Global Warming and Winter Weather

Science 343, 729-730 DOI: 10.1126/science.343.6172.729

Citation Report

#	Article	IF	CITATIONS
1	Applications of the argon laser in head surgery. Soviet Journal of Quantum Electronics, 1977, 7, 1492-1494.	0.1	1
2	Beyond Hurricane Sandy: What Might the Future Hold for Tropical Cyclones in the North Atlantic?. Journal of Extreme Events, 2014, 01, 1450007.	1.1	13
3	What are the physical links between Arctic sea ice loss and Eurasian winter climate?. Environmental Research Letters, 2014, 9, 101003.	5.2	56
4	Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophysical Research Letters, 2014, 41, 5223-5232.	4.0	105
5	Seasonal aspects of the recent pause in surfaceÂwarming. Nature Climate Change, 2014, 4, 911-916.	18.8	276
6	Amplified mid-latitude planetary waves favour particular regional weather extremes. Nature Climate Change, 2014, 4, 704-709.	18.8	273
7	Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. International Journal of Biometeorology, 2014, 58, 2169-2173.	3.0	30
8	Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 2014, 7, 627-637.	12.9	1,729
9	Extreme upper level cyclonic vorticity events in relation to the Southern Hemisphere jet stream. Geophysical Research Letters, 2014, 41, 4373-4380.	4.0	5
10	The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports, 2015, 5, 17491.	3.3	55
11	Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophysical Research Letters, 2015, 42, 1612-1618.	4.0	121
12	Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future. Geophysical Research Letters, 2015, 42, 9846-9852.	4.0	144
13	The impact of Arctic warming on the midlatitude jetâ€stream: Can it? Has it? Will it?. Wiley Interdisciplinary Reviews: Climate Change, 2015, 6, 277-286.	8.1	326
14	A physical analysis of the severe 2013/2014 cold winter in North America. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,149.	3.3	39
15	Reduced Risk of North American Cold Extremes due to Continued Arctic Sea Ice Loss. Bulletin of the American Meteorological Society, 2015, 96, 1489-1503.	3.3	108
16	Projected changes in regional climate extremes arising from Arctic sea ice loss. Environmental Research Letters, 2015, 10, 084006.	5.2	59
17	Advancements in decadal climate predictability: The role of nonoceanic drivers. Reviews of Geophysics, 2015, 53, 165-202.	23.0	81
18	Summertime atmosphere–ocean preconditionings for the Bering Sea ice retreat and the following severe winters in North America. Environmental Research Letters, 2015, 10, 094023.	5.2	14

#	Article	IF	CITATIONS
19	Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review. Climate, 2015, 3, 833-857.	2.8	10
20	The Melting Arctic and Midlatitude Weather Patterns: Are They Connected?*. Journal of Climate, 2015, 28, 7917-7932.	3.2	320
21	Physics of Changes in Synoptic Midlatitude Temperature Variability. Journal of Climate, 2015, 28, 2312-2331.	3.2	131
22	Cyclic Dehydrogenation–(Re)Hydrogenation with Hydrogenâ€Storage Materials: An Overview. Energy Technology, 2015, 3, 100-117.	3.8	39
23	Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts. Earth-Science Reviews, 2015, 146, 120-145.	9.1	135
24	Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 2015, 522, 465-469.	27.8	445
25	Cluster Analysis of Northern Hemisphere Wintertime 500-hPa Flow Regimes during 1920–2014*. Journals of the Atmospheric Sciences, 2015, 72, 3597-3608.	1.7	46
26	Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 103-121.	2.3	82
27	Role of sea surface temperature, Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013. Climate Dynamics, 2015, 45, 1181-1206.	3.8	11
28	A Dynamical Systems Explanation of the Hurst Effect and Atmospheric Low-Frequency Variability. Scientific Reports, 2015, 5, 9068.	3.3	32
29	Earth Stewardship. Ecology and Ethics, 2015, , .	1.0	10
30	Ecology and Education in Marine Protected Areas: Insights from Brazil and South America. Ecology and Ethics, 2015, , 351-366.	1.0	2
32	The Machinery: Mechanisms Behind Climatic Changes. Advances in Global Change Research, 2015, , 71-166.	1.6	1
33	Climatic Changes Since 1700. Advances in Global Change Research, 2015, , 167-321.	1.6	10
34	Weather chains during the 2013/2014 winter and their significance for seasonal prediction. Nature Geoscience, 2015, 8, 833-837.	12.9	60
35	New York City Panel on Climate Change 2015 ReportChapter 1: Climate Observations and Projections. Annals of the New York Academy of Sciences, 2015, 1336, 18-35.	3.8	48
36	Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China. Wetlands, 2015, 35, 1033-1042.	1.5	51
37	Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 2015, 8, 759-762.	12.9	433

#	Article	IF	CITATIONS
38	Persistent cold air outbreaks over North America in a warming climate. Environmental Research Letters, 2015, 10, 044001.	5.2	43
39	Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. Journal of Cleaner Production, 2015, 103, 77-86.	9.3	137
40	Arctic-North Pacific coupled impacts on the late autumn cold in North America. Environmental Research Letters, 2016, 11, 084016.	5.2	19
41	Is the melting Arctic changing midlatitude weather?. Physics Today, 2016, 69, 38-43.	0.3	12
42	Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2571-2592.	3.3	50
43	The December 2015 North Pole Warming Event and the Increasing Occurrence of Such Events. Scientific Reports, 2016, 6, 39084.	3.3	64
44	A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports, 2016, 2, 242-259.	8.6	284
45	The Circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophysical Research Letters, 2016, 43, 11,015.	4.0	40
46	The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss. Journal of Climate, 2016, 29, 7831-7849.	3.2	65
47	Investigating Possible Arctic–Midlatitude Teleconnections in a Linear Framework. Journal of Climate, 2016, 29, 7329-7343.	3.2	36
48	An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophysical Research Letters, 2016, 43, 5287-5294.	4.0	64
49	A Preliminary Study of the Carbon Emissions Reduction Effects of Land Use Control. Scientific Reports, 2016, 6, 36901.	3.3	22
50	Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 2016, 6, 992-999.	18.8	268
51	The influence of jet stream regime on extreme weather events. , 2016, , 79-94.		5
52	Significant enhancement in atmospheric biweekly disturbance over Northeast Asia during the recent warming hiatus. Journal of Meteorological Research, 2016, 30, 631-644.	2.4	0
53	Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979–2012. Geophysical Research Letters, 2016, 43, 2792-2800.	4.0	17
54	Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling. Climate Dynamics, 2016, 47, 1029-1047.	3.8	43
55	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	2.4	81

	CHAHON	REPORT	
#	Article	IF	CITATIONS
56	A difficult Arctic science issue: Midlatitude weather linkages. Polar Science, 2016, 10, 210-216.	1.2	50
57	Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 675-717.	3.0	317
58	Observed Atmospheric Coupling between Barents Sea Ice and the Warm-Arctic Cold-Siberian Anomaly Pattern. Journal of Climate, 2016, 29, 495-511.	3.2	121
59	The Impact of Regional Arctic Sea Ice Loss on Atmospheric Circulation and the NAO. Journal of Climate, 2016, 29, 889-902.	3.2	77
60	What Is the Polar Vortex and How Does It Influence Weather?. Bulletin of the American Meteorological Society, 2017, 98, 37-44.	3.3	162
61	Natural persistence of the coastal plant Glehnia littoralis along temperate sandy coasts. Scientific Reports, 2017, 7, 42784.	3.3	5
63	Late Twenty-First-Century Changes in the Midlatitude Atmospheric Circulation in the CESM Large Ensemble. Journal of Climate, 2017, 30, 5943-5960.	3.2	39
64	Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry. Engineering, 2017, 3, 154-160.	6.7	79
65	Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Reviews in Fish Biology and Fisheries, 2017, 27, 363-391.	4.9	57
66	Upper-Tropospheric Jet Axis Detection and Application to the Boreal Winter 2013/14. Monthly Weather Review, 2017, 145, 2363-2374.	1.4	19
67	Atmospheric Response to Arctic and Antarctic Sea Ice: The Importance of Ocean–Atmosphere Coupling and the Background State. Journal of Climate, 2017, 30, 4547-4565.	3.2	110
68	Winter Atmospheric Circulation Anomaly Associated with Recent Arctic Winter Warm Anomalies. Journal of Climate, 2017, 30, 8469-8479.	3.2	43
69	Why Are Arctic Linkages to Extreme Weather Still up in the Air?. Bulletin of the American Meteorological Society, 2017, 98, 2551-2557.	3.3	102
70	Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9785-9790.	7.1	294
71	Erosion potential of the Yangtze Delta under sediment starvation and climate change. Scientific Reports, 2017, 7, 10535.	3.3	43
72	Northern Hemisphere Jet Stream Position Indices as Diagnostic Tools for Climate and Ecosystem Dynamics. Earth Interactions, 2017, 21, 1-23.	1.5	33
73	Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nature Geoscience, 2017, 10, 572-576.	12.9	54
74	Winter 2015/16: A Turning Point in ENSO-Based Seasonal Forecasts. Oceanography, 2017, 30, 82-89.	1.0	20

#	Article	IF	CITATIONS
75	Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environment International, 2018, 116, 136-146.	10.0	75
76	Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2. Advances in Atmospheric Sciences, 2018, 35, 14-26.	4.3	19
77	An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines. Energy, 2018, 154, 442-454.	8.8	21
78	Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate. Geophysical Research Letters, 2018, 45, 2805-2814.	4.0	11
79	Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theoretical and Applied Climatology, 2018, 132, 555-567.	2.8	52
80	Preface to the special issue: Towards improving understanding and prediction of Arctic change and its linkage with Eurasian mid-latitude weather and climate. Advances in Atmospheric Sciences, 2018, 35, 1-4.	4.3	6
81	Projected squeezing of the wintertime North-Atlantic jet. Environmental Research Letters, 2018, 13, 074016.	5.2	29
82	The "Warmâ€Arctic/Coldâ€continents―pattern during 1901–2010. International Journal of Climatology, 2018, 38, 5245-5254.	3.5	21
83	Is There a Link between Arctic Sea Ice Loss and Increasing Frequency of Extremely Cold Winters in Eurasia and North America? Synthesis of Current Research. Russian Meteorology and Hydrology, 2018, 43, 743-755.	1.3	12
84	The Linkage Between Arctic Sea Ice and Midlatitude Weather: In the Perspective of Energy. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,536.	3.3	31
85	An Analysis of Precipitation Extremes in the Inner Mongolian Plateau: Spatial-Temporal Patterns, Causes, and Implications. Atmosphere, 2018, 9, 322.	2.3	10
86	Economic growth and carbon emission in China: a spatial econometric Kuznets curve?. Zbornik Radova Ekonomskog Fakultet Au Rijeci, 2018, 36, 11-28.	0.3	6
87	Arctic-midlatitude weather linkages in North America. Polar Science, 2018, 16, 1-9.	1.2	30
88	A 4.5â€ [−] km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4. Geoscientific Model Development, 2018, 11, 1229-1255.	3.6	47
89	The Influence of Arctic Amplification on Mid-latitude Weather and Climate. Current Climate Change Reports, 2018, 4, 238-249.	8.6	59
90	Polarized Response of East Asian Winter Temperature Extremes in the Era of Arctic Warming. Journal of Climate, 2018, 31, 5543-5557.	3.2	49
91	Evidence for Predictive Skill of High‣atitude Climate Due to Midsummer Sea Ice Extent Anomalies. Geophysical Research Letters, 2018, 45, 9114-9122.	4.0	9
92	The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study. Atmosphere, 2018, 9, 33.	2.3	32

		CITATION REP	ORT	
#	Article		IF	Citations
93	Resolving Future Arctic/Midlatitude Weather Connections. Earth's Future, 2018, 6, 1146-1	152.	6.3	27
94	Temporal Trends and Spatial Patterns of Temperature and Its Extremes over the Beijing-Tian Source Region (1960–2014), China. Advances in Meteorology, 2018, 2018, 1-26.	njin Sand	1.6	2
95	Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their reclimate change in <scp>C</scp> hina. Land Degradation and Development, 2018, 29, 3489		3.9	42
96	Interdecadal variations in persistent anomalous cold events over Asian mid-latitudes. Clima Dynamics, 2019, 52, 3729-3739.	te	3.8	14
97	The role of horizontal thermal advection in regulating wintertime mean and extreme tempe over interior North America during the past and future. Climate Dynamics, 2019, 53, 6125-		3.8	5
98	Ural Blocking Driving Extreme Arctic Sea Ice Loss, Cold Eurasia, and Stratospheric Vortex W in Autumn and Early Winter 2016–2017. Journal of Geophysical Research D: Atmosphere 11313-11329.	Veakening s, 2019, 124,	3.3	54
99	Patterns and Mechanisms of Climate, Paleoclimate and Paleoenvironmental Changes from Low-Latitude Regions. Advances in Science, Technology and Innovation, 2019, , .		0.4	2
100	The Shift of the Atmospheric Circulation Patterns and Its Impacts on Western Mediterrane Advances in Science, Technology and Innovation, 2019, , 107-110.	an.	0.4	1
103	Earth's Climate System. , 2019, , 1-18.			0
104	Climate Analysis. , 2019, , 19-39.			0
105	Climate Analysis. , 2019, , 40-63.			0
106	Climate Variability. , 2019, , 64-103.			0
110	Ocean Climate Datasets. , 2019, , 168-188.			0
111	Cryosphere. , 2019, , 189-208.			0
112	Land Component of the Climate System. , 2019, , 209-233.			0
113	Climate Models as Information Sources and Analysis Tools. , 2019, , 234-249.			0
114	Operational Climate Monitoring and Prediction. , 2019, , 250-282.			0
121	Extreme Cold Wave over East Asia in January 2016: A Possible Response to the Larger Inter Atmospheric Variability Induced by Arctic Warming. Journal of Climate, 2019, 32, 1203-121	nal 16.	3.2	73

#	Article	IF	CITATIONS
122	The Arctic Climate Warming and Extremely Cold Winters in North Eurasia during 1979–2017. Russian Meteorology and Hydrology, 2019, 44, 223-230.	1.3	4
123	A hazard model of sub-freezing temperatures in the United Kingdom using vine copulas. Natural Hazards and Earth System Sciences, 2019, 19, 489-506.	3.6	1
124	How well do current climate models simulate the linkage between Arctic warming and extratropical cold winters?. Climate Dynamics, 2019, 53, 4005-4018.	3.8	8
125	Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos, 2019, 128, 1215-1242.	2.7	160
126	Role of Stochastic Atmospheric Forcing from the South and North Pacific in Tropical Pacific Decadal Variability. Journal of Climate, 2019, 32, 4013-4038.	3.2	15
127	How do CO2 emissions and efficiencies vary in Chinese cities? Spatial variation and driving factors in 2007. Science of the Total Environment, 2019, 675, 439-452.	8.0	30
128	Upper tropospheric Rossby wave packets: long-term trends and variability. Theoretical and Applied Climatology, 2019, 138, 527-540.	2.8	3
129	Characteristics of boreal winter cluster extreme events of low temperature during recent 35Âyears and its future projection under different RCP emission scenarios. Theoretical and Applied Climatology, 2019, 138, 569-579.	2.8	9
130	The short-term effects of cold spells on pediatric outpatient admission for allergic rhinitis in Hefei, China. Science of the Total Environment, 2019, 664, 374-380.	8.0	18
131	The plant microbiome as a resource to increase crop productivity and soil resilience: A systems approach. Journal of the Cameroon Academy of Sciences, 2019, 14, 181.	0.3	6
132	Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE, 2019, 14, e0226399.	2.5	15
133	Influence of Wintertime Polar Vortex Variation on the Climate over the North Pacific during Late Winter and Spring. Atmosphere, 2019, 10, 670.	2.3	10
134	Estimating Contributions of Sea Ice and Land Snow to Climate Feedback. Journal of Geophysical Research D: Atmospheres, 2019, 124, 199-208.	3.3	13
135	The urgency of Arctic change. Polar Science, 2019, 21, 6-13.	1.2	247
136	Impact of sea ice decline in the Arctic Ocean on the number of extreme lowâ€ŧemperature days over China. International Journal of Climatology, 2020, 40, 1421-1434.	3.5	6
137	Interannual Variability of North American Winter Temperature Extremes and Its Associated Circulation Anomalies in Observations and CMIP5 Simulations. Journal of Climate, 2020, 33, 847-865.	3.2	12
138	Vegetation and climate zones based carbon use efficiency variation and the main determinants analysis in China. Ecological Indicators, 2020, 111, 105967.	6.3	18
139	Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 2020, 10, 20-29.	18.8	424

#	Article	IF	Citations
	Contribution of SST change to multidecadal global and continental surface air temperature trends		
140	between 1910 and 2013. Climate Dynamics, 2020, 54, 1295-1313.	3.8	4
141	The synergy between climate change and transportation activities drives the propagation of an invasive fruit fly. Journal of Pest Science, 2020, 93, 615-625.	3.7	6
142	Opposing Trends of Winter Cold Extremes over Eastern Eurasia and North America under Recent Arctic Warming. Advances in Atmospheric Sciences, 2020, 37, 1417-1434.	4.3	13
143	Prediction of Droughts in the Mongolian Plateau Based on the CMIP5 Model. Water (Switzerland), 2020, 12, 2774.	2.7	9
144	Decreases in days with sudden day-to-day temperature change in the warming world. Global and Planetary Change, 2020, 192, 103239.	3.5	6
145	Recent Advances and Challenges of Electrocatalytic N ₂ Reduction to Ammonia. Chemical Reviews, 2020, 120, 5437-5516.	47.7	718
146	Storm Track Changes in the Middle East and North Africa Under Stratospheric Aerosol Geoengineering. Geophysical Research Letters, 2020, 47, e2020GL086954.	4.0	11
147	Fighting Fusarium Pathogens in the Era of Climate Change: A Conceptual Approach. Pathogens, 2020, 9, 419.	2.8	33
148	Modeling coastal flood risk and adaptation response under future climate conditions. Climate Risk Management, 2020, 29, 100233.	3.2	22
150	Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances, 2020, 6, eaay2880.	10.3	118
151	Influence of Arctic sea-ice variability on Pacific trade winds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2824-2834.	7.1	15
152	Differing mechanisms for the 2008 and 2016 wintertime cold events in southern China. International Journal of Climatology, 2020, 40, 4944-4955.	3.5	12
153	Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 2020, 395, 124139.	12.7	12
154	Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena, 2020, 189, 104474.	5.0	90
155	An Observational Estimate of the Direct Response of the Cold-Season Atmospheric Circulation to the Arctic Sea Ice Loss. Journal of Climate, 2020, 33, 3863-3882.	3.2	12
156	Atmospheric circulation regime causing winter temperature whiplash events in North China. International Journal of Climatology, 2021, 41, 917-933.	3.5	11
157	Temperature annual cycle variations and responses to surface solar radiation in China between 1960 and 2016. International Journal of Climatology, 2021, 41, E2959.	3.5	11
158	Hypothermal stress-induced salinity-dependent oxidative stress and apoptosis in the livers of euryhaline milkfish, Chanos chanos. Aquaculture, 2021, 534, 736280.	3.5	15

ARTICLE IF CITATIONS # The enhanced aerosol deposition by bipolar corona discharge arrays. Plasma Science and Technology, 159 1.5 6 2021, 23, 064010. Nine Maxims for the Ecology of Cold-Climate Winters. BioScience, 2021, 71, 820-830. 34 Extreme winter weather disrupts bird occurrence and abundance patterns at geographic scales. 161 4.5 18 Ecography, 2021, 44, 1143-1155. Linking warm Arctic winters, Rossby waves and Cold Spells: an idealized numerical study. Journals of the Atmospheric Sciences, 2021, , . Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. 163 9.1 157 Earth-Science Reviews, 2021, 217, 103625. Spatial, Phenological, and Inter-Annual Variations of Gross Primary Productivity in the Arctic from 164 4.0 2001 to 2019. Remote Sensing, 2021, 13, 2875. 165 The Nansen Legacy. The Nansen Legacy Report Series, 2021, , . 0.6 0 Nonlinear changes in cold spell and heat wave arising from Arctic sea-ice loss. Advances in Climate 5.1 166 Change Research, 2021, 12, 553-562. Analysis of Spatiotemporal Variability in Extreme Climate and Potential Driving Factors on the Yunnan 167 2.3 7 Plateau (Southwest China) during 1960–2019. Atmosphere, 2021, 12, 1136. Linking Arctic variability and change with extreme winter weather in the United States. Science, 2021, 12.6 145 373, 1116-1121. Climate warming promotes pesticide resistance through expanding overwintering range of a global 169 12.8 69 pest. Nature Communications, 2021, 12, 5351. Communicating Arctic-midlatitude weather and ecosystem connections: direct observations and 170 5.2 sources of intermittency. Environmental Research Letters, 2021, 16, 105006. Factors Responsible for the Increase of Winter Low Temperature Extremes from the Mid-1990s to the 171 1.5 0 Early 2010s in Northern China. Journal of Applied Meteorology and Climatology, 2021, 60, 1207-1218. Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophysical Research Letters, 2014, 41, 5223-5232. 29 Indian Ocean Variability and Interactions., 2020, , 153-185. 174 2 Northern Hemisphere Winter Air Temperature Patterns and Their Associated Atmospheric and Ocean 3.2 Conditions. Journal of Climate, 2020, 33, 6165-6186. Severe Cold Winter in North America Linked to Bering Sea Ice Loss. Journal of Climate, 2020, 33, 176 3.28 8069-8085. Cold Winter Over North America: The Influence of the East Atlantic (EA) and the Tropical/Northern 177 Hemisphere (TNH) Teleconnection Patterns. The Open Atmospheric Science Journal, 2016, 10, 6-13.

#	Article	IF	CITATIONS
179	Functional responses to climate change may increase invasive potential of <i>Carpobrotus edulis</i> . American Journal of Botany, 2021, 108, 1902-1916.	1.7	7
180	Atmospheric Wind Biases: A Challenge for Simulating the Arctic Ocean in Coupled Models?. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017565.	2.6	7
181	Is summer sea surface temperature over the Arctic Ocean connected to winter air temperature over North America?. Climate Research, 2016, 70, 19-27.	1.1	0
183	Current and Projected Sea Ice in the Arctic in the Twenty-First Century. Springer Polar Sciences, 2020, , 399-463.	0.1	4
185	Variability of the Oceans. , 2020, , 1-53.		2
186	Teleconnections in the Atmosphere. , 2020, , 54-88.		2
187	Atmosphere–Ocean Interactions. , 2020, , 89-119.		2
188	Interacting Interannual Variability of the Pacific and Atlantic Oceans. , 2020, , 120-152.		2
189	The Arctic Mediterranean. , 2020, , 186-215.		1
190	Combined Oceanic Influences on Continental Climates. , 2020, , 216-257.		2
191	Basin Interactions and Predictability. , 2020, , 258-292.		3
192	Climate Change and Impacts on Variability and Interactions. , 2020, , 293-337.		0
194	Delayed Impacts of Arctic Seaâ€lce Loss on Eurasian Severe Cold Winters. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035286.	3.3	4
195	Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions. Climate Dynamics, 2022, 58, 3261-3277.	3.8	15
196	Baroclinic instability and largeâ€scale wave propagation in a planetaryâ€scale atmosphere. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 809-825.	2.7	8
197	Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Global Ecology and Conservation, 2022, 34, e02021.	2.1	6
198	Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications, 2022, 13, 727.	12.8	67
199	Interannual Variability of the Warm Arctic–Cold North American Pattern. Journal of Climate, 2022, 35, 4277-4290.	3.2	4

#	Article	IF	CITATIONS
200	A global comprehensive analysis of ambient low temperature and non-communicable diseases burden during 1990–2019. Environmental Science and Pollution Research, 2022, 29, 66136-66147.	5.3	7
201	What's in a Name? On the Use and Significance of the Term "Polar Vortexâ€: Geophysical Research Letters, 2022, 49, .	4.0	7
202	Weakening of Indian Summer Monsoon Synoptic Activity in Response to Polar Sea Ice Melt Induced by Albedo Reduction in a Climate Model. Earth and Space Science, 0, , .	2.6	2
203	Impact of extreme climates on vegetation from multiple scales and perspectives in the Agro-pastural Transitional Zone of Northern China in the past three decades. Journal of Cleaner Production, 2022, 372, 133459.	9.3	13
204	Has Arctic sea ice loss contributed to weakening winter and strengthening summer polar front jets over the Eastern Hemisphere?. Climate Dynamics, 2023, 60, 2819-2846.	3.8	2
205	Cold-Eurasia contributes to arctic warm anomalies. Climate Dynamics, 2023, 60, 4157-4172.	3.8	7
206	Editorial: Avian behavioral and physiological responses to challenging thermal environments and extreme weather events. Frontiers in Ecology and Evolution, 0, 10, .	2.2	0
207	Data assimilation in a regional high-resolution ocean model by using Ensemble Adjustment Kalman Filter and its application during 2020 cold spell event over Asia-Pacific region. Applied Ocean Research, 2022, 129, 103375.	4.1	2
208	Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling. Weather and Climate Dynamics, 2023, 4, 95-114.	3.5	9
209	CO ₂ Aggregation on Monoethanolamine: Observations from Rotational Spectroscopy. Angewandte Chemie, 2023, 135, .	2.0	1
210	CO2 Aggregation on Monoethanolamine: Observation from Rotational Spectroscopy. Angewandte Chemie - International Edition, 0, , .	13.8	2
211	Arctic Sea Ice Loss Weakens Northern Hemisphere Summertime Storminess but Not Until the Late 21st Century. Geophysical Research Letters, 2023, 50, .	4.0	2
212	Significant weakening effects of Arctic sea ice loss on the summer western hemisphere polar jet stream and troposphere vertical wind shear. Climate Dynamics, 2023, 61, 4491-4513.	3.8	1
213	Exploring the impact of explicit and implicit urban form on carbon emissions: Evidence from Beijing, China. Ecological Indicators, 2023, 154, 110558.	6.3	5
214	The performance of CMIP6 models in describing the temperature annual cycle in China from 1961 to 2014. Theoretical and Applied Climatology, 0, , .	2.8	0
215	Alpine burrow-sharing mammals and birds show similar population-level climate change risks. Nature Climate Change, 0, , .	18.8	1
216	Understanding the physical processes in the evolution of a cold air outbreak over China in late November 2022 from a Lagrangian perspective. Advances in Climate Change Research, 2023, 14, 681-690.	5.1	0
217	Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China. Land, 2023, 12, 1806.	2.9	0

#	Article	IF	CITATIONS
218	Evaluation of Probabilistic Forecasts of Extreme Cold Events in S2S Models. Water (Switzerland), 2023, 15, 2795.	2.7	0
219	Molecular mechanisms of drought resistance using genome-wide association mapping in maize (Zea) Tj ETQq1 1	0.784314	rgBT /Over
221	Spatio-temporal Variation Characteristics of Extreme Climate Events and Their Teleconnections to Large-scale Ocean-atmospheric Circulation Patterns in Huaihe River Basin, China During 1959–2019. Chinese Geographical Science, 0, , .	3.0	0
222	The Advances, Challenges, and Perspectives on Electrocatalytic Reduction of Nitrogenous Substances to Ammonia: A Review. Materials, 2023, 16, 7647.	2.9	0
223	Analysis of spatial-temporal trends and causes of vapor pressure deficit in China from 1961 to 2020. Atmospheric Research, 2024, 299, 107199.	4.1	1
225	Cold Air Outbreaks in Winter over the Continental United States and Its Possible Linkage with Arctic Sea Ice Loss. Atmosphere, 2024, 15, 63.	2.3	0
227	Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	0
228	Projected Emergence Seasons of Yearâ€Maximum Nearâ€Surface Wind Speed. Geophysical Research Letters, 2024, 51, .	4.0	0
229	Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China. Remote Sensing, 2024, 16, 528.	4.0	0
230	Evolving winter atmospheric teleconnection patterns and their potential triggers across western North America. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	0
231	Differences in spatial niche of terrestrial mammals when facing extreme snowfall: the case in east Asian forests. Frontiers in Zoology, 2024, 21, .	2.0	0