H- and J-Aggregate Behavior in Polymeric Semiconduct

Annual Review of Physical Chemistry 65, 477-500

DOI: 10.1146/annurev-physchem-040513-103639

Citation Report

#	Article	IF	CITATIONS
5	Jâ€Aggregates of Organic Dye Molecules Complexed with Iron Oxide Nanoparticles for Imagingâ€Guided Photothermal Therapy Under 915â€nm Light. Small, 2014, 10, 4362-4370.	5.2	96
6	Process dependence of morphology and microstructure of cyanine dye J-aggregate film: correlation with absorption, photo- and electroluminescence properties. Optics Express, 2014, 22, 29388.	1.7	10
7	H- and J-Aggregation of Fluorene-Based Chromophores. Journal of Physical Chemistry B, 2014, 118, 14536-14545.	1.2	147
8	Organic electronics and photonics: concluding remarks. Faraday Discussions, 2014, 174, 429-438.	1.6	11
9	HJ-Aggregate Behavior of Crystalline 7,8,15,16-Tetraazaterrylene: Introducing a New Design Paradigm for Organic Materials. Journal of Physical Chemistry C, 2014, 118, 28842-28854.	1.5	105
10	Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy. Journal of Optics (United Kingdom), 2014, 16, 114021.	1.0	13
11	Functional organic single crystals for solid-state laser applications. Laser and Photonics Reviews, 2014, 8, 687-715.	4.4	160
12	Isoindigo-Containing Molecular Semiconductors: Effect of Backbone Extension on Molecular Organization and Organic Solar Cell Performance. Chemistry of Materials, 2014, 26, 6570-6577.	3.2	28
14	One-Pot Synthesis and Characterization of All-Conjugated Poly(3-alkylthiophene)- <i>block</i> -poly(dialkylthieno[3,4- <i>b</i> -poly(dialkylthieno[3,4- <i)-b< i="">-poly(dialkylthieno[3,4-<i)-b< i="">-poly(di</i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<></i)-b<>	2.2	24
15	Temperature resolved aggregate states in dialkoxyphenylene-thiophene oligomer. Chemical Physics Letters, 2014, 614, 67-71.	1.2	4
16	Poly(3-alkylthiophene) nanofibers for optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 5730.	2.7	36
17	Chromophore Bending Controls Fluorescence Lifetime in Single Conjugated Polymer Chains. Journal of Physical Chemistry Letters, 2014, 5, 2165-2170.	2.1	26
18	Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nature Communications, 2014, 5, 4288.	5.8	140
19	Excitonic Energy Migration in Conjugated Polymers: The Critical Role of Interchain Morphology. Journal of the American Chemical Society, 2014, 136, 16023-16031.	6.6	41
20	Influence of morphological disorder on in- and out-of-plane charge transport in conjugated polymer films. MRS Communications, 2015, 5, 593-598.	0.8	15
21	Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks. Journal of Chemical Physics, 2015, 143, 244707.	1.2	137
22	Hole mobility enhancement of MEH-PPV film by heat treatment at <i>T</i> g. AIP Advances, 2015, 5, .	0.6	13
23	Optical Anisotropy and Strong <i>H</i> â€Aggregation of Poly(3â€Alkylthiophene) in a Surface Monolayer. Advanced Materials, 2015, 27, 6014-6020.	11.1	17

#	ARTICLE	IF	CITATIONS
24	Revealing structure formation in PCPDTBT by optical spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1416-1430.	2.4	41
25	Molecular-Level Details of Morphology-Dependent Exciton Migration in Poly(3-hexylthiophene) Nanostructures. Journal of Physical Chemistry C, 2015, 119, 7047-7059.	1.5	29
26	Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews, 2015, 115, 5929-5978.	23.0	160
27	Comparison of Charge-Transfer Dynamics of Naphthalenediimide Triads in Solution and π-Stack Architectures on Solid Surfaces. Journal of Physical Chemistry C, 2015, 119, 14999-15008.	1.5	18
28	Efficiency enhancement in a single emission layer yellow organic light emitting device: Contribution of CIS/ZnS quantum dot. Thin Solid Films, 2015, 589, 153-160.	0.8	19
29	Intermolecular Interactions Determine Exciton Lifetimes in Neat Films and Solid State Solutions of Metal-Free Phthalocyanine. Journal of Physical Chemistry C, 2015, 119, 27340-27347.	1.5	23
30	Charge generation and morphology in P3HT : PCBM nanoparticles prepared by mini-emulsion and reprecipitation methods. Nanoscale, 2015, 7, 19899-19904.	2.8	53
31	A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control. Journal of the American Chemical Society, 2015, 137, 2908-2918.	6.6	75
32	Role of charge separation mechanism and local disorder at hybrid solar cell interfaces. Physical Review B, 2015, 91, .	1.1	7
33	Simulations of singlet exciton diffusion in organic semiconductors: a review. RSC Advances, 2015, 5, 8432-8445.	1.7	45
34	Tailoring the optical properties of poly(3-hexylthiophene) by emulsion processing using polymeric macrosurfactants. Journal of Materials Chemistry C, 2015, 3, 2065-2071.	2.7	10
35	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	5.2	47
36	Carpenter's Rule Folding in Rigid–Flexible Block Copolymers with Conjugation-Interrupting, Flexible Tethers Between Oligophenylenevinylenes. Journal of Physical Chemistry A, 2015, 119, 8010-8020.	1.1	11
37	Balancing the H- and J-aggregation in DTS(PTTh ₂) ₂ /PC ₇₀ BM to yield a high photovoltaic efficiency. Journal of Materials Chemistry C, 2015, 3, 8183-8192.	2.7	45
38	Enhanced Charge Transfer Doping Efficiency in J-Aggregate Poly(3-hexylthiophene) Nanofibers. Journal of Physical Chemistry C, 2015, 119, 16396-16402.	1.5	65
39	Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology. Energy and Environmental Science, 2015, 8, 2713-2724.	15.6	44
40	Investigating the molecular and aggregated states of a drug molecule rutaecarpine using spectroscopy, microscopy, crystallography and computational studies. Physical Chemistry Chemical Physics, 2015, 17, 13992-14002.	1.3	25
41	Two-photon absorption of polyfluorene aggregates stabilized by insulin amyloid fibrils. RSC Advances, 2015, 5, 49363-49368.	1.7	9

3

#	Article	IF	Citations
42	Thermochromism, Franck–Condon Analysis and Interfacial Dynamics of a Donor–Acceptor Copolymer with a Low Band Gap. Chemistry of Materials, 2015, 27, 2770-2779.	3.2	4
43	Polythienylene–Vinylene Structure–Function Correlations Revealed from Resonance Raman Spectroscopy and Photocurrent Imaging. Journal of Physical Chemistry C, 2015, 119, 8980-8990.	1.5	14
44	Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene–Fullerene Heterojunctions. Journal of Physical Chemistry Letters, 2015, 6, 1702-1708.	2.1	72
45	Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Samp; Interfaces, 2015, 7, 8188-8199.	4.0	38
46	(3Z,3′Z)-3,3′-(Hydrazine-1,2-diylidene)bis(indolin-2-one) as a new electron-acceptor building block for donor–acceptor l̃€-conjugated polymers for organic thin film transistors. Journal of Materials Chemistry C, 2015, 3, 4464-4470.	2.7	16
47	Molecular Engineering of Nonhalogenated Solution-Processable Bithiazole-Based Electron-Transport Polymeric Semiconductors. Chemistry of Materials, 2015, 27, 2928-2937.	3.2	79
48	Kinetic Analysis as a Tool to Distinguish Pathway Complexity in Molecular Assembly: An Unexpected Outcome of Structures in Competition. Journal of the American Chemical Society, 2015, 137, 12677-12688.	6.6	92
49	Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides. Nature Communications, 2015, 6, 8646.	5.8	148
50	Structure <i>>vs.</i> excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering. Nanoscale, 2015, 7, 20435-20441.	2.8	17
51	Pyrimido[4,5-g]quinazoline-4,9-dione as a new building block for constructing polymer semiconductors with high sensitivity to acids and hole transport performance in organic thin film transistors. Journal of Materials Chemistry C, 2015, 3, 11937-11944.	2.7	9
52	Study of Optical Properties and Molecular Aggregation of Conjugated Low Band Gap Copolymers: PTB7 and PTB7-Th. Journal of Physical Chemistry C, 2015, 119, 24643-24648.	1.5	87
53	Peptide π-Electron Conjugates: Organic Electronics for Biology?. Bioconjugate Chemistry, 2015, 26, 2290-2302.	1.8	104
54	Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis. Physical Chemistry Chemical Physics, 2015, 17, 28616-28625.	1.3	60
55	Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 2015, 3, 10715-10722.	2.7	689
56	Exciton and polaron interactions in self-assembled conjugated polymer aggregates., 2015,,.		0
57	Solvent-dependent self-assembly and ordering in slow-drying drop-cast conjugated polymer films. Journal of Materials Chemistry C, 2015, 3, 9842-9848.	2.7	23
58	Solution processing of polymer semiconductor: Insulator blendsâ€"Tailored optical properties through liquidâ€"liquid phase separation control. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 304-310.	2.4	25
59	Hydrogen-bonding versus π–π stacking in the design of organic semiconductors: From dyes to oligomers. Progress in Polymer Science, 2015, 43, 33-47.	11.8	26

#	Article	IF	CITATIONS
60	Characterizing Electric Field Exposed P3HT Thin Films Using Polarized‣ight Spectroscopies. Macromolecular Chemistry and Physics, 2016, 217, 1801-1809.	1.1	3
61	Morphology control of poly(3-hexylthiophene)-b-poly(ethylene oxide) block copolymer by solvent blending. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 544-551.	2.4	14
62	Effect of hexyl substituent groups on photophysical and electrochemical properties of the poly[(9,9â€Dioctyluorene)â^2,7â€diylâ€altâ€(4,7â€bis (3â€Hexylthienâ€5â€Yl)â^2,1,3â€Benzothiadiazole)â^2 Polymer Science, Part B: Polymer Physics, 2016, 54, 1975-1982.	â€3 ,2 1″â	i€d i yl]. Journa
63	Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer. Proceedings of SPIE, 2016, , .	0.8	O
64	Enhanced Polarization Ratio of Electrospun Nanofibers with Increased Intrachain Order by Postsolvent Treatments. Journal of Physical Chemistry B, 2016, 120, 12981-12987.	1.2	6
65	Emitting Species of Poly(3-hexylthiophene): From Single, Isolated Chains to Bulk. Macromolecules, 2016, 49, 9553-9560.	2.2	35
66	Theory of multiexciton dynamics in molecular chains. Physical Review B, 2016, 94, .	1.1	19
67	Changes in the photo-absorption spectrum of MEH-PPV in solution. , 2016, , .		O
68	The effect of intermolecular interaction on excited states in p â ⁻ ' DTS(FBTTH2)2. Journal of Chemical Physics, 2016, 144, 074904.	1.2	14
69	A low-symmetrical zinc phthalocyanine-based Langmuir-Blodgett thin films forNO ₂ gas sensor applications. Journal of Physics: Conference Series, 2016, 737, 012030.	0.3	2
70	Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach. Journal of Chemical Physics, 2016, 144, 214302.	1.2	2
71	Dithienophospholeâ€Based Phosphinamides with Intriguing Selfâ€Assembly Behavior. Angewandte Chemie - International Edition, 2016, 55, 3481-3485.	7.2	35
72	Dithienophospholeâ€Based Phosphinamides with Intriguing Selfâ€Assembly Behavior. Angewandte Chemie, 2016, 128, 3542-3546.	1.6	12
73	A "roller-wheel―Pt-containing small molecule that outperforms its polymer analogs in organic solar cells. Chemical Science, 2016, 7, 5798-5804.	3.7	20
74	Exploring the origin of high optical absorption in conjugated polymers. Nature Materials, 2016, 15, 746-753.	13.3	314
75	Graphene induced porphyrin nano-aggregates for efficient electron transfer and photocurrent generation. Journal of Materials Chemistry C, 2016, 4, 6027-6036.	2.7	31
76	Impact of neutral and anion anchoring groups on the photovoltaic performance of triphenylamine sensitizers for dye-sensitized solar cells. RSC Advances, 2016, 6, 26559-26567.	1.7	23
77	Nanoaggregation of Polyaromatic Compounds Probed by Electrospray Ionization Mass Spectrometry. Energy & Damp; Fuels, 2016, 30, 3742-3751.	2.5	5

#	Article	IF	CITATIONS
78	Photophysical and Morphological Implications of Single-Strand Conjugated Polymer Folding in Solution. Chemistry of Materials, 2016, 28, 2814-2822.	3.2	76
79	Ultrafast excitonic and charge transfer dynamics in nanostructured organic polymer materials. , 2016, , .		0
80	A simple dimeric model accounts for the vibronic ECD spectra of chiral polythiophenes in their aggregated states. RSC Advances, 2016, 6, 37938-37943.	1.7	31
81	High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. Journal of the American Chemical Society, 2016, 138, 8096-8103.	6.6	217
82	Effects of Processing Solvent on the Photophysics and Nanomorphology of Poly(3-butyl-thiophene) Nanowires:PCBM Blends. Journal of Physical Chemistry Letters, 2016, 7, 1872-1879.	2.1	17
83	Thermal reorganization of alkyl-substituted thienothiophene semiconductors. Journal of Materials Chemistry C, 2016, 4, 5255-5262.	2.7	5
84	Marginal solvents preferentially improve the molecular order of thin polythiophene films. RSC Advances, 2016, 6, 23640-23644.	1.7	6
85	Effect of chiral 2-ethylhexyl side chains on chiroptical properties of the narrow bandgap conjugated polymers PCPDTBT and PCDTPT. Chemical Science, 2016, 7, 5313-5321.	3.7	28
86	Structurally Diverse Poly(thienylene vinylene)s (PTVs) with Systematically Tunable Properties through Acyclic Diene Metathesis (ADMET) and Postpolymerization Modification. Macromolecules, 2016, 49, 3318-3327.	2.2	21
87	Aggregation structures of organic conjugated molecules on their optoelectronic properties. Chinese Chemical Letters, 2016, 27, 1350-1356.	4.8	31
88	Organic Polymer Dots as Photocatalysts for Visible Lightâ€Driven Hydrogen Generation. Angewandte Chemie - International Edition, 2016, 55, 12306-12310.	7.2	191
89	Organic Polymer Dots as Photocatalysts for Visible Lightâ€Driven Hydrogen Generation. Angewandte Chemie, 2016, 128, 12494-12498.	1.6	49
90	Interchain Charge-Transfer States Mediate Triplet Formation in Purified Conjugated Polymer Aggregates. Journal of Physical Chemistry C, 2016, 120, 23230-23238.	1.5	24
91	Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho3+-Doped ZnO Nanostructures. Nanoscale Research Letters, 2016, 11, 418.	3.1	32
92	Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews, 2016, 116, 13279-13412.	23.0	1,205
93	Effect of side chains on the electronic and photovoltaic properties of diketopyrrolopyrrole-based molecular acceptors. Organic Electronics, 2016, 37, 479-484.	1.4	23
94	A Highly Crystalline and Wide-Bandgap Polydiarylfluorene with \hat{l}^2 -Phase Conformation toward Stable Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Electroluminescence and Dual Amplified Spontaneous Emission.	4.0	68
95	Intra- and Intermolecular Singlet Fission in Covalently Linked Dimers. Journal of Physical Chemistry C, 2016, 120, 19070-19077.	1.5	56

#	Article	IF	CITATIONS
96	Excited-state dynamics of an amphiphilic diblock copolymer self-assembled from mixed solvents. Polymer, 2016, 99, 122-129.	1.8	2
97	Origin of Excitation Dependent Fluorescence in Carbon Nanodots. Journal of Physical Chemistry Letters, 2016, 7, 3695-3702.	2.1	267
98	Watching Paint Dry: The Impact of Diiodooctane on the Kinetics of Aggregate Formation in Thin Films of Poly(3-hexylthiophene). Macromolecules, 2016, 49, 6420-6430.	2,2	29
99	Synthesis, characterization, and air stability study of pyrimido [4,5-g] quinazoline-4,9-dione-based polymers for organic thin film transistors. RSC Advances, 2016, 6, 78477-78485.	1.7	1
100	Highly coplanar bis(thiazol-2-yl)-diketopyrrolopyrrole based donor–acceptor copolymers for ambipolar field effect transistors. RSC Advances, 2016, 6, 78008-78016.	1.7	16
101	Self-assembly of organic dyes in supramolecular aggregates. Photochemical and Photobiological Sciences, 2016, 15, 1103-1114.	1.6	108
102	Ultrafast Raman Spectroscopy as a Probe of Local Structure and Dynamics in Photoexcited Conjugated Materials. Journal of Physical Chemistry Letters, 2016, 7, 3990-4000.	2.1	34
103	Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2016, 26, 8011-8022.	7.8	24
104	Influence of Ester versus Amide Linkers on the Supramolecular Polymerization Mechanisms of Planar BODIPY Dyes. Chemistry - A European Journal, 2016, 22, 15772-15777.	1.7	55
105	Continuously-tunable fluorescent polypeptides through a polymer-assisted assembly strategy. Polymer Chemistry, 2016, 7, 5181-5187.	1.9	21
106	Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates. ACS Applied Materials & Solution-State Aggregates. ACS Applied Materials & Solution-State Aggregates.	4.0	15
107	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838.	2.7	11
108	Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. Journal of the American Chemical Society, 2016, 138, 15497-15505.	6.6	16
109	Slow Singlet Fission Observed in a Polycrystalline Perylenediimide Thin Film. Journal of Physical Chemistry Letters, 2016, 7, 4922-4928.	2.1	95
110	Revealing Order and Disorder in Films and Single Crystals of a Thiophene-Based Oligomer by Optical Spectroscopy. ACS Photonics, 2016, 3, 2315-2323.	3.2	6
111	H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy. Scientific Reports, 2016, 6, 32434.	1.6	53
112	Optical Spectra of p-Doped PEDOT Nanoaggregates Provide Insight into the Material Disorder. ACS Energy Letters, 2016, 1, 1100-1105.	8.8	5
113	Exciton Transfer and Emergent Excitonic States in Oppositely-Charged Conjugated Polyelectrolyte Complexes. Journal of Physical Chemistry B, 2016, 120, 7767-7774.	1.2	24

#	ARTICLE	IF	CITATIONS
114	Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design. Journal of Materials Chemistry C, 2016, 4, 10893-10902.	2.7	3
116	Unraveling the real structures of solution-based and surface-bound poly(3-hexylthiophene) (P3HT) oligomers: a combined theoretical and experimental study. RSC Advances, 2016, 6, 56174-56182.	1.7	21
117	Increasing H-aggregation of p-DTS(FBTTh2)2 to improve photovoltaic efficiency by solvent vapor annealing. Organic Electronics, 2016, 37, 6-13.	1.4	21
118	Temperature-dependent intermolecular coupling and exciton migration in an anthracene containing PPE-PPV copolymer. Synthetic Metals, 2016, 220, 221-226.	2.1	5
119	Diffusional motion as a gauge of fluidity and interfacial adhesion. Supported alkylphosphonate monolayers. Journal of Colloid and Interface Science, 2016, 468, 145-155.	5.0	11
120	Holeâ€buffer polymer composed of alternating <i>p</i> à€terphenyl and tetraethylene glycol ether moieties: Synthesis and application in polymer lightâ€emitting diodes. Journal of Polymer Science Part A, 2016, 54, 785-794.	2.5	4
121	Molecular Materials That Can Both Emit Light and Conduct Charges: Strategies and Perspectives. Chemistry - A European Journal, 2016, 22, 462-471.	1.7	43
122	Charges on nano-islands and fibrils of poly(3-hexylthiophene-2,5-diyl) – light-modulation, injection and transportation. RSC Advances, 2016, 6, 15577-15584.	1.7	5
123	Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. Journal of Materials Chemistry C, 2016, 4, 3942-3947.	2.7	44
124	Molecular Packing Determines Charge Separation in a Liquid Crystalline Bisthiophene–Perylene Diimide Donor–Acceptor Material. Journal of Physical Chemistry Letters, 2016, 7, 1327-1334.	2.1	28
125	Fluorescence and surface-enhanced vibrational spectroscopies of lawsone and plumbagin. Spectroscopy Letters, 2016, 49, 326-335.	0.5	2
126	Role of Aggregates in the Luminescence Decay Dynamics of Conjugated Polymers. Journal of Physical Chemistry A, 2016, 120, 551-555.	1.1	11
127	Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2087-2096.	1.3	9
128	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. Journal of Physical Chemistry C, 2016, 120, 816-830.	1.5	257
129	All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. Journal of the American Chemical Society, 2016, 138, 1240-1251.	6.6	276
130	Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt(<scp>ii</scp>) porphyrins. Polymer Chemistry, 2016, 7, 722-730.	1.9	18
131	Cooperative nanoparticle H-type self-assembly of a bolaamphiphilic BODIPY derivative in aqueous medium. Polymer, 2017, 128, 317-324.	1.8	27
132	Controlling the folding of conjugated polymers at the single molecule level via hydrogen bonding. Polymer Chemistry, 2017, 8, 1188-1195.	1.9	8

#	Article	IF	Citations
133	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. Macromolecules, 2017, 50, 1047-1055.	2.2	18
134	Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials. Accounts of Chemical Research, 2017, 50, 341-350.	7.6	441
135	Construction of Multichromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer. Physical Review Letters, 2017, 118, 013001.	2.9	15
136	Diketopyrrolopyrrole-based conjugated polymer for printed organic field-effect transistors and gas sensors. Dyes and Pigments, 2017, 140, 244-249.	2.0	33
137	The Aggregation of Poly(3-hexylthiophene) into Nanowires: With and without Chemical Doping. Journal of Physical Chemistry C, 2017, 121, 4740-4746.	1.5	22
138	Evaporation rate-based selection of supramolecular chirality. Chemical Communications, 2017, 53, 3066-3069.	2.2	19
139	Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature Communications, 2017, 8, 14541.	5.8	298
140	Patchy Nanofibers from the Thin Film Selfâ€Assembly of a Conjugated Diblock Copolymer. Angewandte Chemie - International Edition, 2017, 56, 6152-6156.	7.2	25
141	Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. Journal of Chemical Physics, 2017, 146, 064109.	1.2	50
142	Patchy Nanofibers from the Thin Film Selfâ€Assembly of a Conjugated Diblock Copolymer. Angewandte Chemie, 2017, 129, 6248-6252.	1.6	5
143	Modeling Ultrafast Exciton Migration within the Electron Donor Domains of Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 5467-5479.	1.5	2
144	Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochemical and Photobiological Sciences, 2017, 16, 694-710.	1.6	14
145	Origin of Dual-Peak Phosphorescence and Ultralong Lifetime of 4,6-Diethoxy-2-carbazolyl-1,3,5-triazine. Journal of Physical Chemistry Letters, 2017, 8, 1253-1258.	2.1	22
146	Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry Letters, 2017, 8, 1044-1052.	2.1	186
147	Hierarchy of stochastic Schrödinger equation towards the calculation of absorption and circular dichroism spectra. Journal of Chemical Physics, 2017, 146, 174105.	1.2	16
148	Impact of backbone fluorination on nanoscale morphology and excitonic coupling in polythiophenes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5113-5118.	3.3	46
149	Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. Chemistry of Materials, 2017, 29, 4432-4444.	3.2	67
150	Tuning Frontier Orbital Energetics of Azaisoindigoâ€Based Polymeric Semiconductors to Enhance the Chargeâ€Transport Properties. Advanced Electronic Materials, 2017, 3, 1700078.	2.6	34

#	Article	IF	CITATIONS
151	Improving the Quantum Yields of Perylene Diimide Aggregates by Increasing Molecular Hydrophobicity in Polar Media. ChemPhysChem, 2017, 18, 2430-2441.	1.0	10
152	Fine Molecular Tuning of Diketopyrrolopyrrole-Based Polymer Semiconductors for Efficient Charge Transport: Effects of Intramolecular Conjugation Structure. Macromolecules, 2017, 50, 4227-4234.	2.2	31
153	Laser-induced crystallization and conformation control of poly(3-hexylthiophene) for improving the performance of organic solar cells. Organic Electronics, 2017, 49, 157-164.	1.4	8
154	Highly Anisotropic Conjugated Polymer Aggregates: Preparation and Quantification of Physical and Optical Anisotropy. Journal of Physical Chemistry C, 2017, 121, 13854-13862.	1.5	18
155	Understanding the molecular gelation processes of heteroatomic conjugated polymers for stable blue polymer light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6762-6770.	2.7	19
156	The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene). Journal of Materials Chemistry C, 2017, 5, 5764-5771.	2.7	23
157	Charge transport in highly ordered organic nanofibrils: lessons from modelling. Journal of Materials Chemistry C, 2017, 5, 350-361.	2.7	22
158	Nanosheets of an Organic Molecular Assembly from Aqueous Medium Exhibit High Solidâ€State Emission and Anisotropic Chargeâ€Carrier Mobility. Advanced Materials, 2017, 29, 1605408.	11.1	97
159	Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Chemical Reviews, 2017, 117, 838-859.	23.0	217
160	Mechanosensitive Gold Colloidal Membranes Mediated by Supramolecular Interfacial Self-Assembly. Journal of the American Chemical Society, 2017, 139, 1120-1128.	6.6	24
161	Effect of alkoxy side chains on intra and interchain exciton coupling in PPE-PPV copolymers solution. Synthetic Metals, 2017, 224, 72-79.	2.1	6
162	Optoelectronic Properties of PCPDTBT for Photovoltaics: Morphology Control and Molecular Doping. Advances in Polymer Science, 2017, , 109-138.	0.4	3
163	Temperature Induced Order–Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 114-125.	2.1	153
164	Quantum Interference in Singlet Fission: J- and H-Aggregate Behavior. Journal of Physical Chemistry Letters, 2017, 8, 5105-5112.	2.1	37
165	A comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Organic Electronics, 2017, 51, 362-403.	1.4	81
166	Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2017, 8, 5626-5632.	2.1	10
167	In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating. Advanced Materials, 2017, 29, 1703933.	11.1	80
168	Effect of a heavy heteroatom on triplet formation and interactions in single conjugated polymer molecules and aggregates. Physical Chemistry Chemical Physics, 2017, 19, 28239-28248.	1.3	15

#	Article	IF	CITATIONS
169	Sequential Doping Reveals the Importance of Amorphous Chain Rigidity in Charge Transport of Semi-Crystalline Polymers. Journal of Physical Chemistry Letters, 2017, 8, 4974-4980.	2.1	72
170	Salt-induced thermochromism of a conjugated polyelectrolyte. Physical Chemistry Chemical Physics, 2017, 19, 28853-28866.	1.3	12
171	A Supramolecular Nanocomposite as a Nearâ€Infraredâ€Transmitting Optical Filter for Security and Forensic Applications. Advanced Materials, 2017, 29, 1703783.	11.1	48
172	Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 4858-4864.	2.1	13
173	Modulating Thiazole Orange Aggregation in Giant Lipid Vesicles: Photophysical Study Associated with FLIM and FCS. ACS Omega, 2017, 2, 5036-5043.	1.6	10
174	Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials, 2017, 7, 1700236.	10.2	249
175	The correspondence between the conformational and chromophoric properties of amorphous conjugated polymers in mesoscale condensed systems. Physical Chemistry Chemical Physics, 2017, 19, 20818-20828.	1.3	6
176	"Roller-Wheel―Type Pt-Containing Small Molecules and the Impact of "Rollers―on Material Crystallinity, Electronic Properties, and Solar Cell Performance. Journal of the American Chemical Society, 2017, 139, 14109-14119.	6.6	20
177	Fluorinated Dithienylethene–Naphthalenediimide Copolymers for High-Mobility n-Channel Field-Effect Transistors. Macromolecules, 2017, 50, 6098-6107.	2.2	48
178	Signatures of Melting and Recrystallization of a Bulky Substituted Poly(thiophene) Identified by Optical Spectroscopy. Macromolecules, 2017, 50, 6829-6839.	2.2	15
179	Exciton Relaxation in Highly Rigid Conjugated Polymers: Correlating Radiative Dynamics with Structural Heterogeneity and Wavefunction Delocalization. ACS Energy Letters, 2017, 2, 2096-2102.	8.8	20
180	Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides. ACS Central Science, 2017, 3, 986-994.	5.3	28
181	High photovoltaic performance of as-cast devices based on new quinoxaline-based donor–acceptor copolymers. Polymer Chemistry, 2017, 8, 5688-5697.	1.9	13
182	On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol upon Lateral Compression and Spacer Length Variation. ACS Applied Materials & Description (2017), 9, 44181-44191.	4.0	22
183	Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes. Journal of Physical Chemistry A, 2017, 121, 9567-9578.	1.1	13
184	Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films. ACS Applied Materials & Deposited Conjugated Polymer Thin Films. ACS Applied Materials & Deposited Conjugated Polymer Thin Films. ACS Applied Materials & Deposited Conjugated Polymer Thin Films.	4.0	17
185	Ultrafast Excited-State Energy Transfer in DTDCTB Dimers Embedded in a Crystal Environment: Quantum Dynamics with the Multilayer Multiconfigurational Time-Dependent Hartree Method. Journal of Physical Chemistry C, 2017, 121, 27263-27273.	1.5	8
186	Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nature Communications, 2017, 8, 1641.	5.8	100

#	Article	IF	Citations
187	Simultaneous doping and crosslinking of polythiophene films. Polymer Chemistry, 2017, 8, 7351-7359.	1.9	17
188	Impact of the glass transition on exciton dynamics in polymer thin films. Physical Review B, 2017, 96, .	1.1	1
189	Singlet Exciton Delocalization in Gold Nanoparticle-Tethered Poly(3-hexylthiophene) Nanofibers with Enhanced Intrachain Ordering. Macromolecules, 2017, 50, 8487-8496.	2.2	12
190	Spotlight on Excitonic Coupling in Polymorphic and Textured Anilino Squaraine Thin Films. Crystal Growth and Design, 2017, 17, 6455-6466.	1.4	36
191	Photoinduced Charge Transfer in Poly(3-hexylthiophene)/TiO2 Hybrid Inverse Opals: Photonic vs Interfacial Effects. Journal of Physical Chemistry C, 2017, 121, 26987-26996.	1.5	6
192	Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility. Chemistry of Materials, 2017, 29, 10220-10232.	3.2	40
193	Mixed conductivity of polythiophene-based ionic polymers under controlled conditions. Polymer, 2017, 132, 216-226.	1.8	21
194	Excitonic coupling dominates the homogeneous photoluminescence excitation linewidth in semicrystalline polymeric semiconductors. Physical Review B, 2017, 95, .	1.1	17
195	Role of Triplet-State Shelving in Organic Photovoltaics: Single-Chain Aggregates of Poly(3-hexylthiophene) versus Mesoscopic Multichain Aggregates. Journal of the American Chemical Society, 2017, 139, 9787-9790.	6.6	22
196	Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nature Communications, 2017, 8, 16070.	5.8	78
197	Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics. Chemical Physics, 2017, 482, 16-26.	0.9	13
198	Mapping of exciton–exciton annihilation in MEH-PPV by time-resolved spectroscopy: experiment and microscopic theory. Physical Chemistry Chemical Physics, 2017, 19, 31989-31996.	1.3	13
199	Ultrafast bridge planarization in donor-ï€-acceptor copolymers drives intramolecular charge transfer. Nature Communications, 2017, 8, 1716.	5.8	77
200	Effect of Confinement on Photophysical Properties of P3HT Chains in PMMA Matrix. Nanoscale Research Letters, 2017, 12, 510.	3.1	14
201	Poly(3-hexylthiophene) revisited – Influence of film deposition on the electrochemical behaviour and energy levels. Electrochimica Acta, 2018, 269, 299-311.	2.6	36
202	Competing Energy Transfer Pathways in a Five-Chromophore Perylene Array. Journal of Physical Chemistry C, 2018, 122, 13937-13943.	1.5	11
203	Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2699-2704.	3.3	42
204	Photoinduced Selfâ€Assembled Nanostructures and Permanent Polaron Formation in Regioregular Poly(3â€hexylthiophene). Advanced Materials, 2018, 30, e1705052.	11.1	22

#	Article	IF	CITATIONS
205	Tuning Structure–Function Properties of π-Conjugated Superstructures by Redox-Assisted Self-Assembly. Chemistry of Materials, 2018, 30, 2143-2150.	3.2	23
206	Thickness Effect on Structural Defect-Related Density of States and Crystallinity in P3HT Thin Films on ITO Substrates. Journal of Physical Chemistry C, 2018, 122, 5881-5887.	1.5	22
207	Silica–Conjugated Polymer Hybrid Fluorescent Nanoparticles: Preparation by Surface-Initiated Polymerization and Spectroscopic Studies. Journal of Physical Chemistry C, 2018, 122, 6963-6975.	1.5	14
208	Laser pulse induced multi-exciton dynamics in molecular systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 064002.	0.6	4
209	Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chemical Reviews, 2018, 118, 7069-7163.	23.0	1,033
210	Controlled aggregation of DNA functionalized poly(phenylene-vinylene). Chemical Communications, 2018, 54, 5534-5537.	2.2	4
211	Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1707126.	7.8	25
212	Conjugated Polymer Nanoparticle–Graphene Oxide Chargeâ€Transfer Complexes. Advanced Functional Materials, 2018, 28, 1707548.	7.8	26
213	Exploring charge transfer processes and crystallization dynamics in donor-acceptor crystals. Organic Electronics, 2018, 58, 105-110.	1.4	5
214	Polymer carbon dots from plastics waste upcycling. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 136-140.	1.7	22
215	Poly(vinylidene fluoride)/poly(3-methylthiophene) core–shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Physical Chemistry Chemical Physics, 2018, 20, 6450-6461.	1.3	15
216	Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy. Nano Letters, 2018, 18, 1600-1607.	4.5	23
217	Temperature-Tuning of Optical Properties and Molecular Aggregation in AnE-PVstat Copolymer Solution. Journal of Physical Chemistry C, 2018, 122, 3965-3969.	1.5	6
218	Magic-Angle Stacking and Strong Intermolecular π–π Interaction in a Perylene Bisimide Crystal: An Approach for Efficient Near-Infrared (NIR) Emission and High Electron Mobility. Journal of Physical Chemistry Letters, 2018, 9, 596-600.	2.1	37
219	Optimizing the Crystallinity and Phase Separation of PTB7:PC ₇₁ BM Films by Modified Graphene Oxide. Journal of Physical Chemistry C, 2018, 122, 2572-2581.	1.5	12
220	Helical Rod-like Phenylene Cages via Ruthenium Catalyzed Diol-Diene Benzannulation: A Cord of Three Strands. Journal of the American Chemical Society, 2018, 140, 2455-2459.	6.6	30
221	Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure. Nanoscale, 2018, 10, 3953-3960.	2.8	43
222	Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells. Chemistry of Materials, 2018, 30, 789-798.	3.2	48

#	Article	IF	CITATIONS
223	Effects of pH on the photophysics of conjugated polyelectrolyte complexes. Polymer, 2018, 136, 114-120.	1.8	7
224	Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 014003.	0.6	27
225	Controlling aggregate formation in conjugated polymers by spinâ€coating below the critical temperature of the disorder–order transition. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 532-542.	2.4	34
226	Controllable Conformation Transfer of Conjugated Polymer toward High Photoelectrical Performance: The Role of Solvent in Induced-Crystallization Route. Journal of Physical Chemistry C, 2018, 122, 1037-1043.	1.5	10
227	Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene \hat{l}^2 -Conformation Films. Journal of Physical Chemistry Letters, 2018, 9, 364-372.	2.1	74
228	Self-Assembled Coumarin Nanoparticle in Aqueous Solution as Selective Mitochondrial-Targeting Drug Delivery System. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3380-3391.	4.0	39
229	Poly(3â€hexylthiophene) aggregation at solvent–solvent interfaces. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 999-1011.	2.4	6
230	Solvent effects on the morphology and electrical conductivity of a Dâ€A random copolymer with low band gap. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1035-1044.	2.4	1
231	Structural Information for Conjugated Polymers from Optical Modeling. Journal of Physical Chemistry A, 2018, 122, 3621-3625.	1.1	10
232	Effects of Side-Chain Topology on Aggregation of Conjugated Polymers. Macromolecules, 2018, 51, 2580-2590.	2.2	19
233	Recent advances in oxidative valorization of lignin. Catalysis Today, 2018, 302, 50-60.	2.2	155
234	NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water. 2D Materials, 2018, 5, 015003.	2.0	13
235	Quantum dynamical studies of ultrafast charge separation in nanostructured organic polymer materials: Effects of vibronic interactions and molecular packing. International Journal of Quantum Chemistry, 2018, 118, e25502.	1.0	30
236	Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery. Nano Research, 2018, 11, 1082-1098.	5.8	39
238	Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods and Applications in Fluorescence, 2018, 6, 012001.	1.1	271
239	Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes. Macromolecular Chemistry and Physics, 2018, 219, 1700374.	1.1	22
240	Photovoltaic Properties of a Porphyrinâ€Containing Polymer as Donor in Bulk Heterojunction Solar Cells With Low Energy Loss. Solar Rrl, 2018, 2, 1700168.	3.1	13
241	Novel conjugated polymers based on bis-dithieno[3,2- <i>b</i> ;2′,3′- <i>d</i>]pyrrole vinylene donor and diketopyrrolopyrrole acceptor: side chain engineering in organic field effect transistors. Polymer Chemistry, 2018, 9, 28-37.	1.9	13

#	Article	IF	CITATIONS
242	Hydrogen evolution at conjugated polymer nanoparticle electrodes. Canadian Journal of Chemistry, 2018, 96, 148-157.	0.6	10
243	Position and attitude control of a quadrotor. , 2018, , .		1
244	Dynamics and Coherent Control of Exciton–Exciton Annihilation in Aqueous J-Aggregate. Journal of Physical Chemistry B, 2018, 122, 10746-10753.	1.2	9
245	Ultrapure Films of Polythiophene Derivatives are Born on a Substrate by Liquid Flow. ACS Applied Energy Materials, 2018, 1, 6881-6889.	2.5	9
246	Probing the Aggregation and Signaling Behavior of Some Twisted 9,9′-Bianthryl Derivatives: Observation of Aggregation-Induced Blue-Shifted Emission. ACS Omega, 2018, 3, 15709-15724.	1.6	37
247	The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach. Journal of Chemical Physics, 2018, 149, 164109.	1.2	20
248	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	6.2	181
249	Setup to Study the in Situ Evolution of Both Photoluminescence and Absorption during the Processing of Organic or Hybrid Semiconductors. Journal of Physical Chemistry A, 2018, 122, 9115-9122.	1.1	19
250	Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules, 2018, 51, 9140-9155.	2.2	46
251	Organic Solar Cells. Springer Series in Optical Sciences, 2018, , 439-461.	0.5	1
252	Impact of Molecular Order on Polaron Formation in Conjugated Polymers. Journal of Physical Chemistry C, 2018, 122, 29129-29140.	1.5	36
253	Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science, 2018, 362, 1131-1134.	6.0	147
254	A Polymer Blend Approach for Creation of Effective Conjugated Polymer Charge Transport Pathways. ACS Applied Materials & Distriction (2018), 10, 36464-36474.	4.0	14
255	The role of the charge-transfer states in the ultrafast excitonic dynamics of the DTDCTB dimers embedded in a crystal environment. Chemical Physics, 2018, 515, 603-613.	0.9	3
256	Hydrogen-bonded-assisted supramolecular microwires for pure violet lasers: benefits of preventing intermolecular π–π stacking and aggregation in single crystals. Materials Chemistry Frontiers, 2018, 2, 2307-2312.	3.2	17
257	Influence of External Electric Fields on Photoluminescence and Charge Carrier Dynamics of π-Conjugated Polymer P3HT in Multilayer Films with Heterojunctions to TiO ₂ and Sb ₂ S ₃ . ACS Applied Energy Materials, 2018, 1, 6136-6151.	2.5	4
258	Improved Room Temperature NO ₂ Sensing Performance of Organic Field-Effect Transistor by Directly Blending a Hole-Transporting/Electron-Blocking Polymer into the Active Layer. ACS Applied Materials & Directly Blending and Sensing Polymer into the Active Layer. ACS Applied Materials & Directly Blending and Sensing Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Blending Polymer into the Active Layer. ACS Applied Materials & Directly Blending Polymer into the Active Blending Polymer into the A	4.0	40
259	Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. Journal of the American Chemical Society, 2018, 140, 15827-15841.	6.6	21

#	Article	IF	CITATIONS
260	Regioregularity and Molecular Weight Effects in Redox-Active Poly(3-hexylthiophene)- <i>block</i> -poly(ethylene oxide) Electrode Binders. ACS Applied Energy Materials, 2018, 1, 5919-5927.	2.5	7
261	Modeling the effects of molecular disorder on the properties of Frenkel excitons in organic molecular semiconductors. Journal of Chemical Physics, 2018, 149, 094110.	1.2	14
262	Control and Characterization of Organic Solar Cell Morphology Through Variable-Pressure Solvent Vapor Annealing. ACS Applied Energy Materials, 0, , .	2.5	12
263	Clarification of the Molecular Doping Mechanism in Organic Singleâ€Crystalline Semiconductors and their Application in Colorâ€Tunable Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801078.	11.1	53
264	Polyion Charge Ratio Determines Transition between Bright and Dark Excitons in Donor/Acceptor-Conjugated Polyelectrolyte Complexes. Journal of Physical Chemistry C, 2018, 122, 22280-22293.	1.5	20
265	Improvement of polymer:fullerene bulk heterojunction morphology via temperature and anti-solvent effect. Synthetic Metals, 2018, 243, 8-16.	2.1	7
266	Ï€-Conjugated polymer nanowires: advances and perspectives toward effective commercial implementation. Polymer Journal, 2018, 50, 659-669.	1.3	25
267	Effect of Spacer Length and Solvent on the Concentration-Driven Aggregation of Cationic Hydrogen-Bonding Donor Polythiophenes. Langmuir, 2018, 34, 7364-7378.	1.6	15
268	The carotenoid bixin: Optical studies of aggregation in polar/water solvents. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 362, 31-39.	2.0	15
269	Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science, 2018, 360, 897-900.	6.0	277
270	Segregated versus Disordered Stacking in Two Low Bandgap Alternated Copolymers for Photovoltaic Applications: Impact of Polymorphism on Optical Properties. Macromolecules, 2018, 51, 4238-4249.	2.2	19
271	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	5.2	119
272	Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study. Physical Review Letters, 2018, 120, 227401.	2.9	40
273	Impact of alkoxy side chains on morphology and excitonic coupling in PPE-PPV copolymer thin films. Journal of Luminescence, 2018, 203, 447-454.	1.5	1
274	Optimization of energy transfer in a polymer composite with perylene chromophores. Journal of Materials Chemistry C, 2018, 6, 7333-7342.	2.7	7
275	Noncontact AFM and differential reflectance spectroscopy joint analyses of bis-pyrenyl thin films on bulk insulators: Relationship between structural and optical properties. Physical Review B, 2018, 97, .	1.1	3
276	Tuning H- and J-Aggregate Behavior in π-Conjugated Polymers via Noncovalent Interactions. Journal of Physical Chemistry C, 2018, 122, 18860-18869.	1.5	31
277	Electric field induced assembly of macroscopic fibers of poly(3-hexylthiophene). Polymer, 2018, 151, 56-64.	1.8	14

#	Article	IF	CITATIONS
279	Effect of the Polymer Chain Arrangement on Exciton and Polaron Dynamics in P3HT and P3HT:PCBM Films. Journal of Physical Chemistry C, 2018, 122, 17096-17109.	1.5	28
280	Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of Materials Chemistry C, 2018, 6, 9111-9118.	2.7	67
281	π–π-Induced aggregation and single-crystal fluorescence anisotropy of 5,6,10b-triazaacephenanthrylene. IUCrJ, 2018, 5, 335-347.	1.0	10
282	Excited-state structural relaxation and exciton delocalization dynamics in linear and cyclic π-conjugated oligothiophenes. Chemical Society Reviews, 2018, 47, 4279-4294.	18.7	38
283	H-Aggregation Effects between π-Conjugated Chromophores in Cofacial Dimers and Trimers: Comparison of Theory and Single-Molecule Experiment. Journal of Physical Chemistry B, 2018, 122, 6431-6441.	1.2	12
284	Conjugated Polymers: Relationship Between Morphology and Optical Properties. Springer Series in Surface Sciences, 2018, , 335-353.	0.3	0
285	Unravelling the enigma of ultrafast excited state relaxation in non-emissive aggregating conjugated polymers. Physical Chemistry Chemical Physics, 2018, 20, 22159-22167.	1.3	10
286	Deciphering the potentiometric properties of (porphinato)zinc(<scp>ii</scp>)-derived supramolecular polymers and related superstructures. Journal of Materials Chemistry C, 2018, 6, 11980-11991.	2.7	11
287	Substrate-induced shifts and screening in the fluorescence spectra of supramolecular adsorbed organic monolayers. Journal of Chemical Physics, 2018, 149, 054701.	1.2	22
288	Directing the Aggregation of Native Polythiophene during in Situ Polymerization. ACS Omega, 2018, 3, 6388-6394.	1.6	9
289	The hierarchical and perturbative forms of stochastic SchrĶdinger equations and their applications to carrier dynamics in organic materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1375.	6.2	23
290	Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging. Materials, 2019, 12, 2497.	1.3	6
291	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	4.6	76
292	Resonance Raman Spectroscopy and Imaging of Franck–Condon Vibrational Activity and Morphology in Conjugated Polymers for Solar Cells. Accounts of Chemical Research, 2019, 52, 2221-2231.	7.6	3
293	Conjugated Nanopolymer Based on a Nanogrid: Approach toward Stable Polyfluorene-Type Fluorescent Emitter for Blue Polymer Light-Emitting Diodes. ACS Applied Polymer Materials, 2019, 1, 2441-2449.	2.0	12
294	Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry A, 2019, 123, 7420-7429.	1.1	19
295	Intersystem Subpopulation Charge Transfer and Conformational Relaxation Preceding <i>in Situ</i> Conductivity in Electrochemically Doped Poly(3-hexylthiophene) Electrodes. Chemistry of Materials, 2019, 31, 6870-6879.	3.2	21
296	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 13656-13665.	1.6	24

#	Article	IF	CITATIONS
297	Influence of Molecular Weight on the Solidification of a Semiconducting Polymer during Time-Controlled Spin-Coating. Journal of Physical Chemistry C, 2019, 123, 17102-17111.	1.5	19
298	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance Jaggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	2.7	15
299	Emission Enhanced and Stabilized by Stereoisomeric Strategy in Hierarchical Uniform Supramolecular Framework. CheM, 2019, 5, 2470-2483.	5.8	45
300	In Situ Photophysical Characterization of π-Conjugated Oligopeptides Assembled via Continuous Flow Processing. Langmuir, 2019, 35, 10947-10957.	1.6	1
301	Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy, 2019, 64, 103931.	8.2	81
302	Resonance Raman study of the J-type aggregation process of a water soluble perylene bisimide. Physical Chemistry Chemical Physics, 2019, 21, 18300-18309.	1.3	2
303	Heavy-atom effects on intramolecular singlet fission in a conjugated polymer. Journal of Chemical Physics, 2019, 151, 044902.	1.2	22
304	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 13522-13531.	7.2	72
305	Metamaterial Analogues of Molecular Aggregates. ACS Photonics, 2019, 6, 3003-3009.	3.2	10
306	Unconventional Redox-Active Gate Dielectrics To Fabricate High Performance Organic Thin-Film Transistors. ACS Applied Electronic Materials, 2019, 1, 2314-2324.	2.0	10
307	Interplay Between J―and Hâ€Type Coupling in Aggregates of Ï€â€Conjugated Polymers: A Singleâ€Molecule Perspective. Angewandte Chemie - International Edition, 2019, 58, 18898-18902.	7.2	24
308	Star-Shaped Diketopyrrolopyrrole–Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells. Chemistry of Materials, 2019, 31, 9721-9728.	3.2	34
309	Phase Separation of P3HT/PMMA Blend Film for Forming Semiconducting and Dielectric Layers in Organic Thin-Film Transistors for High-Sensitivity NO ₂ Detection. ACS Applied Materials & Amp; Interfaces, 2019, 11, 44521-44527.	4.0	49
310	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
311	Dynamics of Short-Lived Polaron Pairs and Polarons in Polythiophene Derivatives Observed via Infrared-Activated Vibrations. Journal of Physical Chemistry C, 2019, 123, 28100-28105.	1.5	11
312	Intermingled Network of Syndiotactic Polystyrene/Poly(3-hexylthiophene). Macromolecules, 2019, 52, 8569-8576.	2.2	2
313	Organic Singleâ€Crystalline Semiconductors for Lightâ€Emitting Applications: Recent Advances and Developments. Laser and Photonics Reviews, 2019, 13, 1900009.	4.4	41
314	Interplay Between J―and Hâ€Type Coupling in Aggregates of Ï€â€Conjugated Polymers: A Singleâ€Molecule Perspective. Angewandte Chemie, 2019, 131, 19074-19078.	1.6	3

#	ARTICLE	IF	CITATIONS
315	First-Principles Calculation of Triplet Exciton Diffusion in Crystalline Poly(<i>p</i> -phenylene) Tj ETQq0 0 0 rgBT /	Overlock	10 ₇ Tf 50 742 ⁻
316	Ethanediylidenebis(isoquinolinedione): A Six-Membered-Ring Diimide Building Block for Ambipolar Semiconducting Polymers. Macromolecules, 2019, 52, 8238-8247.	2.2	7
317	Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35185-35192.	4.0	14
318	Electrochemical Stability and Ambipolar Charge Transport in Diketopyrrolopyrrole-Based Organic Materials. ACS Applied Electronic Materials, 2019, 1, 2037-2046.	2.0	5
319	J-Aggregate Behavior of Poly[(9,9- dioctyluorenyl-2,7-diyl)- <i>alt</i> -co-(bithiophene)] (F8T2) in Crystal and Liquid Crystal Phases. Journal of Physical Chemistry C, 2019, 123, 24321-24327.	1.5	4
320	Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. Journal of Materials Chemistry C, 2019, 7, 12560-12571.	2.7	42
321	Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polymer Chemistry, 2019, 10, 5452-5464.	1.9	29
322	Chemical Doping of Well-Dispersed P3HT Thin-Film Nanowire Networks. ACS Applied Polymer Materials, 2019, 1, 2943-2950.	2.0	8
323	Short peptide-regulated aggregation of porphyrins for photoelectric conversion. Sustainable Energy and Fuels, 2019, 3, 529-538.	2.5	20
324	Synthesis and folding behaviour of poly($\langle i \rangle p \langle i \rangle$ -phenylene vinylene)-based \hat{l}^2 -sheet polychromophores. Chemical Science, 2019, 10, 2144-2152.	3.7	18
325	Taking a prospector local-market focus and foreign subsidiary performance: evidence from China. Management Decision, 2019, 57, 569-582.	2.2	6
326	Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes (OLEDs): Challenges and Opportunities. Advanced Functional Materials, 2019, 29, 1807623.	7.8	371
327	Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. Nano Letters, 2019, 19, 1275-1281.	4.5	40
328	Triplet Pair States in Singlet Fission. Chemical Reviews, 2019, 119, 4261-4292.	23.0	282
329	Hierarchical Uniform Supramolecular Conjugated Spherulites with Suppression of Defect Emission. IScience, 2019, 16, 399-409.	1.9	30
330	Photoactive Boron–Nitrogen–Carbon Hybrids: From Azo-borazines to Polymeric Materials. Journal of Organic Chemistry, 2019, 84, 9101-9116.	1.7	13
331	Detecting the Onset of Molecular Reorganization in Conjugated Polymer Thin Films Using an Easily Accessible Optical Method. Macromolecules, 2019, 52, 4646-4654.	2.2	10
332	Ion Gel Dynamic Templates for Large Modulation of Morphology and Charge Transport Properties of Solution-Coated Conjugated Polymer Thin Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22561-22574.	4.0	12

#	Article	IF	CITATIONS
333	Solvent-dependent photophysics of a red-shifted, biocompatible coumarin photocage. Organic and Biomolecular Chemistry, 2019, 17, 6178-6183.	1.5	6
334	Triplet-Pair States in Organic Semiconductors. Annual Review of Physical Chemistry, 2019, 70, 323-351.	4.8	96
335	Coherent Charge Transfer Exciton Formation in Regioregular P3HT: A Quantum Dynamical Study. Journal of Physical Chemistry Letters, 2019, 10, 3326-3332.	2.1	35
336	Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nature Communications, 2019, 10, 2614.	5.8	60
337	Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Physical Review Letters, 2019, 122, 233901.	2.9	62
338	Designing conjugation-extended viologens for high molar absorptivity with longer wavelength absorption. Synthetic Metals, 2019, 254, 75-84.	2.1	8
339	Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Technique. Chemistry of Materials, 2019, 31, 6740-6749.	3.2	32
340	Defect Tolerance of π-Conjugated Polymer Crystal Lattices and Their Relevance to Optoelectronic Applications. ACS Applied Polymer Materials, 2019, 1, 1466-1475.	2.0	10
341	Stable Postfullerene Solar Cells via Direct Câ€"H Arylation Polymerization. Morphologyâ€"Performance Relationships. Chemistry of Materials, 2019, 31, 4313-4321.	3.2	31
342	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
343	Synergistic Use of Bithiazole and Pyridinyl Substitution for Effective Electron Transport Polymer Materials. Chemistry of Materials, 2019, 31, 3957-3966.	3.2	26
344	Nanoscale J-aggregates of poly(3-hexylthiophene): key to electronic interface interactions with graphene oxide as revealed by KPFM. Nanoscale, 2019, 11, 11202-11208.	2.8	4
345	Effects of Structural Variation in Conjugated Side Chains on the Photophysics of Conjugated Polymers in Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 4604-4610.	1.2	1
346	Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate. Journal of Chemical Theory and Computation, 2019, 15, 3197-3203.	2.3	9
347	Highly Efficient Orange-Red/Red Excimer Fluorescence from Dimeric π–π Stacking of Perylene and Its Nanoparticle Applications. Journal of Physical Chemistry C, 2019, 123, 13047-13056.	1.5	53
348	Excited state dynamics of organic semiconductors measured with shot-to-shot correction of scatter and photoluminescence. Synthetic Metals, 2019, 250, 115-120.	2.1	5
349	Computational Modeling of Exciton Localization in Self-Assembled Perylene Helices: Effects of Thermal Motion and Aggregate Size. Journal of Physical Chemistry C, 2019, 123, 6427-6437.	1.5	16
350	Comparative Computational Study of Electronic Excitations of Neutral and Charged Small Oligothiophenes and Their Extrapolations Based on Simple Models. ACS Omega, 2019, 4, 5758-5767.	1.6	4

#	ARTICLE	IF	CITATIONS
351	9,9′-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. Synthetic Metals, 2019, 250, 79-87.	2.1	0
352	Managing Local Order in Conjugated Polymer Blends via Polarity Contrast. Chemistry of Materials, 2019, 31, 6540-6547.	3.2	20
353	Organic photonic nanostructures. , 2019, , 111-138.		0
354	Reconfiguration of π-conjugated superstructures enabled by redox-assisted assembly. Chemical Communications, 2019, 55, 5603-5606.	2.2	12
355	Structural Insight into Aggregation and Orientation of TPD-Based Conjugated Polymers for Efficient Charge-Transporting Properties. Chemistry of Materials, 2019, 31, 4629-4638.	3.2	18
356	Disassembly of an Interconjugated Polyelectrolyte Complex Using Ionic Surfactants. ACS Applied Polymer Materials, 2019, 1, 1034-1044.	2.0	9
357	Assembly effect on the charge carrier mobility in quaterthiophene-based n/p -materials. Journal of Materials Chemistry C, 2019, 7, 6649-6655.	2.7	2
358	Nonaggregating Doped Polymers Based on Poly(3,4-Propylenedioxythiophene). Macromolecules, 2019, 52, 2203-2213.	2.2	29
359	Anomalous Linear Dichroism in Bent Chromophores of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Ï€</mml:mi>-conjugated Polymers: Departure from the Franck-Condon Principle. Physical Review Letters, 2019, 122, 057402.</mml:math 	2.9	10
360	Robust and Stretchable Polymer Semiconducting Networks: From Film Microstructure to Macroscopic Device Performance. Chemistry of Materials, 2019, 31, 6530-6539.	3.2	37
361	Fluorescence enhancement induced by quadratic electric-field effects on singlet exciton dynamics in poly(3-hexylthiophene) dispersed in poly(methyl methacrylate). Physical Chemistry Chemical Physics, 2019, 21, 5695-5704.	1.3	9
362	An experimental and theoretical study of the structural ordering of the PTB7 polymer at a mesoscopic scale. Polymer, 2019, 169, 243-254.	1.8	11
363	Confined Self-Assembly Enables Stabilization and Patterning of Nanostructures in Liquid-Crystalline Block Copolymers. Macromolecules, 2019, 52, 1892-1898.	2.2	24
364	Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nature Communications, 2019, 10, 5226.	5.8	36
365	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	6.6	79
366	Photophysical and Optical Properties of Semiconducting Polymer Nanoparticles Prepared from Hyaluronic Acid and Polysorbate 80. ACS Omega, 2019, 4, 22591-22600.	1.6	4
367	Rod-like transition first or chain aggregation first? ordered aggregation of rod-like poly(p-phenyleneethynylene) chains in solution. Chemical Communications, 2019, 55, 13342-13345.	2.2	1
368	Orientational Dependence of Cofacial Porphyrin–Quinone Electronic Interactions within the Strong Coupling Regime. Journal of Physical Chemistry B, 2019, 123, 10456-10462.	1.2	8

#	Article	IF	CITATIONS
370	Efficient Debundling of Few-Walled Carbon Nanotubes by Wrapping with Donor–Acceptor Polymers for Improving Thermoelectric Properties. ACS Applied Materials & 1, 47330-47339.	4.0	44
371	Probing the Evolution of Molecular Packing Underlying HJ-Aggregate Transition in Organic Semiconductors Using Solvent Vapor Annealing. Journal of Physical Chemistry C, 2019, 123, 28948-28957.	1.5	3
372	Nearly Isotropic Conjugated Polymer Aggregates with Efficient Local Exciton Diffusion. Journal of Physical Chemistry C, 2019, 123, 29418-29426.	1.5	4
373	Enhancing the efficiency of PTB7-Th:CO <i>i</i> SDFIC-based ternary solar cells with versatile third components. Applied Physics Reviews, 2019, 6, .	5.5	20
374	Tuning Orientational Order of Highly Aggregating P(NDI2OD-T ₂) by Solvent Vapor Annealing and Blade Coating. Macromolecules, 2019, 52, 43-54.	2.2	54
375	Diketopyrrolopyrrole based small molecular semiconductors containing thiazole units for solution-processed n-channel thin-film transistors. Dyes and Pigments, 2019, 163, 707-714.	2.0	10
376	Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule, 2019, 3, 819-833.	11.7	209
377	Resonant Light Scattering Toward Optical Fiber Humidity Sensors. Photonic Sensors, 2019, 9, 60-68.	2.5	4
378	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie - International Edition, 2019, 58, 7922-7932.	7.2	65
379	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie, 2019, 131, 8004-8014.	1.6	10
380	Effect of the length of a symmetric branched side chain on charge transport in thienoisoindigo-based polymer field-effect transistors. Organic Electronics, 2019, 65, 251-258.	1.4	13
381	Tuning charge transfer at the electron donor/acceptor assembly through vibration-induced aggregation of P3HT chains in solution. Materials Chemistry and Physics, 2019, 223, 576-582.	2.0	3
382	Femtosecond Optical Annealing Induced Polymer Melting and Formation of Solid Droplets. Polymers, 2019, 11, 128.	2.0	1
383	Discriminative Preparation of Stable H- or J-Aggregates of Astaxanthin in Waterborne Chitosan/DNA Nanoparticles. Chemistry Letters, 2019, 48, 345-348.	0.7	2
384	Photocathodic hydrogen evolution from catalysed nanoparticle films prepared from stable aqueous dispersions of P3HT and PCBM. Synthetic Metals, 2019, 247, 10-17.	2.1	8
385	Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer Solar Cells. Scientific Reports, 2019, 9, 74.	1.6	8
386	High-performance ambipolar benzodifurandione-based donor-acceptor copolymer with balanced hole and electron mobility. Dyes and Pigments, 2019, 162, 481-486.	2.0	6
387	Ultrastable Supramolecular Selfâ€Encapsulated Wideâ€Bandgap Conjugated Polymers for Largeâ€Area and Flexible Electroluminescent Devices. Advanced Materials, 2019, 31, e1804811.	11.1	72

#	Article	IF	CITATIONS
388	Optical Microscopic Techniques for Synthetic Polymer Characterization. Analytical Chemistry, 2019, 91, 405-424.	3.2	24
389	Photoluminescence of Squaraine Thin Films: Spatial Homogeneity and Temperature Dependence. Physica Status Solidi (B): Basic Research, 2019, 256, 1800450.	0.7	4
390	Adjusting Aggregation Modes and Photophysical and Photovoltaic Properties of Diketopyrrolopyrroleâ€Based Small Molecules by Introducing Bâ†N Bonds. Chemistry - A European Journal, 2019, 25, 564-572.	1.7	19
391	Effect of solvent polarity on the homogeneity and photophysical properties of MDMO-PPV films: Towards efficient plastic solar cells. Journal of King Saud University - Science, 2019, 31, 534-540.	1.6	8
392	First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature. Faraday Discussions, 2019, 221, 406-427.	1.6	26
393	Limits of exciton delocalization in molecular aggregates. Faraday Discussions, 2019, 221, 265-280.	1.6	29
394	Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Selfâ€Assembly of Conjugated Block Copolymers. Small Methods, 2020, 4, 1900470.	4.6	16
395	Photophysics and photoreactivity of cross-conjugated enediynyl aggregates: Applications to multi-parametric sensing of microheterogeneity and reversible fluorescence switching. Chemical Physics, 2020, 529, 110579.	0.9	3
396	Enhanced thermoelectric performance from self-assembled alkyl chain-linked naphthalenediimide/single walled carbon nanotubes composites. Chemical Engineering Journal, 2020, 381, 122650.	6.6	27
397	Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polymer Chemistry, 2020, 11, 61-67.	1.9	7
398	Controlling the structure and photophysics of fluorophore dimers using multiple cucurbit[8]uril clampings. Chemical Science, 2020, 11, 812-825.	3.7	48
399	Role of Multivalent Interactions in Dynamic-Template-Directed Assembly of Conjugated Polymers. ACS Applied Materials & Dynamic Script (2020), 12, 2753-2762.	4.0	7
400	J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Applied Materials & lnterfaces, 2020, 12, 2717-2723.	4.0	52
401	Boosting Efficiency of Nearâ€Infrared Organic Lightâ€Emitting Diodes with Os(II)â€Based Pyrazinyl Azolate Emitters. Advanced Functional Materials, 2020, 30, 1906738.	7.8	57
402	Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochemical and Photobiological Sciences, 2020, 19, 207-216.	1.6	8
403	Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. Journal of Physical Chemistry Letters, 2020, 11, 210-216.	2.1	14
404	Remarkable Mechanochromism in Blends of a Ï€â€Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation. Advanced Optical Materials, 2020, 8, 1901410.	3.6	6
405	Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4478.	1.7	30

#	Article	IF	CITATIONS
406	Formation of Needle-like Poly(3-hexylthiophene) Crystals from Metastable Solutions. Macromolecules, 2020, 53, 8303-8312.	2.2	14
407	Solvent Effect on Supramolecular Self-Assembly of Chlorophylls a on Chemically Reduced Graphene Oxide. Langmuir, 2020, 36, 13575-13582.	1.6	9
408	Excitons and Polarons in Organic Materials. Accounts of Chemical Research, 2020, 53, 2201-2211.	7.6	63
409	Hydrophobic domain flexibility enables morphology control of amphiphilic systems in aqueous media. Chemical Communications, 2020, 56, 13808-13811.	2.2	17
410	Diketopyrrolopyrrole–thiophene–methoxythiophene based random copolymers for organic field effect transistor applications. Organic Electronics, 2020, 87, 105986.	1.4	22
411	High performance nitrogen dioxide sensor based on organic thin-film transistor utilizing P3HT/OH-MWCNTs blend film. Synthetic Metals, 2020, 269, 116569.	2.1	9
412	Mechanistic Process Understanding of the Biomimetic Construction of Porphyrin-Based Light-Capturing Antennas from Self-Assembled Fmoc-Blocked Peptide Templates. ACS Sustainable Chemistry and Engineering, 2020, 8, 15761-15771.	3.2	11
413	Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. Chemical Science, 2020, 11, 11315-11321.	3.7	22
414	Effect of a π-linker of push–pull D–π–A donor molecules on the performance of organic photodetectors. Journal of Materials Chemistry C, 2020, 8, 11145-11152.	2.7	12
415	Effect of charge-transfer states on the vibrationally resolved absorption spectra and exciton dynamics in ZnPc aggregates: Simulations from a non-Makovian stochastic SchrA¶dinger equation. Journal of Chemical Physics, 2020, 153, 034116.	1.2	18
416	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. Journal of the American Chemical Society, 2020, 142, 14957-14965.	6.6	68
417	A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. Journal of the American Chemical Society, 2020, 142, 13898-13907.	6.6	3
418	Solvent influence on molecular interactions in the bulk of fluorene copolymer films. RSC Advances, 2020, 10, 20772-20777.	1.7	3
419	Self-organizing semifluorinated polymers for organic electronics. , 2020, , 227-268.		3
420	Tyrosine Sideâ€Chain Functionalities at Distinct Positions Determine the Chirooptical Properties and Supramolecular Structures of Pentameric Oligothiophenes. ChemistryOpen, 2020, 9, 1100-1108.	0.9	2
421	Eutectic friction transfer lithography: a facile solid-state route for highly crystalline semiconducting polymers. Nanoscale, 2020, 12, 23514-23520.	2.8	0
422	Effects of Electron-Donating and Electron-Accepting Substitution on Photovoltaic Performance in Benzothiadiazole-Based A–D—A′–D—A-Type Small-Molecule Acceptor Solar Cells. ACS Applied Energy Materials, 2020, 3, 12327-12337.	2.5	22
423	Revealing the evolving mixture of molecular aggregates during organic film formation using simulations of in situ absorbance. Journal of Chemical Physics, 2020, 153, 214902.	1.2	7

#	Article	IF	CITATIONS
424	Supramolecular Orange-Red- and Yellow-Emitting Ir(III) Complexes with TFSI and PF ₆ Counteranions and Production of LEC Devices. ACS Applied Electronic Materials, 2020, 2, 3549-3561.	2.0	1
425	Nearâ€Infrared Electroluminescence beyond 800â€nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angewandte Chemie - International Edition, 2020, 59, 21578-21584.	7.2	56
426	Lignin nanoparticles are renewable and functional platforms for the concanavalin a oriented immobilization of glucose oxidase–peroxidase in cascade bio-sensing. RSC Advances, 2020, 10, 29031-29042.	1.7	31
427	Nearâ€Infrared Electroluminescence beyond 800â€nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angewandte Chemie, 2020, 132, 21762-21768.	1.6	11
428	Structural and Photophysical Templating of Conjugated Polyelectrolytes with Single-Stranded DNA. Chemistry of Materials, 2020, 32, 7347-7362.	3.2	4
429	Optoelectronic properties of diathiafulvalene-functionalized diketopyrrolopyrrole–fullerene molecular dyad. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118767.	2.0	3
430	Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors. ACS Applied Materials & Diterfaces, 2020, 12, 39515-39523.	4.0	43
431	Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian. Physical Chemistry Chemical Physics, 2020, 22, 18192-18204.	1.3	10
432	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
433	Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility–Stretchability Property. ACS Applied Materials & Interfaces, 2020, 12, 50648-50659.	4.0	43
434	Relation between Morphology and Chiroptical Properties in Chiral Conducting Polymer Films: A Case Study in Chiral PEDOT. Macromolecules, 2020, 53, 9521-9528.	2.2	6
435	Modeling nonlocal electron–phonon coupling in organic crystals using interpolative maps: The spectroscopy of crystalline pentacene and 7,8,15,16-tetraazaterrylene. Journal of Chemical Physics, 2020, 153, 124113.	1.2	7
436	Effects of Counterâ€lon Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers. Advanced Electronic Materials, 2020, 6, 2000595.	2.6	33
437	Effect of polar side chains on neutral and p-doped polythiophene. Journal of Materials Chemistry C, 2020, 8, 16216-16223.	2.7	34
438	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 22714-22720.	7.2	184
439	Exciton Isolation in Cross-Pentacene Architecture. Journal of the American Chemical Society, 2020, 142, 17393-17402.	6.6	15
440	Electron accepting naphthalene bisimide ligand architectures for modulation of π–π stacking in nanocrystal hybrid materials. Nanoscale Horizons, 2020, 5, 1509-1514.	4.1	3
441	Design and synthesis of aniline-appended P3HT for single step covalent functionalisation of carbon nanotubes. Polymer Chemistry, 2020, 11, 6319-6327.	1.9	2

#	Article	IF	Citations
442	Tuning Organic Semiconductor Alignment and Aggregation via Nanoconfinement. Journal of Physical Chemistry C, 2020, 124, 22799-22807.	1.5	6
443	Homoconjugation in Light-Emitting Poly(phenylene methylene)s: Origin and Pressure-Enhanced Photoluminescence. Macromolecules, 2020, 53, 7519-7527.	2.2	16
444	Molecular understanding of a π-conjugated polymer/solid-state ionic liquid complex as a highly sensitive and selective gas sensor. Journal of Materials Chemistry C, 2020, 8, 15268-15276.	2.7	25
445	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€iR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie, 2020, 132, 22903-22909.	1.6	23
446	Fluorescence and Electroluminescence of J-Aggregated Polythiophene Monolayers on Hexagonal Boron Nitride. ACS Nano, 2020, 14, 13886-13893.	7.3	9
447	Theory of exciton transport in molecular crystals strongly coupled to a cavity: A temperature-dependent variational approach. Journal of Chemical Physics, 2020, 153, 074108.	1.2	2
448	Ultrafast exciton dynamics in one- and two-dimensional <i>para</i> -sexiphenyl clusters. Physical Review B, 2020, 102, .	1.1	5
449	Determining the Correlation between Excited State Dynamics and Donor and Acceptor Structure in Nonfullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 17851-17863.	1.5	1
450	First-Principles Quantum and Quantum-Classical Simulations of Exciton Diffusion in Semiconducting Polymer Chains at Finite Temperature. Journal of Chemical Theory and Computation, 2020, 16, 5441-5455.	2.3	13
451	Design and Synthesis of Annulated Benzothiadiazoles via Dithiolate Formation for Ambipolar Organic Semiconductors. ACS Applied Materials & Semiconductors. ACS Applied	4.0	3
452	Vibronic exciton model for low bandgap donor–acceptor polymers. Journal of Chemical Physics, 2020, 153, 244901.	1.2	19
453	Tuning the Optical Characteristics of Diketopyrrolopyrrole Molecules in the Solid State by Alkyl Side Chains. Journal of Physical Chemistry C, 2020, 124, 25229-25238.	1.5	20
454	Triplet Population Dynamics of Single Conjugated Polymer Molecules and Nanoscale Assemblies. Journal of Physical Chemistry C, 2020, 124, 13511-13524.	1.5	1
455	Highly Emissive Semi-Ladder-Type Copolymers, Aggregation State, and Solution-Processed Organic Light-Emitting Transistor. Chemistry of Materials, 2020, 32, 4672-4680.	3.2	17
456	Tuning the edge-on oriented ordering of solution-aged poly(3-hexylthiophene) thin films. Journal of Materials Chemistry C, 2020, 8, 8804-8813.	2.7	15
457	Confinement of Dyes inside Boron Nitride Nanotubes: Photostable and Shifted Fluorescence down to the Near Infrared. Advanced Materials, 2020, 32, e2001429.	11.1	27
458	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	3.2	87
459	Cosolvent Effects When Blade-Coating a Low-Solubility Conjugated Polymer for Bulk Heterojunction Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27416-27424.	4.0	7

#	Article	IF	CITATIONS
460	Crack propagation and electronic properties of semiconducting polymer and siloxane-urea copolymer blends. Flexible and Printed Electronics, 2020, 5, 035001.	1.5	4
461	Propeller-Like All-Fused Perylene Diimide Based Electron Acceptors With Chalcogen Linkage for Efficient Polymer Solar Cells. Frontiers in Chemistry, 2020, 8, 350.	1.8	6
462	Optimized auxiliary oscillators for the simulation of general open quantum systems. Physical Review A, 2020, 101, .	1.0	47
463	Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C, 2020, 8, 10868-10879.	2.7	18
464	Effects of Intra- and Interchain Interactions on Exciton Dynamics of PTB7 Revealed by Model Oligomers. Molecules, 2020, 25, 2441.	1.7	4
465	Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33014-33027.	4.0	41
466	First-principles description of intra-chain exciton migration in an oligo(<i>para</i> phenylene) Tj ETQq0 0 0 rgBT / 204119.	Overlock : 1.2	10 Tf 50 507 8
467	A wave packet picture of exciton–exciton annihilation: Molecular dimer dynamics. Journal of Chemical Physics, 2020, 152, 174305.	1.2	5
468	Two-Dimensional Exciton Diffusion in an HJ-Aggregate of Naphthobisoxadiazole-Based Copolymer Films. Journal of Physical Chemistry C, 2020, 124, 13063-13070.	1.5	11
470	Microscopic derivation of Frenkel exciton-bath Hamiltonian., 2020,, 21-52.		0
471	Examples and applications. , 2020, , 181-193.		0
472	Noncovalent functionalization of boron nitride nanotubes using poly(2,7â€carbazole)s. Journal of Polymer Science, 2020, 58, 1889-1902.	2.0	4
473	Linear spectroscopy of molecular excitons. , 2020, , 53-81.		0
475	Liquid crystals from shape-persistent porphyrin stars with intrinsic free space. Journal of Materials Chemistry C, 2020, 8, 5562-5571.	2.7	12
476	Inter- and intrachain transition analyses by photoluminescence and Raman Spectroscopy of electrochemically synthesized P3OT films. Journal of Materials Science: Materials in Electronics, 2020, 31, 6629-6635.	1.1	2
477	MoS ₂ Assisted Self-Assembled Poly(3-hexylthiophene) Thin Films at an Air/Liquid Interface for High-Performance Field-Effect Transistors under Ambient Conditions. Journal of Physical Chemistry C, 2020, 124, 8101-8109.	1.5	12
478	Chiral expression of co-crystallizing poly(thiophene)- <i>block</i> -poly(selenophene) copolymers. Polymer Chemistry, 2020, 11, 2715-2723.	1.9	6
479	Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors. Materials Chemistry Frontiers, 2020, 4, 3567-3577.	3.2	6

#	Article	IF	CITATIONS
480	Hierarchical Uniform Crystalline Nanowires of Wide Bandgap Conjugated Polymer for Light-Emitting Optoelectronic Devices. Cell Reports Physical Science, 2020, 1, 100029.	2.8	11
481	Isolated asymmetric bilateral steric conjugated polymers with thickness-independent emission for efficient and stable light-emitting optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 5064-5070.	2.7	7
482	Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly. Journal of the American Chemical Society, 2020, 142, 13469-13480.	6.6	45
483	First-principles description of intra-chain exciton migration in an oligo(<i>para</i> phenylene) Tj ETQq1 1 0.78431. Chemical Physics, 2020, 152, 204120.	4 rgBT /Ον 1.2	verlock 10 21
484	Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers, 2020, 12, 1226.	2.0	6
485	Molecular insights and concepts to engineer singlet fission energy conversion devices. Energy and Environmental Science, 2020, 13, 2741-2804.	15.6	66
486	The role of CT excitations in PDI aggregates. Physical Chemistry Chemical Physics, 2020, 22, 15908-15918.	1.3	14
487	Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chemical Reviews, 2020, 120, 2215-2287.	23.0	231
488	Highly Sensitive and Easily Recoverable Excitonic Piezochromic Fluorescent Materials for Haptic Sensors and Antiâ€Counterfeiting Applications. Advanced Functional Materials, 2020, 30, 2000105.	7.8	70
489	A Molecular Strategy to Lockâ€in the Conformation of a Perylene Bisimideâ€Derived Supramolecular Polymer. Angewandte Chemie - International Edition, 2020, 59, 7487-7493.	7.2	25
490	A Molecular Strategy to Lockâ€in the Conformation of a Perylene Bisimideâ€Derived Supramolecular Polymer. Angewandte Chemie, 2020, 132, 7557-7563.	1.6	5
491	Two Cycling Centers in One Molecule: Communication by Through-Bond Interactions and Entanglement of the Unpaired Electrons. Journal of Physical Chemistry Letters, 2020, 11, 1297-1304.	2.1	25
492	Time-resolved fluorescence decay and Gaussian analysis of P3HT-derived $\Phi^{3+}\$ and $\Phi^{3+}\$ doped ZnO nanostructures. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
493	Printing 2D Conjugated Polymer Monolayers and Their Distinct Electronic Properties. Advanced Functional Materials, 2020, 30, 1909787.	7.8	20
494	Synthesis and characterization of thermochromic thiophene copolymers containing pyrene groups. Materials Today Communications, 2020, 24, 101166.	0.9	4
495	Comparative analysis of metal diffusion effects in polymer films coated with spin coating and floating film transfer techniques. Synthetic Metals, 2020, 264, 116378.	2.1	O
496	Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light: Science and Applications, 2020, 9, 70.	7.7	97
497	Chemical and structural modification of organic devices via focused ion-beams. Materials Chemistry and Physics, 2020, 249, 122932.	2.0	1

#	Article	IF	CITATIONS
498	Understanding the langmuir and Langmuir-Schaefer film conformation of low-bandgap polymers and their bulk heterojunctions with PCBM. Nanotechnology, 2020, 31, 315712.	1.3	5
499	Deepâ€Blue Thiopheneâ€Based Steric Oligomers as a Lowâ€Threshold Laser Gain and Host Material. Advanced Optical Materials, 2020, 8, 1902163.	3.6	11
500	Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair― Journal of Physical Chemistry Letters, 2020, 11, 3443-3450.	2.1	11
501	Oxidation promoted self-assembly of π-conjugated polymers. Chemical Science, 2020, 11, 6383-6392.	3.7	24
502	Controlling Molecule Aggregation and Electronic Spatial Coherence in the H-Aggregate and J-Aggregate Regime at Room Temperature. Polymers, 2020, 12, 786.	2.0	6
503	Achieving High Alignment of Conjugated Polymers by Controlled Dipâ€Coating. Advanced Electronic Materials, 2020, 6, 2000080.	2.6	30
504	Temperature Induced Aggregation of Organic Semiconductors. Chemistry - A European Journal, 2021, 27, 2908-2919.	1.7	26
505	Beyond <i>p</i> â€Hexaphenylenes: Synthesis of Unsubstituted <i>p</i> â€Nonaphenylene by a Precursor Protocol. Chemistry - A European Journal, 2021, 27, 281-288.	1.7	3
506	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
507	Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy. Materials Chemistry Frontiers, 2021, 5, 1076-1089.	3.2	61
508	A combined optical and morphological study of 2,5-bis(dodecanoxy) phenyleneethynylene-butadiynes films for oLEDs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114779.	1.7	1
509	Structural modulation of the photophysical and electronic properties of pyrene-based 3D metal–organic frameworks derived from s-block metals. CrystEngComm, 2021, 23, 82-90.	1.3	3
510	J-like aggregation of a cationic polythiophene with hydrogen-bonding capabilities due to 1,4-dioxane: Solution excitation spectra and fluorescence, morphology and surface free energy of films. Journal of Colloid and Interface Science, 2021, 584, 281-294.	5.0	5
511	How to reprogram the excitonic properties and solid-state morphologies of π-conjugated supramolecular polymers. Physical Chemistry Chemical Physics, 2021, 23, 2703-2714.	1.3	8
512	An insight into the role of side chains in the microstructure and carrier mobility of high-performance conjugated polymers. Polymer Chemistry, 2021, 12, 2471-2480.	1.9	14
513	Exploring the effect of the spacer structure in the heterocyclic ring-fused isoindigo-based conjugated polymer on the charge-transporting property. Journal of Polymer Research, 2021, 28, 1.	1.2	2
514	Dithienocoronene diimide (DTCDI)-derived triads for high-performance air-stable, solution-processed balanced ambipolar organic field-effect transistors. Physical Chemistry Chemical Physics, 2021, 23, 16357-16365.	1.3	2
515	Regulate the Electron Mobility and Threshold Voltage of P(NDI2ODâ€₹2)â€Based Organic Fieldâ€Effect Transistors by the Compatibility Principle. Advanced Electronic Materials, 2021, 7, 2000939.	2.6	7

#	Article	IF	CITATIONS
516	A Highly Stable Diketopyrrolopyrrole (DPP) Polymer for Chemiresistive Sensors. Advanced Electronic Materials, 2021, 7, 2000935.	2.6	13
517	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	2.7	2
518	Photoluminescence and electroluminescence characterization of high-performance near-infrared emitters based on 1,5-naphthyridin-4-ol-containing heteroleptic platinum(ii) complexes. Materials Advances, 2021, 2, 3589-3599.	2.6	7
519	The Optical Signatures of the Temperature Controlled Order-Disorder Conformational Transition during the Aggregation Processes in Poly (3-Hexylthiophene-2, 5-Diyl) (P3HT) Thin Films. SunText Review of Material Science, 2021, 02, .	0.0	0
520	Open-Shell and Closed-Shell Quinoid–Aromatic Conjugated Polymers: Unusual Spin Magnetic and High Charge Transport Properties. ACS Applied Materials & Diterfaces, 2021, 13, 2887-2898.	4.0	16
521	High-Performance Organic Semiconducting Polymers by a Resonance-Assisted Hydrogen Bonding Approach. Chemistry of Materials, 2021, 33, 580-588.	3.2	31
522	Plasmonic linewidth narrowing by encapsulation in a dispersive absorbing material. Physical Review Research, 2021, 3, .	1.3	5
523	Direct observation and evolution of electronic coupling between organic semiconductors. Physical Review Materials, 2021, 5, .	0.9	1
524	Probing the properties of polymer/non-fullerene/fullerene bulk heterojunction ternary blend solar cells, study of varied blend ratios of PBDB-T:ITIC-Th:PC71BM. European Physical Journal Plus, 2021, 136, 1.	1.2	3
525	Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nature Communications, 2021, 12, 1327.	5.8	18
526	Processable High Electron Mobility Ï€â€Copolymers via Mesoscale Backbone Conformational Ordering. Advanced Functional Materials, 2021, 31, 2009359.	7.8	16
527	Kinetically Controlled Formation of Semi-crystalline Conjugated Polymer Nanostructures. Macromolecules, 2021, 54, 2162-2177.	2.2	1
528	Charge Trapping in a Low-Crystalline High-Mobility Conjugated Polymer and Its Effects on the Operational Stability of Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16722-16731.	4.0	16
529	Analysis of the Performance of Narrow-Bandgap Organic Solar Cells Based on a Diketopyrrolopyrrole Polymer and a Nonfullerene Acceptor. Journal of Physical Chemistry C, 2021, 125, 5505-5517.	1.5	11
530	Microstructure control of organic semiconductors via UV-ozone for high-sensitivity NO2 detection. Science China Technological Sciences, 2021, 64, 1057-1064.	2.0	2
532	Multimode Time-Resolved Superresolution Microscopy Revealing Chain Packing and Anisotropic Single Carrier Transport in Conjugated Polymer Nanowires. Nano Letters, 2021, 21, 4255-4261.	4.5	13
534	Molecular Origin of Strainâ€Induced Chain Alignment in PDPPâ€Based Semiconducting Polymeric Thin Films. Advanced Functional Materials, 2021, 31, 2100161.	7.8	38
535	Photophysical and structural modulation of poly(3-hexylthiophene) nanoparticles via surfactant-polymer interaction. Polymer, 2021, 218, 123515.	1.8	8

#	Article	IF	CITATIONS
536	Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. Journal of the American Chemical Society, 2021, 143, 5239-5246.	6.6	31
537	Effect of poly(thiophene)s topology on their third-order nonlinear optical response. Polymer, 2021, 222, 123630.	1.8	1
538	Stretchable Meshâ€Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates. Advanced Functional Materials, 2021, 31, 2010870.	7.8	10
539	Fluorescence Quenching in J-Aggregates through the Formation of Unusual Metastable Dimers. Journal of Physical Chemistry B, 2021, 125, 4438-4446.	1.2	6
541	Electrospun Supramolecular Hybrid Microfibers from Conjugated Polymers: Color Transformation and Conductivity Evolution. Chinese Journal of Polymer Science (English Edition), 2021, 39, 824-830.	2.0	5
542	Cross-Linking of Poly(arylenebutadiynylene)s and Its Effect on Charge Carrier Mobilities in Thin-Film Transistors. Macromolecules, 2021, 54, 4351-4362.	2.2	4
543	Efficient Energy Funneling in Spatially Tailored Segmented Conjugated Block Copolymer Nanofiber–Quantum Dot or Rod Conjugates. Journal of the American Chemical Society, 2021, 143, 7032-7041.	6.6	25
544	Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems. Annual Review of Physical Chemistry, 2021, 72, 591-616.	4.8	31
545	Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells. Chemical Engineering Journal, 2021, 412, 128770.	6.6	45
546	Orientational Ordering within Semiconducting Polymer Fibrils. Advanced Functional Materials, 2021, 31, 2102522.	7.8	3
547	Complications in the Interpretation of F8T2 Spectra in Terms of Morphology. Journal of Physical Chemistry B, 2021, 125, 5660-5666.	1.2	3
548	Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. Reports on Progress in Physics, 2021, 84, 076601.	8.1	36
549	Theranostic Near-Infrared-Active Conjugated Polymer Nanoparticles. ACS Nano, 2021, 15, 8790-8802.	7.3	19
550	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	5.2	60
551	Molecular Engineering of Water-Soluble Oligomers to Elucidate Radical π–Anion Interactions in n-Doped Nanoscale Objects. Journal of Physical Chemistry C, 2021, 125, 10526-10538.	1.5	7
552	Ambient-Efficient Hydrophobic Hydration-Shell Structure for Lysosome-Tolerable Upconversion Nanoparticles with Enhanced Biosafety and Simultaneous Versatility. Chemistry of Materials, 2021, 33, 5377-5390.	3.2	5
553	A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Science Advances, 2021, 7, .	4.7	31
554	Branched Oligo(ether) Side Chains: A Path to Enhanced Processability and Elevated Conductivity for Polymeric Semiconductors. Advanced Functional Materials, 2021, 31, 2102688.	7.8	29

#	Article	IF	CITATIONS
555	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	1.9	14
556	Unraveling the Contribution of Residual Monomer to the Emission Spectra of Poly(3-hexylthiophene) Aggregates: Implications for Identifying H- and J-type Coupling. Journal of Physical Chemistry Letters, 2021, 12, 5919-5924.	2.1	4
557	Programmable Assembly of Ï€â€Conjugated Polymers. Advanced Materials, 2021, 33, e2006287.	11.1	29
558	Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. Asian Journal of Organic Chemistry, 2021, 10, 1544-1566.	1.3	9
559	Nanoscale Self-Assembly of Poly(3-hexylthiophene) Assisted by a Low-Molecular-Weight Gelator toward Large-Scale Fabrication of Electrically Conductive Networks. ACS Applied Nano Materials, 2021, 4, 8003-8014.	2.4	8
560	Double J-Coupling Strategy for Near Infrared Emitters. Journal of the American Chemical Society, 2021, 143, 11946-11950.	6.6	26
561	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7.3	47
562	HJ-aggregates of donor–acceptor–donor oligomers and polymers. Journal of Chemical Physics, 2021, 155, 034905.	1.2	19
563	Simultaneously Enhanced Efficiency and Operational Stability of Nonfullerene Organic Solar Cells via Solidâ€Additiveâ€Mediated Aggregation Control. Small, 2021, 17, e2102558.	5.2	45
564	Fineâ€Tuning Aggregation of Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells. Small Structures, 2021, 2, 2100055.	6.9	7
565	Strengthening the Intrachain Interconnection of Polymers by the Naphthalene Diimide–Pyrene Complementary Interactions. Macromolecules, 2021, 54, 7282-7290.	2.2	4
566	Highâ€Efficiency Solutionâ€Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. Advanced Science, 2021, 8, e2101326.	5.6	43
567	Enhancement of morphological and emission stability of deep-blue small molecular emitter via a universal side-chain coupling strategy for optoelectronic device. Chinese Chemical Letters, 2022, 33, 835-841.	4.8	7
568	Data Science Guided Experiments Identify Conjugated Polymer Solution Concentration as a Key Parameter in Device Performance., 2021, 3, 1321-1327.		14
569	Probing the metal/conducting polymer interface and implications of the metal diffusion in two-terminal sandwich devices. Synthetic Metals, 2021, 278, 116797.	2.1	0
570	Null Exciton-Coupled Chromophoric Dimer Exhibits Symmetry-Breaking Charge Separation. Journal of the American Chemical Society, 2021, 143, 13769-13781.	6.6	57
571	Enormous Promotion of Photocatalytic Activity through the Use of Near-Single Layer Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 2429-2439.	4.6	25
572	Coexistent Integer Charge Transfer and Charge Transfer Complex in F4-TCNQ-Doped PTAA for Efficient Flexible Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 8533-8540.	2.1	17

#	Article	IF	CITATIONS
573	Li+ and Oxidant Addition To Control Ionic and Electronic Conduction in Ionic Liquid-Functionalized Conjugated Polymers. Chemistry of Materials, 2021, 33, 6464-6474.	3.2	13
574	In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends. Small Methods, 2021, 5, e2100585.	4.6	21
575	Photophysics of thiazole orange in deep eutectic solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 258, 119812.	2.0	7
576	Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44604-44614.	4.0	13
577	Aggregation and thermally induced photo-physics and structural ordering of thiophene-quinoxaline copolymer. Materials Research Express, 2021, 8, 095307.	0.8	2
578	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	1.2	48
579	Coaxial Conjugated Polymer/Quantum Rod Assembly into Hybrid Nanowires with Preferred Quantum Rod Orientation. Chemistry of Materials, 2021, 33, 7878-7888.	3.2	3
580	Stereoisomer-Independent Stable Blue Emission in Axial Chiral Difluorenol. Frontiers in Chemistry, 2021, 9, 717892.	1.8	0
581	Synergy between Fermi Level of Graphene and Morphology of Polymer Film Allows Broadband or Wavelengthâ€Sensitive Photodetection. Advanced Materials Interfaces, 2021, 8, 2100770.	1.9	5
582	Modulation of Microstructure and Charge Transport in Polymer Monolayer Transistors by Solution Aging. Chinese Journal of Chemistry, 2021, 39, 3079-3084.	2.6	4
583	Solution-processable infrared photodetectors: Materials, device physics, and applications. Materials Science and Engineering Reports, 2021, 146, 100643.	14.8	49
584	Aggregation-Induced Radical of Donor–Acceptor Organic Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 9783-9790.	2.1	24
585	On the synthesis and characterization of Ru(II)-doped polymer fibers: Polymer immobilization effect on Ru(II) emitter photophysical performance and singlet oxygen generation. Journal of Luminescence, 2021, 238, 118224.	1.5	O
586	Photoisomerizable azobenzene dyes incorporated into polymers and dendrimers. Influence of the molecular aggregation on the nonlinear optical properties. Dyes and Pigments, 2021, 194, 109551.	2.0	16
587	Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry - A European Journal, 2022, 28, .	1.7	14
588	Photon correlations probe the quantized nature of light emission from optoelectronic materials. Applied Physics Reviews, 2021, 8, .	5.5	6
589	Chlorinated unfused acceptor enabling 13.57% efficiency and 73.39% fill factor organic solar cells via fine-tuning alkoxyl chains on benzene core. Chemical Engineering Journal, 2022, 427, 131828.	6.6	29
590	Extrinsic Influences on Photoluminescence Spectral Lineshape in Thin Films. Advanced Optical Materials, 2021, 9, 2001997.	3.6	6

#	Article	IF	CITATIONS
591	Freeing Organic Semiconductor Nanowires from Nanoporous Aluminum Oxide Templates: Effects on Morphology, Crystal Structure, and Molecular Aggregation. Crystal Growth and Design, 2021, 21, 721-728.	1.4	3
592	Towards efficient near-infrared fluorescent organic light-emitting diodes. Light: Science and Applications, 2021, 10, 18.	7.7	46
593	What does graphitic carbon nitride really look like?. Physical Chemistry Chemical Physics, 2021, 23, 2853-2859.	1.3	12
594	Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Materials Horizons, 2021, 8, 1272-1285.	6.4	21
595	Multifunctional Chiral Ï€â€Conjugated Polymer Microspheres: Production and Confinement of NLO signal, Detection of Circularly Polarized Light, and Display of Laserâ€Triggered NLO Emission Shifts. Advanced Optical Materials, 2020, 8, 2000431.	3.6	21
596	The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes. Advanced Electronic Materials, 2018, 4, 1700375.	2.6	17
597	Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptorâ€Based Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003002.	10.2	146
598	Inferring changes in Ï∈-stack mobility induced by aging from vibronic transitions in poly(3-hexylthiophene-2,5-diyl) films. Synthetic Metals, 2019, 247, 276-284.	2.1	2
599	Revealing Ordered Polymer Packing during Freeze-Drying Fabrication of a Bulk Heterojunction Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61-butyric Acid Methyl Ester Layer: In Situ Optical Spectroscopy, Molecular Dynamics Simulation, and X-ray Diffraction. Journal of Physical Chemistry C, 2017, 121, 14826-14834.	1.5	7
600	Charge-Transfer Intermediates in the Electrochemical Doping Mechanism of Conjugated Polymers. Journal of the American Chemical Society, 2021, 143, 294-308.	6.6	28
601	Quantum dynamical simulations of intra-chain exciton diffusion in an oligo (<i>para</i> -phenylene) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
602	Chapter 11 Ultrafast Energy and Charge Transfer in Functional Molecular Nanoscale Aggregates. , 2017, , 407-436.		1
603	Multiphoton laser-induced confined chemical changes in polymer films. Optics Express, 2020, 28, 11267.	1.7	5
604	Aggregation Controlled Charge Generation in Fullerene Based Bulk Heterojunction Polymer Solar Cells: Effect of Additive. Polymers, 2021, 13, 115.	2.0	6
605	Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 017101.	0.2	4
606	Improving the charge transport performance of solution-processed organic field-effect transistors using green solvent additives. Journal of Materials Chemistry C, 2021, 9, 16506-16515.	2.7	9
607	Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling. Journal of Physical Chemistry Letters, 2021, 12, 9899-9905.	2.1	5
608	Slipâ€Stacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	11.1	77

#	Article	IF	CITATIONS
610	Intrinsically Stretchable and Stable Ultraâ€Deepâ€Blue Fluoreneâ€Based Polymer with a High Emission Efficiency of â‰^90% for Polymer Lightâ€Emitting Devices with a CIE <i>_{y< sub>< i>Å= 0.06. Advanced Functional Materials, 2022, 32, 2106564.}</i>	7.8	10
611	<i>In Situ</i> Spectroelectrochemical-Conductance Measurements as an Efficient Tool for the Evaluation of Charge Trapping in Conducting Polymers. Journal of Physical Chemistry Letters, 2021, 12, 10422-10428.	2.1	12
612	Understanding the Effects of Confinement and Crystallinity on HJ-Coupling in Conjugated Polymers via Alignment and Isolation in an Oriented Mesoporous Silica Host. Journal of Physical Chemistry C, 2021, 125, 23240-23249.	1.5	4
613	Effect of local environment on aggregate electronic properties of P3HT., 2019, , .		0
614	Control of Photoinduced Charge Separation in Conjugated Polyelectrolyte Complexes through Microstructure-Dependent Exciton Delocalization. Journal of Physical Chemistry C, 2021, 125, 22982-22997.	1.5	3
615	Multiscale Evolution of Bulk Heterojunction Solar Cell Active Layers under Thermal Stress. Analytical Chemistry, 2021, 93, 1232-1236.	3.2	1
616	Direct observation of defect modes in molecular aggregate analogs. Physical Review B, 2020, 102, .	1.1	1
617	Supramolecular polymerization of electronically complementary linear motifs: anti-cooperativity by attenuated growth. Chemical Science, 2021, 13, 81-89.	3.7	11
618	The influence of surface roughness on the presence of polymorphs and defect states in P3HT layers. Applied Surface Science, 2022, 573, 151539.	3.1	0
619	The configuration effect on the exciton dynamics of zinc chlorin aggregates. Physical Chemistry Chemical Physics, 2021, 23, 25769-25775.	1.3	2
620	Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51436-51446.	4.0	32
621	Development of NIR emissive fully-fused bisboron complexes with π-conjugated systems including multiple azo groups. Dalton Transactions, 2021, 51, 74-84.	1.6	15
622	Superior transport behavior of gold nanoparticles/P3HT blends by tuning optical and structural properties. Synthetic Metals, 2022, 283, 116973.	2.1	2
623	Synthesis of a Poly(3-dodecylthiophene) Bearing Aniline Groups for the Covalent Functionalization of Carbon Nanotubes. Reactions, 2021, 2, 473-485.	0.9	0
624	Stereoisomeric selection upon adsorption: A structural and optical study of curcuminoid derivatives on ultrathin films of KCl on $Au(111)$ and on bulk KCl(001). Physical Review B, 2021, 104, .	1.1	1
625	Disorder in P3HT Nanoparticles Probed by Optical Spectroscopy on P3HT- <i>b</i> -PEG Micelles. Journal of Physical Chemistry A, 2021, 125, 10165-10173.	1.1	5
626	Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56375-56384.	4.0	9
627	How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells. Journal of Physical Chemistry C, O, , .	1.5	2

#	Article	IF	CITATIONS
628	Structural and Optical Identification of Planar Side-Chain Stacking P3HT Nanowires. Macromolecules, 2021, 54, 10750-10757.	2.2	7
629	Layered structures of assembled imine-linked macrocycles and two-dimensional covalent organic frameworks give rise to prolonged exciton lifetimes. Journal of Materials Chemistry C, 2022, 10, 3015-3026.	2.7	7
630	The Fabrication of Pd Single Atoms/Clusters on COF Layers as Co-catalysts for Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6885-6893.	4.0	26
631	Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chemical Reviews, 2022, 122, 4493-4551.	23.0	43
632	Coil–rod–coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells. Journal of Materials Chemistry C, 2021, 10, 346-359.	2.7	4
633	Conjugated polyelectrolyte-based ternary exciton funnels <i>via</i> liposome scaffolds. Molecular Systems Design and Engineering, 2022, 7, 392-402.	1.7	3
634	Green Solventâ€Processed Hemiâ€Isoindigo Polymers for Stable Temperature Sensors. Advanced Functional Materials, 2022, 32, .	7.8	12
635	Benzobisthiazole Polymer with Resonance-assisted Hydrogen Bonds for High-performance Transistor and Solar Cell Applications. Chinese Journal of Polymer Science (English Edition), 2022, 40, 147-156.	2.0	12
636	Strengthening the Intermolecular Interaction of Prototypical Semicrystalline Conjugated Polymer Enables Improved Photocurrent Generation at the Heterojunction. Macromolecular Rapid Communications, 2022, 43, e2100871.	2.0	9
637	Vibronic States and Edge-On Oriented π-Stacking in Poly(3-alkylthiophene) Thin Films. ACS Applied Polymer Materials, 2022, 4, 1377-1386.	2.0	10
638	Excimer Formation Inhibits the Intramolecular Singlet Fission Dynamics: Systematic Tilting of Pentacene Dimers by Linking Positions. Journal of Physical Chemistry B, 2022, 126, 1054-1062.	1.2	16
639	Enabling high-performance, centimeter-scale organic solar cells through three-dimensional charge transport. Cell Reports Physical Science, 2022, , 100761.	2.8	4
640	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	2.5	2
641	Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjetâ€Printed Active Layer. Advanced Energy Materials, 2022, 12, .	10.2	17
642	P3ht:Pcbm Polymer Solar Cells from a Didactic Perspective. SSRN Electronic Journal, 0, , .	0.4	0
643	Selective CO ₂ adsorption and bathochromic shift in a phosphocholine-based lipid and conjugated polymer assembly. RSC Advances, 2022, 12, 8385-8393.	1.7	0
644	Molecular engineering of excited-state process for multicolor microcrystalline lasers. Journal of Materials Chemistry C, 2022, 10, 4166-4172.	2.7	1
645	Engineering the sign of circularly polarized emission in achiral polymer $\hat{a}\in$ chiral small molecule blends as a function of blend ratio. Journal of Materials Chemistry C, 2022, 10, 5168-5172.	2.7	14

#	Article	IF	CITATIONS
646	Intrachain Exciton Motion Can Compete with Interchain Hopping in Conjugated Polymer Films with a Strong J-Aggregate Property. Journal of Physical Chemistry Letters, 2022, 13, 2078-2083.	2.1	5
647	Highâ€Efficiency Sequentialâ€Cast Organic Solar Cells Enabled by Dual Solventâ€Controlled Polymer Aggregation. Solar Rrl, 2022, 6, .	3.1	14
648	Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers, 2022, 14, 858.	2.0	5
649	Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews, 2022, 122, 8487-8593.	23.0	61
650	An In Situ Spectral Monitoring Scheme for Advanced Manufacturing of Novel Nanodevices. Journal of Sensors, 2022, 2022, 1-10.	0.6	0
651	Peptide Backbone Directed Selfâ€Assembly of Merocyanine Oligomers into Duplex Structures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
652	Peptide Backbone Directed Selfâ€Assembly of Merocyanine Oligomers into Duplex Structures. Angewandte Chemie, 0, , .	1.6	2
653	Enhancing the Deep-Blue Emission Property of Wide Bandgap Conjugated Polymers through a Self-Cross-Linking Strategy. ACS Applied Polymer Materials, 2022, 4, 2283-2293.	2.0	4
654	Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. Nanomaterials, 2022, 12, 1223.	1.9	16
655	Facile synthesis of water-dispersible poly(3-hexylthiophene) nanoparticles with high yield and excellent colloidal stability. IScience, 2022, 25, 104220.	1.9	3
656	Vibrations Responsible for Luminescence from HJ-Aggregates of Conjugated Polymers Identified by Cryogenic Spectroscopy of Single Nanoparticles. ACS Nano, 2022, 16, 6382-6393.	7.3	3
657	Restriction of intramolecular torsion induces abnormal blue-shifted fluorescence in the aggregate state. Dyes and Pigments, 2022, 201, 110192.	2.0	16
658	Simple unfused acceptors with optimal naphthalene isomerization enabling 10.72% as-cast organic solar cells. Chemical Engineering Journal, 2022, 441, 135973.	6.6	12
659	Frenkel biexcitons in hybrid HJ photophysical aggregates. Science Advances, 2021, 7, eabi5197.	4.7	10
660	Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials, 2022, 8, .	2.6	7
661	The combined influence of polythiophene side chains and electrolyte anions on organic electrochemical transistors. Electrochemical Science Advances, 2022, 2, .	1.2	6
662	Folding of aromatic polyamides into a rare intrachain \hat{l}^2 -sheet type structure and further reinforcement of the secondary structure through hostâ \in guest interactions. Polymer Chemistry, 0, , .	1.9	1
663	Signatures of coherent vibronic exciton dynamics and conformational control in the two-dimensional electronic spectroscopy of conjugated polymers. Faraday Discussions, 0, 237, 148-167.	1.6	3

#	Article	IF	CITATIONS
664	The Role of Longâ€Alkylâ€Group Spacers in Glycolated Copolymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2202574.	11.1	21
665	Realâ€Time Tunable Red/Nearâ€Infrared Solidâ€State Emitters in the First Biological Window: 9,9â€Diethylâ€2â€diphenylaminofluoreneâ€Based Pushâ€Pull Fluorophores for Distributed Feedback and Random Lasing Applications. ChemPhotoChem, 0, , .	1.5	1
666	Simultaneous measurement of X-ray scattering and photoluminescence during molecular deposition. Journal of Luminescence, 2022, 248, 118950.	1.5	1
667	Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. Nature Communications, 2022, 13, 2738.	5.8	20
668	Organic molecular crystal with a high ultra-deep-blue emission efficiency of â^1/485% for low-threshold laser. Dyes and Pigments, 2022, 204, 110425.	2.0	4
669	Not All Aggregates Are Made the Same: Distinct Structures of Solution Aggregates Drastically Modulate Assembly Pathways, Morphology, and Electronic Properties of Conjugated Polymers. Advanced Materials, 2022, 34, .	11.1	22
670	Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nature Communications, 2022, 13, .	5.8	14
671	Photophysics and thermally-induced degradation of P2TI-DD, a polymer synthesized by direct arylation reaction. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	1
672	Nonfused-Core-Small-Molecule-Acceptor-Based Polymer Acceptors for All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 960-967.	2.0	10
673	Organic Solar Cells: Electrostatic Stabilization of Organic Semiconductor Nanoparticle Dispersions by Electrical Doping. Advanced Functional Materials, 2022, 32, .	7.8	9
674	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	2.8	6
675	Nanomorphology dependence of the environmental stability of organic solar cells. NPG Asia Materials, 2022, 14, .	3.8	3
676	DFT studies of aggregation induced energy splitting and excitonic diversification in benzene and anthracene multimers. Chemical Physics, 2022, 562, 111641.	0.9	2
677	Quantum dynamical study of inter-chain exciton transport in a regioregular P3HT model system at finite temperature: HJ vs H-aggregate models. Journal of Chemical Physics, 2022, 157, .	1.2	6
678	Charge Transfer Excitons in π -stacked Thiophene Oligomers and P3[Alkyl]T Crystals: CIS calculations and electroabsorption spectroscopy. Journal of Chemical Physics, 0, , .	1.2	2
679	On the microstructures of the bulk of P3HT amorphous films obtained from two protocols: Insights from molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2022, 117, 108279.	1.3	2
680	Achieving Record-Efficiency Organic Solar Cells upon Tuning the Conformation of Solid Additives. Journal of the American Chemical Society, 2022, 144, 14731-14739.	6.6	103
681	Comparison among several vibronic coupling methods. Journal of Molecular Modeling, 2022, 28, .	0.8	6

#	Article	IF	CITATIONS
682	Nearâ€Infrared Lightâ€Emitting Diodes from Organic Radicals with Charge Control. Advanced Optical Materials, 2022, 10, .	3.6	12
683	Improving the Intrinsic Stretchability of Fully Conjugated Polymer for Deep-Blue Polymer Light-Emitting Diodes with a Narrow Band Emission: Benefits of Self-Toughness Effect. Journal of Physical Chemistry Letters, 2022, 13, 7286-7295.	2.1	5
684	Poly (3â€hexylthiophene) (P3HT) Crystalsomes: Tiling 1D Polymer Crystals on a Spherical Surface. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
685	Tuning the Mechanical and Electric Properties of Conjugated Polymer Semiconductors: Sideâ€Chain Design Based on Asymmetric Benzodithiophene Building Blocks. Advanced Functional Materials, 2022, 32, .	7.8	18
686	P3HT:PCBM polymer solar cells from a didactic perspective. Journal of Photonics for Energy, 2022, 12, .	0.8	8
687	Synthesis of carbon dots from waste materials: analytical applications., 2023,, 225-239.		1
688	Excimer evolution hampers symmetry-broken charge-separated states. Chemical Science, 2022, 13, 10824-10835.	3.7	13
689	Dynamics and coherence of photoexcited states in polyfluorene films with ordered chain phases. Journal of Materials Chemistry C, 2022, 10, 11801-11809.	2.7	4
690	New semi-ladder polymers for ambipolar organic light-emitting transistors. Chemical Communications, 0, , .	2.2	0
691	Recent advances of NIR-TADF ($\langle i \rangle \hat{i} \rangle \langle i \rangle$ maxPL/EL > 700 nm) emitters and their applications in OLEDs. Journal of Materials Chemistry C, 2022, 10, 15681-15707.	2.7	14
692	Dopant-Stabilized Assembly of Poly(3-hexylthiophene). Journal of the American Chemical Society, 2022, 144, 16456-16470.	6.6	7
693	Exciton dynamics in 2D organic semiconductors. Materials Futures, 2022, 1, 042001.	3.1	4
694	Fluorinated Alcohol-Processed N-Type Organic Electrochemical Transistor with High Performance and Enhanced Stability. ACS Applied Materials & Samp; Interfaces, 2022, 14, 43586-43596.	4.0	16
695	Poly(diarylfluorene) Deep-Blue Polymer Light-Emitting Diodes Based on Submicrometer-Scale Morphological Films Induced by Trace β-Conformation. Macromolecules, 2022, 55, 8084-8094.	2.2	3
696	Ambipolar blend-based organic electrochemical transistors and inverters. Nature Communications, 2022, 13, .	5 . 8	25
697	Editorial: Efficient near-infrared-emitting materials: Design, synthesis, mechanisms, and applications. Frontiers in Chemistry, 0, 10 , .	1.8	0
698	Photovoltaic Effect of Structure Compatibility Utilizing a Same Electron-Accepting Unit on a Polymer Donor and Nonfused Nonfullerene Acceptor. ACS Applied Energy Materials, 2022, 5, 12716-12726.	2.5	4
699	Excitonic magnetic polarons in II-VI diluted magnetic semiconductor nanostructures. Journal of Luminescence, 2022, 252, 119334.	1.5	3

#	Article	IF	CITATIONS
700	Light Harvesting Antenna Properties of Framework Solids. Accounts of Materials Research, 2022, 3, 1149-1159.	5.9	2
701	Structural Disorder as the Origin of Optical Properties and Spectral Dynamics in Squaraine Nano-Aggregates. Journal of the American Chemical Society, 2022, 144, 19372-19381.	6.6	8
702	Charge generation in organic solar cells: Journey toward 20% power conversion efficiency. Aggregate, 2022, 3, .	5.2	15
703	Fast-Coating Process Based on Elongated Rodlike Preaggregate for Highly Oriented Thin Film of Donor–Acceptor π-Conjugated Polymer. ACS Applied Materials & Interfaces, 2022, 14, 50112-50119.	4.0	3
704	Stable Deepâ \in Blue Polymer Lightâ \in Emitting Diodes with Wellâ \in Resolved Emission from a Planar Conformational Chain of Polydiarylfluorenes via Alternating Copolymerization. Advanced Optical Materials, 2023, 11 , .	3 . 6	5
705	Resonant Enhancement of Polymer–Cell Optostimulation by a Plasmonic Metasurface. ACS Omega, 0, , .	1.6	O
706	Electron Transfer in Conjugated Polymer Electrolyte Complexes: Impact of Donor–Acceptor Interactions on Microstructure, Charge Separation, and Charge Recombination. Journal of Physical Chemistry C, 2022, 126, 19580-19593.	1.5	3
707	Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules, 2022, 55, 10670-10681.	2.2	5
708	Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion. Nanoscale, 2023, 15, 998-1013.	2.8	8
709	Synthesis and living crystallization-driven self-assembly of backbone asymmetric and symmetric π-conjugated oligo(<i>p</i> phenylene ethynylene)-based block copolymers. Polymer Chemistry, 2023, 14, 137-151.	1.9	6
710	Solution-processed triphenylethylene-fluorene fluorochromes toward deep-blue organic light-emitting diodes: benefits of preventing radical formation. Materials Chemistry Frontiers, 2023, 7, 267-273.	3.2	1
711	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	3.7	2
712	Effects of Poly(3-hexylthiophene) Molecular Weight and the Aging of Spinning Solution on the Electrospun Fiber Properties. ACS Applied Polymer Materials, 2022, 4, 8812-8824.	2.0	7
713	Highâ€Performance Green Thickâ€Film Ternary Organic Solar Cells Enabled by Crystallinity Regulation. Advanced Functional Materials, 2023, 33, .	7.8	15
714	Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks. Nature Communications, 2022, 13 , .	5.8	19
715	Aggregation-Induced Emission in a Polymeric Photovoltaic Donor Material. Journal of Physical Chemistry C, 2022, 126, 20275-20283.	1.5	2
716	Theoretical Models, Preparation, Characterization and Applications of Cyanine Jâ€Aggregates: A Minireview. ChemistryOpen, 2022, 11, .	0.9	4
717	Increasing the Strength, Hardness, and Survivability of Semiconducting Polymers by Crosslinking. Advanced Materials Interfaces, 2023, 10, .	1.9	4

#	Article	IF	CITATIONS
718	Elucidating the Chain-Extension Effect on the Exciton-Dissociation Mechanism through an Intra- or Interchain Polaron-Pair State in Push–Pull Conjugated Polymers. Chemistry of Materials, 2022, 34, 10873-10884.	3.2	1
719	Effects of Side-Chain Length and Functionality on Polar Poly(dioxythiophene)s for Saline-Based Organic Electrochemical Transistors. Journal of the American Chemical Society, 2023, 145, 122-134.	6.6	14
720	Film Formation Kinetics of Polymer Donor and Nonfullerene Acceptor Active Layers During Printing Out of 1,2,4†Trimethylbenzene in Ambient Conditions. Solar Rrl, 2023, 7, .	3.1	1
721	High Electron Mobility Hotâ€Exciton Induced Delayed Fluorescent Organic Semiconductors. Angewandte Chemie, 0, , .	1.6	0
722	High Electron Mobility Hotâ€Exciton Induced Delayed Fluorescent Organic Semiconductors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
723	Hybrid silver/silver-oxide nanoparticles doped hole transport layer for efficient photon harvesting in organic solar cells. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	8
724	Manipulating Organic Semiconductor Morphology with Visible Light. Advanced Functional Materials, 2023, 33, .	7.8	6
725	Transmissible H-aggregated NIR-II fluorophore to the tumor cell membrane for enhanced PTT and synergistic therapy of cancer. Nano Convergence, 2023, 10, .	6.3	4
726	Largeâ€Area Bladeâ€Coated Deepâ€Blue Polymer Lightâ€Emitting Diodes with a Narrowband and Uniform Emission. Advanced Science, 2023, 10, .	5.6	3
727	Ultrafast Electron Transfer Dynamics of Organic Polymer Nanoparticles with Graphene Oxide. Chemistry - A European Journal, 2023, 29, .	1.7	2
728	Alignment and photooxidation dynamics of a perylene diimide chromophore in lipid bilayers. Molecular Systems Design and Engineering, 0, , .	1.7	1
729	Spark Discharge Doping—Achieving Unprecedented Control over Aggregate Fraction and Backbone Ordering in Poly(3â€hexylthiophene) Solutions. Small, 2023, 19, .	5.2	1
730	Remarkable conductivity enhancement in P-doped polythiophenes via rational engineering of polymer-dopant interactions. Materials Today Advances, 2023, 18, 100360.	2.5	4
731	Design of Donor–Acceptor Polymer Semiconductors for Optimizing Combinations with Dopants to Maximize Thermoelectric Performance. Chemistry of Materials, 2023, 35, 1796-1805.	3.2	1
732	An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. Nature Materials, 2023, 22, 362-368.	13.3	18
733	Viewing Optical Processes at the Nanoscale: Combining Scanning Tunneling Microscopy and Optical Spectroscopy. Journal of Physical Chemistry C, 2023, 127, 3913-3920.	1.5	2
734	Designing a Lengthâ€Modulated Azide Photocrosslinker to Improve the Stretchability of Semiconducting Polymers. Advanced Functional Materials, 2023, 33, .	7.8	6
735	Conjugated polymer nanoparticles with tunable antibacterial photodynamic capability. Materials Advances, 2023, 4, 1664-1670.	2.6	О

#	Article	IF	Citations
736	Phenazine-Substituted Poly(benzimidazobenzophenanthrolinedione): Electronic Structure, Thin Film Morphology, Electron Transport, and Mechanical Properties of an n-Type Semiconducting Ladder Polymer. Macromolecules, 2023, 56, 2081-2091.	2.2	3
737	Recordâ€High Electron Mobility Exceeding 16 cm ² V ^{â^³} ¹ s ^{â^³} ¹ in Bisisoindigoâ€Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. Advanced Materials, 2023, 35, .	11.1	21
738	Ultrafast photoexcitation dynamics behavior of hydrogen-bonded polyfluorenol. Chinese Chemical Letters, 2024, 35, 108279.	4.8	1
739	Influence of Backbone Regioregularity on the Optoelectronic and Mechanical Response of Conjugated Polyelectrolyte-Based Hydrogels. Journal of Physical Chemistry B, 2023, 127, 2277-2285.	1.2	1
740	Matrix Effect on Polydiarylfluorenes Electrospun Hybrid Microfibers: From Morphology Tuning to High Explosive Detection Efficiency. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
741	Switching the photo physics of MDMO-PPV under PMMA environment- a boon for organic electronics. Journal of Polymer Research, 2023, 30, .	1.2	1
742	A BF ₂ Chelate Exhibiting Excimerâ€like Fluorescence with an Unusually Large Stokes Shift in the Crystalline Phase. Chemistry - A European Journal, 2023, 29, .	1.7	0
743	Multidimensional Coherent Spectroscopy of Molecular Polaritons: Langevin Approach. Physical Review Letters, 2023, 130, .	2.9	5
744	Largeâ€Area Deepâ€Blue Polymer Lightâ€Emitting Diodes with Wellâ€Resolved Emission from Planar Conformational Segments Fabricated via Brush Coating. Advanced Optical Materials, 2023, 11, .	3.6	3
745	Efficient Fullyâ€Sprayed Organic Solar Cells with Coffeeâ€Ringâ€Free Photoactive Layer and Alloy Topâ€Electrode. Advanced Materials Technologies, 2023, 8, .	3.0	1
746	Solution Aggregate Structures of Donor Polymers Determine the Morphology and Processing Resiliency of Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2023, 35, 2713-2729.	3.2	12
747	Conjugation-length dependence of regioregular oligo 3-alkyl(thienylene-vinylene)s demonstrates polyene-like behaviour with weak electron–electron correlations. Physical Chemistry Chemical Physics, 0, , .	1.3	0
748	Nanoparticle Mediated Improved Crystallinity and Connectivity of Semiconducting Polymer Thin Films. ACS Applied Polymer Materials, 2023, 5, 3359-3369.	2.0	1
749	Isoquinoline-1,3-dione-derived conjugated polymers for field-effect transistors: Synthesis, properties, and the effect of inner aromatic bridges. Polymer Chemistry, 0 , , .	1.9	0
750	Electroluminescence from a phthalocyanine monolayer encapsulated in a van der Waals tunnel diode. Molecular Physics, 0, , .	0.8	0
751	Synthesis and BrÃ,nsted acid doping of solution processable poly(thienylene vinylene) for thermoelectric application. Journal of Materials Chemistry A, 2023, 11, 17091-17100.	5.2	0
752	Graphene Oxide: Key to Efficient Charge Extraction and Suppression of Polaronic Transport in Hybrids with Poly (3-hexylthiophene) Nanoparticles. Chemistry of Materials, 0, , .	3.2	0
756	Role of aggregates and microstructure of mixed-ionic–electronic-conductors on charge transport in electrochemical transistors. Materials Horizons, 2023, 10, 2568-2578.	6.4	8

#	Article	IF	CITATIONS
757	Aggregates of conjugated polymers: bottom-up control of mesoscopic morphology and photophysics. NPG Asia Materials, 2023, 15 , .	3.8	1
764	From Solution to Thin Film: Molecular Assembly of π-Conjugated Systems and Impact on (Opto)electronic Properties. Chemical Reviews, 2023, 123, 8395-8487.	23.0	27
776	Organic luminescent crystals: role of packing structures and optical properties. Materials Chemistry Frontiers, 2023, 7, 5104-5119.	3.2	2
783	Keeping the chromophores crossed: evidence for null exciton splitting. Chemical Society Reviews, 2023, 52, 6664-6679.	18.7	6
784	Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiency. Materials Horizons, 2023, 10, 5564-5576.	6.4	2
803	Visualizing and characterizing excited states from time-dependent density functional theory. Physical Chemistry Chemical Physics, 2024, 26, 3755-3794.	1.3	2
820	A comparative study of the edge-on oriented π-stackings between a homopolymer and a copolymer thin film. AIP Conference Proceedings, 2024, , .	0.3	0