Efficient ethanol production from brown macroalgae su

Nature 505, 239-243 DOI: 10.1038/nature12771

Citation Report

#	Article	IF	CITATIONS
1	Characterization of an Alginate Lyase, FlAlyA, from Flavobacterium sp. Strain UMI-01 and Its Expression in Escherichia coli. Marine Drugs, 2014, 12, 4693-4712.	4.6	72
2	Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnology and Bioprocess Engineering, 2014, 19, 866-878.	2.6	26
3	ldentification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnology and Bioprocess Engineering, 2014, 19, 1058-1068.	2.6	5
4	Structure-based Conversion of the Coenzyme Requirement of a Short-chain Dehydrogenase/Reductase Involved in Bacterial Alginate Metabolism. Journal of Biological Chemistry, 2014, 289, 33198-33214.	3.4	39
5	Vitalized yeast with high ethanol productivity. RSC Advances, 2014, 4, 52299-52306.	3.6	12
6	Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnology for Biofuels, 2014, 7, 20.	6.2	54
7	Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 2917-2935.	3.6	171
8	Modification of lignin with dodecyl glycidyl ether and chlorosulfonic acid for preparation of anionic surfactant. RSC Advances, 2014, 4, 16944-16950.	3.6	31
9	Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess and Biosystems Engineering, 2014, 37, 2105-2111.	3.4	41
10	Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8357-8362.	7.1	159
11	Comparative Biochemical Characterization of Three Exolytic Oligoalginate Lyases from Vibrio splendidus Reveals Complementary Substrate Scope, Temperature, and pH Adaptations. Applied and Environmental Microbiology, 2014, 80, 4207-4214.	3.1	103
12	Alginate-Dependent Gene Expression Mechanism in Sphingomonas sp. Strain A1. Journal of Bacteriology, 2014, 196, 2691-2700.	2.2	14
13	The genomeâ€scale metabolic network of <i>Ectocarpus siliculosus</i> (Ecto <scp>GEM</scp>): a resource to study brown algal physiology and beyond. Plant Journal, 2014, 80, 367-381.	5.7	39
14	GEOCHEMISTRY ARTICLES – January 2014. Organic Geochemistry, 2014, 69, e1-e33.	1.8	0
15	Draft genome sequence of Microbulbifer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Marine Genomics, 2014, 18, 83-85.	1.1	18
16	Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai. Frontiers in Chemistry, 2014, 2, 60.	3.6	11
19	Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01. Marine Drugs, 2015, 13, 493-508.	4.6	34
20	Characterization of an eukaryotic PL-7 Alginate Lyase in the Marine Red Alga Pyropia Yezoensis. Current Biotechnology, 2015, 4, 240-258.	0.4	31

#	Article	IF	CITATIONS
21	Feedstock for Bioethanol Production from a Technological Paradigm Perspective. BioResources, 2015, 10, .	1.0	11
22	Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae. PLoS ONE, 2015, 10, e0118366.	2.5	56
24	Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiology Letters, 2015, 362, .	1.8	43
26	Marine brown algae: A conundrum answer for sustainable biofuels production. Renewable and Sustainable Energy Reviews, 2015, 50, 782-792.	16.4	100
27	A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate. Journal of Biological Chemistry, 2015, 290, 30962-30974.	3.4	18
28	Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Bioengineered, 2015, 6, 347-350.	3.2	4
29	Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Metabolic Engineering Communications, 2015, 2, 76-84.	3.6	12
30	The Mannitol Utilization System of the Marine Bacterium Zobellia galactanivorans. Applied and Environmental Microbiology, 2015, 81, 1799-1812.	3.1	38
31	Catalytic hydrothermal conversion of macroalgae-derived alginate: effect of pH on production of furfural and valuable organic acids under subcritical water conditions. Journal of Molecular Catalysis A, 2015, 399, 106-113.	4.8	31
32	Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 2015, 17, 2436-2443.	9.0	149
33	Alginate Lyases from Alginate-Degrading Vibrio splendidus 12B01 Are Endolytic. Applied and Environmental Microbiology, 2015, 81, 1865-1873.	3.1	73
34	Ethanol production by engineered thermophiles. Current Opinion in Biotechnology, 2015, 33, 130-141.	6.6	114
35	Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research, 2015, 9, 48-54.	4.6	105
36	Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, 2015, 185, 56-61.	9.6	51
37	Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp Phytochemistry, 2015, 117, 509-520.	2.9	15
38	Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate. Structure, 2015, 23, 1643-1654.	3.3	44
39	Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered, 2015, 6, 125-131.	3.2	203
40	Synthesis of chemicals by metabolic engineering of microbes. Chemical Society Reviews, 2015, 44, 3760-3785.	38.1	97

#	Article	IF	CITATIONS
41	The novel catabolic pathway of 3,6â€anhydroâ€ <scp>L</scp> â€galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology, 2015, 17, 1677-1688.	3.8	106
42	Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresource Technology, 2015, 198, 819-827.	9.6	105
43	Seaweeds: a sustainable fuel source. , 2015, , 421-458.		6
44	Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 2015, 29, 49-57.	6.1	77
45	Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Van Leeuwenhoek, 2015, 108, 1075-1090.	1.7	12
46	Macroalgae in biofuel production. Phycological Research, 2015, 63, 1-18.	1.6	86
47	Acquisition of the Ability To Assimilate Mannitol by Saccharomyces cerevisiae through Dysfunction of the General Corepressor Tup1-Cyc8. Applied and Environmental Microbiology, 2015, 81, 9-16.	3.1	30
48	Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresource Technology, 2015, 176, 196-202.	9.6	71
49	Recycling microbial lipid production wastes to cultivate oleaginous yeasts. Bioresource Technology, 2015, 175, 91-96.	9.6	35
50	The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Frontiers in Energy Research, 2016, 4, .	2.3	70
51	Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. International Journal of Molecular Sciences, 2016, 17, 145.	4.1	77
52	Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol, 2016, 2, .	1.2	26
53	Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 175-215.	1.1	13
55	Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation. Scientific Reports, 2016, 6, 38248.	3.3	39
56	Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Scientific Reports, 2016, 6, 27761.	3.3	22
57	Cloning and characterization of two thermo- and salt-tolerant oligoalginate lyases from marine bacterium <i>Halomonas</i> sp FEMS Microbiology Letters, 2016, 363, fnw079.	1.8	16
58	Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Research, 2016, 17, 150-160.	4.6	106
59	KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6188-6193.	7.1	80

#	Article	IF	CITATIONS
60	Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida. Bioresource Technology, 2016, 216, 622-628.	9.6	19
61	Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnology for Biofuels, 2016, 9, 81.	6.2	62
62	A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Conversion and Management, 2016, 119, 257-265.	9.2	87
63	Effective production of fermentable sugars from brown macroalgae biomass. Applied Microbiology and Biotechnology, 2016, 100, 9439-9450.	3.6	24
64	The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. Journal of Biotechnology, 2016, 234, 139-157.	3.8	109
65	Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Scientific Reports, 2016, 6, 23502.	3.3	58
66	Structure dependent toxicity of lignin phenolics and PEG detoxification in VHG ethanol fermentation. RSC Advances, 2016, 6, 99924-99932.	3.6	8
67	Pathway Design, Engineering, and Optimization. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 77-116.	1.1	7
68	Purification and characterization of a novel alginate lyase from the marine bacterium <i>Cobetia</i> sp. NAP1 isolated from brown algae. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2338-2346.	1.3	41
69	Scaling up bioethanol production from the farmed brown macroalga <i>Macrocystis pyrifera</i> in Chile. Biofuels, Bioproducts and Biorefining, 2016, 10, 673-685.	3.7	40
70	Horizontal Transfer of a Novel Soil Agarase Gene from Marine Bacteria to Soil Bacteria via Human Microbiota. Scientific Reports, 2016, 6, 34103.	3.3	19
71	Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Biotechnology for Biofuels, 2016, 9, 96.	6.2	35
72	The cell-wall active mannuronan C5-epimerases in the model brown alga <i>Ectocarpus</i> : From gene context to recombinant protein. Glycobiology, 2016, 26, 973-983.	2.5	38
73	Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica. Korean Journal of Chemical Engineering, 2016, 33, 2691-2698.	2.7	41
74	Sustainable production of bioethanol from renewable brown algae biomass. Biomass and Bioenergy, 2016, 92, 70-75.	5.7	101
75	Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. Journal of Biotechnology, 2016, 231, 129-135.	3.8	30
76	Selection of yeast strains for bioethanol production from UK seaweeds. Journal of Applied Phycology, 2016, 28, 1427-1441.	2.8	73
77	Macroalgae (seaweed) for liquid transportation biofuel production: what is next?. Algal Research, 2016, 14, 48-57.	4.6	102

#	Article	IF	CITATIONS
78	A simple process for recovery of a stream of products from marine macroalgal biomass. Bioresource Technology, 2016, 203, 160-165.	9.6	41
79	Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 2016, 13, 141-147.	4.6	59
80	Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess and Biosystems Engineering, 2016, 39, 959-966.	3.4	12
81	Comparative characterization of three bacterial exo-type alginate lyases. International Journal of Biological Macromolecules, 2016, 86, 519-524.	7.5	18
82	Assessment of saccharification and fermentation of brown seaweeds to identify the seasonal effect on bioethanol production. Journal of Applied Phycology, 2016, 28, 3009-3020.	2.8	15
83	Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresource Technology, 2016, 213, 155-161.	9.6	54
84	R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport. Bioscience, Biotechnology and Biochemistry, 2016, 80, 744-747.	1.3	3
85	Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci. Applied and Environmental Microbiology, 2016, 82, 2975-2987.	3.1	87
86	Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae. Applied and Environmental Microbiology, 2016, 82, 868-877.	3.1	43
87	Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Applied Microbiology and Biotechnology, 2016, 100, 1723-1732.	3.6	37
88	Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium. Journal of Bioscience and Bioengineering, 2016, 121, 286-292.	2.2	19
89	Immunolocalization of cell wall carbohydrate epitopes in seaweeds: presence of land plant epitopes in Fucus vesiculosus L. (Phaeophyceae). Planta, 2016, 243, 337-354.	3.2	16
90	Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides. Catalysis Science and Technology, 2016, 6, 1146-1156.	4.1	23
91	Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis. Marine Biotechnology, 2016, 18, 15-23.	2.4	18
92	High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Reviews in Environmental Science and Biotechnology, 2016, 15, 67-88.	8.1	129
93	Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresource Technology, 2016, 199, 311-318.	9.6	87
94	Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine <i>Shewanella</i> sp. Kz7. Journal of Biochemistry, 2016, 159, 77-86.	1.7	55
95	Innovative technological paradigm-based approach towards biofuel feedstock. Energy Conversion and Management, 2017, 141, 48-62.	9.2	15

#	Article	IF	CITATIONS
96	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200.		2
97	Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Frontiers of Chemical Science and Engineering, 2017, 11, 15-26.	4.4	22
98	Directed Enzyme Evolution: Advances and Applications. , 2017, , .		18
99	Marine Enzymes and Microorganisms for Bioethanol Production. Advances in Food and Nutrition Research, 2017, 80, 181-197.	3.0	24
100	Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus. Applied Microbiology and Biotechnology, 2017, 101, 1581-1592.	3.6	18
102	A two-step optimization strategy for 2nd generation ethanol production using softwood hemicellulosic hydrolysate as fermentation substrate. Bioresource Technology, 2017, 244, 708-716.	9.6	9
103	The role of alginate lyases in the enzymatic saccharification of brown macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal Research, 2017, 26, 287-293.	4.6	42
104	Crucial role of 4-deoxy-L-erythro-5-hexoseulose uronate reductase for alginate utilization revealed by adaptive evolution in engineered Saccharomyces cerevisiae. Scientific Reports, 2017, 7, 4206.	3.3	10
105	Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland. Renewable and Sustainable Energy Reviews, 2017, 68, 136-146.	16.4	84
106	β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls. Protoplasma, 2017, 254, 997-1016.	2.1	35
107	Opportunity and challenge of seaweed bioethanol based on life cycle CO ₂ assessment. Environmental Progress and Sustainable Energy, 2017, 36, 200-207.	2.3	18
108	Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews, 2017, 75, 35-45.	16.4	149
109	Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Marine Drugs, 2017, 15, 1.	4.6	256
110	Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells. Sensors, 2017, 17, 2587.	3.8	23
111	Mini-Review: The Role of Saccharomyces cerevisiae in the Production of Gin and Vodka. Beverages, 2017, 3, 13.	2.8	18
112	Identification and Characterization of a 25 kDa Protein That Is Indispensable for the Efficient Saccharification of Eisenia bicyclis in the Digestive Fluid of Aplysia kurodai. PLoS ONE, 2017, 12, e0170669.	2.5	7
113	Processing Techniques of Algae-Based Materials. , 2017, , 671-686.		0
114	Identification of 2-keto-3-deoxy-d-Gluconate Kinase and 2-keto-3-deoxy-d-Phosphogluconate Aldolase in an Alginate-Assimilating Bacterium, Flavobacterium sp. Strain UMI-01. Marine Drugs, 2017, 15, 37.	4.6	19

#	Article	IF	CITATIONS
115	Development of an Analysis Method for 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid by LC/ESI/MS with Selected Ion Monitoring. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	3
116	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	7.0	228
117	Polysaccharide-Degrading Enzymes From Marine Gastropods. Methods in Enzymology, 2018, 605, 457-497.	1.0	20
118	Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds. Applied Microbiology and Biotechnology, 2018, 102, 4901-4913.	3.6	6
119	An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metabolic Engineering, 2018, 47, 423-433.	7.0	53
120	Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp International Journal of Biological Macromolecules, 2018, 112, 937-942.	7.5	23
121	Cloning, Expression, and Biochemical Characterization of Two New Oligoalginate Lyases with Synergistic Degradation Capability. Marine Biotechnology, 2018, 20, 75-86.	2.4	39
122	Preparation of 4-Deoxy- <scp>L</scp> - <i>erythro</i> -5-hexoseulose Uronic Acid (DEH) and Guluronic Acid Rich Alginate Using a Unique <i>exo</i> -Alginate Lyase from <i>Thalassotalea crassostreae</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 1435-1443.	5.2	25
123	Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae. Scientific Reports, 2018, 8, 2613.	3.3	62
124	Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnology Advances, 2018, 36, 798-817.	11.7	128
125	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.	1.3	20
125 126	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462. Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.	1.3 7.0	20 65
125 126 127	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462. Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487. A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.	1.3 7.0 9.6	20 65 28
125 126 127 128	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.Experimental processing of seaweeds for biofuels. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e288.	1.3 7.0 9.6 4.1	20 65 28 27
125 126 127 128 129	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA:3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.Experimental processing of seaweeds for biofuels. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e288.Identification of 4-Deoxy-L-Etychro-Hexoseulose Uronic Acid Reductases in an Alginolytic Bacterium Vibrio splendidus and their Uses for L-Lactate Production in an Escherichia coli Cell-Free System. Marine Biotechnology, 2018, 20, 410-423.	1.3 7.0 9.6 4.1 2.4	20 65 28 27 5
125 126 127 128 129 130	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.Experimental processing of seaweeds for biofuels. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e288.Identification of 4-Deoxy-L-Etychro-Hexoseulose Uronic Acid Reductases in an Alginolytic Bacterium Vibrio splendidus and their Uses for L-Lactate Production in an Escherichia coli Cell-Free System. Marine Biotechnology, 2018, 20, 410-423.Overview of 3Âyear precommercial seafarming of <1> MacrocystisÂpyrifera Overview in Aquaculture, 2018, 10, 543-559.	 1.3 7.0 9.6 4.1 2.4 9.0 	20 65 28 27 5 42
125 126 127 128 129 130	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. Bioresource Technology, 2018, 263, 103-111.Experimental processing of seaweeds for biofuels. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e288.Identification of 4-Deoxy-L-Etychro-Hexoseulose Uronic Acid Reductases in an Alginolytic Bacterium Vibrio splendidus and their Uses for L-Lactate Production in an Escherichia coli Cell-Free System. Marine Biotechnology, 2018, 20, 410-423.Overview of 3Âyear precommercial seafarming of <i>MacrocystisÂpyrifera</i> along the Chilean coast. Reviews in Aquaculture, 2018, 10, 543-559.Platform construction of molecular breeding for utilization of brown macroalgae. Journal of Bioscience and Bioengineering, 2018, 125, 1-7.	1.3 7.0 9.6 4.1 2.4 9.0	 20 65 28 27 5 42 8

#	Article	IF	CITATIONS
133	Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nature Communications, 2018, 9, 5059.	12.8	65
134	Complete genome sequence of Bordetella sp. HZ20 sheds light on the ecological role of bacterium without algal-polysaccharides degrading abilities in the brown seaweed-abundant environment. Marine Genomics, 2018, 42, 49-52.	1.1	3
135	Expression and characterization of a bifunctional alginate lyase named Al163 from the Antarctic bacterium Pseudoalteromonas sp. NJ-21. Journal of Oceanology and Limnology, 2018, 36, 1304-1314.	1.3	4
136	Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Clostridia. Frontiers in Microbiology, 2018, 9, 1931.	3.5	36
137	A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 53-59.	5.9	48
138	Microalgae and Alcohol. , 2018, , 227-234.		0
139	A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae. Biotechnology for Biofuels, 2018, 11, 64.	6.2	21
140	The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast, 2019, 36, 685-700.	1.7	9
141	Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. Biotechnology Letters, 2019, 41, 1187-1200.	2.2	33
142	Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental) Tj ETQq1 1 0.7	'84314 rgl 1.4	3T (Overlock
143	A critical review on production of bioethanol from macroalgal biomass. Algal Research, 2019, 42, 101606.	4.6	87
144	Alginate Lyase Aly36B is a New Bacterial Member of the Polysaccharide Lyase Family 36 and Catalyzes by a Novel Mechanism With Lysine as Both the Catalytic Base and Catalytic Acid. Journal of Molecular Biology, 2019, 431, 4897-4909.	4.2	18
145	Biochemical characteristics and synergistic effect of two novel alginate lyases from Photobacterium sp. FC615. Biotechnology for Biofuels, 2019, 12, 260.	6.2	26
146	The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. Journal of Biological Chemistry, 2019, 294, 18077-18091.	3.4	37
147	Microbial hexuronate catabolism in biotechnology. AMB Express, 2019, 9, 16.	3.0	33
148	Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Marine Drugs, 2019, 17, 540.	4.6	56
149	Spotlight on fungal pectin utilization—from phytopathogenicity to molecular recognition and industrial applications. Applied Microbiology and Biotechnology, 2019, 103, 2507-2524.	3.6	23
150	Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renewable and Sustainable Energy Reviews, 2019, 112, 626-642.	16.4	50

#	Article	IF	CITATIONS
151	Exploration of the Tolerance Ability of a Cell-Free Biosynthesis System to Toxic Substances. Applied Biochemistry and Biotechnology, 2019, 189, 1096-1107.	2.9	4
152	Structural insights into a novel Ca2+-independent PL-6 alginate lyase from Vibrio OU02 identify the possible subsites responsible for product distribution. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1167-1176.	2.4	37
153	Energy Production: Biomass – Marine. , 2019, , 29-41.		0
154	Co-production of biodiesel and alginate from Laminaria japonica. Science of the Total Environment, 2019, 673, 750-755.	8.0	12
155	Production of Bioethanol From Brown Algae. , 2019, , 69-88.		11
156	Molecular cloning and characterization of AlgL17, a new exo-oligoalginate lyase from Microbulbifer sp. ALW1. Protein Expression and Purification, 2019, 161, 17-27.	1.3	34
157	Biomass based bio-electro fuel cells based on carbon electrodes: an alternative source of renewable energy. SN Applied Sciences, 2019, 1, 1.	2.9	14
158	Pathway and Gene Discovery from Natural Hosts and Organisms. Methods in Molecular Biology, 2019, 1927, 1-9.	0.9	1
159	Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. Journal of Agricultural and Food Chemistry, 2019, 67, 2936-2945.	5.2	31
160	Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresource Technology, 2019, 281, 84-89.	9.6	49
161	Removal of Ni(II) from fuel ethanol by PAMAM dendrimers/silica hybrid materials: Combined experimental and theoretical study. Chemical Engineering Research and Design, 2019, 144, 174-184.	5.6	7
162	Enrichment of bacteria and alginate lyase genes potentially involved in brown alga degradation in the gut of marine gastropods. Scientific Reports, 2019, 9, 2129.	3.3	17
163	Uncovering the reactive nature of 4-deoxy-l-erythro-5-hexoseulose uronate for the utilization of alginate, a promising marine biopolymer. Scientific Reports, 2019, 9, 17147.	3.3	12
164	Exploiting the Feedstock Flexibility of the Emergent Synthetic Biology Chassis Vibrio natriegens for Engineered Natural Product Production. Marine Drugs, 2019, 17, 679.	4.6	29
165	Biorefinery as a Promising Approach to Promote Ethanol Industry From Microalgae andÂCyanobacteria. , 2019, , 343-359.		7
166	Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expression and Purification, 2019, 153, 97-104.	1.3	12
167	Transcriptome analysis of kelp Saccharina japonica unveils its weird transcripts and metabolite shift of main components at different sporophyte developmental stages. Journal of Oceanology and Limnology, 2019, 37, 640-650.	1.3	5
168	Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expression and Purification, 2019, 154, 44-51.	1.3	28

ARTICLE IF CITATIONS Bioeconomy for Sustainable Development., 2020, , . 70 169 Advances of macroalgae biomass for the third generation of bioethanol production. Chinese Journal 170 3.5 of Chemical Engineering, 2020, 28, 502-517. Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 171 9.6 83 2020, 299, 122613. Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the arctic. Journal of Biological Chemistry, 2020, 295, 16380-16392. Characteristics and applications of alginate lyases: A review. International Journal of Biological 173 7.5 91 Macromolecules, 2020, 164, 1304-1320. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. 174 2.6 124 International Journal of Environmental Research and Public Health, 2020, 17, 6528. Sustainable Seaweed Biotechnology Solutions for Carbon Capture, Composition, and Deconstruction. 175 9.3 48 Trends in Biotechnology, 2020, 38, 1232-1244. Maximizing the sustainability of a macroalgae biorefinery: a superstructure optimization of a volatile 19 fatty acid platform. Green Chemistry, 2020, 22, 4174-4186. Comparative Transcriptome Analysis Reveals Candidate Genes Related to Structural and Storage 177 Carbohydrate Biosynthesis in Kelp <i>Saccharina japonica</i> (Laminariales, Phaeophyceae). Journal of 2.3 8 Phycology, 2020, 56, 1168-1183. Biocatalytic refining of polysaccharides from brown seaweeds., 2020, , 447-504. Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: 179 13 An overview. , 2020, , 393-446. Functional Characterization of a Novel Oligoalginate Lyase of Stenotrophomonas maltophilia KJ-2 Using Site-Specific Mutation Reveals Bifunctional Mode of Action, Possessing Both Endolytic and Exolytic Degradation Activity Toward Alginate in Seaweed Biomass. Frontiers in Marine Science, 2020, 2.5 Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from<i>Tetraselmis gracilis</i>. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental 181 1.7 9 Engineering, 2020, 55, 739-747 Cascaded valorization of seaweed using microbial cell factories. Current Opinion in Biotechnology, 2020, 65, 102-113. 6.6 Biochemical Characterization of a New Oligoalginate Lyase and Its Biotechnological Application in 183 3.514 Laminaria japonica Degradation. Frontiers in Microbiology, 2020, 11, 316. Biofuel Production Technologies: Critical Analysis for Sustainability. Clean Energy Production 184 Technologies, 2020, , . Utilization of Alginate from Brown Macroalgae for Ethanol Production by Clostridium 185 0.9 9 phytofermentans. Applied Biochemistry and Microbiology, 2020, 56, 173-178. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of 2.8 Applied Phycology, 2020, 32, 3305-3317.

#	Article	IF	CITATIONS
187	Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT. Nucleic Acids Research, 2020, 48, 7786-7800.	14.5	18
188	Challenges for marine macroalgal biomass production in Indian coastal waters. Botanica Marina, 2020, 63, 327-340.	1.2	7
189	Biological upgrading of 3,6-anhydro- <scp>l</scp> -galactose from agarose to a new platform chemical. Green Chemistry, 2020, 22, 1776-1785.	9.0	15
190	Biochemical characterization and degradation pattern analysis of a novel PL-6 alginate lyase from Streptomyces coelicolor A3(2). Food Chemistry, 2020, 323, 126852.	8.2	20
191	Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. Journal of Cleaner Production, 2020, 263, 121359.	9.3	42
192	Polyunsaturated fatty acids-enriched lipid from reduced sugar alcohol mannitol by marine yeast Rhodosporidiobolus fluvialis Y2. Biochemical and Biophysical Research Communications, 2020, 526, 1138-1142.	2.1	2
193	Purification and Characterization of a Novel Endolytic Alginate Lyase from Microbulbifer sp. SH-1 and Its Agricultural Application. Marine Drugs, 2020, 18, 184.	4.6	19
194	Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides. Food Chemistry, 2021, 352, 128685.	8.2	6
195	Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Computational and Structural Biotechnology Journal, 2021, 19, 1531-1540.	4.1	8
196	Production of biofuels, bioactive compounds, and fertilizers from fishery waste and wastewater. , 2021, , 149-181.		Ο
197	Seaweed Biomass Utilization Pathways in Microbes and Their Applications in the Production of Biofuels. Energy, Environment, and Sustainability, 2021, , 99-120.	1.0	0
198	Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Applied and Environmental Microbiology, 2021, 87, .	3.1	17
199	A homodimeric bacterial exo-β-1,3-glucanase derived from moose rumen microbiome shows a structural framework similar to yeast exo-β-1,3-glucanases. Enzyme and Microbial Technology, 2021, 143, 109723.	3.2	7
200	Characterization of a novel PL 17 family alginate lyase with exolytic and endolytic cleavage activity from marine bacterium Microbulbifer sp. SH-1. International Journal of Biological Macromolecules, 2021, 169, 551-563.	7.5	26
201	Metabolic energy variation of yeast affects its antioxidant properties in beer brewing. Systems Microbiology and Biomanufacturing, 2021, 1, 311-322.	2.9	0
202	Novel postharvest processing strategies for valueâ€∎dded applications of marine algae. Journal of the Science of Food and Agriculture, 2021, 101, 4444-4455.	3.5	22
203	A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization. Energy, 2021, 221, 119883.	8.8	18
204	Evaluation of the orally administered calcium alginate aerogel on the changes of gut microbiota and hepatic and renal function of Wistar rats. PLoS ONE, 2021, 16, e0247633.	2.5	8

#	Article	IF	Citations
205	A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. Sustainability, 2021, 13, 6174.	3.2	22
206	Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Critical Reviews in Biotechnology, 2021, 41, 953-968.	9.0	31
207	Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. ChemBioChem, 2021, 22, 2247-2256.	2.6	46
208	An Overview to the Health Benefits of Seaweeds Consumption. Marine Drugs, 2021, 19, 341.	4.6	65
209	Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. Biotechnology for Biofuels, 2021, 14, 158.	6.2	32
210	Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant Journal, 2021, 107, 1299-1319.	5.7	87
211	Biochemical Characterization of a Novel Exo-Type PL7 Alginate Lyase VsAly7D from Marine Vibrio sp. QY108. International Journal of Molecular Sciences, 2021, 22, 8402.	4.1	5
212	Generation of <i>Pseudomonas putida</i> KT2440 Strains with Efficient Utilization of Xylose and Galactose via Adaptive Laboratory Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 11512-11523.	6.7	32
213	Relocation of dehydroquinate dehydratase to the periplasmic space improves dehydroshikimate production with Gluconobacter oxydans strain NBRC3244. Applied Microbiology and Biotechnology, 2021, 105, 5883-5894.	3.6	5
214	A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production. Current Pollution Reports, 0, , 1.	6.6	6
215	Influence of functional groups on low-temperature combustion chemistry of biofuels. Progress in Energy and Combustion Science, 2021, 86, 100925.	31.2	58
216	Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metabolic Engineering, 2021, 67, 293-307.	7.0	30
217	Seaweed-based cellulose: Applications, and future perspectives. Carbohydrate Polymers, 2021, 267, 118241.	10.2	59
218	Random Base Editing for Genome Evolution in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 2440-2446.	3.8	12
219	Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha. International Journal of Biological Macromolecules, 2021, 189, 819-825.	7.5	9
220	Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 151, 111553.	16.4	58
221	Bioethanol Production: Generation-Based Comparative Status Measurements. Clean Energy Production Technologies, 2020, , 155-201.	0.5	16
222	Enabling Bioeconomy with Offshore Macroalgae Biorefineries. , 2020, , 173-200.		5

#	Article	IF	CITATIONS
223	Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Applied Microbiology and Biotechnology, 2017, 101, 6627-6636.	3.6	29
224	Crystallographic analysis of Eisenia hydrolysis-enhancing protein using a long wavelength for native-SAD phasing. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 20-24.	0.8	5
225	Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization. PLoS ONE, 2016, 11, e0155537.	2.5	21
226	Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae. PLoS ONE, 2020, 15, e0242054.	2.5	5
227	Using macroalgae as biofuel: current opportunities and challenges. Botanica Marina, 2020, 63, 355-370.	1.2	55
228	Biofuel production from macroalgae toward bio-based economy. Journal of Marine Bioscience and Biotechnology, 2014, 6, 8-16.	0.1	1
229	Algae as a Platform for Biofuel Production-A Sustainable Perspective. International Journal on Algae, 2017, 19, 283-297.	0.3	2
230	Fermentative Bioethanol Production Using Enzymatically Hydrolysed <i>Saccharina latissima</i> . Advances in Microbiology, 2018, 08, 378-389.	0.6	20
231	Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review. Bioresource Technology Reports, 2021, 16, 100863.	2.7	15
232	Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. Marine Life Science and Technology, 2022, 4, 106-116.	4.6	12
233	Expression and production of thermophilic alginate lyases in Bacillus and direct application of culture supernatant for seaweed saccharification. Algal Research, 2021, 60, 102512.	4.6	3
234	Characterization and Engineering of Seaweed Degrading Enzymes for Biofuels and Biochemicals Production. Green Chemistry and Sustainable Technology, 2016, , 99-128.	0.7	1
235	Comprehensive Screening of Micro-and Macroalgal Species for Bioenergy. , 2017, , 39-56.		0
236	Chapter 6: Ethanol Production from Macroalgae Biomass. , 2017, , 189-200.		0
237	Algae as a platform for biofuel production - a sustainable perspective. Al'gologiya, 2017, 27, 337-356.	0.4	2
238	Scientific Research toward Utilization of Sugars from Brown Macroalgae Using Budding Yeast: Calling for the Unutilized Carbohydrates Resources in Ocean. Kagaku To Seibutsu, 2018, 56, 496-502.	0.0	0
240	Biorefinery involving terrestrial and marine lignocellulosics: concept, potential, and current status. , 2022, , 167-188.		0
241	An oxidative metabolic pathway of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEHU) from alginate in an alginate-assimilating bacterium. Communications Biology, 2021, 4, 1254.	4.4	2

#	Article	IF	CITATIONS
242	Antioxidant neoagarooligosaccharides (NAOs) and dietary fiber production from red algae Gracilariopsis lemaneiformis using enzyme assisted one-step process. Food Hydrocolloids, 2022, 125, 107382.	10.7	5
243	4-Deoxy-l-erythro-5-hexoseulose Uronate (DEH) and DEH Reductase: Key Molecule and Enzyme for the Metabolism and Utilization of Alginate. Molecules, 2022, 27, 338.	3.8	5
245	Metabolic engineering for valorization of macroalgae biomass. Metabolic Engineering, 2022, 71, 42-61.	7.0	29
246	Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. Journal of Agricultural and Food Chemistry, 2022, 70, 1438-1453.	5.2	11
247	Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: Cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. Algal Research, 2022, 62, 102618.	4.6	13
248	Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories, 2021, 20, 220.	4.0	27
250	Fuelling the future of sustainable sugar fermentation across generations. Engineering Biology, 2022, 6, 3-16.	1.8	2
251	Comparison of Biochemical Characteristics, Action Models, and Enzymatic Mechanisms of a Novel Exolytic and Two Endolytic Lyases with Mannuronate Preference. Marine Drugs, 2021, 19, 706.	4.6	1
252	Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass. Energies, 2021, 14, 8053.	3.1	1
259	Efficient utilization of carbon to produce aromatic valencene in <i>Saccharomyces cerevisiae</i> using mannitol as the substrate. Green Chemistry, 2022, 24, 4614-4627.	9.0	9
260	Production of 4-Deoxy-L-erythro-5-Hexoseulose Uronic Acid Using Two Free and Immobilized Alginate Lyases from Falsirhodobacter sp. Alg1. Molecules, 2022, 27, 3308.	3.8	3
261	Oligomeric state of the aspartate:alanine transporter from <i>Tetragenococcus halophilus</i> . Journal of Biochemistry, 2022, 172, 217-224.	1.7	2
262	Co-culture approach for effective biomass utilization and enhanced solvent production by Clostridium acetobutylicum DSM 792 and Enterobacter hormaechei subsp. xiangfangensis SW2. Biomass Conversion and Biorefinery, 0, , .	4.6	1
263	Bioconversion of Brown Algae <i>Sargassum horneri</i> into Ethanol by Simultaneous Saccharification and Fermentation by Mannitol-fermenting <i>Saccharomyces cerevisiae</i> . KSBB Journal, 2022, 37, 49-57.	0.2	0
264	Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Marine Drugs, 2022, 20, 506.	4.6	8
265	1H, 13C, 15N resonance assignment of the enzyme KdgF from Bacteroides eggerthii. Biomolecular NMR Assignments, 2022, 16, 343-347.	0.8	2
266	Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus. Frontiers in Plant Science, 0, 13, .	3.6	6
267	The characterisation of Wickerhamomyces anomalus M15, a highly tolerant yeast for bioethanol production using seaweed derived medium. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	2

#	Article	IF	CITATIONS
268	An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae. , 2022, 15, .		4
269	Challenges and opportunities for third-generation ethanol production: A critical review. Engineering Microbiology, 2023, 3, 100056.	4.7	8
270	Deciphering of the Mannitol Metabolism Pathway in Clostridium tyrobutyricum ATCC 25755 by Comparative Transcriptome Analysis. Applied Biochemistry and Biotechnology, 2023, 195, 1072-1084.	2.9	4
271	Developments in seaweed biorefinery research: A comprehensive review. Chemical Engineering Journal, 2023, 454, 140177.	12.7	13
272	Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges. Renewable and Sustainable Energy Reviews, 2023, 172, 113012.	16.4	11
273	Macroalgae as a potential source of biomass for generation of biofuel: Artificial intelligence, challenges, and future insights towards a sustainable environment. Fuel, 2023, 336, 126826.	6.4	3
274	Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. Biotechnology and Bioprocess Engineering, 2022, 27, 879-889.	2.6	7
275	Biofuel Production from Seaweeds: A Comprehensive Review. Energies, 2022, 15, 9395.	3.1	11
276	Proximate and mineral compositions of the green seaweeds Caulerpa lentilifera and Caulerpa racemosa from South Sulawesi Coast, Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 1119, 012049.	0.3	4
277	Integrating the marine carbon resource mannitol into biomanufacturing. Trends in Biotechnology, 2023, , .	9.3	0
278	Plant Cell Factory for Production ofÂBiomolecules. , 2023, , 253-272.		0
279	The composition, function and assembly mechanism of epiphytic microbial communities on Gracilariopsis lemaneiformis. Journal of Experimental Marine Biology and Ecology, 2023, 564, 151909.	1.5	1
280	A novel alginate lyase and its domain functions for the preparation of unsaturated monosaccharides. Applied Microbiology and Biotechnology, 2023, 107, 1737-1749.	3.6	2
281	Macroalgal polysaccharides: Biocatalysts in biofuel/bioenergy production. , 2023, , 227-273.		0
282	Taking Synthetic Biology to the Seas – From Blue Chassis Organisms to Marine Aquaforming. ChemBioChem, 0, , .	2.6	0
283	A First Marine Vibrio Biocatalyst to Produce Ethanol from Alginate, which is a Rich Polysaccharide in Brown Macroalgal Biomass. Current Microbiology, 2023, 80, .	2.2	0
284	Characterization and Mechanism Study of a Novel PL7 Family Exolytic Alginate Lyase from Marine Bacteria Vibrio sp. W13. Applied Biochemistry and Biotechnology, 2024, 196, 68-84.	2.9	0
285	Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms, 2023, 11, 1499.	3.6	3

#	Article	IF	CITATIONS
287	Recent trends in functional characteristics and degradation methods of alginate. BIO Web of Conferences, 2023, 61, 01015.	0.2	1
288	Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Marine Drugs, 2023, 21, 384.	4.6	13
289	Indole-3-acetic Acid Production from Alginate by Vibrio sp. dhg: Physiology and Characteristics. Biotechnology and Bioprocess Engineering, 2023, 28, 695-703.	2.6	4
290	Quantitative Analysis of The High‥ield Hydrolysis of Kelp by Laminarinase and Alginate Lyase. ChemBioChem, 2023, 24, .	2.6	3
292	Algae: The Reservoir of Bioethanol. Fermentation, 2023, 9, 712.	3.0	2
293	Diversity of culturable alginate lyase-excreting bacteria associated with Sargassum. Acta Oceanologica Sinica, 2023, 42, 70-77.	1.0	0
294	A repertoire of alginate lyases in the alginate polysaccharide utilization loci of marine bacterium <i>Wenyingzhuangia fucanilytica</i> : biochemical properties and action pattern. Journal of the Science of Food and Agriculture, 2024, 104, 134-140.	3.5	1
296	Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. Fermentation, 2023, 9, 934.	3.0	1
297	Structural basis of EHEP-mediated offense against phlorotannin-induced defense from brown algae to protect akuBGL activity. ELife, 0, 12, .	6.0	0
298	Direct and robust citramalate production from brown macroalgae using fast-growing Vibrio sp. dhg. Bioresource Technology, 2024, 394, 130304.	9.6	0
299	Component analysis and utilization strategy of brown macroalgae as promising feedstock for sugar platform-based marine biorefinery. Biotechnology and Bioprocess Engineering, 2024, 29, 377-386.	2.6	0