State-of-the-art materials for ultrasound-triggered drug

Advanced Drug Delivery Reviews 72, 3-14

DOI: 10.1016/j.addr.2013.12.010

Citation Report

#	Article	IF	CITATIONS
1	Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier. International Journal of Nanomedicine, 2014, 9, 4899.	3.3	18
3	Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.	1.6	37
4	A Novel Chitosan Microbubble as Ultrasound-Triggered Drug Carrier for Antitumor <i>In Vitro</i> . Key Engineering Materials, 0, 636, 139-143.	0.4	0
5	Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine, 2014, 9, 1499-1515.	1.7	39
6	Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 12320-12364.	7.2	1,447
7	Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Advanced Drug Delivery Reviews, 2014, 76, 39-59.	6.6	77
8	Nanoparticle‣oaded Protein–Polymer Nanodroplets for Improved Stability and Conversion Efficiency in Ultrasound Imaging and Drug Delivery. Advanced Materials, 2015, 27, 5484-5492.	11.1	122
9	Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. International Journal of Nanomedicine, 2016, 11, 69.	3.3	30
10	Lipid-Based Nanoparticles and Microbubbles – Multifunctional Lipid-Based Biocompatible Particles for in vivo Imaging and Theranostics. , 2015, , .		6
11	Sonochemotherapy: from bench to bedside. Frontiers in Pharmacology, 2015, 6, 138.	1.6	84
11	Sonochemotherapy: from bench to bedside. Frontiers in Pharmacology, 2015, 6, 138. Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196.	0.8	84
12	Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196. Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency. Colloids and Surfaces B: Biointerfaces,	0.8	8
12	Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196. Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency. Colloids and Surfaces B: Biointerfaces, 2015, 131, 12-20. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.	0.8	8
12 13	Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196. Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency. Colloids and Surfaces B: Biointerfaces, 2015, 131, 12-20. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307.	0.8	8 18 1,497
12 13 14	Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196. Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency. Colloids and Surfaces B: Biointerfaces, 2015, 131, 12-20. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307. Lipid-Coated Nanodrops and Microbubbles., 2015, , 1-26. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews:	0.8 2.5 23.0	8 18 1,497 2
12 13 14 15	Year in Review 2014: Aerosol Delivery Devices. Respiratory Care, 2015, 60, 1190-1196. Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency. Colloids and Surfaces B: Biointerfaces, 2015, 131, 12-20. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307. Lipid-Coated Nanodrops and Microbubbles. , 2015, , 1-26. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 691-707. Therapeutic efficacy of doxorubicin delivery by a CO2 generating liposomal platform in breast	0.8 2.5 23.0	8 18 1,497 2 198

#	Article	IF	Citations
20	Fluorocarbon Nanodrops as Acoustic Temperature Probes. Langmuir, 2015, 31, 10656-10663.	1.6	26
21	A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution. ACS Applied Materials & Interfaces, 2015, 7, 26579-26584.	4.0	35
22	Ultrasound and microbubble mediated drug delivery: Acoustic pressure as determinant for uptake via membrane pores or endocytosis. Journal of Controlled Release, 2015, 197, 20-28.	4.8	220
23	The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. Journal of Drug Targeting, 2015, 23, 16-42.	2.1	79
24	Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies. Nanoscale, 2015, 7, 3817-3837.	2.8	65
25	Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis. Medical Science Monitor, 2016, 22, 3713-3721.	0.5	7
26	Stimuli-responsive Drug Delivery Nanosystems: From Bench to Clinic. Current Nanomedicine, 2016, 6, 166-185.	0.2	17
27	Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles – A Synergistic Effect between Surfactant Molecules and Nanoparticles. Journal of Oleo Science, 2016, 65, 369-376.	0.6	0
28	Elastin‣ike Peptides (ELPs) – Building Blocks for Stimuliâ€Responsive Selfâ€Assembled Materials. Israel Journal of Chemistry, 2016, 56, 581-589.	1.0	16
29	What is the role of curvature on the properties of nanomaterials for biomedical applications?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 334-354.	3.3	33
30	Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. Chemical Record, 2016, 16, 1398-1435.	2.9	158
31	Design of a Novel Composite H ₂ Sâ€Releasing Hydrogel for Cardiac Tissue Repair. Macromolecular Bioscience, 2016, 16, 847-858.	2.1	49
32	Emerging hydrogel designs for controlled protein delivery. Biomaterials Science, 2016, 4, 1184-1192.	2.6	39
33	End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates. Macromolecules, 2016, 49, 9309-9319.	2.2	51
34	Phase behavior of mixed lipid monolayers on perfluorocarbon nanoemulsions and its effect on acoustic contrast. RSC Advances, 2016, 6, 111318-111325.	1.7	24
35	The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Expert Opinion on Drug Delivery, 2016, 13, 1383-1396.	2.4	25
36	Facile preparation and evaluation of allylamine hydrochloride-based porous hydrogel without calcium and aluminum: an alternative candidate of phosphate binder. Polymer Bulletin, 2016, 73, 3371-3384.	1.7	1
37	Incorporation of negatively charged iron oxide nanoparticles in the shell of anionic surfactant-stabilized microbubbles: The effect of NaCl concentration. Journal of Colloid and Interface Science, 2016, 472, 180-186.	5.0	3

3

#	Article	IF	CITATIONS
38	Controlled actuation of therapeutic nanoparticles: an update on recent progress. Therapeutic Delivery, 2016, 7, 335-352.	1.2	15
39	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
40	Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Advances, 2016, 6, 92073-92091.	1.7	50
41	Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angewandte Chemie, 2016, 128, 10419-10423.	1.6	10
42	Lipid-Coated Nanodrops and Microbubbles. , 2016, , 1075-1100.		7
43	Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angewandte Chemie - International Edition, 2016, 55, 10263-10267.	7.2	24
44	Role of mechanical factors in applications of stimuli-responsive polymer gels – Status and prospects. Polymer, 2016, 101, 415-449.	1.8	33
45	Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. European Journal of Pharmaceutical Sciences, 2016, 93, 147-162.	1.9	50
46	Micro/Nanoparticleâ€Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016, 28, 8097-8129.	11.1	607
47	Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. Langmuir, 2016, 32, 12461-12467.	1.6	29
48	Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. Drug Discovery Today: Technologies, 2016, 20, 41-48.	4.0	120
49	Nanobubbles: a promising efficienft tool for therapeutic delivery. Therapeutic Delivery, 2016, 7, 117-138.	1.2	120
50	Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 2016, 45, 1457-1501.	18.7	1,152
51	Near-infrared light-triggered thermochemotherapy of cancer using a polymer–gold nanorod conjugate. Nanotechnology, 2016, 27, 175102.	1.3	20
52	Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 2016, 4, 803-813.	2.6	87
53	Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20–40ÂMHz Frequency Range. Ultrasound in Medicine and Biology, 2016, 42, 795-807.	0.7	29
54	Functional nanomaterials for near-infrared-triggered cancer therapy. Biomaterials Science, 2016, 4, 890-909.	2.6	135
55	Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnology Reviews, 2016, 5, .	2.6	70

#	ARTICLE	IF	CITATIONS
56	Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials, 2016, 83, 294-307.	5.7	89
57	Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. Journal of Controlled Release, 2016, 223, 11-21.	4.8	32
58	Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 2016, 116, 2023-2078.	23.0	254
59	Ultrasound-Mediated Polymeric Micelle Drug Delivery. Advances in Experimental Medicine and Biology, 2016, 880, 365-384.	0.8	62
60	Sonoporation: Applications for Cancer Therapy. Advances in Experimental Medicine and Biology, 2016, 880, 263-291.	0.8	43
61	Ultrasound as a cancer chemotherapy sensitizer: the gap between laboratory and bedside. Expert Opinion on Drug Delivery, 2016, 13, 37-47.	2.4	21
62	Recent advances in light-responsive on-demand drug-delivery systems. Therapeutic Delivery, 2017, 8, 89-107.	1.2	168
63	Theranostic Multilayer Capsules for Ultrasound Imaging and Guided Drug Delivery. ACS Nano, 2017, 11, 3135-3146.	7.3	88
64	Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Materials Science and Engineering C, 2017, 77, 698-707.	3.8	38
65	The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Delivery, 2017, 24, 320-327.	2.5	25
66	External triggering and triggered targeting strategies for drug delivery. Nature Reviews Materials, 2017, 2, .	23.3	290
67	Core–shell drug carriers: liposomes, polymersomes, and niosomes. , 2017, , 63-105.		10
68	Ultrasound induced strain cytoskeleton rearrangement: An experimental and simulation study. Journal of Biomechanics, 2017, 60, 39-47.	0.9	34
69	Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials, 2017, 139, 187-194.	5.7	58
70	Next generation ultrasound platforms for theranostics. Journal of Colloid and Interface Science, 2017, 491, 151-160.	5.0	26
71	Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B, 2017, 5, 1339-1352.	2.9	87
72	Materials Chemistry of Nanoultrasonic Biomedicine. Advanced Materials, 2017, 29, 1604105.	11,1	76
73	Spiral computed tomography evaluation of rabbit VX2 hepatic tumors treated with 20 kHz ultrasound and microbubbles. Oncology Letters, 2017, 14, 3124-3130.	0.8	6

#	ARTICLE	IF	Citations
74	Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound. Annals of Biomedical Engineering, 2017, 45, 2879-2887.	1.3	11
75	Ultrasound-induced mild hyperthermia improves the anticancer efficacy of both Taxol® and paclitaxel-loaded nanocapsules. Journal of Controlled Release, 2017, 264, 219-227.	4.8	36
76	Ultrasound-triggered local anaesthesia. Nature Biomedical Engineering, 2017, 1, 644-653.	11.6	105
77	Ultrasound-Responsive Polymeric Micelles for Sonoporation-Assisted Site-Specific Therapeutic Action. ACS Applied Materials & ACS ACS Applied Materials & ACS	4.0	90
78	Construction of Silicaâ€Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700646.	3.9	51
79	Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes. Soft Matter, 2017, 13, 8796-8806.	1.2	10
80	Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2159-2168.	1.7	102
81	Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 2017, 142, 13-30.	5.7	120
82	Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced Drug Delivery Reviews, 2017, 108, 68-82.	6.6	84
83	Polymer-Based Materials in Cancer Treatment: From Therapeutic Carrier and Ultrasound Contrast Agent to Theranostic Applications. Ultrasound in Medicine and Biology, 2017, 43, 69-82.	0.7	12
84	Influence of tumor cell lines derived from different tissue on sonoporation efficiency under ultrasound microbubble treatment. Ultrasonics Sonochemistry, 2017, 38, 598-603.	3.8	27
85	Lowering of acoustic droplet vaporization threshold via aggregation. Applied Physics Letters, 2017, 111 ,	1.5	9
86	Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound. Theranostics, 2017, 7, 144-152.	4.6	79
87	Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes. Contrast Media and Molecular Imaging, 2017, 2017, 1-11.	0.4	45
88	4.35 Ordered Mesoporous Silica Materials â~†., 2017, , 644-685.		9
89	Ultrasound-guided drug delivery in cancer. Ultrasonography, 2017, 36, 171-184.	1.0	143
90	Ultrasound-responsive nanosystems. , 2017, , 191-218.		0
91	Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy. Gels Horizons: From Science To Smart Materials, 2018, , 27-54.	0.3	2

#	Article	IF	CITATIONS
92	Perspectives on cavitation enhanced endothelial layer permeability. Colloids and Surfaces B: Biointerfaces, 2018, 168, 83-93.	2.5	39
93	Nanocomposite thin films for triggerable drug delivery. Expert Opinion on Drug Delivery, 2018, 15, 509-522.	2.4	15
94	Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound. ACS Applied Materials & Amp; Interfaces, 2018, 10, 9949-9956.	4.0	52
95	Dynamics of the phospholipid shell of microbubbles: a fluorescence photoselection and spectral phasor approach. Chemical Communications, 2018, 54, 4854-4857.	2.2	13
96	Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Science China Life Sciences, 2018, 61, 415-426.	2.3	191
97	Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discovery Today, 2018, 23, 992-1006.	3.2	66
98	From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2785-2794.	2.9	32
99	Nanoparticles Conjugated with Photocleavable Linkers for the Intracellular Delivery of Biomolecules. Bioconjugate Chemistry, 2018, 29, 1485-1489.	1.8	12
100	Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer. International Journal of Pharmaceutics, 2018, 540, 50-56.	2.6	30
101	Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angewandte Chemie, 2018, 130, 1285-1290.	1.6	6
102	Photoresponsive Drug/Gene Delivery Systems. Biomacromolecules, 2018, 19, 1840-1857.	2.6	95
103	Vesicle-based drug carriers. , 2018, , 1-55.		5
104	Ultrasound-enhanced delivery of doxorubicin/all-trans retinoic acid-loaded nanodiamonds into tumors. Nanomedicine, 2018, 13, 981-996.	1.7	19
105	Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2018, 7, 95-122.	2.6	105
106	Fabrication of Eudragit polymeric nanoparticles using ultrasonic nebulization method for enhanced oral absorption of megestrol acetate. Pharmaceutical Development and Technology, 2018, 23, 407-413.	1.1	1
107	Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angewandte Chemie - International Edition, 2018, 57, 1271-1276.	7.2	24
108	Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chemical Engineering Journal, 2018, 340, 2-8.	6.6	77
109	Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems. International Journal of Biological Macromolecules, 2018, 108, 960-971.	3.6	57

#	Article	IF	CITATIONS
110	Breaking free from vascular confinement: status and prospects for submicron ultrasound contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1502.	3.3	27
111	Star-shaped self-assembled micelles of block copolymer [chitosan-co-poly(ethylene glycol) methyl ether methacrylate] hydrogel for hydrophobic drug delivery. Polymer Bulletin, 2018, 75, 2243-2264.	1.7	6
112	Indocyanine green conjugated lipid microbubbles as an ultrasound-responsive drug delivery system for dual-imaging guided tumor-targeted therapy. RSC Advances, 2018, 8, 33198-33207.	1.7	9
113	Theranostic nanosystems for targeted cancer therapy. Nano Today, 2018, 23, 59-72.	6.2	86
114	A Magnetic Gated Nanofluidic Based on the Integration of a Superhydrophilic Nanochannels and a Reconfigurable Ferrofluid. Advanced Materials, 2019, 31, e1805953.	11.1	34
115	Microbubble-Mediated Delivery for Cancer Therapy. Fluids, 2018, 3, 74.	0.8	10
116	Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir, 2018, 34, 12428-12435.	1.6	79
117	Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice. Oncotarget, 2018, 9, 4897-4914.	0.8	37
118	Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials, 2018, 11, 2041.	1.3	28
119	Controlled Release With Emphasis on Ultrasound-Induced Release. The Enzymes, 2018, 43, 101-122.	0.7	9
120	Ultrasound-Responsive Nanoparticulate for Selective Amplification of Chemotherapeutic Potency for Ablation of Solid Tumors. Bioconjugate Chemistry, 2018, 29, 3467-3475.	1.8	8
121	Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging. Nanotechnology, 2018, 29, 505103.	1.3	29
122	Multifunctional and Stimuliâ€Responsive Magnetic Nanoparticleâ€Based Delivery Systems for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800011.	1.6	71
123	Polymerâ€Brushâ€Grafted Mesoporous Silica Nanoparticles for Triggered Drug Delivery. ChemPhysChem, 2018, 19, 1956-1964.	1.0	54
124	High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagnostic and Interventional Imaging, 2018, 99, 349-359.	1.8	149
125	Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects. Biomicrofluidics, 2018, 12, 034109.	1.2	18
126	Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Advances in Cancer Research, 2018, 139, 57-84.	1.9	67
127	Ultrasoundâ€Triggered Delivery of Anticancer Therapeutics from MRIâ€Visible Multilayer Microcapsules. Advanced Therapeutics, 2018, 1, 1800051.	1.6	30

#	Article	IF	CITATIONS
128	Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Scientific Reports, 2018, 8, 9893.	1.6	36
129	A Combined Magneticâ€Acoustic Device for Simultaneous, Coaligned Application of Magnetic and Ultrasonic Fields. Advanced Materials Technologies, 2018, 3, 1800081.	3.0	4
130	Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. Journal of Controlled Release, 2018, 286, 358-368.	4.8	71
131	Microparticle manipulation using femtosecond photonic nanojet-assisted laser cavitation. Optics Letters, 2018, 43, 1858.	1.7	12
132	Polymeric Gels: Vehicles for Enhanced Drug Delivery Across Skin. Gels Horizons: From Science To Smart Materials, 2018, , 343-375.	0.3	1
133	Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled <i>In Situ</i>	4.6	57
134	Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 2018, 23, 47.	1.7	338
135	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	11.1	93
136	Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics. Accounts of Chemical Research, 2019, 52, 2427-2434.	7.6	40
137	ROSâ€Responsive Blended Nanoparticles: Cascadeâ€Amplifying Synergistic Effects of Sonochemotherapy with Onâ€demand Boosted Drug Release During SDT Process. Advanced Healthcare Materials, 2019, 8, e1900720.	3.9	36
138	Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles. Journal of Pharmaceutical Sciences, 2019, 108, 3091-3098.	1.6	52
139	Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. Langmuir, 2019, 35, 10977-10986.	1.6	11
140	Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics, 2019, 9, 5261-5281.	4.6	106
141	NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules, 2019, 20, 4218-4229.	2.6	33
142	A Responsive Mesoporous Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. Journal of the American Chemical Society, 2019, 141, 17670-17684.	6.6	71
143	Evaluation of the Theranostic Potential of Perfluorohexane-Based Acoustic Nanodroplets. Biological and Pharmaceutical Bulletin, 2019, 42, 2038-2044.	0.6	3
144	Cold plasma gas loaded microbubbles as a novel ultrasound contrast agent. Nanoscale, 2019, 11, 1123-1130.	2.8	24
145	Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 2019, 55, 2731-2740.	2.2	68

#	Article	IF	CITATIONS
146	Ultrasound Reversible Response Nanocarrier Based on Sodium Alginate Modified Mesoporous Silica Nanoparticles. Frontiers in Chemistry, 2019, 7, 59.	1.8	28
147	Pharmaceutical and Biomedical Applications of Polymers. , 2019, , 203-267.		25
148	Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Transactions, 2019, 48, 9490-9515.	1.6	159
149	Bioinspired Smart Nanosystems in Advanced Therapeutic Applications. Pharmaceutical Nanotechnology, 2019, 7, 246-256.	0.6	6
150	High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10214-10222.	3.3	57
151	Concurrent Osteosarcoma Theranostic Strategy Using Contrast-Enhanced Ultrasound and Drug-Loaded Bubbles. Pharmaceutics, 2019, 11, 223.	2.0	16
152	Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics, 2019, 9, 2572-2594.	4.6	42
153	Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics. Science Bulletin, 2019, 64, 679-689.	4.3	11
154	Biomedical applications of acoustically responsive phase shift nanodroplets: Current status and future directions. Ultrasonics Sonochemistry, 2019, 56, 37-45.	3.8	52
155	Drug delivery to the brain. , 2019, , 461-514.		9
156	Programming Stimuli-Responsive Behavior into Biomaterials. Annual Review of Biomedical Engineering, 2019, 21, 241-265.	5.7	100
157	External Field Assisted Freeze Casting. Ceramics, 2019, 2, 208-234.	1.0	34
158	GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics, 2019, 9, 1047-1065.	4.6	62
159	Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations. Acta Biomaterialia, 2019, 93, 12-24.	4.1	30
160	Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Frontiers in Bioengineering and Biotechnology, 2019, 7, 324.	2.0	126
161	Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Research, 2019, 12, 115-119.	5.8	54
162	Fluorocarbon Exposure Mode Markedly Affects Phospholipid Monolayer Behavior at the Gas/Liquid Interface: Impact on Size and Stability of Microbubbles. Langmuir, 2019, 35, 10025-10033.	1.6	14
163	Current developments in drug delivery with thermosensitive liposomes. Asian Journal of Pharmaceutical Sciences, 2019, 14, 365-379.	4.3	45

#	Article	IF	CITATIONS
164	Ultrasound triggered phase-change nanodroplets for doxorubicin prodrug delivery and ultrasound diagnosis: An in vitro study. Colloids and Surfaces B: Biointerfaces, 2019, 174, 416-425.	2.5	32
165	pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. International Journal of Pharmaceutics, 2019, 556, 226-235.	2.6	22
166	Long-term physical evolution of an elastomeric ultrasound contrast microbubble. Journal of Colloid and Interface Science, 2019, 540, 185-196.	5.0	16
167	Acoustic disruption of tumor endothelium and on-demand drug delivery for cancer chemotherapy. Nanotechnology, 2019, 30, 154001.	1.3	19
168	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Advanced Drug Delivery Reviews, 2019, 138, 259-275.	6.6	146
169	Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Annals of Biomedical Engineering, 2019, 47, 39-59.	1.3	37
170	Photoactive Nanocarriers for Controlled Delivery. Advanced Functional Materials, 2020, 30, 1903896.	7.8	38
171	Ultrasoundâ€Triggered Enzymatic Gelation. Advanced Materials, 2020, 32, e1905914.	11.1	38
172	Acoustic Parameters for Optimal Ultrasound-Triggered Release from Novel Spinal Hardware Devices. Ultrasound in Medicine and Biology, 2020, 46, 350-358.	0.7	4
173	Ultrasound-Activated Nanomaterials for Therapeutics. Bulletin of the Chemical Society of Japan, 2020, 93, 220-229.	2.0	32
174	Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10, 462-483.	4.6	154
175	Stimuli-Responsive Insulin Delivery Devices. Pharmaceutical Research, 2020, 37, 202.	1.7	4
176	Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discovery Today, 2020, 25, 2182-2200.	3.2	30
177	Strategies for altering lipid self-assembly to trigger liposome cargo release. Chemistry and Physics of Lipids, 2020, 232, 104966.	1.5	18
178	<p>Ultrasound Combined with Core Cross-Linked Nanosystem for Enhancing Penetration of Doxorubicin Prodrug/Beta-Lapachone into Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 4825-4845.	3.3	15
179	Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomaterials Science and Engineering, 2020, 6, 4731-4747.	2.6	64
180	Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 2020, 327, 316-349.	4.8	236
181	<p>Bifunctional Therapeutic Application of Low-Frequency Ultrasound Associated with Zinc Phthalocyanine-Loaded Micelles</p> . International Journal of Nanomedicine, 2020, Volume 15, 8075-8095.	3.3	21

#	Article	IF	CITATIONS
182	On-Demand and Long-Term Drug Delivery from Degradable Nanocapsules. ACS Applied Bio Materials, 2020, 3, 7369-7375.	2.3	5
183	Clinical and Microbiological Effects of Weekly Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide and Formation of Cavitation Bubbles in Gingival Tissues after This Irrigation: A Six-Month Randomized Clinical Trial. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	O
184	Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine, 2020, 15, 2171-2200.	1.7	29
185	Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromolecular Bioscience, 2020, 20, e2000173.	2.1	5
186	Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir, 2020, 36, 11429-11441.	1.6	15
187	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	7.8	148
188	Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Materials Today Bio, 2020, 6, 100055.	2.6	32
189	Sonodynamic Therapy of Mice Breast Adenocarcinoma with HP-MSN. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 651-660.	0.7	2
190	Ultrasound-induced deformation of PLGA-microPlates for on-command drug release. Microelectronic Engineering, 2020, 229, 111360.	1.1	12
191	Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. Journal of Controlled Release, 2020, 326, 75-90.	4.8	129
192	Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading. International Journal of Pharmaceutics, 2020, 585, 119559.	2.6	50
193	Physical triggering strategies for drug delivery. Advanced Drug Delivery Reviews, 2020, 158, 36-62.	6.6	55
194	Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics, 2020, 12, 527.	2.0	40
195	Antitumor effect of VEGFR2-targeted microbubble destruction with gemcitabine using an endoscopic ultrasound probe: In vivo mouse pancreatic ductal adenocarcinoma model. Hepatobiliary and Pancreatic Diseases International, 2020, 19, 478-485.	0.6	2
196	Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS Applied Materials & Direction 12, 15810-15822.	4.0	13
197	Sonoselective transfection of cerebral vasculature without blood–brain barrier disruption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5644-5654.	3.3	41
198	Polymer scaffolds as drug delivery systems. European Polymer Journal, 2020, 129, 109621.	2.6	159
199	Manipulation of Nanodroplets via a Nonuniform Focused Acoustic Vortex. Physical Review Applied, 2020, 13, .	1.5	17

#	Article	IF	CITATIONS
200	Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42, 100341.	5.6	33
201	Smart Nanomaterials for Tumor Targeted Hyperthermia. , 2020, , 43-59.		4
202	Ultrasound-Responsive Materials for Drug/Gene Delivery. Frontiers in Pharmacology, 2019, 10, 1650.	1.6	65
203	Rotatable Aggregationâ€Inducedâ€Emission/Aggregationâ€Causedâ€Quenching Ratio Strategy for Realâ€Time Tracking Nanoparticle Dynamics. Advanced Functional Materials, 2020, 30, 1910348.	7.8	28
204	Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. Journal of Controlled Release, 2020, 322, 346-356.	4.8	19
205	Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release, 2020, 322, 566-592.	4.8	107
206	Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrasonics Sonochemistry, 2020, 67, 105096.	3.8	90
207	Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opinion on Drug Delivery, 2021, 18, 205-227.	2.4	72
208	Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. Chemical Engineering Journal, 2021, 413, 127413.	6.6	44
209	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	7.8	234
210	Biomedicine Meets Fenton Chemistry. Chemical Reviews, 2021, 121, 1981-2019.	23.0	400
211	Non pharmacological high-intensity ultrasound treatment of human dermal fibroblasts to accelerate wound healing. Scientific Reports, 2021, 11, 2465.	1.6	5
212	Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021, 13, 143.	2.0	30
213	Opportunities in ultrasonic drug delivery to tumor. , 2021, , 493-515.		1
214	Nanobiomaterials for Smart Delivery. RSC Soft Matter, 2021, , 475-498.	0.2	0
215	Development and application of ultrasound contrast agents in biomedicine. Journal of Materials Chemistry B, 2021, 9, 7633-7661.	2.9	16
216	Tailorâ€Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021, 8, 2002545.	5.6	22
217	Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today, 2021, 36, 101057.	6.2	58

#	Article	IF	CITATIONS
218	Applications of Micro/Nanotechnology in Ultrasound-based Drug Delivery and Therapy for Tumor. Current Medicinal Chemistry, 2021, 28, 525-547.	1.2	17
219	A Study on the Acoustic Response of Pickering Perfluoropentane Droplets in Different Media. ACS Omega, 2021, 6, 5670-5678.	1.6	4
220	Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Beilstein Journal of Organic Chemistry, 2021, 17, 511-518.	1.3	3
221	Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers, 2021, 13, 670.	1.7	79
222	Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Frontiers in Oncology, 2021, 11, 623760.	1.3	38
223	Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials, 2021, 11, 746.	1.9	30
224	Employing ultrasonic wave as a novel trigger of microcapsule self-healing cementitious materials. Cement and Concrete Composites, 2021, 118, 103951.	4.6	26
225	Ultrasound responsive carbon monoxide releasing micelle. Ultrasonics Sonochemistry, 2021, 72, 105427.	3.8	11
226	Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids, 2021, 328, 115417.	2.3	34
227	Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24422-24430.	4.0	4
228	Subwavelength Acoustic Vortex Beams Using Self-Demodulation. Physical Review Applied, 2021, 15, .	1.5	8
229	Different Aspects of Using Ultrasound to Combat Microorganisms. Advanced Functional Materials, 2021, 31, 2011042.	7.8	19
230	Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. International Journal of Pharmaceutics, 2021, 601, 120506.	2.6	14
231	Effect of receptors on the resonant and transient harmonic vibrations of Coronavirus. Journal of the Mechanics and Physics of Solids, 2021, 150, 104369.	2.3	20
232	Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release, 2021, 333, 188-245.	4.8	31
233	Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Materials and Design, 2021, 203, 109580.	3.3	46
234	Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics, 2021, 13, 1135.	2.0	55
235	Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications. International Journal of Nanomedicine, 2021, Volume 16, 4615-4630.	3.3	29

#	Article	IF	CITATIONS
236	Phase-Changeable Nanoparticle-Mediated Energy Conversion Promotes Highly Efficient High-Intensity Focused Ultrasound Ablation. Current Medicinal Chemistry, 2022, 29, 1369-1378.	1.2	5
237	Physical intelligence as a new paradigm. Extreme Mechanics Letters, 2021, 46, 101340.	2.0	114
238	Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. Review of Scientific Instruments, 2021, 92, 074105.	0.6	15
239	Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers as Nanocarriers for Losartan: Insights into Drug–Polymer Interactions. Macromol, 2021, 1, 177-200.	2.4	7
240	Challenges of Current Anticancer Treatment Approaches with Focus on Liposomal Drug Delivery Systems. Pharmaceuticals, 2021, 14, 835.	1.7	29
241	Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chemical Engineering Journal, 2021, 417, 128004.	6.6	4
242	Gemcitabine-loaded microbubble system for ultrasound imaging and therapy. Acta Biomaterialia, 2021, 130, 385-394.	4.1	21
243	Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharmaceutical Research, 2021, 38, 1455-1466.	1.7	2
244	Bursting microbubbles: How nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy. Current Opinion in Colloid and Interface Science, 2021, 54, 101463.	3.4	45
245	Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein Journal of Nanotechnology, 2021, 12, 808-862.	1.5	22
246	Therapeutic oxygen delivery by perfluorocarbon-based colloids. Advances in Colloid and Interface Science, 2021, 294, 102407.	7.0	65
247	Ultrasound-Responsive Smart Drug Delivery System of Lipid Coated Mesoporous Silica Nanoparticles. Pharmaceutics, 2021, 13, 1396.	2.0	17
248	Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends in Cancer, 2021, 7, 847-862.	3.8	36
249	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.	1.3	10
250	Ultrasound-triggered nicotine release from nicotine-loaded cellulose hydrogel. Ultrasonics Sonochemistry, 2021, 78, 105710.	3.8	12
251	Theranostic nanobubbles towards smart nanomedicines. Journal of Controlled Release, 2021, 339, 164-194.	4.8	22
252	Ultrasound-Triggered Drug Release from Hydrogel Microspheres with Release Booster. , 2021, , .		0
253	Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Advances, 2021, 11, 12915-12928.	1.7	40

#	Article	IF	CITATIONS
254	Low intensity focused ultrasound responsive microcapsules for non-ablative ultrafast intracellular release of small molecules. Journal of Materials Chemistry B, 2021, 9, 2384-2393.	2.9	8
255	Stimuliâ€Responsive Biomaterials: Scaffolds for Stem Cell Control. Advanced Healthcare Materials, 2021, 10, e2001125.	3.9	81
256	Design of Microbubbles for Gene/Drug Delivery. Advances in Experimental Medicine and Biology, 2016, 880, 191-204.	0.8	8
257	Chitosan: A compound for drug delivery system in gastric cancer-a review. Carbohydrate Polymers, 2020, 242, 116403.	5.1	72
258	Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharmaceutical Journal, 2020, 28, 255-265.	1.2	96
259	CHAPTER 1. Image Guided Focused Ultrasound as a New Method of Targeted Drug Delivery. RSC Drug Discovery Series, 2018, , 1-28.	0.2	2
260	CHAPTER 8. Theranostics in the Gut. RSC Drug Discovery Series, 2018, , 182-210.	0.2	2
261	Trigger-responsive engineered-nanocarriers and image-guided theranostics for rheumatoid arthritis. Nanoscale, 2020, 12, 12673-12697.	2.8	21
262	Expansion-mediated breakup of bubbles and droplets in microfluidics. Physical Review Fluids, 2020, 5, .	1.0	10
263	Combined treatment of sorafenib and doxorubicin-loaded microbubble-albumin nanoparticle complex for hepatocellular carcinoma: A feasibility study. PLoS ONE, 2020, 15, e0243815.	1.1	11
264	Theragnostic ultrasound using microbubbles in the treatment of prostate cancer. Ultrasonography, 2016, 35, 309-317.	1.0	8
265	Multifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy. Oncotarget, 2016, 7, 82170-82184.	0.8	26
266	Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Current Pharmaceutical Design, 2019, 25, 2609-2625.	0.9	32
267	Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy. Current Pharmaceutical Biotechnology, 2016, 17, 227-236.	0.9	34
268	Recent Advances in Microbubble-Augmented Cancer Therapy. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4, 155.	0.1	3
269	On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. International Journal of Engineering Science, 2022, 170, 103604.	2.7	29
270	Photoremovable Protecting Groups: Across the Light Spectrum to Near-Infrared Absorbing Photocages. Chimia, 2021, 75, 873.	0.3	14
271	Magnetically propelled soft microrobot navigating through constricted microchannels. Applied Materials Today, 2021, 25, 101237.	2.3	18

#	Article	IF	CITATIONS
272	Ultrasound in Cancer Treatment through Nanotechnology. Journal of Biomedical Physics and Engineering, 2016, 6, 123-126.	0.5	4
274	Ultrasound-Responsive Systems as Components for Smart Materials. Chemical Reviews, 2022, 122, 5165-5208.	23.0	89
275	External stimuli-responsive nanomedicine for cancer immunotherapy. , 2021, , .		0
276	Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. International Journal of Pharmaceutics, 2022, 613, 121412.	2.6	22
277	Vesicular nanocarrier based stimuli-responsive drug delivery systems. , 2022, , 61-86.		1
278	Biomass Hydrogel Medicines for Ultrasound Drug Releasing Materials. , 2022, , .		0
280	Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME Frontiers, 2022, 2022, .	2.2	42
281	Ultrasoundâ€Mediated Release of Gaseous Signaling Molecules for Biomedical Applications. Macromolecular Rapid Communications, 2022, 43, e2100814.	2.0	11
282	Mechanosensitive channel Piezo1 induces cell apoptosis in pancreatic cancer by ultrasound with microbubbles. IScience, 2022, 25, 103733.	1.9	16
283	Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128522.	2.3	6
284	Ultrasoundâ€controlled drug release and drug activation for cancer therapy. Exploration, 2021, 1, .	5.4	71
285	Recent advances in remotely controlled pulsatile drug delivery systems. Journal of Advanced Pharmaceutical Technology and Research, 2022, 13, 77.	0.4	4
286	Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics, 2022, 14, 480.	2.0	15
287	Photoresponsive prodrugâ€dye nanoassembly for inâ€situ monitorable cancer therapy. Bioengineering and Translational Medicine, 2022, 7, .	3.9	11
288	Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materials Today Bio, 2022, 14, 100223.	2.6	99
289	Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Advanced Drug Delivery Reviews, 2022, 183, 114168.	6.6	27
290	Dendritic polyurethane-based prodrug as unimolecular micelles for precise ultrasound-activated localized drug delivery. Materials Today Chemistry, 2022, 24, 100819.	1.7	10
291	Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioactive Materials, 2022, 15, 372-381.	8.6	17

#	Article	IF	CITATIONS
292	Stimuliâ€responsive crosslinked nanomedicine for cancer treatment. Exploration, 2022, 2, .	5.4	74
293	Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. Journal of Biotechnology, 2022, 350, 17-23.	1.9	4
295	Nondestructive Compression and Fluidization of Phospholipid Monolayers by Gaseous and Aerolized Perfluorocarbons: Promising Substances for Lung Surfactant Treatment. Langmuir, 2022, 38, 6690-6699.	1.6	0
296	Physical intelligence as a new paradigm Extreme Mechanics Letters, 2021, 46, 101340.	2.0	8
297	Therapeutic gasâ€releasing nanomedicines with controlled release: Advances and perspectives. Exploration, 2022, 2, .	5.4	19
298	Finite element modeling ofÂα-helices and tropocollagen molecules referring to spike ofÂSARS-CoV-2. Biophysical Journal, 2022, 121, 2353-2370.	0.2	3
299	A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus. RSC Advances, 2022, 12, 16561-16569.	1.7	3
300	Focused Acoustic Vortex-Regulated Composite Nanodroplets Combined with Checkpoint Blockade for High-Performance Tumor Synergistic Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30466-30479.	4.0	8
301	Recent advances in mechanical force-responsive drug delivery systems. Nanoscale Advances, 2022, 4, 3462-3478.	2.2	15
302	Dynamics of a shocked bubble-encapsulated droplet. Applied Physics Letters, 2022, 120, .	1.5	2
303	The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. Progress in Biophysics and Molecular Biology, 2022, 174, 41-49.	1.4	8
304	Novel Drug and Gene Delivery System and Imaging Agent Based on Marine Diatom Biosilica Nanoparticles. Marine Drugs, 2022, 20, 480.	2.2	8
305	A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. International Journal of Pharmaceutics, 2022, 625, 122099.	2.6	29
306	Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials, 2022, 12, 3051.	1.9	10
307	Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels, 2022, 8, 554.	2.1	14
308	Stimuli-responsive polyelectrolyte multilayer films and microcapsules. Advances in Colloid and Interface Science, 2022, 310, 102773.	7.0	13
309	Enhanced Acoustic Droplet Vaporization through the Active Magnetic Accumulation of Drug-Loaded Magnetic Particle-Encapsulated Nanodroplets (MPE-NDs) in Cancer Therapy. Nano Letters, 2022, 22, 8143-8151.	4.5	3
310	Multifunctional Oxygenated Particles for Targeted Cancer Drug Delivery and Evaluation with Darkfield Hyperspectral Imaging. ACS Omega, 0, , .	1.6	1

#	Article	IF	CITATIONS
311	Coupling Two Ultra-high-Speed Cameras to Elucidate Ultrasound Contrast-Mediated Imaging and Therapy. Ultrasound in Medicine and Biology, 2023, 49, 388-397.	0.7	2
312	Design and Properties of Antimicrobial Biomaterials Surfaces. Advanced Healthcare Materials, 2023, 12,	3.9	9
313	A Synergistic and Efficient Thrombolytic Nanoplatform: A Mechanical Method of Blasting Combined with Thrombolytic Drugs. International Journal of Nanomedicine, 0, Volume 17, 5229-5246.	3.3	2
314	Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics, 2022, 14, 2396.	2.0	8
315	Fabrication of a controlled-release delivery system for relieving sciatica nerve pain using an ultrasound-responsive microcapsule. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
316	Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. , 2023, , 201-228.		0
317	Artificial nano-red blood cells nanoplatform with lysosomal escape capability for ultrasound imaging-guided on-demand pain management. Acta Biomaterialia, 2023, 158, 798-810.	4.1	2
318	Ultrasound technology and biomaterials for precise drug therapy. Materials Today, 2023, 63, 210-238.	8.3	24
319	Titaniumâ€Based Nanoarchitectures for Sonodynamic Therapyâ€Involved Multimodal Treatments. Small, 2023, 19, .	5.2	14
320	Enhancement of the Response to Ultrasound by Encapsulating Metal Nanoparticles in Liposomes. , 2022, , .		0
321	Biodegradable nanomaterials for diagnosis and therapy of tumors. Journal of Materials Chemistry B, 2023, 11, 1829-1848.	2.9	9
322	The fate of stem cells within smart biomaterials and constructs. , 2023, , 277-324.		0
323	Liposomes for Tumor Targeted Therapy: A Review. International Journal of Molecular Sciences, 2023, 24, 2643.	1.8	37
324	Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications. Advanced NanoBiomed Research, 2023, 3, .	1.7	13
325	Acoustic-responsive carbon dioxide-loaded liposomes for efficient drug release. Ultrasonics Sonochemistry, 2023, 94, 106326.	3.8	7
326	Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. Journal of Controlled Release, 2023, 355, 552-578.	4.8	27
327	Core–Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. Micromachines, 2023, 14, 497.	1.4	3
328	Nanomedicineâ€Enabled Sonomechanical, Sonopiezoelectric, Sonodynamic, and Sonothermal Therapy. Advanced Materials, 2023, 35, .	11.1	27

#	ARTICLE	IF	CITATIONS
329	Establishment of ultrasound-responsive SonoBacteriaBot for targeted drug delivery and controlled release. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	0
330	Curcumin-Loaded PnBA-b-POEGA Nanoformulations: A Study of Drug-Polymer Interactions and Release Behavior. International Journal of Molecular Sciences, 2023, 24, 4621.	1.8	1
331	Ultrasound-responsive smart composite biomaterials in tissue repair. Nano Today, 2023, 49, 101804.	6.2	11
332	Potential Approaches for Delivery of Surface Decorated Nano-carriers in the Management of Carcinoma., 2023,, 64-105.		0
333	QCM-D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy. Journal of Physical Chemistry B, 2023, 127, 2466-2474.	1.2	3
334	Wearable, Sensing-Controlled, Ultrasound-Based Microneedle Smart System for Diabetes Management. ACS Sensors, 2023, 8, 1710-1722.	4.0	9
335	Strategies for Cancer Targeting: Novel Drug Delivery Systems Opportunities and Future Challenges. Biological and Medical Physics Series, 2023, , 1-42.	0.3	0
336	Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis. International Journal of Biological Macromolecules, 2023, 240, 124449.	3.6	6
337	Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light. ACS Nano, 2023, 17, 7941-7952.	7.3	11
349	Recent strategies of carbon dot-based nanodrugs for enhanced emerging antitumor modalities. Journal of Materials Chemistry B, 2023, 11, 9128-9154.	2.9	3
351	Nature vs. Manmade: Comparing Exosomes and Liposomes for Traumatic Brain Injury. AAPS Journal, 2023, 25, .	2.2	1
352	IONPs-Based Treatment Methods. Nanomedicine and Nanotoxicology, 2023, , 129-240.	0.1	0
360	ROS-generating nanoplatforms as selective and tunable therapeutic weapons against cancer. , 2023, 18 , .		0
362	A NUMERICAL MODEL OF TRANSIENT ULTRASONICALLY INDUCED CAVITATION ACCOUNTING FOR HOMOGENEOUS NUCLEATION., 2023,,.		0
368	Pharmaceutics and new material., 2024,, 603-685.		0