. , 2023, , 169-187.		o
1954	Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects. Renewable and Sustainable Energy Reviews, 2023, 171, 112998.	8.2	11
1955	A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles. Soft Matter, 0, , .	1.2	0
1956	A dental implant-on-a-chip for 3D modeling of host–material–pathogen interactions and therapeutic testing platforms. Lab on A Chip, 0, , .	3.1	0
1957	Microfluidic-based plasmonic biosensors. , 2023, , 287-312.		0
1958	Flow regulation and drug delivery in bio-microfluidics using macro-porous ferrogel. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
1959	Microfluidic trends in drug screening and drug delivery. TrAC - Trends in Analytical Chemistry, 2023, 158, 116821.	5.8	11
1960	A review of the gas hydrate phase transition with a microfluidic approach., 2023, 2, 100011.		10
1961	Microfluidic study in a meter-long reactive path reveals how the medium's structural heterogeneity shapes MICP-induced biocementation. Scientific Reports, 2022, 12, .	1.6	6
1962	Low cost and massively parallel force spectroscopy with fluid loading on a chip. Nature Communications, 2022, 13, .	5.8	4
1963	Microfluidic dose–response platform to track the dynamics of drug response in single mycobacterial cells. Scientific Reports, 2022, 12, .	1.6	6
1964	Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. TrAC - Trends in Analytical Chemistry, 2023, 158, 116835.	5.8	13
1965	Enzyme-like nanomaterials-integrated microfluidic technology for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116833.	5.8	4
1966	Microfluidics-derived microcarrier systems for oral delivery., 2023, 1, 30-38.		12
1967	Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. TrAC - Trends in Analytical Chemistry, 2023, 158, 116851.	5.8	2

#	ARTICLE	IF	CITATIONS
1968	Paper-based multi-well depletion ELISA. Lab on A Chip, 2023, 23, 251-260.	3.1	2
1969	Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices., 2023, 144, 213227.		4
1970	The potential of nano-enabled oral ecosystem surveillance for respiratory disease management. Nano Today, 2023, 48, 101693.	6.2	0
1971	Design and fabrication of aspiration microfluidic channel for oocyte characterization. Talanta, 2023, 254, 124098.	2.9	4
1972	Integrated system for rapid enrichment and detection of airborne polycyclic aromatic hydrocarbons. Science of the Total Environment, 2023, 864, 161057.	3.9	2
1973	Microfluidic plasma: Novel process intensification strategy. Green Processing and Synthesis, 2022, 11, 1064-1071.	1.3	5
1974	Chapter 10. Microfluidic Models of the Tumor Microenvironment. Biomaterials Science Series, 2022, , 252-278.	0.1	0
1975	CRISPR/Cas12aâ€Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout. Advanced Science, 2023, 10, .	5.6	14
1976	Study of Drug Resistance in Chemotherapy Induced by Extracellular Vesicles on a Microchip. Analytical Chemistry, 2022, 94, 16919-16926.	3.2	1
1977	Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems. Energies, 2022, 15, 8731.	1.6	1
1978	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	1
1979	Investigation of Plasmonic Properties of Egg-like Multilayer Structures. Plasmonics, 0, , .	1.8	0
1980	Cryo-printed microfluidics enable rapid prototyping for optical-cell analysis. Microfluidics and Nanofluidics, 2023, 27, .	1.0	1
1981	Injection Molding of Thermoplastics for Low-Cost Nanofluidic Devices. ACS Applied Nano Materials, 2022, 5, 17758-17766.	2.4	2
1982	Realizing the multifunctional metamaterial for fluid flow in a porous medium. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
1983	Recent progress of microfluidic chips in immunoassay. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	16
1984	Recent progress in microfluidic biosensors with different driving forces. TrAC - Trends in Analytical Chemistry, 2023, 158, 116894.	5.8	13
1985	Microfluidic SERS devices: brightening the future of bioanalysis. Discover Materials, 2022, 2, .	1.0	7

#	Article	IF	CITATIONS
1986	Laser induced graphanized microfluidic devices. Biomicrofluidics, 2022, 16, 061505.	1.2	2
1987	3D Acoustofluidics via Subâ€Wavelength Microâ€Resonators. Advanced Functional Materials, 2023, 33, .	7.8	6
1988	Paper-based optical sensors paired with smartphones for biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2023, 225, 115207.	1.4	8
1989	Identifying the Phenotypes of Tumor-Derived Extracellular Vesicles Using Size-Coded Affinity Microbeads. Journal of the American Chemical Society, 2022, 144, 23483-23491.	6.6	18
1990	Slippery Shape Memory Tube for Smart Droplet Transportation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 57399-57407.	4.0	2
1991	Advances in Microfluidics for Single Red Blood Cell Analysis. Biosensors, 2023, 13, 117.	2.3	8
1992	Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics. Biomicrofluidics, 2023, 17, .	1.2	1
1993	Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. ACS Applied Materials & Company (Interfaces, O, , .	4.0	1
1994	Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting. PLoS ONE, 2023, 18, e0279102.	1,1	2
1995	Fabrication and development of a microfluidic paper-based immunosorbent assay platform ($\hat{l}^1/4$ PISA) for colorimetric detection of hepatitis C. Analyst, The, 2023, 148, 898-905.	1.7	3
1996	Efficient Simulation of Complex Capillary Effects in Advanced Manufacturing Processes using the Finite Volume Method., 2022,,.		0
1997	Techniques and materials for the fabrication of microfluidic devices. , 2023, , 1-36.		2
1998	Numerical simulation and optimization of AC electrothermal microfluidic biosensor for COVID-19 detection through Taguchi method and artificial network. European Physical Journal Plus, 2023, 138, .	1.2	13
1999	Microfluidic Culture Platforms in Neuroscience Research. , 2023, , 39-77.		0
2000	Hand-Powered Point-of-Care: Centrifugal Microfluidic Platform for Urine Routine Examination ($1\frac{1}{4}$ CUREX). Langmuir, 2023, 39, 1897-1904.	1.6	1
2001	The biomaterial niche of platelet-rich plasma and hyaluronic acid matrices for tissue regeneration., 2023,, 315-347.		0
2002	Microfluidics for Biomedical Applications. Biosensors, 2023, 13, 161.	2.3	2
2003	Methods to Measure Water Permeability. Advances in Experimental Medicine and Biology, 2023, , 343-361.	0.8	0

#	Article	IF	CITATIONS
2004	Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. Nanomaterials, 2023, 13, 501.	1.9	5
2005	Eye-on-a-chip. , 2023, , 315-369.		2
2006	Kidney-on-a-chip. , 2023, , 277-314.		O
2007	Microfluidic Labelâ€Free Hydrodynamic Separation of Blood Cells: Recent Developments and Future Perspectives. Advanced Materials Technologies, 2023, 8, .	3.0	8
2008	Nanofluidics Fabricated by 3D Femtosecond Laser Processing. Springer Series in Optical Sciences, 2023, , 1085-1103.	0.5	0
2009	Non-invasive monitoring of biochemicals in hydrogel-assisted microfluidic chips. Nanoscale, 2023, 15, 6179-6186.	2.8	3
2010	Observation of phononic skyrmions based on hybrid spin of elastic waves. Science Advances, 2023, 9, .	4.7	9
2011	Rapid Prototyping of Multi-Functional and Biocompatible Parafilm®-Based Microfluidic Devices by Laser Ablation and Thermal Bonding. Micromachines, 2023, 14, 656.	1.4	2
2012	3D cancer models: One step closer to in vitro human studies. Frontiers in Immunology, 0, 14, .	2.2	6
2013	Nâ€shape pressure drop curve of gas–liquid microchannel reactor and modeling. AICHE Journal, 2023, 69, .	1.8	4
2014	Hydrothermal synthesis of cobalt substitute zinc-ferrite (Co1-xZnxFe2O4) nanodot, functionalised by polyaniline with enhanced photocatalytic activity under visible light irradiation. Heliyon, 2023, 9, e15381.	1.4	5
2015	Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Progress in Polymer Science, 2023, 140, 101665.	11.8	23
2016	The differentiation of human induced pluripotent stem cells into hematopoietic stem cells on 3D bone scaffold in a dynamic culture system. Tissue and Cell, 2023, 82, 102044.	1.0	0
2017	Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests. Talanta, 2023, 258, 124470.	2.9	3
2018	Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, 2023, 7, 439-455.	13.8	8
2019	A spiral microfluidic chip endows high efficiency single cell alignment at extremely low flow for ICP-MS analysis. Microchemical Journal, 2023, 190, 108635.	2.3	4
2020	A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosensors and Bioelectronics, 2023, 230, 115283.	5. 3	15
2022	Silk Fibroin Nanoparticles: A Biocompatible Multi-Functional Polymer for Drug Delivery. , 0, , .		1

#	Article	IF	CITATIONS
2023	Fundamental characteristics of microFLIB (microFabrication using Laser-Induced Bubble) to the thermoset polymer PDMS and its biochip applications. , 2023 , , .		0
2024	Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. TrAC - Trends in Analytical Chemistry, 2023, 160, 116959.	5.8	5
2025	Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. Korean Journal of Chemical Engineering, 2023, 40, 311-324.	1.2	2
2026	A Universal Piezoelectric Micropump With Capabilities of Self-Cleaning, Stable Filtration and Precise Pumping. IEEE Transactions on Industrial Electronics, 2024, 71, 678-687.	5.2	1
2027	Bifurcated Asymmetric Field Flow Fractionation of Nanoparticles in PDMS-Free Microfluidic Devices for Applications in Label-Free Extracellular Vesicle Separation. Polymers, 2023, 15, 789.	2.0	1
2028	Multifunctional Superhydrophobic Platform for Control of Water Microdroplets by Non-Uniform Electrostatic Field. Chemosensors, 2023, 11, 120.	1.8	1
2029	A novel integrated experimental and computational approach to unravel fibroblast motility in response to chemical gradients in 3D collagen matrices. Integrative Biology (United Kingdom), 2022, 14, 212-227.	0.6	0
2030	Liquid Shuttle Mediated by Microwick for Openâ€Air Microfluidics. Advanced Functional Materials, 2023, 33, .	7.8	2
2031	The mechanobiology of NK cells-  Forcing NK to Sense' target cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188860.	3.3	2
2032	Bionic microchannels for step lifting transpiration. International Journal of Extreme Manufacturing, 2023, 5, 025502.	6.3	11
2033	Construction of Exosome SORL1 Detection Platform Based on 3D Porous Microfluidic Chip and its Application in Early Diagnosis of Colorectal Cancer. Small, 2023, 19, .	5.2	7
2034	Recent advances in microfluidics for single-cell functional proteomics. Lab on A Chip, 2023, 23, 1726-1751.	3.1	1
2035	Modal Representation of Inertial Effects in Fluid–Particle Interactions and the Regularity of the Memory Kernels. Fluids, 2023, 8, 84.	0.8	3
2036	Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Industrial & Engineering Chemistry Research, 2023, 62, 4373-4387.	1.8	1
2037	The emerging landscape of microfluidic applications in DNA data storage. Lab on A Chip, 2023, 23, 1981-2004.	3.1	2
2038	Advancements in droplet reactor systems represent new opportunities in chemical reactor engineering: A perspective. Canadian Journal of Chemical Engineering, 2023, 101, 5189-5207.	0.9	1
2039	When Superâ∈Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. Small, 0, , 2207341.	5.2	0
2040	Biocompatible polymers with tunable mechanical properties and conductive functionality on two-photon 3D printing. RSC Advances, 2023, 13, 8586-8593.	1.7	4

#	Article	IF	CITATIONS
2041	Nanoconeâ€"versatile nanofiller for cutting-edge polymeric nanocomposite. Polymer-Plastics Technology and Materials, 2022, 61, 989-1002.	0.6	2
2042	Effects of light size and intensity on photoconductive effect-based optically-induced dielectrophoresis for three-dimensional manipulation. Physica Scripta, 2023, 98, 055009.	1.2	1
2043	Nanostructured electrode materials in bioelectrocommunication systems. , 2023, , 187-204.		0
2044	Fundamentals and Manipulation of Bare Droplets and Liquid Marbles as Open Microfluidic Platforms. Processes, 2023, 11, 983.	1.3	2
2045	Pressure Driven Rapid Reconfigurable Liquid Metal Patterning. Micromachines, 2023, 14, 717.	1.4	1
2046	Recent Advances in Organâ€onâ€Chips Integrated with Bioprinting Technologies for Drug Screening. Advanced Healthcare Materials, 2023, 12, .	3.9	8
2047	Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines, 2023, 11, 1051.	1.4	7
2048	Optical Detection of Cancer Cells Using Lab-on-a-Chip. Biosensors, 2023, 13, 439.	2.3	12
2049	Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Critical Reviews in Biomedical Engineering, 2023, 51, 41-58.	0.5	0
2050	Graphene Oxide-Functionalized Thread-Based Electrofluidic Approach for DNA Hybridization. ACS Omega, 2023, 8, 13569-13577.	1.6	3
2051	Remarkable improvement of gas–liquid mass transfer by modifying the structure of conventional Tâ€junction microchannel. AICHE Journal, 2023, 69, .	1.8	3
2052	Soft Microrobots in Microfluidic Applications. , 0, , .		0
2053	Microfluidics and Cancer Treatment: Emerging Concept of Biomedical Engineering. Biological and Medical Physics Series, 2023, , 523-562.	0.3	0
2055	Separation detection of saccharides in whole blood using an electrodynamic microfluidic channel sensor with AuCo dendrite-anchored conductive polymer. Sensors and Actuators B: Chemical, 2023, 389, 133843.	4.0	1
2056	Transport of a passive scalar in wide channels with surface topography: An asymptotic theory. Journal of Physics Condensed Matter, 2023, 35, 274003.	0.7	1
2057	4D Printing of Butterfly Scale–Inspired Structures for Wideâ€Angle Directional Liquid Transport. Small, 2023, 19, .	5.2	2
2058	The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab on A Chip, 2023, 23, 2553-2576.	3.1	2
2059	Design and Synthesis of a Novel ICT Bichromophoric pH Sensing System Based on 1,8-Naphthalimide Fluorophores as a Two-Input Logic Gate and Its Antibacterial Evaluation. Molecules, 2023, 28, 3631.	1.7	2

#	Article	IF	CITATIONS
2060	Construction and application of bionanomaterials. , 2023, , 567-594.		1
2061	Optical microscopic and spectroscopic detection of exosomes. TrAC - Trends in Analytical Chemistry, 2023, 163, 117077.	5.8	2
2063	Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems. Advanced Clinical PharmacyÂ- Research, Development and Practical Applications, 2023, , 321-364.	0.0	0
2066	Separation and characterization of cells using electrical field., 2023,, 355-373.		1
2067	Stem cells, bioengineering, and 3D scaffolds for neural tissue engineering., 2023,, 315-341.		0
2075	Methods for studying biofilms: Microfluidics and translation in the clinical context. Methods in Microbiology, 2023, , 195-233.	0.4	1
2081	Exploring the Frontiers of Microfluidics. Advances in Mechatronics and Mechanical Engineering, 2023, , 11-31.	1.0	0
2085	Isogeometric hierarchical model reduction for advection–diffusion process simulation in microchannels. , 2023, , 197-211.		0
2112	Use of microfluidic organ-on-a-chip systems for the screening and development of phytopharmaceuticals and herbal drugs., 2023,, 323-339.		0
2119	Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies. Lab on A Chip, 2023, 23, 3737-3740.	3.1	2
2130	Focusing the intervention of paper-based microfluidic devices for the forensic investigative purposes. Microfluidics and Nanofluidics, 2023, 27, .	1.0	0
2131	Polymeric and biological membranes for organ-on-a-chip devices. Microsystems and Nanoengineering, 2023, 9, .	3.4	3
2132	Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. Materials Horizons, 2023, 10, 4662-4685.	6.4	0
2134	Wearable flexible microfluidic sensing technologies. , 2023, 1, 950-971.		7
2136	Organ bioprinting: progress, challenges and outlook. Journal of Materials Chemistry B, 2023, 11, 10263-10287.	2.9	0
2144	Integrated microfluidic devices for point-of-care detection of bio-analytes and disease. Sensors & Diagnostics, 2023, 2, 1437-1459.	1.9	4
2157	Advanced Edge to Cloud system architecture for Smart Real-Time water quality monitoring using cutting-edge portable IoT biosensor devices. , 2023, , .		0
2158	Mixing enhancement in vortex serpentine micromixer having two and four non-aligned inlets. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
2162	A Microfluidic Vascular Chip for in Vitro Studying Responses of Anti-cancer Drugs. , 2023, , .		0
2169	Numerical Simulation of 3D Printed Resin Droplet-Based Microfluidic Device With T-Junction Geometry., 2023,,.		0
2174	Emerging biomarkers for early diagnosis of noncommunicable diseases. , 2024, , 87-109.		0
2175	Functionalized Smart Nanomaterials for Point-of-Care Testing. , 2024, , 139-159.		0
2188	Optimal Sperm Selection in the ICSI Era. , 2023, , 210-217.		0
2198	Multifunctional superhydrophobic platform for control of water microdroplets by non-uniform electrostatic field., 2023,,.		0
2200	Design and evaluation of a microrectification platform using 3D printing. Reaction Chemistry and Engineering, 0 , , .	1.9	0
2213	Convergence of machine learning with microfluidics and metamaterials to build smart materials. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
2224	Role of nanotechnology in microfluidic device-based smart sensors. , 2024, , 17-42.		0
2229	Advancements in Bioprocess Engineering and Plasma. Advances in Chemical and Materials Engineering Book Series, 2024, , 264-284.	0.2	0
2231	Heart-on-a-chip systems: disease modeling and drug screening applications. Lab on A Chip, 2024, 24, 1494-1528.	3.1	0
2237	From animal testing to <i>in vitro</i> systems: advancing standardization in microphysiological systems. Lab on A Chip, 2024, 24, 1076-1087.	3.1	1
2241	A Versatile Control System for Digital Microfluidic Chips of Varying Types, Shapes, Sizes, and Thicknesses. , 2024, , .		0
2247	A One-Step Soft Lithography Technique for Making Microfluidic Pdms Chips with Macro-Scale Structures. , 2024, , .		0
2258	Techniques for selection of surgically retrieved sperm for intracytoplasmic sperm injection. , 0, , 324-336.		0