The retrovirus HERVH is a long noncoding RNA require identity

Nature Structural and Molecular Biology

21, 423-425

DOI: 10.1038/nsmb.2799

Citation Report

#	Article	IF	CITATIONS
1	LncRBase: An Enriched Resource for IncRNA Information. PLoS ONE, 2014, 9, e108010.	2.5	60
2	An expanding universe of the non-coding genome in cancer biology. Carcinogenesis, 2014, 35, 1209-1216.	2.8	37
3	Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Research, 2014, 24, 1251-1259.	5.5	94
4	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
6	Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3534-43.	7.1	62
7	Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12426-12431.	7.1	220
8	DNA methylation dynamics of the human preimplantation embryo. Nature, 2014, 511, 611-615.	27.8	488
9	Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 2014, 516, 405-409.	27.8	372
10	Blood from â€~junk': the LTR chimeric transcript Pu.2 promotes erythropoiesis. Mobile DNA, 2014, 5, 15.	3.6	3
11	Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends in Genetics, 2014, 30, 439-452.	6.7	235
12	Mammalian Endogenous Retroviruses. Microbiology Spectrum, 2015, 3, MDNA3-0009-2014.	3.0	151
13	Orthologous endogenous retroviruses exhibit directional selection since the chimp-human split. Retrovirology, 2015, 12, 52.	2.0	17
14	Differential expression analysis of human endogenous retroviruses based on ENCODE RNA-seq data. BMC Medical Genomics, 2015, 8, 71.	1.5	20
15	Mammalian Endogenous Retroviruses. , 2015, , 1079-1100.		10
16	Activation of the innate immune response by endogenous retroviruses. Journal of General Virology, 2015, 96, 1207-1218.	2.9	105
17	A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell, 2015, 161, 1453-1467.	28.9	556
18	Regulation of the ESC transcriptome by nuclear long noncoding RNAs. Genome Research, 2015, 25, 1336-1346.	5.5	80
19	Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology, 2015, 12, 45.	2.0	73

TATION REDO

#	Article	IF	CITATIONS
20	Transposable Elements, Polydactyl Proteins, and the Genesis of Human-Specific Transcription Networks. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 281-288.	1.1	34
21	Retroviral Transcriptional Regulation and Embryonic Stem Cells: War and Peace. Molecular and Cellular Biology, 2015, 35, 770-777.	2.3	78
22	Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. Cell Cycle, 2015, 14, 1148-1155.	2.6	14
23	Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 2015, 518, 350-354.	27.8	201
24	Dynamic Transcription of Distinct Classes of Endogenous Retroviral Elements Marks Specific Populations of Early Human Embryonic Cells. Cell Stem Cell, 2015, 16, 135-141.	11.1	283
25	Drawing a fine line on endogenous retroelement activity. Mobile Genetic Elements, 2015, 5, 1-6.	1.8	25
26	Molecular functions of human endogenous retroviruses in health and disease. Cellular and Molecular Life Sciences, 2015, 72, 3653-3675.	5.4	93
27	Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs. Genome Biology and Evolution, 2015, 7, 1432-1454.	2.5	67
28	TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics, 2015, 31, 3593-3599.	4.1	419
29	Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. Rna, 2015, 21, 946-962.	3.5	53
30	Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Medicine, 2015, 7, 22.	8.2	45
31	The Developmental Control of Transposable Elements and the Evolution of Higher Species. Annual Review of Cell and Developmental Biology, 2015, 31, 429-451.	9.4	226
32	Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Science Bulletin, 2015, 60, 1722-1733.	9.0	50
33	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	2.5	94
34	The interplay between DNA methylation and sequence divergence in recent human evolution. Nucleic Acids Research, 2015, 43, 8204-8214.	14.5	67
35	CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. Genome Research, 2015, 25, 1812-1824.	5.5	49
36	Retrotransposons in pluripotent cells: Impact and new roles in cellular plasticity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 417-426.	1.9	20
37	Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. Journal of Clinical Investigation, 2016, 126, 4205-4218.	8.2	307

#	Article	IF	CITATIONS
38	LncRNAs in Stem Cells. Stem Cells International, 2016, 2016, 1-8.	2.5	43
39	Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate. PLoS Genetics, 2016, 12, e1006380.	3.5	47
40	Function and evolution of local repeats in the Firre locus. Nature Communications, 2016, 7, 11021.	12.8	75
41	A novel long intergenic noncoding <scp>RNA</scp> indispensable for the cleavage of mouse twoâ€cell embryos. EMBO Reports, 2016, 17, 1452-1470.	4.5	55
42	Endogenous retroviral promoter exaptation in human cancer. Mobile DNA, 2016, 7, 24.	3.6	178
43	<i>Alu</i> retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Research, 2016, 44, 4665-4683.	14.5	45
44	Activation of endogenous human stem cell-associated retroviruses (SCARs) and therapy-resistant phenotypes of malignant tumors. Cancer Letters, 2016, 376, 347-359.	7.2	21
45	Endogenized viral sequences in mammals. Current Opinion in Microbiology, 2016, 31, 176-183.	5.1	20
46	Transposable elements: Selfâ€seekers of the germline, teamâ€players of the soma. BioEssays, 2016, 38, 1158-1166.	2.5	65
48	Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors. Cancer Letters, 2016, 381, 176-193.	7.2	23
49	Capturing the ephemeral human pluripotent state. Developmental Dynamics, 2016, 245, 762-773.	1.8	10
50	Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?. BioEssays, 2016, 38, 109-117.	2.5	63
51	Human endogenous retroviruses: friend or foe?. Apmis, 2016, 124, 4-10.	2.0	28
52	Viral symbiosis and the holobiontic nature of the human genome. Apmis, 2016, 124, 11-19.	2.0	10
53	TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biology, 2016, 17, 234.	8.8	78
54	<scp>CTRL</scp> + <scp>INSERT</scp> : retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Reports, 2016, 17, 1131-1144.	4.5	79
55	The impact of transposable elements on mammalian development. Development (Cambridge), 2016, 143, 4101-4114.	2.5	161
56	Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer. Cell Reports, 2016, 17, 1607-1620.	6.4	32

#	Article	IF	CITATIONS
57	Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Molecular Cell, 2016, 62, 766-776.	9.7	219
58	Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biology, 2016, 17, 100.	8.8	138
59	Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature Protocols, 2016, 11, 327-346.	12.0	32
60	Molecular features of cellular reprogramming and development. Nature Reviews Molecular Cell Biology, 2016, 17, 139-154.	37.0	136
61	How retrotransposons shape genome regulation. Current Opinion in Genetics and Development, 2016, 37, 90-100.	3.3	139
62	In Silico Methods to Identify Exapted Transposable Element Families. Methods in Molecular Biology, 2016, 1400, 33-45.	0.9	2
63	Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Current Opinion in Genetics and Development, 2016, 37, 51-58.	3.3	69
64	DNA methylation and transcription in HERV (K, W, E) and LINE sequences remain unchanged upon foreign DNA insertions. Epigenomics, 2016, 8, 157-165.	2.1	7
65	The redundancy of the mammalian heterochromatic compartment. Current Opinion in Genetics and Development, 2016, 37, 1-8.	3.3	35
66	The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, 2016, 48, 44-52.	21.4	153
68	Retrotransposons and the Mammalian Germline. , 2017, , 1-28.		1
69	Silencing of endogenous retroviruses by heterochromatin. Cellular and Molecular Life Sciences, 2017, 74, 2055-2065.	5.4	100
70	Novel spliced variants of OCT4, OCT4C and OCT4C1, with distinct expression patterns and functions in pluripotent and tumor cell lines. European Journal of Cell Biology, 2017, 96, 347-355.	3.6	16
71	The essentiality of non-coding RNAs in cell reprogramming. Non-coding RNA Research, 2017, 2, 74-82.	4.6	18
73	Primate-specific Long Non-coding RNAs and MicroRNAs. Genomics, Proteomics and Bioinformatics, 2017, 15, 187-195.	6.9	62
75	Deep Cap Analysis of Gene Expression (CAGE): Genome-Wide Identification of Promoters, Quantification of Their Activity, and Transcriptional Network Inference. Methods in Molecular Biology, 2017, 1543, 111-126.	0.9	4
76	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	16.3	131
77	TRIM28 Controls a Gene Regulatory Network Based on Endogenous Retroviruses in Human Neural Progenitor Cells. Cell Reports, 2017, 18, 1-11.	6.4	87

#	Article	IF	CITATIONS
78	Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 170-178.	3.3	139
79	Regulation of ERVs in pluripotent stem cells and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 194-201.	3.3	13
80	IFITM1 suppresses expression of human endogenous retroviruses in human embryonic stem cells. FEBS Open Bio, 2017, 7, 1102-1110.	2.3	12
81	How to tame an endogenous retrovirus: HERVH and the evolution of human pluripotency. Current Opinion in Virology, 2017, 25, 49-58.	5.4	35
82	Co-option of endogenous viral sequences for host cell function. Current Opinion in Virology, 2017, 25, 81-89.	5.4	136
83	Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics, 2017, 18, 214.	2.8	40
84	Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics, 2017, 18, 71-86.	16.3	1,065
85	Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development (Cambridge), 2017, 144, 4496-4509.	2.5	63
86	Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs). Viruses, 2017, 9, 130.	3.3	104
87	A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. ELife, 2017, 6, .	6.0	35
88	Human Long Noncoding RNA Regulation of Stem Cell Potency and Differentiation. Stem Cells International, 2017, 2017, 1-10.	2.5	20
89	When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-13.	2.5	3
90	A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS ONE, 2017, 12, e0180659.	2.5	17
91	Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genetics, 2017, 13, e1006883.	3.5	132
92	Who Needs This Junk, or Genomic Dark Matter. Biochemistry (Moscow), 2018, 83, 450-466.	1.5	28
93	MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Reports, 2018, 23, 361-375.	6.4	23
94	Identifying coâ€opted transposable elements using comparative epigenomics. Development Growth and Differentiation, 2018, 60, 53-62.	1.5	14
95	TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency. Stem Cell Reports, 2018, 10, 243-256.	4.8	23

#	Article	IF	Citations
96	Non-coding RNAs and retroviruses. Retrovirology, 2018, 15, 20.	2.0	22
97	Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends in Genetics, 2018, 34, 142-157.	6.7	428
98	Induced pluripotent stem cells derived from human amnion in chemically defined conditions. Cell Cycle, 2018, 17, 330-347.	2.6	4
99	Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes. Russian Journal of Developmental Biology, 2018, 49, 339-355.	0.5	2
100	Epigenetic Hypothesis of the Role of Peptides in Aging. Advances in Gerontology, 2018, 8, 200-209.	0.4	3
101	Ten things you should know about transposable elements. Genome Biology, 2018, 19, 199.	8.8	817
102	The Role of Epigenetic Factors in the Development of Depressive Disorders. Russian Journal of Genetics, 2018, 54, 1397-1409.	0.6	3
103	Variation in proviral content among human genomes mediated by LTR recombination. Mobile DNA, 2018, 9, 36.	3.6	71
104	The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. International Journal of Molecular Sciences, 2018, 19, 3286.	4.1	13
105	Human endogenous retroviruses role in cancer cell stemness. Seminars in Cancer Biology, 2018, 53, 17-30.	9.6	61
106	LTRs activated by Epstein-Barr virus–induced transformation of B cells alter the transcriptome. Genome Research, 2018, 28, 1791-1798.	5.5	25
107	Computational tools to unmask transposable elements. Nature Reviews Genetics, 2018, 19, 688-704.	16.3	173
108	Human copy number variants are enriched in regions of low mappability. Nucleic Acids Research, 2018, 46, 7236-7249.	14.5	36
109	Detection of ERV-Derived Transcripts in Human Testis Using High Throughput Sequencing: Pipeline for Annotation and Genomic Localization. , 2018, , .		1
110	Cellular Control of Endogenous Retroviruses and Retroelements. , 2018, , 479-525.		1
111	Transcriptional Control and Latency of Retroviruses. , 2018, , 199-227.		0
112	Noncoding RNAs in Retrovirus Replication. , 2018, , 421-478.		1
113	Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Frontiers in Immunology, 2018, 9, 2039.	4.8	218

#	Article	IF	CITATIONS
114	Enigma of Retrotransposon Biology in Mammalian Early Embryos and Embryonic Stem Cells. Stem Cells International, 2018, 2018, 1-6.	2.5	20
115	Single cell expression analysis of primate-specific retroviruses-derived HPAT lincRNAs in viable human blastocysts identifies embryonic cells co-expressing genetic markers of multiple lineages. Heliyon, 2018, 4, e00667.	3.2	23
116	Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. ELife, 2018, 7, .	6.0	27
117	Expression of endogenous retroviruses in preâ€implantation stages of bovine embryo. Reproduction in Domestic Animals, 2018, 53, 1405-1414.	1.4	5
118	Nimble and Ready to Mingle: Transposon Outbursts of Early Development. Trends in Genetics, 2018, 34, 806-820.	6.7	83
119	Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs. Genes, 2018, 9, 23.	2.4	47
120	Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Molecular Biology and Evolution, 2018, 35, 2435-2453.	8.9	43
121	Reconstruction of a replication-competent ancestral murine endogenous retrovirus-L. Retrovirology, 2018, 15, 34.	2.0	11
122	Long Noncoding RNAs. , 2018, , 409-427.		2
123	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	21.4	236
123 124		21.4 4.1	236 24
	human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA		
124	human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571.	4.1	24
124 125	 human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571. The Role of Reverse Transcriptase in the Origin of Life. Biochemistry (Moscow), 2019, 84, 870-883. The emerging field of human endogenous retroviruses: understanding their physiological role and 	4.1 1.5	24 5
124 125 126	human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571. The Role of Reverse Transcriptase in the Origin of Life. Biochemistry (Moscow), 2019, 84, 870-883. The emerging field of human endogenous retroviruses: understanding their physiological role and contribution to diseases. Future Virology, 2019, 14, 441-444.	4.1 1.5 1.8	24 5 12
124 125 126 127	human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571. The Role of Reverse Transcriptase in the Origin of Life. Biochemistry (Moscow), 2019, 84, 870-883. The emerging field of human endogenous retroviruses: understanding their physiological role and contribution to diseases. Future Virology, 2019, 14, 441-444. Transposable Elements. Current Topics in Behavioral Neurosciences, 2019, 42, 221-246. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. Cancer	4.1 1.5 1.8 1.7	24 5 12 12
124 125 126 127 128	human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571. The Role of Reverse Transcriptase in the Origin of Life. Biochemistry (Moscow), 2019, 84, 870-883. The emerging field of human endogenous retroviruses: understanding their physiological role and contribution to diseases. Future Virology, 2019, 14, 441-444. Transposable Elements. Current Topics in Behavioral Neurosciences, 2019, 42, 221-246. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. Cancer Microenvironment, 2019, 12, 105-118. A Long Noncoding RNA, Antisense IL-7, Promotes Inflammatory Gene Transcription through Facilitating Historne Acetylation and Switch/Sucrose Nonfermentable Chromatin Remodeling. Journal of	4.1 1.5 1.8 1.7 3.1	24 5 12 12 9

#	Article	IF	CITATIONS
132	Telescope: Characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Computational Biology, 2019, 15, e1006453.	3.2	99
133	Children With Autism Spectrum Disorder and Their Mothers Share Abnormal Expression of Selected Endogenous Retroviruses Families and Cytokines. Frontiers in Immunology, 2019, 10, 2244.	4.8	32
134	Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Molecular and Cellular Biology, 2019, 39, .	2.3	22
135	Variable Baseline Papio cynocephalus Endogenous Retrovirus (PcEV) Expression Is Upregulated in Acutely SIV-Infected Macaques and Correlated to STAT1 Expression in the Spleen. Frontiers in Immunology, 2019, 10, 901.	4.8	1
136	Identification of a Retroelement-Containing Human Transcript Induced in the Nucleus by Vaccination. International Journal of Molecular Sciences, 2019, 20, 2875.	4.1	5
137	Histone demethylase Kdm2a regulates germ cell genes and endogenous retroviruses in embryonic stem cells. Epigenomics, 2019, 11, 751-766.	2.1	11
138	Noncoding RNAs as Regulators of Gene Expression in Pluripotency and Differentiation. , 2019, , 73-105.		0
139	The Exaptation of HERV-H: Evolutionary Analyses Reveal the Genomic Features of Highly Transcribed Elements. Frontiers in Immunology, 2019, 10, 1339.	4.8	18
140	The Relationship between Transposons and Transcription Factors in the Evolution of Eukaryotes. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 14-23.	0.6	3
141	The evolution of Great Apes has shaped the functional enhancers' landscape in human embryonic stem cells. Stem Cell Research, 2019, 37, 101456.	0.7	28
142	Transposable Elements in the Evolution of Gene Regulatory Networks. Russian Journal of Genetics, 2019, 55, 24-34.	0.6	0
143	Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell, 2019, 24, 724-735.e5.	11.1	208
144	Endogenous Retroviruses Function as Gene Expression Regulatory Elements During Mammalian Pre-implantation Embryo Development. International Journal of Molecular Sciences, 2019, 20, 790.	4.1	37
145	Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation. Genes and Genetic Systems, 2019, 94, 269-281.	0.7	34
146	Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics, 2019, 213, 1093-1110.	2.9	24
147	Specific trophoblast transcripts transferred by extracellular vesicles affect gene expression in endometrial epithelial cells and may have a role in embryo-maternal crosstalk. Cell Communication and Signaling, 2019, 17, 146.	6.5	34
148	The Role of Transposable Elements in the Differentiation of Stem Cells. Molecular Genetics, Microbiology and Virology, 2019, 34, 67-74.	0.3	3
149	Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nature Communications, 2019, 10, 5228.	12.8	154

#	Article	IF	CITATIONS
150	Exploratory analysis of transposable elements expression in the C. elegans early embryo. BMC Bioinformatics, 2019, 20, 484.	2.6	17
151	A primate-specific retroviral enhancer wires the XACT IncRNA into the core pluripotency network in humans. Nature Communications, 2019, 10, 5652.	12.8	21
153	The epigenomic landscape of transposable elements across normal human development and anatomy. Nature Communications, 2019, 10, 5640.	12.8	67
154	Expressional activation and functional roles of human endogenous retroviruses in cancers. Reviews in Medical Virology, 2019, 29, e2025.	8.3	52
155	Pharmacological Induction of a Progenitor State for the Efficient Expansion of Primary Human Hepatocytes. Hepatology, 2019, 69, 2214-2231.	7.3	22
156	TRIM28 and the control of transposable elements in the brain. Brain Research, 2019, 1705, 43-47.	2.2	28
157	Tumorâ€ S pecific Transcripts Are Frequently Expressed in Hepatocellular Carcinoma With Clinical Implication and Potential Function. Hepatology, 2020, 71, 259-274.	7.3	16
158	Insight into the epigenetic landscape of a currently endogenizing gammaretrovirus in mule deer (Odocoileus hemionus). Genomics, 2020, 112, 886-896.	2.9	2
159	Genome-wide interaction target profiling reveals a novel <i>Peblr20</i> -eRNA activation pathway to control stem cell pluripotency. Theranostics, 2020, 10, 353-370.	10.0	23
160	Reactivation of Endogenous Retroelements in Cancer Development and Therapy. Annual Review of Cancer Biology, 2020, 4, 159-176.	4.5	36
161	Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26520-26530.	7.1	11
162	Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17842-17853.	7.1	43
163	Exosomeâ€ŧransmitted linc00852 associated with receptor tyrosine kinase AXL dysregulates the proliferation and invasion of osteosarcoma. Cancer Medicine, 2020, 9, 6354-6366.	2.8	29
164	Human Endogenous Retrovirus K Rec Forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses, 2020, 12, 1303.	3.3	14
165	The epigenetics of pluripotent stem cells. , 2020, , 25-74.		0
166	Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nature Communications, 2020, 11, 5656.	12.8	75
167	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	6.4	21
168	Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses, 2020, 12, 792.	3.3	14

#	Article	IF	CITATIONS
169	LncRNAs in the Type I Interferon Antiviral Response. International Journal of Molecular Sciences, 2020, 21, 6447.	4.1	23
170	Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses, 2020, 12, 884.	3.3	101
171	The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease. International Journal of Molecular Sciences, 2020, 21, 3201.	4.1	8
172	Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in Genetics, 2020, 36, 610-623.	6.7	64
173	Measuring and interpreting transposable element expression. Nature Reviews Genetics, 2020, 21, 721-736.	16.3	211
174	High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses, 2020, 12, 633.	3.3	14
175	Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Frontiers in Cell and Developmental Biology, 2020, 8, 229.	3.7	80
176	Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos. Nature Communications, 2020, 11, 1366.	12.8	22
177	Transposable elements contribute to the genomic response to insecticides in <i>Drosophila melanogaster</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190341.	4.0	27
178	The genome of Shaw's sea snake (Hydrophis curtus) reveals secondary adaptation to its marine environment. Molecular Biology and Evolution, 2020, 37, 1744-1760.	8.9	28
179	What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. BioEssays, 2020, 42, e1900232.	2.5	20
180	Long noncoding RNA Q associates with Sox2 and is involved in the maintenance of pluripotency in mouse embryonic stem cells. Stem Cells, 2020, 38, 834-848.	3.2	8
181	Mobile genomics: tools and techniques for tackling transposons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190345.	4.0	39
182	Transposable element-derived sequences in vertebrate development. Mobile DNA, 2021, 12, 1.	3.6	62
183	Nsd2 Represses Endogenous Retrovirus MERVL in Embryonic Stem Cells. Stem Cells International, 2021, 2021, 1-8.	2.5	4
184	Maternal UHRF1 Is Essential for Transcription Landscapes and Repression of Repetitive Elements During the Maternal-to-Zygotic Transition. Frontiers in Cell and Developmental Biology, 2020, 8, 610773.	3.7	6
185	Role of Transposable Elements in Gene Regulation in the Human Genome. Life, 2021, 11, 118.	2.4	31
186	Discovery of a Novel Long Noncoding RNA Lx8-SINE B2 as a Marker of Pluripotency. Stem Cells	2.5	4

#	Article	IF	CITATIONS
188	Pluripotent stem cells for the study of early human embryology. Development Growth and Differentiation, 2021, 63, 104-115.	1.5	13
189	The Regulation and Functions of Endogenous Retrovirus in Embryo Development and Stem Cell Differentiation. Stem Cells International, 2021, 2021, 1-8.	2.5	11
190	Unexpected low expression of porcine endogenous retroviruses (PERVs) in porcine expanded potential stem cells (EPSCs). Virus Research, 2021, 294, 198295.	2.2	4
191	Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nature Communications, 2021, 12, 1456.	12.8	74
192	Genomics-Guided Drawing of Molecular and Pathophysiological Components of Malignant Regulatory Signatures Reveals a Pivotal Role in Human Diseases of Stem Cell-Associated Retroviral Sequences and Functionally-Active hESC Enhancers. Frontiers in Oncology, 2021, 11, 638363.	2.8	6
193	Sensing of transposable elements by the antiviral innate immune system. Rna, 2021, 27, 735-752.	3.5	36
196	New insights into the functional role of retrotransposon dynamics in mammalian somatic cells. Cellular and Molecular Life Sciences, 2021, 78, 5245-5256.	5.4	7
197	The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. PLoS Genetics, 2021, 17, e1009587.	3.5	20
198	Endogenous retroviruses in the origins and treatment of cancer. Genome Biology, 2021, 22, 147.	8.8	73
200	Endogenous reverse transcriptase and RNase H-mediated antiviral mechanism in embryonic stem cells. Cell Research, 2021, 31, 998-1010.	12.0	9
201	Endogenous retrovirus expression activates type-l interferon signaling in an experimental mouse model of mesothelioma development. Cancer Letters, 2021, 507, 26-38.	7.2	18
202	The essential but enigmatic regulatory role of HERVH in pluripotency. Trends in Genetics, 2021, , .	6.7	11
203	Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World Journal of Stem Cells, 2021, 13, 685-736.	2.8	3
205	Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biology, 2021, 22, 201.	8.8	11
208	Transposable elements shape the evolution of mammalian development. Nature Reviews Genetics, 2021, 22, 691-711.	16.3	133
209	Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements. Biology, 2021, 10, 896.	2.8	3
210	Transposons: Unexpected players in cancer. Gene, 2022, 808, 145975.	2.2	15
211	Recombination Marks the Evolutionary Dynamics of a Recently Endogenized Retrovirus. Molecular Biology and Evolution, 2021, 38, 5423-5436.	8.9	2

# 212	ARTICLE Retrotransposon-Driven Transcription and Cancer. , 2017, , 259-273.	IF	CITATIONS
213	G9a controls pluripotent-like identity and tumor-initiating function in human colorectal cancer. Oncogene, 2021, 40, 1191-1202.	5.9	22
214	Activation of the innate immune response by endogenous retroviruses. Journal of General Virology, 2015, 96, 1207-1218.	2.9	67
221	Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Research, 2021, 31, 88-100.	5.5	34
222	Retrotransposons in pluripotent stem cells. Cell Regeneration, 2020, 9, 4.	2.6	9
223	Phylogenetic Analysis Reveals That ERVs "Die Young" but HERV-H Is Unusually Conserved. PLoS Computational Biology, 2016, 12, e1004964.	3.2	22
224	EnHERV: Enrichment analysis of specific human endogenous retrovirus patterns and their neighboring genes. PLoS ONE, 2017, 12, e0177119.	2.5	27
225	Viruses, stemness, embryogenesis, and cancer: a miracle leap toward molecular definition of novel oncotargets for therapy-resistant malignant tumors?. Oncoscience, 2015, 2, 751-754.	2.2	10
226	A pathophysiological view of the long non-coding RNA world. Oncotarget, 2014, 5, 10976-10996.	1.8	152
227	Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. ELife, 2017, 6,	6.0	75
228	The Long Terminal Repeats of ERV6 Are Activated in Pre-Implantation Embryos of Cynomolgus Monkey. Cells, 2021, 10, 2710.	4.1	3
229	HERVH-derived lncRNAs negatively regulate chromatin targeting and remodeling mediated by CHD7. Life Science Alliance, 2022, 5, e202101127.	2.8	3
230	Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. Journal of Assisted Reproduction and Genetics, 2021, 38, 3145-3153.	2.5	7
231	Embryonic LTR retrotransposons supply promoter modules to somatic tissues. Genome Research, 2021, 31, 1983-1993.	5.5	7
233	Structural and Functional Coevolution of Human Endogenous Retroviruses with Our Genome. , 2016, , 479-485.		0
239	INTERRELATION OF PRIONS WITH NON-CODING RNAS. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 415-424.	1.1	0
242	The role of transposable elements in the differentiation of stem cells. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2019, 37, 51.	0.4	1
246	Heterochromatin formation in Drosophila requires genome-wide histone deacetylation in cleavage chromatin before mid-blastula transition in early embryogenesis. Chromosoma, 2020, 129, 83-98.	2.2	4

# 247	ARTICLE Viral Symbiosis in the Origins and Evolution of Life with a Particular Focus on the Placental Mammals. Results and Problems in Cell Differentiation, 2020, 69, 3-24.	IF 0.7	CITATIONS
248	Reconstitution of Prospermatogonial Specification <i>In vitro</i> from Human Induced Pluripotent Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0
249	Roles and regulation of endogenous retroviruses in pluripotency and early development. , 2020, , 155-186.		2
251	Mouse strain-specific polymorphic provirus functions as cis-regulatory element leading to epigenomic and transcriptomic variations. Nature Communications, 2021, 12, 6462.	12.8	4
252	Human endogenous retroviruses in development and disease. Computational and Structural Biotechnology Journal, 2021, 19, 5978-5986.	4.1	36
253	Transposable elements that have recently been mobile in the human genome. BMC Genomics, 2021, 22, 789.	2.8	12
258	Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sexual Development, 2021, 15, 411-431.	2.0	16
259	Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Reports, 2021, 37, 109982.	6.4	13
260	Relationship of Peptides and Long Non-Coding RNAs with Aging. Advances in Gerontology, 2021, 11, 351-361.	0.4	0
261	Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells International, 2022, 2022, 1-19.	2.5	5
262	Long nonâ€coding RNA OIP5â€AS1 (Cyrano): A contextâ€specific regulator of normal and disease processes. Clinical and Translational Medicine, 2022, 12, e706.	4.0	9
263	Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Research, 2022, 32, 1408-1423.	5.5	29
264	LncCDH5-3:3 Regulates Apoptosis, Proliferation, and Aggressiveness in Human Lung Cancer Cells. Cells, 2022, 11, 378.	4.1	0
265	A hypothesis: Retrotransposons as a relay of epigenetic marks in intergenerational epigenetic inheritance. Gene, 2022, 817, 146229.	2.2	7
266	LncRNA Biomarkers of Inflammation and Cancer. Advances in Experimental Medicine and Biology, 2022, 1363, 121-145.	1.6	15
267	Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo. ELife, 2022, 11, .	6.0	31
268	Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews Molecular Cell Biology, 2022, 23, 481-497.	37.0	135
269	What we have learned about evolutionary genome change in the past 7 decades. BioSystems, 2022, 215-216, 104669.	2.0	3

ARTICLE IF CITATIONS # Genome-Wide Characterization of Zebrafish Endogenous Retroviruses Reveals Unexpected Diversity in 270 3.0 7 Genetic Organizations and Functional Potentials. Microbiology Spectrum, 2021, 9, e0225421. Influence of retroelements on oncogenes and tumor suppressors in carcinogenesis: A review. Journal 271 0.3 of Modern Oncology, 2021, 23, 666-673. Locus-specific chromatin profiling of evolutionarily young transposable elements. Nucleic Acids 272 14.5 9 Research, 2022, 50, e33-e33. Active endogenous retroviral elements in human pluripotent stem cells play a role in regulating host 14.5 gene expression. Nucleic Acids Research, 2022, 50, 4959-4973. Cancer-associated chromatin variants uncover the oncogenic role of transposable elements. Current 280 3.3 8 Opinion in Genetics and Development, 2022, 74, 101911. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience, 2022, 44, 1525-1550. 4.6 HERVs Role in the Pathogenesis, Diagnosis or Prognosis of Aging Diseases: A Systematic Review. 282 1.3 0 Current Molecular Medicine, 2023, 23, 678-687. Molecular genetics of idiopathic pulmonary fibrosis. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 26, 1.1 308-318. 284 Transposable Elements in Pluripotent Stem Cells and Human Disease. Frontiers in Genetics, 0, 13, . 2.3 1 Somatic retrotransposition in the developing rhesus macaque brain. Genome Research, 2022, 32, 5.5 1298-1314. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent 286 12.8 7 transcription. Nature Communications, 2022, 13,. Expression of Extracellular Vesicle PIWI-Interacting RNAs Throughout hiPSC-Cardiomyocyte 288 2.8 Differentiation. Frontiers in Physiology, 0, 13, . Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control 289 4.8 14 Senescence and Aging as a Consequence of ERV De-Repression?. Frontiers in Immunology, 0, 13, . Influenza A Virus Infection Reactivates Human Endogenous Retroviruses Associated with Modulation 3.3 of Antiviral Immunity. Viruses, 2022, 14, 1591. Regulation of Embryonic Stem Cell Self-Renewal. Life, 2022, 12, 1151. 291 2.4 4 Mammalian genome innovation through transposon domestication. Nature Cell Biology, 2022, 24, 292 1332-1340. Postnatal neurogenesis in the human brain. Morfologiia (Saint Petersburg, Russia), 2022, 159, 37-46. 293 0.0 0 $Kr\tilde{A}^{1}_{4}$ ppel-like factor 5 rewires NANOG regulatory network to activate human naive pluripotency 294 6.4 specific LTR7Ys and promote naive pluripotency. Cell Reports, 2022, 40, 111240.

#	Article	IF	CITATIONS
295	Induced pluripotent stem cells display a distinct set of MHC I-associated peptides shared by human cancers. Cell Reports, 2022, 40, 111241.	6.4	7
297	Long Noncoding RNA <i>Lx8-SINE B2</i> Interacts with Eno1 to Regulate Self-Renewal and Metabolism of Embryonic Stem Cells. Stem Cells, 2022, 40, 1094-1106.	3.2	2
299	Molecular diversity and phenotypic pleiotropy of ancient genomic regulatory loci derived from human endogenous retrovirus type H (HERVH) promoter LTR7 and HERVK promoter LTR5_Hs and their contemporary impacts on pathophysiology of Modern Humans. Molecular Genetics and Genomics, 2022, 297, 1711-1740.	2.1	1
300	Prospects for the study of transposons in the pathogenesis of autoimmune diseases. Kazan Medical Journal, 0, , .	0.2	0
301	Unravelling the impact of aging on the human endothelial lncRNA transcriptome. Frontiers in Genetics, 0, 13, .	2.3	3
302	A Systems Biology Approach on the Regulatory Footprint of Human Endogenous Retroviruses (HERVs). Diseases (Basel, Switzerland), 2022, 10, 98.	2.5	2
303	Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses, 2022, 14, 2505.	3.3	3
304	Viral Mimicry Response Is Associated With Clinical Outcome in Pleural Mesothelioma. JTO Clinical and Research Reports, 2022, 3, 100430.	1.1	2
305	The single-cell expression profile of transposable elements and transcription factors in human early biparental and uniparental embryonic development. Frontiers in Cell and Developmental Biology, 0, 10,	3.7	4
307	Transposon control as a checkpoint for tissue regeneration. Development (Cambridge), 2022, 149, .	2.5	3
308	Transposon hypothesis of carcinogenesis. Genes and Cells, 2021, 16, 8-15.	0.2	0
310	Transposable elements and their role in aging. Ageing Research Reviews, 2023, 86, 101881.	10.9	7
311	Involvement of transposons in epigenetic regulation of embryogenesis. Genes and Cells, 2021, 16, 10-14.	0.2	1
312	The probable role of retroelements in the development of Wilms' tumor in chromosomal syndromes. Onkourologiya, 2023, 18, 99-107.	0.3	0
313	HERVs and Cancer—A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines, 2023, 11, 936.	3.2	9
314	Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines, 2023, 11, 751.	4.4	7
315	Noncoding RNA-chromatin association: Functions and mechanisms. Fundamental Research, 2023, 3, 665-675.	3.3	2
316	HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells. International Journal of Molecular Sciences, 2023, 24, 7283.	4.1	0

#	Article	IF	CITATIONS
317	Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. Cell Discovery, 2023, 9, .	6.7	6
318	Human endogenous retroviruses: our genomic fossils and companions. Physiological Genomics, 2023, 55, 249-258.	2.3	7
319	Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci. Cancer Research, 2023, 83, 2584-2599.	0.9	1
320	Co-option of endogenous retroviruses through genetic escape from TRIM28 repression. Cell Reports, 2023, 42, 112625.	6.4	3
321	Context-aware transcript quantification from long-read RNA-seq data with Bambu. Nature Methods, 2023, 20, 1187-1195.	19.0	20
323	A new human embryonic cell type associated with activity of young transposable elements allows definition of the inner cell mass. PLoS Biology, 2023, 21, e3002162.	5.6	8
325	Human Endogenous Retrovirus-H-Derived miR-4454 Inhibits the Expression of DNAJB4 and SASH1 in Non-Muscle-Invasive Bladder Cancer. Genes, 2023, 14, 1410.	2.4	1
326	Transposable elements in early human embryo development and embryo models. Current Opinion in Genetics and Development, 2023, 81, 102086.	3.3	1
327	Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in <i>Drosophila melanogaster</i> . Genome Research, 2023, 33, 872-890.	5.5	6
328	Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nature Genetics, 2023, 55, 1324-1335.	21.4	7
329	The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes. NAR Cancer, 2023, 5, .	3.1	0
331	Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends in Neurosciences, 2023, 46, 797-813.	8.6	5
332	Deep annotation of long noncoding RNAs by assembling RNA-seq and small RNA-seq data. Journal of Biological Chemistry, 2023, 299, 105130.	3.4	0
333	Transposable Elements Are Co-opted as Oncogenic Regulatory Elements by Lineage-Specific Transcription Factors in Prostate Cancer. Cancer Discovery, 2023, 13, 2470-2487.	9.4	1
334	Endogenous retroviruses in development and health. Trends in Microbiology, 2023, , .	7.7	3
335	Cap Analysis of Gene Expression Clarifies Transcriptomic Divergence Within Monozygotic Twin Pairs. Twin Research and Human Genetics, 0, , 1-8.	0.6	1
336	Activation of human endogenous retroviruses and its physiological consequences. Nature Reviews Molecular Cell Biology, 2024, 25, 212-222.	37.0	5
337	HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Research, 0, , .	14.5	1

#	Article	IF	CITATIONS
338	The Molecular Impacts of Retrotransposons in Development and Diseases. International Journal of Molecular Sciences, 2023, 24, 16418.	4.1	0
341	Relationship of transposable elements with long non-coding RNAs and peptides in carcinogenesis. Uspehi Molekularnoj Onkologii, 2023, 10, 21-30.	0.3	0
342	Human Endogenous Retroviruses in Diseases. Sub-Cellular Biochemistry, 2023, , 403-439.	2.4	0
343	Towards targeting transposable elements for cancer therapy. Nature Reviews Cancer, 2024, 24, 123-140.	28.4	0
344	Ribosomal profiling of human endogenous retroviruses in healthy tissues. BMC Genomics, 2024, 25, .	2.8	0
345	MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology, 2024, 21, .	2.0	0
347	Endogenous retrovirus HERVH-derived lncRNA <i>UCA1</i> controls human trophoblast development. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0