Diagnostic and clinical classification of autoimmune my

Journal of Autoimmunity 48-49, 143-148

DOI: 10.1016/j.jaut.2014.01.003

Citation Report

#	Article	IF	CITATIONS
1	Celiac disease association with other autoimmune disorders: Three case reports. Case Reports in Internal Medicine, $2014, 2, .$	0.0	1
2	Myasthenia gravis as a â€~stroke mimic' – it's all in the history. Clinical Medicine, 2014, 14, 640-642.	0.8	10
3	Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients. PLoS ONE, 2014, 9, e108327.	1.1	38
4	Cortactin: A new target in autoimmune myositis and Myasthenia Gravis. Autoimmunity Reviews, 2014, 13, 1001-1002.	2.5	11
5	Myasthenia Gravis: Paradox versus paradigm in autoimmunity. Journal of Autoimmunity, 2014, 52, 1-28.	3.0	102
6	Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiological Reports, 2015, 3, e12658.	0.7	13
7	An update on myasthenia gravis, challenging disease for the dental profession. Journal of Oral Science, 2015, 57, 161-168.	0.7	10
8	Clinical Features and Prognosis of Ocular Myasthenia Gravis Patients with Different Phenotypes. Chinese Medical Journal, 2015, 128, 2682-2684.	0.9	13
9	Flow Cytofluorimetric Analysis of Anti-LRP4 (LDL Receptor-Related Protein 4) Autoantibodies in Italian Patients with Myasthenia Gravis. PLoS ONE, 2015, 10, e0135378.	1.1	30
10	Follicular Helper CD4 ⁺ T Cells in Human Neuroautoimmune Diseases and Their Animal Models. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	25
11	Clinical features and impact of myasthenia gravis disease in Australian patients. Journal of Clinical Neuroscience, 2015, 22, 1164-1169.	0.8	77
12	The HLA-B*4601-DRB1*0901 haplotype is positively correlated with juvenile ocular myasthenia gravis in a southern Chinese Han population. Neurological Sciences, 2015, 36, 1135-1140.	0.9	15
13	Human autoimmune diseases: a comprehensive update. Journal of Internal Medicine, 2015, 278, 369-395.	2.7	681
14	Discovering New Acetylcholinesterase Inhibitors by Mining the <i>Buzhongyiqi</i> Decoction Recipe Data. Journal of Chemical Information and Modeling, 2015, 55, 2455-2463.	2.5	23
15	How clinical trials of myasthenia gravis can inform pre-clinical drug development. Experimental Neurology, 2015, 270, 78-81.	2.0	9
16	MuSK Frizzled-Like Domain Is Critical for Mammalian Neuromuscular Junction Formation and Maintenance. Journal of Neuroscience, 2015, 35, 4926-4941.	1.7	59
17	Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes. BMC Medical Genomics, 2015, 8, 13.	0.7	20
18	Statin-modified dendritic cells regulate humoral immunity in experimental autoimmune myasthenia gravis. Molecular and Cellular Neurosciences, 2015, 68, 284-292.	1.0	21

#	Article	IF	CITATIONS
19	Myasthenia gravis: descriptive analysis of lifeâ€threatening events in a recent nationwide registry. European Journal of Neurology, 2015, 22, 1056-1061.	1.7	48
20	Autoimmunity in 2014. Clinical Reviews in Allergy and Immunology, 2015, 49, 93-99.	2.9	2
21	Serum interleukin-27 expression in patients with myasthenia gravis. Journal of Neuroimmunology, 2015, 288, 120-122.	1.1	5
22	Incidence and Prevalence of Myasthenia Gravis in Korea: A Population-Based Study Using the National		

#	Article	IF	Citations
37	Myasthenia Gravis: Unusual Presentations and Diagnostic Pitfalls. Journal of Neuromuscular Diseases, 2016, 3, 413-418.	1.1	12
38	Detection of myasthenia gravis using electrooculography signals. , 2016, 2016, 896-899.		2
39	Thymus involvement in myasthenia gravis: Epidemiological and clinical impacts of different self-tolerance breakdown mechanisms. Journal of Neuroimmunology, 2016, 298, 58-62.	1.1	5
40	A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology, 2016, 221, 1227-1236.	0.8	33
41	Major motor-functional determinants associated with poor self-reported health-related quality of life in myasthenia gravis patients. Neurological Sciences, 2016, 37, 717-723.	0.9	13
42	Environmental Basis of Autoimmunity. Clinical Reviews in Allergy and Immunology, 2016, 50, 287-300.	2.9	92
43	Ocular vestibular evoked myogenic potentials as a test for myasthenia gravis. Neurology, 2016, 86, 660-668.	1.5	35
44	Myf5 and Myogenin in the development of thymic myoid cells â€" Implications for a murine in vivo model of myasthenia gravis. Experimental Neurology, 2016, 277, 76-85.	2.0	6
45	Titin antibodies in "seronegative―myasthenia gravis — A new role for an old antigen. Journal of Neuroimmunology, 2016, 292, 108-115.	1.1	57
46	Low antioxidant status of serum bilirubin, uric acid, albumin and creatinine in patients with myasthenia gravis. International Journal of Neuroscience, 2016, 126, 1120-1126.	0.8	44
47	Overcoming challenges in the diagnosis and treatment of myasthenia gravis. Expert Review of Clinical Immunology, 2016, 12, 157-168.	1.3	15
48	Thymic carcinoma patients with myasthenia gravis exhibit better prognoses. International Journal of Clinical Oncology, 2016, 21, 75-80.	1.0	15
49	Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clinical Reviews in Allergy and Immunology, 2017, 52, 108-124.	2.9	70
50	Exercise in myasthenia gravis: A feasibility study of aerobic and resistance training. Muscle and Nerve, 2017, 56, 700-709.	1.0	59
51	Prescription profile of pyridostigmine use in a population of patients with myasthenia gravis. Muscle and Nerve, 2017, 56, 1041-1046.	1.0	11
52	Inpatient cost analysis for treatment of myasthenia gravis. Muscle and Nerve, 2017, 56, 1114-1118.	1.0	11
53	Effect of ethnic origin and gender on the clinical manifestations of myasthenia gravis among the Jewish population in Israel. Journal of Neuroimmunology, 2017, 307, 47-52.	1.1	4
54	Evaluation of coexisting polymyositis in feline myasthenia gravis: A case series. Neuromuscular Disorders, 2017, 27, 804-815.	0.3	6

#	ARTICLE	IF	CITATIONS
55	Outcomes of Preoperative and Postoperative Corticosteroid Therapies in Myasthenia Gravis. European Neurology, 2017, 78, 86-92.	0.6	4
56	IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1. Clinical Immunology, 2017, 183, 121-131.	1.4	37
57	Myasthenia Gravis and Crisis: Evaluation and Management in the Emergency Department. Journal of Emergency Medicine, 2017, 53, 843-853.	0.3	38
58	Expanding the Phenotypic and Genotypic Landscape of Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3546-3556.	1.8	89
59	Maxillary deformity following CPAP treatment in myasthenia gravis. Cranio - Journal of Craniomandibular Practice, 2017, 36, 1-4.	0.6	0
60	KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects. Neurobiology of Disease, 2017, 106, 35-48.	2.1	8
61	Juvenile myasthenia gravis in Norway: A nationwide epidemiological study. European Journal of Paediatric Neurology, 2017, 21, 312-317.	0.7	26
62	Translation, crossâ€cultural adaptation, and validation of the french version of the 15â€item Myasthenia Gravis Quality Of life scale. Muscle and Nerve, 2017, 55, 639-645.	1.0	15
63	cDNA phage display for the discovery of theranostic autoantibodies in rheumatoid arthritis. Immunologic Research, 2017, 65, 307-325.	1.3	10
64	Autoimmune Thyroiditis and Myasthenia Gravis. Frontiers in Endocrinology, 2017, 8, 169.	1.5	27
65	Amyotrophic Lateral Sclerosis and Myasthenia Gravis Overlap Syndrome: A Review of Two Cases and the Associated Literature. Frontiers in Neurology, 2017, 8, 218.	1.1	20
66	Thymectomy in Myasthenia Gravis. Eurasian Journal of Medicine, 2017, 49, 48-52.	0.2	31
67	Influence of body mass index on postoperative complications after thymectomy in myasthenia gravis patients. Oncotarget, 2017, 8, 94944-94950.	0.8	5
68	Onset and Evolution of Clinically Apparent Myasthenia Gravis After Resection of Non-myasthenic Thymomas. Seminars in Thoracic and Cardiovascular Surgery, 2018, 30, 222-227.	0.4	18
69	Ocular Myasthenia Induced by Rivaroxaban in Patient with Deep Vein Thrombosis. Annals of Vascular Surgery, 2018, 49, 313.e1-313.e3.	0.4	3
70	The Composition, Development, and Regeneration of Neuromuscular Junctions. Current Topics in Developmental Biology, 2018, 126, 99-124.	1.0	29
71	The Myasthenia Gravis-specific Activities of Daily Living scale as a useful outcome measure and in routine clinical management in Polish patients. Neurologia I Neurochirurgia Polska, 2018, 52, 368-373.	0.6	3
72	Myasthenia gravis: the role of complement at the neuromuscular junction. Annals of the New York Academy of Sciences, 2018, 1412, 113-128.	1.8	123

#	Article	IF	Citations
73	Palpebral portion of the orbicularis oculi muscle to repetitive nerve stimulation testing: A potential assessment indicator in patients with generalized myasthenia gravis. Journal of Clinical Neuroscience, 2018, 48, 238-242.	0.8	2
74	Evidence for association of STAT4 and IL12RB2 variants with Myasthenia gravis susceptibility: What is the effect on gene expression in thymus?. Journal of Neuroimmunology, 2018, 319, 93-99.	1.1	5
75	Thymectomy lowers the myasthenia gravis biomarker miR-150-5p. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e450.	3.1	25
76	Clinical Presentations of Myasthenia Gravis. , 2018, , 85-100.		3
77	B cells in the pathophysiology of myasthenia gravis. Muscle and Nerve, 2018, 57, 172-184.	1.0	87
78	A Natural Variant of the Signaling Molecule Vav1 Enhances Susceptibility to Myasthenia Gravis and Influences the T Cell Receptor Repertoire. Frontiers in Immunology, 2018, 9, 2399.	2.2	3
79	Abnormalities of Otoacoustic Emissions in Myasthenia Gravis: Association With Serological and Electrophysiological Features. Frontiers in Neurology, 2018, 9, 1124.	1.1	2
80	The Pediatric Primary Care Management of Myasthenia Gravis. Journal for Nurse Practitioners, 2018, 14, 584-590.e1.	0.4	0
81	Antibody profile may predict outcome in ocular myasthenia gravis. Acta Neurologica Belgica, 2018, 118, 435-443.	0.5	22
82	Myasthenia Gravis Presenting as Inferior Oblique Paresis. , 2018, , 187-190.		0
83	Immunostick ELISA for rapid and easy diagnosis of myasthenia gravis. Journal of Immunological Methods, 2018, 460, 107-112.	0.6	8
85	Clinical Characteristics of Juvenile Myasthenia Gravis in Southern China. Frontiers in Neurology, 2018, 9, 77.	1.1	34
86	New Pathways and Therapeutic Targets in Autoimmune Myasthenia Gravis. Journal of Neuromuscular Diseases, 2018, 5, 265-277.	1.1	36
87	The benefits and tolerance of exercise in myasthenia gravis (MGEX): study protocol for a randomised controlled trial. Trials, 2018, 19, 49.	0.7	13
88	Pellet patented technology for fast and distinct visual detection of cholinesterase inhibitors in liquids. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 206-213.	1.4	5
89	Cholinergic Crisis Caused by Cholinesterase Inhibitors: a Retrospective Nationwide Database Study. Journal of Medical Toxicology, 2018, 14, 237-241.	0.8	25
90	Essentials of Neurology and Neuromuscular Disorders. , 2019, , 561-580.e4.		2
91	MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Pharmacological Research, 2019, 148, 104388.	3.1	16

#	Article	IF	CITATIONS
92	Significance of Autoantibodies. , 2019, , 109-142.		0
93	Myasthenia gravis: State of the art and new therapeutic strategies. Journal of Neuroimmunology, 2019, 337, 577080.	1.1	14
94	Correlation Between Thymus Radiology and Myasthenia Gravis in Clinical Practice. Frontiers in Neurology, 2018, 9, 1173.	1.1	6
95	Incidence and Ocular Features of Pediatric Myasthenias. American Journal of Ophthalmology, 2019, 200, 242-249.	1.7	16
96	Autoimmune Myasthenia Gravis. Rare Diseases of the Immune System, 2019, , 203-219.	0.1	0
97	Autoimmune Channelopathies at Neuromuscular Junction. Frontiers in Neurology, 2019, 10, 516.	1.1	26
98	Myasthenia gravis and pregnancy: retrospective evaluation of 27 pregnancies in a tertiary center and comparison with previous studies. Irish Journal of Medical Science, 2019, 188, 1261-1267.	0.8	21
99	Hypophonia as only presenting symptom in myasthenia gravis – a diagnostic dilemma in poor countries: a case report. Journal of Medical Case Reports, 2019, 13, 48.	0.4	3
100	Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chemical Neuroscience, 2019, 10, 2186-2194.	1.7	27
101	Thymomatous myasthenia gravis: novel association with HLA DQB1*05:01 and strengthened evidence of high clinical and serological severity. Journal of Neurology, 2019, 266, 982-989.	1.8	14
102	Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy. Kidney International, 2019, 95, 666-679.	2.6	68
103	Neuromuscular Diseases and Bone. Frontiers in Endocrinology, 2019, 10, 794.	1.5	39
104	iTRAQ-Based Proteomics Analysis of Plasma of Myasthenia Gravis Patients Treated with Jia Wei Bu Zhong Yi Qi Decoction. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-18.	0.5	1
105	A tri-modal distribution of age-of-onset in female patients with myasthenia gravis is associated with the gender-related clinical differences. International Journal of Neuroscience, 2019, 129, 313-319.	0.8	7
106	Longâ€term outcome of cats with acquired myasthenia gravis without evidence of a cranial mediastinal mass. Journal of Veterinary Internal Medicine, 2020, 34, 247-252.	0.6	5
107	Hospital and healthcare insurance system record–based epidemiological study of myasthenia gravis in southern and northern China. Neurological Sciences, 2020, 41, 1211-1223.	0.9	14
108	Unique coated neusilin pellets with a more distinct and fast visual detection of nerve agents and other cholinesterase inhibitors. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 113004.	1.4	7
109	Myasthenia Gravis Treatment Updates. Current Treatment Options in Neurology, 2020, 22, 1.	0.7	7

#	Article	IF	CITATIONS
110	Classification of myasthenia gravis and congenital myasthenic syndromes in dogs and cats. Journal of Veterinary Internal Medicine, 2020, 34, 1707-1717.	0.6	18
111	High \hat{l}^{e} free light chain is a potential biomarker for double seronegative and ocular myasthenia gravis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	5
112	A unique case of myasthenia gravis mimicking Garcin's syndrome. Neurology and Clinical Neuroscience, 2020, 8, 399-402.	0.2	0
113	Traditional Chinese medicine for myasthenia gravis. Medicine (United States), 2020, 99, e21294.	0.4	3
114	Regional Features of MuSK Antibody-Positive Myasthenia Gravis in Northeast China. Frontiers in Neurology, 2020, 11, 516211.	1.1	5
115	El pico flujo espiratorio y la cuenta máxima son marcadores del compromiso respiratorio en la miastenia gravis. NeurologÃa, 2023, 38, 405-411.	0.3	1
116	The functions of CAP superfamily proteins in mammalian fertility and disease. Human Reproduction Update, 2020, 26, 689-723.	5.2	20
117	Anti-LRP4 Antibody-associated Myasthenia Gravis with a Rare Complication of Thymoma Successfully Treated by Thymectomy. Internal Medicine, 2020, 59, 1219-1222.	0.3	3
118	Clinical and therapeutic features of myasthenia gravis in adults based on age at onset. Neurology, 2020, 94, e1171-e1180.	1.5	88
119	Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmunity Reviews, 2020, 19, 102468.	2.5	39
120	Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Frontiers in Immunology, 2020, 11, 776.	2,2	59
121	Respiratory Muscle Training Improves Functional Outcomes and Reduces Fatigue in Patients with Myasthenia Gravis: A Single-Center Hospital-Based Prospective Study. BioMed Research International, 2020, 2020, 1-8.	0.9	6
122	Chronic immunoglobulin maintenance therapy in myasthenia gravis. European Journal of Neurology, 2021, 28, 639-646.	1.7	27
123	Pure red cell aplasia and reâ€aggravation of myasthenia gravis as a result of early reduction of steroid and immunosuppressant after starting eculizumab: A case report. Clinical and Experimental Neuroimmunology, 2021, 12, 175-178.	0.5	0
124	Peripheral blood hsa-circRNA5333-4: A novel biomarker for myasthenia gravis. Clinical Immunology, 2021, 224, 108676.	1.4	2
125	External ophthalmoparesis as part of generalised myasthenia gravis in a dog: are there more similarities to the human counterpart than originally thought?. Veterinary Record Case Reports, 2021, 9, e48.	0.1	0
126	Cholesterol in myasthenia gravis. Archives of Biochemistry and Biophysics, 2021, 701, 108788.	1.4	6
127	Chronic low-dose intravenous immunoglobulins as steroid-sparing therapy in myasthenia gravis. Journal of Neurology, 2021, 268, 3871-3877.	1.8	5

#	ARTICLE	IF	CITATIONS
128	Increased serum IL-27 concentrations and IL-27-producing cells in MG patients with positive AChR-Ab. Journal of Clinical Neuroscience, 2021, 86, 289-293.	0.8	2
129	Diagnostic yields and clinical features of ocular myasthenia gravis. Medicine (United States), 2021, 100, e26457.	0.4	3
130	Heterogeneity in myasthenia gravis: considerations for disease management. Expert Review of Clinical Immunology, 2021, 17, 761-771.	1.3	11
131	Clinical and pathophysiologic relevance of autoantibodies in neonatal myasthenia gravis. Pediatrics and Neonatology, 2021, 62, 581-590.	0.3	9
132	Do people with Myasthenia Gravis need speech-language pathology services? A national survey of consumers' experiences and perspectives. International Journal of Speech-Language Pathology, 2022, 24, 133-144.	0.6	4
133	Myasthenia gravis genome-wide association study implicates AGRN as a risk locus. Journal of Medical Genetics, 2022, 59, 801-809.	1.5	5
134	Bioengineered optogenetic model of human neuromuscular junction. Biomaterials, 2021, 276, 121033.	5.7	20
135	Human leukocyte antigens (HLA) association with myasthenia gravis (MG) and its myasthenia manifestations in Algerian patients. Meta Gene, 2021, 29, 100937.	0.3	0
136	The Safety Factor for Neuromuscular Transmission: Effects of Dimethylsulphoxide, Cannabinoids and Synaptic Homeostasis. Journal of Neuromuscular Diseases, 2021, 8, 831-844.	1.1	0
137	Calprotectin as potential novel biomarker in myasthenia gravis. Journal of Translational Autoimmunity, 2021, 4, 100111.	2.0	6
138	Inâ€depth peripheral CD4 ⁺ T profile correlates with myasthenic crisis. Annals of Clinical and Translational Neurology, 2021, 8, 749-762.	1.7	14
140	Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK. PLoS ONE, 2015, 10, e0123546.	1.1	40
141	Diagnostic value of repeated ice tests in the evaluation of ptosis in myasthenia gravis. PLoS ONE, 2017, 12, e0177078.	1.1	10
142	Juvenile myasthenia gravis in Norway: HLA-DRB1*04:04 is positively associated with prepubertal onset. PLoS ONE, 2017, 12, e0186383.	1.1	8
143	Precision medicine in myasthenia graves: begin from the data precision. Annals of Translational Medicine, 2016, 4, 106-106.	0.7	3
144	Retrospective Analysis of Eculizumab in Patients with Acetylcholine Receptor Antibody-Negative Myasthenia Gravis: A Case Series. Journal of Neuromuscular Diseases, 2020, 7, 269-277.	1.1	9
145	Myasthenia Gravis and its Association With Thyroid Diseases. Cureus, 2020, 12, e10248.	0.2	8
147	Complex Ocular Motility Disorders in Children. , 2016, , 393-494.		0

#	Article	IF	CITATIONS
149	Review Analysis on Thymectomy vs Conservative Medical Management in Myasthenia Gravis. Cureus, 2020, 12, e7425.	0.2	1
150	Ptosis in Neurologic Disease. , 2021, , 243-278.		0
151	The dilemma of thymectomy in myasthenia gravis. Apollo Medicine, 2020, 17, 90.	0.0	0
152	Neuro Ophthalmology and Oculoplasty. , 2020, , 327-336.		0
153	Rehabilitation of the patients with myasthenia gravis as an Integral part of the patient's Treatment Algorithm in the postoperative period. Acta Balneologica, 2021, 64, 155-159.	0.1	0
154	Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis. Clinical Immunology, 2020, 216, 108462.	1.4	2
155	Exploring factors influencing complete denture management of patient with Myasthenia Gravis. Balkan Journal of Dental Medicine, 2020, 24, 113-117.	0.2	3
156	Multidisciplinary rehabilitation is relevant in severe myasthenia gravis: An observation. Annals of Physical and Rehabilitation Medicine, 2022, 65, 101593.	1.1	1
157	Quantitative evaluation of drug efficacy in the treatment of myasthenia gravis. Expert Opinion on Investigational Drugs, 2021, 30, 1231-1240.	1.9	3
158	Efficacy of intravenous immunoglobulin in autoimmune neurological diseases. Literature systematic review and meta-analysis. Autoimmunity Reviews, 2022, 21, 103019.	2.5	10
159	Effect of Initial Prednisone Dosing on Ocular Myasthenia Gravis Control. Journal of Neuro-Ophthalmology, 2021, 41, e622-e626.	0.4	1
160	Therapeutics of integrative medicine ameliorate immunological disorders of the nervous system: A meta-analysis. World Journal of Traditional Chinese Medicine, 2022, 8, 153.	0.9	0
161	Pathophysiological basis in the management of myasthenia gravis: a mini review. Inflammopharmacology, 2022, 30, 61-71.	1.9	3
162	Therapeutics of integrative medicine ameliorate immunological disorders of the nervous system: A meta-analysis. World Journal of Traditional Chinese Medicine, 2022, 8, 153.	0.9	0
163	Drugâ€refractory myasthenia gravis: Clinical characteristics, treatments, and outcome. Annals of Clinical and Translational Neurology, 2022, 9, 122-131.	1.7	13
164	The role of serum free light chain as biomarker of Myasthenia Gravis. Clinica Chimica Acta, 2022, 528, 29-33.	0.5	2
166	Mitochondrial dynamics and biogenesis indicators may serve as potential biomarkers for diagnosis of myasthenia gravis. Experimental and Therapeutic Medicine, 2022, 23, 307.	0.8	4
167	Spotlight on MuSK positive myasthenia gravis: clinical characteristics, treatment and outcomes. BMC Neurology, 2022, 22, 73.	0.8	2

#	Article	IF	CITATIONS
168	Assessment of Voice Changes in Myasthenia Gravis Patients. AİBÜ İzzet Baysal Tıp Fakþltesi Dergisi, 0, , 28-35.	0.0	0
169	Global prevalence of myasthenia gravis and the effectiveness of common drugs in its treatment: a systematic review and meta-analysis. Journal of Translational Medicine, 2021, 19, 516.	1.8	23
170	Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews, 2022, 21, 103104.	2.5	7
172	Clinical Characteristics and Prognosis of Anti-AChR Positive Myasthenia Gravis Combined With Anti-LRP4 or Anti-Titin Antibody. Frontiers in Neurology, 2022, 13, .	1.1	4
173	Intravenous magnesium sulfate inducing acute respiratory failure in a patient with myasthenia gravis. BMJ Case Reports, 2022, 15, e250455.	0.2	2
174	The Dental Management of Pediatric Patient Diagnosed with Myasthenia Gravis: A Case Report. European Journal of Dentistry, 0, , .	0.8	0
175	Peak expiratory flow and the single-breath count test as markers of respiratory function in patients with myasthenia gravis. NeurologÃa (English Edition), 2023, 38, 405-411.	0.2	1
176	Fragmented care and missed opportunities: the experiences of adults with myasthenia gravis in accessing and receiving allied health care in Australia. Disability and Rehabilitation, 2023, 45, 2488-2496.	0.9	3
177	Novel pathophysiological insights in autoimmune myasthenia gravis. Current Opinion in Neurology, 2022, 35, 586-596.	1.8	12
178	Expression of TRAF6 in peripheral blood B cells of patients with myasthenia gravis. BMC Neurology, 2022, 22, .	0.8	4
179	Electromyography., 2022,, 25-41.		0
180	Randomized Double-Blind Placebo-Controlled Trial of the Corticosteroid-Sparing Effects of Immunoglobulin in Myasthenia Gravis. Neurology, 2023, 100, .	1.5	7
181	miRNAs as the important regulators of myasthenia gravis: involvement of major cytokines and immune cells. Immunologic Research, 2023, 71, 153-163.	1.3	1
182	Comparative the efficacy and acceptability of immunosuppressive agents for myasthenia gravis: A protocol for systematic review and network meta-analysis. Medicine (United States), 2022, 101, e31454.	0.4	0
183	Ophthalmologic clinical features of ocular myasthenia gravis. Medicine (United States), 2023, 102, e31972.	0.4	1
184	Neuromuscular Disorders in Neonate. , 2023, , 349-361.		0
185	Oculomotor fatigability with decrements of saccade and smooth pursuit for diagnosis of myasthenia gravis. Journal of Neurology, 2023, 270, 2743-2755.	1.8	1
186	Transcriptional landscape of myasthenia gravis revealed by weighted gene coexpression network analysis. Frontiers in Genetics, 0, 14, .	1.1	0

#	ARTICLE	IF	CITATIONS
194	Gene Editing Technologies Targeting TFAM and Its Relation to Mitochondrial Diseases. Advances in Experimental Medicine and Biology, 2023, , 173-189.	0.8	0
199	Perspective Chapter: Specific predictors of the autoimmune reactions formation in case of immunocompetent organs damage in patients with myasthenia gravis and hepatosplenomegaly. , 0, , .		0
202	Miscellaneous Skeletal and Connective Tissue Disorders. , 2024, , 175-205.		0