A Peptide Hormone and Its Receptor Protein Kinase Re

Science 343, 408-411 DOI: 10.1126/science.1244454

Citation Report

#	Article	IF	CITATIONS
1	Maturation processes and structures of small secreted peptides in plants. Frontiers in Plant Science, 2014, 5, 311.	1.7	33
2	Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nature Communications, 2014, 5, 4645.	5.8	146
3	Antagonistic relationship between AtRALF1and brassinosteroid regulates cellexpansion-related genes. Plant Signaling and Behavior, 2014, 9, e976146.	1.2	18
4	The beginning of a seed: regulatory mechanisms of double fertilization. Frontiers in Plant Science, 2014, 5, 452.	1.7	69
5	The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. PLoS Pathogens, 2014, 10, e1004331.	2.1	186
6	Extracellular signals and receptor-like kinases regulating ROP CTPases in plants. Frontiers in Plant Science, 2014, 5, 449.	1.7	33
7	Peptide Ligands in Plants. The Enzymes, 2014, 35, 85-112.	0.7	2
8	Multiple Roles of the Plasma Membrane H+-ATPase and Its Regulation. The Enzymes, 2014, 35, 191-211.	0.7	9
9	Signaling Peptides in Plants. Cell & Developmental Biology, 2014, 03, .	0.3	15
10	A Calcium Dialog Mediated by the FERONIA Signal Transduction Pathway Controls Plant Sperm Delivery. Developmental Cell, 2014, 29, 491-500.	3.1	172
11	An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Annals of Botany, 2014, 114, 1339-1347.	1.4	92
12	To Grow or Not to Grow: FERONIA Has Her Say. Molecular Plant, 2014, 7, 1261-1263.	3.9	8
13	Knowing your friends and foes – plant receptorâ€like kinases as initiators of symbiosis or defence. New Phytologist, 2014, 204, 791-802.	3.5	130
14	Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response Â. Plant Physiology, 2014, 165, 1171-1187.	2.3	77
15	Across the great divide: the plant cell surface continuum. Current Opinion in Plant Biology, 2014, 22, 132-140.	3.5	28
16	The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings. Current Biology, 2014, 24, 1887-1892.	1.8	267
17	Receptor kinaseâ€mediated control of primary active proton pumping at the plasma membrane. Plant Journal, 2014, 80, 951-964.	2.8	112
18	Ca ²⁺ signalling in plant immune response: from pattern recognition receptors to Ca ²⁺ decoding mechanisms. New Phytologist, 2014, 204, 782-790.	3.5	148

#	Article	IF	CITATIONS
19	Ca ²⁺ -Activated Reactive Oxygen Species Production by <i>Arabidopsis</i> RbohH and RbohJ Is Essential for Proper Pollen Tube Tip Growth. Plant Cell, 2014, 26, 1069-1080.	3.1	243
20	Endogenous peptide ligand–receptor systems for diverse signaling networks in plants. Current Opinion in Plant Biology, 2014, 21, 140-146.	3.5	36
21	Growth Control: A Saga of Cell Walls, ROS, and Peptide Receptors. Plant Cell, 2014, 26, 1848-1856.	3.1	100
22	From Receptor-Like Kinases to Calcium Spikes: What Are the Missing Links?. Molecular Plant, 2014, 7, 1501-1504.	3.9	12
23	Understanding the RALF family: a tale of many species. Trends in Plant Science, 2014, 19, 664-671.	4.3	131
24	Tools and Strategies to Match Peptide-Ligand Receptor Pairs. Plant Cell, 2014, 26, 1838-1847.	3.1	98
25	Phosphoproteomics in photosynthetic organisms. Electrophoresis, 2014, 35, 3441-3451.	1.3	3
26	<pre><scp>FERONIA</scp> receptor kinase interacts with <scp><i>S</i></scp>â€adenosylmethionine synthetase and suppresses <scp> <i>S</i></scp>â€adenosylmethionine production and ethylene biosynthesis in <scp><i>A</i></scp><i>rabidopsis</i>. Plant, Cell and Environment, 2015, 38, 2566-2574.</pre>	2.8	98
27	Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. ELife, 2015, 4, .	2.8	240
28	Phosphoproteomics-based peptide ligand-receptor kinase pairing. Commentary on: ââ,¬Å"A peptide hormone and its receptor protein kinase regulate plant cell expansionââ,¬Â• Frontiers in Plant Science, 2015, 6, 224.	1.7	9
29	Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Frontiers in Plant Science, 2015, 6, 402.	1.7	25
31	The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling. Plant and Cell Physiology, 2015, 56, 224-231.	1.5	56
32	A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. Journal of Experimental Botany, 2015, 66, 813-825.	2.4	71
33	The plant cell wall integrity maintenance mechanism – A case study of a cell wall plasma membrane signaling network. Phytochemistry, 2015, 112, 100-109.	1.4	59
34	The Mechanism and Key Molecules Involved in Pollen Tube Guidance. Annual Review of Plant Biology, 2015, 66, 393-413.	8.6	181
35	At the border: the plasma membrane-cell wall continuum. Journal of Experimental Botany, 2015, 66, 1553-1563.	2.4	82
36	Plasma membrane H+-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Reports, 2015, 34, 1025-1036.	2.8	7
37	Protein lipid modifications and the regulation of ROP GTPase function. Journal of Experimental Botany, 2015, 66, 1617-1624.	2.4	34

#	Article	IF	CITATIONS
38	Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Science, 2015, 237, 93-107.	1.7	23
39	Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 2015, 465, 77-82.	1.0	57
40	A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, <i>Closterium peracerosum–strigosum–littorale</i> Complex. Plant and Cell Physiology, 2015, 56, 1456-1462.	1.5	25
41	Plant elicitor peptides in induced defense against insects. Current Opinion in Insect Science, 2015, 9, 44-50.	2.2	29
42	Potential regulatory phosphorylation sites in a <i>Medicago truncatula</i> plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Letters, 2015, 589, 2186-2193.	1.3	9
43	Peptide signalling during the pollen tube journey and double fertilization. Journal of Experimental Botany, 2015, 66, 5139-5150.	2.4	111
44	TURAN and EVAN Mediate Pollen Tube Reception in Arabidopsis Synergids through Protein Glycosylation. PLoS Biology, 2015, 13, e1002139.	2.6	55
45	Calcium Signaling during Reproduction and Biotrophic Fungal Interactions in Plants. Molecular Plant, 2015, 8, 595-611.	3.9	44
46	Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Planta, 2015, 241, 603-613.	1.6	55
47	The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell, 2015, 27, 2095-2118.	3.1	292
48	Mapping of a Cellulose-Deficient Mutant Named <i>dwarf1-1</i> in <i>Sorghum bicolor</i> to the Green Revolution Gene <i>gibberellin20-oxidase</i> Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis. Plant Physiology, 2015, 169, 705-716.	2.3	37
49	Cytoskeletal Components Define Protein Location to Membrane Microdomains*. Molecular and Cellular Proteomics, 2015, 14, 2493-2509.	2.5	45
50	The state of cell wall pectin monitored by wall associated kinases: A model. Plant Signaling and Behavior, 2015, 10, e1035854.	1.2	32
51	Receptor-like cytoplasmic kinase MARIS functions downstream of <i>Cr</i> RLK1L-dependent signaling during tip growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12211-12216.	3.3	125
52	Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Current Opinion in Plant Biology, 2015, 28, 68-75.	3.5	142
53	Functional analysis of related Cr <scp>RLK</scp> 1L receptorâ€like kinases in pollen tube reception. EMBO Reports, 2015, 16, 107-115.	2.0	82
54	Identifying (nonâ€)coding RNAs and small peptides: Challenges and opportunities. BioEssays, 2015, 37, 103-112.	1.2	96
55	Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry, 2015, 112, 122-129.	1.4	75

#	Article	IF	Citations
56	Polypeptide signaling molecules in plant development. Current Opinion in Plant Biology, 2015, 23, 8-14.	3.5	55
57	The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate. PLoS Genetics, 2016, 12, e1005933.	1.5	72
58	The Poplar Rust-Induced Secreted Protein (RISP) Inhibits the Growth of the Leaf Rust Pathogen Melampsora larici-populina and Triggers Cell Culture Alkalinisation. Frontiers in Plant Science, 2016, 7, 97.	1.7	11
59	Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1107.	1.7	43
60	Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms. Frontiers in Plant Science, 2016, 07, 1269.	1.7	54
61	ROS Regulation of Polar Growth in Plant Cells. Plant Physiology, 2016, 171, 1593-1605.	2.3	106
62	Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H ⁺ -Coupled Sucrose Symporter. Plant Physiology, 2016, 171, 110-124.	2.3	57
63	Why cellular communication during plant reproduction is particularly mediated by CRP signalling. Journal of Experimental Botany, 2016, 67, 4849-4861.	2.4	40
64	Receptor kinase complex transmits RALF peptide signal to inhibit root growth in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8326-E8334.	3.3	138
65	Two FERONIA-like receptor (FLR) genes are required to maintain architecture, fertility, and seed yield in rice. Molecular Breeding, 2016, 36, 1.	1.0	34
66	RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. Journal of Experimental Botany, 2016, 67, 4863-4875.	2.4	66
67	A SDD1-like subtilase is exuded by tobacco roots. Functional Plant Biology, 2016, 43, 141.	1.1	8
68	<scp>ABC</scp> transporter <scp>PEN</scp> 3/ <scp>PDR</scp> 8/ <scp>ABCG</scp> 36 interacts with calmodulin that, like <scp>PEN</scp> 3, is required for Arabidopsis nonhost resistance. New Phytologist, 2016, 209, 294-306.	3.5	67
69	Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. Journal of Proteome Research, 2016, 15, 1670-1684.	1.8	37
70	Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiology and Biochemistry, 2016, 106, 82-90.	2.8	55
71	The Role of LORELEI in Pollen Tube Reception at the Interface of the Synergid Cell and Pollen Tube Requires the Modified Eight-Cysteine Motif and the Receptor-Like Kinase FERONIA. Plant Cell, 2016, 28, 1035-1052.	3.1	90
72	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	5.9	249
73	Rapid Oligo-Galacturonide Induced Changes in Protein Phosphorylation in Arabidopsis. Molecular and Cellular Proteomics, 2016, 15, 1351-1359.	2.5	47

#	Article	IF	CITATIONS
74	Expression of a constitutively activated plasma membrane H+-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. Planta, 2016, 244, 1109-1124.	1.6	14
75	The Regulation of Plant Cell Expansion: Auxin-Induced Turgor-Driven Cell Elongation. , 2016, , 156-173.		3
76	FERONIA and Her Pals: Functions and Mechanisms. Plant Physiology, 2016, 171, 2379-2392.	2.3	158
77	A dual mechanism of cellulose deficiency in shv3svl1. Plant Signaling and Behavior, 2016, 11, e1218108.	1.2	5
78	Auxin Influx Carrier AUX1 Confers Acid Resistance for Arabidopsis Root Elongation Through the Regulation of Plasma Membrane H ⁺ -ATPase. Plant and Cell Physiology, 2016, 57, 2194-2201.	1.5	40
79	Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses. Plant Cell, 2016, 28, 1769-1782.	3.1	138
80	FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5519-27.	3.3	185
81	Rapid hyperosmotic-induced Ca ²⁺ responses in <i>Arabidopsis thaliana</i> exhibit sensory potentiation and involvement of plastidial KEA transporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5242-9.	3.3	81
82	Plant peptides – taking them to the next level. Journal of Experimental Botany, 2016, 67, 4791-4795.	2.4	24
83	RLKs orchestrate the signaling in plant male-female interaction. Science China Life Sciences, 2016, 59, 867-877.	2.3	28
84	Developing a â€~thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity?. Development (Cambridge), 2016, 143, 3249-3258.	1.2	30
85	Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Molecular and Cellular Proteomics, 2016, 15, 3473-3487.	2.5	80
86	Structural Insight into Recognition of Plant Peptide Hormones by Receptors. Molecular Plant, 2016, 9, 1454-1463.	3.9	35
87	Fungal pathogenesis: Host modulation every which way. Nature Microbiology, 2016, 1, 16075.	5.9	1
88	<i>Oryza sativa</i> H ⁺ -ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice. Plant and Cell Physiology, 2016, 57, 1220-1230.	1.5	37
89	RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research, 2016, 26, 686-698.	5.7	144
90	Innate immune memory in plants. Seminars in Immunology, 2016, 28, 319-327.	2.7	105
91	Brassinosteroids Regulate Root Growth, Development, and Symbiosis. Molecular Plant, 2016, 9, 86-100.	3.9	218

#	Article	IF	CITATIONS
92	Plasma Membrane H + -ATPase Regulation in the Center of Plant Physiology. Molecular Plant, 2016, 9, 323-337.	3.9	391
93	Understanding CrRLK1L Function: Cell Walls and Growth Control. Trends in Plant Science, 2016, 21, 516-527.	4.3	129
94	Environmental Responses in Plants. Methods in Molecular Biology, 2016, , .	0.4	1
95	Auxin and Cellular Elongation. Plant Physiology, 2016, 170, 1206-1215.	2.3	87
96	Mass Spectrometry in Plant-omics. Analytical Chemistry, 2016, 88, 3422-3434.	3.2	68
97	Population genomic analysis of gibberellin-responsive long non-coding RNAs in <i>Populus</i> . Journal of Experimental Botany, 2016, 67, 2467-2482.	2.4	98
98	Cell wall integrity signaling in plants: "To grow or not to grow that's the question― Glycobiology, 2016, 26, 950-960.	1.3	161
99	Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature, 2016, 531, 245-248.	13.7	260
100	Fertilization Mechanisms in Flowering Plants. Current Biology, 2016, 26, R125-R139.	1.8	229
101	Role of the proteome in phytohormonal signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1003-1015.	1.1	27
102	The journey to glory: receptor-like kinases in pollen tube growth. Science Bulletin, 2016, 61, 827-831.	4.3	6
103	Cell wall-associated kinases and pectin perception. Journal of Experimental Botany, 2016, 67, 489-494.	2.4	161
104	Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Analytical Chemistry, 2016, 88, 74-94.	3.2	217
105	Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Molecular Plant Pathology, 2017, 18, 811-824.	2.0	95
106	The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355, 287-289.	6.0	541
107	Orchestrating rapid longâ€distance signaling in plants with Ca ²⁺ , <scp>ROS</scp> and electrical signals. Plant Journal, 2017, 90, 698-707.	2.8	250
108	Regulatory peptides in plants. Biochemistry (Moscow), 2017, 82, 89-94.	0.7	8
109	A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA. Journal of Biological Chemistry, 2017, 292, 5932-5942.	1.6	16

		CITATION REPORT		
#	Article		IF	CITATIONS
110	Plant cell wall signalling and receptor-like kinases. Biochemical Journal, 2017, 474, 471	-492.	1.7	142
111	Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1 (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics, 2017, 109, 290-301	-like kinase	1.3	25
112	The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-I RNA-Sequencing. Plant Cell, 2017, 29, 984-1006.	nformed	3.1	32
113	FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Respons Physiology, 2017, 58, 1143-1150.	es. Plant and Cell	1.5	83
114	Blue Light Regulation of Stomatal Opening and the Plasma Membrane H ⁺ Physiology, 2017, 174, 531-538.	-ATPase. Plant	2.3	181
115	Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen ⁻ Physiology, 2017, 173, 91-111.	Tubes. Plant	2.3	110
116	Comparative morphology and transcriptome analysis reveals distinct functions of the p secondary laticifer cells in the rubber tree. Scientific Reports, 2017, 7, 3126.	orimary and	1.6	17
117	Small peptide signaling pathways modulating macronutrient utilization in plants. Curre Plant Biology, 2017, 39, 31-39.	ent Opinion in	3.5	28
118	Biological function analysis of the phosphorylation sites for Arabidopsis CAP1. Science 62, 761-763.	Bulletin, 2017,	4.3	1
119	Auxin steers root cell expansion via apoplastic pH regulation in <i>Arabidopsis thaliana Proceedings of the National Academy of Sciences of the United States of America, 201 E4884-E4893.</i>	. .7, 114,	3.3	250
121	Bound by Fate: The Role of Reactive Oxygen Species in Receptor-Like Kinase Signaling. 29, 638-654.	Plant Cell, 2017,	3.1	116
122	Galactose-binding lectin from mulberry (Morus alba L.) seeds with growth hormone-lik Annals of Agrarian Science, 2017, 15, 26-30.	e activity.	1.2	0
123	Ligand Receptor-Mediated Regulation of Growth in Plants. Current Topics in Developm 2017, 123, 331-363.	iental Biology,	1.0	15
124	Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant 618-637.	: Cell, 2017, 29,	3.1	552
125	Molecular networks orchestrating plant cell growth. Current Opinion in Plant Biology, 98-104.	2017, 35,	3.5	29
126	Extracellular Alkalinization Assay for the Detection of Early Defense Response. Current Plant Biology, 2017, 2, 210-220.	Protocols in	2.8	11
127	Sensing Danger: Key to Activating Plant Immunity. Trends in Plant Science, 2017, 22, 7	79-791.	4.3	300
128	T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integ Journal of Experimental Botany, 2017, 68, 4583-4593.	rity signaling.	2.4	60

#	Article	IF	CITATIONS
129	<i>Arabidopsis</i> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358, 1596-1600.	6.0	324
130	RALF4/19 peptides interact with LRX proteins to control pollen tube growth in <i>Arabidopsis</i> . Science, 2017, 358, 1600-1603.	6.0	239
131	Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. Plant Cell, 2017, 29, 3140-3156.	3.1	89
132	The pH of the Apoplast: Dynamic Factor with Functional Impact Under Stress. Molecular Plant, 2017, 10, 1371-1386.	3.9	139
133	One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant Signaling and Behavior, 2017, 12, e1226453.	1.2	34
134	Connecting Homogalacturonan-Type Pectin Remodeling to Acid Growth. Trends in Plant Science, 2017, 22, 20-29.	4.3	189
135	Complex regulation of plant sex by peptides. Science, 2017, 358, 1544-1545.	6.0	10
136	A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Frontiers in Plant Science, 2017, 8, 37.	1.7	84
137	A FERONIA-Like Receptor Kinase Regulates Strawberry (Fragaria × ananassa) Fruit Ripening and Quality Formation. Frontiers in Plant Science, 2017, 8, 1099.	1.7	30
138	Two FERONIA-Like Receptor Kinases Regulate Apple Fruit Ripening by Modulating Ethylene Production. Frontiers in Plant Science, 2017, 8, 1406.	1.7	27
139	Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. Frontiers in Plant Science, 2017, 8, 1554.	1.7	50
140	Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations. Frontiers in Plant Science, 2017, 8, 1673.	1.7	24
141	The Kinase ERULUS Controls Pollen Tube Targeting and Growth in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1942.	1.7	31
142	Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1999.	1.7	9
143	Peptide hormones. , 2017, , 361-404.		3
144	BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genetics, 2017, 13, e1007053.	1.5	37
145	Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?. International Journal of Molecular Sciences, 2017, 18, 1164.	1.8	116
146	Signaling Peptides: Hidden Molecular Messengers of Abiotic Stress Perception and Response in Plants. , 2018, , 95-125.		4

#	Article	IF	Citations
147	Plant Physiology: FERONIA Defends the Cell Walls against Corrosion. Current Biology, 2018, 28, R215-R217.	1.8	9
148	The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Current Biology, 2018, 28, 722-732.e6.	1.8	113
149	From Aspartate to Ethylene: Central Role of N, C, and S Shuttles by Aminotransferases During Biosynthesis of a Major Plant Growth Hormone. Progress in Botany Fortschritte Der Botanik, 2018, , 253-293.	0.1	7
150	Time Bomb for Pollen Tubes: Peptide RALF-Mediated Signaling. Molecular Plant, 2018, 11, 518-520.	3.9	2
151	The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Current Biology, 2018, 28, 666-675.e5.	1.8	526
152	Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ. Plant Cell, 2018, 30, 528-542.	3.1	23
153	Signaling Peptides and Receptors Coordinating Plant Root Development. Trends in Plant Science, 2018, 23, 337-351.	4.3	79
154	The secret of fertilization in flowering plants unveiled. Science Bulletin, 2018, 63, 408-410.	4.3	12
155	Plant cell surface receptor-mediated signaling – a common theme amid diversity. Journal of Cell Science, 2018, 131, .	1.2	134
156	Crystal structures of the extracellular domains of the CrRLK1L receptorâ€like kinases ANXUR1 and ANXUR2. Protein Science, 2018, 27, 886-892.	3.1	47
157	The common bean COKâ€4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defence. Molecular Plant Pathology, 2018, 19, 1765-1778.	2.0	7
158	Arabidopsis thaliana rapid alkalinization factor 1–mediated root growth inhibition is dependent on calmodulin-like protein 38. Journal of Biological Chemistry, 2018, 293, 2159-2171.	1.6	33
159	Plant cell wallâ€mediated immunity: cell wall changes trigger disease resistance responses. Plant Journal, 2018, 93, 614-636.	2.8	398
160	Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 2018, 93, 592-613.	2.8	370
161	The G Protein <i>β</i> -Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement. Plant Physiology, 2018, 176, 2426-2440.	2.3	77
162	Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase–Mediated Signaling. Annual Review of Plant Biology, 2018, 69, 267-299.	8.6	303
163	<i>Medicago</i> Plants Control Nodulation by Regulating Proteolysis of the Receptor-Like Kinase DMI2. Plant Physiology, 2018, 177, 792-802.	2.3	28
164	Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. Annual Review of Plant Biology, 2018, 69, 301-328.	8.6	195

#	Article	IF	CITATIONS
165	Filling the Gaps to Solve the Extensin Puzzle. Molecular Plant, 2018, 11, 645-658.	3.9	50
166	How Does pH Fit in with Oscillating Polar Growth?. Trends in Plant Science, 2018, 23, 479-489.	4.3	33
167	Plant Reproduction: Autocrine Machinery for the Long Journey of the Pollen Tube. Current Biology, 2018, 28, R266-R269.	1.8	11
168	Small peptides, big roles ‒ RALFs regulate pollen tube growth and burst in plant reproduction. Journal of Genetics and Genomics, 2018, 45, 121-123.	1.7	4
169	Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response. Phytochemistry Reviews, 2018, 17, 51-80.	3.1	86
170	Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H+-ATPase. Plant Physiology, 2018, 176, 364-377.	2.3	37
171	How many receptor-like kinases are required to operate a pollen tube. Current Opinion in Plant Biology, 2018, 41, 73-82.	3.5	32
172	Cell–cell communications and molecular mechanisms in plant sexual reproduction. Journal of Plant Research, 2018, 131, 37-47.	1.2	8
173	Diffuse Growth of Plant Cell Walls. Plant Physiology, 2018, 176, 16-27.	2.3	257
174	Nutrient-Responsive Small Signaling Peptides and Their Influence on the Root System Architecture. International Journal of Molecular Sciences, 2018, 19, 3927.	1.8	5
175	G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochemical Journal, 2018, 475, 3331-3357.	1.7	53
176	EBP1: A crucial growth regulator downstream of receptor kinases across kingdoms. PLoS Biology, 2018, 16, e3000056.	2.6	2
177	Cell wall traits that influence plant development, immunity, and bioconversion. Plant Journal, 2019, 97, 134-147.	2.8	106
178	Genome-Wide Identification and Expression Analysis of the CrRLK1L Gene Family in Apple (Malus) Tj ETQq1 1 0.7	784314 rgi 1.0	BT 10^{-10} Verlock
179	Leucine-rich repeat extensin proteins regulate plant salt tolerance in <i>Arabidopsis</i> . Proceedings of the United States of America, 2018, 115, 13123-13128.	3.3	224
180	FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Current Biology, 2018, 28, 3316-3324.e6.	1.8	154
181	Spodoptera littoralis oral secretions inhibit the activity of Phaseolus lunatus plasma membrane H+-ATPase. PLoS ONE, 2018, 13, e0202142.	1.1	16
182	Global Identification of Protein Complexes within the Membrane Proteome of Arabidopsis Roots Using a SEC-MS Approach. Journal of Proteome Research, 2018, 18, 107-119.	1.8	14

#	Article	IF	CITATIONS
183	EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biology, 2018, 16, e2006340.	2.6	66
184	Cell-Surface-Anchored Ratiometric DNA Tweezer for Real-Time Monitoring of Extracellular and Apoplastic pH. Analytical Chemistry, 2018, 90, 13459-13466.	3.2	70
185	In vivo cross-linking supports a head-to-tail mechanism for regulation of the plant plasma membrane P-type H+-ATPase. Journal of Biological Chemistry, 2018, 293, 17095-17106.	1.6	18
186	Actin Reorganization Triggers Rapid Cell Elongation in Roots. Plant Physiology, 2018, 178, 1130-1141.	2.3	43
187	Phenotypic Characterization, Fine Mapping, and Altered Expression Profiling of Roses1 Mutation That Affects Organ Size and Water Loss Through Regulating Stomatal Density in Rice. Crop Science, 2018, 58, 486-506.	0.8	4
188	A kinaseâ€dead version of <scp>FERONIA</scp> receptorâ€like kinase has doseâ€dependent impacts on rosette morphology and <scp>RALF</scp> 1â€mediated stomatal movements. FEBS Letters, 2018, 592, 3429-3437.	1.3	25
189	A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. Plant Science, 2018, 277, 55-67.	1.7	3
190	Cell signaling leads the way. Journal of Integrative Plant Biology, 2018, 60, 743-744.	4.1	2
191	ERULUS Is a Plasma Membrane-Localized Receptor-Like Kinase That Specifies Root Hair Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations. Plant Cell, 2018, 30, 1173-1177.	3.1	24
192	The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in <i>Arabidopsis thaliana</i> . Science Signaling, 2018, 11, .	1.6	178
193	A theoretical study on the cross-talk of stress regulatory pathways in root cells. Biophysical Chemistry, 2018, 240, 82-87.	1.5	1
194	Plant peptides in plant defense responses. Plant Signaling and Behavior, 2018, 13, 1-5.	1.2	9
195	Contextâ€specific dependence on <scp>FERONIA</scp> kinase activity. FEBS Letters, 2018, 592, 2392-2394.	1.3	6
196	Impact of Plant Peptides on Symbiotic Nodule Development and Functioning. Frontiers in Plant Science, 2018, 9, 1026.	1.7	44
197	Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Current Biology, 2018, 28, 2452-2458.e4.	1.8	146
198	The contribution of mechanosensing to epidermal cell fate specification. Current Opinion in Genetics and Development, 2018, 51, 52-58.	1.5	11
199	Examination of S-Locus Regulated Differential Expression in Primula vulgaris Floral Development. Plants, 2018, 7, 38.	1.6	7
200	The Protein Phosphatases ATUNIS1 and ATUNIS2 Regulate Cell Wall Integrity in Tip-Growing Cells. Plant Cell, 2018, 30, 1906-1923.	3.1	55

#	Article	IF	CITATIONS
201	Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallographica Section D: Structural Biology, 2018, 74, 671-680.	1.1	49
202	Transcriptome Analyses from Mutant Salvia miltiorrhiza Reveals Important Roles for SmGASA4 during Plant Development. International Journal of Molecular Sciences, 2018, 19, 2088.	1.8	23
203	Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Scientific Reports, 2018, 8, 12182.	1.6	61
204	Cell wall integrity signaling in plants: Malectin-domain kinases and lessons from other kingdoms. Cell Surface, 2018, 3, 1-11.	1.5	17
205	BZR1 Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant and Cell Physiology, 2018, 59, 2239-2254.	1.5	91
206	Probing a Plant Plasma Membrane Receptor Kinase's Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting. Biochemistry, 2018, 57, 5159-5168.	1.2	16
207	Plant Biomechanics. , 2018, , .		16
208	Molecular Mechanisms of Mechanosensing and Mechanotransduction. , 2018, , 375-397.		2
209	Comparison of the effects of a kinaseâ€dead mutation of <scp>FERONIA</scp> on ovule fertilization and root growth of Arabidopsis. FEBS Letters, 2018, 592, 2395-2402.	1.3	34
210	Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling. Plant Physiology, 2018, 177, pp.00486.2018.	2.3	103
211	Interâ€relationships between the heterotrimeric Gβ subunit AGB1, the receptorâ€like kinase FERONIA, and RALF1 in salinity response. Plant, Cell and Environment, 2018, 41, 2475-2489.	2.8	42
212	Regulation of plant peptide hormones and growth factors by postâ€translational modification. Plant Biology, 2019, 21, 49-63.	1.8	72
213	Structural biology of cell surface receptor–ligand interactions. Current Opinion in Plant Biology, 2019, 52, 38-45.	3.5	6
214	FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. Journal of Experimental Botany, 2019, 70, 6375-6388.	2.4	44
215	Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC Plant Biology, 2019, 19, 320.	1.6	20
216	Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572, 270-274.	13.7	186
217	Induced expression of the Fragaria × ananassa Rapid alkalinization factorâ€33â€like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages. Molecular Plant Pathology, 2019, 20, 1252-1263.	2.0	13
218	Developmental and transcriptional responses of maize to drought stress under field conditions. Plant Direct, 2019, 3, e00129.	0.8	34

#	Article	IF	CITATIONS
219	Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 2019, 10, 4810.	5.8	65
220	To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth. Current Opinion in Plant Biology, 2019, 52, 131-139.	3.5	26
222	Identification of Potential Auxin-Responsive Small Signaling Peptides through a Peptidomics Approach in Arabidopsis thaliana. Molecules, 2019, 24, 3146.	1.7	7
223	Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants, 2019, 5, 924-932.	4.7	208
224	Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Current Biology, 2019, 29, R851-R858.	1.8	78
225	Bioactive Molecules in Plant Defense. , 2019, , .		9
226	LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Current Biology, 2019, 29, 3256-3265.e5.	1.8	87
227	Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reproduction, 2019, 32, 15-27.	1.3	16
228	Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Taraxacum koksaghyz entails a high-biomass taproot phenotype. PLoS ONE, 2019, 14, e0217454.	1.1	16
229	The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-responsive Phosphoproteome*. Molecular and Cellular Proteomics, 2019, 18, 1526-1542.	2.5	26
230	Sucrose-induced Receptor Kinase 1 is Modulated by an Interacting Kinase with Short Extracellular Domain*. Molecular and Cellular Proteomics, 2019, 18, 1556-1571.	2.5	24
231	New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. Journal of Experimental Botany, 2019, 70, 5071-5088.	2.4	14
232	Feeling Stressed or Strained? A Biophysical Model for Cell Wall Mechanosensing in Plants. Frontiers in Plant Science, 2019, 10, 757.	1.7	30
233	Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites. Journal of Experimental Botany, 2019, 70, 4919-4930.	2.4	41
234	Peptide/receptor-like kinase-mediated signaling involved in male–female interactions. Current Opinion in Plant Biology, 2019, 51, 7-14.	3.5	61
235	Function and solution structure of the Arabidopsis thaliana RALF8 peptide. Protein Science, 2019, 28, 1115-1126.	3.1	10
236	Damage-Associated Molecular Pattern-Triggered Immunity in Plants. Frontiers in Plant Science, 2019, 10, 646.	1.7	185
237	Modulation of plant innate immune signaling by small peptides. Current Opinion in Plant Biology, 2019, 51, 22-28.	3.5	48

#	Article	IF	CITATIONS
238	Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180310.	1.8	18
239	Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. Plant Molecular Biology, 2019, 100, 151-161.	2.0	25
240	Connected through the force: mechanical signals in plant development. Journal of Experimental Botany, 2019, 70, 3507-3519.	2.4	27
242	Extracellular matrix sensing by <scp>FERONIA</scp> and Leucineâ€Rich Repeat Extensins controls vacuolar expansion during cellular elongation in <i>Arabidopsis thaliana</i> . EMBO Journal, 2019, 38, .	3.5	158
243	Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. Journal of Experimental Botany, 2019, 70, 2313-2323.	2.4	43
244	Fine-Tuning Stomatal Movement Through Small Signaling Peptides. Frontiers in Plant Science, 2019, 10, 69.	1.7	51
245	Genomeâ€wide analysis of flanking sequences reveals thatÂ <i>Tnt1</i> insertion is positively correlated with gene methylation in <i>Medicago truncatula</i> . Plant Journal, 2019, 98, 1106-1119.	2.8	25
246	Molecular Interactions Between Plants and Insect Herbivores. Annual Review of Plant Biology, 2019, 70, 527-557.	8.6	382
247	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	8.6	158
248	Peptidomics-based study reveals that CAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Molecular Breeding, 2019, 39, 1.	1.0	2
249	Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytologist, 2019, 222, 687-693.	3.5	57
250	Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Current Topics in Developmental Biology, 2019, 131, 453-496.	1.0	40
251	<scp>FERONIA</scp> regulates auxinâ€mediated lateral root development and primary root gravitropism. FEBS Letters, 2019, 593, 97-106.	1.3	51
252	Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 935-944.	1.5	46
253	The Regulation of Cellulose Biosynthesis in Plants. Plant Cell, 2019, 31, 282-296.	3.1	181
254	Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. Annual Review of Plant Biology, 2019, 70, 153-186.	8.6	119
255	Heterotrimeric G protein signaling in plant immunity. Journal of Experimental Botany, 2019, 70, 1109-1118.	2.4	40
256	<scp>FERONIA</scp> mutation induces high levels of chloroplastâ€localized Arabidopsides which are involved in root growth. Plant Journal, 2019, 97, 341-351.	2.8	13

#	Article	IF	CITATIONS
257	Oxidative protein folding: stateâ€ofâ€theâ€art and current avenues of research in plants. New Phytologist, 2019, 221, 1230-1246.	3.5	29
258	The quest for osmosensors in plants. Journal of Experimental Botany, 2020, 71, 595-607.	2.4	37
259	Handedness in plant cell expansion: a mutant perspective on helical growth. New Phytologist, 2020, 225, 53-69.	3.5	18
260	A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytologist, 2020, 225, 1428-1439.	3.5	175
261	The RALF1–FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Molecular Plant, 2020, 13, 698-716.	3.9	88
262	Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in <i>Medicago truncatula</i> and Other Nodulating Plants. Plant Cell, 2020, 32, 42-68.	3.1	63
263	Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62, 2-24.	4.1	152
264	Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cellular and Molecular Life Sciences, 2020, 77, 2049-2077.	2.4	101
265	Peptide-Receptor Signaling Controls Lateral Root Development. Plant Physiology, 2020, 182, 1645-1656.	2.3	20
266	<i>Cr</i> <scp>RLK</scp> 1L receptorâ€like kinases <scp>HERK</scp> 1 and <scp>ANJEA</scp> are female determinants of pollen tube reception. EMBO Reports, 2020, 21, e48466.	2.0	62
267	SIFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. Plant Physiology, 2020, 184, 2168-2181.	2.3	19
268	A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nature Communications, 2020, 11, 4859.	5.8	28
269	Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. International Journal of Molecular Sciences, 2020, 21, 7638.	1.8	14
270	AtPME17 is a functional <i>Arabidopsis thaliana</i> pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2020, 21, 1620-1633.	2.0	43
271	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	3.1	59
272	Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes, 2020, 11, 793.	1.0	16
273	ABA-Dependent Salt Stress Tolerance Attenuates Botrytis Immunity in Arabidopsis. Frontiers in Plant Science, 2020, 11, 594827.	1.7	11
274	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	1.8	19

#	Article	IF	CITATIONS
275	Asynchrony of ovule primordia initiation in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	1.2	25
276	Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell, 2020, 55, 529-543.	3.1	283
277	Evidence for multiple receptors mediating RALFâ€ŧriggered Ca ²⁺ signaling and proton pump inhibition. Plant Journal, 2020, 104, 433-446.	2.8	40
278	Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. International Journal of Molecular Sciences, 2020, 21, 7881.	1.8	25
279	Danger-Associated Peptide Regulates Root Growth by Promoting Protons Extrusion in an AHA2-Dependent Manner in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7963.	1.8	8
280	A malectinâ€like receptor kinase regulates cell death and patternâ€triggered immunity in soybean. EMBO Reports, 2020, 21, e50442.	2.0	44
281	Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Molecular Plant, 2020, 13, 1434-1454.	3.9	67
282	Mechanical feedback-loop regulation of morphogenesis in plants. Development (Cambridge), 2020, 147, .	1.2	34
283	The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nature Plants, 2020, 6, 1106-1115.	4.7	38
284	Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, 2020, 6, 1136-1145.	4.7	113
285	A molecular roadmap to the plant immune system. Journal of Biological Chemistry, 2020, 295, 14916-14935.	1.6	86
286	Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development. Frontiers in Plant Science, 2020, 11, 588846.	1.7	8
287	The contribution of cell wall remodeling and signaling to lateral organs formation. Israel Journal of Plant Sciences, 2020, 67, 110-127.	0.3	18
288	Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation(China), 2020, 1, 100017.	5.2	387
289	RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances, 2020, 6, eaaz1622.	4.7	85
290	Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. Plant Cell, 2020, 32, 2582-2601.	3.1	57
291	Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BMC Plant Biology, 2020, 20, 237.	1.6	50
292	The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. Plants, 2020, 9, 574.	1.6	66

#	Article	IF	CITATIONS
293	RALF–FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Communications, 2020, 1, 100084.	3.6	68
294	The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	1.2	36
295	Salt Stress Signals on Demand: Cellular Events in the Right Context. International Journal of Molecular Sciences, 2020, 21, 3918.	1.8	19
297	Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation?. Plants, 2020, 9, 713.	1.6	9
298	Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genetics, 2020, 16, e1008847.	1.5	41
299	Ectopic Expression of a Self-Incompatibility Module Triggers Growth Arrest and Cell Death in Vegetative Cells. Plant Physiology, 2020, 183, 1765-1779.	2.3	18
300	Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7494-7503.	3.3	83
301	Auxin Signaling-Mediated Apoplastic pH Modification Functions in Petal Conical Cell Shaping. Cell Reports, 2020, 30, 3904-3916.e3.	2.9	21
302	On-Site Manufacturing in Tip-Growing Cells through RALF1–FERONIA-Mediated Local mRNA Translation. Molecular Plant, 2020, 13, 682-684.	3.9	0
303	The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective. International Journal of Molecular Sciences, 2020, 21, 1743.	1.8	54
304	FERONIA cytoplasmic domain: node of varied signal outputs. ABIOTECH, 2020, 1, 135-146.	1.8	12
305	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
306	Rapid Auxin-Mediated Cell Expansion. Annual Review of Plant Biology, 2020, 71, 379-402.	8.6	128
307	Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants, 2020, 6, 750-759.	4.7	188
308	Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biology, 2020, 124, 753-765.	1.1	19
309	Emerging mechanisms to fine-tune receptor kinase signaling specificity. Current Opinion in Plant Biology, 2020, 57, 41-51.	3.5	9
310	Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. Annual Review of Plant Biology, 2020, 71, 39-69.	8.6	132
311	NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells, 2020, 9, 437.	1.8	74

#	Article	IF	Citations
312	Engineering Synthetic Signaling in Plants. Annual Review of Plant Biology, 2020, 71, 767-788.	8.6	11
313	Perception of Damaged Self in Plants. Plant Physiology, 2020, 182, 1545-1565.	2.3	55
314	The Genome-Wide Analysis of RALF-Like Genes in Strawberry (Wild and Cultivated) and Five Other Plant Species (Rosaceae). Genes, 2020, 11, 174.	1.0	6
315	Tissue-specific changes in the RNA structurome mediate salinity response in <i>Arabidopsis</i> . Rna, 2020, 26, 492-511.	1.6	25
316	Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biology, 2020, 20, 26.	1.6	26
317	A malectin domain kinesin functions in pollen and seed development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 1828-1841.	2.4	19
318	Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. Journal of Experimental Botany, 2020, 71, 2112-2126.	2.4	40
319	The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genetics, 2020, 16, e1008433.	1.5	33
320	Mass Spectrometry Untangles Plant Membrane Protein Signaling Networks. Trends in Plant Science, 2020, 25, 930-944.	4.3	30
321	Structural Insights into the Plant Immune Receptors PRRs and NLRs. Plant Physiology, 2020, 182, 1566-1581.	2.3	37
322	Surface Sensor Systems in Plant Immunity. Plant Physiology, 2020, 182, 1582-1596.	2.3	140
323	Protein Phosphorylation Dynamics Under Carbon/Nitrogen-Nutrient Stress and Identification of a Cell Death-Related Receptor-Like Kinase in Arabidopsis. Frontiers in Plant Science, 2020, 11, 377.	1.7	28
324	Twenty Years of Progress in Physiological and Biochemical Investigation of RALF Peptides. Plant Physiology, 2020, 182, 1657-1666.	2.3	69
325	Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS ONE, 2020, 15, e0226448.	1.1	7
326	Extracellular DNA: A Relevant Plant Damage-Associated Molecular Pattern (DAMP) for Crop Protection Against Pests—A Review. Journal of Plant Growth Regulation, 2021, 40, 451-463.	2.8	14
327	Receptorâ€like kinases MDS1 and MDS2 promote SUMM2â€mediated immunity. Journal of Integrative Plant Biology, 2021, 63, 277-282.	4.1	10
328	The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review, 2021, 8, nwaa149.	4.6	50
329	Signaling mechanisms in abscisic acidâ€mediated stomatal closure. Plant Journal, 2021, 105, 307-321	2.8	214

#	Article	IF	CITATIONS
330	Short―and longâ€distance signaling in plant defense. Plant Journal, 2021, 105, 505-517.	2.8	34
331	Keeping up with the RALFs: how these small peptides control pollen–pistil interactions in Arabidopsis. New Phytologist, 2021, 229, 14-18.	3.5	12
332	Computational prediction method to decipher receptor–glycoligand interactions in plant immunity. Plant Journal, 2021, 105, 1710-1726.	2.8	14
333	Plant plasma membraneâ€resident receptors: Surveillance for infections and coordination for growth and development. Journal of Integrative Plant Biology, 2021, 63, 79-101.	4.1	50
334	Plasma membrane calcineurin Bâ€like calciumâ€ion sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution. New Phytologist, 2021, 229, 2223-2237.	3.5	23
335	Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences, 2021, 64, 294-310.	2.3	22
337	Receptors in the Induction of the Plant Innate Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 587-601.	1.4	20
338	Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. Plant Physiology, 2021, 187, 1856-1875.	2.3	29
339	The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. Plant Cell Reports, 2021, 40, 575-582.	2.8	17
340	Involvement of plasma membrane H+-ATPase in diamide-induced extracellular alkalization by roots from pea seedlings. Planta, 2021, 253, 10.	1.6	0
341	Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. Plants, 2021, 10, 399.	1.6	30
342	The enigma of environmental pH sensing in plants. Nature Plants, 2021, 7, 106-115.	4.7	52
343	Recent advances in peptide signaling during Arabidopsis root development. Journal of Experimental Botany, 2021, 72, 2889-2902.	2.4	21
344	Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chemical Biology, 2021, 16, 251-263.	1.6	16
345	Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments. Journal of Proteomics, 2021, 235, 104114.	1.2	32
347	Maintenance of Cell Wall Integrity under High Salinity. International Journal of Molecular Sciences, 2021, 22, 3260.	1.8	48
348	Distinct genetic basis for root responses to lipo-chitooligosaccharide signal molecules from different microbial origins. Journal of Experimental Botany, 2021, 72, 3821-3834.	2.4	5
349	Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. Frontiers in Plant Science, 2021, 12, 614909.	1.7	16

C	D
(ITATION	REDUDT
CHAILON	KLFOKI

#	Article	IF	CITATIONS
351	Function of Small Peptides During Male-Female Crosstalk in Plants. Frontiers in Plant Science, 2021, 12, 671196.	1.7	9
352	Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Developmental Cell, 2021, 56, 1030-1042.e6.	3.1	46
353	Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science, 2021, 372, 171-175.	6.0	113
354	Casting the Net—Connecting Auxin Signaling to the Plant Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040006.	2.3	2
355	FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nature Plants, 2021, 7, 644-654.	4.7	102
356	A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis. Developmental Cell, 2021, 56, 1484-1497.e7.	3.1	23
357	Reproduction Multitasking: The Male Gametophyte. Annual Review of Plant Biology, 2021, 72, 581-614.	8.6	56
358	MPK6 Kinase Regulates Plasma Membrane H+-ATPase Activity in Cold Acclimation. International Journal of Molecular Sciences, 2021, 22, 6338.	1.8	10
359	With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. Plants, 2021, 10, 1587.	1.6	2
360	The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells, 2021, 10, 1665.	1.8	8
361	Chia (Salvia hispanica) Gene Expression Atlas Elucidates Dynamic Spatio-Temporal Changes Associated With Plant Growth and Development. Frontiers in Plant Science, 2021, 12, 667678.	1.7	11
362	FERONIA Confers Resistance to Photooxidative Stress in Arabidopsis. Frontiers in Plant Science, 2021, 12, 714938.	1.7	7
363	Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiology, 2021, 187, 996-1010.	2.3	59
364	Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. Annual Review of Phytopathology, 2021, 59, 53-75.	3.5	79
365	Cell wall associated immunity in plants. Stress Biology, 2021, 1, 1.	1.5	58
366	Peptide Signaling during Plant Reproduction. Trends in Plant Science, 2021, 26, 822-835.	4.3	33
367	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	3.1	7
368	Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant, Cell and Environment, 2021, 44, 37 <u>56-3774</u> .	2.8	10

$\mathcal{O} = \mathcal{O}$	 D	_
	REDU	ND T
CITAT	NLFU	

#	Article	IF	CITATIONS
369	Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in Nicotiana benthamiana. BMC Plant Biology, 2021, 21, 425.	1.6	6
370	Plant cell mechanobiology: Greater than the sum of its parts. Plant Cell, 2022, 34, 129-145.	3.1	27
371	The CrRLK1L subfamily: One of the keys to versatility in plants. Plant Physiology and Biochemistry, 2021, 166, 88-102.	2.8	11
373	Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 2021, 1, 8.	1.5	37
374	New paradigms in cell adaptation: decades of discoveries on the <i>Cr</i> RLK1L receptor kinase signalling network. New Phytologist, 2021, 232, 1168-1183.	3.5	61
375	Molecular mechanisms of plant peptide binding to receptors. Peptides, 2021, 144, 170614.	1.2	7
376	A newly established virus-induced gene silencing method via seed imbibition for functional genomics at early germination stages in cotton. Industrial Crops and Products, 2021, 172, 114040.	2.5	3
377	Knockout of FER decreases cadmium concentration in roots of Arabidopsis thaliana by inhibiting the pathway related to iron uptake. Science of the Total Environment, 2021, 798, 149285.	3.9	3
378	Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surface, 2021, 7, 100056.	1.5	23
379	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23.	0.4	18
379 380	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79.	0.4	18 6
379 380 381	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344.	0.4 0.4 0.4	18 6 3
379 380 381 382	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344. Endogenous Peptides: Key Modulators of Plant Immunity. , 2019, , 159-177.	0.4 0.4 0.4	18 6 3 2
379 380 381 382 383	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344. Endogenous Peptides: Key Modulators of Plant Immunity. , 2019, , 159-177. Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. , 2017, , 167-243.	0.4	18 6 3 2 18
379 380 381 382 383 384	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344. Endogenous Peptides: Key Modulators of Plant Immunity. , 2019, , 159-177. Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. , 2017, , 167-243. Plant peptide hormone signalling. Essays in Biochemistry, 2015, 58, 115-131.	0.4 0.4 0.4 2.1	18 6 3 2 18 26
379 380 381 382 383 384 385	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344. Endogenous Peptides: Key Modulators of Plant Immunity. , 2019, , 159-177. Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. , 2017, , 167-243. Plant peptide hormone signalling. Essays in Biochemistry, 2015, 58, 115-131. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. Journal of Experimental Botany, 2017, 68, 2951-2962.	0.4 0.4 0.4 2.1	18 6 3 2 18 26 32
 379 380 381 382 383 384 385 386 	The Plant Kinome. Methods in Molecular Biology, 2015, 1306, 1-23. Phosphopeptide Profiling of Receptor Kinase Mutants. Methods in Molecular Biology, 2015, 1306, 71-79. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344. Endogenous Peptides: Key Modulators of Plant Immunity. , 2019, , 159-177. Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. , 2017, , 167-243. Plant peptide hormone signalling. Essays in Biochemistry, 2015, 58, 115-131. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H++ATPase activity in Arabidopsis. Journal of Experimental Botany, 2017, 68, 2951-2962. A temperature-sensitive <i>FERONIA Plant alters root hair growth. Plant Physiology, 2011, 185, 405-423.</i>	0.4 0.4 0.4 2.1 2.4 2.3	18 6 3 2 18 26 32 22

	Сітатіс	n Report	
#	Article	IF	CITATIONS
396	Reproductive Multitasking: The Female Gametophyte. Annual Review of Plant Biology, 2020, 71, 517-546.	8.6	47
397	The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. Annual Review of Plant Biology, 2020, 71, 247-272.	8.6	51
398	Root hair growth: it's a one way street. F1000prime Reports, 2015, 7, 23.	5.9	60
399	Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genetics, 2016, 12, e1006147.	1.5	58
400	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	1.5	187
401	Genome-Wide Identification and Expression Analysis of MRLK Family Genes Associated with Strawberry (Fragaria vesca) Fruit Ripening and Abiotic Stress Responses. PLoS ONE, 2016, 11, e0163647.	1.1	25
402	How alkalinization drives fungal pathogenicity. PLoS Pathogens, 2017, 13, e1006621.	2.1	73
403	Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biological Chemistry, 2021, 402, 399-423.	1.2	41
404	The Roles of Peptide Hormones and Their Receptors during Plant Root Development. Genes, 2021, 12, 22.	1.0	18
405	Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. International Journal of Molecular Sciences, 2020, 21, 963.	1.8	203
408	PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. Horticulture Research, 2021, 8, 222.	2.9	12
409	Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. International Journal of Molecular Sciences, 2021, 22, 10715.	1.8	18
410	Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. Plants, 2021, 10, 2243.	1.6	4
411	Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. Plant Science, 2021, 313, 111091.	1.7	4
415	Evaluation of Root pH Change Through Gel Containing pH-sensitive Indicator Bromocresol Purple. Bio-protocol, 2018, 8, e2796.	0.2	2
423	RALF34 is a Paracrine Signal to Trigger Pollen Tubes Burst and Sperm Release. Springer Theses, 2020, , 59-71.	0.0	0
429	Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599, 273-277.	13.7	128
430	Review of Cell–Cell Communication in Plant Reproduction. Springer Theses, 2020, , 1-13.	0.0	0

#	Article	IF	CITATIONS
431	RALF4/19 are Autocrine Signals to Maintain Pollen Tubes Integrity. Springer Theses, 2020, , 37-57.	0.0	0
433	Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. Journal of Hazardous Materials, 2022, 424, 127443.	6.5	11
434	Osmosensing and Signalling in Plants: Potential Role in Crop Improvement Under Climate Change. , 2021, , 11-46.		3
435	Receptor-Like Kinases BUPS1/2 are Involved in Pollen Tubes Integrity Maintenance in Arabidopsis. Springer Theses, 2020, , 15-36.	0.0	Ο
436	Bitki İmmün Reseptörleri. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 0, , .	0.1	0
437	Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. Molecular Plant-Microbe Interactions, 2022, 35, 554-566.	1.4	9
438	Polarized NORTIA accumulation in response to pollen tube arrival at synergids promotes fertilization. Developmental Cell, 2021, 56, 2938-2951.e6.	3.1	16
441	Overexpression of Plasma Membrane H+-ATPase in Guard Cells Enhances Light-Induced Stomatal Opening, Photosynthesis, and Plant Growth in Hybrid Aspen. Frontiers in Plant Science, 2021, 12, 766037.	1.7	8
442	Signaling at Physical Barriers during Pollen–Pistil Interactions. International Journal of Molecular Sciences, 2021, 22, 12230.	1.8	10
443	Posttranslational regulation of transporters important for symbiotic interactions. Plant Physiology, 2022, 188, 941-954.	2.3	1
444	Fighting salt or enemies: shared perception and signaling strategies. Current Opinion in Plant Biology, 2021, 64, 102120.	3.5	9
447	Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. ELife, 2022, 11, .	2.8	44
448	Apple receptor-like kinase FERONIA regulates salt tolerance and ABA sensitivity in Malus domestica. Journal of Plant Physiology, 2022, 270, 153616.	1.6	5
449	Tripartite hormonal regulation of plasma membrane H+-ATPase activity. Trends in Plant Science, 2022, 27, 588-600.	4.3	16
450	Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 2022, 64, 371-392.	4.1	87
451	RALF peptide signaling controls the polytubey block in <i>Arabidopsis</i> . Science, 2022, 375, 290-296.	6.0	65
452	PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of <i>Pyrus</i> . Horticulture Research, 2022, 9, .	2.9	8
453	Characterisation of rapid alkalinisation factors in <i>Physcomitrium patens</i> reveals functional conservation in tip growth. New Phytologist, 2022, 233, 2442-2457.	3.5	11

#	Article	IF	CITATIONS
455	Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Current Biology, 2022, 32, 497-507.e4.	1.8	65
456	Root physiology and morphology of soybean in relation to stress tolerance. Advances in Botanical Research, 2022, , 77-103.	0.5	2
458	Cell Wall Signaling in Plant Development and Defense. Annual Review of Plant Biology, 2022, 73, 323-353.	8.6	50
459	Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. International Journal of Molecular Sciences, 2022, 23, 3227.	1.8	17
460	Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. New Phytologist, 2022, 235, 518-532.	3.5	6
461	H ⁺ -ATPases in Plant Growth and Stress Responses. Annual Review of Plant Biology, 2022, 73, 495-521.	8.6	45
463	FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. International Journal of Molecular Sciences, 2022, 23, 3730.	1.8	14
464	MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. Plant Physiology, 2022, 189, 1397-1415.	2.3	10
465	Short Peptides Induce Development of Root Hair Nicotiana tabacum. Plants, 2022, 11, 852.	1.6	0
466	A rulebook for peptide control of legume–microbe endosymbioses. Trends in Plant Science, 2022, 27, 870-889.	4.3	21
467	pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. Plant Science, 2022, 318, 111208.	1.7	7
468	Nematode RALF-Like 1 Targets Soybean Malectin-Like Receptor Kinase to Facilitate Parasitism. Frontiers in Plant Science, 2021, 12, 775508.	1.7	9
469	The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. International Journal of Molecular Sciences, 2022, 23, 343.	1.8	13
470	Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS A Journal of Integrative Biology, 2021, 25, 750-769.	1.0	3
471	Malectin-like receptor kinases as protector deities in plant immunity. Nature Plants, 2022, 8, 27-37.	4.7	24
472	Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 2594-2614.	3.1	18
473	Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2022, 34, 2708-2729.	3.1	40
474	Studying the many faces of FERONIA. Plant Cell, 2022, , .	3.1	1

ARTICLE IF CITATIONS # PERKing up our understanding of the prolineâ€rich extensinâ€like receptor kinases, a forgotten plant 493 3.5 3 receptor kinase family. New Phytologist, 2022, 235, 875-884. 494 Microbial elicitors: Positive and negative modulators of plant defense., 2022, , 77-102. Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane 495 2.2 1 Electron Transport System in Maize Roots. Antioxidants, 2022, 11, 836. Application of Parallel Reaction Monitoring in 15N Labeled Samples for Quantification. Frontiers in 497 Plant Science, 2022, 13, 832585. Genome-Wide Identification of Rapid Alkalinization Factor Family in Brassica napus and Functional Analysis of BnRALF10 in Immunity to Sclerotinia sclerotiorum. Frontiers in Plant Science, 2022, 13, 498 1.7 3 877404. Rapid responses: receptorâ€like kinases directly regulate the functions of membrane transport proteins 499 4.1 in plants. Journal of Integrative Plant Biology, 2022, , . The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. Journal 500 1.7 30 of Genetics and Genomics, 2022, 49, 715-725. Receptor-like protein kinase BAK1 promotes K+ uptake by regulating H+-ATPase AHA2 under low 2.3 potassium stress. Plant Physiology, 2022, 189, 2227-2243. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. 503 2.4 26 Journal of Experimental Botany, 2022, 73, 5886-5902. 504 Does Abiotic Host Stress Favour Dothideomycete-Induced Disease Development?. Plants, 2022, 11, 1615. 1.6 Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of NtCrRLK1L47 in 505 1.7 6 Environmental Stresses. Frontiers in Plant Science, 0, 13, . Cell wall integrity regulation across plant species. Plant Molecular Biology, 2022, 109, 483-504. 506 2.0 Action Mechanisms of Effectors in Plant-Pathogen Interaction. International Journal of Molecular 508 1.8 53 Sciences, 2022, 23, 6758. Growing Maize Root: Lectins Involved in Consecutive Stages of Cell Development. Plants, 2022, 11, 1799. 509 1.6 Review: Tertiary cell wall of plant fibers as a source of inspiration in material design. Carbohydrate 510 5.18 Polymers, 2022, 295, 119849. Genome-Wide Analysis of CqCrRLK1L and CqRALF Gene Families in Chenopodium quinoa and Their Roles in Salt Stress Response. Frontiers in Plant Science, 0, 13, . 512 Root hair growth from the pH point of view. Frontiers in Plant Science, 0, 13, . 1.7 8 RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of 3.3 the National Academy of Sciences of the United States of America, 2022, 119, .

#	Article	IF	CITATIONS
514	A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature, 2022, 607, 534-539.	13.7	44
515	The root apoplastic pH as an integrator of plant signaling. Frontiers in Plant Science, 0, 13, .	1.7	7
516	<i>FERONIA</i> is involved in <i>phototropin 1</i> â€mediated blue light phototropic growth in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1901-1915.	4.1	6
517	ROS and calcium oscillations are required for polarized root hair growth. Plant Signaling and Behavior, 2022, 17, .	1.2	7
518	FERONIA functions through Target of Rapamycin (TOR) to negatively regulate autophagy. Frontiers in Plant Science, 0, 13, .	1.7	1
519	Pollen–pistil interactions: It takes two to tangle but a molecular cast of many to deliver. Current Opinion in Plant Biology, 2022, 69, 102279.	3.5	13
520	Regulation of pollen tube growth by cellular pH and ions. Journal of Plant Physiology, 2022, 277, 153792.	1.6	3
521	CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells, 2022, 11, 2960.	1.8	18
522	Evolutionary analysis of the <i>LORELEI</i> gene family in plants reveals regulatory subfunctionalization. Plant Physiology, 2022, 190, 2539-2556.	2.3	5
523	Identification of Feronia-interacting proteins in Arabidopsis thaliana. Genes and Genomics, 0, , .	0.5	2
524	Jasmonate perception: Ligand–receptor interaction, regulation, and evolution. Molecular Plant, 2023, 16, 23-42.	3.9	19
525	The single <i>Marchantia polymorpha FERONIA</i> homolog reveals an ancestral role in regulating cellular expansion and integrity. Development (Cambridge), 2022, 149, .	1.2	9
526	Genome-wide identification of CrRLK1L gene family and desiccation-induced expression profiles in Boea hygrometrica. Current Plant Biology, 2022, 31, 100256.	2.3	4
527	Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. Frontiers in Plant Science, 0, 13, .	1.7	2
528	Identification of the Functional Modules of SIPP2C.D—SISAUR and Their Roles in Abscisic Acid-Mediated Inhibition of Tomato Hypocotyl Elongation. Agronomy, 2022, 12, 2542.	1.3	1
529	RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. International Journal of Molecular Sciences, 2022, 23, 12176.	1.8	2
530	Linking plant functional genes to rhizosphere microbes: a review. Plant Biotechnology Journal, 2023, 21, 902-917.	4.1	14
531	The function of the plant cell wall in plant–microbe interactions. Plant Physiology and Biochemistry, 2022, 192, 273-284.	2.8	12

#	Article	IF	CITATIONS
532	The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. Plant Science, 2023, 326, 111510.	1.7	1
533	Development specifies, diversifies and empowers root immunity. EMBO Reports, 2022, 23, .	2.0	4
534	Growth or stress responses: TMKâ \in "FER balancing act. Trends in Plant Science, 2022, , .	4.3	3
535	How a single receptor-like kinase exerts diverse roles: lessons from FERONIA. Molecular Horticulture, 2022, 2, .	2.3	3
536	CrRLK1L receptor kinases-regulated pollen-pistil interactions. Reproduction and Breeding, 2022, 2, 113-118.	0.8	0
537	Role of receptor-like kinases in plant-pathogen interaction. , 2023, , 121-147.		0
538	Role of pH in the Control of Fungal MAPK Signalling and Pathogenicity. , 2023, , 227-238.		1
539	Fusarium oxysporum Casein Kinase 1, a Negative Regulator of the Plasma Membrane H+-ATPase Pma1, Is Required for Development and Pathogenicity. Journal of Fungi (Basel, Switzerland), 2022, 8, 1300.	1.5	1
540	Plant Plasma Membrane Proton Pump: One Protein with Multiple Functions. Cells, 2022, 11, 4052.	1.8	9
541	Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. Plants, 2023, 12, 427.	1.6	8
542	RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity. Cell Research, 2023, 33, 71-79.	5.7	18
543	Discovery of 2,6-Dihalopurines as Stomata Opening Inhibitors: Implication of an LRX-Mediated H ⁺ -ATPase Phosphorylation Pathway. ACS Chemical Biology, 2023, 18, 347-355.	1.6	1
544	A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Current Biology, 2023, 33, 498-506.e6.	1.8	9
545	Mass spectrometric exploration of phytohormone profiles and signaling networks. Trends in Plant Science, 2023, 28, 399-414.	4.3	7
546	Cell surface receptor kinase <scp>FERONIA</scp> linked to nutrient sensor <scp>TORC</scp> signaling controls root hair growth at low temperature linked to low nitrate in <i>Arabidopsis thaliana</i> . New Phytologist, 2023, 238, 169-185.	3.5	7
547	Ca2+-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H+-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat. Molecular Plant, 2023, 16, 571-587.	3.9	8
548	RALF peptides modulate immune response in the moss Physcomitrium patens. Frontiers in Plant Science, 0, 14, .	1.7	2
549	FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nature Plants, 2023, 9, 645-660.	4.7	17

	Сітатіс	n Report	
#	Article	IF	CITATIONS
550	Peptide signaling in anther development and pollen-stigma interactions. Gene, 2023, 865, 147328.	1.0	0
552	Peptides, new tools for plant protection in eco-agriculture. , 2023, 2, 58-78.		15
554	Genome-Wide Re-Identification and Analysis of CrRLK1Ls in Tomato. International Journal of Molecular Sciences, 2023, 24, 3142.	1.8	6
555	Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation. Plant Communications, 2023, 4, 100559.	3.6	5
556	The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability. International Journal of Molecular Sciences, 2023, 24, 5230.	1.8	4
557	The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and <i>trans</i> -Golgi trafficking in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2023, 18, .	1.2	3
558	Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biology, 2023, 24, .	3.8	9
559	Chemical Synthesis of Glycopeptides containing <scp>l</scp> -Arabinosylated Hydroxyproline and Sulfated Tyrosine. Organic Letters, 2023, 25, 1907-1911.	2.4	1
560	Molecular Mechanisms of Regulation of Root Development by Plant Peptides. Plants, 2023, 12, 1320.	1.6	1
562	Sound perception in plants: from ecological significance to molecular understanding. Trends in Plant Science, 2023, 28, 825-840.	4.3	7
564	The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Science Advances, 2023, 9, .	4.7	10
565	Shining in the dark: the big world of small peptides in plants. ABIOTECH, 2023, 4, 238-256.	1.8	6
566	Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. International Journal of Molecular Sciences, 2023, 24, 7417.	1.8	5
567	Enhancing the wheat growth through micronutrients enriched biochar under salt stress. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	1
568	Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots. International Journal of Molecular Sciences, 2023, 24, 7654.	1.8	2
575	Why is FERONIA pleiotropic?. Nature Plants, 2023, 9, 1018-1025.	4.7	8
607	Assaying the Effect of Peptide Treatment on H+-Pumping Activity in Plasma Membranes from Arabidopsis Seedlings. Methods in Molecular Biology, 2024, , 91-103.	0.4	0
608	Automated Real-Time Monitoring of Extracellular pH to Assess Early Plant Defense Signaling. Methods in Molecular Biology, 2024, , 169-178.	0.4	0