High Charge Carrier Mobilities and Lifetimes in Organo

Advanced Materials 26, 1584-1589 DOI: 10.1002/adma.201305172

Citation Report

#	Article <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
17	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>G</mml:mi><mml:mi>Wxmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: Effect of spin-orbit interaction, semicore electrons, an. Physical Review B, 2014, 90, .</mml: </mml:msub></mml:mrow></mml:mi></mml:mrow>	3.2	126
18	Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5, 5757.	12.8	787
19	Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5, 5784.	12.8	2,531
20	Lasing behaviors upon phase transition in solution-processed perovskite thin films. Applied Physics Letters, 2014, 105, .	3.3	59
21	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, 2014, 2, .	5.1	118
22	Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Materials, 2014, 2, .	5.1	163
23	Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Research, 2014, 2, 111.	7.0	89
24	Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss. APL Materials, 2014, 2, .	5.1	37
25	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials, 2014, 26, 7158-7165.	6.7	256
26	An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Materials, 2014, 2, .	5.1	99
27	Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13, 476-480.	27.5	2,725
28	Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3â^'xClx perovskite solar cells. Nature Communications, 2014, 5, 3461.	12.8	511
29	High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2014, 5, 1421-1426.	4.6	1,490
30	Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 2014, 136, 5189-5192.	13.7	1,106
31	Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 3061-3068.	30.8	2,086
32	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	30.8	1,220
33	Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1628-1635.	4.6	384
34	Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and Environmental Science, 2014, 7, 2518-2534.	30.8	694

#	Article	IF	CITATIONS
35	Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites. Journal of Physical Chemistry C, 2014, 118, 11566-11572.	3.1	463
36	Solution Deposition onversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials, 2014, 4, 1400355.	19.5	325
37	Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} . Journal of Physical Chemistry Letters, 2014, 5, 1300-1306.	4.6	319
38	Qualifying composition dependent <i>p</i> and <i>n</i> self-doping in CH3NH3PbI3. Applied Physics Letters, 2014, 105, .	3.3	518
39	Effect of CH ₃ NH ₃ PbI ₃ thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19873-19881.	10.3	314
40	Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic–Inorganic Perovskite Pseudobinary Alloys. Journal of Physical Chemistry Letters, 2014, 5, 3958-3963.	4.6	93
41	Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale, 2014, 6, 14674-14678.	5.6	81
42	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2014, 2, .	5.1	136
43	Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2014, 8, 12701-12709.	14.6	614
44	Vapor deposition of organic-inorganic hybrid perovskite thin-films for photovoltaic applications. , 2014, , .		5
45	Improved charge transport of Nb-doped TiO ₂ nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19616-19622.	10.3	127
46	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3and NiO Nanoparticles. Angewandte Chemie, 2014, 126, 9493-9496.	2.0	31
47	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2408-2413.	4.6	90
48	Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Physical Review Applied, 2014, 2, .	3.8	1,005
49	Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. Chemistry of Materials, 2014, 26, 6557-6569.	6.7	286
50	First-Principles Investigation of the TiO ₂ /Organohalide Perovskites Interface: The Role of Interfacial Chlorine. Journal of Physical Chemistry Letters, 2014, 5, 2619-2625.	4.6	247
51	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	5.1	86
52	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al ₂ O ₃ and NiO Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 9339-9342.	13.8	57

#	ARTICLE	IF	CITATIONS
54	Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps. Journal of the American Chemical Society, 2014, 136, 13818-13825.	13.7	587
55	Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Materials, 2014, 2, .	5.1	194
56	Termination Dependence of Tetragonal CH ₃ NH ₃ PbI ₃ Surfaces for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2903-2909.	4.6	320
57	Band filling with free charge carriers in organometal halide perovskites. Nature Photonics, 2014, 8, 737-743.	31.4	943
58	Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale, 2014, 6, 8171-8176.	5.6	172
59	Materials Processing Routes to Trap-Free Halide Perovskites. Nano Letters, 2014, 14, 6281-6286.	9.1	671
60	Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications, 2014, 5, 5001.	12.8	294
61	Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2390-2394.	4.6	629
62	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 3532-3538.	4.6	175
63	Correlated electron–hole plasma in organometal perovskites. Nature Communications, 2014, 5, 5049.	12.8	497
64	Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Interfaces, 2014, 6, 16140-16146.	8.0	245
65	An Aboveâ€Roomâ€Temperature Ferroelectric Organo–Metal Halide Perovskite: (3â€Pyrrolinium)(CdCl ₃). Angewandte Chemie - International Edition, 2014, 53, 11242-11247.	13.8	160
66	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy and Environmental Science, 2014, 7, 2963-2967.	30.8	668
67	Preparation of Single-Phase Films of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	4.6	385
68	Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH ₃ NH ₃ PbI _{3â^x} Cl _x . Energy and Environmental Science, 2014, 7, 2269-2275.	30.8	427
69	One-step, solution-processed formamidinium lead trihalide (FAPbl _(3â^'x) Cl _x) for mesoscopic perovskite–polymer solar cells. Physical Chemistry Chemical Physics, 2014, 16, 19206-19211.	2.8	130
70	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	9.1	1,343
71	Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Applied Physics Letters, 2014, 104, .	3.3	232

#	Article	IF	CITATIONS
72	Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH ₃ NH ₃ PbI ₂ Br Nanosheets via Thermal Decomposition. Journal of the American Chemical Society, 2014, 136, 12241-12244.	13.7	222
73	Unraveling the Nanoscale Morphologies of Mesoporous Perovskite Solar Cells and Their Correlation to Device Performance. Nano Letters, 2014, 14, 2735-2740.	9.1	52
74	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. Journal of Physical Chemistry C, 2014, 118, 17171-17177.	3.1	225
75	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	19.5	164
76	Electronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility. ACS Nano, 2014, 8, 7147-7155.	14.6	370
77	Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. Journal of Materials Chemistry A, 2014, 2, 13827-13830.	10.3	163
78	Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 2015, 5, 265-275.	1.8	662
79	Charge arrier Dynamics and Mobilities in Formamidinium Lead Mixedâ€Halide Perovskites. Advanced Materials, 2015, 27, 7938-7944.	21.0	343
80	Temperatureâ€Dependent Chargeâ€Carrier Dynamics in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films. Advanced Functional Materials, 2015, 25, 6218-6227.	14.9	785
81	Local Versus Longâ€Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites. Advanced Science, 2015, 2, 1500136.	11.2	50
82	Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2015, 2, 1500195.	3.7	646
84	Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 2015, 44, 720-729.	1.3	216
85	Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering. Advanced Functional Materials, 2015, 25, 6875-6884.	14.9	57
86	Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500279.	19.5	271
87	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	19.5	1,045
89	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	14.9	321
90	The Significance of Ion Conduction in a Hybrid Organic–Inorganic Leadâ€Iodideâ€Based Perovskite Photosensitizer. Angewandte Chemie, 2015, 127, 8016-8021.	2.0	143
91	Controlled growth of PbI ₂ nanoplates for rapid preparation of CH ₃ NH ₃ PbI ₃ in planar perovskite solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2708-2717.	1.8	63

#	Article	IF	CITATIONS
92	Can Trihalide Lead Perovskites Support Continuous Wave Lasing?. Advanced Optical Materials, 2015, 3, 1557-1564.	7.3	72
93	16.1% Efficient Hysteresisâ€Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015, 5, 1500568.	19.5	222
94	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	19.5	131
96	Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 2015, 15, 530-539.	16.0	246
97	Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9, 444-449.	31.4	916
98	Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERC). Journal of Physical Chemistry Letters, 2015, 6, 2503-2508.	4.6	39
99	The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106, .	3.3	480
100	Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering. Scientific Reports, 2015, 5, 9863.	3.3	119
101	Improving efficiency of planar hybrid CH 3 NH 3 PbI 3âî' x Cl x perovskite solar cells by isopropanol solvent treatment. Organic Electronics, 2015, 24, 205-211.	2.6	41
102	Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 2015, 3, 14631-14641.	10.3	126
103	Ferroelectric Polarization of CH ₃ NH ₃ PbI ₃ : A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. Journal of Physical Chemistry Letters, 2015, 6, 2223-2231.	4.6	179
104	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	38.1	283
105	Wearable Doubleâ€Twisted Fibrous Perovskite Solar Cell. Advanced Materials, 2015, 27, 3831-3835.	21.0	184
106	Role of phase composition for electronic states in CH3NH3PbI3 prepared from CH3NH3I/PbCl2 solution. Applied Physics Letters, 2015, 106, 232104.	3.3	34
107	DMSO-based PbI ₂ precursor with PbCl ₂ additive for highly efficient perovskite solar cells fabricated at low temperature. RSC Advances, 2015, 5, 104606-104611.	3.6	26
108	Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society, 2015, 137, 16043-16048.	13.7	101
109	Comparison of Recombination Dynamics in CH ₃ NH ₃ PbBr ₃ and CH ₃ NH ₃ PbI ₃ Perovskite Films: Influence of Exciton Binding Energy. Journal of Physical Chemistry Letters, 2015, 6, 4688-4692.	4.6	350
110	Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility.	3.6	98

#	Article	IF	CITATIONS
111	Illumination dependent carrier dynamics of CH ₃ NH ₃ PbBr ₃ perovskite. Proceedings of SPIE, 2015, , .	0.8	1
112	Uniform perovskite photovoltaic thin films via ultrasonic spray assisted deposition method. , 2015, , .		4
113	Effects of domain size in polycrystalline perovskite organic-inorganic hybrids investigated by spatially resolved optical spectroscopy. , 2015, , .		0
114	Phenoxazineâ€Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401720.	19.5	109
115	Vacuum-Assisted Thermal Annealing of CH ₃ NH ₃ PbI ₃ for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 2015, 9, 639-646.	14.6	318
116	All Solution-Processed Lead Halide Perovskite-BiVO ₄ Tandem Assembly for Photolytic Solar Fuels Production. Journal of the American Chemical Society, 2015, 137, 974-981.	13.7	244
117	Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. Advanced Functional Materials, 2015, 25, 1213-1218.	14.9	86
118	Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals. Advanced Functional Materials, 2015, 25, 2378-2385.	14.9	318
119	High efficiency sequentially vapor grown n-i-p CH ₃ NH ₃ PbI ₃ perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Materials, 2015, 3, 016105.	5.1	87
120	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	6.0	70
121	Formation of Thin Films of Organic–Inorganic Perovskites for Highâ€Efficiency Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 3240-3248.	13.8	245
122	Unravelling the Effects of Cl Addition in Single Step CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 2309-2314.	6.7	96
123	Lifetime, Mobility, and Diffusion of Photoexcited Carriers in Ligand-Exchanged Lead Selenide Nanocrystal Films Measured by Time-Resolved Terahertz Spectroscopy. ACS Nano, 2015, 9, 1820-1828.	14.6	61
124	Investigation of CH ₃ NH ₃ PbI ₃ Degradation Rates and Mechanisms in Controlled Humidity Environments Using <i>in Situ</i> Techniques. ACS Nano, 2015, 9, 1955-1963.	14.6	1,171
125	Zr Incorporation into TiO ₂ Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. Journal of Physical Chemistry Letters, 2015, 6, 669-675.	4.6	106
126	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	47.7	852
127	Modulation Doping of GaAs/AlGaAs Core–Shell Nanowires With Effective Defect Passivation and High Electron Mobility. Nano Letters, 2015, 15, 1336-1342.	9.1	78
128	Electron-hole diffusion lengths > 175 μm in solution-grown CH ₃ NH ₃ Pbl ₃ single crystals. Science, 2015, 347, 967-970.	12.6	4,642

#	Article	IF	CITATIONS
129	High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347, 522-525.	12.6	2,978
130	Trap States in Lead Iodide Perovskites. Journal of the American Chemical Society, 2015, 137, 2089-2096.	13.7	813
131	Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 3456-3465.	3.1	361
132	Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. Journal of Physical Chemistry Letters, 2015, 6, 535-539.	4.6	265
133	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4283-4289.	8.0	59
134	A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano, 2015, 9, 1782-1787.	14.6	201
135	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	21.0	684
136	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	19.5	144
137	Transformation of the Excited State and Photovoltaic Efficiency of CH ₃ NH ₃ PbI ₃ Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 2015, 137, 1530-1538.	13.7	1,160
138	Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2015, 17, 9394-9409.	2.8	130
139	Efficient mesoscopic perovskite solar cells based on the CH ₃ NH ₃ PbI ₂ Br light absorber. Journal of Materials Chemistry A, 2015, 3, 9116-9122.	10.3	67
140	Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4471-4475.	8.0	131
141	Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites. Journal of Applied Physics, 2015, 117, 074901.	2.5	12
142	Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2015, 9, 2311-2320.	14.6	173
143	Improving the TiO ₂ electron transport layer in perovskite solar cells using acetylacetonate-based additives. Journal of Materials Chemistry A, 2015, 3, 9108-9115.	10.3	104
144	Interfacial Control Toward Efficient and Lowâ€Voltage Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2311-2316.	21.0	631
145	Navigating Organo‣ead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure–Property Relationships. Small, 2015, 11, 3088-3096.	10.0	49
146	Many-body interactions in photo-excited lead iodide perovskite. Journal of Materials Chemistry A, 2015, 3, 9285-9290.	10.3	144

#	Article	IF	CITATIONS
147	Magnetic field effects in hybrid perovskite devices. Nature Physics, 2015, 11, 427-434.	16.7	227
148	The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Applied Physics Letters, 2015, 106, .	3.3	126
149	Excitonic Many-Body Interactions in Two-Dimensional Lead Iodide Perovskite Quantum Wells. Journal of Physical Chemistry C, 2015, 119, 14714-14721.	3.1	198
150	Elucidation of Perovskite Film Micro-Orientations Using Two-Photon Total Internal Reflectance Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 3283-3288.	4.6	24
151	Charge carrier mobility in hybrid halide perovskites. Scientific Reports, 2015, 5, 12746.	3.3	294
152	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	13.7	347
153	Functioning Photoelectrochemical Devices Studied with Time-Resolved Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 3257-3262.	4.6	24
154	Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nature Communications, 2015, 6, 7903.	12.8	132
155	Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 2015, 26, 342001.	2.6	75
156	Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond?. Journal of Physical Chemistry Letters, 2015, 6, 3218-3227.	4.6	220
157	Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. RSC Advances, 2015, 5, 58543-58548.	3.6	20
158	Hybrid organic–inorganic chlorozincate and a molecular zinc complex involving the in situ formed imidazo[1,5-a]pyridinium cation: serendipitous oxidative cyclization, structures and photophysical properties. Dalton Transactions, 2015, 44, 13735-13744.	3.3	20
159	Evolution of Organic–Inorganic Lead Halide Perovskite from Solid-State Iodoplumbate Complexes. Journal of Physical Chemistry C, 2015, 119, 17065-17073.	3.1	70
160	Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015, 15, 5191-5199.	9.1	432
161	A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances, 2015, 5, 60562-60569.	3.6	130
162	Colloidal CuInS ₂ Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17482-17488.	8.0	119
163	Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2015, 6, 3041-3047.	4.6	59
164	Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015, 6, 7383.	12.8	641

#	Article	IF	CITATIONS
165	Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. Journal of Physical Chemistry Letters, 2015, 6, 3082-3090.	4.6	257
166	Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. Journal of Materials Chemistry A, 2015, 3, 17780-17787.	10.3	29
167	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	10.3	232
168	Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2969-2975.	4.6	211
169	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	11.9	891
170	Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 2015, 11, 582-587.	16.7	1,651
171	<i>Ab Initio</i> Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chemistry of Materials, 2015, 27, 4885-4892.	6.7	414
172	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. Nano Letters, 2015, 15, 4644-4649.	9.1	108
173	Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells. Chemistry of Materials, 2015, 27, 5116-5121.	6.7	107
174	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces, 2015, 7, 9645-9651.	8.0	114
175	Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective. Journal of Applied Physics, 2015, 117, .	2.5	17
176	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	2.8	141
177	Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semiconductor Science and Technology, 2015, 30, 054004.	2.0	50
178	Nonvolatile chlorinated additives adversely influence CH ₃ NH ₃ PbI ₃ based planar solar cells. Journal of Materials Chemistry A, 2015, 3, 9137-9140.	10.3	34
179	High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive. Journal of Materials Chemistry A, 2015, 3, 9271-9277.	10.3	87
180	Nucleation and Crystal Growth of Organic–Inorganic Lead Halide Perovskites under Different Relative Humidity. ACS Applied Materials & Interfaces, 2015, 7, 9110-9117.	8.0	137
181	Electronic structure evolution of fullerene on CH3NH3PbI3. Applied Physics Letters, 2015, 106, .	3.3	44
182	Ferroelectric polarization driven optical absorption and charge carrier transport in CH3NH3PbI3/TiO2-based photovoltaic cells. Journal of Power Sources, 2015, 291, 58-65.	7.8	10

#	Article	IF	CITATIONS
183	Chemical decoration of CH ₃ NH ₃ PbI ₃ perovskites with graphene oxides for photodetector applications. Chemical Communications, 2015, 51, 9659-9661.	4.1	105
184	Multifaceted Excited State of CH ₃ NH ₃ PbI ₃ . Charge Separation, Recombination, and Trapping. Journal of Physical Chemistry Letters, 2015, 6, 2086-2095.	4.6	107
185	Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: Role of the reduced bimolecular recombination. Journal of Applied Physics, 2015, 117, .	2.5	69
186	Perovskites: transforming photovoltaics, a mini-review. Journal of Photonics for Energy, 2015, 5, 057402.	1.3	47
187	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	5.6	21
188	Resolving Weak Light of Subâ€picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction. Advanced Materials, 2015, 27, 2804-2810.	21.0	481
189	Ferroelectricity of CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 1155-1161.	4.6	295
190	Surface analytical investigation on organometal triiodide perovskite. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	43
191	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	12.2	366
192	Nanophotonic front electrodes for perovskite solar cells. Applied Physics Letters, 2015, 106, .	3.3	52
193	Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Communications, 2015, 5, 297-301.	1.8	135
194	Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015, 10, 391-402.	31.5	2,604
195	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 1396-1402.	4.6	141
196	Hysteresis-less inverted CH ₃ NH ₃ PbI ₃ planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1602-1608.	30.8	1,079
197	The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications, 2015, 5, 7-26.	1.8	132
198	Density Functional Calculations of Native Defects in CH ₃ NH ₃ PbI ₃ : Effects of Spin–Orbit Coupling and Self-Interaction Error. Journal of Physical Chemistry Letters, 2015, 6, 1461-1466.	4.6	301
199	Light Harvesting and Charge Recombination in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano, 2015, 9, 4200-4209.	14.6	205
200	Interfacial Electron Transfer Barrier at Compact TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction. Small, 2015, 11, 3606-3613.	10.0	196

ARTICLE IF CITATIONS Understanding the low-loss mechanism of general organic–inorganic perovskites from 201 2.6 13 first-principles calculation. Chemical Physics Letters, 2015, 627, 13-19. Hierarchical i–p and i–n porous heterojunction in planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10526-10535. 10.3 50 nm sized spherical TiO₂nanocrystals for highly efficient mesoscopic perovskite solar 203 5.6 68 cells. Nanoscale, 2015, 7, 8898-8906. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China 204 Materials, 2015, 58, 186-191. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide 205 12.8 491 perovskites. Nature Communications, 2015, 6, 8420. Elucidating the band structure and free charge carrier dynamics of pure and impurities doped CH₃NH₃Pbl_{3â^{*}x}Cl_x perovskite thin films. Physical Chemistry Chemical Physics, 2015, 17, 30084-30089. 2.8 Ultrasensitive Photodetectors Based on Island-Structured CH₃NH₃PbI₃Thin Films. ACS Applied Materials & amp; Interfaces, 207 8.0 108 2015, 7, 21634-21638. Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and 208 13.7 196 Nanoplates. Journal of the American Chemical Society, 2015, 137, 12458-12461. Degradation by Exposure of Coevaporated CH₃NH₃Pbl₃Thin Films. 209 3.1112 Journal of Physical Chemistry C, 2015, 119, 23996-24002. Colour-selective photodiodes. Nature Photonics, 2015, 9, 634-636. 31.4 Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of 211 12.8 205 electrical potential. Nature Communications, 2015, 6, 8397. Active terahertz device based on optically controlled organometal halide perovskite. Applied Physics 3.3 44 Letters, 2015, 107, . Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 213 3.3 55 2015, 107, . Cubic structure of the mixed halide perovskite CH₃NH₃PbI_{3â[^]x}Cl_xvia thermal annealing. RSC 214 3.6 Advances, 2015, 5, 85480-85485. Managing Carrier Lifetime and Doping Property of Lead Halide Perovskite by Postannealing Processes 215 3.1 123 for Highly Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 22812-22819. Vibrational Properties of the Organic–Inorganic Halide Perovskite CH₃NH₃PbI₃ from Theory and Experiment: Factor Group Analysis, 3.1 276 First-Principles Calculations, and Low-Temperature Infrared Spectra. Journal of Physical Chemistry C, 2015, 119, 25703-25718. Band alignment and charge transfer in rutile-TiŎ₂/ČH₃NH₃Pbl_{3â°x}Cl_x interfaces. 217 2.8 12 Physical Chemistry Chemical Physics, 2015, 17, 30417-30423. Intrinsic femtosecond charge generation dynamics in single crystal 30.8 CH₃NH₃Pbl₃. Energy and Environmental Science, 2015, 8, 3700-3707.

# 219	ARTICLE High-performance perovskite solar cells fabricated by vapor deposition with optimized Pbl ₂ precursor films. RSC Advances, 2015, 5, 95847-95853.	IF 3.6	Citations
220	Modulating Charge Recombination and Structural Dynamics in Isolated Organometal Halide Perovskite Crystals by External Electric Fields. Journal of Physical Chemistry Letters, 2015, 6, 4560-4565.	4.6	14
221	(CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ : A More Stable Structural Motif for Hybrid Halide Photovoltaics?. Journal of Physical Chemistry Letters, 2015, 6, 4594-4598.	4.6	117
222	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	3.1	96
223	Rotational dynamics of organic cations in the CH ₃ NH ₃ PbI ₃ perovskite. Physical Chemistry Chemical Physics, 2015, 17, 31278-31286.	2.8	212
224	Two different mechanisms of CH3NH3PbI3film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 23964-23972.	10.3	72
225	First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. Journal of the American Chemical Society, 2015, 137, 10048-10051.	13.7	582
226	Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases. Journal of Physical Chemistry C, 2015, 119, 19590-19595.	3.1	65
227	Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Communications, 2015, 6, 7961.	12.8	406
228	Dynamic Optical Properties of CH ₃ NH ₃ PbI ₃ Single Crystals As Revealed by One- and Two-Photon Excited Photoluminescence Measurements. Journal of the American Chemical Society, 2015, 137, 10456-10459.	13.7	335
229	<i>GW</i> Band Structures and Carrier Effective Masses of CH ₃ NH ₃ PbI ₃ and Hypothetical Perovskites of the Type APbI ₃ : A = NH ₄ , PH ₄ , AsH ₄ , and SbH ₄ . Journal of Physical Chemistry C, 2015, 119, 25209-25219.	3.1	144
230	The Significance of Ion Conduction in a Hybrid Organic–Inorganic Leadâ€Iodideâ€Based Perovskite Photosensitizer. Angewandte Chemie - International Edition, 2015, 54, 7905-7910.	13.8	447
231	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2015, 6, 4360-4364.	4.6	482
232	Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Applied Surface Science, 2015, 357, 2234-2240.	6.1	55
233	Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH ₃ NH ₃ PbI ₃ single crystals for photovoltaic applications. RSC Advances, 2015, 5, 85344-85349.	3.6	38
234	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	19.5	1,788
235	Rashba Spin–Orbit Coupling Enhanced Carrier Lifetime in CH ₃ NH ₃ Pbl ₃ . Nano Letters, 2015, 15, 7794-7800.	9.1	438
236	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	5.6	80

#	Article	IF	Citations
237	The simulation of physical mechanism for HTM-free perovskite organic lead iodide planar heterojunction solar cells. Journal of Optics (United Kingdom), 2015, 17, 105904.	2.2	23
238	Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20305-20312.	10.3	21
239	Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 2015, 120, 370-380.	6.1	235
240	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19353-19359.	10.3	239
241	Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy, 2015, 17, 131-139.	16.0	48
242	Mechanosynthesis of the hybrid perovskite CH ₃ NH ₃ PbI ₃ : characterization and the corresponding solar cell efficiency. Journal of Materials Chemistry A, 2015, 3, 20772-20777.	10.3	163
243	Modeling Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3808-3814.	4.6	581
244	Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 2015, 6, 8238.	12.8	519
245	Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3675-3681.	4.6	67
246	Controlled reaction for improved CH3NH3PbI3transition in perovskite solar cells. Dalton Transactions, 2015, 44, 17841-17849.	3.3	15
247	Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19688-19695.	10.3	1,419
248	A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26653-26658.	2.8	107
249	Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. Journal of Materials Chemistry A, 2015, 3, 20092-20096.	10.3	61
250	Core/Shell Structured TiO ₂ /CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27863-27870.	8.0	82
251	Phonon–Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4991-4996.	4.6	186
252	Interfacial Study To Suppress Charge Carrier Recombination for High Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 26445-26454.	8.0	90
253	Modulating the Electron–Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field. Journal of the American Chemical Society, 2015, 137, 15451-15459.	13.7	61
254	Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy and Environmental Science, 2015, 8, 602-609.	30.8	417

#	Article	IF	CITATIONS
255	Layerâ€byâ€Layer Growth of CH ₃ NH ₃ PbI _{3â^'<i>x</i>} Cl _{<i>x</i>} for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2015, 27, 1053-1059.	21.0	211
256	Effects of organic moieties on the photoluminescence spectra of perovskite-type tin bromide based compounds. Journal of Physics and Chemistry of Solids, 2015, 79, 1-6.	4.0	13
257	Maximizing the emissive properties of CH ₃ NH ₃ PbBr ₃ perovskite nanoparticles. Journal of Materials Chemistry A, 2015, 3, 9187-9193.	10.3	310
258	Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Bladeâ€Coating. Advanced Energy Materials, 2015, 5, 1401229.	19.5	303
259	Band alignment of the hybrid halide perovskites CH ₃ NH ₃ PbCl ₃ , CH ₃ NH ₃ PbBr ₃ and CH ₃ NH ₃ PbI ₃ . Materials Horizons, 2015, 2, 228-231.	12.2	238
260	Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 8981-8991.	10.3	109
261	Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy and Environmental Science, 2015, 8, 208-215.	30.8	351
262	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	10.3	164
263	Photoexcitations and Emission Processes in Organometal Trihalide Perovskites. , 0, , .		5
264	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	3.1	106
265	Ï€-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells. Metals, 2016, 6, 21.	2.3	39
266	Numerical Simulations on Perovskite Photovoltaic Devices. , 0, , .		20
267	Thermal Behaviors of Methylammonium Lead Trihalide Perovskites with or without Chlorine Doping. Journal of Physical Chemistry C, 2016, 120, 15009-15016.	3.1	2
268	Determination of Interfacial Chargeâ€Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem, 2016, 9, 1647-1659.	6.8	52
269	Slow Organicâ€ŧoâ€Inorganic Sub‣attice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence. Advanced Energy Materials, 2016, 6, 1600422.	19.5	32
270	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	19.5	139
271	Control of Perovskite Crystal Growth by Methylammonium Lead Chloride Templating. Chemistry - an		
	Asian Journal, 2016, 11, 1199-1204.	3.3	28

#	Article	IF	CITATIONS
273	Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes. Advanced Materials, 2016, 28, 917-922.	21.0	288
274	An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500420.	3.7	20
275	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	1.8	11
276	The Effects of Electronic Impurities and Electron–Hole Recombination Dynamics on Largeâ€Grain Organic–Inorganic Perovskite Photovoltaic Efficiencies. Advanced Functional Materials, 2016, 26, 4283-4292.	14.9	65
277	Identifying Fundamental Limitations in Halide Perovskite Solar Cells. Advanced Materials, 2016, 28, 2439-2445.	21.0	129
278	High Efficiency Pb–In Binary Metal Perovskite Solar Cells. Advanced Materials, 2016, 28, 6695-6703.	21.0	211
279	Thin Insulating Tunneling Contacts for Efficient and Waterâ€Resistant Perovskite Solar Cells. Advanced Materials, 2016, 28, 6734-6739.	21.0	533
280	Terahertz Conductivity within Colloidal CsPbBr ₃ Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. Nano Letters, 2016, 16, 4838-4848.	9.1	489
281	Effect of Internal Electric Fields on Charge Carrier Dynamics in a Ferroelectric Material for Solar Energy Conversion. Advanced Materials, 2016, 28, 7123-7128.	21.0	128
282	Improved Performance and Reliability of pâ€iâ€n Perovskite Solar Cells via Doped Metal Oxides. Advanced Energy Materials, 2016, 6, 1600285.	19.5	67
283	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	21.0	111
284	A Solutionâ€Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2016, 2, 1600165.	5.1	25
285	Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH ₃ NH ₃ PbI ₃ Morphology. Advanced Functional Materials, 2016, 26, 1278-1285.	14.9	90
286	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	21.0	1,188
287	Surface Analytical Investigation on Organometal Triiodide Perovskite. Materials Research Society Symposia Proceedings, 2016, 1735, 151.	0.1	0
288	Role of Intrinsic Ion Accumulation in the Photocurrent and Photocapacitive Responses of MAPbBr ₃ Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 35447-35453.	8.0	15
289	Appealing Perspectives of Hybrid Lead–lodide Perovskites as Thermoelectric Materials. Journal of Physical Chemistry C, 2016, 120, 28472-28479.	3.1	66
290	Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. Journal of Physical Chemistry Letters, 2016, 7, 5168-5175.	4.6	225

#	Article	IF	CITATIONS
291	Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters, 2016, 16, 7925-7929.	9.1	50
292	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	8.0	24
293	Research Update: Luminescence in lead halide perovskites. APL Materials, 2016, 4, .	5.1	12
294	CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance. APL Materials, 2016, 4, .	5.1	42
295	Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119, .	2.5	47
296	Origin of the high performance of perovskite solar cells with large grains. Applied Physics Letters, 2016, 108, 053302.	3.3	45
297	Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation. Journal of Applied Physics, 2016, 120, 143101.	2.5	15
298	Novel 4-terminal perovskite/SiC-based rear contact silicon tandem solar cell with 27.6 % PCE. , 2016, , .		4
299	Solution-processed perovskite for direct X-ray detection. , 2016, , .		5
300	Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 2016, 7, 13941.	12.8	427
300 301		12.8 3.3	427 113
	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports,		
301	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells.	3.3	113
301 302	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Applied Physics Letters, 2016, 108, . A route to high gain photodetectors through suppressed recombination in disordered films. Applied	3.3 3.3	113 60
301 302 303	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Applied Physics Letters, 2016, 108, . A route to high gain photodetectors through suppressed recombination in disordered films. Applied Physics Letters, 2016, 109, 153301.	3.3 3.3 3.3	113 60 3
301 302 303 304	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Applied Physics Letters, 2016, 108, . A route to high gain photodetectors through suppressed recombination in disordered films. Applied Physics Letters, 2016, 109, 153301. All-optical THz wave switching based on CH3NH3PbI3 perovskites. Scientific Reports, 2016, 6, 37912. Large diffusion lengths of excitons in perovskite and <i>TiO</i> 2 heterojunction. Applied Physics	3.3 3.3 3.3 3.3	113 60 3 27
301 302 303 304 305	out-coupling. Nature Communications, 2016, 7, 13941. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Applied Physics Letters, 2016, 108, . A route to high gain photodetectors through suppressed recombination in disordered films. Applied Physics Letters, 2016, 109, 153301. All-optical THz wave switching based on CH3NH3Pbl3 perovskites. Scientific Reports, 2016, 6, 37912. Large diffusion lengths of excitons in perovskite and <i>TiO</i> Letters, 2016, 108, . The presence of CH3NH2 neutral species in organometal halide perovskite films. Applied Physics	 3.3 3.3 3.3 3.3 3.3 	 113 60 3 27 20

#	Article	IF	CITATIONS
309	Organic-Inorganic Hybrid Perovskite Solar Cells Using Hole Transport Layer Based on α-Naphthyl Diamine Derivative. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 581-586.	0.3	3
310	Mobility–Lifetime Products in MAPbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 5219-5226.	4.6	55
311	Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free oxides. , 2016, , .		0
312	Density functional theory + U modeling of polarons in organohalide lead perovskites. AIP Advances, 2016, 6, .	1.3	25
313	Active terahertz device based on optically-controlled organometal halide perovskite. , 2016, , .		1
314	Separate-Path Electron and Hole Transport Across π-Stacked Ferroelectrics for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 7748-7756.	3.1	8
315	Voltage-Induced Transients in Methylammonium Lead Triiodide Probed by Dynamic Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 7893-7902.	3.1	24
316	Perovskites as new radical photoinitiators for radical and cationic polymerizations. Tetrahedron, 2016, 72, 7686-7690.	1.9	18
317	Efficient Perovskite Hybrid Photovoltaics via Alcoholâ€Vapor Annealing Treatment. Advanced Functional Materials, 2016, 26, 101-110.	14.9	117
318	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	30.8	102
319	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	14.6	276
320	Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing. Nanoscale Research Letters, 2016, 11, 248.	5.7	13
321	Ultrafast charge carrier dynamics in CH ₃ NH ₃ PbI ₃ : evidence for hot hole injection into spiro-OMeTAD. Journal of Materials Chemistry C, 2016, 4, 5922-5931.	5.5	34
322	Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH ₃ NH ₃ PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2016, 18, 15352-15362.	2.8	77
323	Hydrophobic Hole-Transporting Materials Incorporating Multiple Thiophene Cores with Long Alkyl Chains for Efficient Perovskite Solar Cells. Electrochimica Acta, 2016, 209, 529-540.	5.2	29
324	Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics. Journal of Physical Chemistry C, 2016, 120, 12392-12402.	3.1	89
325	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	3.6	10
326	Degradation of Co-Evaporated Perovskite Thin Films. MRS Advances, 2016, 1, 923-929.	0.9	4

		CITATION RE	PORT	
#	ARTICLE The effect of porous lead iodide precursor film on perovskite film formation and its pho	otovoltaic	IF	CITATIONS
327	property after an effective pretreatment. Superlattices and Microstructures, 2016, 94,		3.1	5
328	Optical characterizations of the surface states in hybrid lead–halide perovskites. Phy Chemical Physics, 2016, 18, 12626-12632.	sical Chemistry	2.8	46
329	Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Supp Recombination in Perovskite Solar Cells?. Journal of Physical Chemistry Letters, 2016, 7		4.6	278
330	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable La Cell. Chemistry of Materials, 2016, 28, 3131-3138.	rge-Area Solar	6.7	174
331	Pathways toward high-performance perovskite solar cells: review of recent advances in halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016,		1.3	218
332	Enhancing the planar heterojunction perovskite solar cell performance through tuning precursor ratio. Journal of Materials Chemistry A, 2016, 4, 7943-7949.	the	10.3	86
333	Exciton Binding Energy in Organic–Inorganic Tri-Halide Perovskites. Journal of Nanose Nanotechnology, 2016, 16, 5890-5901.	cience and	0.9	24
334	Vertically aligned nanostructured TiO ₂ photoelectrodes for high efficiency solar cells via a block copolymer template approach. Nanoscale, 2016, 8, 11472-11479		5.6	48
335	State and prospects of solar cells based on perovskites. Applied Solar Energy (English T	ranslation of) Tj ETQq0 0 (⊃ rgBT /Ov	erlock 10 Tf
336	Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with size and composition. Nano Research, 2016, 9, 1994-2006.	ı controllable	10.4	93
337	Coordination engineering toward high performance organic–inorganic hybrid perovs Coordination Chemistry Reviews, 2016, 320-321, 53-65.	kites.	18.8	34
338	Structural and chemical evolution of methylammonium lead halide perovskites during t processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082.	thermal	30.8	188
339	Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct Photoemission Studies. ACS Applied Materials & Interfaces, 2016, 8, 11526-1153		8.0	111
340	Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC 2016, 6, 43299-43303.	Advances,	3.6	52
341	Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale, 2 11882-11888.	016, 8,	5.6	107
342	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step sp processing. RSC Advances, 2016, 6, 48449-48454.	pin-coating	3.6	10
343	Wavelength-dependent optical transition mechanisms for light-harvesting of perovskit cells using first-principles calculations. Journal of Materials Chemistry C, 2016, 4, 5248		5.5	11
344	Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite S Journal of Quantum Electronics, 2016, 52, 1-6.	iolar Cells. IEEE	1.9	33

#	Article	IF	CITATIONS
345	Fabrication of self-assembly polycrystalline perovskite microwires and photodetectors. Journal of Crystal Growth, 2016, 454, 121-127.	1.5	28
346	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. ACS Applied Materials & Interfaces, 2016, 8, 25489-25495.	8.0	38
347	Bromide regulated film formation of CH3NH3PbI3 in low-pressure vapor-assisted deposition for efficient planar-heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 1026-1037.	6.2	27
348	Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite. Journal of Solid State Chemistry, 2016, 244, 20-24.	2.9	30
349	Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. Journal of Physical Chemistry Letters, 2016, 7, 3703-3710.	4.6	202
350	Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy and Environmental Science, 2016, 9, 3472-3481.	30.8	409
351	Charge Stripe Formation in Molecular Ferroelectric Organohalide Perovskites for Efficient Charge Separation. Journal of Physical Chemistry C, 2016, 120, 23969-23975.	3.1	14
352	Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18, 30484-30490.	2.8	322
353	A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 650-658.	6.1	41
354	Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell. Superlattices and Microstructures, 2016, 100, 656-666.	3.1	58
355	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	3.7	24
356	Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 2016, 138, 13874-13881.	13.7	308
357	TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%. Journal of Power Sources, 2016, 332, 366-371.	7.8	21
358	High-coverage organic-inorganic perovskite film fabricated by double spin coating for improved solar power conversion and amplified spontaneous emission. Chemical Physics Letters, 2016, 661, 131-135.	2.6	11
359	Radiative Monomolecular Recombination Boosts Amplified Spontaneous Emission in HC(NH ₂) ₂ SnI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2016, 7, 4178-4184.	4.6	110
360	PbI ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	13.7	107
361	Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2016, 4, 17464-17472.	10.3	43
362	Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating. Nanoscale Research Letters, 2016, 11, 408.	5.7	57

#	Article	IF	CITATIONS
363	Charge Injection at the Heterointerface in Perovskite CH ₃ NH ₃ Pbl ₃ Solar Cells Studied by Simultaneous Microscopic Photoluminescence and Photocurrent Imaging Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3186-3191.	4.6	38
364	Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3284-3289.	4.6	30
365	The interface and its role in carrier transfer/recombination dynamics for the planar perovskite solar cells prepared under fully open air conditions. Current Applied Physics, 2016, 16, 1353-1363.	2.4	16
366	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	5.5	75
367	Effective and reproducible method for preparing low defects perovskite film toward highly photoelectric properties with large fill factor by shaping capping layer. Solar Energy, 2016, 136, 505-514.	6.1	17
368	High Performance Perovskite Solar Cells. Advanced Science, 2016, 3, 1500201.	11.2	105
369	Solidâ€State Ligandâ€Exchange Fabrication of CH ₃ NH ₃ PbI ₃ Capped PbS Quantum Dot Solar Cells. Advanced Science, 2016, 3, 1500432.	11.2	42
370	First-Principles Modeling of Organohalide Thin Films and Interfaces. , 2016, , 19-52.		4
371	Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells. , 2016, , 53-77.		27
372	Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films. Physical Chemistry Chemical Physics, 2016, 18, 28428-28433.	2.8	16
373	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	3.1	64
374	Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation. Solar Energy Materials and Solar Cells, 2016, 157, 1038-1047.	6.2	169
375	Effects of water molecules on the chemical stability of MAGel ₃ perovskite explored from a theoretical viewpoint. Physical Chemistry Chemical Physics, 2016, 18, 24526-24536.	2.8	22
376	Ultrafast Charge Carrier Dynamics in Extremely Thin Absorber (ETA) Solar Cells Consisting of CdSe-Coated ZnO Nanowires. Journal of Physical Chemistry C, 2016, 120, 19504-19512.	3.1	10
377	Limits of Carrier Diffusion in <i>n</i> -Type and <i>p</i> -Type CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 3510-3518.	4.6	86
378	Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGel ₃ . Journal of Materials Chemistry A, 2016, 4, 13852-13858.	10.3	148
379	Lowâ€Pressure Vaporâ€Assisted Solution Process for Thiocyanateâ€Based Pseudohalide Perovskite Solar Cells. ChemSusChem, 2016, 9, 2620-2627.	6.8	30
380	Near-infrared random lasing realized in a perovskite CH ₃ NH ₃ PbI ₃ thin film. Journal of Materials Chemistry C, 2016, 4, 8373-8379.	5.5	57

ARTICLE IF CITATIONS Crystalline Intermediates and Their Transformation Kinetics during the Formation of 381 6.7 29 Methylammonium Lead Halide Perovskite Thin Films. Chemistry of Materials, 2016, 28, 9041-9048. Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. 4.6 346 Journal of Physical Chemistry Letters, 2016, 7, 5105-5113. Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell 383 3.3 47 Performance. Scientific Reports, 2016, 6, 25648. Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive 384 103 Characterisation Methodology. Scientific Reports, 2016, 6, 35973. Dopantâ€Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for 385 6.8 58 Perovskite Solar Cells. ChemŚusChem, 2016, 9, 2862-2869. Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie - International Edition, 2016, 55, 13067-13071. 13.8 Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and 387 4.6 43 Molecular Acceptors. Journal of Physical Chemistry Letters, 2016, 7, 3913-3919. Regulating Carrier Dynamics in Single Crystal Halide Perovskite via Interface Engineering and Optical 388 5.1 Doping. Advanced Electronic Materials, 2016, 2, 1600248. Grain structure control and greatly enhanced carrier transport by CH3NH3PbCl3 interlayer in 389 2.6 11 two-step solution processed planár perovskite solar cells. Organic Electronics, 2016, 38, 362-369. Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie, 14 2016, 128, 13261-13265. Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence 391 9.1 54 Anisotropy of Individual Nanocrystals. Nano Letters, 2016, 16, 5087-5094. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness. Nanotechnology, 2.6 39 2016, 27, 335604. Relating Charge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in 393 3.8 90 Sandwich-Type Thin-Film Solar Cells. Physical Review Applied, 2016, 5, . Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506. 394 6.3 Organic-Inorganic Halide Perovskite Photovoltaics., 2016,,. 396 115 Highly efficient metal halide substituted CH3NH3I(PbI2)1â⁻X(CuBr2)X planar perovskite solar cells. Nano 106 Energy, 2016, 27, 330-339. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites. Journal of Physical 398 3.154 Chemistry C, 2016, 120, 16577-16585. Solutionâ€Processed Tinâ€Based Perovskite for Nearâ€Infrared Lasing. Advanced Materials, 2016, 28, 399 21.0 8191-8196.

#	Article	IF	CITATIONS
400	Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination. Advanced Energy Materials, 2016, 6, 1600396.	19.5	213
401	Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mn>3Physical Review Applied. 2016. 5</mml:mn></mml:msub></mml:mrow></mml:math>	:mn> <td>nl:msub><n< td=""></n<></td>	nl:msub> <n< td=""></n<>
402	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	4.6	38
403	Band gap tuning of nickelates for photovoltaic applications. Journal Physics D: Applied Physics, 2016, 49, 44LT02.	2.8	22
404	Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?. ACS Energy Letters, 2016, 1, 949-955.	17.4	404
405	Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nature Communications, 2016, 7, 12555.	12.8	165
406	Frustrated Lewis pair-mediated recrystallization of CH ₃ NH ₃ PbI ₃ for improved optoelectronic quality and high voltage planar perovskite solar cells. Energy and Environmental Science, 2016, 9, 3770-3782.	30.8	117
407	Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nature Communications, 2016, 7, 12253.	12.8	363
408	Cobalt Oxide (CoO _{<i>x</i>}) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 33592-33600.	8.0	122
409	Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772.	2.2	79
410	High Excitation Intensity Opens a New Trapping Channel in Organic–Inorganic Hybrid Perovskite Nanoparticles. ACS Energy Letters, 2016, 1, 1154-1161.	17.4	81
411	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	21.0	102
412	Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nature Communications, 2016, 7, 13303.	12.8	191
413	Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nature Communications, 2016, 7, 13407.	12.8	170
414	Electron–phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7, .	12.8	919
415	Giant photostriction in organic–inorganic lead halide perovskites. Nature Communications, 2016, 7, 11193.	12.8	164
416	Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1233-1240.	17.4	848
417	Exciton localization in solution-processed organolead trihalide perovskites. Nature Communications, 2016, 7, 10896.	12.8	195

#	Article	IF	CITATIONS
418	Evidence of band bending induced by hole trapping at MAPbI ₃ perovskite/metal interface. Journal of Materials Chemistry A, 2016, 4, 17529-17536.	10.3	26
419	Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2016, 4, 10625-10629.	5.5	124
421	Organic Dye-Sensitized CH ₃ NH ₃ PbI ₃ Hybrid Flexible Photodetector with Bulk Heterojunction Architectures. ACS Applied Materials & Interfaces, 2016, 8, 31289-31294.	8.0	43
422	The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots. Scientific Reports, 2016, 6, 27286.	3.3	85
423	Photodynamic response of a solution-processed organolead halide photodetector. RSC Advances, 2016, 6, 111942-111949.	3.6	4
424	Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications, 2016, 7, 12806.	12.8	350
425	Facet-dependent photovoltaic efficiency variations in single grains of hybrid halideÂperovskite. Nature Energy, 2016, 1, .	39.5	308
426	Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32574-32580.	8.0	52
427	Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1, .	48.7	1,173
428	Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Applied Materials & Interfaces, 2016, 8, 31426-31432.	8.0	60
429	Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature Communications, 2016, 7, 11330.	12.8	206
430	Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy, 2016, 1, .	39.5	646
431	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	3.3	32
432	Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354, 861-865.	12.6	1,107
433	Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence. Physical Review Applied, 2016, 6, .	3.8	194
435	Flexible rGO/perovskite hybrid photodetector with high performance. , 2016, , .		0
436	Tunable hysteresis behaviors in perovskite transistors. , 2016, , .		0
437	Single Crystal Formamidinium Lead Iodide (FAPbl ₃): Insight into the Structural, Optical, and Electrical Properties. Advanced Materials, 2016, 28, 2253-2258.	21.0	781

#	Article	IF	CITATIONS
438	Holeâ€Transporting Materials in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600474.	19.5	243
439	Controlling the Cavity Structures of Twoâ€Photonâ€Pumped Perovskite Microlasers. Advanced Materials, 2016, 28, 4040-4046.	21.0	207
440	Free Carriers versus Excitons in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films at Low Temperatures: Charge Transfer from the Orthorhombic Phase to the Tetragonal Phase. Journal of Physical Chemistry Letters, 2016, 7, 2316-2321.	4.6	79
441	Crystallisation dynamics in wide-bandgap perovskite films. Journal of Materials Chemistry A, 2016, 4, 10524-10531.	10.3	29
442	Solvent engineering for fast growth of centimetric high-quality CH ₃ NH ₃ PbI ₃ perovskite single crystals. New Journal of Chemistry, 2016, 40, 7261-7264.	2.8	20
443	A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 2016, 37, 61-73.	2.6	186
444	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	47.7	1,343
445	Charge Carrier Dynamics and Mobility Determined by Time-Resolved Terahertz Spectroscopy on Films of Nano-to-Micrometer-Sized Colloidal Tin(II) Monosulfide. Journal of Physical Chemistry C, 2016, 120, 15395-15406.	3.1	17
446	Room-Temperature Solution-Processed NiO _{<i>x</i>} :PbI ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	14.6	122
447	Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds. Journal of Power Sources, 2016, 325, 534-540.	7.8	26
448	Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. Nano Letters, 2016, 16, 4624-4629.	9.1	194
449	Systematic study on the impact of water on the performance and stability of perovskite solar cells. RSC Advances, 2016, 6, 52448-52458.	3.6	29
450	Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics, 2016, 3, 1150-1156.	6.6	221
451	Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy, 2016, 26, 620-630.	16.0	167
452	A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites. Journal of Materials Chemistry C, 2016, 4, 4630-4633.	5.5	15
453	Is CH ₃ NH ₃ PbI ₃ Polar?. Journal of Physical Chemistry Letters, 2016, 7, 2412-2419.	4.6	134
454	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	16.0	35
455	How photon pump fluence changes the charge carrier relaxation mechanism in an organic–inorganic hybrid lead triiodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 27090-27101.	2.8	32

#	Article	IF	CITATIONS
456	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	14.9	176
457	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	21.0	102
458	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Advanced Materials, 2016, 28, 4766-4802.	21.0	599
459	High Performance of Planar Perovskite Solar Cells Produced from PbI ₂ (DMSO) and PbI ₂ (NMP) Complexes by Intramolecular Exchange. Advanced Materials Interfaces, 2016, 3, 1500768.	3.7	206
460	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2016, 120, 2542-2547.	3.1	54
461	Rapid growth of high quality perovskite crystal by solvent mixing. CrystEngComm, 2016, 18, 1184-1189.	2.6	6
462	Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals. Journal of Physical Chemistry C, 2016, 120, 3077-3084.	3.1	128
463	Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Physical Chemistry Chemical Physics, 2016, 18, 5219-5231.	2.8	61
464	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	6.6	26
465	Excited state and charge-carrier dynamics in perovskite solar cell materials. Nanotechnology, 2016, 27, 082001.	2.6	35
466	Fiber-shaped perovskite solar cells with 5.3% efficiency. Journal of Materials Chemistry A, 2016, 4, 3901-3906.	10.3	65
467	Dopant interdiffusion effects in n-i-p structured spiro-OMeTAD hole transport layer of organometal halide perovskite solar cells. Organic Electronics, 2016, 31, 71-76.	2.6	29
468	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	5.6	99
469	Air-assisted flow and two-step spin-coating for highly efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF08.	1.5	29
470	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale, 2016, 8, 1627-1634.	5.6	69
471	Formation Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Following Two-Step Layer Deposition. Journal of Physical Chemistry Letters, 2016, 7, 96-102.	4.6	100
472	Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Accounts of Chemical Research, 2016, 49, 146-154.	15.6	819
473	SiO ₂ /TiO ₂ based hollow nanostructures as scaffold layers and Al-doping in the electron transfer layer for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1306-1311.	10.3	42

#	Article	IF	CITATIONS
474	Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH ₃ NH ₃ PbI ₃ : A Terahertz Time-Domain Spectroscopy Approach. Journal of Physical Chemistry Letters, 2016, 7, 1-6.	4.6	109
475	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	38.1	1,285
476	Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH ₃ NH ₃ SnI ₃ Perovskite. Journal of Physical Chemistry Letters, 2016, 7, 1321-1326.	4.6	135
477	Solution-processed photodetectors based on organic–inorganic hybrid perovskite and nanocrystalline graphite. Nanotechnology, 2016, 27, 175201.	2.6	38
478	Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 23, 40-49.	16.0	59
479	Evaluating replicability of laboratory experiments in economics. Science, 2016, 351, 1433-1436.	12.6	789
480	Photon recycling in lead iodide perovskite solar cells. Science, 2016, 351, 1430-1433.	12.6	600
481	Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	19
482	Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Advanced Science, 2016, 3, 1500392.	11.2	193
483	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	2.6	29
484	Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 6091-6097.	10.3	90
485	Charge carrier dynamics of methylammonium lead iodide: from Pbl ₂ -rich to low-dimensional broadly emitting perovskites. Physical Chemistry Chemical Physics, 2016, 18, 10800-10808.	2.8	51
486	Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry C, 2016, 120, 5724-5731.	3.1	154
487	Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Accounts of Chemical Research, 2016, 49, 536-544.	15.6	107
488	Organohalide Lead Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2016, 7, 851-866.	4.6	159
489	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	31.8	117
490	Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. Journal of Materials Chemistry C, 2016, 4, 3898-3904.	5.5	179
491	Mobile Ion Induced Slow Carrier Dynamics in Organic–Inorganic Perovskite CH ₃ NH ₃ PbBr ₃ . ACS Applied Materials & Interfaces, 2016, 8, 5351-5357.	8.0	100

ARTICLE IF CITATIONS # Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3Pbl3 morphology on 492 16.0 76 charge transport and recombination dynamics. Nano Energy, 2016, 22, 439-452. Charge Carrier Lifetimes Exceeding 15 14s in Methylammonium Lead lodide Single Crystals. Journal of 4.6 Physical Chemistry Letters, 2016, 7, 923-928. What Is Moving in Hybrid Halide Perovskite Solar Cells?. Accounts of Chemical Research, 2016, 49, 494 15.6 385 528-535. Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar 495 cells free of hole conductors. Journal of Materials Chemistry A, 2016, 4, 3872-3878. Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 496 15.6 135 545-553. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. Accounts of Chemical Research, 2016, 49, 294-302. 497 15.6 159 Novel CdS Hole-Blocking Layer for Photostable Perovskite Solar Cells. ACS Applied Materials & amp; 498 8.0 72 Interfaces, 2016, 8, 4226-4232. New insights into exciton binding and relaxation from high time resolution ultrafast spectroscopy of 400 10.3 28 CH3NH3PbI3and CH3NH3PbBr3films. Journal of Materials Chemistry A, 2016, 4, 3546-3553. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface 500 4.6 83 Passivation. Journal of Physical Chemistry Letters, 2016, 7, 1148-1153. Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under 2.8 ambient conditions. Physical Chemistry Chemical Physics, 2016, 18, 10182-10190. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. Annual Review of Physical 502 10.8 594 Chemistry, 2016, 67, 65-89. Photovoltaic and optical properties of perovskite thin films fabricated using Marangoni flow assisted electrospraying., 2016, , . Humidity-Induced Grain Boundaries in MAPbI₃ Perovskite Films. Journal of Physical 504 3.1 103 Chemistry C, 2016, 120, 6363-6368. In₂O₃based perovskite solar cells. Proceedings of SPIE, 2016, ... 0.8 Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using 506 97 4.6 Nickel Oxide as p-Type Contact Electrode. Journal of Physical Chemistry Letters, 2016, 7, 1096-1101. Effects of interfacial chemical states on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4392-4397. Diffusion-correlated local photoluminescence kinetics in CH3NH3PbI3 perovskite single-crystalline 508 9.0 15 particles. Science Bulletin, 2016, 61, 665-669. 509 Degradation of co-evaporated perovskite thin film in air. Chemical Physics Letters, 2016, 649, 151-155.

#	Article	IF	CITATIONS
510	Effect of halide-mixing on the electronic transport properties of organometallic perovskites. Solar Energy Materials and Solar Cells, 2016, 148, 2-10.	6.2	25
511	Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy. Nanoscale, 2016, 8, 6249-6257.	5.6	39
512	Laser cooling of organic–inorganic lead halide perovskites. Nature Photonics, 2016, 10, 115-121.	31.4	282
513	Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. Nano Letters, 2016, 16, 988-992.	9.1	75
514	Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film. Journal of Physical Chemistry Letters, 2016, 7, 204-210.	4.6	67
515	Excited State Properties of Hybrid Perovskites. Accounts of Chemical Research, 2016, 49, 166-173.	15.6	144
516	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 2016, 123, 74-87.	6.1	117
517	Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?. Physical Chemistry Chemical Physics, 2016, 18, 331-338.	2.8	69
518	Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale, 2016, 8, 6222-6236.	5.6	119
519	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
520	Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy and Environmental Science, 2016, 9, 155-163.	30.8	423
521	Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells. Materials Letters, 2017, 191, 77-79.	2.6	39
522	Influence of Surface Termination on the Energy Level Alignment at the CH ₃ NH ₃ PbI ₃ Perovskite/C60 Interface. Chemistry of Materials, 2017, 29, 958-968.	6.7	149
523	Crystallization process of perovskite modified by adding lead acetate in precursor solution for better morphology and higher device efficiency. Organic Electronics, 2017, 43, 189-195.	2.6	14
524	A semiconducting molecular ferroelectric with a bandgap much lower than that of BiFeO3. NPG Asia Materials, 2017, 9, e342-e342.	7.9	54
525	Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3193-3202.	10.3	113
526	AgBil ₄ as a Lead-Free Solar Absorber with Potential Application in Photovoltaics. Chemistry of Materials, 2017, 29, 1538-1549.	6.7	102
527	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	39.5	376

CITATION REPORT IF CITATIONS Solvent engineering for forming stonehenge-like PbI₂nano-structures towards efficient 10.3 59 perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4376-4383. Fabrication of high coverage MASnI₃ perovskite films for stable, planar heterojunction solar cells. Journal of Materials Chemistry C, 2017, 5, 1121-1127. 5.5 Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of 2.5 2 Photovoltaics, 2017, 7, 513-517. Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. Journal of Physical Chemistry C, 2017, 121, 1562-1568. Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. 4.0 26 Materials Science in Semiconductor Processing, 2017, 63, 6-11. Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 2017, 72, 907-915. 16.4 A TiO₂nanotube network electron transport layer for high efficiency perovskite solar 2.8 33 cells. Physical Chemistry Chemical Physics, 2017, 19, 4956-4961. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3. 3.3 Scientific Reports, 2017, 7, 41860. Twoâ€Dimensional Metal Halide Perovskites: Theory, Synthesis, and Optoelectronics. Small Methods, 8.6 115 Vortex Fluidics Improved Morphology of CH₃NH₃PbI_{3â€x}CI_x Films for Perovskite Solar Cells

	ChemistrySelect, 2017, 2, 369-374.		
539	Do grain boundaries dominate non-radiative recombination in CH ₃ NH ₃ PbI ₃ perovskite thin films?. Physical Chemistry Chemical Physics, 2017, 19, 5043-5050.	2.8	161
540	Very Small Inverted Hysteresis in Vacuumâ€Deposited Mixed Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1606-1611.	3.8	13
541	Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. Structural Dynamics, 2017, 4, 044002.	2.3	61
542	Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation. Journal of Physical Chemistry Letters, 2017, 8, 838-843.	4.6	18
543	Controlled growth of CH3NH3PbI3 films towards efficient perovskite solar cells by varied-stoichiometric intermediate adduct. Applied Surface Science, 2017, 403, 572-577.	6.1	25
544	Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. Journal of Materials Chemistry A, 2017, 5, 5701-5708.	10.3	207
545	Fabrication and Characterization of High-Quality Perovskite Films with Large Crystal Grains. Journal of Physical Chemistry Letters, 2017, 8, 720-726.	4.6	16
546	Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602159.	19.5	130

ARTICLE

528

529

530

533

534

535

537

2017, 1, 1600018.

#	Article	IF	CITATIONS
547	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	19.5	132
548	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	16.0	362
549	Large-grained perovskite films via FA x MA 1â^'x Pb(I x Br 1â^'x) 3 single crystal precursor for efficient solar cells. Nano Energy, 2017, 34, 264-270.	16.0	35
550	Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices and Microstructures, 2017, 104, 167-177.	3.1	61
551	Controlled Synthesis of Composition Tunable Formamidinium Cesium Double Cation Lead Halide Perovskite Nanowires and Nanosheets with Improved Stability. Chemistry of Materials, 2017, 29, 2157-2166.	6.7	82
552	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	10.3	378
553	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	21.0	104
554	Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2017, 29, 1602432.	21.0	106
555	A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 2017, 5, 7326-7332.	10.3	50
556	Highâ€ <i>Q</i> , Lowâ€Threshold Monolithic Perovskite Thinâ€Film Verticalâ€Cavity Lasers. Advanced Materials, 2017, 29, 1604781.	21.0	112
557	A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications. Physical Chemistry Chemical Physics, 2017, 19, 9143-9148.	2.8	49
558	Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy and Environmental Science, 2017, 10, 950-955.	30.8	178
559	Two-Dimensional Hybrid Organohalide Perovskites from Ultrathin PbS Nanocrystals as Template. Journal of Physical Chemistry C, 2017, 121, 6401-6408.	3.1	16
560	Density of photoinduced free carriers in perovskite thin films via purely optical detection. Journal of Materials Chemistry C, 2017, 5, 3283-3287.	5.5	2
561	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8, 14558.	12.8	473
562	Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2, .	48.7	867
563	Strong Interaction at the Perovskite/TiO ₂ Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 3797-3806.	3.1	69
564	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	30.8	942

#	Article	IF	CITATIONS
565	Charge Injection Mechanism at Heterointerfaces in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Revealed by Simultaneous Time-Resolved Photoluminescence and Photocurrent Measurements. Journal of Physical Chemistry Letters, 2017, 8, 954-960.	4.6	91
566	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Advances, 2017, 7, 10985-10991.	3.6	18
567	Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open ircuit Voltage and Low Recombination. Advanced Energy Materials, 2017, 7, 1602358.	19.5	430
568	Solution-Processed Cu(In, Ca)(S, Se)2 Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Nanoscale Research Letters, 2017, 12, 159.	5.7	38
569	Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Advanced Energy Materials, 2017, 7, 1602400.	19.5	130
570	Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead iodide. Journal of Physics and Chemistry of Solids, 2017, 105, 16-22.	4.0	6
571	Double Perovskite Cs ₂ BBiX ₆ (B = Ag, Cu; X = Br, Cl)/TiO ₂ Heterojunction: An Efficient Pb-Free Perovskite Interface for Charge Extraction. Journal of Physical Chemistry C, 2017, 121, 4471-4480.	3.1	87
572	Simplification of device structures for low-cost, high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4756-4773.	10.3	57
573	Time-Resolved Infrared Spectroscopy Directly Probes Free and Trapped Carriers in Organo-Halide Perovskites. ACS Energy Letters, 2017, 2, 651-658.	17.4	43
574	Advances in Quantumâ€Confined Perovskite Nanocrystals for Optoelectronics. Advanced Energy Materials, 2017, 7, 1700267.	19.5	176
575	Phonon features in terahertz photoconductivity spectra due to data analysis artifact: A case study on organometallic halide perovskites. Applied Physics Letters, 2017, 110, .	3.3	21
576	Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications. Journal of Photonics for Energy, 2017, 7, 022503.	1.3	26
577	Perovskite CH ₃ NH ₃ Pbl _{3–<i>x</i>} Br <i>_x</i> Single Crystals with Charge-Carrier Lifetimes Exceeding 260 μs. ACS Applied Materials & Interfaces, 2017, 9, 14827-14832.	8.0	58
578	Ultrathin TiO ₂ nanosheets synthesized using a high pressure solvothermal method and the enhanced photoresponse performance of CH ₃ NH ₃ Pbl ₃ –TiO ₂ composite films. RSC Advances, 2017, 7, 20845-20850.	3.6	9
579	A Printable Organic Electron Transport Layer for Lowâ€Temperatureâ€Processed, Hysteresisâ€Free, and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700226.	19.5	46
580	Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers. Nano Energy, 2017, 36, 295-302.	16.0	30
581	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	13.7	723
582	Origin and Whereabouts of Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9705-9713.	3.1	65

#	Article	IF	CITATIONS
583	Benchmarking photoactive thinâ€film materials using a laserâ€induced steadyâ€state photocarrier grating. Progress in Photovoltaics: Research and Applications, 2017, 25, 605-613.	8.1	4
584	Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates. Chemical Science, 2017, 8, 4371-4380.	7.4	40
585	Colloidal thallium halide nanocrystals with reasonable luminescence, carrier mobility and diffusion length. Chemical Science, 2017, 8, 4602-4611.	7.4	26
586	Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nature Communications, 2017, 8, 15152.	12.8	83
587	High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano, 2017, 11, 6057-6064.	14.6	142
588	Numerical simulations of novel SiGe-based IBC-HJ solar cell for standalone and mechanically stacked tandem applications. Materials Research Bulletin, 2017, 93, 282-289.	5.2	22
589	Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700027.	5.8	24
590	Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 3844-3853.	9.1	101
591	Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant. ACS Applied Materials & Interfaces, 2017, 9, 17923-17931.	8.0	73
592	Perovskite as a Platform for Active Flexible Metaphotonic Devices. ACS Photonics, 2017, 4, 1595-1601.	6.6	86
593	Searching for "Defect-Tolerant―Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chemistry of Materials, 2017, 29, 4667-4674.	6.7	275
594	Photomodulated Hysteresis Behaviors in Perovskite Phototransistors with Ultra-Low Operating Voltage. Journal of Physical Chemistry C, 2017, 121, 11665-11671.	3.1	20
595	Temperature-modulated crystal growth and performance for highly reproducible and efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 13147-13152.	2.8	18
596	Multistep Photoluminescence Decay Reveals Dissociation of Geminate Charge Pairs in Organolead Trihalide Perovskites. Advanced Energy Materials, 2017, 7, 1700405.	19.5	8
597	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017, 2, 1214-1222.	17.4	826
598	Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renewable and Sustainable Energy Reviews, 2017, 78, 1-14.	16.4	49
599	Theoretical studies on the structural, electronic and optical properties of orthorhombic perovskites CH3NH3PbX3(XÂ=ÂI, Br, Cl). Journal of Physics and Chemistry of Solids, 2017, 110, 145-151.	4.0	7
600	Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 2017, 168, 214-220.	6.2	50

#	Article	IF	CITATIONS
601	Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. Journal of Physical Chemistry Letters, 2017, 8, 2247-2252.	4.6	101
602	Increased Efficiency for Perovskite Photovoltaics Based on Aluminum-Doped Zinc Oxide Transparent Electrodes via Surface Modification. Journal of Physical Chemistry C, 2017, 121, 10282-10288.	3.1	14
603	Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy. Science and Technology of Advanced Materials, 2017, 18, 307-315.	6.1	26
604	Controlling crystal growth by chloride-assisted synthesis: Towards optimized charge transport in hybrid halide perovskites. Solar Energy Materials and Solar Cells, 2017, 166, 269-275.	6.2	8
605	Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1103-1111.	10.3	155
606	Open-circuit Voltage Loss in CH ₃ NH ₃ SnI ₃ Perovskite Solar Cells. Chemistry Letters, 2017, 46, 253-256.	1.3	46
607	Stabilitävon Perowskitâ€Solarzellen: Einfluss der Substitution von Aâ€Kation und Xâ€Anion. Angewandte Chemie, 2017, 129, 1210-1233.	2.0	27
608	Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. Journal of Materials Chemistry A, 2017, 5, 739-747.	10.3	79
609	Pressureâ€Induced Bandgap Optimization in Leadâ€Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability. Advanced Functional Materials, 2017, 27, 1604208.	14.9	167
610	Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells. Organic Electronics, 2017, 41, 42-48.	2.6	45
611	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	10.3	18
612	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methylammonium Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	6.7	42
613	Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chemical Science, 2017, 8, 5628-5635.	7.4	93
614	Degradation in perovskite solar cells stored under different environmental conditions. Journal Physics D: Applied Physics, 2017, 50, 325105.	2.8	19
615	Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode. Organic Electronics, 2017, 48, 308-313.	2.6	18
616	Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. Frontiers of Optoelectronics, 2017, 10, 103-110.	3.7	15
617	Thermal conductivity of suspended single crystal CH ₃ NH ₃ PbI ₃ platelets at room temperature. Nanoscale, 2017, 9, 8281-8287.	5.6	20
618	The Nature of Electron Mobility in Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Nano Letters, 2017, 17, 3646-3654.	9.1	50

#	Article	IF	CITATIONS
619	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	5.5	28
620	Photon-generated carriers excite superoxide species inducing long-term photoluminescence enhancement of MAPbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 12048-12053.	10.3	34
621	Coherent Light Emitters From Solution Chemistry: Inorganic II–VI Nanocrystals and Organometallic Perovskites. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-14.	2.9	3
622	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	21.0	140
623	Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 3289-3298.	4.6	41
624	Perovskite Nanopillar Array Based Tandem Solar Cell. ACS Photonics, 2017, 4, 2025-2035.	6.6	24
625	New PCBM/carbon based electron transport layer for perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 17960-17966.	2.8	54
626	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	19.5	74
627	PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. Journal of Power Sources, 2017, 360, 11-20.	7.8	84
628	Efficient electron transfer layer based on Al 2 O 3 passivated TiO 2 nanorod arrays for high performance evaporation-route deposited FAPbI 3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 170, 187-196.	6.2	31
629	Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 13496-13506.	3.1	76
630	Experimental evaluation of room temperature crystallization and phase evolution of hybrid perovskite materials. CrystEngComm, 2017, 19, 3834-3843.	2.6	43
631	Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy and Environmental Science, 2017, 10, 1530-1539.	30.8	311
632	Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers. Advanced Energy Materials, 2017, 7, 1700600.	19.5	163
633	Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Solar Energy Materials and Solar Cells, 2017, 169, 159-166.	6.2	54
634	Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth. Small, 2017, 13, 1701042.	10.0	114
635	Exploring the PbS–Bi ₂ S ₃ Series for Next Generation Energy Conversion Materials. Chemistry of Materials, 2017, 29, 5156-5167.	6.7	32
636	Controllable Structures Designed with Multiple-Dielectric Responses in Hybrid Perovskite-Type Molecular Crystals. Inorganic Chemistry, 2017, 56, 7058-7064.	4.0	13

#	Article	IF	CITATIONS
637	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	3.1	148
638	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	17.4	31
639	Nonradiative Losses in Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1515-1525.	17.4	290
640	Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2017, 2, 1539-1548.	17.4	928
641	Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.	14.2	204
642	Four-Wave Mixing in Perovskite Photovoltaic Materials Reveals Long Dephasing Times and Weaker Many-Body Interactions than GaAs. ACS Photonics, 2017, 4, 1515-1521.	6.6	29
643	Charge transport in a two-dimensional hybrid metal halide thiocyanate compound. Journal of Materials Chemistry C, 2017, 5, 5930-5938.	5.5	37
644	Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy, 2017, 38, 457-466.	16.0	40
645	Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Modern Electronic Materials, 2017, 3, 1-25.	0.6	29
646	Preferential CH ₃ NH ₃ ⁺ Alignment and Octahedral Tilting Affect Charge Localization in Cubic Phase CH ₃ NH ₃ Pbl ₃ . Journal of Physical Chemistry C, 2017, 121, 8319-8326.	3.1	24
647	A Solutionâ€Processed Highâ€Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Advanced Materials, 2017, 29, 1606175.	21.0	80
648	Effective hot-air annealing for improving the performance of perovskite solar cells. Solar Energy, 2017, 146, 359-367.	6.1	20
649	A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11518-11549.	10.3	463
650	Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices. Journal of Materials Chemistry C, 2017, 5, 3427-3437.	5.5	111
651	Evolution of the Dynamics of As-Deposited and Annealed Lead Halide Perovskites. ACS Photonics, 2017, 4, 1195-1206.	6.6	3
652	Single-Crystal-like Perovskite for High-Performance Solar Cells Using the Effective Merged Annealing Method. ACS Applied Materials & Interfaces, 2017, 9, 12382-12390.	8.0	41
653	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	3.6	30
654	Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9, 6136-6144.	5.6	42

#	Article	IF	CITATIONS
655	Simulation of an inverted perovskite solar cell with inorganic electron and hole transfer layers. Journal of Photonics for Energy, 2017, 7, 022001.	1.3	2
656	Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. Journal of Power Sources, 2017, 353, 123-130.	7.8	22
657	Enhanced optoelectronic quality of perovskite films with excess CH ₃ NH ₃ I for high-efficiency solar cells in ambient air. Nanotechnology, 2017, 28, 205401.	2.6	18
658	Synthesis and characterization of photosensible CH3NH3PbI3 and CH3NH3PbI3–x Cl x perovskite crystalline films. Surface Engineering and Applied Electrochemistry, 2017, 53, 15-19.	0.8	0
659	Intermolecular Interactions in Hybrid Perovskites Understood from a Combined Density Functional Theory and Effective Hamiltonian Approach. ACS Energy Letters, 2017, 2, 937-942.	17.4	28
660	Study on the role of additional ions in CH 3 NH 3 PbI 3â^'x Cl x planar solar cells. Solar Energy, 2017, 148, 70-77.	6.1	5
661	Electronic and defect properties of (CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ analogues for photovoltaic applications. Journal of Materials Chemistry A, 2017, 5, 7845-7853.	10.3	43
662	Dynamics of Charged Excitons and Biexcitons in CsPbBr ₃ Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 1413-1418.	4.6	149
663	Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model. ACS Photonics, 2017, 4, 934-942.	6.6	98
664	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	3.3	60
665	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	5.5	90
666	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	3.3	175
667	Nano metal-enhanced power conversion efficiency in CH 3 NH 3 PbI 3 solar cells. Journal of Physics and Chemistry of Solids, 2017, 103, 16-21.	4.0	1
668	Quantitative Correlation of Perovskite Film Morphology to Light Emitting Diodes Efficiency Parameters. Advanced Functional Materials, 2017, 27, 1603219.	14.9	47
669	Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides. Advanced Materials, 2017, 29, 1604733.	21.0	154
670	Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways. Journal of Physical Chemistry C, 2017, 121, 1062-1071.	3.1	22
671	ZrO ₂ /TiO ₂ Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2342-2349.	8.0	41
672	3D In Situ ToF‧IMS Imaging of Perovskite Films under Controlled Humidity Environmental Conditions. Advanced Materials Interfaces, 2017, 4, 1600673.	3.7	32

#	Article	IF	CITATIONS
673	A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. Nano Energy, 2017, 32, 310-319.	16.0	44
674	Influence of Interface Morphology on Hysteresis in Vaporâ€Deposited Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600470.	5.1	63
675	Ambience dependent photoluminescence reveals the localization and trap filling effects in CH ₃ NH ₃ PbI _{3â^x} Cl _x perovskite films. Journal of Materials Chemistry C, 2017, 5, 54-58.	5.5	5
676	Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 802-806.	5.9	25
677	Crystallization Kinetics of Lead Halide Perovskite Film Monitored by In Situ Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 401-406.	4.6	36
678	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	5.6	61
679	Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating. Journal of Alloys and Compounds, 2017, 705, 205-210.	5.5	52
680	Enhanced Efficiency of Hotâ€Cast Largeâ€Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials, 2017, 7, 1601660.	19.5	191
681	Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143.	4.6	39
682	Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy and Environmental Science, 2017, 10, 361-369.	30.8	482
683	Instability and Efficiency of Mixed Halide Perovskites CH ₃ NH ₃ Al _{3–<i>x</i>} Cl _{<i>x</i>} (A = Pb and Sn): A First-Principles, Computational Study. Chemistry of Materials, 2017, 29, 682-689.	6.7	18
684	Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2017, 139, 836-842.	13.7	470
685	Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy and Environmental Science, 2017, 10, 516-522.	30.8	720
686	Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%). ACS Energy Letters, 2017, 2, 2667-2673.	17.4	180
687	Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS Applied Materials & Interfaces, 2017, 9, 42011-42019.	8.0	5
688	The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. ACS Energy Letters, 2017, 2, 2686-2693.	17.4	154
689	Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films. Journal of Materials Chemistry A, 2017, 5, 24728-24739.	10.3	41
690	Properties of atmospheric‑hydrogen-plasma-treated CH 3 NH 3 PbI 3 perovskite films. Surface and Coatings Technology, 2017, 330, 228-233.	4.8	6

#	Article	IF	CITATIONS
691	Stable Green Perovskite Vertical-Cavity Surface-Emitting Lasers on Rigid and Flexible Substrates. ACS Photonics, 2017, 4, 2486-2494.	6.6	63
692	Pinning Down the Anomalous Light Soaking Effect toward High-Performance and Fast-Response Perovskite Solar Cells: The Ion-Migration-Induced Charge Accumulation. Journal of Physical Chemistry Letters, 2017, 8, 5069-5076.	4.6	60
693	Sequential solvent processing with hole transport materials for improving efficiency of traditionally-structured perovskite solar cells. Nano Energy, 2017, 41, 591-599.	16.0	27
694	Manipulating the Net Radiative Recombination Rate in Lead Halide Perovskite Films by Modification of Light Outcoupling. Journal of Physical Chemistry Letters, 2017, 8, 5084-5090.	4.6	51
695	Effects of Spin States on Photovoltaic Actions in Organo-Metal Halide Perovskite Solar Cells Based on Circularly Polarized Photoexcitation. ACS Photonics, 2017, 4, 2821-2827.	6.6	18
696	Role of Dielectric Drag in Polaron Mobility in Lead Halide Perovskites. ACS Energy Letters, 2017, 2, 2555-2562.	17.4	90
697	High-Performance and Hysteresis-Free Planar Solar Cells with PC ₇₁ BM and C ₆₀ Composed Structure Prepared Irrespective of Humidity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9718-9724.	6.7	11
698	The Stability Effect of Atomic Layer Deposition (ALD) of Al ₂ O ₃ on CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell Fabricated by Vapor Deposition, Key Engineering Materials, 0, 753, 156-162.	0.4	3
699	Slowâ€Photonâ€Effectâ€Induced Photoelectricalâ€Conversion Efficiency Enhancement for Carbonâ€Quantumâ€Dotâ€Sensitized Inorganic CsPbBr ₃ Inverse Opal Perovskite Solar Cells. Advanced Materials, 2017, 29, 1703682.	21.0	133
700	First-principles study on the initial decomposition process of CH3NH3PbI3. Journal of Chemical Physics, 2017, 147, 124702.	3.0	10
701	Free Carrier Radiative Recombination and Photon Recycling in Lead Halide Perovskite Solar Cell Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 1129-1140.	3.2	65
702	Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced Materials, 2017, 29, 1702838.	21.0	117
703	Effect of Water Addition during Preparation on the Earlyâ€īme Photodynamics of CH ₃ NH ₃ PbI ₃ Perovskite Layers. ChemPhysChem, 2017, 18, 3320-3324.	2.1	4
704	Anisotropic Electric Field Effect on the Photoluminescence of CH ₃ NH ₃ Pbl ₃ Perovskite Sandwiched between Conducting and Insulating Films. Journal of Physical Chemistry C, 2017, 121, 22700-22706.	3.1	12
705	Exploring the Antipolar Nature of Methylammonium Lead Halides: A Monte Carlo and Pyrocurrent Study. Journal of Physical Chemistry Letters, 2017, 8, 4906-4911.	4.6	24
706	High-Performance CH ₃ NH ₃ PbI ₃ -Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide. ACS Applied Materials & Interfaces, 2017, 9, 35871-35879.	8.0	40
707	Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nature Communications, 2017, 8, 687.	12.8	63
708	Impact of halide stoichiometry on structure-tuned formation of CH3NH3PbX3â^'aYa hybrid perovskites. Solar Energy, 2017, 158, 367-379.	6.1	10

#	Article	IF	CITATIONS
709	Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Applied Materials & Interfaces, 2017, 9, 37655-37661.	8.0	30
710	Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 11024-11030.	14.6	119
711	Enhanced Efficiency of Perovskite Solar Cells by using Core–Ultrathin Shell Structure Ag@SiO ₂ Nanowires as Plasmonic Antennas. Advanced Electronic Materials, 2017, 3, 1700169.	5.1	24
712	Ultrasensitive flexible broadband photodetectors achieving pA scale dark current. Npj Flexible Electronics, 2017, 1, .	10.7	41
713	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	5.5	138
714	Efficient and stable perovskite solar cells based on high-quality CH ₃ NH ₃ PbI _{3â^`x} Cl _x films modified by V ₂ O _x additives. Journal of Materials Chemistry A, 2017, 5, 24282-24291.	10.3	27
715	Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials, 2017, 7, 1701136.	19.5	257
716	Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. Journal of Power Sources, 2017, 365, 1-6.	7.8	63
717	Simulations of 3-dimensional ferroelectric domains in perovskite solar cells based on MAPbIs. , 2017, , .		0
718	Recent Advances in Metal Halideâ€Based Perovskite Lightâ€Emitting Diodes. Energy Technology, 2017, 5, 1734-1749.	3.8	79
719	Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells. Electrochimica Acta, 2017, 251, 307-315.	5.2	39
720	Ion Migration Heals Trapping Centers in CH ₃ NH ₃ PbBr ₃ Perovskite. ACS Energy Letters, 2017, 2, 2133-2139.	17.4	51
721	Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. Journal of Materials Chemistry C, 2017, 5, 9376-9382.	5.5	44
722	Modulating Excitonic Recombination Effects through Oneâ€Step Synthesis of Perovskite Nanoparticles for Lightâ€Emitting Diodes. ChemSusChem, 2017, 10, 3818-3824.	6.8	12
723	Terahertz Spectroscopic Probe of Hot Electron and Hole Transfer from Colloidal CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 5402-5407.	9.1	68
724	Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission. Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.	4.6	147
725	New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbl ₃ : a mixture of Pb and Ge/Sn. New Journal of Chemistry, 2017, 41, 11413-11421.	2.8	27
726	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	7.4	74

#	Article	IF	CITATIONS
727	Singleâ€Mode Distributed Feedback Laser Operation in Solutionâ€Processed Halide Perovskite Alloy System. Advanced Optical Materials, 2017, 5, 1700545.	7.3	28
728	Simple synthesis and molecular engineering of low-cost and star-shaped carbazole-based hole transporting materials for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20263-20276.	10.3	92
729	Nonlinear photocarrier recombination dynamics in mixed-halide CH ₃ NH ₃ Pb(I _{1â~`} <i> _x </i> Br <i> _x) Tj ETQq0 0 (</i>) r g₿ ∏ /Ov	erbock 10 Tf
730	Polaronic Charge Carrier–Lattice Interactions in Lead Halide Perovskites. ChemSusChem, 2017, 10, 3705-3711.	6.8	18
731	Absence of ferroelectricity in methylammonium lead iodide perovskite. AIP Advances, 2017, 7, 095110.	1.3	27
732	Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers. Journal of Physical Chemistry C, 2017, 121, 27256-27262.	3.1	40
733	Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nature Communications, 2017, 8, 590.	12.8	207
734	Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. Scientific Reports, 2017, 7, 8902.	3.3	25
735	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	10.3	10
736	Lowâ€Cost TiS ₂ as Holeâ€Transport Material for Perovskite Solar Cells. Small Methods, 2017, 1, 1700250.	8.6	47
737	A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, 2017, 29, 1605242.	21.0	590
738	Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 2017, 157, 853-859.	6.1	31
739	Two Regimes of Carrier Diffusion in Vapor-Deposited Lead-Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 21600-21609.	3.1	33
740	Tunable hysteresis effect for perovskite solar cells. Energy and Environmental Science, 2017, 10, 2383-2391.	30.8	188
741	Monolithic MAPbl ₃ films for high-efficiency solar cells via coordination and a heat assisted process. Journal of Materials Chemistry A, 2017, 5, 21313-21319.	10.3	132
742	Time-Resolved Photoconductivity Measurements on Organometal Halide Perovskites. Series on Chemistry, Energy and the Environment, 2017, , 179-232.	0.3	1
743	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	7.0	83
744	Solid Ligand-Assisted Storage of Air-Stable Formamidinium Lead Halide Quantum Dots via Restraining the Highly Dynamic Surface toward Brightly Luminescent Light-Emitting Diodes. ACS Photonics, 2017, 4, 2504-2512.	6.6	50

#	Article	IF	CITATIONS
745	Dipole Order in Halide Perovskites: Polarization and Rashba Band Splittings. Journal of Physical Chemistry C, 2017, 121, 23045-23054.	3.1	56
746	Materials chemistry approaches to the control of the optical features of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20561-20578.	10.3	35
747	Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole. ACS Energy Letters, 2017, 2, 2239-2244.	17.4	93
748	Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells. Scientific Reports, 2017, 7, 7859.	3.3	28
749	Characterization of quenching defects in methylammonium lead triiodide (CH3NH3PbI3). Journal of Luminescence, 2017, 192, 1191-1195.	3.1	7
750	Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect. Nano Energy, 2017, 40, 540-549.	16.0	22
751	Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nature Communications, 2017, 8, 376.	12.8	193
752	Formation of Stable Tin Perovskites Coâ€crystallized with Three Halides for Carbonâ€Based Mesoscopic Leadâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13819-13823.	13.8	85
753	Formation of Stable Tin Perovskites Coâ€crystallized with Three Halides for Carbonâ€Based Mesoscopic Leadâ€Free Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 14007-14011.	2.0	23
754	Highly stable, phase pure Cs ₂ AgBiBr ₆ double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 2017, 5, 19972-19981.	10.3	509
755	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	2.8	21
756	Electroabsorption Spectroscopy Studies of (C ₄ H ₉ NH ₃) ₂ PbI ₄ Organic–Inorganic Hybrid Perovskite Multiple Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 4557-4564.	4.6	48
757	Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers. ACS Photonics, 2017, 4, 2522-2528.	6.6	61
758	A gradient engineered hole-transporting material for monolithic series-type large-area perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21161-21168.	10.3	35
759	18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar Rrl, 2017, 1, 1700097.	5.8	97
760	Efficient planar perovskite solar cells based on high-quality perovskite films with smooth surface and large crystal grains fabricated in ambient air conditions. Solar Energy, 2017, 155, 942-950.	6.1	32
761	TiO2/RbPbI3 halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 44-54.	6.2	53
762	Effects of copper addition on photovoltaic properties of perovskite CH ₃ NH ₃ Pbl _{3â^`<i>x</i>} Cl _{<i>x</i>} solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700268.	1.8	17

#	Article	IF	CITATIONS
763	Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer. Journal of Materials Chemistry A, 2017, 5, 17499-17505.	10.3	293
764	Addition of Lithium Iodide into Precursor Solution for Enhancing the Photovoltaic Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1814-1819.	3.8	4
765	Photostriction of CH ₃ NH ₃ PbBr ₃ Perovskite Crystals. Advanced Materials, 2017, 29, 1701789.	21.0	86
766	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	10.3	64
767	Lowâ€Temperature Softâ€Cover Deposition of Uniform Largeâ€5cale Perovskite Films for Highâ€Performance Solar Cells. Advanced Materials, 2017, 29, 1701440.	21.0	74
768	120 mm single-crystalline perovskite and wafers: towards viable applications. Science China Chemistry, 2017, 60, 1367-1376.	8.2	107
769	Bulk and interface recombination in planar lead halide perovskite solar cells: A Drift-Diffusion study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 118-122.	2.7	23
770	Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance. ACS Energy Letters, 2017, 2, 1901-1908.	17.4	128
771	Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex. ACS Applied Materials & amp; Interfaces, 2017, 9, 26958-26964.	8.0	80
772	Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. Nano Letters, 2017, 17, 5277-5284.	9.1	221
773	Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chemical Society Reviews, 2017, 46, 5714-5729.	38.1	197
774	Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Organic Electronics, 2017, 50, 279-289.	2.6	34
775	Van der Waals Interactions and Anharmonicity in the Lattice Vibrations, Dielectric Constants, Effective Charges, and Infrared Spectra of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry C, 2017, 121, 18459-18471.	3.1	24
776	Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH ₃ NH ₃ Pbl ₃ Perovskite. Nano Letters, 2017, 17, 5782-5789.	9.1	147
777	Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2017, 19, 27184-27190.	2.8	18
778	Recombination at high carrier density in methylammonium lead iodide studied using time-resolved microwave conductivity. Journal of Applied Physics, 2017, 122, .	2.5	27
779	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	19.5	276
780	Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of Pbl ₂ and Csl. ACS Omega, 2017, 2, 4464-4469.	3.5	49

#	Article	IF	Citations
781	NbSe interlayers decrease interfacial recombination in Bil3-based hybrid solar cells. FlatChem, 2017, 5, 18-24.	5.6	13
782	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	47.7	266
783	Impact of Postsynthetic Surface Modification on Photoluminescence Intermittency in Formamidinium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 6041-6047.	4.6	67
784	Ultrafast Exciton Dynamics in Shape-Controlled Methylammonium Lead Bromide Perovskite Nanostructures: Effect of Quantum Confinement on Charge Carrier Recombination. Journal of Physical Chemistry C, 2017, 121, 28556-28565.	3.1	19
785	Fabrication-Method-Dependent Excited State Dynamics in CH3NH3PbI3 Perovskite Films. Scientific Reports, 2017, 7, 16516.	3.3	5
786	Enhanced Efficiency and Long-Term Stability of Perovskite Solar Cells by Synergistic Effect of Nonhygroscopic Doping in Conjugated Polymer-Based Hole-Transporting Layer. ACS Applied Materials & Interfaces, 2017, 9, 43846-43854.	8.0	51
787	Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and <i>J</i> – <i>V</i> Modeling. Journal of Physical Chemistry Letters, 2017, 8, 6073-6079.	4.6	69
788	Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2017, 9, 43910-43919.	8.0	90
789	Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications, 2017, 8, 1890.	12.8	467
790	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	10.3	635
791	Inorganic Lattice Fluctuation Induces Charge Separation in Lead Iodide Perovskites: Theoretical Insights. Journal of Physical Chemistry C, 2017, 121, 26648-26654.	3.1	10
792	Optical and Structural Effects due to the Control of Organic and Inorganic Composition Percentage in CH3NH3PbBr3 Perovskite. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 873-881.	1.5	6
793	High-performance planar perovskite solar cells: Influence of solvent upon performance. Applied Materials Today, 2017, 9, 598-604.	4.3	66
794	Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials. Journal of Physical Chemistry C, 2017, 121, 26180-26187.	3.1	26
795	Photoluminescence, optical gain, and lasing threshold in CH ₃ NH ₃ PbI ₃ methylammonium lead-halide perovskites obtained by <i>ab initio</i> calculations. Journal of Materials Chemistry C, 2017, 5, 12758-12768.	5.5	5
796	Unique Trapped Dimer State of the Photogenerated Hole in Hybrid Orthorhombic CH ₃ NH ₃ PbI ₃ Perovskite: Identification, Origin, and Implications. Nano Letters, 2017, 17, 7724-7730.	9.1	19
797	Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead lodide-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41898-41905.	8.0	51
798	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.	10.3	41

#	Article	IF	CITATIONS
799	First-Principles Study of Electron Injection and Defects at the TiO ₂ /CH ₃ NH ₃ PbI ₃ Interface of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5840-5847.	4.6	31
800	Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41845-41854.	8.0	19
801	Twoâ€Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced Optical Materials, 2017, 5, 1700809.	7.3	33
802	Carrier diffusion in thin-film CH3NH3PbI3 perovskite measured using four-wave mixing. Applied Physics Letters, 2017, 111, .	3.3	29
803	Migration of Constituent Protons in Hybrid Organic–Inorganic Perovskite Triggers Intrinsic Doping. Journal of the American Chemical Society, 2017, 139, 16462-16465.	13.7	29
804	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions andÂcations. Nature Energy, 2017, 2, .	39.5	1,694
805	Tuning the Fermi Level of TiO ₂ Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1820-1826.	3.8	42
806	Ferroelectric \$\$pi \$\$ ï€ -stacks of molecules with the energy gaps in the sunlight range. Journal of Materials Science, 2017, 52, 4378-4388.	3.7	2
807	A theoretical study of hybrid lead iodide perovskite homologous semiconductors with 0D, 1D, 2D and 3D structures. Journal of Materials Chemistry A, 2017, 5, 16786-16795.	10.3	43
808	Power output and carrier dynamics studies of perovskite solar cells under working conditions. Physical Chemistry Chemical Physics, 2017, 19, 19922-19927.	2.8	4
809	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	48.7	927
810	The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 2017, 5, .	5.1	80
811	Large grained and high charge carrier lifetime CH3NH3PbI3 thin-films: implications for perovskite solar cells. Current Applied Physics, 2017, 17, 1335-1340.	2.4	28
812	Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Science China Materials, 2017, 60, 1063-1078.	6.3	60
813	PbI ₂ platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition. Semiconductor Science and Technology, 2017, 32, 074003.	2.0	18
814	On the efficiency limit of ZnO/CH ₃ NH ₃ PbI ₃ /CuI perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 19916-19921.	2.8	12
815	Photocurrent hysteresis related to ion motion in metal-organic perovskites. Science China Chemistry, 2017, 60, 396-404.	8.2	19
816	Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells. Journal of Alloys and Compounds, 2017, 697, 374-379.	5.5	21

#	Article	IF	CITATIONS
817	Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 2017, 488, 373-389.	9.4	163
818	Effects of polysilaneâ€doped spiroâ€OMeTAD hole transport layers on photovoltaic properties. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600591.	1.8	13
819	CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 77-84.	6.2	39
820	High-temperature shaping perovskite film crystallization for solar cell fast preparation. Solar Energy Materials and Solar Cells, 2017, 160, 60-66.	6.2	27
821	Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide. Solar Energy Materials and Solar Cells, 2017, 160, 294-300.	6.2	25
822	Hybrid Perovskite Thinâ€Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases. Advanced Materials, 2017, 29, 1604113.	21.0	155
823	High Openâ€Circuit Voltages in Tinâ€Rich Lowâ€Bandgap Perovskiteâ€Based Planar Heterojunction Photovoltaics. Advanced Materials, 2017, 29, 1604744.	21.0	212
824	The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells. Energy Technology, 2017, 5, 442-451.	3.8	15
825	Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 251-264.	6.2	106
826	Chlorine Incorporation in the CH ₃ NH ₃ PbI ₃ Perovskite: Small Concentration, Big Effect. Inorganic Chemistry, 2017, 56, 74-83.	4.0	40
827	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	4.1	357
828	A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. Journal of Materials Chemistry A, 2017, 5, 1348-1373.	10.3	298
829	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the Aâ€Cation and Xâ€Anion. Angewandte Chemie - International Edition, 2017, 56, 1190-1212.	13.8	473
830	Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects. Inorganic Chemistry, 2017, 56, 11-25.	4.0	45
831	Exciton-phonon scattering effects on photoluminescence of hybrid lead halide perovskite. , 2017, , .		1
832	Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(Brxl1â^'x)3 Crystals Synthesized via a Solvothermal Method. Scientific Reports, 2017, 7, 17695.	3.3	18
833	Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems. Structural Dynamics, 2017, 4, 061503.	2.3	13
834	Effective methods for improving device performances of P-I-N perovskite solar cells. , 2017, , .		0

ARTICLE IF CITATIONS Solvent annealing process for wide bandgap perovskite solar cells., 2017,,. 835 0 Grain and Grain Boundary Geometrical Shape Considerations on Sodium and Potassium Diffusion Through Molybdenum Films., 2017,,. Material and Device Architecture Engineering Toward High Performance Two-Dimensional (2D) 837 2.2 21 Photodetectors. Crystals, 2017, 7, 149. Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells. Optics Express, 2017, 25, A253. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25, 839 3.4 35 A1162. Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA). Coatings, 2017, 7, 115. 840 2.6 Sensitivity of the Drift-Diffusion Approach in Estimating the Power Conversion Efficiency of Bulk 841 3.1 1 Heterojunction Polymer Solar Cells. Energies, 2017, 10, 285. Photoconversion Efficiency Modeling in Perovskite Solar Cells., 2017, , . 842 843 Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap., 0, , . 1 A Self - Consistently Coupled Drift Diffusion and Monte Carlo Simulator to Model Silicon 844 Heterojunction Solar Cells., 2017, , . Tin oxide as an emerging electron transport medium in perovskite solar cells. Solar Energy Materials 845 6.2 43 and Solar Cells, 2018, 179, 102-117. Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for 846 5.8 Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800027. From Nanostructural Evolution to Dynamic Interplay of AConstituents: Perspectives for Perovskite 847 21.0 54 Solar Cells. Advanced Materials, 2018, 30, e1704208. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. 848 6.2 104 Solar Energy Materials and Solar Cells, 2018, 179, 80-86. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite 849 8.0 58 Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 9849-9857. Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. Journal of Physical Chemistry Letters, 2018, 9, 1573-1583. Solvent-Assisted Thermal-Pressure Strategy for Constructing High-Quality CH₃NH₃PbI_{3â€"<i>x</i>}CI_{<i>x</i>}Films as 851 8.0 16 High-Performance Perovskite Photodetectors. ACS Applied Materials & amp; Interfaces, 2018, 10, 8393-8398 Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite 1.4 solar cells. Chinese Physics B, 2018, 27, 017305.

#	Article	IF	CITATIONS
853	Classical modelling of grain size and boundary effects in polycrystalline perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 76-82.	6.2	49
854	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	11.6	32
855	On the importance of ferroelectric domains for the performance of perovskite solar cells. Nano Energy, 2018, 48, 20-26.	16.0	52
856	Hexagonal array micro-convex patterned substrate for improving diffused transmittance in perovskite solar cells. Thin Solid Films, 2018, 660, 682-687.	1.8	6
857	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	19.5	186
858	Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl ₄ treatment. Journal of Advanced Dielectrics, 2018, 08, 1850009.	2.4	6
859	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	9.1	177
860	In Situ Investigation of the Growth of Methylammonium Lead Halide (MAPbI _{3–<i>x</i>} Br _{<i>x</i>}) Perovskite from Microdroplets. Crystal Growth and Design, 2018, 18, 3458-3464.	3.0	8
861	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	5.6	169
862	Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. Journal of Materials Chemistry C, 2018, 6, 5375-5383.	5.5	62
863	Controlled defects and enhanced electronic extraction in fluorine-incorporated zinc oxide for high-performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 263-271.	6.2	41
864	Facile Sol–Gel-Derived Craterlike Dual-Functioning TiO ₂ Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14649-14658.	8.0	18
865	Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors. Nano-Micro Letters, 2018, 10, 43.	27.0	77
866	Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films. Solar Energy, 2018, 166, 187-194.	6.1	26
867	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie, 2018, 130, 5856-5860.	2.0	3
868	Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Physics in Medicine, 2018, 5, 20-23.	1.3	62
869	Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 6806-6814.	10.3	45
870	Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018, 91, 1058-1068.	3.2	84

	CITATION REPORT		
Article		IF	Citations
Electrode quenching control for highly efficient CsPbBr ₃ perovskite light- diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticle Nanotechnology, 2018, 29, 175203.		2.6	26
Enhancing thermoelectric performance of the CH3NH3PbI3 polycrystalline thin films b excited state on photoexcitation. Organic Electronics, 2018, 55, 90-96.	y using the	2.6	24
Improved Stability of Organometal Halide Perovskite Films and Solar Cells toward Hum Surface Passivation with Oleic Acid. ACS Applied Energy Materials, 2018, 1, 387-392.	nidity via	5.1	66
Morphology and Optoelectronic Variations Underlying the Nature of the Electron Tran Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 602-615.	isport Layer in	5.1	25
Photocharge accumulation and recombination in perovskite solar cells regarding devic and stability. Applied Physics Letters, 2018, 112, 053904.	e performance	3.3	20
Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhance photovoltaic performances of perovskite solar cells. Electrochimica Acta, 2018, 266, 1		5.2	17
Effect of Bromine Substitution on the Ion Migration and Optical Absorption in MAPbl< Perovskite Solar Cells: The First-Principles Study. ACS Applied Energy Materials, 2018,	sub>3 1, 1374-1380.	5.1	46
Connecting the solution chemistry of PbI ₂ and MAI: a cyclodextrin-based approach to the formation of hybrid halide perovskites. Chemical Science, 2018, 9, 32	supramolecular 00-3208.	7.4	55
Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications. MR 2018, 3, 1819-1823.	≀S Advances,	0.9	18
Influence of coating steps of perovskite on low-temperature amorphous compact TiO < upon the morphology, crystallinity, and photovoltaic property correlation in plana solar cells. Japanese Journal of Applied Physics, 2018, 57, 03EJ06.		1.5	8
Manipulation of the crystallization of perovskite films induced by a rotating magnetic blade coating in air. Journal of Materials Chemistry A, 2018, 6, 3986-3995.	field during	10.3	13
Efficient design of perovskite solar cell using mixed halide and copper oxide. Chinese P 27, 018801.	Physics B, 2018,	1.4	7
Hybrid Perovskites: Prospects for Concentrator Solar Cells. Advanced Science, 2018, 5	i, 1700792.	11.2	76
Variation in the Photocurrent Response Due to Different Emissive States in Methylamr Bromide Perovskites. Journal of Physical Chemistry C, 2018, 122, 3818-3823.	monium Lead	3.1	11
Unraveling surface and bulk trap states in lead halide perovskite solar cells using imper spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 095501.	dance	2.8	21
Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Hali Journal of Physical Chemistry Letters, 2018, 9, 620-627.	de Perovskites.	4.6	88

888	Charge-Carrier Dynamics and Crystalline Texture of Layered Ruddlesden–Popper Hybrid Lead Iodide Perovskite Thin Films. ACS Energy Letters, 2018, 3, 380-386.	17.4	97
889	Predicted Lead-Free Perovskites for Solar Cells. Chemistry of Materials, 2018, 30, 718-728.	6.7	102

#

871

873

875

877

879

882

884

#	Article	IF	CITATIONS
890	Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH ₃ NH ₃ PbI ₃) Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 426-434.	4.6	68
891	All arbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	14.9	242
892	Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Scientific Reports, 2018, 8, 2511.	3.3	13
893	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	30.8	480
894	Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nature Communications, 2018, 9, 608.	12.8	322
895	Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 178, 200-207.	6.2	26
896	Fabrication of Mesoporous Titania Nanoparticles with Controlled Porosity and Connectivity for Studying the Photovoltaic Properties in Perovskite Solar Cells. ChemNanoMat, 2018, 4, 394-400.	2.8	9
897	Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 2018, 42, 2896-2902.	2.8	43
898	Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nature Communications, 2018, 9, 293.	12.8	243
899	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	3.3	144
900	How Methylammonium Cations and Chlorine Dopants Heal Defects in Lead Iodide Perovskites. Advanced Energy Materials, 2018, 8, 1702754.	19.5	86
901	A New Perspective on the Role of Aâ€Site Cations in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702898.	19.5	47
902	Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling. Advanced Materials, 2018, 30, 1704737.	21.0	86
903	Screening of point defects in methylammonium lead halides: a Monte Carlo study. Journal of Materials Chemistry C, 2018, 6, 1487-1494.	5.5	6
904	Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. Journal of Alloys and Compounds, 2018, 738, 405-414.	5.5	36
905	Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 1909-1916.	8.0	115
906	Crystal Structure Evolution and Notable Thermal Expansion in Hybrid Perovskites Formamidinium Tin Iodide and Formamidinium Lead Bromide. Inorganic Chemistry, 2018, 57, 695-701.	4.0	128
907	Perovskite Excitonics: Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase. Advanced Optical Materials, 2018, 6, 1700839.	7.3	36

#	Article	IF	CITATIONS
908	Superior Selfâ€Powered Roomâ€Temperature Chemical Sensing with Lightâ€Activated Inorganic Halides Perovskites. Small, 2018, 14, 1702571.	10.0	82
909	Effective approach for reducing the migration of ions and improving the stability of organic–inorganic perovskite solar cells. Journal of Alloys and Compounds, 2018, 741, 489-494.	5.5	20
910	Electron–Phonon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles. Journal of Physical Chemistry C, 2018, 122, 1361-1366.	3.1	29
911	Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. Journal of Physical Chemistry Letters, 2018, 9, 263-268.	4.6	23
912	Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering. Advanced Materials Interfaces, 2018, 5, 1701256.	3.7	60
913	Origin of low electron–hole recombination rate in metal halide perovskites. Energy and Environmental Science, 2018, 11, 101-105.	30.8	113
914	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	6.1	28
915	Crystal orientation-dependent optoelectronic properties of MAPbCl ₃ single crystals. Journal of Materials Chemistry C, 2018, 6, 1579-1586.	5.5	78
916	Ultrafast Imaging of Carrier Cooling in Metal Halide Perovskite Thin Films. Nano Letters, 2018, 18, 1044-1048.	9.1	33
917	Selfâ€Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite. Advanced Materials, 2018, 30, 1705230.	21.0	79
918	Band Engineering via Snâ€doping of Zinc Oxide Electron Transport Materials for Perovskite Solar Cells. ChemistrySelect, 2018, 3, 363-367.	1.5	9
919	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	21.0	81
920	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
921	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	30.8	364
922	Theoretical insight into the carrier mobility anisotropy of organic-inorganic perovskite CH3NH3PbI3. Journal of Electroanalytical Chemistry, 2018, 810, 11-17.	3.8	16
923	Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition. Nano Letters, 2018, 18, 846-852.	9.1	38
924	Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120.	19.5	85
925	One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy, 2018, 49, 523-528.	16.0	95

#	Article	IF	CITATIONS
926	Lead halide perovskites: Recombining faster, emitting brighter. Science China Materials, 2018, 61, 1135-1136.	6.3	3
927	Microstructures, optical and photovoltaic properties of CH ₃ NH ₃ Pbl _{3(1â°'<i>x</i>)} Cl _{<i>x</i>} perovskite films with CuSCN additive. Materials Research Express, 2018, 5, 055504.	1.6	11
928	<i>In situ</i> and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH ₃ NH ₃ Pbl ₃ . Chemical Communications, 2018, 54, 5434-5437.	4.1	19
929	Synthesis and characterization of thiophene-mediated hole transport materials for perovskite solar cells. Synthetic Metals, 2018, 241, 54-68.	3.9	8
930	A Versatile Thin-Film Deposition Method for Multidimensional Semiconducting Bismuth Halides. Chemistry of Materials, 2018, 30, 3538-3544.	6.7	52
931	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	16.0	23
932	Exploring the role of spin-triplets and trap states in photovoltaic processes of perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 5055-5062.	5.5	10
933	The effect of oxygen on the efficiency of planar p–i–n metal halide perovskite solar cells with a PEDOT:PSS hole transport layer. Journal of Materials Chemistry A, 2018, 6, 6882-6890.	10.3	27
934	Improving the Performance of a Perovskite Solar Cell by Adjusting the Dispersant for Titanium Dioxide. Energy Technology, 2018, 6, 677-682.	3.8	2
935	Computational Study of Structural and Electronic Properties of Lead-Free CsMI ₃ Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba). Journal of Physical Chemistry C, 2018, 122, 7838-7848.	3.1	62
936	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	5.6	146
937	Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH ₃ NH ₃ Pbl ₃ Perovskites. Chinese Physics Letters, 2018, 35, 028401.	3.3	5
938	SKPM study on organic-inorganic perovskite materials. AIP Advances, 2018, 8, .	1.3	9
939	Cal ₂ : a more effective passivator of perovskite films than PbI ₂ for high efficiency and long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 7903-7912.	10.3	69
940	First-Principles Screening of All-Inorganic Lead-Free ABX ₃ Perovskites. Journal of Physical Chemistry C, 2018, 122, 7670-7675.	3.1	98
941	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10835-10841.	8.0	28
942	Excess iodine as the interface recombination center limiting the open-circuit voltage of Cul-based perovskite planar solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 8838-8846.	2.2	9
943	Improved performance of mesostructured perovskite solar cells via an anti-solvent method. Journal of Crystal Growth, 2018, 491, 66-72.	1.5	6

#	Article	IF	CITATIONS
944	Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment. Materials Letters, 2018, 221, 150-153.	2.6	81
945	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie - International Edition, 2018, 57, 5754-5758.	13.8	117
946	Excellent microwave absorption of lead halide perovskites with high stability. Journal of Materials Chemistry C, 2018, 6, 4201-4207.	5.5	28
947	Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. Journal of Materials Science and Technology, 2018, 34, 1474-1480.	10.7	45
948	Kelvin Probe Force Microscopy Characterization of Organic and Hybrid Perovskite Solar Cells. Springer Series in Surface Sciences, 2018, , 331-365.	0.3	7
949	Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 1701254.	7.3	54
950	Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Organic Electronics, 2018, 57, 221-225.	2.6	7
951	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters, 2018, 18, 2459-2466.	9.1	114
952	Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1091-1100.	12.9	28
953	Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nano Research, 2018, 11, 3306-3312.	10.4	12
954	Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy and Environmental Science, 2018, 11, 151-165.	30.8	586
955	Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces. Journal of Solid State Chemistry, 2018, 258, 488-494.	2.9	10
955 956		2.9 5.2	10 10
	Chemistry, 2018, 258, 488-494. Fast fabricated high performance antisolvent-free perovskite solar cells via dual-flash process.		
956	Chemistry, 2018, 258, 488-494. Fast fabricated high performance antisolvent-free perovskite solar cells via dual-flash process. Electrochimica Acta, 2018, 259, 402-409. Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport	5.2	10
956 957	Chemistry, 2018, 258, 488-494. Fast fabricated high performance antisolvent-free perovskite solar cells via dual-flash process. Electrochimica Acta, 2018, 259, 402-409. Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin	5.2 5.9	10 43
956 957 958	Chemistry, 2018, 258, 488-494. Fast fabricated high performance antisolvent-free perovskite solar cells via dual-flash process. Electrochimica Acta, 2018, 259, 402-409. Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 566-571. Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of	5.2 5.9 6.2	10 43 97

#	Article	IF	CITATIONS
962	Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics, 2018, 24, 1227-1233.	2.4	12
963	Donor–Acceptor Type Dopantâ€Free, Polymeric Hole Transport Material for Planar Perovskite Solar Cells (19.8%). Advanced Energy Materials, 2018, 8, 1701935.	19.5	116
964	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	12.9	38
965	Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen-plasma. Materials Science in Semiconductor Processing, 2018, 75, 1-9.	4.0	9
966	Interfacial Interactions in Monolayer and Few‣ayer SnS/CH ₃ NH ₃ PbI ₃ Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties. ChemPhysChem, 2018, 19, 291-299.	2.1	12
967	ZnSe quantum dots downshifting layer for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 736-741.	12.9	27
968	Toward High Uniformity of Photoresponse Broadband Hybrid Organic–Inorganic Photodiode Based on PVPâ€Modified Perovskite. Advanced Optical Materials, 2018, 6, 1700509.	7.3	19
969	High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 282-289.	2.7	23
970	A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improving the Performance and Stability in Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 236-244.	3.1	50
971	High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. Electrochimica Acta, 2018, 260, 468-476.	5.2	27
972	Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials. Journal of Physical Chemistry Letters, 2018, 9, 176-183.	4.6	91
973	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	14.9	69
974	Synthesis, characterization and optoelectronic properties of chemically stable (CH 3) 3 SPbI 3â^' x Br x and (CH 3) 3 SPbI 3â^' x Cl x (x  = 0, 1, 2, 3) perovskites. Polyhedron, 2018, 140, 67-73.	2.2	25
975	Facile fabrication of perovskite layers with large grains through a solvent exchange approach. Inorganic Chemistry Frontiers, 2018, 5, 348-353.	6.0	34
976	Hybrid Perovskiteâ€Based Positionâ€Sensitive Detectors. Advanced Electronic Materials, 2018, 4, 1700362.	5.1	14
977	Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisâ€Free, and Stable Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.	5.1	101
978	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	19.5	82
979	DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application. Journal Physics D: Applied Physics, 2018, 51, 025502.	2.8	10

#	Article	IF	CITATIONS
980	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	11.6	329
981	Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27, 1017-1039.	12.9	37
982	Optimization of the photoelectric properties and photo-stability of CH3NH3PbBrXI3-X films for efficient planar perovskite solar cells. Superlattices and Microstructures, 2018, 113, 118-128.	3.1	7
983	The influence of DMSO and ether via fast-dipping treatment for a perovskite solar cell. Solar Energy Materials and Solar Cells, 2018, 180, 386-395.	6.2	23
984	Leadâ€Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?. Advanced Science, 2018, 5, 1700331.	11.2	233
985	Light- and Temperature-Modulated Magneto-Transport in Organic–Inorganic Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 39-45.	17.4	15
986	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	11.2	223
987	Deciphering perovskite crystal growth in interdiffusion protocol for planar heterojunction photovoltaic devices. Organic Electronics, 2018, 53, 88-95.	2.6	2
988	Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Organic Electronics, 2018, 52, 309-316.	2.6	22
989	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	4.7	84
990	Improved photovoltaic properties of nominal composition CH ₃ NH ₃ Pb ₀₉₉ Zn ₀₀₁ I ₃ carbon-based perovskite solar cells. Optics Express, 2018, 26, A984.	3.4	17
991	Incorporating deep electron traps into perovskite devices: towards high efficiency solar cells and fast photodetectors. Journal of Materials Chemistry A, 2018, 6, 21039-21046.	10.3	8
992	Room temperature two-photon-pumped random lasers in FAPbBr ₃ /polyethylene oxide (PEO) composite perovskite thin film. RSC Advances, 2018, 8, 36910-36914.	3.6	17
993	A highly stable and efficient carbon electrode-based perovskite solar cell achieved <i>via</i> interfacial growth of 2D PEA ₂ PbI ₄ perovskite. Journal of Materials Chemistry A, 2018, 6, 24560-24568.	10.3	76
994	Alleviate the J–V hysteresis of carbon-based perovskite solar cells via introducing additional methylammonium chloride into MAPbI3 precursor. RSC Advances, 2018, 8, 35157-35161.	3.6	19
996	Quantitative fraction analysis of coexisting phases in a polycrystalline CH3NH3PbI3 perovskite. Applied Physics Express, 2018, 11, 101401.	2.4	5
997	A Simple Route Towards Heat Resistant Halide Perovskite-Based Optoelectronics. , 2018, , .		0
998	Numerical Simulation of CeO _x ETL based Perovskite Solar Cell:- An Optimization Study for High Efficiency and Stability. , 2018, , .		3

#	Article	IF	CITATIONS
1000	Experimental Demonstration of Correlated Flux Scaling in Photoconductivity and Photoluminescence of Lead-Halide Perovskites. Physical Review Applied, 2018, 10, .	3.8	11
1001	Analysis of the low-temperature dielectric relaxation in \$\$hbox {CH}_{3}hbox {NH}_{3}hbox {Pbl}_{3}\$\$ CH 3 NH 3 Pbl 3. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
1002	Performance loss analysis and design space optimization of perovskite solar cells. Journal of Applied Physics, 2018, 124, .	2.5	21
1003	Phase Intergrowth and Structural Defects in Organic Metal Halide Ruddlesden–Popper Thin Films. Chemistry of Materials, 2018, 30, 8615-8623.	6.7	29
1004	An Additive of Sulfonic Lithium Salt for Highâ€₽erformance Perovskite Solar Cells. ChemistrySelect, 2018, 3, 12320-12324.	1.5	8
1005	Hybrid perovskite light emitting diodes under intense electrical excitation. Nature Communications, 2018, 9, 4893.	12.8	146
1006	Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	13
1007	Recombination effects in perovskite solar cells. , 2018, , .		1
1008	Temperature Driven Phase Transition of Organic-Inorganic Halide Perovskite Single Crystals. Journal of the Korean Physical Society, 2018, 73, 1729-1734.	0.7	1
1009	Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors. Journal of the Korean Physical Society, 2018, 73, 1675-1678.	0.7	6
1010	Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive. Advanced Materials, 2019, 31, e1805554.	21.0	134
1011	Firstâ€Principles Study of Aziridinium Lead Iodide Perovskite for Photovoltaics. ChemPhysChem, 2019, 20, 602-607.	2.1	8
1014	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. Journal of Applied Physics, 2018, 124, .	2.5	4
1015	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	21.0	128
1016	Dynamic Disorder Dominates Delocalization, Transport, and Recombination in Halide Perovskites. CheM, 2018, 4, 2826-2843.	11.7	104
1017	Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.	19.5	22
1018	The N, N-Dimethylformamide Annealing for Enhanced Performance of Perovskite Solar Cells Fabricated in Ambient Air. Nano, 2018, 13, 1850102.	1.0	0
1019	Optical properties of photovoltaic materials: Organic-inorganic mixed halide perovskites CH3NH3Pb(I1-yXy)3 (X = Cl, Br). Computational and Theoretical Chemistry, 2018, 1144, 1-8.	2.5	12

#	Article	IF	CITATIONS
1020	Slow Diffusion and Long Lifetime in Metal Halide Perovskites for Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 24570-24577.	3.1	22
1021	Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica, 2018, 5, 1141.	9.3	23
1022	Efficient Photo- and Electroluminescence by Trap States Passivation in Vacuum-Deposited Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 36187-36193.	8.0	23
1023	Repairing Defects of Halide Perovskite Films To Enhance Photovoltaic Performance. ACS Applied Materials & Interfaces, 2018, 10, 37005-37013.	8.0	40
1024	Steady-state microwave conductivity reveals mobility-lifetime product in methylammonium lead iodide. Applied Physics Letters, 2018, 113, 153902.	3.3	9
1025	Highly Efficient and Environmentally Stable Flexible Color Converters Based on Confined CH ₃ NH ₃ PbBr ₃ Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 38334-38340.	8.0	20
1026	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	19.5	59
1027	Rotationally Free and Rigid Sublattices of the Single Crystal Perovskite CH ₃ NH ₃ PbBr ₃ (001): The Case of the Lattice Polar Liquid. Journal of Physical Chemistry C, 2018, 122, 25506-25514.	3.1	8
1028	Cadmium and ytterbium Co-doped TiO2 nanorod arrays perovskite solar cells: enhancement of open circuit voltage and short circuit current density. Journal of Materials Science: Materials in Electronics, 2018, 29, 21138-21144.	2.2	10
1029	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	3.3	26
1030	Large Area Perovskite Solar Cell via Two-step Ultrasonic Spray Deposition. , 2018, , .		0
1031	Improvement of Perovskite Photoluminescence Characteristics by Using a Lithography-Free Metasurface. , 2018, , .		0
1032	Long-Term Durability of Bromide-Incorporated Perovskite Solar Cells via a Modified Vapor-Assisted Solution Process. ACS Applied Energy Materials, 2018, 1, 6018-6026.	5.1	17
1033	Highly Efficient Phenoxazine Core Unit Based Hole Transport Materials for Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 36608-36614.	8.0	41
1034	Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis. ACS Energy Letters, 2018, 3, 2743-2749.	17.4	17
1035	Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6227-6233.	5.1	88
1036	Inverted structure perovskite solar cells: A theoretical study. Current Applied Physics, 2018, 18, 1583-1591.	2.4	15
1037	Direct Bandgap Behavior in Rashbaâ€Type Metal Halide Perovskites. Advanced Materials, 2018, 30, e1803379.	21.0	23

#	Article	IF	CITATIONS
1038	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	21.0	296
1039	Design of High-Efficiency and Environmentally Stable Mixed-Dimensional Perovskite Solar Cells Based on Cesium-Formamidinium Lead Halide Component. Chemistry of Materials, 2018, 30, 7691-7698.	6.7	25
1040	Analysis of Photocarrier Dynamics at Interfaces in Perovskite Solar Cells by Time-Resolved Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 26805-26815.	3.1	79
1041	New Tin(II) Fluoride Derivative as a Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 27284-27291.	3.1	26
1042	Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Scientific Reports, 2018, 8, 16139.	3.3	30
1043	Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 2018, 12, 10968-10976.	14.6	140
1044	Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI3 Thin Films by RF-Magnetron Sputtering. Scientific Reports, 2018, 8, 15388.	3.3	30
1045	Atomic-layer-deposited ultra-thin VO _x film as a hole transport layer for perovskite solar cells. Semiconductor Science and Technology, 2018, 33, 115016.	2.0	22
1046	Hamiltonians and order parameters for crystals of orientable molecules. Physical Review B, 2018, 98, .	3.2	9
1047	Raman Spectrum of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ from First Principles and High-Resolution Low-Temperature Raman Measurements. Journal of Physical Chemistry C, 2018, 122, 21703-21717.	3.1	87
1048	First-Principles Analysis of Radiative Recombination in Lead-Halide Perovskites. ACS Energy Letters, 2018, 3, 2329-2334.	17.4	81
1049	Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2018, 288, 115-125.	5.2	40
1050	Ultra-stable 2D layered methylammonium cadmium trihalide perovskite photoelectrodes. Journal of Materials Chemistry C, 2018, 6, 11552-11560.	5.5	20
1051	Unexpectedly Strong Auger Recombination in Halide Perovskites. Advanced Energy Materials, 2018, 8, 1801027.	19.5	64
1052	Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Joule, 2018, 2, 1866-1878.	24.0	187
1053	Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18750-18765.	10.3	87
1054	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3PbI3 interface. Applied Physics Letters, 2018, 113, .	3.3	11
1055	Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide perovskites?. Journal of Applied Physics, 2018, 124, .	2.5	39

#	Article	IF	CITATIONS
1056	Flexible Linearly Polarized Photodetectors Based on Allâ€Inorganic Perovskite CsPbI ₃ Nanowires. Advanced Optical Materials, 2018, 6, 1800679.	7.3	85
1057	Impact of Crystallographic Orientation Disorders on Electronic Heterogeneities in Metal Halide Perovskite Thin Films. Nano Letters, 2018, 18, 6271-6278.	9.1	22
1059	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	27.5	351
1060	Realâ€īme In Situ Observation of Microstructural Change in Organometal Halide Perovskite Induced by Thermal Degradation. Advanced Functional Materials, 2018, 28, 1804039.	14.9	45
1061	Interface Engineering in nâ€iâ€p Metal Halide Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800177.	5.8	53
1062	Structural fluctuations cause spin-split states in tetragonal (CH ₃ NH ₃)PbI ₃ as evidenced by the circular photogalvanic effect. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9509-9514.	7.1	106
1063	Improved Charge Carrier Dynamics of CH ₃ NH ₃ Pbl ₃ Perovskite Films Synthesized by Means of Laser-Assisted Crystallization. ACS Applied Energy Materials, 2018, 1, 5101-5111.	5.1	31
1064	Improving the Power Conversion Efficiency and Stability of Planar Perovskite Solar Cells via Small Molecule Doping. Journal of Electronic Materials, 2018, 47, 6894-6900.	2.2	8
1065	A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414.	16.0	60
1066	Long-Term Stability of Perovskite Solar Cells under Different Growth Conditions: A Defect-Controlled Water Diffusion Mechanism. Journal of Physical Chemistry Letters, 2018, 9, 5386-5391.	4.6	17
1067	Long-lived polarization memory in the electronic states of lead-halide perovskites from local structural dynamics. Nature Communications, 2018, 9, 3531.	12.8	29
1068	Tuning spontaneous polarization and optical absorption by intercalating Sr–Cl-layers in organic–inorganic halide perovskite CH ₃ NH ₃ Pbl ₃ thin films. Journal of Materials Chemistry A, 2018, 6, 17800-17806.	10.3	6
1069	Ultra-thin Cadmium Sulfide Electron-transporting Layer for Planar Perovskite Solar Cell. Chemistry Letters, 2018, 47, 1350-1353.	1.3	3
1070	Diffusion Enhancement in Highly Excited MAPbI ₃ Perovskite Layers with Additives. Journal of Physical Chemistry Letters, 2018, 9, 3167-3172.	4.6	46
1071	A Sandwichâ€Like Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water. Advanced Energy Materials, 2018, 8, 1800795.	19.5	106
1072	Spectroscopic Limited Practical Efficiency (SLPE) model for organometal halide perovskites solar cells evaluation. Organic Electronics, 2018, 59, 389-398.	2.6	6
1073	n-type Rashba spin splitting in a bilayer inorganic halide perovskite with external electric field. Journal of Physics Condensed Matter, 2018, 30, 265501.	1.8	6
1074	17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy, 2018, 50, 201-211.	16.0	148

#	Article	IF	CITATIONS
1075	Copolymers of poly(3-thiopheneacetic acid) with poly(3-hexylthiophene) as hole-transporting material for interfacially engineered perovskite solar cell by modulating band positions for higher efficiency. Physical Chemistry Chemical Physics, 2018, 20, 15890-15900.	2.8	14
1076	Thermal-evaporated selenium as a hole-transporting material for planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 130-135.	6.2	22
1077	Thermal stability and miscibility of co-evaporated methyl ammonium lead halide (MAPbX ₃ ,) Tj ETQqC 2018, 6, 11496-11506.) 0 0 rgBT 10.3	/Overlock 10 46
1078	Origin of the Enhanced Photoluminescence Quantum Yield in MAPbBr ₃ Perovskite with Reduced Crystal Size. ACS Energy Letters, 2018, 3, 1458-1466.	17.4	106
1079	Ultrafast Imaging of Carrier Transport across Grain Boundaries in Hybrid Perovskite Thin Films. ACS Energy Letters, 2018, 3, 1402-1408.	17.4	55
1080	Effect of substrate preheating on the photovoltaic performance of ZnO nanorod-based perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 06KB03.	1.5	4
1081	Control of the Nucleation and Growth of the Lead Acetate Solution Derived CH ₃ NH ₃ PbI ₃ Films Leads to Enhanced Power Conversion Efficiency. ACS Applied Energy Materials, 2018, 1, 2898-2906.	5.1	4
1082	Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A, 2018, 6, 12215-12236.	10.3	56
1083	Fundamental Carrier Lifetime Exceeding 1 µs in Cs ₂ AgBiBr ₆ Double Perovskite. Advanced Materials Interfaces, 2018, 5, 1800464.	3.7	173
1084	A CsPbBr ₃ /TiO ₂ Composite for Visibleâ€Lightâ€Driven Photocatalytic Benzyl Alcohol Oxidation. ChemSusChem, 2018, 11, 2057-2061.	6.8	130
1085	Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells. Nano-Micro Letters, 2018, 10, 51.	27.0	53
1086	Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor. Electronic Materials Letters, 2018, 14, 712-717.	2.2	9
1087	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	5.5	54
1088	Effect of the vapor diffusion and improved light harvesting for Perovskite-Cu2ZnSnS4 hybridized solar cells. Organic Electronics, 2018, 59, 190-195.	2.6	2
1089	Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Organic Electronics, 2018, 59, 330-336.	2.6	13
1090	High-performance stretchable photodetector based on CH ₃ NH ₃ PbI ₃ microwires and graphene. Nanoscale, 2018, 10, 10538-10544.	5.6	41
1091	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
1092	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Scientific Reports, 2018, 8, 8115.	3.3	32

	CITATION RE	PORT	
#	ARTICLE Temperature-Dependent Photoluminescence of CH ₃ NH ₃ PbBr ₃	IF	CITATIONS
1093	Perovskite Quantum Dots and Bulk Counterparts. Journal of Physical Chemistry Letters, 2018, 9, 4066-4074.	4.6	128
1094	Research Direction toward Theoretical Efficiency in Perovskite Solar Cells. ACS Photonics, 2018, 5, 2970-2977.	6.6	129
1095	Semiconducting Metal Oxides for High Performance Perovskite Solar Cells. , 2018, , 241-265.		4
1096	Efficient Perovskite Solar Cells with Reduced Photocurrent Hysteresis through Tuned Crystallinity of Hybrid Perovskite Thin Films. ACS Omega, 2018, 3, 7069-7076.	3.5	8
1097	Hybrid Inorganic Organic Perovskites. , 2018, , 123-162.		7
1098	The computational probing of carrier transport in MAPbI3â~'xClx. Computational and Theoretical Chemistry, 2018, 1138, 135-139.	2.5	2
1099	Computational modeling of the photovoltaic activities in EABX3 (EA = ethylammonium, B = Pb, Sn, Ge) Tj ETQqC	0 0 rgBT /0 14
1100	Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient. Solar Energy Materials and Solar Cells, 2018, 185, 117-123.	6.2	176
1101	Designing Efficient Energy Funneling Kinetics in Ruddlesden–Popper Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1800818.	21.0	85
1102	Revealing the Cooperative Chemistry of the Organic Cation in the Methylammonium Lead Triiodide Perovskite Semiconductor System. ChemistrySelect, 2018, 3, 7269-7282.	1.5	12
1103	Fabrication of organic perovskite solar cells by air-flowing and 2-step method and its electrical conduction. , 2018, , .		0
1104	A facile method for the synthesis of large scale high quality MAPbI3 perovskite for diverse applications. Materials Letters, 2018, 230, 270-274.	2.6	4
1105	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	3.3	27
1106	Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH ₃ NH ₃ SnI ₃ perovskite saturable absorber. Journal Physics D: Applied Physics, 2018, 51, 375106.	2.8	25
1107	Long Thermal Stability of Inverted Perovskite Photovoltaics Incorporating Fullereneâ€Based Diffusion Blocking Layer. Advanced Materials Interfaces, 2018, 5, 1800280.	3.7	23
1108	Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment. Advanced Optical Materials, 2018, 6, 1800262.	7.3	58
1109	Increased Lattice Stiffness Suppresses Nonradiative Charge Recombination in MAPbI ₃ Doped with Larger Cations: Time-Domain Ab Initio Analysis. ACS Energy Letters, 2018, 3, 2070-2076.	17.4	68

1110	Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. Journal of Materials Chemistry C, 2018, 6, 11961-11967.	5.5	96
------	--	-----	----

#	Article	IF	CITATIONS
1111	Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide. Journal of Physical Chemistry Letters, 2018, 9, 4502-4511.	4.6	51
1112	Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800260.	3.7	215
1113	Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	3.7	40
1114	Synergistic combination of semiconductor quantum dots and organic-inorganic halide perovskites for hybrid solar cells. Coordination Chemistry Reviews, 2018, 374, 279-313.	18.8	51
1115	Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2, 1662-1673.	24.0	297
1116	A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPb13. Nano Energy, 2018, 52, 11-21.	16.0	32
1117	All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238.	16.0	85
1118	Modified solvent bathing method for forming high quality perovskite films. Thin Solid Films, 2018, 661, 60-64.	1.8	6
1119	Structural and Chemical Features Giving Rise to Defect Tolerance of Binary Semiconductors. Chemistry of Materials, 2018, 30, 5583-5592.	6.7	36
1120	Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials, 2018, 11, 729.	2.9	205
1121	Anomalous effect of UV light on the humidity dependence of photocurrent in perovskite solar cells. Nanotechnology, 2018, 29, 405701.	2.6	3
1122	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	5.8	43
1123	Improved Performance of Perovskite Light-Emitting Diodes by Quantum Confinement Effect in Perovskite Nanocrystals. Nanomaterials, 2018, 8, 459.	4.1	9
1124	Famatinite Cu ₃ SbS ₄ nanocrystals as hole transporting material for efficient perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 7989-7993.	5.5	20
1125	High-Efficiency Planar Hybrid Perovskite Solar Cells Using Indium Sulfide as Electron Transport Layer. ACS Applied Energy Materials, 2018, 1, 4050-4056.	5.1	30
1126	Can SHG Measurements Determine the Polarity of Hybrid Lead Halide Perovskites?. ACS Energy Letters, 2018, 3, 1887-1891.	17.4	22
1127	Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Advanced Materials, 2018, 30, e1801418.	21.0	377
1128	Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. Journal of Materials Chemistry A, 2018, 6, 15386-15394.	10.3	53

#	Article	IF	CITATIONS
1129	Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochimica Acta, 2018, 283, 1134-1145.	5.2	13
1130	All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer. Electrochimica Acta, 2018, 283, 1115-1124.	5.2	46
1131	1D Organic–Inorganic Hybrid Perovskite Micro/Nanocrystals: Fabrication, Assembly, and Optoelectronic Applications. Small Methods, 2018, 2, 1700340.	8.6	27
1132	Laser Desorption/Ionization Mass Spectrometry of Perovskite Solar Cells: Identification of Interface Interactions and Degradation Reactions. Solar Rrl, 2018, 2, 1800022.	5.8	9
1133	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	17.4	106
1134	Highly Stable Allâ€Inorganic Perovskite Solar Cells Processed at Low Temperature. Solar Rrl, 2018, 2, 1800075.	5.8	73
1135	Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites. Applied Physics Letters, 2018, 112, .	3.3	21
1136	Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nature Communications, 2018, 9, 3301.	12.8	271
1137	Mechanism suppressing charge recombination at iodine defects in CH3NH3PbI3 by polaron formation. Journal of Materials Chemistry A, 2018, 6, 16863-16867.	10.3	26
1138	Influence of organic cations on intrinsic properties of lead iodide perovskite solar cells. Organic Electronics, 2018, 62, 269-276.	2.6	10
1139	Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. Journal of Materials Chemistry A, 2018, 6, 17426-17436.	10.3	33
1140	Observation of bimolecular recombination in high mobility semiconductor Bi2O2Se using ultrafast spectroscopy. Applied Physics Letters, 2018, 113, 061104.	3.3	10
1141	Structural effects on optoelectronic properties of halide perovskites. Chemical Society Reviews, 2018, 47, 7045-7077.	38.1	108
1142	Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53, 160-167.	16.0	83
1143	Carrier Lifetimes and Polaronic Mass Enhancement in the Hybrid Halide Perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mm Physical Review Letters, 2018, 121, 086402.</mm </mml:msub></mml:mrow></mml:mrow></mml:math 	ıl:mrow><	76 mml:mn>3<
1144	Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a lateral direction characterized by time-of-flight photoconductivity. Materials Chemistry and Physics, 2018, 220, 182-189.	4.0	11
1145	Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells. Scientific Reports, 2018, 8, 12885.	3.3	109
1146	Bulk Heterojunction-Assisted Grain Growth for Controllable and Highly Crystalline Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 31366-31373.	8.0	17

#	Article	IF	CITATIONS
1147	Anchoring Fullerene onto Perovskite Film via Grafting Pyridine toward Enhanced Electron Transport in High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 32471-32482.	8.0	73
1148	Pathways Towards High-Stable, Low-Cost and Efficient Perovskite Solar Cells. , 0, , .		3
1149	First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. ACS Energy Letters, 2018, 3, 2206-2222.	17.4	202
1150	A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells. Crystals, 2018, 8, 44.	2.2	13
1151	Recombination Dynamics Study on Nanostructured Perovskite Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801370.	21.0	102
1152	Impact of Environmental Stresses Onto Transport Properties of Hybrid Perovskite Investigated by Steady State Photocarrier Grating and Steady State Photocurrent Techniques. Solar Rrl, 2018, 2, 1800192.	5.8	7
1153	Efficient Intraband Hot Carrier Relaxation in the Perovskite Semiconductor Cs _{1–<i>x</i>} Rb _{<i>x</i>} Snl ₃ Mediated by Strong Electron–Phonon Coupling. Journal of Physical Chemistry C, 2018, 122, 20669-20675.	3.1	21
1154	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. ACS Energy Letters, 2018, 3, 2199-2205.	17.4	119
1155	Elastic Softness of Hybrid Lead Halide Perovskites. Physical Review Letters, 2018, 121, 085502.	7.8	116
1156	Oxide Layer Enhances Photocurrent Gain of the Planar MAPbI ₃ Photodetector. Advanced Electronic Materials, 2018, 4, 1800114.	5.1	6
1157	Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. Journal of Power Sources, 2018, 396, 49-56.	7.8	23
1158	A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 12842-12875.	10.3	168
1159	Introduction of Graphene Nanofibers into the Perovskite Layer of Perovskite Solar Cells. ChemSusChem, 2018, 11, 2921-2929.	6.8	17
1160	Passivation against oxygen and light induced degradation by the PCBM electron transport layerÂin planar perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1686-1692.	4.9	27
1161	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	2.2	17
1162	A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13751-13760.	10.3	26
1163	Biexciton Generation and Dissociation Dynamics in Formamidinium- and Chloride-Doped Cesium Lead Iodide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 3673-3679.	4.6	31
1164	Ultrathin CsPbX ₃ Nanowire Arrays with Strong Emission Anisotropy. Advanced Materials, 2018, 30, e1801805.	21.0	135

#	Article	IF	CITATIONS
1165	Methodologies toward Efficient and Stable Cesium Lead Halide Perovskiteâ€Based Solar Cells. Advanced Science, 2018, 5, 1800509.	11.2	53
1166	Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines. ACS Applied Energy Materials, 2019, 2, 6230-6236.	5.1	18
1167	Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study. Journal of Materials Science, 2019, 54, 13594-13608.	3.7	5
1168	High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives. Journal of Industrial and Engineering Chemistry, 2019, 80, 265-272.	5.8	19
1169	Both Free and Trapped Carriers Contribute to Photocurrent of Sb ₂ Se ₃ Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4881-4887.	4.6	47
1170	Role of Capped Oleyl Amine in the Moistureâ€Induced Structural Transformation of CsPbBr ₃ Perovskite Nanocrystals. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900387.	2.4	31
1171	Photophysics of lead-free tin halide perovskite films and solar cells. APL Materials, 2019, 7, .	5.1	32
1172	A Highly Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell. European Journal of Inorganic Chemistry, 2019, 2019, 3699-3703.	2.0	31
1173	Giant Electric Biasâ€Induced Tunability of Photoluminescence and Photoresistance in Hybrid Perovskite Films on Ferroelectric Substrates. Advanced Optical Materials, 2019, 7, 1901092.	7.3	8
1174	Short Photoluminescence Lifetimes in Vacuum-Deposited CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. Journal of Physical Chemistry Letters, 2019, 10, 5167-5172.	4.6	24
1175	Fundamental Thermoelectric Properties in Organic Heterojunctions from Molecular to Thinâ€Film and Hybrid Designs. Advanced Electronic Materials, 2019, 5, 1800877.	5.1	5
1176	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	13.7	62
1177	Microstructural investigation of a compact TiO2 layer for improvement of perovskite solar cells. Applied Physics Letters, 2019, 115, 053902.	3.3	1
1178	Rational Design of Dopantâ€Free Coplanar Dâ€Ï€â€Ð Holeâ€Transporting Materials for Highâ€Performance Perovskite Solar Cells with Fill Factor Exceeding 80%. Advanced Energy Materials, 2019, 9, 1901268.	19.5	77
1179	Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites. Chinese Physics Letters, 2019, 36, 028401.	3.3	2
1181	High-performance carbon-based perovskite solar cells through the dual role of PC ₆₁ BM. Inorganic Chemistry Frontiers, 2019, 6, 2767-2775.	6.0	5
1182	Impurity Tracking Enables Enhanced Control and Reproducibility of Hybrid Perovskite Vapor Deposition. ACS Applied Materials & Interfaces, 2019, 11, 28851-28857.	8.0	38
1183	Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications. Journal of Energy Chemistry, 2019, 36, 106-113.	12.9	10

#	Article	IF	CITATIONS
1184	p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. Journal of Materials Chemistry A, 2019, 7, 18971-18979.	10.3	55
1185	Electronic Properties and Photovoltaic Functionality of Zn-Doped Orthorhombic CH3NH3PbI3: A GGA+vdW Study. Journal of Electronic Materials, 2019, 48, 6327-6334.	2.2	2
1186	Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells. Materials Chemistry Frontiers, 2019, 3, 2357-2362.	5.9	16
1187	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18898-18905.	10.3	36
1188	Tunable thiocyanate-doped perovskite microstructure via water-ethanol additives for stable solar cells at ambient conditions. Solar Energy Materials and Solar Cells, 2019, 200, 110029.	6.2	11
1189	Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328.	13.7	61
1190	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	32.8	95
1191	Light capacitances in silicon and perovskite solar cells. Solar Energy, 2019, 189, 103-110.	6.1	19
1192	Suppressing Photoinduced Charge Recombination via the Lorentz Force in a Photocatalytic System. Advanced Science, 2019, 6, 1901244.	11.2	101
1193	Carbon Nanotube-Perovskite Composites for Ultrasensitive Broadband Photodiodes. ACS Applied Nano Materials, 2019, 2, 4974-4982.	5.0	18
1194	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	3.6	115
1195	High mobility and transparent ZTO ETM prepared by RF reactive co-sputtering for perovskite solar cell application. Results in Physics, 2019, 14, 102518.	4.1	22
1196	Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr ₃ . Journal of Physical Chemistry Letters, 2019, 10, 4490-4498.	4.6	52
1197	Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. ACS Energy Letters, 2019, 4, 2013-2020.	17.4	43
1198	Stable Triple-Cation (Cs ⁺ –MA ⁺ –FA ⁺) Perovskite Powder Formation under Ambient Conditions for Hysteresis-Free High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 29941-29949.	8.0	50
1199	Submillimeter and lead-free Cs ₃ Sb ₂ Br ₉ perovskite nanoflakes: inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horizons, 2019, 4, 1372-1379.	8.0	85
1200	Phenyl-C61-Butyric Acid Methyl Ester Hybrid Solution for Efficient CH3NH3PbI3 Perovskite Solar Cells. Sustainability, 2019, 11, 3867.	3.2	6
1201	Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylamine. Applied Physics Reviews, 2019, 6, 031401.	11.3	34

#	Article	IF	CITATIONS
1202	Theoretical Analysis of Twoâ€Terminal and Fourâ€Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar Rrl, 2019, 3, 1900303.	5.8	38
1203	Fast and Accurate Artificial Neural Network Potential Model for MAPbl ₃ Perovskite Materials. ACS Omega, 2019, 4, 10950-10959.	3.5	31
1204	Enhanced Photoresponsivity of All-Inorganic (CsPbBr3) Perovskite Nanosheets Photodetector with Carbon Nanodots (CDs). Electronics (Switzerland), 2019, 8, 678.	3.1	22
1205	Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy, 2019, 63, 103866.	16.0	60
1206	Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 2019, 3, 2179-2192.	24.0	1,228
1207	Chemical Vapor Deposition of Organic-Inorganic Bismuth-Based Perovskite Films for Solar Cell Application. Scientific Reports, 2019, 9, 9774.	3.3	45
1208	Aurora-B mediated snail phosphorylation is essential for mitotic spindle checkpoint and for preventing chromosomal instability in breast cancer. Annals of Oncology, 2019, 30, v3.	1.2	0
1209	Layer-Dependent Ultrahigh-Mobility Transport Properties in All-Inorganic Two-Dimensional Cs ₂ Pbl ₂ Cl ₂ and Cs ₂ Snl ₂ Cl ₂ Perovskites. Journal of Physical Chemistry C, 2019, 123, 27978-27985.	3.1	45
1210	Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Advanced Materials, 2019, 31, e1902762.	21.0	422
1211	Degradation Mechanisms in Organic Lead Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900902.	7.3	50
1212	Facetâ€Dependent Onâ€Surface Reactions in the Growth of CdSe Nanoplatelets. Angewandte Chemie, 2019, 131, 17928-17934.	2.0	1
1213	Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. Journal of the American Chemical Society, 2019, 141, 17659-17669.	13.7	104
1214	Hole Localization Inhibits Charge Recombination in Tin–Lead Mixed Perovskites: Time–Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 6604-6612.	4.6	21
1215	High-performance g-C3N4 added carbon-based perovskite solar cells insulated by Al2O3 layer. Solar Energy, 2019, 193, 859-865.	6.1	36
1216	Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment. Scientific Reports, 2019, 9, 15159.	3.3	52
1217	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902740.	19.5	209
1218	Carrier-resolved photo-Hall effect. Nature, 2019, 575, 151-155.	27.8	66
1219	First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3 surface. Materials Research Express, 2019, 6, 116219.	1.6	5

#	Article	IF	CITATIONS
1220	Ferroelectric Polarization Suppresses Nonradiative Electron–Hole Recombination in CH ₃ NH ₃ PbI ₃ Perovskites: A Time-Domain ab Initio Study. Journal of Physical Chemistry Letters, 2019, 10, 7237-7244.	4.6	17
1221	Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation. Scientific Reports, 2019, 9, 15461.	3.3	60
1222	Carbonâ€based perovskite solar cells: From singleâ€junction to modules. , 2019, 1, 109-123.		61
1223	The Effect of Annealing Pressure on Perovskite Films and Its Thinâ€Film Fieldâ€Effect Transistors' Performance. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900434.	1.8	5
1224	Effect of CsCl Additive on the Morphological and Optoelectronic Properties of Formamidinium Lead Iodide Perovskite. Solar Rrl, 2019, 3, 1900294.	5.8	30
1225	Realizing a Rechargeable Highâ€Performance Cu–Zn Battery by Adjusting the Solubility of Cu ²⁺ . Advanced Functional Materials, 2019, 29, 1905979.	14.9	54
1226	The investigation of the unseen interrelationship of grain size, ionic defects, device physics and performance of perovskite solar cells. Journal Physics D: Applied Physics, 2019, 52, 125501.	2.8	38
1227	A facile way to improve the efficiency of perovskite/silicon four-terminal tandem solar cell based on the optimization of long-wavelength spectral response. AIP Conference Proceedings, 2019, , .	0.4	1
1228	Fabrication and characterization of all-inorganic halide perovskite CsPbBr3 films via the two–step sol–gel process: Impact of annealing temperature. Journal of Alloys and Compounds, 2019, 810, 151943.	5.5	11
1229	Study of perovskite (CH3NH3)xCs1-xPbBr3 films with nanometer crystallites fabricated via two-step sol-gel process: Impact of CH3NH3+ molar content on microstructure and optical properties. Journal of Alloys and Compounds, 2019, 810, 151947.	5.5	5
1230	Direct Characterization of Carrier Diffusion in Halide-Perovskite Thin Films Using Transient Photoluminescence Imaging. ACS Photonics, 2019, 6, 2375-2380.	6.6	19
1231	Charge carrier migration and hole extraction from MAPbI3. Journal of Physics: Conference Series, 2019, 1220, 012053.	0.4	0
1232	The Effect of Decomposed PbI2 on Microscopic Mechanisms of Scattering in CH3NH3PbI3 Films. Nanoscale Research Letters, 2019, 14, 208.	5.7	33
1233	Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34964-34972.	8.0	48
1234	Morphological and opto-electrical studies of newly decorated nano organo-lead halide-based perovskite photovoltaics. Journal of Sol-Gel Science and Technology, 2019, 92, 548-553.	2.4	1
1235	Reversible Removal of Intermixed Shallow States by Light Soaking in Multication Mixed Halide Perovskite Films. ACS Energy Letters, 2019, 4, 2360-2367.	17.4	41
1236	Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances. Nanoscale, 2019, 11, 17800-17806.	5.6	16
1237	Charge-Carrier Recombination in Halide Perovskites. Chemical Reviews, 2019, 119, 11007-11019.	47.7	197

#	Article	IF	CITATIONS
1238	Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters, 2019, 4, 2393-2401.	17.4	127
1239	Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10, 4145.	12.8	93
1240	<i>In situ</i> monitoring of the charge carrier dynamics of CH ₃ NH ₃ PbI ₃ perovskite crystallization process. Journal of Materials Chemistry C, 2019, 7, 12170-12179.	5.5	10
1241	Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation–Mixed Halide Hybrid Perovskites. ACS Applied Energy Materials, 2019, 2, 6990-6997.	5.1	9
1242	Minimizing Voltage Loss in Efficient All-Inorganic CsPbI ₂ Br Perovskite Solar Cells through Energy Level Alignment. ACS Energy Letters, 2019, 4, 2491-2499.	17.4	68
1243	Two-Dimensional Model for Perovskite Nanorod Solar Cells: A Dark Case Study. IEEE Journal of Photovoltaics, 2019, 9, 1668-1677.	2.5	2
1244	Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) <i>_x</i> (MA) _{1–<i>x</i>} PbI ₃ -Based Perovskite Solar Cells. ACS Omega, 2019, 4, 16840-16846.	3.5	25
1245	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	14.6	40
1246	Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA1â^'xMAxPbBr) Obtained by One-Step Method. Journal of Electronic Materials, 2019, 48, 8014-8023.	2.2	5
1247	Facile RbBr interface modification improves perovskite solar cell efficiency. Materials Today Chemistry, 2019, 14, 100179.	3.5	18
1248	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy and Environmental Science, 2019, 12, 169-176.	30.8	115
1249	A potassium thiocyanate additive for hysteresis elimination in highly efficient perovskite solar cells. Inorganic Chemistry Frontiers, 2019, 6, 434-442.	6.0	39
1250	Pyridine-functionalized fullerene additive enabling coordination interactions with CH ₃ NH ₃ PbI ₃ perovskite towards highly efficient bulk heterojunction solar cells. Journal of Materials Chemistry A, 2019, 7, 2754-2763.	10.3	83
1251	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	21.0	92
1252	Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. Journal of Materials Chemistry C, 2019, 7, 609-616.	5.5	29
1253	Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs ₄ PbBr ₆ perovskite films. Nanoscale, 2019, 11, 945-954.	5.6	65
1254	Study of inverted planar CH3NH3PbI3 perovskite solar cells fabricated under environmental conditions. Solar Energy, 2019, 180, 594-600.	6.1	11
1255	Microscopic calculation of the optical properties and intrinsic losses in the methylammonium lead iodide perovskite system. APL Materials, 2019, 7, 011107.	5.1	2

#	Article	IF	CITATIONS
1256	Embedded Two-Dimensional Perovskite Nanoplatelets with Air-Stable Luminescence. ACS Applied Materials & Interfaces, 2019, 11, 8436-8442.	8.0	20
1257	Dielectric and ferroic properties of metal halide perovskites. APL Materials, 2019, 7, .	5.1	173
1258	A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chemical Communications, 2019, 55, 2765-2768.	4.1	40
1259	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 2019, 19, 684-691.	9.1	72
1260	Effective lifetimes of minority carriers in time-resolved photocurrent and photoluminescence of a doped semiconductor: Modelling of a GaInP solar cell. Solar Energy Materials and Solar Cells, 2019, 193, 292-297.	6.2	8
1261	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	10.3	62
1262	Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Organic Electronics, 2019, 68, 76-84.	2.6	21
1263	Hybrid organic nanocrystal/carbon nanotube film electrodes for air- and photo-stable perovskite photovoltaics. Nanoscale, 2019, 11, 3733-3740.	5.6	14
1264	Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH ₃ NH ₃ PbI ₃ micro/nanowire. Nanoscale, 2019, 11, 3360-3369.	5.6	23
1265	Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. Journal of Materials Chemistry A, 2019, 7, 2095-2105.	10.3	63
1266	A Novel Approach for the Development of Moisture Encapsulation Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf S	50,342 Td	(alcohol- <i>c</i>
1267	Probing Facet-Dependent Surface Defects in MAPbI ₃ Perovskite Single Crystals. Journal of Physical Chemistry C, 2019, 123, 14144-14151.	3.1	70
1268	Improving the quality of perovskite based on lead acetate for efficient solar cell. Synthetic Metals, 2019, 254, 85-91.	3.9	5
1269	Leadâ€Free Tinâ€Based Perovskite Solar Cells: Strategies Toward High Performance. Solar Rrl, 2019, 3, 1900213.	5.8	44
1270	Influence of Defects on Excited-State Dynamics in Lead Halide Perovskites: Time-Domain ab Initio Studies. Journal of Physical Chemistry Letters, 2019, 10, 3788-3804.	4.6	66
1271	First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. Journal of Physical Chemistry Letters, 2019, 10, 3670-3675.	4.6	42
1272	Chargeâ€Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites. Advanced Functional Materials, 2019, 29, 1902656.	14.9	45
1273	Structurally Stabilizing and Environment Friendly Triggers: Doubleâ€Metallic Leadâ€Free Perovskites. Solar Rrl, 2019, 3, 1900148.	5.8	36

#	Article	IF	CITATIONS
1274	Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cells. Nanoscale Advances, 2019, 1, 3107-3118.	4.6	35
1275	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	5.5	6
1276	Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Materials Chemistry Frontiers, 2019, 3, 1754-1760.	5.9	6
1277	Integrated advantages from perovskite photovoltaic cell and 2D MoTe2 transistor towards self-power energy harvesting and photosensing. Nano Energy, 2019, 63, 103833.	16.0	19
1278	Rationalizing the Molecular Design of Hole‣elective Contacts to Improve Charge Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900990.	19.5	56
1279	Ferromagnetic topological crystalline insulating phase in the \$\$pi\$\$-stacked graphene nanobelts under a small pressure. SN Applied Sciences, 2019, 1, 1.	2.9	0
1280	Charge carrier dynamics study and morphology optimization in solvent annealed CH3NH3PbI3 perovskite for air processed stable solar cell application. Chemical Physics, 2019, 526, 110408.	1.9	17
1281	New Spiroâ€Phenylpyrazole/Dibenzosuberene Derivatives as Holeâ€Transporting Material for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900143.	5.8	6
1282	Role of Water in Suppressing Recombination Pathways in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25474-25482.	8.0	33
1283	Perovskite-WS2 Nanosheet Composite Optical Absorbers on Graphene as High-Performance Phototransistors. Frontiers in Chemistry, 2019, 7, 257.	3.6	7
1284	Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2019, 123, 15204-15208.	3.1	18
1285	High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Applied Materials & Interfaces, 2019, 11, 22021-22027.	8.0	80
1286	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	5.5	72
1287	Doping-Induced Rapid Decoherence Suppresses Charge Recombination in Mono/Divalent Cation Mixed Perovskites from Nonadiabatic Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2019, 10, 3433-3439.	4.6	24
1288	Enhanced Uniformity and Stability of Pb–Sn Perovskite Solar Cells via Me 4 NBr Passivation. Advanced Materials Interfaces, 2019, 6, 1900413.	3.7	33
1289	Improved environmental stability of HTM free perovskite solar cells by a modified deposition route. Chemical Papers, 2019, 73, 2667-2678.	2.2	8
1290	Engineering the mesoporous TiO2 layer by a facile method to improve the performance of perovskite solar cells. Electrochimica Acta, 2019, 318, 83-90.	5.2	9
1291	Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planar perovskite solar cells. Journal of Power Sources, 2019, 427, 223-230.	7.8	24

#	ARTICLE	IF	CITATIONS
1292	Promoted performance of carbon based perovskite solar cells by environmentally friendly additives of CH3COONH4 and Zn(CH3COO)2. Journal of Alloys and Compounds, 2019, 802, 694-703.	5.5	17
1293	Hydrophobic perovskites based on an alkylamine compound for high efficiency solar cells with improved environmental stability. Journal of Materials Chemistry A, 2019, 7, 14689-14704.	10.3	19
1294	High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy and Environmental Science, 2019, 12, 2233-2243.	30.8	82
1295	Terahertz Vibrational Modes in CH3NH3PbI3 and CsPbI3 Perovskite Films. JETP Letters, 2019, 109, 28-32.	1.4	11
1296	Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small, 2019, 15, e1900854.	10.0	205
1297	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	2.5	13
1298	Structural and photovoltaic properties of perovskite solar cells with addition of ammonium iodide. AIP Conference Proceedings, 2019, , .	0.4	3
1299	Heterogeneous Photon Recycling and Charge Diffusion Enhance Charge Transport in Quasi-2D Lead-Halide Perovskite Films. Nano Letters, 2019, 19, 3953-3960.	9.1	67
1300	Efficiency of all-perovskite two-terminal tandem solar cells: A drift-diffusion study. Solar Energy, 2019, 187, 39-46.	6.1	27
1301	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	21.0	134
1302	Band offset studies in MAPbI3 perovskite solar cells using X-ray photoelectron spectroscopy. Optical Materials, 2019, 92, 425-431.	3.6	11
1303	Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14136-14144.	10.3	40
1304	Comprehensive design analysis of electron transmission nanostructured layers of heterojunction perovskite solar cells. Superlattices and Microstructures, 2019, 130, 390-395.	3.1	10
1305	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	39.5	831
1306	Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A, 2019, 7, 13860-13872.	10.3	84
1307	Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods. Journal of Materials Chemistry A, 2019, 7, 14712-14722.	10.3	31
1308	Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 525-546.	2.2	12
1309	Dual-functional light-emitting perovskite solar cells enabled by soft-covered annealing process. Nano Energy, 2019, 61, 251-258.	16.0	14

#	Article	IF	CITATIONS
1310	Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites. Physical Review Letters, 2019, 122, 166601.	7.8	98
1311	Band Tunable Microcavity Perovskite Artificial Human Photoreceptors. Advanced Materials, 2019, 31, e1900231.	21.0	52
1312	Highly efficient nanocrystalline Cs _x MA _{1â^x} PbBr _x perovskite layers for white light generation. Nanotechnology, 2019, 30, 345702.	2.6	2
1313	Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. Nanoscale, 2019, 11, 9281-9286.	5.6	9
1314	Present Research Progress of Sn Halide Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science, 2019, 242, 022038.	0.3	2
1315	Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Solar Energy, 2019, 185, 307-314.	6.1	25
1316	Lightâ€Emitting Transistors Based on Solutionâ€Processed Heterostructures of Selfâ€Organized Multipleâ€Quantumâ€Well Perovskite and Metalâ€Oxide Semiconductors. Advanced Electronic Materials, 2019, 5, 1800985.	5.1	18
1317	Origin of enhanced stability in thiocyanate substituted α-FAPbI3 analogues. Science China Chemistry, 2019, 62, 866-874.	8.2	12
1318	A facile method to evaluate the influence of trap densities on perovskite solar cell performance. Journal of Materials Chemistry C, 2019, 7, 5646-5651.	5.5	32
1319	Reverseâ€Graded 2D Ruddlesden–Popper Perovskites for Efficient Airâ€Stable Solar Cells. Advanced Energy Materials, 2019, 9, 1900612.	19.5	69
1320	Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes. , 2019, , 305-341.		3
1321	Role of graphene ordered modifiers in regulating the organic halide perovskite devices. Optical Materials, 2019, 92, 81-86.	3.6	10
1322	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	47.7	640
1323	Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Organic Electronics, 2019, 70, 292-299.	2.6	20
1324	In situ Investigation of Water Interaction with Lead-Free All Inorganic Perovskite (Cs ₂ SnI <i>_x</i> Cl _{6–<i>x</i>}). Journal of Physical Chemistry C, 2019, 123, 9575-9581.	3.1	23
1325	Enhancing surface stabilization of CH3NH3PbI3 perovskite by Cl and Br doping: First-principles study. Journal of Applied Physics, 2019, 125, 115302.	2.5	7
1326	Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. Journal of Materials Chemistry C, 2019, 7, 5028-5036.	5.5	36
1327	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	3.3	8

#	Article	IF	CITATIONS
1328	Superoxide/Peroxide Chemistry Extends Charge Carriers' Lifetime but Undermines Chemical Stability of CH ₃ NH ₃ PbI ₃ Exposed to Oxygen: Time-Domain <i>ab Initio</i> Analysis. Journal of the American Chemical Society, 2019, 141, 5798-5807.	13.7	102
1329	Ultrafast Dynamic Microscopy of Carrier and Exciton Transport. Annual Review of Physical Chemistry, 2019, 70, 219-244.	10.8	75
1330	Uncovering the Mechanism Behind the Improved Stability of 2D Organic–Inorganic Hybrid Perovskites. Small, 2019, 15, e1900462.	10.0	27
1331	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476-484.	16.0	66
1332	Theoretical Studies of Electronic and Optical Behaviors of All-Inorganic CsPbI ₃ and Two-Dimensional MS ₂ (M = Mo, W) Heterostructures. Journal of Physical Chemistry C, 2019, 123, 7158-7165.	3.1	21
1333	Vibrational Probe of the Structural Origins of Slow Recombination in Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 7061-7073.	3.1	29
1334	Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells. Organic Electronics, 2019, 69, 13-19.	2.6	9
1335	Mechanosynthesis, Optical, and Morphological Properties of MA, FA, Csâ€5nX ₃ (X = I, Br) and Phaseâ€Pure Mixedâ€Halide MASnI <i>_x</i> Br ₃ _{–<i>x</i>} Perovskites. European Journal of Inorganic Chemistry, 2019, 2019, 2680-2684.	2.0	25
1336	Laser Emission from Self-Assembled Colloidal Crystals of Conjugated Polymer Particles in a Metal-Halide Perovskite Matrix. Chemistry of Materials, 2019, 31, 2590-2596.	6.7	24
1337	Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000â€h. Solar Energy Materials and Solar Cells, 2019, 195, 323-329.	6.2	84
1338	Direct observation of carrier transport in organic–inorganic hybrid perovskite thin film by transient photoluminescence imaging measurement. Japanese Journal of Applied Physics, 2019, 58, SBBG18.	1.5	1
1339	From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1790-1798.	4.6	72
1340	Electroluminescence Dynamics in Perovskite Solar Cells Reveals Giant Overshoot Effect. Journal of Physical Chemistry Letters, 2019, 10, 1779-1783.	4.6	16
1341	Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive. Journal of Materials Chemistry A, 2019, 7, 8078-8084.	10.3	62
1342	Fast Charge Diffusion in MAPb(I _{1–<i>x</i>} Br <i>_x</i>) ₃ Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. Journal of Physical Chemistry A, 2019, 123, 2674-2678.	2.5	6
1343	Current progress in interfacial engineering of carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 8690-8699.	10.3	84
1344	Organolead halide perovskite-based metal-oxide-semiconductor structure photodetectors achieving ultrahigh detectivity. Solar Energy, 2019, 183, 226-233.	6.1	14
1345	Applying BaTiO3-coated TiO2 core–shell nanoparticles films as scaffold layers to optimize interfaces for better-performing perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 7733-7742.	2.2	4

#	Article	IF	CITATIONS
1346	Materials Discovery of Stable and Nontoxic Halide Perovskite Materials for Highâ€Efficiency Solar Cells. Advanced Functional Materials, 2019, 29, 1804354.	14.9	61
1347	Contactless measurements of photocarrier transport properties in perovskite single crystals. Nature Communications, 2019, 10, 1591.	12.8	55
1348	Rapid Growth of Halide Perovskite Single Crystals: From Methods to Optimization Control. Chinese Journal of Chemistry, 2019, 37, 616-629.	4.9	24
1349	Significant THz absorption in CH3NH2 molecular defect-incorporated organic-inorganic hybrid perovskite thin film. Scientific Reports, 2019, 9, 5811.	3.3	26
1350	Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances. APL Materials, 2019, 7, .	5.1	33
1351	Giant reduction of the random lasing threshold in CH ₃ NH ₃ PbBr ₃ perovskite thin films by using a patterned sapphire substrate. Nanoscale, 2019, 11, 10636-10645.	5.6	28
1352	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	30.8	89
1353	Efficiency of MAPbI ₃ -Based Planar Solar Cell Analyzed by Its Thickness-Dependent Exciton Formation, Morphology, and Crystallinity. ACS Applied Materials & Interfaces, 2019, 11, 14810-14820.	8.0	10
1354	Enhanced Charge Transport via Metallic 1T Phase Transition Metal Dichalcogenidesâ€Mediated Hole Transport Layer Engineering for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 1050-1058.	2.8	16
1355	Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. CheM, 2019, 5, 995-1006.	11.7	245
1356	Influence of defect states on the performances of planar tin halide perovskite solar cells. Journal of Semiconductors, 2019, 40, 032201.	3.7	20
1357	Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study. Journal of Micromechanics and Microengineering, 2019, 29, 064001.	2.6	38
1358	O ₂ as a molecular probe for nonradiative surface defects in CsPbBr ₃ perovskite nanostructures and single crystals. Nanoscale, 2019, 11, 7613-7623.	5.6	35
1359	Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. Electrochimica Acta, 2019, 307, 334-340.	5.2	27
1360	Oxidation, reduction, and inert gases plasma-modified defects in TiO2 as electron transport layer for planar perovskite solar cells. Journal of CO2 Utilization, 2019, 32, 46-52.	6.8	8
1361	Nonprecious Copperâ€Based Transparent Top Electrode via Seed Layer–Assisted Thermal Evaporation for Highâ€Performance Semitransparent nâ€iâ€p Perovskite Solar Cells. Advanced Materials Technologies, 2019, 4, 1800688.	5.8	41
1362	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	21.0	621
1363	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	21.0	192

#	Article	IF	CITATIONS
1364	Microconcave MAPbBr ₃ Single Crystal for High-Performance Photodetector. Journal of Physical Chemistry Letters, 2019, 10, 786-792.	4.6	41
1365	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	12.8	350
1366	Multi Band Gap Electronic Structure in CH3NH3PbI3. Scientific Reports, 2019, 9, 2144.	3.3	26
1367	Synthesis and Characterization of Multiple-Cation Rb(MAFA)PbI3 Perovskite Single Crystals. Scientific Reports, 2019, 9, 2022.	3.3	18
1368	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	14.9	145
1369	Improved Efficiency of Perovskite Solar Cells by the Interfacial Modification of the Active Layer. Nanomaterials, 2019, 9, 204.	4.1	12
1370	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	25.6	303
1371	Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells. Chemistry of Materials, 2019, 31, 1620-1627.	6.7	99
1372	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	3.1	10
1373	Donuts and Spin Vortices at the Fermi Surfaces of Hybrid Lead-Iodide CH ₃ NH ₃ PbI ₃ Perovskites. Journal of Physical Chemistry C, 2019, 123, 6753-6762.	3.1	3
1374	Large polaron formation and its effect on electron transport in hybrid perovskites. Energy and Environmental Science, 2019, 12, 1219-1230.	30.8	106
1375	Slow Hotâ€Carrier Cooling in Halide Perovskites: Prospects for Hotâ€Carrier Solar Cells. Advanced Materials, 2019, 31, e1802486.	21.0	191
1376	Improved photovoltaic performance and device stability of planar heterojunction perovskite solar cells using TiO2 and TiO2 mixed with AgInS2 quantum dots as dual electron transport layers. Organic Electronics, 2019, 69, 26-33.	2.6	9
1377	Cu-doped nickel oxide interface layer with nanoscale thickness for efficient and highly stable printable carbon-based perovskite solar cell. Solar Energy, 2019, 182, 225-236.	6.1	58
1378	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	47.7	2,009
1379	Efficient and carbon-based hole transport layer-free CsPbI ₂ Br planar perovskite solar cells using PMMA modification. Journal of Materials Chemistry C, 2019, 7, 3852-3861.	5.5	102
1380	Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 7338-7346.	10.3	41
1381	Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6840-6848.	10.3	41

ARTICLE IF CITATIONS Pulsed Terahertz Emission from Solution-Processed Lead Iodide Perovskite Films. ACS Photonics, 2019, 1382 21 6.6 6,1175-1181. Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs2SnI6. Npj 5.8 Materials Degradation, 2019, 3, . Temperature-Dependent Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, 1384 3.8 74 CH3NH3PbX3 (X = I, Br). Molecules, 2019, 24, 626. Hybrid perovskites for device applications., 2019,, 211-256. 1385 Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules. Journal of Materials Chemistry A, 2019, 7, 1386 10.3 49 6028-6037. Strategies for Modifying TiO₂ Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4586-4618. 1387 6.7 Performance Analysis of Cul as Hole Transport Layer in Perovskite 1388 3 (CH₃NH₃PbX₃, X: I, Br, Cl) Solar Cell., 2019, , . Optimization of TiO2 compact layer formed by atomic layer deposition for efficient perovskite solar 1389 3.3 14 cells. Applied Physics Letters, 2019, 115, 203902. Structural and electronic properties of multifunctional carbon composites of organometal halide 1390 10.3 8 perovskites. Journal of Materials Chemistry A, 2019, 7, 25020-25031. Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of 1391 10.3 Materials Chemistry A, 2019, 7, 26154-26161. Time-Domain ab Initio Studies of Excited State Dynamics at Nanoscale Interfaces. ACS Symposium Series, 1392 2 0.5 2019, , 101-136. Study on the Movements of Organometallic Halide Perovskite Crystals on their Films. 1.5 ChemistrySelect, 2019, 4, 13904-13907. Liquid water-induced growth of the 1D morphology of 1394 2.6 11 CH₃NH₃Pbl₃hybrid perovskites. CrystEngComm, 2019, 21, 7365-7372. Light-activated inorganic CsPbBr₂I perovskite for room-temperature self-powered 1395 2.8 23 chemical sensing. Physical Chemistry Chemical Physics, 2019, 21, 24187-24193. Hot electron injection into semiconducting polymers in polymer based-perovskite solar cells and 1396 5.6 3 their fate. Nanoscale, 2019, 11, 23357-23365. Emerging alkali metal ion (Li⁺, Na⁺, K⁺ and Rb⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials 116 . Chemistry A, 2019, 7, 24150-24163. Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of 1398 4.1 13 Inverted Perovskite Photovoltaics. Nanomaterials, 2019, 9, 1616. A Novel Perovskite Solar Cell with ZnO-Cu₂O as Electron Transport Material-Hole 1399 Transport Material., 2019, , .

#	Article	IF	CITATIONS
1400	Carrier recombination mechanism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CsPbB</mml:mi><mml:msub><mm mathvariant="normal">r<mml:mn>3</mml:mn></mm </mml:msub></mml:mrow> revealed by time-resolved photoluminescence spectroscopy. Physical Review B, 2019, 100, .</mml:math 	il:mi 3.2	14
1401	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	39.5	736
1402	Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Scientific Reports, 2019, 9, 18433.	3.3	16
1403	Inorganic halide perovskite materials and solar cells. APL Materials, 2019, 7, .	5.1	21
1404	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	10.3	24
1405	Research on the degradation of perovskite thin films based on spectrometric ellipsometry. , 2019, , .		1
1406	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	21.0	189
1407	Fluorescence spectroscopy-based study of balanced transport of charge carriers in hot-air-annealed perovskites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 68-72.	3.9	2
1408	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	21.0	268
1409	Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property. Applied Surface Science, 2019, 463, 1107-1116.	6.1	18
1410	Enhanced Seebeck Effect of a MAPbBr ₃ Single Crystal by an Organic and a Metal Modified Layer. Advanced Electronic Materials, 2019, 5, 1800759.	5.1	16
1411	Fully Airâ€Processed Carbonâ€Based Efficient Hole Conductor Free Planar Heterojunction Perovskite Solar Cells With High Reproducibility and Stability. Solar Rrl, 2019, 3, 1800297.	5.8	20
1412	Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. Journal of Energy Chemistry, 2019, 37, 97-110.	12.9	52
1413	Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800282.	5.8	34
1414	Improved Moisture Stability of Perovskite Solar Cells with a Surfaceâ€Treated PCBM Layer. Solar Rrl, 2019, 3, 1800289.	5.8	20
1415	Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik, 2019, 182, 1204-1210.	2.9	82
1416	In Situ Monitoring of Thermal Degradation of CH ₃ NH ₃ PbI ₃ Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2019, 123, 1362-1369.	3.1	13
1417	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	13.7	61

#	Article	IF	CITATIONS
1418	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	5.8	5
1419	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	3.7	18
1420	Flexible Photodetector Arrays Based on Patterned CH ₃ NH ₃ PbI _{3â^'} <i>_x</i> Cl <i>_x</i> Perovskite Film for Realâ€Time Photosensing and Imaging. Advanced Materials, 2019, 31, e1805913.	21.0	174
1421	Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochimica Acta, 2019, 297, 1071-1078.	5.2	12
1422	Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741-750.	16.0	65
1423	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy, 2019, 56, 373-381.	16.0	59
1424	Metal Halide Perovskite Materials for Solar Cells with Longâ€Term Stability. Advanced Energy Materials, 2019, 9, 1802671.	19.5	97
1425	Enhanced crystal formation of methylammonium lead iodide via self-assembled monolayers and their solvation for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 939-949.	2.2	9
1426	Solutionâ€Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804660.	14.9	105
1427	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	4.7	133
1428	A Perovskite Solar Cell with Enhanced Light Stability and High Photovoltaic Conversion Efficiencies. ACS Sustainable Chemistry and Engineering, 2019, 7, 709-715.	6.7	9
1429	Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy, 2019, 56, 184-195.	16.0	257
1430	Substrate-Dependent Photoconductivity Dynamics in a High-Efficiency Hybrid Perovskite Alloy. Journal of Physical Chemistry C, 2019, 123, 3402-3415.	3.1	10
1431	Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH ₃ NH ₃ PbI ₃) solar cell. Semiconductor Science and Technology, 2019, 34, 035018.	2.0	10
1432	Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Journal of Colloid and Interface Science, 2019, 539, 619-633.	9.4	43
1433	Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Open-Circuit Voltage of over 1.8 V. ACS Applied Energy Materials, 2019, 2, 243-249.	5.1	44
1434	Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO ₂ for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298.	17.4	75
1435	Predicted photovoltaic performance of lead-based hybrid perovskites under the influence of a mixed-cation approach: theoretical insights. Journal of Materials Chemistry C, 2019, 7, 371-379.	5.5	32

#	Article	IF	CITATIONS
1436	Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 4041-4055.	2.2	7
1437	Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale, 2019, 11, 1505-1514.	5.6	32
1438	A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2019, 9, 188.	2.5	173
1439	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	47.7	454
1440	NDI-based small molecules as electron transporting layers in solution-processed planar perovskite solar cells. Journal of Solid State Chemistry, 2019, 270, 51-57.	2.9	19
1441	Recent Advances in Memory Devices with Hybrid Materials. Advanced Electronic Materials, 2019, 5, 1800519.	5.1	92
1442	Flexible Perowskit‣olarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	2.0	27
1443	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	13.8	290
1444	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs. Small Methods, 2019, 3, 1800231.	8.6	77
1445	Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL. Vacuum, 2019, 159, 173-181.	3.5	42
1446	High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer. Journal of the American Chemical Society, 2019, 141, 541-547.	13.7	189
1447	A one-step method to synthesize CH ₃ NH ₃ PbI ₃ :MoS ₂ nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology, 2019, 30, 085707.	2.6	14
1448	First principles study of structural, electronic and optical properties of Cs-doped CH3NH3PbI3 for photovoltaic applications. Vacuum, 2019, 160, 440-444.	3.5	18
1449	Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158.	4.7	93
1450	Fabrication of morphology-controlled and highly-crystallized perovskite microwires for long-term stable photodetectors. Solar Energy Materials and Solar Cells, 2019, 191, 275-282.	6.2	36
1451	Merits and Challenges of Ruddlesden–Popper Soft Halide Perovskites in Electroâ€Optics and Optoelectronics. Advanced Materials, 2019, 31, e1803514.	21.0	82
1452	Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Materials Science in Semiconductor Processing, 2019, 90, 1-6.	4.0	45
1453	A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. Journal of Physics and Chemistry of Solids, 2019, 124, 205-211.	4.0	110

#	Article	IF	CITATIONS
1454	Characterization on crystal structure of CH3NH3PblxCl3â^'x perovskite by variable temperature powder X-ray diffraction. Materials Letters, 2019, 235, 239-241.	2.6	2
1455	Solution processed nano-ZnMgO interfacial layer for highly efficient inverted perovskite solar cells. Journal of Energy Chemistry, 2019, 28, 107-110.	12.9	12
1456	Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. Arabian Journal of Chemistry, 2020, 13, 988-997.	4.9	23
1457	Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. Journal of Energy Chemistry, 2020, 41, 43-51.	12.9	37
1458	Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. Organic Electronics, 2020, 76, 105444.	2.6	21
1459	Multipleâ€Quantumâ€Well Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1904163.	21.0	129
1460	Tin Halide Perovskite (ASnX ₃) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. Advanced Energy Materials, 2020, 10, 1902467.	19.5	114
1461	Present Status and Research Prospects of Tinâ€based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900310.	5.8	60
1462	NH ₄ Clâ€Modified ZnO for Highâ€Performance CsPblBr ₂ Perovskite Solar Cells via Lowâ€Temperature Process. Solar Rrl, 2020, 4, 1900363.	5.8	186
1463	Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.	2.6	7
1464	Emerging 2D Layered Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902253.	19.5	79
1465	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€Solarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	2.0	16
1466	Channel-Length-Dependent Performances of Planar Photodiodes Based on Perovskite. Lecture Notes in Electrical Engineering, 2020, , 187-193.	0.4	0
1467	Understanding, Optimizing, and Utilizing Nonideal Transistors Based on Organic or Organic Hybrid Semiconductors. Advanced Functional Materials, 2020, 30, 1903889.	14.9	49
1468	Free Carrier, Exciton, and Phonon Dynamics in Leadâ€Halide Perovskites Studied with Ultrafast Terahertz Spectroscopy. Advanced Optical Materials, 2020, 8, 1900783.	7.3	39
1469	On the Electroâ€Optics of Carbon Stack Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900221.	5.8	10
1470	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	5.8	28
1472	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	13.8	334

#	Article	IF	CITATIONS
1473	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	5.8	9
1474	Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites. , 2020, 2, 20-27.		33
1475	Perovskite solar cells. , 2020, , 163-228.		8
1476	Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67, 104267.	16.0	35
1477	Modeling Thin Film Solar Cells: From Organic to Perovskite. Advanced Science, 2020, 7, 1901397.	11.2	38
1478	Comparison of the treatment outcomes of endoscopic and surgical resection of GI stromal tumors in the stomach: a propensity score–matched case-control study. Gastrointestinal Endoscopy, 2020, 91, 527-536.	1.0	21
1479	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	3.8	21
1480	Defectâ€Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900529.	5.8	40
1481	Gigahertz coherent longitudinal acoustic phonons in GaAs Single crystals with different orientations. Optics Communications, 2020, 461, 125257.	2.1	3
1482	Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. Journal of Physical Chemistry Letters, 2020, 11, 574-585.	4.6	84
1483	Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite. Physical Chemistry Chemical Physics, 2020, 22, 97-106.	2.8	23
1484	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	30.8	114
1485	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	12.2	345
1486	Cesium-Containing Methylammonium Lead Iodide Light Absorber for Planar Perovskite Solar Cells. Journal of Nanoscience and Nanotechnology, 2020, 20, 1008-1012.	0.9	3
1487	Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. Journal of Chemical Physics, 2020, 152, 024703.	3.0	67
1488	Defects Healing in Two-Step Deposited Perovskite Solar Cells via Formamidinium Iodide Compensation. ACS Applied Energy Materials, 2020, 3, 3318-3327.	5.1	32
1489	Giant Dielectric Constant and Superior Photovoltaic Property of the Mechanochemically Synthesized Stable CH ₃ NH ₃ PbBr ₃ in a Hole Transporter-Free Solar Cell. ACS Sustainable Chemistry and Engineering, 2020, 8, 1445-1454.	6.7	11
1490	Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 503-512.	10.3	43

#	Article	IF	CITATIONS
1491	Photon recycling in perovskite CH3NH3PbX3 (X = I, Br, Cl) bulk single crystals and polycrystalline films. Journal of Luminescence, 2020, 220, 116987.	3.1	33
1492	Low temperature, solution processed spinel NiCo2O4 nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells. Solar Energy, 2020, 196, 367-378.	6.1	26
1493	Elimination of Light-Soaking Effect in Hysteresis-Free Perovskite Solar Cells by Interfacial Modification. Journal of Physical Chemistry C, 2020, 124, 1851-1860.	3.1	18
1494	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	14.2	26
1495	Molecular Aggregation of Naphthalene Diimide(NDI) Derivatives in Electron Transport Layers of Inverted Perovskite Solar Cells and Their Influence on the Device Performance. Chemistry - an Asian Journal, 2020, 15, 112-121.	3.3	20
1496	A Review of Diverse Halide Perovskite Morphologies for Efficient Optoelectronic Applications. Small Methods, 2020, 4, 1900662.	8.6	69
1497	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy, 2020, 68, 104289.	16.0	83
1498	The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901469.	3.7	239
1499	Enhancement of Openâ€Circuit Voltage of Perovskite Solar Cells by Interfacial Modification with <i>p</i> â€Aminobenzoic Acid. Advanced Materials Interfaces, 2020, 7, 1901584.	3.7	21
1500	Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells. Journal of Power Sources, 2020, 448, 227405.	7.8	58
1501	Hysteresis effects on carrier transport and photoresponse characteristics in hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 1962-1971.	5.5	13
1502	Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr ₃ perovskites for applications in optical communication. Journal of Materials Chemistry C, 2020, 8, 3337-3350.	5.5	51
1503	The Impact of Mobile Ions on the Steady-State Performance of Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 219-229.	3.1	13
1504	Origin of Openâ€Circuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020, 30, 1906763.	14.9	47
1505	Correlating Phase Behavior with Photophysical Properties in Mixed ation Mixedâ€Halide Perovskite Thin Films. Advanced Energy Materials, 2020, 10, 1901350.	19.5	17
1506	Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chemical Engineering Journal, 2020, 392, 123805.	12.7	41
1507	An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy, 2020, 68, 104383.	16.0	26
1508	Rashba Band Splitting in CH ₃ NH ₃ PbI ₃ : An Insight from Spin-Polarized Scanning Tunneling Spectroscopy. Nano Letters, 2020, 20, 292-299.	9.1	18

#	Article	IF	CITATIONS
1509	Polaronic transport in CH3NH3PbI3 single crystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 1945-1950.	2.2	3
1510	Perovskite solar cells: The new epoch in photovoltaics. Solar Energy, 2020, 196, 295-309.	6.1	53
1511	Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr ₃ Surfaces. Journal of Physical Chemistry C, 2020, 124, 1484-1491.	3.1	15
1512	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	19.5	84
1513	Stable Efficient Methylammonium Lead Iodide Thin Film Photodetectors with Highly Oriented Millimeter-Sized Crystal Grains. ACS Photonics, 2020, 7, 57-67.	6.6	9
1514	Recent Progress in Photonic Synapses for Neuromorphic Systems. Advanced Intelligent Systems, 2020, 2, 1900136.	6.1	132
1515	Improving Photovoltaic Performance Using Perovskite/Surfaceâ€Modified Graphitic Carbon Nitride Heterojunction. Solar Rrl, 2020, 4, 1900413.	5.8	38
1516	Large-Area Exfoliated Lead-Free Perovskite-Derivative Single-Crystalline Membrane for Flexible Low-Defect Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9141-9149.	8.0	36
1517	Dye Sensitized TiO2 and ZnO Charge Transport Layers for Efficient Planar Perovskite Solar Cells: Experimental and DFT Insights. Journal of Electronic Materials, 2020, 49, 1396-1403.	2.2	9
1518	Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy and Environmental Science, 2020, 13, 1187-1196.	30.8	129
1519	Inverted planar perovskite solar cells featuring ligand-protecting colloidal NiO nanocrystals hole transport layer. Vacuum, 2020, 172, 109077.	3.5	12
1520	Firstâ€Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902830.	19.5	52
1521	Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 206, 110318.	6.2	19
1522	Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on <scp>d</scp> -Sorbitol Hexaacetate-Modified MAPbI ₃ . ACS Applied Materials & Interfaces, 2020, 12, 47677-47683.	8.0	7
1523	Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. Journal of Applied Physics, 2020, 128, .	2.5	25
1524	Holographic Image Denoising using Random Laser Illumination. Annalen Der Physik, 2020, 532, 2000323.	2.4	8
1525	Sn Perovskite Solar Cells via 2D/3D Bilayer Formation through a Sequential Vapor Process. ACS Energy Letters, 2020, 5, 3461-3467.	17.4	50
1526	Thermally Stable Passivation toward High Efficiency Inverted Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3336-3343.	17.4	19

#	Article	IF	CITATIONS
1527	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	26.0	143
1528	Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Applied Materials & Interfaces, 2020, 12, 49636-49647.	8.0	31
1529	Toward Stable Solution-Processed High-Mobility p <i>-</i> Type Thin Film Transistors Based on Halide Perovskites. ACS Nano, 2020, 14, 14790-14797.	14.6	42
1530	Surface electronic structure and dynamics of lead halide perovskites. APL Materials, 2020, 8, .	5.1	18
1531	Carbon Nanomaterials for Halide Perovskitesâ€Based Hybrid Photodetectors. Advanced Materials Technologies, 2020, 5, 2000643.	5.8	9
1532	Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles. ACS Nano, 2020, 14, 13602-13610.	14.6	14
1533	Surface Treatment of Cu:NiOx Hole-Transporting Layer Using β-Alanine for Hysteresis-Free and Thermally Stable Inverted Perovskite Solar Cells. Nanomaterials, 2020, 10, 1961.	4.1	8
1534	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	5.8	14
1535	Novel insights into the role of solvent environment in perovskite solar cells prepared by two-step sequential deposition. Journal of Power Sources, 2020, 480, 228862.	7.8	9
1536	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	39.5	497
1537	Fast Wetting of a Fullerene Capping Layer Improves the Efficiency and Scalability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37265-37274.	8.0	6
1538	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	10.3	38
1539	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	14.9	78
1540	Postpassivation of Multication Perovskite with Rubidium Butyrate. ACS Photonics, 2020, 7, 2282-2291.	6.6	11
1541	Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy, 2020, 77, 105110.	16.0	31
1542	Low-Frequency Dielectric Response of Tetragonal Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry Letters, 2020, 11, 6279-6285.	4.6	7
1543	A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbl ₃ and MAPbBr ₃ crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C, 2020, 8, 10290-10301.	5.5	25
1544	Methodologies for structural investigations of organic lead halide perovskites. Materials Today, 2020, 38, 67-83.	14.2	7

#	Article	IF	CITATIONS
1545	Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study. Superlattices and Microstructures, 2020, 146, 106652.	3.1	48
1546	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	8.0	28

Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 Td (a

1548	Lowâ€Dimensional Hybrid Perovskites for Fieldâ€Effect Transistors with Improved Stability: Progress and Challenges. Advanced Electronic Materials, 2020, 6, 2000137.	5.1	45
1549	All-inorganic dual-phase halide perovskite nanorings. Nano Research, 2020, 13, 2994-3000.	10.4	18
1550	lsotopic Exchange Extends Charge Carrier Lifetime in Metal Lead Perovskites by Quantum Dynamics Simulations. Journal of Physical Chemistry Letters, 2020, 11, 10298-10305.	4.6	11
1551	Interpreting time-resolved photoluminescence of perovskite materials. Physical Chemistry Chemical Physics, 2020, 22, 28345-28358.	2.8	94
1552	Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 17482-17490.	5.5	50
1553	Enhanced thermoelectric performance of F4-TCNQ doped FASnI ₃ thin films. Journal of Materials Chemistry A, 2020, 8, 25431-25442.	10.3	25
1554	Calculation and Fabrication of a CH3NH3Pb(SCN)xI3â^x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells. Journal of the Korean Physical Society, 2020, 77, 1210-1217.	0.7	2
1555	Influence of Dimethyl Sulfoxide on the Structural Topology during Crystallization of PbI ₂ . Inorganic Chemistry, 2020, 59, 16799-16803.	4.0	3
1556	Boosting the Efficiency of NiO _{<i>x</i>} -Based Perovskite Light-Emitting Diodes by Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 53528-53536.	8.0	32
1557	<scp>Heterojunctionâ€Type</scp> Photocatalytic System Based on Inorganic Halide Perovskite <scp>CsPbBr₃</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1718-1722.	4.9	16
1558	Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film. Materials Today Physics, 2020, 15, 100259.	6.0	30
1559	A comprehensive review on synthesis and applications of single crystal perovskite halides. Progress in Solid State Chemistry, 2020, 60, 100286.	7.2	77
1560	Nanoscale Studies at the Early Stage of Water-Induced Degradation of CH ₃ NH ₃ PbI ₃ Perovskite Films Used for Photovoltaic Applications. ACS Applied Nano Materials, 2020, 3, 8268-8277.	5.0	5
1561	Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. Nanoscale, 2020, 12, 17590-17648.	5.6	48
1562	Thickness-Controlled Wafer-Scale Single-Crystalline MAPbBr ₃ Films Epitaxially Grown on CsPbBr ₃ Substrates by the Droplet-Evaporated Crystallization Method. ACS Applied Materials & amp; Interfaces, 2020, 12, 39834-39840.	8.0	12

#	Article	IF	CITATIONS
1563	Shape Control of Metal Halide Perovskite Single Crystals: From Bulk to Nanoscale. Chemistry of Materials, 2020, 32, 7602-7617.	6.7	46
1564	Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035.	5.5	22
1565	Ti-Alloying of BaZrS ₃ Chalcogenide Perovskite for Photovoltaics. ACS Omega, 2020, 5, 18579-18583.	3.5	54
1566	Reduced energy loss in SnO ₂ /ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. Journal of Materials Chemistry A, 2020, 8, 17163-17173.	10.3	72
1567	A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells. Energies, 2020, 13, 3794.	3.1	13
1568	Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr ₃ Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.	9.1	145
1569	Tunable spin textures in polar antiferromagnetic hybrid organic–inorganic perovskites by electric and magnetic fields. Npj Computational Materials, 2020, 6, .	8.7	22
1570	Single-crystal perovskite detectors: development and perspectives. Journal of Materials Chemistry C, 2020, 8, 11664-11674.	5.5	35
1571	Advancement in Inorganic Hole Transport Materials for Inverted Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 5840-5881.	2.2	31
1572	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	3.7	25
1573	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	3.3	18
1574	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	2.5	91
1575	Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398.	5.6	43
1575 1576	Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1431-1449.	5.6 2.2	43 33
	comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared,		
1576	comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1431-1449. Improving the performances of CsPbBr3 solar cells fabricated in ambient condition. Journal of	2.2	33
1576 1577	 comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1431-1449. Improving the performances of CsPbBr3 solar cells fabricated in ambient condition. Journal of Materials Science: Materials in Electronics, 2020, 31, 21154-21167. 	2.2 2.2	33 18

ARTICLE IF CITATIONS Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of 1581 7.8 10 Power Sources, 2020, 479, 229077. Visible light driven perovskite-based photocatalysts: A new candidate for green organic synthesis by photochemical protocol. Current Research in Green and Sustainable Chemistry, 2020, 3, 100031. 5.6 Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional 1583 12.8 55 organic-inorganic perovskites. Nature Communications, 2020, 11, 5481. Electrochemical Deposition of CsPbBr₃ Perovskite for Photovoltaic Devices with Robust 1584 8.0 24 Ambient Stability. ACS Applied Materials & amp; Interfaces, 2020, 12, 50455-50463. Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small 1585 8.6 63 Methods, 2020, 4, 2000395. An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl) Tj ETQq1 1 0.784317 rgBT /Qyerlock A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional 1587 14.9 17 Materials, 2020, 30, 2004273. Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced 1588 21.0 Materials, 2020, 32, e2002176. Role of Ion-Assisted Recombination and Grain Boundaries in Perovskite Solar Cell Hysteresis and 1589 0 Efficiency., 2020,,. Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€...Situ Passivation. 1590 13.8 Angewandte Chemie - International Edition, 2020, 59, 23100-23106. Impact of Tin Fluoride Additive on the Properties of Mixed Tinâ€Lead Iodide Perovskite Semiconductors. 1591 14.9 48 Advanced Functional Materials, 2020, 30, 2005594. Competition between Oxygen Curing and Ion Migration in MAPbI₃ Induced by Irradiation 1592 4.6 Exposure. Journal of Physical Chemistry Letters, 2020, 11, 8477-8482. Atomistic Structures and Energetics of Perovskite Nucleation Pathway During Sequential Deposition 1593 1.7 1 Process. Multiscale Science and Engineering, 2020, 2, 227-234. Deciphering the role of quantum dot size in the ultrafast charge carrier dynamics at the 1594 5.5 perovskite〓quantum dot interface. Journal of Materials Chemistry C, 2020, 8, 14834-14844. Realizing CsPbBr₃ Light-Emitting Diode Arrays Based on PDMS Template Confined Solution 1595 4.6 21 Growth of Single-Crystalline Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 8275-8282. Manipulation of PEDOT:PSS with Polar and Nonpolar Solvent Post-treatment for Efficient Inverted 1596 5.1 Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9656-9666. Rashba Splitting in Two Dimensional Hybrid Perovskite Materials for High Efficient Solar and Heat 1597 4.6 14 Energy Harvesting. Journal of Physical Chemistry Letters, 2020, 11, 7679-7686. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. 1598 12.8 Nature Communications, 2020, 11, 4237.

		CITATION REPORT		
#	Article		IF	Citations
1599	Terahertz Inspection of Buildings and Architectural Art. Applied Sciences (Switzerland), 2	020, 10, 5166.	2.5	27
1600	Ambient Manipulation of Perovskites by Alternating Electric Field toward Tunable Photov Performance. Advanced Functional Materials, 2020, 30, 2004652.	oltaic	14.9	9
1601	Hole transport materials based on a twisted molecular structure with a single aromatic he core to boost the performance of conventional perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 13415-13421.		5.5	23
1602	Materials requirements for improving the electron transport layer/perovskite interface of solar cells determined via numerical modeling. MRS Advances, 2020, 5, 2603-2610.	perovskite	0.9	3
1603	Induced Vacancy-Assisted Filamentary Resistive Switching Device Based on RbPbl _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite for RRAM Application. Materials & Interfaces, 2020, 12, 41718-41727.	ACS Applied	8.0	46
1604	Printable CsPbI ₃ Perovskite Solar Cells with PCE of 19% via an Additive Stra Materials, 2020, 32, e2001243.	tegy. Advanced	21.0	157
1605	Tuning the Structural and Optoelectronic Properties of Cs ₂ AgBiBr _{6<!--<br-->Doubleâ€Perovskite Single Crystals through Alkaliâ€Metal Substitution. Advanced Mater e2001878.}		21.0	72
1606	Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environmental Science, 2020, 13, 4691-4716.	and	30.8	47
1607	Deciphering the effect of traps on electronic charge transport properties of methylammo tribromide perovskite. Science Advances, 2020, 6, .	nium lead	10.3	47
1608	Synergistic Effect of Additive and Solvent Vapor Annealing on the Enhancement of MAPb Perovskite Solar Cells Fabricated in Ambient Air. ACS Applied Materials & amp; Interfaces, 46837-46845.		8.0	23
1609	Effect of different device parameters on tin-based perovskite solar cell coupled with In ₂ S ₃ electron transport layer and CuSCN and Spiro-OMeTAD transport layers for high-efficiency performance. Energy Sources, Part A: Recovery, Utiliza Environmental Effects, 0, , 1-17.		2.3	41
1610	Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€Situ Pas Angewandte Chemie, 2020, 132, 23300-23306.	ssivation.	2.0	7
1611	Towards commercialization: the operational stability of perovskite solar cells. Chemical S Reviews, 2020, 49, 8235-8286.	ociety	38.1	371
1612	Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through ir spectroscopy. Journal of Applied Physics, 2020, 128, 085501.	npedance	2.5	5
1613	Recent advances of non-fullerene organic electron transport materials in perovskite solar Journal of Materials Chemistry A, 2020, 8, 20819-20848.	cells.	10.3	29
1614	Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approache 2020, 13, 4250.	s. Energies,	3.1	17
1615	Chargeâ€Carrier Trapping and Radiative Recombination in Metal Halide Perovskite Semic Advanced Functional Materials, 2020, 30, 2004312.	onductors.	14.9	67
1616	Multifunctional Self-Combustion Additives Strategy to Fabricate Highly Responsive Hybri Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 41674-41686.	d Perovskite	8.0	12

#	Article	IF	CITATIONS
1617	The properties, photovoltaic performance and stability of visible to near-IR all inorganic perovskites. Materials Advances, 2020, 1, 1920-1929.	5.4	5
1618	Carrier recombination of organic-inorganic 3D halide perovskite single crystals. Chinese Journal of Chemical Physics, 2020, 33, 252-257.	1.3	2
1619	Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain. Journal of Physical Chemistry C, 2020, 124, 27287-27299.	3.1	7
1620	Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & Interfaces, 2020, 12, 58038-58048.	8.0	9
1621	Materials Chemistry Approach for Efficient Lead-Free Tin Halide Perovskite Solar Cells. ACS Applied Electronic Materials, 2020, 2, 3794-3804.	4.3	36
1622	Surface and grain boundary carbon heterogeneity in CH3NH3PbI3 perovskites and its impact on optoelectronic properties. Applied Physics Reviews, 2020, 7, .	11.3	9
1623	Polymer modification of perovskite solar cells to increase open-circuit voltage. AIP Conference Proceedings, 2020, , .	0.4	0
1624	Room-temperature Magnetoresistance in Hybrid Halide Perovskites: Effect of Spin-Orbit Coupling. Physical Review Applied, 2020, 14, .	3.8	3
1625	Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 51744-51755.	8.0	34
1626	Recent Advances in Plasmonic Perovskite Solar Cells. Advanced Science, 2020, 7, 1902448.	11.2	78
1627	Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24905-24912.	8.0	20
1628	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	10.3	56
1629	Efficient Solar Cells Constructed with Lead Iodide Perovskite Templated by a 3-aminopropyl trimethoxysilane and methyltrimethoxysilane Mixed Monolayer. International Journal of Electrochemical Science, 2020, , 5540-5551.	1.3	0
1630	Ferroelastic Domains in a CsPbBr ₃ Single Crystal and Their Phase Transition Characteristics: An <i>in Situ</i> TEM Study. Crystal Growth and Design, 2020, 20, 4585-4592.	3.0	19
1631	Optical <i>in situ</i> monitoring during the synthesis of halide perovskite solar cells reveals formation kinetics and evolution of optoelectronic properties. Journal of Materials Chemistry A, 2020, 8, 10439-10449.	10.3	43
1632	Effects of cation size and concentration of cationic chlorides on the properties of formamidinium lead iodide based perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 3753-3763.	4.9	17
1633	Mechanisms of LiF Interlayer Enhancements of Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4213-4220.	4.6	12
1634	Potassiumâ€Induced Phase Stability Enables Stable and Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000098.	5.8	37

#	Article	IF	CITATIONS
1635	Pressure Effects on Optoelectronic Properties of CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 11239-11247.	3.1	18
1637	Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode. ACS Applied Energy Materials, 2020, 3, 5126-5134.	5.1	95
1638	Effect of preheated, delayed annealing process on the ultrafast carriers dynamics of perovskite films using ultrafast absorption spectroscopy. Organic Electronics, 2020, 84, 105758.	2.6	5
1639	Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for Highâ€Efficiency Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000999.	21.0	104
1640	Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Small, 2020, 16, e2001417.	10.0	21
1641	Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid. Sustainable Energy and Fuels, 2020, 4, 3971-3978.	4.9	37
1642	A Highly Sensitive Single Crystal Perovskite–Graphene Hybrid Vertical Photodetector. Small, 2020, 16, e2000733.	10.0	55
1643	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	3.0	34
1644	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	5.1	28
1645	Optical design of hole transmission nanostructured layers for inverted planar perovskite heterostructure solar cells. Semiconductor Science and Technology, 2020, 35, 095018.	2.0	3
1646	Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. Journal of Materials Chemistry C, 2020, 8, 7314-7321.	5.5	18
1647	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	9.0	52
1648	Strong bandÂfilling induced significant excited state absorption in MAPbI3 under high pump power. Materials Today Physics, 2020, 14, 100228.	6.0	16
1649	Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Optical Materials, 2020, 105, 109957.	3.6	59
1650	Dominant recombination mechanism in perovskite solar cells: A theoretical study. Solar Energy, 2020, 206, 27-34.	6.1	10
1651	Metal halide-based photodetector using one-dimensional MAPbI3 micro rods. Journal of Materials Science: Materials in Electronics, 2020, 31, 12109-12115.	2.2	6
1652	Effects of inorganic surface blocking layer of SnS on the performance and stability of perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 119, 105224.	4.0	5
1653	Polaron transport in hybrid CH ₃ NH ₃ PbI ₃ perovskite thin films. Nanoscale, 2020, 12, 14112-14119.	5.6	13

		EPORT	
#	ARTICLE	IF	CITATIONS
1654	Terahertz Absorption in Composite Films Based on Organometallic Perovskite and Mixed Cellulose Ester. Technical Physics Letters, 2020, 46, 510-513.	0.7	5
1655	Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing. ACS Applied Nano Materials, 2020, 3, 6749-6756.	5.0	25
1656	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	8.0	68
1657	Passivation by pyridine-induced Pbl ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	3.6	8
1658	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	38.1	130
1659	High-Performance Photodetectors With X-Ray Responsivity Based on Interface Modified Perovskite Film. IEEE Electron Device Letters, 2020, 41, 1044-1047.	3.9	12
1660	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	12.2	35
1661	Growth of metal halide perovskite materials. Science China Materials, 2020, 63, 1438-1463.	6.3	31
1662	Perceiving of Defect Tolerance in Perovskite Absorber Layer for Efficient Perovskite Solar Cell. IEEE Access, 2020, 8, 106346-106353.	4.2	38
1663	Photoinduced phase separation in the lead halides is a polaronic effect. Journal of Chemical Physics, 2020, 152, 230901.	3.0	41
1664	Ultrafast charge carrier dynamics in quantum confined 2D perovskite. Journal of Chemical Physics, 2020, 152, 214705.	3.0	12
1665	Estimation of carrier mobilities and recombination lifetime in halide perovskites films using the moving grating technique. Journal Physics D: Applied Physics, 2020, 53, 415107.	2.8	5
1666	Active Perovskite Hyperbolic Metasurface. ACS Photonics, 2020, 7, 1754-1761.	6.6	27

1667	Understanding the Interfaces between Triple-Cation Perovskite and Electron or Hole Transporting Material. ACS Applied Materials & Interfaces, 2020, 12, 30399-30410.	8.0	8
1668	Numerical modeling of planar lead free perovskite solar cell using tungsten disulfide (WS ₂) as an electron transport layer and Cu ₂ O as a hole transport layer. Modern Physics Letters B, 2020, 34, 2050258.	1.9	30
1669	Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 2020, 116, 101901.	3.3	12
1670	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	14.9	101
1671	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie, 2020, 132, 10894-10898.	2.0	14

#	Article	IF	CITATIONS
1672	Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Research, 2020, 13, 932-938.	10.4	11
1673	Numerical modeling of lead-free perovskite solar cell using inorganic charge transport materials. Materials Today: Proceedings, 2020, 26, 2574-2581.	1.8	20
1674	Effect of the Hole Transporting/Active Layer Interface on the Perovskite Solar Cell Stability. ACS Applied Energy Materials, 2020, 3, 3282-3292.	5.1	29
1675	Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15456-15463.	8.0	16
1676	A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 6349-6359.	10.3	28
1677	The effects of interstitial iodine in hybrid perovskite hot carrier cooling: A non-adiabatic molecular dynamics study. Journal of Chemical Physics, 2020, 152, 091102.	3.0	15
1678	Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Solar Energy, 2020, 201, 555-560.	6.1	113
1679	A perovskite solar cell owing very high stabilities and power conversion efficiencies. Solar Energy, 2020, 201, 541-546.	6.1	11
1680	Exciton Polarons in Two-Dimensional Hybrid Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 3173-3184.	4.6	100
1681	Correlating alkyl chain length with defect passivation efficacy in perovskite solar cells. Chemical Communications, 2020, 56, 5006-5009.	4.1	51
1682	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	4.6	110
1683	Mechanism of Crystal Formation in Ruddlesden–Popper Snâ€Based Perovskites. Advanced Functional Materials, 2020, 30, 2001294.	14.9	91
1684	Electrodeposition of CuI Thin Film for Perovskite Solar Cells. Materials Science Forum, 0, 979, 180-184.	0.3	1
1685	A Selfâ€Assembled Smallâ€Moleculeâ€Based Holeâ€Transporting Material for Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 10276-10282.	3.3	19
1686	CsPbBr ₃ Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties. Advanced Functional Materials, 2020, 30, 1909904.	14.9	29
1687	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie - International Edition, 2020, 59, 10802-10806.	13.8	49
1688	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 2020, 5, 1107-1123.	17.4	400
1689	Engineered electronic properties of the spin-coated MAPI for hole-transport-free perovskite solar cell (HT-free PSC): Spinning time and PSC performance relationship. Chemical Physics Letters, 2020, 754, 137718.	2.6	32

#	Article	IF	CITATIONS
1690	Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells. ACS Photonics, 2020, 7, 1893-1907.	6.6	34
1691	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	3.5	65
1692	Unveiling the Morphology Effect on the Negative Capacitance and Large Ideality Factor in Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 34265-34273.	8.0	37
1694	Resolving in-plane and out-of-plane mobility using time resolved microwave conductivity. Journal of Materials Chemistry C, 2020, 8, 10761-10766.	5.5	7
1695	High-Performance Large-Area Perovskite Solar Cells Enabled by Confined Space Sublimation. ACS Applied Materials & Interfaces, 2020, 12, 33870-33878.	8.0	19
1696	Intermediate-Controlled Interfacial Engineering for Stable and Highly Efficient Carbon-Based PSCs. ACS Applied Materials & Interfaces, 2020, 12, 34479-34486.	8.0	9
1697	Photon Energy-Dependent Ultrafast Photoinduced Terahertz Response in a Microcrystalline Film of CH ₃ NH ₃ PbBr ₃ . Journal of Physical Chemistry Letters, 2020, 11, 6068-6076.	4.6	4
1698	Selfâ€Repairing Tinâ€Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%. Advanced Materials, 2020, 32, e1907623.	21.0	179
1699	Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 17068-17074.	2.8	20
1700	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	2.8	10
1701	Benzothiadiazole Aryl-amine Based Materials as Efficient Hole Carriers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 32712-32718.	8.0	31
1702	Selection of contact materials to p-type halide perovskite by electronegativity matching. AIP Advances, 2020, 10, 065224.	1.3	4
1703	Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Solar Energy, 2020, 206, 816-825.	6.1	86
1704	Phase transitions, screening and dielectric response of CsPbBr ₃ . Journal of Materials Chemistry A, 2020, 8, 14015-14022.	10.3	37
1705	Hydrogen halide-free synthesis of organohalides for organometal trihalide perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2020, 89, 375-382.	5.8	5
1706	A study of structural and dielectric properties of Ba2+ doped CH3NH3PbI3 crystals. SN Applied Sciences, 2020, 2, 1.	2.9	4
1707	Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer. Journal of Materials Science, 2020, 55, 5681-5689.	3.7	16
1708	Formation of stable 2D methylammonium antimony iodide phase for lead-free perovskite-like solar cells [*] . JPhys Energy, 2020, 2, 024007.	5.3	13

#	Article	IF	CITATIONS
1709	Two-dimensional organic–inorganic hybrid Ruddlesden–Popper perovskite materials: preparation, enhanced stability, and applications in photodetection. Sustainable Energy and Fuels, 2020, 4, 2087-2113.	4.9	36
1710	Arranging strategies for A-site cations: impact on the stability and carrier migration of hybrid perovskite materials. Inorganic Chemistry Frontiers, 2020, 7, 1741-1749.	6.0	17
1711	Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells. Nano Energy, 2020, 71, 104620.	16.0	59
1712	Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Science Advances, 2020, 6, eaaw7453.	10.3	182
1713	Radiation effects on the performance of flexible perovskite solar cells for space applications. Emergent Materials, 2020, 3, 9-14.	5.7	32
1714	Imaging Carrier Dynamics and Transport in Hybrid Perovskites with Transient Absorption Microscopy. Advanced Energy Materials, 2020, 10, 1903781.	19.5	16
1715	Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells. Carbon, 2020, 162, 267-272.	10.3	48
1716	Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOFâ€6IMS. Advanced Energy Materials, 2020, 10, 1903674.	19.5	52
1717	Study on the effect of chlorine on the growth of CH ₃ NH ₃ PbI _{3â°'x} Cl _x crystals. Materials Research Express, 2020, 7, 015522.	1.6	1
1718	Preparation of perovskite-derived one dimensional single crystals based on edge-shared octahedrons with pyridine derivatives. Journal of Crystal Growth, 2020, 537, 125577.	1.5	0
1719	Ultrasensitive and high gain solution-processed perovskite photodetectors by CH3NH3PbI2.55Br0.45:Zn2SnO4 bulk heterojunction composite. Emergent Materials, 2020, 3, 1-7.	5.7	10
1720	Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Advanced Materials, 2020, 32, e1907392.	21.0	203
1721	Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of Chemical Physics, 2020, 152, 064707.	3.0	12
1722	MACI-Induced Intermediate Engineering for High-Performance Mixed-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10535-10543.	8.0	48
1723	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	11.9	16
1724	A highly stable hole-conductor-free Cs MA1-PbI3 perovskite solar cell based on carbon counter electrode. Electrochimica Acta, 2020, 335, 135686.	5.2	16
1725	High-Efficiency Flexible Perovskite Solar Cells Enabled by an Ultrafast Room-Temperature Reactive Ion Etching Process. ACS Applied Materials & Interfaces, 2020, 12, 7125-7134.	8.0	8
1726	Highly (100)-oriented CH3NH3PbI3 thin film fabricated by bar-coating method and its additive effect of ammonium chloride. Solar Energy Materials and Solar Cells, 2020, 208, 110409.	6.2	12

#	Article	IF	CITATIONS
1727	Transition Between Exciton-Polariton and Coherent Photonic Lasing in All-Inorganic Perovskite Microcuboid. ACS Photonics, 2020, 7, 454-462.	6.6	30
1728	Progress of Highâ€Throughput and Lowâ€Cost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	5.8	43
1729	α-CsPbI ₃ Nanocrystals by Ultraviolet Light-Driven Oriented Attachment. Journal of Physical Chemistry Letters, 2020, 11, 913-919.	4.6	15
1730	A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability. Nanoscale, 2020, 12, 3646-3656.	5.6	26
1731	Large-area, green solvent spray deposited nickel oxide films for scalable fabrication of triple-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 3357-3368.	10.3	52
1732	Interface Engineering of Airâ€Stable nâ€Doping Fullereneâ€Modified TiO ₂ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901964.	3.7	32
1733	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
1734	Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Materials, 2020, 13, 210.	2.9	23
1735	Boosting Photovoltaic Performance and Stability of Super-Halogen-Substituted Perovskite Solar Cells by Simultaneous Methylammonium Immobilization and Vacancy Compensation. ACS Applied Materials & Interfaces, 2020, 12, 8249-8259.	8.0	19
1736	A two-dimensional bilayered Dion–Jacobson-type perovskite hybrid with a narrow bandgap for broadband photodetection. Inorganic Chemistry Frontiers, 2020, 7, 1394-1399.	6.0	25
1737	Interdigitated Hierarchical Integration of an Efficient Lateral Perovskite Singleâ€Crystal Solar Cell. ChemSusChem, 2020, 13, 1882-1889.	6.8	10
1738	Stoichiometry Control for the Tuning of Grain Passivation and Domain Distribution in Green Quasiâ€2D Metal Halide Perovskite Films and Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001816.	14.9	41
1739	Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Advanced Materials, 2020, 32, e1907864.	21.0	51
1740	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	10.3	159
1741	Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I _{1â^x} Br _x) ₃ alloy. Physical Chemistry Chemical Physics, 2020, 22, 11943-11955.	2.8	18
1742	Nanoscale spatial mapping of charge carrier dynamics in perovskite solar cells. Nano Today, 2020, 33, 100874.	11.9	21
1743	Superior Selfâ€Charged and â€Powered Chemical Sensing with High Performance for NO ₂ Detection at Room Temperature. Advanced Optical Materials, 2020, 8, 1901863.	7.3	27
1744	Beyond Perovskite Solar Cells: Tellurium Iodide as a Promising Lightâ€Absorbing Material for Solutionâ€Processed Photovoltaic Application. Chemistry - an Asian Journal, 2020, 15, 1505-1509.	3.3	3

#	Article	IF	CITATIONS
1745	Impact of Cesium/Rubidium Incorporation on the Photophysics of Multiple ation Lead Halide Perovskites. Solar Rrl, 2020, 4, 2000072.	5.8	13
1746	Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13, 1156-1161.	10.4	17
1747	Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics, 2020, 83, 105729.	2.6	7
1748	Effects of solvent additives on the morphology and transport property of a perylene diimide dimer film in perovskite solar cells for improved performance. Solar Energy, 2020, 201, 927-934.	6.1	18
1749	Enhanced stability and performance of poly(4-vinylpyridine) modified perovskite solar cell with quaternary semiconductor Cu2MSnS4 (M= Co2+, Ni2+, Zn2+) as hole transport materials. Solar Energy Materials and Solar Cells, 2020, 211, 110538.	6.2	16
1750	Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 9611-9621.	3.1	21
1751	Looking beyond the Surface: The Band Gap of Bulk Methylammonium Lead Iodide. Nano Letters, 2020, 20, 3090-3097.	9.1	16
1752	Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19439-19446.	8.0	14
1753	High-performance blue perovskite light-emitting diodes based on the "far-field plasmonic effect―of gold nanoparticles. Journal of Materials Chemistry C, 2020, 8, 6615-6622.	5.5	11
1754	Two-dimensional Ruddlesden–Popper layered perovskite for light-emitting diodes. APL Materials, 2020, 8, 040901.	5.1	16
1755	Influence of Film Thickness on the Electronic Band Structure and Optical Properties of P–l–N CH ₃ NH ₃ PbI _{3â"<i>x</i>} Cl _{<i>x</i>} Perovskite Solar Cells. Advanced Engineering Materials, 2020, 22, 2000185.	3.5	10
1756	Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 2020, 49, 2869-2885.	38.1	282
1757	Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by Cryo-TEM. Nano Energy, 2020, 73, 104820.	16.0	35
1758	17% efficient perovskite solar mini-module <i>via</i> hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating. Journal of Materials Chemistry A, 2020, 8, 9345-9354.	10.3	44
1759	Spatially Resolved Performance Analysis for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1904001.	19.5	30
1760	Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1Snnl3n+1 perovskite insight by first principles. Journal of Physics and Chemistry of Solids, 2020, 144, 109510.	4.0	3
1761	Enhanced photovoltaic performance and stability of perovskite solar cells by interface engineering with poly(4-vinylpyridine) and Cu2ZnSnS4&CNT. Solar Energy, 2020, 201, 908-915.	6.1	16
1762	Stacking Effects on Electron–Phonon Coupling in Layered Hybrid Perovskites <i>via</i> Microstrain Manipulation. ACS Nano, 2020, 14, 5806-5817.	14.6	50

ARTICLE IF CITATIONS # Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials 1763 2.2 59 Science: Materials in Electronics, 2021, 32, 12746-12757. Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. 1764 Journal of Energy Chemistry, 2021, 54, 770-785. A self-powered photodetector based on polarization-driven in CH3NH3PbI3 single crystal (100) plane. 1765 12.7 17 Chemical Engineering Journal, 2021, 404, 125957. Sequential Formation of Tunableâ€Bandgap Mixedâ€Halide Leadâ€Based Perovskites: In Situ Investigation and 5.8 1766 Photovoltaic Devices. Solar Rrl, 2021, 5, . 2D Materials as Electron Transport Layer for Lowâ€Temperature Solutionâ€Processed Perovskite Solar 1767 5.8 12 Cells. Solar Rrl, 2021, 5, 2000566. An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. Journal of Materials Chemistry 10.3 A, 2021, 9, 371-379. Simple hole-transporting materials containing twin-carbazole moiety and unconjugated flexible linker 1769 12.7 21 for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 405, 126434. Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced 14.9 Functional Materials, 2021, 31, 2006243. <scp>Firstâ€principles</scp> spectroscopic screening of hybrid perovskite (<scp> CH ₃ CH) Tj ETQq0 0 0 rgBT /Overlock 1 1771 4.5 12 potential photovoltaic absorber. International Journal of Energy Research, 2021, 45, 908-919. Compositional effect on water adsorption on metal halide perovskites. Applied Surface Science, 2021, 1772 6.1 538, 148058. Tailoring multifunctional passivation molecules with halogen functional groups for efficient and 1773 12.7 36 stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 407, 127204. Charge Transport Properties of Methylammonium Lead Trihalide Hybrid Perovskite Bulk Single 1774 2.4 Crystals. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000410. Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with 1775 12.9 31 cross-linked grain encapsulation. Journal of Energy Chemistry, 2021, 56, 455-462. Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy, 2021, 79, 1776 16.0 105505. Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. 1777 6.8 38 ChemSusChem, 2021, 14, 512-538. Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells. 1778 29 Journal of Alloys and Compounds, 2021, 859, 157784. Novel thieno-imidazole salt-based hole transport material for dopant-free, efficient inverted 1779 7.8 9 perovskite solar cell applications. Journal of Power Sources, 2021, 483, 229177. Influences of the orientations of CH3NH3 molecules on physical properties of organo-inorganic 1780 hybrid perovskite CH3NH3PbI3. Materials Today Communications, 2021, 26, 101816.

#	Article	IF	CITATIONS
1781	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics. Nano Energy, 2021, 81, 105634.	16.0	48
1782	Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical Materials, 2021, 9, 2001637.	7.3	40
1783	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> â€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 2000650.	5.8	7
1784	In CH ₃ NH ₃ PbI ₃ Perovskite Film, the Surface Termination Layer Dominates the Moisture Degradation Pathway. Chemistry - A European Journal, 2021, 27, 3729-3736.	3.3	10
1785	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	5.8	34
1786	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309.	10.3	25
1787	Lack of Photon Antibunching Supports Supertrap Model of Photoluminescence Blinking in Perovskite Subâ€Micrometer Crystals. Advanced Optical Materials, 2021, 9, 2001596.	7.3	17
1788	Role of cation-mediated recombination in perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110912.	6.2	16
1789	Photovoltaic Performance Enhancement of Allâ€Inorganic CsPbBr 3 Perovskite Solar Cells Using In 2 S 3 as Electron Transport Layer via Facile Refluxâ€Condensation Process. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000665.	1.8	4
1790	Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. Journal of Materials Chemistry A, 2021, 9, 2612-2627.	10.3	17
1791	Strain Engineering of Metal–Halide Perovskites toward Efficient Photovoltaics: Advances and Perspectives. Solar Rrl, 2021, 5, 2000672.	5.8	33
1792	Bifunctional Interfacial Modification Engineering with Biomimetic Perfluoro-Copolymer-Enabled High-Efficiency and Moisture-Resistant Perovskite Solar Cells. ACS Applied Electronic Materials, 2021, 3, 238-247.	4.3	6
1793	Lowâ€Ðimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	21.0	319
1794	Insights into Largeâ€Scale Fabrication Methods in Perovskite Photovoltaics. Advanced Energy and Sustainability Research, 2021, 2, 2000046.	5.8	27
1795	<scp>Smallâ€band</scp> gap halide double perovskite for optoelectronic properties. International Journal of Energy Research, 2021, 45, 7222-7234.	4.5	15
1796	Enhanced efficiency and stability of planar perovskite solar cells using SnO2:InCl3 electron transport layer through synergetic doping and passivation approaches. Chemical Engineering Journal, 2021, 407, 127997.	12.7	65
1797	Carrier Dynamics and Evaluation of Lasing Actions in Halide Perovskites. Trends in Chemistry, 2021, 3, 34-46.	8.5	47
1798	Ampholytic interface induced <i>in situ</i> growth of CsPbBr ₃ for highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 1025-1033.	5.5	10

#	Article	IF	CITATIONS
1799	New insight on the open ircuit voltage of perovskite solar cells: The role of defectâ€density distribution and electric field in the active layer. International Journal of Energy Research, 2021, 45, 5190-5200.	4.5	8
1800	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	14.9	37
1801	Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Materials Science in Semiconductor Processing, 2021, 123, 105541.	4.0	27
1802	Highâ€ŧhroughput computational design of halide perovskites and beyond for optoelectronics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1500.	14.6	16
1803	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	32.8	35
1804	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	27.5	800
1805	The effect of bromide precursor on the properties of organolead halide perovskite for solar cell fabricated under ambient condition. Journal of Materials Science: Materials in Electronics, 2021, 32, 3797-3808.	2.2	0
1806	Using hysteresis to predict the charge recombination properties of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 6382-6392.	10.3	25
1809	The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. Journal of Materials Chemistry C, 2021, 9, 12037-12045.	5.5	7
1810	Heterojunction Perovskite Microrods Prepared by Remote ontrolled Vacancy Filling and Halide Exchange. Advanced Materials Technologies, 2021, 6, 2000934.	5.8	7
1811	Ammonium sulfate treatment at TiO2/perovskite interface boosts operational stability of perovskite solar cells. Journal of Materials Chemistry C, 0, , .	5.5	0
1812	Perovskite solar cells: A review of architecture, processing methods, and future prospects. , 2021, , 375-412.		6
1813	Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Research, 2021, 9, 151.	7.0	52
1814	Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic materials from atomistic viewpoint for next-generation energy solutions. Energy and Environmental Science, 2021, 14, 4760-4802.	30.8	12
1815	All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method. Journal of Materials Chemistry C, 2021, 9, 15056-15064.	5.5	13
1816	Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chemical Society Reviews, 2021, 50, 2696-2736.	38.1	90
1817	Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electronic Advances, 2021, 4, 20001901-20001915.	13.3	27
1818	The Path to Enlightenment: Progress and Opportunities in High Efficiency Halide Perovskite Light-Emitting Devices. ACS Photonics, 2021, 8, 386-404.	6.6	25

#	Article	IF	CITATIONS
1819	Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 098801.	0.5	6
1820	Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water. Springer Proceedings in Energy, 2021, , 141-148.	0.3	0
1821	Freestanding CH ₃ NH ₃ PbBr ₃ single-crystal microwires for optoelectronic applications synthesized with a predefined lattice framework. Journal of Materials Chemistry C, 2021, 9, 4771-4781.	5.5	7
1822	Lead-Free Perovskite Solar Cells. , 2021, , 3263-3288.		0
1823	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
1824	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
1825	Halide perovskite composites for photocatalysis: A mini review. EcoMat, 2021, 3, e12079.	11.9	60
1826	NiCo ₂ O ₄ arrays with a tailored morphology as hole transport layers of perovskite solar cells. Dalton Transactions, 2021, 50, 5845-5852.	3.3	9
1827	Phase stability investigation of CsPbI3 perovskite for solar cell application. AIP Conference Proceedings, 2021, , .	0.4	3
1828	Influence of an SCN- moiety on the electronic properties of γ-CsPb(SCN)xBr3-x and the performance of carbon-based HTL-free γ-CsPb(SCN)xBr3-x perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 1557-1569.	2.2	4
1829	Progress of lead-free perovskite and its resistance switching performance. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 157301-157301.	0.5	2
1830	Self-Powered All-Inorganic Perovskite Photodetectors with Fast Response Speed. Nanoscale Research Letters, 2021, 16, 6.	5.7	17
1831	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.	12.8	94
1832	MAPbI3-based efficient, transparent and air-stable broadband photodetectors. Indian Journal of Physics, 2022, 96, 903-908.	1.8	3
1833	Reducing the Photodegradation of Perovskite Quantum Dots to Enhance Photocatalysis in CO2 Reduction. Catalysts, 2021, 11, 61.	3.5	6
1834	Mechanochemical synthesis of pure phase mixed-cation/anion (FAPbl ₃) _x (MAPbBr ₃) _{1â^x} hybrid perovskite materials: compositional engineering and photovoltaic performance. RSC Advances, 2021, 11, 5874-5884.	3.6	8
1835	Recent Progress in All-Inorganic Hybrid Materials for Energy Conversion Applications. , 2021, , 41-59.		0
1836	Sublattice mixing in Cs2AgInCl6 for enhanced optical properties from first-principles. Applied Physics Letters, 2021, 118, .	3.3	9

#	Article	IF	CITATIONS
1838	Recent Progress in Growth of Single-Crystal Perovskites for Photovoltaic Applications. ACS Omega, 2021, 6, 1030-1042.	3.5	35
1839	Deactivation/Activation of Quenching Defects in CH3NH3PbI3 Perovskite by Direct Electron Injection/Extraction. Journal of Physical Chemistry Letters, 2021, 12, 773-780.	4.6	2
1840	Mechanistic studies of CsPbBr ₃ superstructure formation. Journal of Materials Chemistry C, 2021, 9, 14699-14708.	5.5	7
1841	The effect of dimensionality on the charge carrier mobility of halide perovskites. Journal of Materials Chemistry A, 2021, 9, 21551-21575.	10.3	49
1842	Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale, 2021, 13, 8864-8874.	5.6	57
1843	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	5.6	47
1844	Ferroelastic domains and phase transitions in organic–inorganic hybrid perovskite CH ₃ NH ₃ PbBr ₃ . Journal of Materials Chemistry C, 2021, 9, 3096-3107.	5.5	14
1845	Preferred Film Orientation to Achieve Stable and Efficient Sn–Pb Binary Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 10822-10836.	8.0	16
1846	Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells. Rare Metals, 2021, 40, 2730-2746.	7.1	34
1847	Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability. Small, 2021, 17, e2004081.	10.0	29
1848	Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells. Energies, 2021, 14, 1156.	3.1	4
1849	Controlled Crystallization of CsRbâ€Based Multiâ€Cation Perovskite Using a Blended Sequential Process for Highâ€Performance Solar Cells. Solar Rrl, 2021, 5, 2100050.	5.8	10
1850	Room-Temperature Near-Infrared Random Lasing with Tin-Based Perovskites Prepared by CVD Processing. Journal of Physical Chemistry C, 2021, 125, 5180-5184.	3.1	13
1851	Stability and optical enhancement of perovskite materials by nanocomposite PMMA sandwich structure in an open air environment. Journal of Materials Science: Materials in Electronics, 2021, 32, 7106-7122.	2.2	4
1852	Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Reports Physical Science, 2021, 2, 100346.	5.6	21
1853	Impact of a Spun-Cast MoO _{<i>x</i>} Layer on the Enhanced Moisture Stability and Performance-Limiting Behaviors of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3169-3181.	5.1	4
1854	Enhanced Efficiency and Mechanical Robustness of Flexible Perovskite Solar Cells by Using HPbI ₃ Additive. Solar Rrl, 2021, 5, 2000821.	5.8	29
1855	Recrystallization of CsPbBr3 Nanoparticles in Fluoropolymer Nonwoven Mats for Down- and Up-Conversion of Light. Nanomaterials, 2021, 11, 412.	4.1	6

#	Article	IF	Citations
1856	Precise Ligand Tuning Emission of Mn-Doped CsPbCl ₃ Nanocrystals by the Amount of Sulfonates. Journal of Physical Chemistry Letters, 2021, 12, 1838-1846.	4.6	17
1857	Relationship between perovsktie solar cell efficiency and lattice disordering. Japanese Journal of Applied Physics, 2021, 60, 035001.	1.5	0
1858	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	14.9	180
1859	Fe and Ti metal-organic frameworks: Towards tailored materials for photovoltaic applications. Applied Materials Today, 2021, 22, 100915.	4.3	8
1860	Complementary interface formation toward high-efficiency all-back-contact perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100363.	5.6	17
1861	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	6.7	28
1862	The effects of pyridine molecules structure on the defects passivation of perovskite solar cells. Journal of Solid State Electrochemistry, 2021, 25, 1531-1540.	2.5	12
1863	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	5.8	11
1864	Solvent Engineering of the Precursor Solution toward Largeâ€Area Production of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005410.	21.0	182
1865	Impact of Photoluminescence Reabsorption in Metalâ€Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100029.	5.8	9
1866	Impact of Auger recombination on performance limitation of perovskite solar cell. Solar Energy, 2021, 217, 342-353.	6.1	27
1867	Three-dimensional self-attaching perovskite quantum dots/polymer platform for efficient solar-driven CO2 reduction. Materials Today Physics, 2021, 17, 100358.	6.0	11
1868	Reversible Transformation between CsPbBr ₃ Perovskite Nanowires and Nanorods with Polarized Optoelectronic Properties. Advanced Functional Materials, 2021, 31, 2011251.	14.9	29
1869	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864.	11.2	77
1870	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
1871	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	3.1	16
1872	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	4.3	11
1873	High stability of photovoltaic cells with phenethylammonium iodide-passivated perovskite layers and printable copper phthalocyanine-modified carbon electrodes. Nanotechnology, 2021, 32, 225701.	2.6	4

ARTICLE IF CITATIONS Impact of absorber layer thickness, defect density, and operating temperature on the performance of 1874 3.2 106 MAPbI3 solar cells based on ZnO electron transporting material. Heliyon, 2021, 7, e06379. Emerging potential photovoltaic absorber hybrid halide perovskites (<scp> CH ₃ CH) Tj ETQq1 1 0.784314 rgBT /Overlo 4.5 International Journal of Energy Research, 2021, 45, 15231-15244. Efficient and Stable Perovskite Solar Cells with a Superhydrophobic Two-Dimensional Capping Layer. 1876 4.6 16 Journal of Physical Chemistry Letters, 2021, 12, 4052-4058. Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite sólar cells. IScience, 2021, 24, 102276. Highly Enhanced Efficiency of Planar Perovskite Solar Cells by an Electron Transport Layer Using 1878 5.8 16 Phytic Acid–Complexed SnO₂ Colloids. Solar Rrl, 2021, 5, 2100067. Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model. Journal of Physical Chemistry Letters, 2021, 12, 3591-3599. 1879 4.6 Inâ€Depth Comparative Study of Cathode Interfacial Layer for Stable Inverted Perovskite Solar Cell. 1880 6.8 3 ChemSusChem, 2021, 14, 2393-2400. Structural, optical and flexible properties of CH3NH3Pbl3 perovskite films deposited on paper 9 3.6 substrates. Optical Materials, 2021, 114, 110926. Enhanced Charge Extraction in Metal–Perovskite–Metal Back-Contact Solar Cell Structure Through 1882 3.0 33 Electrostatic Doping: A Numerical Study. IEEE Transactions on Electron Devices, 2021, 68, 1757-1763. DFT Simulations as Valuable Tool to Support NMR Characterization of Halide Perovskites: the Case of 1.6 Pure and Mixed Halide Perovskites. Helvetica Chimica Acta, 2021, 104, e2000231. Structural and optoelectronic properties of hybrid halide perovskites for solar cells. Organic 1884 2.6 27 Electronics, 2021, 91, 106077. Ionic Liquid-Assisted MAPbI₃ Nanoparticle-Seeded Growth for Efficient and Stable 1885 8.0 Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 21194-21206. Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 82, 105712. 1886 16.0 64 Millimeterâ€Size Allâ€inorganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. 1887 14.9 Advanced Functional Materials, 2021, 31, 2101058. Review on persistent challenges of perovskite solar cells' stability. Solar Energy, 2021, 218, 469-491. 1888 80 6.1 Highly flexible and stable perovskite/microbead hybrid photodetectors with improved interfacial light 1889 6.1 trapping. Applied Surface Science, 2021, 544, 148850. Water repellent room temperature vulcanized silicone for enhancing the long-term stability of 1890 6.1 4 perovskite solar cells. Solar Energy, 2021, 218, 28-34. Confined Growth of High-quality Single-Crystal MAPbBr3 by Inverse Temperature Crystallization for 1891 2.2 Photovoltaic Applications. Electronic Materials Letters, 2021, 17, 347-354.

#	Article	IF	CITATIONS
1892	Effect of polystyrene treatment on the efficiency and stability of fully printable mesoscopic perovskite solar cells with carbon electrode. Journal of Materials Science: Materials in Electronics, 2021, 32, 13440-13449.	2.2	1
1893	Charge-Carrier Mobility and Localization in Semiconducting Cu ₂ AgBil ₆ for Photovoltaic Applications. ACS Energy Letters, 2021, 6, 1729-1739.	17.4	41
1894	Structural, electronic, and charge transfer features for two kinds of MoS2/Cs2PbI4 interfaces with optoelectronic applicability: Insights from first-principles. Applied Physics Letters, 2021, 118, .	3.3	4
1895	Cuprous iodide dose dependent passivation of MAPbI3 perovskite solar cells. Organic Electronics, 2021, 91, 106080.	2.6	2
1896	In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition. Npj Materials Degradation, 2021, 5, .	5.8	36
1897	A Dual-Functional Conjugated Polymer as an Efficient Hole-Transporting Layer for High-Performance Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 16744-16753.	8.0	34
1898	Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI ₃ Perovskites with Bifunctional-Molecule Additives. Nano Letters, 2021, 21, 3738-3744.	9.1	33
1899	Effect of binary additives in mixed 2D/3D Sn-based perovskite solar cells. Journal of Power Sources, 2021, 491, 229574.	7.8	29
1900	Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 3607-3617.	4.6	45
1901	Approaching Charge Separation Efficiency to Unity without Charge Recombination. Physical Review Letters, 2021, 126, 176401.	7.8	35
1902	Charge Carrier Dynamics in Sn-Doped Two-Dimensional Lead Halide Perovskites Studied by Terahertz Spectroscopy. Frontiers in Energy Research, 2021, 9, .	2.3	6
1903	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	20.1	52
1904	Effect of Capping Ligand Engineering on Transport Properties and Carrier Dynamics in Cubic CsPbl ₃ Nanocrystal Film. Journal of Physical Chemistry C, 2021, 125, 10539-10548.	3.1	5
1905	Crystal stabilization of α-FAPbI3 perovskite by rapid annealing method in industrial scale. Journal of Materials Research and Technology, 2021, 12, 1924-1930.	5.8	25
1906	Manipulation of perovskite film by biasâ€induced reversible lattice deformation toward tunable photoelectric performances. Nano Select, 0, , .	3.7	0
1907	High-Light-Tolerance PbI ₂ Boosting the Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 24692-24701.	8.0	21
1908	A Mixed Heterojunction Layer for High Performance and Stability P-I-N-Based Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 679-684.	2.5	1
1909	Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. Journal of Industrial and Engineering Chemistry, 2021, 97, 417-425.	5.8	17

#	Article	IF	CITATIONS
1910	Synthesis and Investigation of the Properties of Organic-Inorganic Perovskite Films with Non-Contact Methods. Ukrainian Journal of Physics, 2021, 66, 429.	0.2	2
1911	Organic cation rotation in HC(NH2)2PbI3 perovskite solar cells: DFT & DOE approach. Solar Energy, 2021, 220, 70-79.	6.1	9
1912	Highâ€Performance Planar Heterojunction Perovskite Solar Cells Based on BaCl ₂ Additive and Power Conversion Efficiency of Over 21%. Advanced Electronic Materials, 2021, 7, 2100165.	5.1	5
1913	Theoretical insights to excitonic effect in lead bromide perovskites. Applied Physics Letters, 2021, 118, .	3.3	12
1914	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	21.0	138
1915	Mobile Media Promotes Orientation of 2D/3D Hybrid Lead Halide Perovskite for Efficient Solar Cells. ACS Nano, 2021, 15, 8350-8362.	14.6	20
1916	Surfactantâ€Free, Oneâ€Step Synthesis of Leadâ€Free Perovskite Hollow Nanospheres for Trace CO Detection. Advanced Materials, 2021, 33, e2100674.	21.0	18
1917	Theoretical Investigation of CsBX ₃ (BÂ=ÂPb, Sn; X = I, Br, Cl) Using Tran–Blaha Modified Becke–Johnson Approximation for Flexible Photoresponsive Memristors. Advanced Theory and Simulations, 2021, 4, 2100011.	2.8	11
1918	Large Cation Engineering in Two-Dimensional Silver–Bismuth Bromide Double Perovskites. Chemistry of Materials, 2021, 33, 4688-4700.	6.7	25
1919	The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives. Advanced Energy Materials, 2022, 12, 2100499.	19.5	66
1920	Polarons and Charge Localization in Metalâ€Halide Semiconductors for Photovoltaic and Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2007057.	21.0	53
1921	Temperature dependency of excitonic effective mass and charge carrier conduction mechanism in CH3NH3PbI3â~xClx thin films. Scientific Reports, 2021, 11, 10772.	3.3	8
1922	γâ€Valerolactone: A Nontoxic Green Solvent for Highly Stable Printed Mesoporous Perovskite Solar Cells. Energy Technology, 2021, 9, 2100312.	3.8	21
1923	In the Quest of Lowâ€Frequency Impedance Spectra of Efficient Perovskite Solar Cells. Energy Technology, 2021, 9, 2100229.	3.8	16
1924	Ultrafast carrier response of CH ₃ NH ₃ PbI ₃ /MoO ₃ /graphene heterostructure for terahertz waves. Journal Physics D: Applied Physics, 2021, 54, 325102.	2.8	4
1925	In-situ fluorinated 2D/3D invert perovskite film solar cell with enhanced ambient stability. Solar Energy, 2021, 221, 583-590.	6.1	7
1926	Identifying recombination pathways in perovskite solar cells by simulating temperature-dependent light ideality factor. MRS Advances, 2021, 6, 334-341.	0.9	1
1927	Optoelectronic Properties of Tin–Lead Halide Perovskites. ACS Energy Letters, 2021, 6, 2413-2426.	17.4	72

#	Article	IF	CITATIONS
1928	Charge-transfer complexes and their applications in optoelectronic devices. Materials Today Energy, 2021, 20, 100644.	4.7	19
1929	Photon-recycling effect in perovskites for photovoltaic applications: a Monte Carlo study. Optics Letters, 2021, 46, 2988.	3.3	4
1930	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	21.0	108
1931	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	1.8	7
1932	Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: Optical–electrical study on device architectures. Solar Energy, 2021, 221, 162-175.	6.1	16
1933	Brightly Luminescent and Moisture Tolerant Phenyl Viologen Lead Iodide Perovskites for Light Emission Applications. Journal of Physical Chemistry Letters, 2021, 12, 5456-5462.	4.6	5
1934	Investigation of the planar and inverted structure of \$\${ext{Cu}}_{2}{ext{O/CH}}_{3}{ext{NH}}_{3}{ext{PbI}}_{3}/{ext{PCBM}}\$\$ perovskite solar cell with and without the CH3NH3SnI3 layer. Optical and Quantum Electronics, 2021, 53, 1.	3.3	2
1935	Gravity-Guided Growth of Large-Area High-Quality Two-Dimensional Ruddlesden–Popper Perovskite Thin Films for Stable Ultraviolet Photodetectors. Journal of Physical Chemistry C, 2021, 125, 13909-13916.	3.1	5
1936	Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Reports Physical Science, 2021, 2, 100450.	5.6	6
1937	Lead-free halide perovskites, beyond solar cells and LEDs. JPhys Energy, 2021, 3, 032014.	5.3	11
1938	The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nature Energy, 2021, 6, 624-632.	39.5	144
1939	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
1940	Stability of Perovskite Thin Films under Working Condition: Biasâ€Dependent Degradation and Grain Boundary Effects. Advanced Functional Materials, 2021, 31, 2103894.	14.9	28
1941	Carbon Nanodots as a Potential Transport Layer for Boosting Performance of All-Inorganic Perovskite Nanocrystals-Based Photodetector. Crystals, 2021, 11, 717.	2.2	13
1942	Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances, 2021, 11, .	1.3	12
1943	Unraveling the degradation process of 2D passivated and Cs stabilized FAPbI ₃ by optical pump THz probe spectroscopy. Optical Materials Express, 2021, 11, 1874.	3.0	1
1944	Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nature Communications, 2021, 12, 3527.	12.8	38
1945	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	10.4	59

#	Article	IF	CITATIONS
1946	Grain Boundary Perfection Enabled by Pyridinic Nitrogen Doped Graphdiyne in Hybrid Perovskite. Advanced Functional Materials, 2021, 31, 2104633.	14.9	27
1947	Hot electron cooling in InSb probed by ultrafast time-resolved terahertz cyclotron resonance. Physical Review B, 2021, 103, .	3.2	8
1948	Material Requirements for CdSe Wide Bandgap Solar Cells. , 2021, , .		3
1949	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	7.3	15
1950	Tailoring the Optical, Electronic, and Magnetic Properties of MAPbI ₃ through Self-Assembled Fe Incorporation. Journal of Physical Chemistry C, 2021, 125, 15636-15646.	3.1	9
1951	Antisolvent-assisted one-step solution synthesis of defect-less 1D MAPbI3 nanowire networks with improved charge transport dynamics. Journal of Materials Research and Technology, 2021, 13, 162-172.	5.8	4
1952	High-Performance and Stable Perovskite-Based Photoanode Encapsulated by Blanket-Cover Method. ACS Applied Energy Materials, 2021, 4, 7526-7534.	5.1	11
1953	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	12.8	2
1954	The effect of an external magnetic field on the photocatalytic activity of CoFe2O4 particles anchored in carbon cloth. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113317.	3.9	6
1955	Graphene-Assisted Zwitterionic Conjugated Polycyclic Molecular Interfacial Layer Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 5563-5571.	6.7	11
1956	8â€Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100506.	3.7	2
1957	Pathways toward 30% Efficient Singleâ€Junction Perovskite Solar Cells and the Role of Mobile Ions. Solar Rrl, 2021, 5, 2100219.	5.8	48
1958	Study of hybrid organic–inorganic halide perovskite solar cells based on MAI[(PbI2)1â^'x(CuI)x] absorber layers and their long-term stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 20684-20697.	2.2	2
1959	Performance enhancement of all-inorganic carbon-based CsPbI2Br solar cells by using silane modification. Journal of Materials Science: Materials in Electronics, 2021, 32, 20936-20945.	2.2	6
1960	Hot Carrier Dynamics and Charge Trapping in Surface Passivated β-CsPbI ₃ Inorganic Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 6907-6913.	4.6	10
1961	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	6.7	7
1962	High-Performance Perovskite Betavoltaics Employing High-Crystallinity MAPbBr ₃ Films. ACS Omega, 2021, 6, 20015-20025.	3.5	7
1963	Exciton dynamics in monolayer graphene grown on a Cu(111) surface. Npj 2D Materials and Applications, 2021, 5, .	7.9	0

#	Article	IF	CITATIONS
1964	Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells. Solar Energy, 2021, 223, 106-112.	6.1	17
1965	Nanostructured bilayer CuSCN@Cul thin films as efficient inorganic hole transport material for inverted perovskite solar cells. Ceramics International, 2021, 47, 17883-17894.	4.8	6
1966	Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310.	1.8	12
1968	The Recent Progress on Halide Perovskite-Based Self-Powered Sensors Enabled by Piezoelectric and Triboelectric Effects. Nanoenergy Advances, 2021, 1, 3-31.	7.7	27
1969	Giant Bulk Photostriction of Lead Halide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2021, 13, 32263-32269.	8.0	6
1970	Interfacial Embedding of Laserâ€Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24%. Advanced Materials, 2021, 33, e2101590.	21.0	62
1971	Picosecond laser seal welding of perovskite films. Optics and Laser Technology, 2021, 140, 107083.	4.6	4
1972	Giant Bulk Photostriction and Accurate Photomechanical Actuation in Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100837.	7.3	12
1973	Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations. Multiscale Science and Engineering, 2021, 3, 205.	1.7	0
1974	Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8, 4396-4411.	3.4	4
1975	Robust Ultralong Lead Halide Perovskite Microwire Lasers. ACS Applied Materials & Interfaces, 2021, 13, 38458-38466.	8.0	14
1976	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	11.2	16
1977	Impact of Potentialâ€Induced Degradation on Different Architectureâ€Based Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100349.	5.8	14
1978	Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surfaces and Interfaces, 2021, 25, 101287.	3.0	15
1979	Thickness control and photovoltaic properties of CH ₃ NH ₃ PbI ₃ bar-coated thin film. Japanese Journal of Applied Physics, 2022, 61, SB1032.	1.5	7
1980	First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). Journal of Physics and Chemistry of Solids, 2022, 160, 110302.	4.0	64
1981	Constructing Allâ€Inorganic Perovskite/Fluoride Nanocomposites for Efficient and Ultraâ€Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106386.	14.9	32
1982	Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability. , 2021, 3, 1402-1416.		21

# 1983	ARTICLE Revealing Ultrafast Charge-Carrier Thermalization in Tin-Iodide Perovskites through Novel Pump–Push–Probe Terahertz Spectroscopy. ACS Photonics, 2021, 8, 2509-2518.	IF 6.6	Citations
1984	First-principles investigation of CO2, CO, and O2 adsorptions on the (001)-reconstructed surfaces of CsPbX3 (X = Cl, Br, and I) perovskites. Surfaces and Interfaces, 2021, 25, 101264.	3.0	2
1985	Defect passivation and crystallization control of perovskite films for photovoltaic application. Materials Today Nano, 2021, 15, 100118.	4.6	9
1987	Hysteresis-free perovskite solar cells with compact and nanoparticle NiO for indoor application. Solar Energy Materials and Solar Cells, 2021, 227, 111095.	6.2	35
1988	Recent Advances in Flexible Perovskite Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100441.	3.7	28
1989	Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion. Advanced Energy and Sustainability Research, 2021, 2, 2100087.	5.8	9
1990	Mixed Halide Perovskite Films by Vapor Anion Exchange for Spectrally Stable Blue Stimulated Emission. Small, 2021, 17, e2103169.	10.0	11
1991	Fabrications of Halide Perovskite Single-Crystal Slices and Their Applications in Solar Cells, Photodetectors, and LEDs. Crystal Growth and Design, 2021, 21, 5983-5997.	3.0	9
1992	Lithium Polystyrene Sulfonate as a Hole Transport Material in Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2021, 16, 3151-3161.	3.3	4
1993	Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter. Optical and Quantum Electronics, 2021, 53, 1.	3.3	2
1994	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101662.	19.5	77
1995	Grain Boundary Defects Passivated with <i>tert</i> -Butyl Methacrylate for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11298-11305.	5.1	8
1996	2D Organic-Inorganic Hybrid Perovskite Light-Absorbing Layer in Solar Cells. , 0, , .		0
1997	Ternary Hybrid Perovskite Solid Solution Single Crystals: Growth, Composition Determination and Phase Stability in Highly Moist Atmosphere. Chemistry - A European Journal, 2021, 27, 13765-13773.	3.3	2
1998	Encapsulation Strategies for Highly Stable Perovskite Solar Cells under Severe Stress Testing: Damp Heat, Freezing, and Outdoor Illumination Conditions. ACS Applied Materials & Interfaces, 2021, 13, 45455-45464.	8.0	34
1999	Low-field onset of Wannier-Stark localization in a polycrystalline hybrid organic inorganic perovskite. Nature Communications, 2021, 12, 5719.	12.8	6
2000	Modified colored semi-transparent perovskite solar cells with enhanced stability. Journal of Alloys and Compounds, 2021, 875, 159781.	5.5	11
2001	Superhalogen Boron Tetrafluoride Surface Modification Reduces the Formation of Organic Cation Vacancies on the Surface of Halide Perovskite Films. Journal of Physical Chemistry C, 2021, 125, 21223-21233.	3.1	6

		15	Circuration
# 2002	ARTICLE A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100405.	IF 11.6	CITATIONS
2003	Materials and Methods for Highâ€Efficiency Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100455.	5.8	51
2004	Influence of charge transporting layers on ion migration and interfacial carrier recombination in CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2021, 784, 139094.	2.6	3
2005	Sensing Mechanism of H2O, NH3, and O2 on the Stability-Improved Cs2Pb(SCN)2Br2 Surface: A Quantum Dynamics Investigation. ACS Omega, 2021, 6, 24244-24255.	3.5	0
2006	A critical review on the moisture stability of halide perovskite films and solar cells. Chemical Engineering Journal, 2022, 430, 132701.	12.7	31
2007	Role of defects in organic–inorganic metal halide perovskite: detection and remediation for solar cell applications. Emergent Materials, 2022, 5, 987-1020.	5.7	10
2008	Organicâ€Inorganic Perovskite Films and Efficient Planar Heterojunction Solar Cells by Magnetron Sputtering. Advanced Science, 2021, 8, e2102081.	11.2	19
2009	Multipulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8732-8739.	4.6	8
2010	Tailoring hot carrier cooling and recombination dynamics of mixed-halide-perovskite by incorporating Au@CZTS core-shell nanocrystal. Journal Physics D: Applied Physics, O, , .	2.8	3
2011	Sensitive, stable, and biocompatible photodetector based on a poly(vinyl alcohol)-starch/magnetite nanocomposite. Optik, 2021, 242, 167247.	2.9	1
2012	Deactivating grain boundary defect by bifunctional polymer additive for humid air-synthesized stable halide perovskite solar cells. Solar Energy, 2021, 225, 211-220.	6.1	5
2013	Selfâ€Assembled Perovskite Nanoislands on CH ₃ NH ₃ Pbl ₃ Cuboid Single Crystals by Energetic Surface Engineering. Advanced Functional Materials, 2021, 31, 2105542.	14.9	9
2014	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	4.7	14
2015	Boosting the Performance of Self-Powered CsPbCl ₃ -Based UV Photodetectors by a Sequential Vapor-Deposition Strategy and Heterojunction Engineering. ACS Applied Materials & Interfaces, 2021, 13, 45744-45757.	8.0	28
2016	Favorable grain growth of thermally stable formamidinium-methylammonium perovskite solar cells by hydrazine chloride. Chemical Engineering Journal, 2022, 430, 132730.	12.7	21
2017	Ultrafast photo-induced phonon hardening due to Pauli blocking in MAPbl ₃ single-crystal and polycrystalline perovskites. JPhys Materials, 2021, 4, 044017.	4.2	4
2018	Temperatureâ€dependent structural fluctuation and its effect on the electronic structure and charge transport in hybrid perovskite <scp>CH₃NH₃PbI₃</scp> . Journal of Computational Chemistry, 2021, 42, 2213-2220.	3.3	12
2019	Advances in surface passivation of perovskites using organic halide salts for efficient and stable solar cells. Surfaces and Interfaces, 2021, 26, 101420.	3.0	10

# 2020	ARTICLE Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the	IF 2.7	Citations
2020	charge transport layers. Physica B: Condensed Matter, 2021, 618, 413187. Ultra-low lattice thermal conductivity and high thermoelectric efficiency in Cs2SnX6 (X=Br, I): A DFT study. Materials Science in Semiconductor Processing, 2021, 133, 105984.	4.0	9
2022	Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. Journal of Colloid and Interface Science, 2021, 600, 691-700.	9.4	20
2023	Ultrafast photo-induced carrier dynamics of FAPbI3-MAPbBr3 perovskite films fabricated with additives and a hole transport material. Chemical Physics Letters, 2021, 784, 139100.	2.6	4
2024	Guanidinium cation passivated Pb-Cu alloyed perovskite for efficient low-toxicity solar cells. Applied Surface Science, 2021, 567, 150778.	6.1	6
2025	Enhancing the performance of CsPbIBr2 solar cells through zinc halides doping. Synthetic Metals, 2021, 281, 116918.	3.9	5
2026	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	6.0	17
2027	Efficient colorful perovskite solar cells designed by 2D and 3D ordered titania inverse opals. Journal of Power Sources, 2021, 512, 230488.	7.8	5
2028	Blending isomers of fluorine-substituted sulfonyldibenzene as hole transport materials to achieve high efficiency beyond 21% in perovskite solar cells. Chemical Engineering Journal, 2021, 424, 130396.	12.7	23
2029	Emergence of bulk photovoltaic effect in anion-ordered perovskite sulfur diiodide MASbSI2 with spontaneous out-of-plane ferroelectricity. Materials Today Physics, 2021, 21, 100459.	6.0	4
2030	Manipulating hot carrier behavior of MAPbBr3 nanocrystal by photon flux and temperature. Journal of Luminescence, 2021, 239, 118332.	3.1	6
2031	Interface modification by ethanolamine interfacial layer for efficient planar structure perovskite solar cells. Journal of Power Sources, 2021, 513, 230549.	7.8	11
2032	Laser induced core–shell liquid metal quantum dots for high-efficiency carbon-based perovskite solar cells. Applied Surface Science, 2021, 565, 150470.	6.1	8
2033	Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Computational Materials Science, 2021, 200, 110823.	3.0	10
2034	Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. Journal of Alloys and Compounds, 2021, 885, 160900.	5.5	5
2035	Perovskite light-emitting diodes with low roll-off efficiency via interfacial ionic immobilization. Chemical Engineering Journal, 2022, 429, 132347.	12.7	10
2036	Gamma–ray irradiation of lead iodide precursor for enhanced perovskite crystalline properties. Applied Surface Science, 2022, 571, 151263.	6.1	3
2037	Perovskite Materials in Photovoltaics. , 2021, , 1703-1724.		Ο

#	Article	IF	CITATIONS
2038	Spectroscopic investigations of electron and hole dynamics in MAPbBr ₃ perovskite film and carrier extraction to PEDOT hole transport layer. Physical Chemistry Chemical Physics, 2021, 23, 13011-13022.	2.8	6
2039	Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels. Sustainable Energy and Fuels, 2021, 5, 4661-4667.	4.9	34
2040	Simulation of Optimized High-Current Tandem Solar-Cells With Efficiency Beyond 41%. IEEE Access, 2021, 9, 49724-49737.	4.2	28
2041	Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuOx as an efficient hole transporting layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 2312-2325.	2.2	7
2042	Rational strategies toward efficient and stable lead-free tin halide perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 4107-4127.	5.9	11
2044	Evolution of ferroelectric domains in methylammonium lead iodide and correlation with the performance of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 21845-21858.	10.3	7
2045	Perovskite CH ₃ NH ₃ PbI _{3–X} Cl _x Solar Cells and their Degradation (Part 1: A Short Review). Latvian Journal of Physics and Technical Sciences, 2021, 58, 44-52.	0.6	1
2046	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	11.2	155
2047	Fundamentals of tin iodide perovskites: a promising route to highly efficient, lead-free solar cells. Journal of Materials Chemistry A, 2021, 9, 11812-11826.	10.3	32
2048	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	5.5	24
2049	Porous Gold Nanolayer Coated Halide Metal Perovskite-Based Broadband Metamaterial Absorber in the Visible and Near-IR Regime. IEEE Access, 2021, 9, 8912-8919.	4.2	12
2050	Highly Mobile Large Polarons in Black Phase CsPbl ₃ . ACS Energy Letters, 2021, 6, 568-573.	17.4	40
2051	Mechanism for Enhancing Photocurrent of Hot Electron Collection Solar Cells by Adding LiF on the Outmost MAPbI ₃ Perovskite Layer. IEEE Journal of Photovoltaics, 2021, 11, 99-103.	2.5	5
2052	Lead-Free Alloyed Double-Perovskite Nanocrystals of Cs ₂ (Na _{<i>x</i>} Ag _{1–<i>x</i>})BiBr ₆ with Tunable Band Gap. Journal of Physical Chemistry C, 2021, 125, 1954-1962.	3.1	36
2053	Bright Single-Layer Perovskite Host–Ionic Guest Light-Emitting Electrochemical Cells. Chemistry of Materials, 2021, 33, 1201-1212.	6.7	15
2054	Energy Barriers Restrict Charge Carrier Motion in MAPI Perovskite Films. Advanced Optical Materials, 2020, 8, 2000036.	7.3	12
2055	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	5.8	32
2056	Perovskite Materials in Photovoltaics. , 2020, , 1-22.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
2057	Magnetic, Electronic, and Optical Properties of Perovskite Materials. Materials Horizon	s, 2020, , 43-59.	0.6	6
2058	Enhancing Chemical Stability and Suppressing Ion Migration in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells <i>via</i> Description Attachment of Polyesters on Grain Boundaries. Chemistry of Materials, 2020, 32, 5104		6.7	64
2059	Small Electron Polarons in CsPbBr ₃ : Competition between Electron Locali Delocalization. Chemistry of Materials, 2020, 32, 8393-8400.	zation and	6.7	15
2060	Enhanced Perovskite Solar Cell Efficiency Via the Electric-Field-Induced Approach. ACS Materials & amp; Interfaces, 2020, 12, 27258-27267.	Applied	8.0	19
2061	Characterization of Capacitance, Transport and Recombination Parameters in Hybrid Po Organic Solar Cells. RSC Energy and Environment Series, 2016, , 57-106.	erovskite and	0.5	9
2062	Photophysics of Hybrid Perovskites. RSC Energy and Environment Series, 2016, , 107-1	40.	0.5	3
2063	Chapter 8. First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Ele Dynamical Effects. RSC Energy and Environment Series, 2016, , 234-296.	ectronic and	0.5	2
2064	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RS Materials, 2020, , 41-82.	C Smart	0.1	2
2065	Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. Journal of Mat Chemistry A, 2017, 5, 12158-12167.	erials	10.3	54
2066	Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs fo solar concentrators. Journal of Materials Chemistry A, 2019, 7, 4872-4880.	r luminescent	10.3	45
2067	On the effect of atomic layer deposited Al ₂ O ₃ on the enviro degradation of hybrid perovskite probed by positron annihilation spectroscopy. Journal Chemistry C, 2019, 7, 5275-5284.	nmental of Materials	5.5	11
2068	All-inorganic perovskite CsPbBr ₃ microstructures growth <i>via</i> chem deposition for high-performance photodetectors. Nanoscale, 2019, 11, 21386-21393.	cal vapor	5.6	51
2069	Seed crystal free growth of high-quality double cation – double halide perovskite sing optoelectronic applications. Journal of Materials Chemistry C, 2020, 8, 8275-8283.	gle crystals for	5.5	7
2070	Composition effects on structure and optical properties in double perovskite derivative semiconductors Cs2SnI6â [^] xBrx (x = 0â \in 6). APL Materials, 2020, 8, .	S	5.1	16
2071	Cryogenic spatial–temporal imaging of surface photocarrier dynamics in MAPbI3 film grain level. AIP Advances, 2020, 10, .	is at the single	1.3	2
2072	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32,	042003.	2.6	44
2073	Study of compositional stability and related optical properties of perovskite CH ₃ NH ₃ PbBr ₃ films fabricated via two-step sol weakly coordinating isopropanol solvent. Physica Scripta, 2020, 95, 105705.	-gel process using	2.5	2
2074	Theoretical investigation of halide perovskites for solar cell and optoelectronic applicat Chinese Physics B, 2020, 29, 108401.	ions*.	1.4	15

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2075	HI hydrolysis-derived intermediate as booster for CsPbI ₃ perovskite: from structure, film fabrication to device performance. Journal of Semiconductors, 2020, 41		3.7	19
2076	Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductor symmetry perspective. JPhys Materials, 2020, 3, 042001. Time-resolved photoemission spectroscopy of electronic cooling and localization in <n< td=""><td></td><td>4.2</td><td>29</td></n<>		4.2	29
2077	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:msub> < mm mathvariant="bold">CH < mml:mn>3 < /mml:msub> < mml:msub> < mathvariant="bold">NH < mml:mn>3 < /mml:msub> < mml:msub> < mathvariant="bold">PbI < mml:mn> 3 < /mml:msub> < /mml:mrow>	nl:mi xmml:mi xmml:mi	2.4	11
2078	crystals. Physical Review Materials, 2017, 1, . Octahedral tilting instabilities in inorganic halide perovskites. Physical Review Materials	s, 2018, 2, .	2.4	73
2079	First-principles thermodynamics study of phase stability in inorganic halide perovskite solutions. Physical Review Materials, 2018, 2, .	solid	2.4	27
2080	Time-resolved imaging of carrier transport in halide perovskite thin films and evidence nondiffusive transport. Physical Review Materials, 2019, 3, .	for	2.4	10
2081	Lattice mode symmetry analysis of the orthorhombic phase of methylammonium lead polarized Raman. Physical Review Materials, 2020, 4, .	iodide using	2.4	20
2082	Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic a and quantum information technologies: a review. Advanced Photonics, 2020, 2, .	applications	11.8	30
2083	Numerical analysis of inverted-structure perovskite solar cell based on all-inorganic cha transport layers. Journal of Photonics for Energy, 2019, 9, 1.	irge	1.3	6
2084	Efficient intraband hot carrier relaxation in Sn and Pb perovskite semiconductors mediaelectron-phonon coupling. , 2019, , .	ated by strong		1
2085	A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar (Proceedings of the Nature Research Society, 0, 2, .	Cells.	0.0	70
2086	Lasing properties of cesium lead halide perovskite nanowires fabricated by one-drop se ion-exchange methods. Optics Express, 2018, 26, 33856.	lf-assembly and	3.4	10
2087	Ultrafast carrier dynamics in all-inorganic CsPbBr ₃ perovskite across the pressure-induced phase transition. Optics Express, 2019, 27, A995.		3.4	29
2088	Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Expr 8878.	ess, 2020, 28,	3.4	8
2089	Random lasing in cesium lead iodide (CsPbI ₃) thin films with no surface p Express, 2020, 28, 21805.	assivation. Optics	3.4	6
2090	Perovskite nanowire based multijunction solar cell. , 2015, , .			2
2091	Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. Nanophotonics, 2021, 10, 1943-1965.		6.0	16
2092	Recent advancements and perspectives on light management and high performance ir light-emitting diodes. Nanophotonics, 2021, 10, 2103-2143.	perovskite	6.0	35

#	Article	IF	Citations
2093	Photon recycling in perovskite solar cells and its impact on device design. Nanophotonics, 2021, 10, 2023-2042.	6.0	29
2094	Progress in perovskite based solar cells: scientific and engineering state of the art. Reviews on Advanced Materials Science, 2020, 59, 10-25.	3.3	9
2095	Back-Contact Perovskite Solar Cells. , 2019, 1, 1-10.		4
2097	Direction-selective electron beam damage to CH ₃ NH ₃ PbI ₃ based on crystallographic anisotropy. Applied Physics Express, 2020, 13, 091001.	2.4	7
2098	Energy Transfer between Perovskites and CdSe/ZnS Core–shell Quantum Dots. Applied Science and Convergence Technology, 2020, 29, 28-30.	0.9	2
2099	Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038401.	0.5	16
2100	progress in electron-transport materials in application of perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038802.	0.5	12
2101	Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 118801.	0.5	3
2102	Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 228801.	0.5	3
2103	Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb(Br _{<i>x</i>} I _{Ia^^<i>x</i>}) ₃ photodetector. Journal of Materials Chemistry C, 2021, 9, 15189-15200.	5.5	23
2104	Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23818-23826.	2.8	6
2105	Formation of cubic perovskite alloy containing the ammonium cation of 2D perovskite for high performance solar cells with improved stability. RSC Advances, 2021, 11, 32590-32603.	3.6	4
2106	Terahertz Properties of Organometallic Perovskite/Graphene Oxide Composite Films. , 2021, , .		0
2107	Ptâ€Induced Defects Curing on BiVO ₄ Photoanodes for Nearâ€Threshold Charge Separation. Advanced Energy Materials, 2021, 11, 2102384.	19.5	76
2108	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	2.8	9
2109	Defect suppression and energy level alignment in formamidinium-based perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 65-72.	12.9	19
2110	Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics. Journal Physics D: Applied Physics, 2022, 55, 113002.	2.8	17
2111	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	19.5	40

#	Article	IF	CITATIONS
2112	Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres. Optics Express, 2021, 29, 35366.	3.4	6
2113	Ambient-environment processed perovskite solar cells: A review. Materials Today Physics, 2021, 21, 100557.	6.0	12
2114	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials, 2022, 34, e2104661.	21.0	37
2115	Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Scientific Reports, 2021, 11, 19829.	3.3	40
2116	Improving the Longâ€Term Stability of Doped Spiroâ€Type Holeâ€Transporting Materials in Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100650.	5.8	6
2117	A Regularityâ€Based Fullerene Interfacial Layer for Efficient and Stable Perovskite Solar Cells via Bladeâ€Coating. Advanced Functional Materials, 2022, 32, 2105917.	14.9	14
2118	Carbon Electrodes in Perovskite Photovoltaics. Materials, 2021, 14, 5989.	2.9	13
2119	The roles of surface defects in MAPbBr3 and multi-structures in MAPbI3. Optical Materials, 2021, 122, 111600.	3.6	6
2120	Application and Development of Hybrid Perovskite Materials in the Field of Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 673.	1.3	3
2121	Halide Perovskite Lasers. , 2017, , .		0
2122	Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2017, 20, 153-193.	0.2	0
2123	Polymer-Passivated Inorganic Cesium Lead Halide Perovskites for High-Voltage and High-Efficiency Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
2124	Rashba effect in perovskites and its influences on carrier recombination. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158506.	0.5	4
2125	Superior photodetector based on solution-synthesized perovskite film. , 2019, , .		1
2126	Solar elements based on organic and organo-inorganic materials. Surface, 2019, 11(26), 270-343.	0.2	0
2127	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.6	1
2128	Impact of trap filling on carrier diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>MAPb </mml:mi> <mml:msub> <mn single crystals. Physical Review Materials, 2020, 4, .</mn </mml:msub></mml:mrow></mml:math 	nl:⊉nite Br <td>msal:mi><m< td=""></m<></td>	m s al:mi> <m< td=""></m<>
2129	Trifluoromethylâ€Group Bearing, Hydrophobic Bulky Cations as Defect Passivators for Highly Efficient, Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100712.	5.8	11

#	Article	IF	CITATIONS
2130	Optimization of Lead Base Perovskite Solar Cell with ZnO and CuI as Electron Transport Material and Hole Transport Material Using SCAPS-1D. Malaysian Journal of Applied Sciences, 2021, 6, 69-84.	0.2	1
2131	Perovskite-based solar cells fabricated from TiO2 nanoparticles hybridized with biomaterials from mollusc and diatoms. Chemosphere, 2022, 291, 132692.	8.2	7
2132	Deciphering the Carrier Transport Properties in Twoâ€Đimensional Perovskites via Surfaceâ€Enhanced Raman Scattering. Small, 2021, 17, e2103756.	10.0	4
2133	Distinguishing bulk and surface recombination in CdTe thin films and solar cells using time-resolved terahertz and photoluminescence spectroscopies. Journal of Applied Physics, 2021, 130, .	2.5	5
2134	Laserâ€Assisted Synthesis of Ag ₂ Sâ€Quantumâ€Dotâ€inâ€Perovskite Matrix and Its Application in Broadband Photodetectors. Advanced Optical Materials, 2022, 10, 2101535.	7.3	10
2135	Defect Passivation through Cyclohexylethylamine Post-treatment for High-Performance and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12848-12857.	5.1	6
2136	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. , 2020, , 259-281.		1
2137	The Status Quo of Rashba Phenomena in Organic–Inorganic Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 361-367.	4.6	7
2138	Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy and Environmental Science, 2022, 15, 13-55.	30.8	158
2139	Photovoltaics. Springer Theses, 2020, , 3-20.	0.1	0
2140	Lead-Free Perovskite Solar Cells. , 2020, , 1-26.		1
2141	Perovskite Quantum Dots Based Lasing-Prospects and Challenges. Springer Series in Materials Science, 2020, , 279-335.	0.6	0
2142	Device simulation of all-perovskite four-terminal tandem solar cells: towards 33% efficiency. EPJ Photovoltaics, 2021, 12, 4.	1.6	3
2143	Capturing excitonic and polaronic effects in lead iodide perovskites using many-body perturbation theory. Journal of Materials Chemistry C, 2021, 9, 17113-17123.	5.5	8
2144	Solvation of NiOx for hole transport layer deposition in perovskite solar cells. Nanotechnology, 2021, 33, .	2.6	2
2151	Comparison of Alkali Metal Cation (Rb/K) Doping Effect on the Structural, Optical and Photovoltaic Behavior of Methylammonium Lead Triiodide Perovskite Thin Films. Optik, 2021, , 168294.	2.9	0
2152	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	5.8	26
2153	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	14.9	18

#	Article	IF	Citations
2154	Improved Efficiency of Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Carbon by Introduction of a Dopingâ€Free Polymeric Hole Conductor. Solar Rrl, 2022, 6, 2100773.	5.8	6
2156	Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions. Journal of Physical Chemistry C, 2021, 125, 25316-25326.	3.1	6
2157	Optical and Structural Effects Due to the Control of Organic and Inorganic Composition Percentage in CH3NH3PbBr3 Perovskite. Iranian Journal of Science and Technology, Transaction A: Science, 0, , .	1.5	1
2159	Metal halide perovskites for photocatalysis applications. Journal of Materials Chemistry A, 2022, 10, 407-429.	10.3	61
2160	A multifunctional 2D black phosphorene-based platform for improved photovoltaics. Chemical Society Reviews, 2021, 50, 13346-13371.	38.1	25
2161	Interfacial fracture of hybrid organic–inorganic perovskite solar cells. Extreme Mechanics Letters, 2022, 50, 101515.	4.1	7
2162	Cs incorporation via sequential deposition for stable and scalable organometal halide perovskite solar cells. Journal of Power Sources, 2022, 520, 230783.	7.8	6
2163	Top Thermal Annealing of 2D/3D Lead Halide Perovskites: Anisotropic Photoconductivity and Vertical Gradient of Dimensionality. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 263-269.	0.3	3
2165	High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering. Journal of Colloid and Interface Science, 2022, 608, 3151-3158.	9.4	34
2166	Traversing Excitonic and Ionic Landscapes: Reduced-Dimensionality-Inspired Design of Organometal Halide Semiconductors for Energy Applications. Accounts of Chemical Research, 2021, 54, 4371-4382.	15.6	7
2167	Role of Phase Nanosegregation in the Photoluminescence Spectra of Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 11659-11665.	4.6	1
2168	High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2. Journal of Colloid and Interface Science, 2022, 609, 547-556.	9.4	13
2169	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	68
2170	Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nature Communications, 2021, 12, 6955.	12.8	72
2171	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 2022, 34, e2101833.	21.0	55
2172	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	28
2173	Halogen-Manipulated Interfacial Charge Transport of π-Conjugated Molecule-Lead Halide Hybrids. ACS Applied Energy Materials, 0, , .	5.1	4
2174	Nanoporous anodic alumina with ohmic contact between substrate and infill: Application to perovskite solar cells. Energy Science and Engineering, 2022, 10, 30-42.	4.0	3

#	Article	IF	CITATIONS
2175	Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden–Popper Perovskites for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	8.0	6
2176	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. Journal of Physical Chemistry Letters, 2021, 12, 11636-11644.	4.6	13
2177	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	4.1	20
2178	One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr ₃ Microsquare and Micropyramid. ACS Nano, 2021, 15, 19613-19620.	14.6	11
2179	X-Ray-Induced Modification of the Photophysical Properties of MAPbBr ₃ Single Crystals. ACS Applied Materials & Interfaces, 2021, 13, 58301-58308.	8.0	15
2180	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	16.6	40
2181	Impedance spectroscopy for perovskite solar cells: characterisation, analysis, and diagnosis. Journal of Materials Chemistry C, 2022, 10, 742-761.	5.5	68
2182	Generation of Amplified Spontaneous Emission in Lead Halide Perovskite Semiconductors. , 2021, , 1-40.		0
2183	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	38.1	97
2184	Cooperative Effects of Dopant-Free Hole-Transporting Materials and Polycarbonate Film for Sustainable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
2185	Design of dopant-free small molecular hole transport materials for perovskite solar cells: a viewpoint from defect passivation. Journal of Materials Chemistry A, 2022, 10, 1150-1178.	10.3	44
2186	Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap. Nanoscale, 2022, 14, 1954-1961.	5.6	9
2187	Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy and Environmental Science, 2022, 15, 714-726.	30.8	68
2188	Indirect-to-Direct Band Gap Transition and Optical properties of Cs2BiAgX6 with Mechanical Strains: The Density Functional Theory Investigation. Journal of Materials Research and Technology, 2022, 17, 425-425.	5.8	5
2189	High-efficiency modified tandem solar cell: Simulation of two-absorbers bottom subcell. Optik, 2022, 251, 168458.	2.9	3
2190	Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93, 106846.	16.0	29
2191	2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy, 2022, 94, 106914.	16.0	31
2192	Efficient planar perovskite solar cells using Schiff base complex as sensitizer for TiO ₂ and ZnO layers. , 2020, , .		1

# 2193	ARTICLE Two-Terminal Perovskite/Silicon Solar Cell: Simulation and Analysis. , 2021, , .	IF	Citations
2194	A copper-based 2D hybrid perovskite solar absorber as a potential eco-friendly alternative to lead halide perovskites. Journal of Materials Chemistry C, 2022, 10, 3738-3745.	5.5	8
2195	Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells. Journal of Semiconductors, 2022, 43, 010203.	3.7	3
2196	Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chemical Reviews, 2022, 122, 4257-4321.	47.7	47
2197	Suppressing Residual Lead Iodide and Defects in Sequentialâ€Đeposited Perovskite Solar Cell via Bidentate Potassium Dichloroacetate Ligand. ChemSusChem, 2022, 15, .	6.8	18
2198	Designing Ionic Liquids as the Solvent for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22870-22878.	8.0	18
2199	Controlling the Grain Size of Dion–Jacobson-Phase Two-Dimensional Layered Perovskite for Memory Application. ACS Applied Materials & Interfaces, 2022, 14, 4371-4377.	8.0	15
2200	All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603, 73-78.	27.8	544
2201	Vacuum Quenching for Large-Area Perovskite Film Deposition. ACS Applied Materials & Interfaces, 2022, 14, 2949-2957.	8.0	15
2202	Effect of annealing treatment of PC60BM layer on inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 5351-5358.	2.2	1
2203	Effect of Perovskite CsPbBr ₃ Concentration and Coating Method on Thin Film Morphology and its Photovoltaic Performance. Materials Science Forum, 0, 1051, 31-37.	0.3	0
2204	1,8â€Octanediamine Dihydroiodideâ€Mediated Grain Boundary and Interface Passivation in Twoâ€Stepâ€Processed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	6
2205	A Universal Approach for Potassiumâ \in Passivated 2D Perovskites. Solar Rrl, 2022, 6, .	5.8	2
2206	Direct measurement of radiative decay rates in metal halide perovskites. Energy and Environmental Science, 2022, 15, 1211-1221.	30.8	7
2207	Carrier dynamics in two-dimensional perovskites: Dion–Jacobson <i>vs.</i> Ruddlesden–Popper thin films. Journal of Materials Chemistry A, 2022, 10, 3069-3076.	10.3	30
2208	A highâ€efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Scientific Reports, 2022, 12, 697.	3.3	26
2209	Enhancement of perovskite solar cell performance by external downâ€conversion of Euâ€complex film. International Journal of Energy Research, 2022, 46, 7996-8006.	4.5	2
2210	Downscaling an open quantum system: An atomistic approach applied to photovoltaics. , 2022, , 147-181.		0

щ.		15	CITATIONS
#	ARTICLE Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based	IF	CITATIONS
2211	MAPbl3 perovskites solar cells. Solar Energy, 2022, 231, 1048-1060.	6.1	9
2212	Study of MAPb(I1â^'xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode. Journal of Materials Science: Materials in Electronics, 2022, 33, 2654.	2.2	0
2213	Organometal halide perovskite photovoltaics. , 2022, , 273-317.		1
2214	Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA ₂ PbI ₄ interfacial layer. Physical Chemistry Chemical Physics, 2022, 24, 1675-1684.	2.8	5
2215	Defect Passivation Using Trichloromelamine for Highly Efficient and Stable Perovskite Solar Cells. Polymers, 2022, 14, 398.	4.5	7
2216	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	6.3	9
2217	In Situ Low-Temperature Growth and Superior Luminescent Property of Well-Aligned, High-Quality Cubic CsPbBr ₃ Micrometer-Scale Single Crystal Arrays on Transparent Conductive Substrates. Journal of Physical Chemistry Letters, 2022, 13, 1114-1122.	4.6	2
2218	Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. Bulletin of the Chemical Society of Japan, 2022, 95, 73-103.	3.2	39
2219	Green solvent engineering for enhanced performance and reproducibility in printed carbon-based mesoscopic perovskite solar cells and modules. Materials Advances, 2022, 3, 1125-1138.	5.4	16
2220	Numerical investigation of graphene and <scp> 2Dâ€MoS ₂ </scp> facilitated perovskite/silicon "pâ€iâ€n―structure for solar cell application. International Journal of Energy Research, 2022, 46, 7399-7410.	4.5	2
2221	Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study. Journal of Chemical Physics, 2022, 156, 014702.	3.0	2
2222	Cation-Doping in Organic–Inorganic Perovskites to Improve the Structural Stability from Theoretical Prediction. Journal of Physical Chemistry Letters, 2022, 13, 1180-1186.	4.6	2
2223	A GGAÂ+ÂvdW study on electronic properties and optoelectronic functionality of Cd-doped tetragonal CH3NH3PbI3 for photovoltaics. Chemical Physics, 2022, 556, 111461.	1.9	1
2224	Stable and efficient Ti3C2 MXene/MAPbI3-HI system for visible-light-driven photocatalytic HI splitting. Journal of Power Sources, 2022, 522, 231006.	7.8	13
2225	Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434.	6.1	74
2226	Electronic and Photovoltaic Properties of Superlattices Constructed by Organic–Inorganic Perovskites: a Theoretical Perspective. ACS Applied Energy Materials, 2022, 5, 2430-2441.	5.1	3
2227	In Situ Methylammonium Chloride-Assisted Perovskite Crystallization Strategy for High-Performance Solar Cells. , 2022, 4, 448-456.		13
2228	Electrochemical characterization of halide perovskites: Stability & doping. Materials Today Advances, 2022, 13, 100213.	5.2	5

#	Article	IF	CITATIONS
2229	Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 158, 112146.	16.4	23
2230	Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells. Applied Surface Science, 2022, 584, 152651.	6.1	15
2231	CH ₃ NH ₃ PbI ₃ -based Perovskite Material Patterning and Thin-Film Transistor Fabrication. Applied Science and Convergence Technology, 2022, 31, 23-27.	0.9	1
2232	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	5.1	17
2233	Two-dimensional material-based printed photonics: a review. 2D Materials, 2022, 9, 042003.	4.4	5
2234	Cooperative effects of Dopant-Free Hole-Transporting materials and polycarbonate film for sustainable perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135197.	12.7	13
2235	Improving the Performance and Stability of Perovskite Solar Cells through Buried Interface Passivation Using Potassium Hydroxide. ACS Applied Energy Materials, 2022, 5, 1914-1921.	5.1	11
2236	Guanidinium-assisted crystallization modulation and reduction of open-circuit voltage deficit for efficient planar FAPbBr3 perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135181.	12.7	15
2237	Synergistic effect of surface active agent in defect passivation by for ambient air-synthesized halide perovskite solar cells. Journal of Power Sources, 2022, 524, 231038.	7.8	5
2238	Passivating the vacancy defects of CsPbCl ₃ polycrystalline films by a Cl-containing ionic liquid for self-powered, charge-transport-layer-free UV photodetectors. Journal of Materials Chemistry C, 2022, 10, 5693-5706.	5.5	16
2239	Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response. Nanoscale, 2022, 14, 6402-6416.	5.6	8
2240	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A, 2022, 10, 8159-8171.	10.3	19
2241	NiCoP modified lead-free double perovskite Cs ₂ AgBiBr ₆ for efficient photocatalytic hydrogen generation. New Journal of Chemistry, 2022, 46, 7395-7402.	2.8	14
2242	Defect healing <i>via</i> a gradient cooling strategy for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 4276-4285.	5.5	7
2243	White-emitting film of diblock copolymer micelles with perovskite nanocrystals. RSC Advances, 2022, 12, 6389-6395.	3.6	1
2244	Short Photoluminescence Lifetimes Linked to Crystallite Dimensions, Connectivity, and Perovskite Crystal Phases. Journal of Physical Chemistry C, 2022, 126, 3466-3474.	3.1	4
2245	Phase-Pure α-FAPbI ₃ for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 1845-1854.	4.6	27
2246	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	20

#	Article	IF	CITATIONS
2247	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	17.4	52
2248	Revealing the quasiparticle electronic and excitonic nature in cubic, tetragonal, and hexagonal phases of FAPbI ₃ . AIP Advances, 2022, 12, 025330.	1.3	2
2249	<i>Ab initio</i> nonadiabatic dynamics of semiconductor materials via surface hopping method. Chinese Journal of Chemical Physics, 2022, 35, 16-37.	1.3	1
2250	Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Science Bulletin, 2022, 67, 794-802.	9.0	13
2251	Photo-induced enhancement of lattice fluctuations in metal-halide perovskites. Nature Communications, 2022, 13, 1019.	12.8	5
2252	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	5.1	11
2253	Mini-review on all-inorganic lead-based perovskite solar cells: challenges and opportunities for production and upscaling. Emergent Materials, 2022, 5, 207-225.	5.7	6
2254	Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Advanced Optical Materials, 2022, 10, .	7.3	23
2255	Photocatalytic Anaerobic Oxidation of Aromatic Alcohols Coupled With H2 Production Over CsPbBr3/GO-Pt Catalysts. Frontiers in Chemistry, 2022, 10, 833784.	3.6	8
2256	Device physics of homojunction perovskite solar cells: a design omitting all the charge transport layers with efficiency exceeding 26.3%. Journal Physics D: Applied Physics, 0, , .	2.8	4
2257	Defect tolerance in halide perovskites: A first-principles perspective. Journal of Applied Physics, 2022, 131, .	2.5	35
2258	Atomic substitution effects of inorganic perovskites for optoelectronic properties modulations. EcoMat, 2022, 4, .	11.9	6
2259	Acetylammonium chloride as an additive for crystallization control and defect passivation in MAPbI ₃ based perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 265501.	2.8	7
2260	Methylamine-Based Method to Deposit MAPbI ₃ Nanoscale-Thick Films for Efficient Perovskite Solar Cells with Carbon Electrodes. ACS Applied Nano Materials, 2022, 5, 4112-4118.	5.0	4
2261	Physical engineering of antiâ€solvents in perovskite precipitation for enhanced photosensitive affinity. International Journal of Energy Research, 2022, 46, 9748-9760.	4.5	3
2262	Nonlocal Screening Dictates the Radiative Lifetimes of Excitations in Lead Halide Perovskites. Nano Letters, 2022, 22, 2398-2404.	9.1	11
2263	Ambipolar Photoresponse of CsPbX ₃ -ZnO (X = Cl, Br, and I) Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 1525-1532.	4.3	9
2264	High Efficiency Quasiâ€⊋D/3D Pb–Ba Perovskite Solar Cells via Phenethylammonium Chloride Addition. Solar Rrl, 2022, 6, .	5.8	4

#	Article	IF	CITATIONS
2265	Impact of Cesium Concentration on Optoelectronic Properties of Metal Halide Perovskites. Materials, 2022, 15, 1936.	2.9	10
2266	Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. Nanomaterials, 2022, 12, 985.	4.1	18
2267	Highly Efficient and Ultrafast Terahertz Modulation in Perovskite Hybrid Structure. ACS Applied Electronic Materials, 2022, 4, 1832-1840.	4.3	2
2268	Broadband plasmonic absorption enhancement of perovskite solar cells with embedded Au@SiO ₂ @graphene core–shell nanoparticles. Semiconductor Science and Technology, 2022, 37, 055002.	2.0	9
2269	Spacer Organic Cation Engineering for Quasiâ€⊋D Metal Halide Perovskites and the Optoelectronic Application. Small Structures, 2022, 3, .	12.0	26
2270	Enhanced p-Type Conductivity of NiO _{<i>x</i>} Films with Divalent Cd Ion Doping for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17434-17443.	8.0	13
2271	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
2272	Degradation of Perovskite Photovoltaics Manifested in the Cross-Sectional Potential Profile Studied by Quantitative Kelvin Probe Force Microscopy. ACS Applied Energy Materials, 2022, 5, 4232-4239.	5.1	5
2273	A Novel Solvent for Multistep Solutionâ€Processed Planar CsPbBr ₃ Perovskite Solar Cells Using In ₂ S ₃ as Electron Transport Layer. Energy Technology, 2022, 10, .	3.8	6
2274	Multifunctional zwitterion modified SnO2 nanoparticles for efficient and stable planar perovskite solar cells. Organic Electronics, 2022, 106, 106519.	2.6	5
2275	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chemical Engineering Journal, 2022, 442, 136267.	12.7	9
2276	Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells. Solar Energy, 2022, 236, 576-585.	6.1	13
2277	Light emission of self-trapped excitons from ion tracks in silica glass: Interplay between Auger recombination, exciton formation, thermal dissociation, and hopping. Acta Materialia, 2022, 229, 117829.	7.9	2
2278	display="inline" id="d1e601" altimg="si3.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="bold">3</mml:mi </mml:mrow></mml:msub> /XPbI <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e609" altimg="si3.svg"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi< td=""><td>2.1</td><td>15</td></mml:mi<></mml:mrow></mml:msub></mml:math 	2.1	15
2279	mathyariant="bold">3 (X=MA and FA) heterojunction A review on Z/S â€" scheme heterojunction for photocatalytic applications based on metal halide perovskite materials. Applied Surface Science Advances, 2022, 9, 100241.	6.8	40
2280	Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy, 2022, 96, 107078.	16.0	21
2281	Highly improved efficiency and stability of planar perovskite solar cells via bifunctional phytic acid dipotassium anchored SnO2 electron transport layer. Applied Surface Science, 2022, 588, 152943.	6.1	14
2282	Impact of Photon Recycling, Grain Boundaries, and Nonlinear Recombination on Energy Transport in Semiconductors. ACS Photonics, 2022, 9, 110-122.	6.6	13

		CITATION REPORT		
#	Article		IF	CITATIONS
2283	Recent advances in terahertz imaging: 1999 to 2021. Applied Physics B: Lasers and Op	otics, 2022, 128, 1.	2.2	56
2284	Investigation of Threshold Carrier Densities in the Optically Pumped Amplified Spontar of Formamidinium Lead Bromide Perovskite Using Different Excitation Wavelengths. P 9, 4.	ieous Emission hotonics, 2022,	2.0	4
2285	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocata of Physical Chemistry Letters, 2022, 13, 25-41.	lysis. Journal	4.6	10
2286	Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performa Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13657-13665.	nce Inverted	5.1	8
2287	Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall wat Nature Communications, 2021, 12, 7055.	er splitting.	12.8	31
2288	Unveiling the brittleness of hybrid organic–inorganic 0-D histammonium zinc chloro nanoindentation. Applied Physics Letters, 2021, 119, 241903.	metallate by	3.3	2
2289	Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron S Anti-Perovskites. Nanomaterials, 2021, 11, 3310.	tructure in	4.1	0
2290	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behavio solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	rs, and	10.3	29
2291	Charge carrier dynamics in different crystal phases of CH ₃ NH ₃ PbI ₃ pa 210005-210005.	erovskite. , 2022, 1,		6
2292	Partial replacement of B-site cation to stabilize the optically active cubic phase of FAPb optoelectronic applications. Materials Today: Proceedings, 2022, , .	I3 for	1.8	4
2293	Perovskite microcells fabricated using swelling-induced crack propagation for colored s windows. Nature Communications, 2022, 13, 1946.	solar	12.8	18
2294	Developments and challenges ahead in blue perovskite light-emitting devices. Journal o Chemistry, 2022, 71, 418-433.	of Energy	12.9	16
2295	Advanced Strategies to Tailor the Nucleation and Crystal Growth in Hybrid Halide Pero Films. Frontiers in Chemistry, 2022, 10, 842924.	vskite Thin	3.6	8
2296	Scalable growth of stable wideâ€bandgap perovskite towards largeâ€scale tandem ph Rrl, 0, , .	otovoltaics. Solar	5.8	2
2297	Solutionâ€Processed Waferâ€Scale Ag ₂ S Thin Films: Synthesis and Excell Properties. Advanced Functional Materials, 2022, 32, .	ent Charge Transport	14.9	3
2300	Efficient and Stable Perovskite Solar Cells by B-Site Compositional Engineered All-Inorg Perovskites and Interface Passivation. ACS Applied Materials & Interfaces, 2022, 1	anic 4, 19469-19479.	8.0	13
2301	Hetero-perovskite engineering for stable and efficient perovskite solar cells. Sustainabl Fuels, 2022, 6, 3304-3323.	e Energy and	4.9	3
2302	Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells. Energio 3056.	es, 2022, 15,	3.1	6

		CITATION REPORT		
#	Article		IF	CITATIONS
2303	Rear Electrode Materials for Perovskite Solar Cells. Advanced Functional Materials, 202	22, 32, .	14.9	49
2304	A review on theoretical studies of structural and optoelectronic properties of <scp>FA<pperovskite <scp="" a="" focus="" materials="" on="" with="">FAPbl₃</pperovskite></scp> . International Jou Research, 2022, 46, 13117-13151.	:/scp>â€based urnal of Energy	4.5	12
2305	Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Cha Nano, 2022, 16, 7116-7143.	llenges. ACS	14.6	32
2306	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advance	s, 2022, 12, .	1.3	13
2307	High Power Irradiance Dependence of Charge Species Dynamics in Hybrid Perovskites Evidence for Transient Vibrational Stark Effect in Formamidinium. Nanomaterials, 2022	and Kinetic 2, 12, 1616.	4.1	0
2308	Optoelectronic Properties of Mixed Iodide–Bromide Perovskites from First-Principles Modeling and Experiment. Journal of Physical Chemistry Letters, 2022, 13, 4184-4192	Computational	4.6	16
2309	Recent progress of lead-free halide double perovskites for green energy and other app Applied Physics A: Materials Science and Processing, 2022, 128, 1.	ications.	2.3	10
2310	A route towards the fabrication of large-scale and high-quality perovskite films for opto devices. Scientific Reports, 2022, 12, 7411.	belectronic	3.3	13
2311	Probing Ultrafast Interfacial Carrier Dynamics in Metal Halide Perovskite Films and Dev Transient Reflection Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14,	ices by 34281-34290.	8.0	5
2312	Inorganic cesium lead mixed halide based perovskite solar materials modified with fun- iodide. Scientific Reports, 2022, 12, 7794.	ctional silver	3.3	9
2313	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar Reports Physical Science, 2022, 3, 100890.	cells. Cell	5.6	9
2314	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics .	s Reviews, 2022, 9,	11.3	33
2315	Study of DMSO concentration on the optical and structural properties of perovskite C its use in solar cells. Journal of Solid State Chemistry, 2022, 312, 123158.	H3NH3PbI3 and	2.9	6
2316	Minimizing voltage deficit in Methylammonium-Free perovskite solar cells via surface r Chemical Engineering Journal, 2022, 444, 136622.	econstruction.	12.7	22
2317	A positive correlation between local photocurrent and grain size in a perovskite solar c of Energy Chemistry, 2022, 72, 8-13.	ell. Journal	12.9	3
2318	Halide anions engineered ionic liquids passivation layer for highly stable inverted perov cells. Journal of Colloid and Interface Science, 2022, 622, 469-480.	rskite solar	9.4	12
2319	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: to devices. Applied Physics Reviews, 2022, 9, .	-rom materials	11.3	20
2320	Efficient passivation on halide perovskite by tailoring the organic molecular functional First-principles investigation. Applied Surface Science, 2022, 597, 153716.	groups:	6.1	6

#	Article	IF	CITATIONS
2321	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	6.0	6
2322	Boosted Chargeâ€Carrier Transport in Tripleâ€Cation Perovskites by Ultrasonic Vibration Post Treatment. Advanced Electronic Materials, 2022, 8, .	5.1	1
2323	Interfacial electronic properties of metal/CsSnBr3 heterojunctions. Nanotechnology, 2022, , .	2.6	1
2324	Zinc Oxide: A Fascinating Material for Photovoltaic Applications. Materials Horizons, 2022, , 173-241.	0.6	2
2325	Flexible Transparent Highâ€Efficiency Photoelectric Perovskite Resistive Switching Memory. Advanced Functional Materials, 2022, 32, .	14.9	24
2326	Investigation of the effect of the fabrication temperature on the optical, morphological and crystallinity properties of Perovskites composites. , 2022, 167, 207259.		1
2327	Perovskite-based multi-dimension THz modulation of EIT-like metamaterials. Optik, 2022, 262, 169348.	2.9	13
2328	Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy and Environmental Science, 2022, 15, 3152-3170.	30.8	26
2329	Review of defect engineering in perovskites for photovoltaic application. Materials Advances, 2022, 3, 5234-5247.	5.4	28
2330	Controlling Intrinsic Quantum Confinement in Formamidinium Lead Triiodide Perovskite through Cs Substitution. ACS Nano, 2022, 16, 9640-9650.	14.6	8
2331	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	2.4	5
2332	Modeling Radiation Damage in Materials Relevant for Exploration and Settlement on the Moon. , 0, , .		0
2333	Steady-State Transporting Properties of Halide Perovskite Thin Films under 1 sun through Photo-Hall Effect Measurement. Journal of Physical Chemistry C, 0, , .	3.1	2
2335	Design of ultrathin hole-transport-layer-free perovskite solar cell with near-infrared absorption enhancement using Ag NPs. Optics Communications, 2022, 520, 128553.	2.1	6
2336	Classical Force-Field Parameters for CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 9898-9908.	3.1	8
2337	Diammoniumâ€Mediated Perovskite Film Formation for High‣uminescence Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, .	21.0	23
2339	Solution-Processed Cu:SnO ₂ as an Efficient Electron Transport Layer for Fabrication of Low-Temperature Planar Perovskite Solar Cell Under Ambient Conditions. IEEE Journal of Photovoltaics, 2022, 12, 1162-1169.	2.5	1
2341	Probing Longitudinal Carrier Transport in Perovskite Thin Films via Modified Transient Reflection Spectroscopy. Chemical Science, 0, , .	7.4	2

#	Article	IF	CITATIONS
2342	Cesium acetate-assisted crystallization for high-performance inverted CsPbI ₃ perovskite solar cells. Nanotechnology, 2022, 33, 375205.	2.6	7
2343	Benzimidazole Based Holeâ€Transporting Materials for Highâ€performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	19
2345	Appropriate third monovalent Aâ€site cation incorporation in formamidinium cesium lead iodide for defect passivation and efficiency improvement in perovskite solar cells. International Journal of Energy Research, 2022, 46, 15571-15588.	4.5	5
2346	Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells. Materials, 2022, 15, 4300.	2.9	7
2348	Accurate Adjusting the Lattice Strain of Triple-Cation and Mixed-Halide Perovskites for High-Performance Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 28154-28162.	8.0	16
2349	Recent Development of Morphologyâ€Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	5.8	12
2350	Thermal Stability of K-Doped Organometal Halide Perovskite for Photovoltaic Materials. ACS Applied Energy Materials, 2022, 5, 10409-10414.	5.1	1
2351	Thermally-induced drift of A-site cations at solid–solid interface in physically paired lead halide perovskites. Scientific Reports, 2022, 12, .	3.3	2
2352	Metal Halide Perovskite-Based Memristors for Emerging Memory Applications. Journal of Physical Chemistry Letters, 2022, 13, 5638-5647.	4.6	38
2353	Performance investigation of cesium formamidinium lead mixed halide (FA0.83Cs0.17PbI3-xBrx) for different iodine and bromine ratios. , 2022, 168, 207305.		6
2354	A sensitive and ultrafast FA0.83Cs0.17PbI3 perovskite sensor for NO2 detection at room temperature. Journal of Alloys and Compounds, 2022, 919, 165831.	5.5	13
2355	Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102433.	2.7	20
2356	Low pressure assisted thin film growth for high performance perovskite solar cells. Materials Letters, 2022, 324, 132678.	2.6	0
2357	Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal, 2022, 448, 137676.	12.7	29
2358	Nonlinear photonics device based on double perovskite oxide Ba2LaTaO6 for ultrafast laser generation. Optics and Laser Technology, 2022, 155, 108334.	4.6	9
2359	Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations. Nanoscale, 2022, 14, 9636-9647.	5.6	12
2360	Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core Based Hole Transport Materials for Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0
2361	Enhanced Thermal Stability of Lowâ€Temperature Processed Carbonâ€Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method. Energy Technology, 2022, 10, .	3.8	3

#	Article	IF	CITATIONS
2362	Excellent Longâ€Range Charge arrier Mobility in 2D Perovskites. Advanced Functional Materials, 2022, 32, .	14.9	20
2363	16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik, 2022, 267, 169608.	2.9	6
2364	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 31911-31919.	8.0	6
2365	Recent advances in Pb–Sn mixed perovskite solar cells. Journal of Energy Chemistry, 2022, 73, 615-638.	12.9	12
2366	Silverâ€Bismuth Based 2D Double Perovskites (4FPEA) ₄ AgBiX ₈ (<i>X</i> Â= Cl, Br,) Tj Advanced Optical Materials, 2022, 10, .	ETQq0 0 0 7.3) rgBT /Overlc 17
2367	Probing the defects states in MAPbI3 perovskite thin films through photoluminescence and photoluminescence excitation spectroscopy studies. Optik, 2022, 266, 169586.	2.9	2
2368	Operational stability, low light performance, and long-lived transients in mixed-halide perovskite solar cells with a monolayer-based hole extraction layer. Solar Energy Materials and Solar Cells, 2022, 245, 111885.	6.2	2
2369	High efficiency stable planar perovskite solar cells via heavy water additive. Solar Energy Materials and Solar Cells, 2022, 245, 111861.	6.2	2
2370	Recent Criterion on Stability Enhancement of Perovskite Solar Cells. Processes, 2022, 10, 1408.	2.8	9
2371	All-Back-Contact Perovskite Solar Cells Using Cracked Film Lithography. ACS Applied Energy Materials, 2022, 5, 9273-9279.	5.1	5
2372	Strain effects on electronic, optical properties and carriers mobility of <scp>Cs₂SnI₆</scp> vacancyâ€ordered double perovskite: A promising photovoltaic material. International Journal of Quantum Chemistry, 2022, 122, .	2.0	3
2373	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	8.0	34
2374	Optimized photoelectric characteristics of MAPbCl ₃ and MAPbBr ₃ composite perovskite single crystal heterojunction photodetector. Journal of Physics Condensed Matter, 2022, 34, 405703.	1.8	1
2375	Tracking carrier and exciton dynamics in mixed-cation lead mixed-halide perovskite thin films. Communications Physics, 2022, 5, .	5.3	6
2376	Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nature Communications, 2022, 13, .	12.8	21
2377	Defect-Polaron and Enormous Light-Induced Fermi-Level Shift at Halide Perovskite Surface. Journal of Physical Chemistry Letters, 2022, 13, 6711-6720.	4.6	8
2378	Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science and Applications, 2022, 11, .	16.6	19
2379	Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Advanced Electronic Materials, 2022, 8, .	5.1	6

#	Article	IF	CITATIONS
2380	Experimental and computational study on Cs3Bi2I9 perovskite solar cell: A comparison of device performance. Materials Today: Proceedings, 2022, , .	1.8	3
2381	Reduced defect density in crystalline halide perovskite films via methylamine treatment for the application in photodetectors. APL Materials, 2022, 10, .	5.1	4
2382	Exploring Nanoscale Structure in Perovskite Precursor Solutions Using Neutron and Light Scattering. Chemistry of Materials, 2022, 34, 7232-7241.	6.7	11
2383	Overview and Outlook on Graphene and Carbon Nanotubes in Perovskite Photovoltaics from Singleâ€Junction to Tandem Applications. Advanced Functional Materials, 2022, 32, .	14.9	14
2384	A convenient method for assessing steady-state carrier density and lifetime in solar cell materials using pulse excitation measurements. Journal of Chemical Physics, 2022, 157, .	3.0	3
2385	Photoelectrical properties of flexible quasi-interdigitated back-contact perovskite solar cells. Materials Today: Proceedings, 2022, , .	1.8	0
2386	Renormalization of excitonic properties by polar phonons. Journal of Chemical Physics, 2022, 157, .	3.0	7
2387	Probing the Carrier Dynamics of Polymer Composites with Single and Hybrid Carbon Nanotube Fillers for Improved Thermoelectric Performance. ACS Applied Energy Materials, 2022, 5, 9770-9781.	5.1	7
2388	Bromide Incorporation Enhances Vertical Orientation of Triple Organic Cation Tinâ€Halide Perovskites for Highâ€Performance Leadâ€Free Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
2389	Time-resolved terahertz spectroscopy for probing the effects of low-temperature annealing on CsPbBr ₃ evaporated thin-films. Journal of Optics (United Kingdom), 2022, 24, 104001.	2.2	1
2390	Missed ferroelectricity in methylammonium lead iodide. Npj Computational Materials, 2022, 8, .	8.7	3
2391	Modelling tandem/multi-junction hybrid perovskite–organic solar cells: A combined drift–diffusion and kinetic Monte Carlo study. Solar Energy, 2022, 243, 193-202.	6.1	3
2392	Mixed perovskite (MAPbI3-xClx) solar cells using light-emitting conjugated polymer DMP end-capped MDMO-PPV as a hole transport material. Journal of King Saud University - Science, 2022, 34, 102262.	3.5	2
2393	Dion-Jacobson phase lead-free halide (PDA)MX4 (M=Sn/Ge; X=I/Br/Cl) perovskites: A first-principles theory. Journal of Solid State Chemistry, 2022, 315, 123449.	2.9	2
2394	Polaron mobility modulation by bandgap engineering in black phase α-FAPbI3. Journal of Energy Chemistry, 2023, 76, 175-180.	12.9	7
2395	Passivation of surface defects in FAPbI3 perovskite by methimazole molecule: A first-principles investigation. Applied Surface Science, 2022, 605, 154829.	6.1	3
2396	Modified post-annealing process with N, N-dimethylformamide vapor to control the growth of hybrid perovskite microstructure. Results in Materials, 2022, 16, 100330.	1.8	1
2397	Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138962.	12.7	14

#	Article	IF	CITATIONS
2398	Two-dimensional electronic structure for high thermoelectric performance in halide perovskite Cs ₂ Au(<scp>i</scp>)Au(<scp>iii</scp>)I ₆ . Physical Chemistry Chemical Physics, 2022, 24, 24975-24982.	2.8	1
2399	A self-arranged metal–organic polyhedron/fullerene asymmetric structure improves the performance of inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 14542-14548.	5.5	4
2400	Enhanced emission efficiency in doped CsPbBr ₃ perovskite nanocrystals: the role of ion valence. Journal of Materials Chemistry C, 2022, 10, 14737-14745.	5.5	2
2401	Passivation of Positively Charged Cationic Defects in Perovskite with Nitrogen-Donor Crown Ether Enabling Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
2402	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	30.8	16
2403	Triple-cation perovskite/silicon tandem solar cell. Ukrainian Journal of Physical Optics, 2022, 23, 193-200.	13.0	1
2404	Actual origin and precise control of asymmetrical hysteresis in an individual CH ₃ NH ₃ Pbl ₃ micro/nanowire for optical memory and logic operation. Nanoscale Horizons, 2022, 7, 1095-1108.	8.0	7
2405	First principles predictionAofÂstructural,ÂmechanicalÂandÂoptoelectronicÂpropertiesÂofÂlead-freeÂdoubleÂperovskites A2SeX6Â(A=Rb,ÂK;ÂX=Cl,ÂBr,Âl). SSRN Electronic Journal, 0, , .	0.4	1
2406	Modified Post-Annealing Process with N, N-Dimethylformamide Vapor to Control the Growth of Hybrid Perovskite Microstructure. SSRN Electronic Journal, 0, , .	0.4	0
2407	Infrared Emission from Photoexcited MAPbBr ₃ Perovskite Film. , 2022, , .		0
2408	Thermal Transport Properties of Phonons in Halide Perovskites. Advanced Materials, 2023, 35, .	21.0	3
2409	Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. Advanced Materials, 2023, 35, .	21.0	11
2410	Laserâ€Induced Secondary Crystallization of CsPbBr ₃ Perovskite Film for Robust and Low Threshold Amplified Spontaneous Emission. Advanced Functional Materials, 2022, 32, .	14.9	7
2411	Molecular Engineering of Enamineâ€Based Holeâ€Transporting Materials for Highâ€Performing Perovskite Solar Cells: Influence of the Central Heteroatom. Solar Rrl, 2022, 6, .	5.8	5
2412	Outstanding cooperation of all-inorganic CsPbI3 perovskite with TiO2 forming composites and heterostructures for photodegradation. Journal of Materials Science, 2022, 57, 17363-17379.	3.7	0
2413	Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core-Based Hole Transport Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 44450-44459.	8.0	5
2414	Ionic Liquids for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	7
2415	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	2.2	4

#	Article	IF	CITATIONS
2416	A Polyanionic Strategy to Modify the Perovskite Grain Boundary for a Larger Switching Ratio in Flexible Woven Resistive Random-Access Memories. ACS Applied Materials & Interfaces, 2022, 14, 44652-44664.	8.0	7
2417	Single-crystal organometallic perovskite optical fibers. Science Advances, 2022, 8, .	10.3	7
2418	Fluorination of Carbazole-Based Polymeric Hole-Transporting Material Improves Device Performance of Perovskite Solar Cells with Fill Factor up to 82%. ACS Applied Energy Materials, 2022, 5, 12049-12058.	5.1	5
2419	Vacuumâ€Vaporâ€Deposited 0D/3D Allâ€Inorganic Perovskite Composite Films toward Lowâ€Threshold Amplified Spontaneous Emission and Lasing. Small, 2022, 18, .	10.0	9
2420	Moisture trap engineering for recoverable and stable responsivity generation in perovskite photodiode. Journal of Industrial and Engineering Chemistry, 2022, , .	5.8	0
2421	Interfacial Charge Transfer Induced Enhanced Near-Infrared Photoluminescence and Enhanced Visible Photodetection in Two-Dimensional/Zero-Dimensional Bi ₂ Se ₃ /CsPbBr ₂ I Heterojunctions with Type-I Band Alignment. Journal of Physical Chemistry C. 2022, 126, 16721-16731.	3.1	4
2422	Great Influence of Organic Cation Motion on Charge Carrier Dynamics in Metal Halide Perovskite Unraveled by Unsupervised Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 8537-8545.	4.6	10
2423	First-principles investigation on the structural, electronic, mechanical and optical properties of silver based perovskite AgXCl3 (X= Ca, Sr). Journal of Materials Research and Technology, 2022, 20, 3296-3305.	5.8	20
2424	Reduced interfacial recombination in perovskite solar cells by structural engineering simulation. Journal of Optics (United Kingdom), 2022, 24, 115901.	2.2	4
2425	Exciton–Phonon and Trion–Phonon Couplings Revealed by Photoluminescence Spectroscopy of Single CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2022, 22, 7674-7681.	9.1	21
2426	Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy. Advances in Physics: X, 2023, 8, .	4.1	2
2427	Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 19137-19149.	13.7	46
2428	Scalable Two‧tep Production of Highâ€Efficiency Perovskite Solar Cells and Modules. Solar Rrl, 2023, 7,	5.8	14
2429	Impact of loss mechanisms on performances of perovskite solar cells. Physica B: Condensed Matter, 2022, 647, 414363.	2.7	6
2430	A Triethyleneglycol <scp>C₆₀</scp> Monoâ€adduct Derivative for Efficient Electron Transport in Inverted Perovskite Solar Cells ^{â€} . Chinese Journal of Chemistry, 2023, 41, 431-442.	4.9	4
2431	Direct In Situ Conversion of Lead Iodide to a Highly Oriented and Crystallized Perovskite Thin Film via Sequential Deposition for 23.48% Efficient and Stable Photovoltaic Devices. ACS Applied Materials & Interfaces, 2022, 14, 49886-49897.	8.0	6
2432	Probing charge carrier dynamics in metal halide perovskite solar cells. EcoMat, 2023, 5, .	11.9	8
2433	Terahertz Modulation and Ultrafast Characteristic of Two-Dimensional Lead Halide Perovskites. Nanomaterials, 2022, 12, 3559.	4.1	3

#	Article	IF	CITATIONS
2434	Dual Metalâ€Assisted Defect Engineering towards Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	16
2435	Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light: Science and Applications, 2022, 11, .	16.6	12
2436	Passivating Defects of Perovskite Solar Cells with Functional Donorâ€Acceptor–Donor Type Hole Transporting Materials. Advanced Functional Materials, 2023, 33, .	14.9	7
2437	Dark current modeling of thick perovskite X-ray detectors. Frontiers of Optoelectronics, 2022, 15, .	3.7	3
2438	Hard and Soft Acid and Base (HSAB) Engineering for Efficient and Stable Snâ€₽b Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	26
2440	Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites. Nature Communications, 2022, 13, .	12.8	4
2441	Formate diffusion engineering of hole transport layer for highly efficient N-I-P perovskite solar cells. Materials Today Physics, 2022, 28, 100886.	6.0	1
2442	Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated via Au and Ag electrodes. Scientific Reports, 2022, 12, .	3.3	17
2443	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	25.6	4
2444	α-FAPbI3 phase stabilization using aprotic trimethylsulfonium cation for efficient perovskite solar cells. Journal of Power Sources, 2022, 551, 232207.	7.8	6
2445	Enhanced oxidization and corrosion resistance of silver nanowire based transparent conductor by nickel electroplating to obtain power conversion efficiencyÂ>Â18Â% in perovskite solar cells. Applied Surface Science, 2023, 609, 155250.	6.1	4
2446	Novel Li rich perovskites Li4NBI3 (BÂ=ÂGe, Sn, or Pb) with high mobility based on super alkali cation Li4N. Computational Materials Science, 2023, 216, 111857.	3.0	0
2447	A DFT study on the stability and optoelectronic properties of Pb/Sn/Ge-based MA ₂ B(SCN) ₂ I ₂ perovskites. New Journal of Chemistry, 0, , .	2.8	0
2448	Dynamics of photo-excited carriers in CsPbBr ₃ perovskite. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2019, 36, 557-563.	0.2	0
2449	Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar Rrl, 2023, 7, .	5.8	2
2450	A promising outlook on the development of lead halide perovskites as spin-orbitronic materials. Applied Physics Letters, 2022, 121, .	3.3	6
2451	Roles that Organic Ammoniums Play on the Surface of the Perovskite Film: A Review. Chemistry - A European Journal, 2023, 29, .	3.3	7
2452	Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature, 2022, 611, 688-694.	27.8	307

#	Article	IF	CITATIONS
2453	Stable α-FAPbI3 via porous PbI2 for efficient perovskite solar cells. Journal of Chemical Physics, 2022, 157, .	3.0	1
2454	Localized Heating Tailors Nucleation for Reproducible Growth of Thin Halide Perovskite Single Crystals. Crystal Growth and Design, 2022, 22, 7160-7167.	3.0	4
2455	Efficient Perovskite Solar Cells with Cesium Acetate-Modified TiO ₂ Electron Transport Layer. Journal of Physical Chemistry C, 2022, 126, 19963-19970.	3.1	3
2456	Defect engineering of metal halide perovskite optoelectronic devices. Progress in Quantum Electronics, 2022, 86, 100438.	7.0	4
2457	Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews, 2022, 3, .	5.7	10
2458	Role of inorganic cations in the excitonic properties of lead halide perovskites. Physical Chemistry Chemical Physics, 2023, 25, 2468-2476.	2.8	2
2459	Cyano-4′-Pentylbipheny dopant strategy for P3HT-Based CsPbI3 perovskite solar cells with a record efficiency and preeminent stability. Chemical Engineering Journal, 2023, 455, 140831.	12.7	8
2460	Magnetic interactions based on proton orbital motion in CH3NH3Pbl3 and CH3NH3PbBr3. Scripta Materialia, 2023, 226, 115229.	5.2	1
2461	Piezo-Phototronic Enhancement of Vertical Structure Photodetectors Based on 2D CsPbBr ₃ Nanosheets. Journal of Nanoelectronics and Optoelectronics, 2022, 17, 769-774.	0.5	0
2462	Multifunctional indaceno[1,2-b:5,6-bâ€2]dithiophene chloride molecule for stable high-efficiency perovskite solar cells. Science China Chemistry, 2023, 66, 185-194.	8.2	4
2463	Bionic Levodopa-Modified TiO ₂ for Preparation of Perovskite Solar Cells with Efficiency over 23%. ACS Sustainable Chemistry and Engineering, 2022, 10, 16055-16063.	6.7	3
2464	Subâ€second Lifetime of Photocarriers in Hybrid Lead Halide Perovskite. Advanced Electronic Materials, 2023, 9, .	5.1	0
2465	Highly Sensitive Broadband Phototransistors Based on Gradient Tin/Lead Mixed Perovskites. Small, 2023, 19, .	10.0	3
2466	Singleâ€Crystalline Layered Metalâ€Halide Perovskite Microwires with Intercalated Molecules for Ultraviolet Photodetectors. Advanced Materials Technologies, 2023, 8, .	5.8	2
2467	Synchronous Modulation of Defects and Buried Interfaces for Highly Efficient Inverted Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	15
2468	Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator. Angewandte Chemie, 2023, 135, .	2.0	5
2469	A Review on Halide Perovskite-Based Photocatalysts: Key Factors and Challenges. ACS Applied Energy Materials, 2022, 5, 14605-14637.	5.1	16
2470	Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6

#	Article	IF	CITATIONS
2471	Highâ€Radiance Nearâ€Infrared Perovskite Lightâ€Emitting Diodes with Improved Rollâ€Off Degradation. Advanced Optical Materials, 2023, 11, .	7.3	4
2472	Pure Tin Halide Perovskite Solar Cells: Focusing on Preparation and Strategies. Advanced Energy Materials, 2023, 13, .	19.5	16
2473	Anion Doping Delays Nonradiative Electron–Hole Recombination in Cs-Based All-Inorganic Perovskites: Time Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2022, 13, 11375-11382.	4.6	10
2474	Reconfigurable self-powered deep UV photodetectors based on ultrawide bandgap ferroelectric ScAlN. APL Materials, 2022, 10, .	5.1	10
2475	High-Performance Self-Powered Photodetector Based on the Lateral Photovoltaic Effect of All-Inorganic Perovskite CsPbBr ₃ Heterojunctions. ACS Applied Materials & Interfaces, 2023, 15, 1505-1512.	8.0	8
2476	Electrical and Optoelectrical Dual-Modulation in Perovskite-Based Vertical Field-Effect Transistors. ACS Photonics, 2023, 10, 2280-2289.	6.6	2
2477	Thermally Stable Perovskite Solar Cells by All-Vacuum Deposition. ACS Applied Materials & Interfaces, 2023, 15, 772-781.	8.0	7
2478	Blue Halide Perovskite Materials: Preparation, Progress, and Challenges. Laser and Photonics Reviews, 2023, 17, .	8.7	10
2479	Clâ€Anion Engineering for Halide Perovskite Solar Cells and Modules with Enhanced Photostability. Solar Rrl, 2023, 7, .	5.8	4
2480	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	3.6	4
2481	Recent Advances in Efficient Photocatalysis via Modulation of Electric and Magnetic Fields and Reactive Phase Control. Advanced Materials, 2023, 35, .	21.0	19
2482	Air-stable high-PLQY cesium lead halide perovskites for laser-patterned displays. Journal of Materials Chemistry C, 2023, 11, 2282-2290.	5.5	2
2483	Self-Assembled Molecules for Hole-Selective Electrodes in Highly Stable and Efficient Inverted Perovskite Solar Cells with Ultralow Energy Loss. ACS Applied Energy Materials, 2023, 6, 1239-1247.	5.1	14
2484	Templating Influence of Regulated Inorganic Framework in Twoâ€Dimensional Ferroelastic Perovskites: (C ₃ H ₅ CH ₂ NH ₃) ₂ [MCl ₄] (M=Mn and Cd). Chemistry - A European Journal, 2023, 29, .	3.3	6
2485	Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive. Small, 2023, 19, .	10.0	3
2486	Improved Defect Tolerance and Charge Carrier Lifetime in Tin–Lead Mixed Perovskites: Ab Initio Quantum Dynamics. Journal of Physical Chemistry Letters, 2023, 14, 499-507.	4.6	6
2487	Improvement of a Two-step Method for Highly Efficient Perovskite Solar Cells via Modification of a Metal Halide Template and Dipping Conditions. Chemistry Letters, 2023, 52, 84-88.	1.3	0
2488	Insights into the relationship between ferroelectric and photovoltaic properties in CsGel ₃ for solar energy conversion. RSC Advances, 2023, 13, 1955-1963.	3.6	4

#	Article	IF	CITATIONS
2489	Effective improvement of the carbon-based CsPbI2Br perovskite solar cells through additive and interface strategies. Optical Materials, 2023, 136, 113427.	3.6	5
2490	4-Carboxyphenyl isothiocyanate as a Lewis base additive for efficient and stable perovskite solar cells. Synthetic Metals, 2023, 293, 117276.	3.9	1
2491	Ternary diagrams of phase, stability, and optical properties of cesium lead mixed-halide perovskites. Acta Materialia, 2023, 246, 118661.	7.9	3
2492	Investigation of efficient all-inorganic HTL-free CsGeI3 perovskite solar cells by device simulation. Materials Today Communications, 2023, 34, 105347.	1.9	5
2493	Importance of precursor complexation for green solventâ€processed perovskite crystals. Bulletin of the Korean Chemical Society, 2023, 44, 304-309.	1.9	0
2494	Accelerated formation of iodine vacancies in <scp> CH ₃ NH ₃ Pbl ₃ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </scp>	11.9	2
2495	Self-Trapped Excitons Mediated Energy Transfer to Sm ³⁺ in Cs ₂ AgIn _(1–<i>x</i>) Sm _{<i>x</i>} Cl ₆ :Bi Double Perovskite Nanocrystals. Journal of Physical Chemistry C, 2023, 127, 468-475.	3.1	6
2496	Numerical Optimization of Cu2O as HTM in Lead-Free Perovskite Solar Cells: A Study to Improve Device Efficiency. Journal of Electronic Materials, 2023, 52, 2020-2033.	2.2	2
2497	Modeling Monte Carlo simulation on photon regeneration effects of perovskite FAPbI ₃ for photovoltaic applications. Physical Chemistry Chemical Physics, 0, , .	2.8	0
2498	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells <i>via</i> introducing binary-mixed organic electron transport layers. New Journal of Chemistry, 2023, 47, 5048-5055.	2.8	14
2499	Halide-based perovskites in photonics: From photocatalysts to highly efficient optoelectronic devices. , 2023, , 547-600.		1
2500	High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors. Applied Physics Letters, 2023, 122, .	3.3	7
2501	Lead-free halide perovskites. , 2023, , 187-237.		0
2502	Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation. Journal of Alloys and Compounds, 2023, 942, 169084.	5.5	7
2503	Metal halide perovskite nanomaterials for solar energy. , 2023, , 149-168.		0
2504	Improved photovoltaic performance of Pb-free AgBi ₂ I ₇ based photovoltaics. Nanoscale Advances, 2023, 5, 1624-1630.	4.6	3
2505	Additive engineering with sodium azide material for efficient carbon-based perovskite solar cells. New Journal of Chemistry, 2023, 47, 7765-7773.	2.8	2
2506	Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews, 2023, 123, 3625-3692.	47.7	9

#	Article	IF	CITATIONS
2507	Photoexcitation of perovskite precursor solution to induce high-valent iodoplumbate species for wide bandgap perovskite solar cells with enhanced photocurrent. Scientific Reports, 2023, 13, .	3.3	3
2508	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
2509	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	6.0	8
2510	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	31.8	5
2511	Enhanced performance of inverted hybrid perovskite solar cells with interfacial passivation filler. Materials Today Sustainability, 2023, 22, 100381.	4.1	0
2512	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. Materials Today Chemistry, 2023, 30, 101511.	3.5	1
2513	Photoactive materials and devices for energy-efficient soft wearable optoelectronic systems. Nano Energy, 2023, 110, 108379.	16.0	7
2514	Metal seeding growth of three-dimensional perovskite nanowire forests for high-performance stretchable photodetectors. Nano Energy, 2023, 111, 108386.	16.0	2
2515	Machine learning assisted classification of post-treatment amines for increasing the stability of organic-inorganic hybrid perovskites. Materials Today Communications, 2023, 35, 105902.	1.9	1
2516	Fermi Surface Topology and Rashbaâ€Edelstein Chargeâ€Spin Conversion in Leadâ€Halide Perovskites. Advanced Theory and Simulations, 2023, 6, .	2.8	1
2517	Rapid determination of lead (Pb) in the soil–plant system by laser-induced breakdown spectroscopy (LIBS): case study of Pb-pollution from perovskite solar cells. Environmental Science and Pollution Research, 2023, 30, 43472-43479.	5.3	1
2518	Optimised Spintronic Emitters of Terahertz Radiation for Time-Domain Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2023, 44, 52-65.	2.2	3
2519	Probing the Genuine Carrier Dynamics of Semiconducting Perovskites under Sunlight. Jacs Au, 2023, 3, 441-448.	7.9	6
2520	Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells. Energies, 2023, 16, 1296.	3.1	3
2521	Recent Progress in Blue Perovskite LEDs. Korean Journal of Materials Research, 2022, 32, 449-457.	0.2	0
2523	Shedding light on electronically doped perovskites. Materials Today Chemistry, 2023, 29, 101380.	3.5	3
2524	Structural Symmetry Impressing Carrier Dynamics of Halide Perovskite. Advanced Functional Materials, 2023, 33, .	14.9	5
2525	Hybrid Perovskiteâ€Based Flexible and Stable Memristor by Complete Solution Process for Neuromorphic Computing. Advanced Electronic Materials, 2023, 9, .	5.1	8

#	Article	IF	CITATIONS
2526	The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (MÂ=ÂIn, Tl, Sb, bi; X Â=ÂCl, Br, I). Computational Materials Science, 2023, 220, 112058.	3.0	13
2527	Review of Defect Passivation for NiO _{<i>x</i>} -Based Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 2098-2121.	5.1	10
2528	Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light. Nanoscale, 2023, 15, 5598-5622.	5.6	14
2529	Flexible and Printed Electronics. , 2023, , 105-125.		1
2530	Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment. Nanoscale Advances, 2023, 5, 1492-1526.	4.6	7
2531	Ionâ€Bolometric Effect in Grain Boundaries Enabled High Photovoltage Response for NIR to Terahertz Photodetection. Advanced Functional Materials, 2023, 33, .	14.9	4
2532	Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. European Physical Journal Plus, 2023, 138, .	2.6	0
2533	3D Polydentate Complexing Agents for Passivating Defects and Modulating Crystallinity for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	13
2534	Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. Journal of Physical Chemistry Letters, 2023, 14, 2317-2322.	4.6	3
2535	Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks. Science and Technology of Advanced Materials, 2023, 24, .	6.1	9
2536	Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Solar Energy, 2023, 253, 563-583.	6.1	14
2537	Application of Natural Molecules in Efficient and Stable Perovskite Solar Cells. Materials, 2023, 16, 2163.	2.9	3
2538	Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. , 2023, 2, .		8
2539	Atomic Model for Alkali Metal-Doped Tin–Lead Mixed Perovskites: Insight from Quantum Dynamics. Journal of Physical Chemistry Letters, 2023, 14, 2878-2885.	4.6	5
2540	Fine-tuning chemical passivation over photovoltaic perovskites by varying the symmetry of bidentate acceptor in D–A molecules. Journal of Materials Chemistry A, 2023, 11, 8299-8307.	10.3	9
2541	Formate additive for efficient and stable methylammoniumâ€free perovskite solar cells by gasâ€quenching. Chemistry - A European Journal, 0, , .	3.3	0
2542	3,5-dichlorobenzylamine lead high-performance and stable 2D/3D perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
2543	Distinguishing Electron Diffusion and Extraction in Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2023, 14, 3007-3013.	4.6	1

# 2544	ARTICLE Imidazolium Functionalized Polyelectrolyte Assisted Perovskite Crystallization for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 10243-10250.	IF 5.1	Citations
2545	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	14.9	12
2546	Characterization of Large-Energy-Bandgap Methylammonium Lead Tribromide (MAPbBr3) Perovskite Solar Cells. Nanomaterials, 2023, 13, 1152.	4.1	2
2547	Stabilization of methylammonium lead iodide via SiO2 coating for photodetectors. Journal of Materials Research, 2023, 38, 1941-1951.	2.6	0
2548	Stabilization of Component-Pure α-FAPbI ₃ via Volatile Additives for Stable Photovoltaics. ACS Applied Materials & Interfaces, 2023, 15, 16818-16827.	8.0	4
2549	Integrated Photo - rechargeable Batteries: Photoactive Nanomaterials and Opportunities. E3S Web of Conferences, 2023, 375, 02010.	0.5	0
2550	Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 8573-8598.	10.3	10
2551	Large‣cale, Uniformâ€Patterned CsCu ₂ 1 ₃ Films for Flexible Solarâ€Blind Photodetectors Array with Ultraweak Light Sensing. Small, 2023, 19, .	10.0	8
2552	Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films. ACS Nanoscience Au, 2023, 3, 230-240.	4.8	1
2553	Polarizable Anionic Sublattices Can Screen Molecular Dipoles in Noncentrosymmetric Inorganic–Organic Hybrids. ACS Applied Materials & Interfaces, 2023, 15, 18006-18011.	8.0	1
2554	Phase Control of Organometal Halide Perovskites for Development of Highly Efficient Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 21974-21981.	8.0	1
2555	Enhanced Performance and Stability of Fully Printed Perovskite Solar Cells and Modules by Ternary Additives under High Humidity. Energy & Fuels, 2023, 37, 6049-6061.	5.1	4
2556	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie, 0, , .	2.0	0
2557	Introduction to advanced electronic materials for clean energy applications. , 2023, , 3-26.		2
2558	Nanostructured Tantalum Nitride for Enhanced Solar Water Splitting. ACS Energy Letters, 2023, 8, 2106-2112.	17.4	12
2559	Improving the Solar Energy Utilization of Perovskite Solar Cells via Synergistic Effects of Alkylamine and Alkyl Acid on Defect Passivation. Solar Rrl, 2023, 7, .	5.8	1
2560	Improved Optical Efficiencies of Perovskite Thin Film Solar Cells by Randomly Distributed Ag Nanoparticles. Plasmonics, 0, , .	3.4	0
2561	Additive Engineering for Mixed Lead–Tin Narrow-Band-Gap Perovskite Solar Cells: Recent Advances and Perspectives. Energy & Fuels, 2023, 37, 6401-6423.	5.1	11

# 2562	ARTICLE Ferroelectric order in hybrid organic-inorganic perovskite NH4PbI3 with non-polar molecules and	IF 8.7	CITATIONS 2
2563	small tolerance factor. Npj Computational Materials, 2023, 9, . Alkali Metal Ion-Mediated Augmented Carrier Extraction in Iodobismuth Ternary Perovskite-Based Photovoltaic Device. ACS Applied Electronic Materials, 2023, 5, 5332-5342.	4.3	5
2564	Defect Origin of the Light-Soaking Effects in Hybrid Perovskite Solar Cells. , 2023, , 239-263.		1
2565	Photophysics of Hybrid and Inorganic Lead Halide Perovskites. , 2023, , 27-51.		0
2566	2D-Self-Assembled Organic Materials in Undoped Hole Transport Bilayers for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 22310-22319.	8.0	2
2567	Machine learning for perovskite solar cell design. Computational Materials Science, 2023, 226, 112215.	3.0	5
2568	Light Amplification in Fe-Doped CsPbBr ₃ Crystal Microwire Excited by Continuous-Wave Laser. Journal of Physical Chemistry Letters, 0, , 4815-4821.	4.6	0
2569	Ultra-stable CsPbBr3 nanocrystals encapsulated in mesoporous silica KIT-6 for LED applications. Journal of Luminescence, 2023, 260, 119856.	3.1	0
2570	Controllable blading interdiffusion of formamidinium iodide on thermal evaporated scalable and conformal lead iodide for efficient perovskite solar cells. Journal of Alloys and Compounds, 2023, 955, 170255.	5.5	2
2571	Exciton Formation Dynamics and Band‣ike Free Chargeâ€Carrier Transport in 2D Metal Halide Perovskite Semiconductors. Advanced Functional Materials, 2023, 33, .	14.9	8
2572	Design of an eco-friendly perovskite Au/NiO/FASnI3/ZnO0.25S0.75/FTO, device structure for solar cell applications using SCAPS-1D. Results in Optics, 2023, 12, 100444.	2.0	3
2573	Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskites. Journal of Materials Chemistry A, 2023, 11, 12328-12341.	10.3	2
2574	In-plane uniaxial crystal growth in CH ₃ NH ₃ PbI ₃ bar-coated thin film by evaporation-site-controlled annealing. Japanese Journal of Applied Physics, 2023, 62, 050904.	1.5	0
2575	Simultaneously Achieved Defect Passivation and Crystallization Modulation by a Multifunctional Pseudohalogen Salt for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	3
2576	Probing the Electron Transfer Behavior from Excited State Organometal Lead Halide Perovskite Nanocrystals to Molybdenum Disulfide Nanoflowers. ACS Applied Nano Materials, 2023, 6, 8453-8460.	5.0	1
2577	Strong Electronâ€Phonon Coupling Mediates Carrier Transport in BiFeO ₃ . Advanced Science, 0, , .	11.2	0
2578	Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2. Micromachines, 2023, 14, 1095.	2.9	1
2579	Toward Nonepitaxial Laser Diodes. Chemical Reviews, 2023, 123, 7548-7584.	47.7	4

#	Article	IF	CITATIONS
2580	Improved Power Conversion Efficiency and Stability of Perovskite Solar Cells Induced by Molecular Interaction with Poly(ionic liquid) Additives. ACS Applied Materials & Interfaces, 2023, 15, 26872-26881.	8.0	2
2581	High-Efficiency CsPbBr3 Light-Emitting Diodes using One-Step Spin-Coating In Situ Dynamic Thermal Crystallization. Micromachines, 2023, 14, 1104.	2.9	0
2582	Simulation analysis on the effect of graphene oxide as hole transporting layer in Cs2AuBiCl6 based double perovskite solar cell – SCAPS 1D approach. Materials Today: Proceedings, 2023, 92, 1256-1262.	1.8	2
2583	The Dark Side of Lead-Free Metal Halide Nanocrystals: Substituent-Modulated Photocatalytic Activity in Benzyl Bromide Reduction. ACS Energy Letters, 2023, 8, 2789-2798.	17.4	6
2584	Advances on the Application of Wide Bandâ€Gap Insulating Materials in Perovskite Solar Cells. Small Methods, 2023, 7, .	8.6	5
2585	Identifying a "Raoult's Law―Relationship To Modulate the Stoichiometry of Hybrid Perovskite Films by Amino-Deliquescence/Efflorescence in Mixed Amine Vapors. Journal of Physical Chemistry C, 2023, 127, 10845-10852.	3.1	0
2586	High-Sensitivity Visualization of Ultrafast Carrier Diffusion by Wide-Field Holographic Microscopy. Ultrafast Science, 2023, 3, .	11.2	1
2587	Controlling the Intermediate Phase to Improve the Crystallinity and Orientation of Cs ₃ Sb ₂ Cl _x 9â€x Films for Efficient Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	5
2588	Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chemical Reviews, 2023, 123, 8154-8231.	47.7	17
2589	Nanosolar cell technologies. , 2023, , 25-41.		1
2590	Tuning charge transfer efficiency by functionalizing ligands in FAPbBr ₃ nanocrystals and graphene heterostructures. Physical Chemistry Chemical Physics, 2023, 25, 17410-17419.	2.8	3
2591	Probing Band-Alignment at the Interface of 3D/2D Perovskites for Solar Cell Applications. ACS Applied Electronic Materials, 2023, 5, 5362-5370.	4.3	1
2592	Nuclear Quantum Effects Prolong Charge Carrier Lifetimes in Hybrid Organic–Inorganic Perovskites. Journal of the American Chemical Society, 2023, 145, 14112-14123.	13.7	13
2593	Synergistic Passivation via Lewis Coordination and Electrostatic Interaction for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	1
2594	Effect of temperature on the performance of Cesium formamidinium lead mixed halide perovskite solar cells. Current Applied Physics, 2023, 53, 76-85.	2.4	2
2595	Enhanced performance of MAPbI2.85Br0.15 perovskite solar cells via ionic liquid-induced surface passivation of perovskite films. Journal of Alloys and Compounds, 2023, 961, 171115.	5.5	0
2596	Impedance Spectroscopy Analysis of Perovskite Solar Cell Stability. Energies, 2023, 16, 4951.	3.1	2
2597	Enhancing UV-C Photoelectron Lifetimes for Avalanche-like Photocurrents in Carbon-Doped Bi ₃ O ₄ Cl Nanosheets. ACS Applied Materials & Interfaces, 0, , .	8.0	0

#	Article	IF	CITATIONS
2598	A Review on Buried Interface of Perovskite Solar Cells. Energies, 2023, 16, 5015.	3.1	4
2599	Lead-free double perovskite halide fluorescent oxygen sensor with high stability. Ceramics International, 2023, 49, 30266-30272.	4.8	3
2600	Single crystal Perovskite-Based solar Cells: Growth, Challenges, and potential strategies. Chemical Engineering Journal, 2023, 466, 143019.	12.7	4
2601	Perovskite-based solar cells. , 2023, , 265-292.		0
2602	High Performance 2D/3D Tin–Lead Perovskite Solar Cells Achieved by Phenethylamine Acetate Post-Treatment. , 2023, 5, 1601-1610.		5
2603	Temperature behaviour of mixed-cation mixed-halide perovskite solar cells. Analysis of recombination mechanisms and ion migration. Organic Electronics, 2023, 120, 106843.	2.6	0
2604	Tailoring the Interface with a Multifunctional Ligand for Highly Efficient and Stable FAPbI ₃ Perovskite Solar Cells and Modules. Advanced Science, 2023, 10, .	11.2	7
2605	Photovoltaic Performance of FAPbI ₃ Perovskite Is Hampered by Intrinsic Quantum Confinement. ACS Energy Letters, 2023, 8, 2543-2551.	17.4	2
2606	Research Progress and Improvement Methods of Highly Efficient and Stable Perovskite/Silicon-based Heterojunction Tandem Cells. Journal of Physics: Conference Series, 2023, 2499, 012026.	0.4	0
2607	Numerical investigation of MAPbI3 perovskite solar cells for performance limiting parameters. Optical and Quantum Electronics, 2023, 55, .	3.3	5
2608	Infrared and terahertz studies of phase transitions in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:r perovskite. Physical Review B, 2023, 107, .</mml:r </mml:msub></mml:mrow></mml:math 	nn 3.2 <td>חו:mn></td>	חו:mn>
2609	Regulate excess PbI2 distribution on perovskite film via amphiphilic surfactant for efficient and stable device. Electrochimica Acta, 2023, 462, 142738.	5.2	1
2610	Impact of Scan Rate and Mobile Ion Concentration on the Anomalous <i>J-V</i> Curves of Metal Halide Perovskite-Based Memristors. IEEE Electron Device Letters, 2023, 44, 1276-1279.	3.9	1
2611	Fully Inkjetâ€Printed Perovskite Microlaser with an Outcoupling Waveguide. Advanced Optical Materials, 0, , .	7.3	0
2612	3Dâ€Heterojunction based on Embedded Perovskite Microâ€sized Single Crystals for Fast Photomultiplier Photodetectors with Broad/narrowband Dualâ€mode. Advanced Materials, 0, , .	21.0	0
2613	Morphology of highly stable lead-free hybrid organic–inorganic double perovskites (CH3NH3)2XBiCl6 (X = K, Na, Ag) for solar cell applications. Journal of Materials Science, 2023, 58, 11139-11158.	3.7	2
2614	Temperature-Dependent Intensity Modulated Two-Photon Excited Fluorescence Microscopy for High Resolution Mapping of Charge Carrier Dynamics. ACS Physical Chemistry Au, 2023, 3, 467-476.	4.0	2
2615	Interfacial Charge Transfer in Atomically Thin 2D Transition-Metal Dichalcogenide Heterostructures. , 2023, 1, 1192-1207.		3

#	Article	IF	CITATIONS
2616	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	47.7	21
2617	Investigation of the optoelectronic and structural properties of FA(1â^'x)BixPbBr6I3 of perovskite mixed halide films. Optik, 2023, 288, 171160.	2.9	4
2618	Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach. ACS Omega, 2023, 8, 26577-26589.	3.5	1
2619	Realizing the Lowest Bandgap and Exciton Binding Energy in a Two-Dimensional Lead Halide System. Journal of the American Chemical Society, 2023, 145, 15896-15905.	13.7	8
2620	Effect of surface polarization and structural deformation on the formation and stabilization of polarons in two-dimensional Ruddlesden–Popper metal halide perovskites. Journal of Applied Physics, 2023, 134, .	2.5	0
2621	Atomistic Understanding of the Coherent Interface Between Lead Iodide Perovskite and Lead Iodide. Advanced Materials Interfaces, 2023, 10, .	3.7	1
2622	Quasi 2D Ruddlesden–Popper perovskite thin film electrode for supercapacitor application: Role of diffusion and capacitive process in charge storage mechanism. FlatChem, 2023, 41, 100527.	5.6	1
2623	Revealing the impact of the host-salt non-stoichiometry on the performance of perovskite solar cells. Sustainable Energy and Fuels, 0, , .	4.9	0
2624	Extrinsic Interstitial IonsÂin Metal HalideÂPerovskites: A Review. Small, 2023, 19, .	10.0	3
2626	High-bandwidth perovskite photonic sources on silicon. Nature Photonics, O, , .	31.4	2
2627	Binding Strength-Guided Shuttling of Charge Carriers from Perovskite Nanocrystals to Molecular Acceptors. ACS Applied Energy Materials, 0, , .	5.1	3
2628	Quasiparticle band structures of Cs2B+B3+Br6 lead-free halide double perovskites. Materials Today Communications, 2023, 36, 106751.	1.9	1
2629	Modulation of Perovskite Surface Energetics for Stateâ€ofâ€ŧheâ€Art Solar Cells. Solar Rrl, 0, , .	5.8	0
2630	Optimization of Interfacial Engineering of Perovskite Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, , 169.	1.3	0
2631	Industrial perspectives on the upscaling of perovskite materials for photovoltaic applications and its environmental impacts. , 2023, , 117-142.		0
2632	Recent Advances in the Synthesis and Application of Vacancy-Ordered Halide Double Perovskite Materials for Solar Cells: A Promising Alternative to Lead-Based Perovskites. Materials, 2023, 16, 5275.	2.9	9
2633	Metal halide perovskite photodetectors. , 2023, , 75-115.		0
2634	Enhanced self-powered CsCu2I3/GaN heterojunction UV photodetectors based on highly oriented CsCu2I3 thin films. Journal of Alloys and Compounds, 2023, 966, 171573.	5.5	2

#	Article	IF	CITATIONS
2635	Great Influence of Pressure and Isotope Effects on Nonradiative Charge Loss in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry Letters, 2023, 14, 7134-7140.	4.6	0
2636	Resolving the Ultrafast Charge Carrier Dynamics of 2D and 3D Domains within a Mixed 2D/3D Leadâ€Tin Perovskite. Advanced Functional Materials, 2023, 33, .	14.9	1
2637	Chalcohalide Antiperovskite Thin Films with Visible Light Absorption and High Charge-Carrier Mobility Processed by Solvent-Free and Low-Temperature Methods. Chemistry of Materials, 2023, 35, 6482-6490.	6.7	2
2638	Computational modelling and improvement of heterojunction perovskite solar cell based on CsPbI3/MAPbX3(XÂ=ÂI1â^'xBrx). Optik, 2023, 289, 171288.	2.9	0
2639	Critical role of 1D materials in realizing efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 18592-18604.	10.3	4
2640	Tailoring buried interface of tin oxide-based n-i-p perovskite solar cells <i>via</i> bidirectional and multifunctional metal ion chelating agent modification. Journal of Materials Chemistry A, 2023, 11, 19496-19505.	10.3	2
2641	Tantalum Nitrideâ€Enabled Solar Water Splitting with Efficiency Above 10%. Advanced Energy Materials, 2023, 13, .	19.5	4
2642	Contrasting Chargeâ€Carrier Dynamics across Key Metalâ€Halide Perovskite Compositions through In Situ Simultaneous Probes. Advanced Functional Materials, 2023, 33, .	14.9	0
2643	Facet-engineered photo-induced charge transfer dynamics at the interface of cubic CsPbBr3 and organic acceptor molecules. Journal of Luminescence, 2023, 264, 120159.	3.1	0
2644	Revealing Charge-Transfer Dynamics at Buried Charge-Selective Heterointerface in Highly Effective Perovskite Solar Cells. Journal of Physical Chemistry Letters, 0, , 7953-7959.	4.6	0
2645	Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy and Environmental Science, 2023, 16, 4251-4279.	30.8	1
2646	Heavy pnictogens-based perovskite-inspired materials: Sustainable light-harvesters for indoor photovoltaics. , 2023, 1, .		0
2647	Postâ€Treatment of Metal Halide Perovskites: From Morphology Control, Defect Passivation to Band Alignment and Construction of Heterostructures. Advanced Energy Materials, 2023, 13, .	19.5	9
2648	Origin of Enhanced Overall Water Splitting Efficiency in Aluminumâ€Doped SrTiO ₃ Photocatalyst. Advanced Energy Materials, 2023, 13, .	19.5	1
2649	On the high-temperature phase transition of a new chlorocadmate(<scp>ii</scp>) complex incorporating symmetrical Cd ₂ Cl ₆ clusters: structural, optical and electrical properties. RSC Advances, 2023, 13, 26122-26133.	3.6	1
2650	The role of organic spacers in 2D/3D hybrid perovskite solar cells. Materials Chemistry Frontiers, 2023, 8, 82-103.	5.9	2
2651	Two-dimensional hybrid perovskite crystals for highly sensitive and stable UV light detector. Optical Materials, 2023, 145, 114408.	3.6	1
2652	Temperature Dependent Transient Photoconductive Response of CsPbBr ₃ NCs. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 893.	1.3	0

#	Article	IF	CITATIONS
2653	Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization. Science Bulletin, 2023, 68, 2247-2267.	9.0	1
2654	The roles of metal oxidation states in perovskite semiconductors. Matter, 2023, 6, 3782-3802.	10.0	4
2655	Understanding the origin of defect states, their nature, and effects on metal halide perovskite solar cells. Materials Today Energy, 2023, 37, 101400.	4.7	2
2656	Stable Perovskite Solar Cells Based on Direct Surface Passivation Employing 2D Perovskites. Solar Rrl, 2023, 7, .	5.8	0
2657	Wideâ€Bandgap Perovskiteâ€Inspired Materials: Defectâ€Driven Challenges for Highâ€Performance Optoelectronics. Advanced Functional Materials, 0, , .	14.9	5
2658	Large‣cale Perovskite Single Crystal Growth and Surface Patterning Technologies. Small Science, 2023, 3, .	9.9	0
2659	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11, 22656-22687.	10.3	4
2660	Machine Learning in Perovskite Solar Cells: Recent Developments and Future Perspectives. Energy Technology, 2023, 11, .	3.8	4
2661	Phase transformations and vibrational properties of hybrid organic–inorganic perovskite MAPbI3 bulk at high pressure. Scientific Reports, 2023, 13, .	3.3	2
2662	A Comprehensive Review on Third-Generation Photovoltaic Technologies. Journal of Chemical Engineering Research Updates, 0, 10, 1-17.	0.1	0
2663	Color tuning halide perovskites: Optical amplification and lasing. Materials Today Advances, 2023, 20, 100431.	5.2	0
2664	Biaxial and Uniaxial Tensile Strains Effects on Electronic, Optical, and Thermoelectric Properties of ScBiTe ₃ Compound. Crystal Research and Technology, 2023, 58, .	1.3	0
2665	Effect of Co ²⁺ Doping on Optical Property and Exciton–Phonon Coupling in CsPbI ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2023, 127, 20802-20810.	3.1	1
2668	Classical modeling of extrinsic degradation in polycrystalline perovskite solar cells; defect induced degradation. Solar Energy Materials and Solar Cells, 2023, 261, 112500.	6.2	1
2669	Electronic and optical properties of two-dimensional perovskite materials in DJ and RP phases: density functional theory approach. Optical and Quantum Electronics, 2023, 55, .	3.3	0
2670	Impedance Spectroscopy of Perovskite Solar Cells With SnO ₂ Embedding Graphene Nanoplatelets. IEEE Journal of Photovoltaics, 2023, , 1-7.	2.5	0
2671	Fluxâ€Assisted Synthesis of Y ₂ Ti ₂ O ₅ S ₂ for Photocatalytic Hydrogen and Oxygen Evolution Reactions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
2672	Fluxâ€Assisted Synthesis of Y ₂ Ti ₂ O ₅ S ₂ for Photocatalytic Hydrogen and Oxygen Evolution Reactions. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
2673	Highâ€Efficiency and Emission‶unable Inorganic Blue Perovskite Lightâ€Emitting Diodes Based on Vacuum Deposition. Small, 2024, 20, .	10.0	0
2674	Impact of gamma rays on the structural, optical, and current-voltage characteristics of CuPbI3/p-Si heterojunctions. Materials Chemistry and Physics, 2023, 309, 128420.	4.0	1
2675	Halide Perovskites and Their Derivatives for Efficient, Highâ€Resolution Direct Radiation Detection: Design Strategies and Applications. Advanced Materials, 2024, 36, .	21.0	4
2676	Applications of Rareâ€Earthâ€Based Upâ€Conversion and Downâ€Conversion in Perovskite Solar Cells: A Review. Solar Rrl, 2023, 7, .	5.8	0
2677	Dualâ€Holeâ€Transportâ€Layerâ€Facilitated Efficient Perovskite Lightâ€Emitting Diode. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	0
2678	The importance of elemental lead to perovskites photovoltaics. , 2023, 1, 100017.		1
2679	Optimized Doping of Diffusion Blocking Layers and Their Impact on the Performance of Perovskite Photovoltaics. ACS Applied Electronic Materials, 2023, 5, 5580-5587.	4.3	0
2680	1D Chiral Enantiomer Lead-Free Perovskites Induced Chiralopical Activity and Photoelectric Response. Inorganic Chemistry, 2023, 62, 17985-17992.	4.0	1
2681	Tunable Fabrication of MAPbX ₃ Triangularâ€Microâ€Wires Array for Constructing High Sensitivity Photodetector. Advanced Materials Technologies, 2023, 8, .	5.8	0
2682	Bulk In Situ Reconstruction of Heterojunction Perovskite Enabling Stable Solar Cells Over 24% Efficiency. Advanced Functional Materials, 2024, 34, .	14.9	1
2683	Controllable Cosolvent Blade-Coating Strategy toward Low-Temperature Fabrication of Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 10842-10852.	5.1	1
2684	Experimental and Theoretical Investigations of MAPbX ₃ â€Based Perovskites (X=Cl, Br, I) for Photovoltaic Applications. ChemistryOpen, 2024, 13, .	1.9	0
2685	Transient absorption spectroscopy reveals that slow bimolecular recombination in SrTiO3 underpins its efficient photocatalytic performance. Chemical Communications, 0, , .	4.1	0
2686	Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nature Reviews Materials, 2023, 8, 822-838.	48.7	2
2687	The Scale Effects of Organometal Halide Perovskites. Nanomaterials, 2023, 13, 2935.	4.1	1
2688	Preparation of NaYF4:Tm, Yb, and Gd Luminescent Nanorods/SiO2 Nanospheres Composite Thin Film and Its Application in Perovskite Solar Cells. Materials, 2023, 16, 6917.	2.9	0
2689	Signatures of Polaron Dynamics in Photoexcited MAPbBr ₃ by Infrared Spectroscopy. Journal of Physical Chemistry C, 2023, 127, 22097-22104.	3.1	0
2690	Numerical analysis of carbon-based perovskite tandem solar cells: Pathways towards high efficiency and stability. Renewable and Sustainable Energy Reviews, 2024, 189, 114041.	16.4	1

#	Article	IF	CITATIONS
2691	Solution fabrication methods and optimization strategies of CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry C, 0, , .	5.5	0
2692	Advanced Perovskite Solar Cells. Advances in Material Research and Technology, 2024, , 113-135.	0.6	0
2693	Impact of Mobile lons on Transient Capacitance Measurements of Perovskite Solar Cells. , 2023, 2, .		0
2694	Hole and electron transport materials: A review on recent progress in organic charge transport materials for efficient, stable, and scalable perovskite solar cells. , 2023, 1, 100026.		0
2695	Thermal stability and decomposition kinetics of mixed-cation halide perovskites. Physical Chemistry Chemical Physics, 2023, 25, 32966-32971.	2.8	1
2696	Ultrafast photo-induced carrier dynamics of perovskite quantum dots during structural degradation. Optics Express, 2023, 31, 40352.	3.4	0
2697	Universal Wetâ€Chemistryâ€Methods Synthesized Novel Halideâ€Intercalated Perovskites with Reduced Exciton Confinement for Lowâ€Dose Xâ€ray Scintillation Imaging. Advanced Optical Materials, 2024, 12, .	7.3	0
2698	Advances and future perspectives in polycrystalline halide perovskite light-emitting diodes. Journal of Information Display, 2024, 25, 97-120.	4.0	0
2699	Liquid Metalâ€Based Perovskite Solar Cells: In Situ Formed Gallium Oxide Interlayer Improves Stability and Efficiency. Advanced Functional Materials, 0, , .	14.9	0
2700	Interaction of organic-inorganic hybrid perovskite electron system with lattice system. Materials Today Sustainability, 2024, 25, 100617.	4.1	0
2701	Effect of addition of indium oxide layer on all-inorganic perovskite solar cells. Solid-State Electronics, 2023, 210, 108806.	1.4	1
2702	Polaron Vibronic Progression Shapes the Optical Response of 2D Perovskites. Advanced Science, 2024, 11, .	11.2	1
2703	Trace Water in Lead Iodide Affecting Perovskite Crystal Nucleation Limits the Performance of Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	2
2704	Solution-processed CsPbBr3 perovskite LEDs using blended-polymer additives for nearly 100% surface coverage. Thin Solid Films, 2023, 787, 140133.	1.8	1
2705	In Situ Dualâ€Interface Passivation Strategy Enables The Efficiency of Formamidinium Perovskite Solar Cells Over 25%. Advanced Materials, 2024, 36, .	21.0	2
2706	Real-Time Tracking of Hot Carrier Injection at the Interface of FAPbBr ₃ Perovskite Using Femtosecond Mid-IR Spectroscopy. ACS Central Science, 0, , .	11.3	1
2707	An Extraordinary Antisolvent Ethyl Cyanoformate for Achieving High Efficiency and Stability P3HTâ€Based CsPbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2024, 34, .	14.9	1
2708	Dielectric constants and double-layer formation in a perovskite thin film revealed by electrochemical impedance spectroscopy. MRS Communications, 0, , .	1.8	0

#	Article	IF	CITATIONS
2709	The Synergetic Ionic and Electronic Features of MAPbI ₃ Perovskite Films Revealed by Electrochemical Impedance Spectroscopy. Advanced Optical Materials, 2024, 12, .	7.3	0
2711	Pathways of Water-Induced Lead-Halide Perovskite Surface Degradation: Insights from <i>In Situ</i> Atomic-Scale Analysis. ACS Nano, 2023, 17, 25679-25688.	14.6	1
2712	Enhancing the Efficiency and Stability of Perovskite Solar Cells through Defect Passivation and Controlled Crystal Growth Using Allantoin. ACS Applied Materials & Interfaces, 2023, 15, 58406-58415.	8.0	1
2713	Influence of N-type electron acceptors in perovskite absorbers for stabilized perovskite absorbers for high-performance perovskite solar cells. Organic Electronics, 2024, 125, 106976.	2.6	0
2714	Steric hindrance driven passivating cations for stable perovskite solar cells with an efficiency over 24%. Journal of Materials Chemistry A, 0, , .	10.3	0
2715	Ruddlesden–Popper and Dion–Jacobson Perovskites in Multiple Quantum Wells Lightâ€Emitting Diodes. Advanced Optical Materials, 0, , .	7.3	0
2716	Eco-friendly processing of perovskite solar cells in ambient air. Renewable and Sustainable Energy Reviews, 2024, 192, 114161.	16.4	2
2717	High-performance pure red perovskite light-emitting diodes utilizing conformational transformation of ionic liquid additive. Nano Energy, 2024, 120, 109228.	16.0	0
2720	Magnetic-biased chiral molecules enabling highly oriented photovoltaic perovskites. National Science Review, 2024, 11, .	9.5	4
2721	Co-treatment of an inorganic additive SnF2 and an organic additive P(VDF-TrFE) for improving the performances of MASnBr3 films. Optical Materials, 2024, 147, 114721.	3.6	0
2722	Photoexcited electron transfer in hydrophobic fluorescent FAPbBr3 perovskite nanocrystals and graphene heterostructures. Journal of Materials Research, 2024, 39, 626-635.	2.6	0
2723	Ultrafast photo-induced carrier dynamics of perovskite films being degraded by atmospheric exposure. Journal of the Korean Physical Society, 0, , .	0.7	0
2725	Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells. Chemical Engineering Journal, 2024, 480, 148249.	12.7	1
2726	The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3. Nature Communications, 2023, 14, .	12.8	0
2729	Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI ₃ perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2024, 73, 068801.	0.5	0
2730	Thermal and power performance optimization of cost-effective solar cells using eco-friendly perovskite materials. Physica Scripta, 2024, 99, 025512.	2.5	0
2734	A Comprehensive Review on Defects-Induced Voltage Losses and Strategies toward Highly Efficient and Stable Perovskite Solar Cells. Photonics, 2024, 11, 87.	2.0	0
2735	Unveiling the Electronic Band Structure and Temporal Dynamics of Excited Carriers in Formamidinium Lead Bromide Perovskite. Advanced Optical Materials, 2024, 12, .	7.3	О

#	Article	IF	CITATIONS
2736	Compositional Transformation and Impurityâ€Mediated Optical Transitions in Coâ€Evaporated Cu ₂ AgBil ₆ Thin Films for Photovoltaic Applications. Advanced Energy Materials, 2024, 14, .	19.5	0
2737	The Role of Grain Boundaries in Organic–Inorganic Hybrid Perovskite Solar Cells and its Current Enhancement Strategies: A Review. Energy and Environmental Materials, 0, , .	12.8	1
2738	An ambient process for hole transport layer-free highly stable MAPbI ₃ by addition of MACl for efficient perovskite solar cells. Energy Advances, 2024, 3, 442-450.	3.3	0
2739	Stable and Highly Efficient Photocatalysis with Two-Dimensional Organic–Inorganic Hybrid Perovskites. ACS Omega, 0, , .	3.5	0
2741	THzâ€Wave Absorption Properties of Organic–Inorganic Hybrid Perovskite Materials: A New Candidate for THz Sensors. Small Science, 2024, 4, .	9.9	0
2742	Numerical modeling of defects induced dark current in halide perovskite X-ray detectors. Physica Scripta, 2024, 99, 025995.	2.5	0
2743	Acetic acid-driven synthesis of environmentally stable MAPb0.5Sn0.5Br3 nano-assembly for anti-counterfeiting. Journal of Colloid and Interface Science, 2024, 660, 449-457.	9.4	0
2744	Understanding the Chemical Bond in Semiconductor/MXene Composites: TiO ₂ Clusters Anchored on the Ti ₂ C MXene Surface. Chemistry - A European Journal, 2024, 30, .	3.3	0
2745	Carbon Electrodes for Perovskite Photovoltaics: Interfacial Properties, Metaâ€analysis, and Prospects. Solar Rrl, 2024, 8, .	5.8	0
2746	Grain boundary passivation by alkylammonium salt for highly stable perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
2747	Investigation of structural, electronic, optical and elastic properties of Li-based halide perovskites LiXCl3 (X = Ca, Ba) via DFT computations. Optical and Quantum Electronics, 2024, 56, .	3.3	0
2748	Hydrogen bonds delicately restraining photoelectric performance in hybrid perovskites. Journal of Materials Chemistry A, 2024, 12, 5805-5814.	10.3	0
2749	A phenomenological figure of merit for photovoltaic materials. JPhys Energy, 2024, 6, 025009.	5.3	0
2750	Multiâ€Functional Spirobifluorene Phosphonate Based Exciplex Interface Enables <i>V</i> _{oc} Reaching 95% of Theoretical Limit for Perovskite Solar Cells. Advanced Materials, 0, , .	21.0	0
2751	The dynamic surface evolution of halide perovskites induced by external energy stimulation. National Science Review, 2024, 11, .	9.5	0
2752	Improved Performance of Leadâ€Free Perovskite Solar Cells Based on Multiâ€Absorber MASnI ₃ /CsGeI ₃ Heterojunction by Device Simulation. Advanced Theory and Simulations, 2024, 7, .	2.8	0
2753	A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Advances, 2024, 14, 5085-5131.	3.6	1
2754	A Catalystâ€Like System Enables Efficient Perovskite Solar Cells. Advanced Materials, 0, , .	21.0	0

#	Article	IF	CITATIONS
2755	Defect-assisted hole transport through transition metal oxide-based injection layers for passivated nanocrystalline CsPbBr3 emissive thin films: A combined experimental and modeling study. Journal of Applied Physics, 2024, 135, .	2.5	0
2756	Highly stable CsPbBr ₃ perovskite phases from new lead β-diketonate glyme adducts. Dalton Transactions, 2024, 53, 5360-5372.	3.3	0
2757	Unveiling dominant recombination loss in perovskite solar cells with a XGBoost-based machine learning approach. IScience, 2024, 27, 109200.	4.1	0
2758	RF sputtered GZO thin films for enhancing electron transport in perovskite solar cells. Optical Materials, 2024, 149, 115006.	3.6	0
2759	Strainâ€Induced αâ€Phase Stabilization for Low Dark Current FAPIâ€Based Photodetectors. Advanced Optical Materials, 2024, 12, .	7.3	0
2760	Enhancing Organic–Inorganic Perovskite Thin Film Crystallization via Vapor–Solid Reaction by Modifying Pbl ₂ Precursors Films with Pyridinium Trifluoromethanesulfonate. Solar Rrl, 2024, 8, .	5.8	0
2761	Optimization of Perovskite/Colloidal Quantum Dot Monolithic Tandem Solar Cell to Enhance Device Performance via Solar Cell Capacitance Simulator 1D. Physica Status Solidi (B): Basic Research, 2024, 261, .	1.5	0
2762	Reducing Hole Trap Density in Sn–Pb Perovskite Solar Cells via Molecular Phenylhydrazine. Solar Rrl, 2024, 8, .	5.8	0
2763	Spectroscopic screening and performance parameters of hybrid perovskite (CH3CH2PH3PbI3) using WIEN2k and SCAPS-1d. Physica B: Condensed Matter, 2024, 682, 415793.	2.7	0
2764	Recent progress in single crystal perovskite X-ray detectors. Science China Information Sciences, 2024, 67, .	4.3	0
2765	Phenyltrimethylammonium chloride additive for highly efficient and stable FAPbI3 perovskite solar cells. Nano Energy, 2024, 123, 109423.	16.0	0
2766	Experimental Validation of Optimized Solar Cell Capacitance Simulation for Rheologyâ€Modulated Carbonâ€Based Hole Transport Layerâ€Free Perovskite Solar Cell. Advanced Energy and Sustainability Research, 0, , .	5.8	0
2767	Computational insight on CsPbX3 (X = Cl, Br, I) and two-dimensional MYZ (M = Mo, W; YZ = Se, S) heterostructures. Materials Science in Semiconductor Processing, 2024, 175, 108262.	4.0	0
2768	Study of the electrical properties of large-scale electroluminescent perovskite panels. AIP Conference Proceedings, 2024, , .	0.4	0
2769	Defect-Influenced Modeling of Photophysics in Lead-Based Hybrid and All-Inorganic Perovskites. , 2024, , 223-238.		0
2770	A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications. Progress in Solid State Chemistry, 2024, , 100443.	7.2	0
2771	Pinhole Patching by Free Radicals for Highly Efficient Perovskite Solar Cells Fabricated in High-Moisture Environments. ACS Applied Energy Materials, 2024, 7, 2189-2196.	5.1	0
2772	Computational predictions of optoelectronic energy materials Cs2SiBr6 Cs2GeBr6 & amp; Cs2SnBr6 for phenomenal photovoltaic applications; a first principles study. Computational and Theoretical Chemistry, 2024, 1235, 114532.	2.5	0

#	Article	IF	CITATIONS
2773	Imidazoanthraquinone Derivative as a Surface Passivator for Enhanced and Stable Perovskite Solar Cells. ACS Omega, 0, , .	3.5	0
2774	The circuitry landscape of perovskite solar cells: An in-depth analysis. Journal of Energy Chemistry, 2024, 94, 393-413.	12.9	0
2775	High-Performance Sn-Based Quasi-Two-Dimensional Perovskite Photodetectors by Altering Dark Current Shunt Pathways. ACS Photonics, 2024, 11, 1181-1188.	6.6	0
2776	Probing elemental diffusion and radiation tolerance of perovskite solar cells via non-destructive Rutherford backscattering spectrometry. , 2024, 2, .		0
2777	First-principles study on the stability and degradation of the lead-free double perovskite materials Cs2B'BiCl6 (B' = Li, Na, K) under natural environment. Materials Today Communications, 2024, 39, 108619.	1.9	0
2778	Probing ballistic photovoltaic currents in Bi6-Pr Ti3Fe2O18 multiferroics. Journal of the European Ceramic Society, 2024, 44, 5752-5764.	5.7	0
2779	Retarded Crystallization Kinetics of One-Step Deposited MAPbCl ₃ Perovskite Enabling Fully Transparent Solar Cells. ACS Sustainable Chemistry and Engineering, 2024, 12, 5272-5282.	6.7	0
2780	Grain orientation management and recombination suppression for ultra-stable PeLEDs with record brightness. Joule, 2024, 8, 1176-1190.	24.0	Ο
2781	Machine Learning Enabled Potential for (BA)2(MA)(nâ^'1)PbnI3n+1 2D Ruddlesden–Popper Perovskite Materials. Multiscale Science and Engineering, 0, , .	1.7	0
2782	Improving Hybrid Tin Halide Layers by Melt Assisted Annealing for Leadâ€Free Perovskite Solar Cells. Advanced Materials Technologies, 2024, 9, .	5.8	0
2783	High-Performance All-Inorganic Architecture Perovskite Light-Emitting Diodes Based on Tens-of-Nanometers-Sized CsPbBr ₃ Emitters in a Carrier-Confined Heterostructure. ACS Nano, 2024, 18, 8673-8682.	14.6	0
2784	Monolithic perovskite/silicon tandem solar cells: A review of the present status and solutions toward commercial application. Nano Energy, 2024, 124, 109476.	16.0	0
2785	The Role of Grain Boundaries on Ion Migration and Charge Recombination in Halide Perovskites. Small, 0, , .	10.0	0