A wearable thermoelectric generator fabricated on a gla

Energy and Environmental Science 7, 1959 DOI: 10.1039/c4ee00242c

Citation Report

#	Article	IF	CITATIONS
2	Copper(I) oxide based thermoelectric powders and pastes with high Seebeck coefficients. Applied Physics Letters, 2014, 105, .	3.3	22
3	An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. Journal of Materials Chemistry A, 2014, 2, 15788-15795.	10.3	130
4	Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy and Environmental Science, 2014, 7, 4035-4043.	30.8	179
5	Wearable thermoelectric generator for harvesting human body heat energy. Smart Materials and Structures, 2014, 23, 105002.	3.5	190
6	Design of a High Performance Polymer Thermoelectric Generator Using Radial Architecture. , 2015, , .		0
7	High Operating Voltage Supercapacitor Using PPy/AC Composite Electrode Based on Simple Dipping Method. Journal of Chemistry, 2015, 2015, 1-7.	1.9	7
8	Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting. Smart Materials and Structures, 2015, 24, 065032.	3.5	20
9	Thermoelectric energy conversion: How good can silicon be?. Materials Letters, 2015, 157, 193-196.	2.6	21
10	A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability. Nano Letters, 2015, 15, 2350-2357.	9.1	78
11	Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta, 2015, 172, 12-19.	5.2	103
12	Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing. Proceedings of the IEEE, 2015, 103, 665-681.	21.3	166
13	Analytical Evaluation of Interfacial Crack Propagation in Vacuum-Based Picking-up Process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1700-1708.	2.5	11
14	Human body parts heat energy harvesting using thermoelectric module. , 2015, , .		12
15	Flexible prototype thermoelectric devices based on Ag ₂ Te and PEDOT:PSS coated nylon fibre. Nanoscale, 2015, 7, 5598-5602.	5.6	54
16	A differential method for measuring cooling performance of a thermoelectric module. Applied Thermal Engineering, 2015, 87, 209-213.	6.0	3
17	Self-Powered Human-Interactive Transparent Nanopaper Systems. ACS Nano, 2015, 9, 7399-7406.	14.6	97
18	Flexible thermoelectric materials and device optimization for wearable energy harvesting. Journal of Materials Chemistry C, 2015, 3, 10362-10374.	5.5	518
19	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy, 2015, 16, 301-309.	16.0	45

#	Article	IF	Citations
20	Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy, 2015, 14, 201-208.	16.0	170
21	A facile fabrication of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid structures and their improved thermoelectric performance. Chemical Engineering Journal, 2015, 275, 102-112.	12.7	65
22	Layered Bi ₂ Se ₃ Nanoplate/Polyvinylidene Fluoride Composite Based n-type Thermoelectric Fabrics. ACS Applied Materials & Interfaces, 2015, 7, 7054-7059.	8.0	108
23	Remarkable Conversion Between n- and p-Type Reduced Graphene Oxide on Varying the Thermal Annealing Temperature. Chemistry of Materials, 2015, 27, 7362-7369.	6.7	177
24	Free-standing Bi–Sb–Te films derived from thermal annealing of sputter-deposited Sb ₂ Te ₃ /Bi ₂ Te ₃ multilayer films for thermoelectric applications. CrystEngComm, 2015, 17, 7522-7527.	2.6	9
25	Advances and prospects of fiber supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20863-20879.	10.3	110
26	Flexible Si/PEDOT:PSS hybrid solar cells. Nano Research, 2015, 8, 3141-3149.	10.4	27
27	Solution-processed bottom-emitting polymer light-emitting diodes on a textile substrate towards a wearable display. Journal of Information Display, 2015, 16, 179-184.	4.0	33
28	Hierarchical Bi–Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Conversion and Management, 2015, 106, 1192-1200.	9.2	40
29	Self-powered flexible inorganic electronic system. Nano Energy, 2015, 14, 111-125.	16.0	110
30	Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters. Polymers, 2016, 8, 123.	4.5	96
31	Meta-Analysis on Optimised Parameters for Energy Harvesting Thermoelectric Generators in the Human Body. PAM Review Energy Science & Technology, 2016, 3, 49-63.	0.2	0
32	Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Advanced Energy Materials, 2016, 6, 1600498.	19.5	145
33	Free-Standing Graphene Thermophone on a Polymer-Mesh Substrate. Small, 2016, 12, 185-189.	10.0	43
34	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	13.8	460
35	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	21.0	1,033
36	Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study. Applied Physics Letters, 2016, 109, 053902.	3.3	13
37	Design of a polymer thermoelectric generator using radial architecture. Journal of Applied Physics, 2016, 119, .	2.5	47

		CITATION REPORT		
#	Article		IF	CITATIONS
38	Flexible thermoelectric power generator based on electrochemical deposition process.	,2016,,.		1
39	Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure. AIP 2016, 6, .	e3 and n-type Advances,	1.3	24
40	An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond Lab on A Chip, 2016, 16, 2427-2433.	l laser processing.	6.0	50
41	Soft, thin skin-mounted power management systems and their use in wireless thermos Proceedings of the National Academy of Sciences of the United States of America, 201	graphy. 16, 113, 6131-6136.	7.1	139
42	Chemically Exfoliated SnSe Nanosheets and Their SnSe/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films for Pc Thermoelectric Applications. ACS Nano, 2016, 10, 5730-5739.	olymer Based	14.6	232
43	All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 201	.6, 4, 7983-7999.	10.3	245
44	Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting. ACS Energy 654-658.	/ Letters, 2016, 1,	17.4	91
45	Fabric Active Transducer Stimulated by Water Motion for Self-Powered Wearable Devic Materials & Interfaces, 2016, 8, 24579-24584.	ce. ACS Applied	8.0	20
46	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretch Advanced Materials, 2016, 28, 9881-9919.	iability.	21.0	407
47	High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanos 18489-18494.	cale, 2016, 8,	5.6	107
48	Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. Journ Chemistry A, 2016, 4, 13171-13175.	al of Materials	10.3	128
49	Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films Thermoelectric Energy Harvesting Systems. Journal of Electronic Materials, 2016, 45, 5	s for Printed 561-5569.	2.2	14
50	Wearable thermoelectric generators for human body heat harvesting. Applied Energy, 518-524.	2016, 182,	10.1	265
51	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Ange 2016, 128, 12229-12232.	wandte Chemie,	2.0	44
52	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Ange - International Edition, 2016, 55, 12050-12053.	wandte Chemie	13.8	210
53	Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric materia substrate. Current Applied Physics, 2016, 16, 1442-1448.	l and	2.4	45
54	High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Process. ACS Nano, 2016, 10, 10851-10857.	Lift-Off	14.6	199
55	Preparation of Bismuth Telluride Films with High Thermoelectric Power Factor. ACS Ap & Interfaces, 2016, 8, 32392-32400.	plied Materials	8.0	47

#	ARTICLE	IF	CITATIONS
56	3D Carbon Electrode Based Triboelectric Nanogenerator. Advanced Materials Technologies, 2016, 1, 1600160.	5.8	16
57	Single-walled carbon nanotubes/polyaniline-coated polyester thermoelectric textile with good interface stability prepared by ultrasonic induction. RSC Advances, 2016, 6, 90347-90353.	3.6	24
58	Organic thermoelectric materials for energy harvesting and temperature control. Nature Reviews Materials, 2016, 1, .	48.7	927
59	Control of crystal growth and thermoelectric properties of sputter-deposited BiTe thin films embedded with alumina nanoparticles. CrystEngComm, 2016, 18, 9281-9285.	2.6	1
60	High-performance shape-engineerable thermoelectric painting. Nature Communications, 2016, 7, 13403.	12.8	122
61	Acidity-Controlled Conducting Polymer Films for Organic Thermoelectric Devices with Horizontal and Vertical Architectures. Scientific Reports, 2016, 6, 33795.	3.3	21
62	Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7, 12744.	12.8	483
63	High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Scientific Reports, 2016, 6, 33135.	3.3	141
64	Engineering Thermal Conductivity for Balancing Between Reliability and Performance of Bulk Thermoelectric Generators. Advanced Functional Materials, 2016, 26, 3678-3686.	14.9	25
65	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	21.0	894
66	Woven‥arn Thermoelectric Textiles. Advanced Materials, 2016, 28, 5038-5044.	21.0	195
67	Wearable Biofuel Cells: A Review. Electroanalysis, 2016, 28, 1188-1200.	2.9	149
68	Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics. Organic Electronics, 2016, 36, 89-96.	2.6	25
69	A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach. Journal of Microelectromechanical Systems, 2016, 25, 744-749.	2.5	46
70	Non-epitaxial pulsed laser deposition of Ag2Se thermoelectric thin films for near-room temperature applications. Ceramics International, 2016, 42, 12490-12495.	4.8	34
71	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>Bi</mml:mi></mml:mstyle </mml:mrow><mml:mrow><mml:mi>x</mml:mi><!--<br-->mathvariant="normal"><mml:mi>Sb</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub>	mml:mrow	/>?/mml:ms >â^`
72	Extreme Mechanics Letters, 2016, 9, 386-396 Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core–Shell Nanocomposites. ACS Nano, 2016, 10, 6449-6457.	14.6	202
73	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	21.0	1,594

#	Article	IF	CITATIONS
74	A Triboelectric Sponge Fabricated from a Cube Sugar Template by 3D Soft Lithography for Superhydrophobicity and Elasticity. Advanced Electronic Materials, 2016, 2, 1500331.	5.1	70
75	Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277.	2.0	11
76	Room-Temperature Fabrication of a Flexible Thermoelectric Generator Using a Dry-Spray Deposition System. Journal of Electronic Materials, 2016, 45, 2286-2290.	2.2	6
77	An 80 mV Startup Voltage Fully Electrical DC–DC Converter for Flexible Thermoelectric Generators. IEEE Sensors Journal, 2016, 16, 2735-2745.	4.7	22
78	Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano, 2016, 10, 4770-4778.	14.6	354
79	Adjusting the thermoelectric properties of copper(<scp>i</scp>) oxide–graphite–polymer pastes and the applications of such flexible composites. Physical Chemistry Chemical Physics, 2016, 18, 10700-10707.	2.8	33
80	Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy and Environmental Science, 2016, 9, 1696-1705.	30.8	237
81	Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy and Environmental Science, 2016, 9, 1528-1532.	30.8	46
82	Triboelectric Nanogenerator Based on the Internal Motion of Powder with a Package Structure Design. ACS Nano, 2016, 10, 1017-1024.	14.6	53
83	Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 2016, 164, 57-63.	10.1	272
84	Flexible organic photo-thermogalvanic cell for low power applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 2442-2447.	2.2	12
85	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	5.8	116
86	A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions. Applied Energy, 2017, 190, 764-771.	10.1	25
87	Organic flexible thermoelectric generators: from modeling, a roadmap towards applications. Sustainable Energy and Fuels, 2017, 1, 174-190.	4.9	38
88	Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS Applied Materials & Interfaces, 2017, 9, 4788-4797.	8.0	201
89	Self-powered wearable graphene fiber for information expression. Nano Energy, 2017, 32, 329-335.	16.0	148
90	Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications. ECS Journal of Solid State Science and Technology, 2017, 6, N3036-N3044.	1.8	54
91	Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy, 2017, 33, 1-11.	16.0	124

#	Article	IF	CITATIONS
92	A Self-Powered Temperature Sensor Based on Silver Telluride Nanowires. ECS Journal of Solid State Science and Technology, 2017, 6, N3055-N3057.	1.8	21
93	Flexible thermoelectric generator with efficient vertical to lateral heat path films. Journal of Micromechanics and Microengineering, 2017, 27, 035011.	2.6	19
94	Flexible piezoelectric strain energy harvester responsive to multi-directional input forces and its application to self-powered motion sensor. , 2017, , .		5
95	A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 73, 730-744.	16.4	408
96	Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism. Scientific Reports, 2017, 7, 41396.	3.3	95
97	A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Materials and Structures, 2017, 26, 045037.	3.5	120
98	Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in-situ Growth. Nano Energy, 2017, 33, 55-64.	16.0	64
99	Roll type conducting polymer legs for rigid-flexible thermoelectric generator. APL Materials, 2017, 5, .	5.1	18
100	Design and Experimental Investigation of Thermoelectric Generators for Wearable Applications. Advanced Materials Technologies, 2017, 2, 1600292.	5.8	28
101	Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply. Energy, 2017, 130, 276-285.	8.8	22
102	Enhancing thermoelectric properties of Sb 2 Te 3 flexible thin film through microstructure control and crystal preferential orientation engineering. Applied Surface Science, 2017, 414, 197-204.	6.1	71
103	Scavenging Biomechanical Energy Using High-Performance, Flexible BaTiO ₃ Nanocube/PDMS Composite Films. ACS Sustainable Chemistry and Engineering, 2017, 5, 4730-4738.	6.7	92
104	Inorganic nanomaterials for printed electronics: a review. Nanoscale, 2017, 9, 7342-7372.	5.6	423
105	Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Conversion and Management, 2017, 145, 204-213.	9.2	56
106	Improved Thermoelectric Performance in Flexible Tellurium Nanowires/Reduced Graphene Oxide Sandwich Structure Hybrid Films. Journal of Electronic Materials, 2017, 46, 3049-3056.	2.2	9
107	Stretchable Thermoelectric Generators Metallized with Liquid Alloy. ACS Applied Materials & Interfaces, 2017, 9, 15791-15797.	8.0	72
108	From materials to device design of a thermoelectric fabric for wearable energy harvesters. Journal of Materials Chemistry A, 2017, 5, 12068-12072.	10.3	120
109	Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chemical Society Reviews, 2017, 46, 3510-3528.	38.1	184

#	Article	IF	CITATIONS
110	A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. Journal of Materials Chemistry A, 2017, 5, 1176-1183.	10.3	76
111	Flexible Thermoelectric Generators Composed of nâ€and pâ€Type Silicon Nanowires Fabricated by Topâ€Down Method. Advanced Energy Materials, 2017, 7, 1602138.	19.5	28
112	Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy and Environmental Science, 2017, 10, 1581-1589.	30.8	309
113	3D printed noise-cancelling triboelectric nanogenerator. Nano Energy, 2017, 38, 377-384.	16.0	41
114	Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy, 2017, 202, 736-745.	10.1	260
115	Tuning the Seebeck effect in C ₆₀ -based hybrid thermoelectric devices through temperature-dependent surface polarization and thermally-modulated interface dipoles. Physical Chemistry Chemical Physics, 2017, 19, 14793-14800.	2.8	7
116	Process optimisation for n-type Bi2Te3 films electrodeposited on flexible recycled carbon fibre using response surface methodology. Journal of Materials Science, 2017, 52, 11467-11481.	3.7	18
117	Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 2017, 19, 85-108.	12.3	285
118	Low Resistance Ohmic Contact for ZnSb Thin Film. Journal of Electronic Materials, 2017, 46, 3256-3261.	2.2	6
119	Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy, 2017, 35, 379-386.	16.0	86
120	Preparation of flexible carbon nanotube ropes for low-voltage heat generator. Applied Physics Letters, 2017, 110, .	3.3	17
121	Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foamingâ€induced microstructuring. Journal of Applied Polymer Science, 2017, 134, 45073.	2.6	12
122	Thermoelectric enhancement in sliver tantalate via strain-induced band modification and chemical bond softening. RSC Advances, 2017, 7, 8460-8466.	3.6	8
123	Inkjet Printing of Singleâ€Crystalline Bi ₂ Te ₃ Thermoelectric Nanowire Networks. Advanced Electronic Materials, 2017, 3, 1600524.	5.1	48
124	Advanced Biowasteâ€Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator. Advanced Materials Technologies, 2017, 2, 1600191.	5.8	22
125	Development of air-stable n-type single-walled carbon nanotubes by doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 H -benzo[d]imidazole and their thermoelectric properties. Synthetic Metals, 2017, 225, 76-80.	3.9	61
126	Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Applied Surface Science, 2017, 418, 352-361.	6.1	52
127	A solution-processed TiS ₂ /organic hybrid superlattice film towards flexible thermoelectric devices. Journal of Materials Chemistry A, 2017, 5, 564-570.	10.3	130

#	Article	IF	CITATIONS
128	A stacked and miniaturized radioisotope thermoelectric generator by screen printing. Sensors and Actuators A: Physical, 2017, 267, 496-504.	4.1	16
129	Emerging Scientific and Engineering Opportunities within the Water-Energy Nexus. Joule, 2017, 1, 665-688.	24.0	109
130	Fabrication of <i>Ï€</i> -type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature. Journal of Micromechanics and Microengineering, 2017, 27, 125006.	2.6	42
131	A novel glass-fiber-aided cold-press method for fabrication of n-type Ag ₂ Te nanowires thermoelectric film on flexible copy-paper substrate. Journal of Materials Chemistry A, 2017, 5, 24740-24748.	10.3	73
132	Flexible PV-cell Modeling for Energy Harvesting in Wearable IoT Applications. Transactions on Embedded Computing Systems, 2017, 16, 1-20.	2.9	33
133	Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Applied Energy, 2017, 208, 758-765.	10.1	71
135	Surface structural analysis of a friction layer for a triboelectric nanogenerator. Nano Energy, 2017, 42, 34-42.	16.0	89
136	Mat-like flexible thermoelectric system based on rigid inorganic bulk materials. Journal Physics D: Applied Physics, 2017, 50, 494006.	2.8	30
137	Wearable thermoelectric generator for harvesting heat on the curved human wrist. Applied Energy, 2017, 205, 710-719.	10.1	68
138	Highly stretchable organic thermoelectrics with an enhanced power factor due to extended localization length. Organic Electronics, 2017, 50, 367-375.	2.6	17
139	A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.	14.6	419
140	Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer. RSC Advances, 2017, 7, 43737-43742.	3.6	60
141	Mechanical Stability Analysis via Neutral Mechanical Plane for Highâ€Performance Flexible Si Nanomembrane FDSOI Device. Advanced Materials Interfaces, 2017, 4, 1700618.	3.7	9
142	High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.	16.0	132
143	Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano, 2017, 11, 9614-9635.	14.6	1,245
144	Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Applied Energy, 2017, 206, 649-656.	10.1	87
145	Thickness-controlled electronic structure and thermoelectric performance of ultrathin SnS2 nanosheets. Scientific Reports, 2017, 7, 8914.	3.3	34
146	High-Performance Screen-Printed Thermoelectric Films on Fabrics. Scientific Reports, 2017, 7, 7317.	3.3	100

#	Article	IF	CITATIONS
147	Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy, 2017, 40, 663-672.	16.0	119
148	Toward Soft Skinâ€Like Wearable and Implantable Energy Devices. Advanced Energy Materials, 2017, 7, 1700648.	19.5	175
149	Enhanced thermoelectric properties of screen-printed Bi _{0.5} Sb _{1.5} Te ₃ and Bi ₂ Te _{2.7} Se _{0.3} thick films using a post annealing process with mechanical pressure. Journal of Materials Chemistry C, 2017, 5, 8559-8565.	5.5	37
150	Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale, 2017, 9, 13034-13041.	5.6	43
151	Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity. Smart Materials and Structures, 2017, 26, 095046.	3.5	8
152	Highly Compressible Integrated Supercapacitor–Piezoresistanceâ€Sensor System with CNT–PDMS Sponge for Health Monitoring. Small, 2017, 13, 1702091.	10.0	261
153	Performance assessment of an integrated molten carbonate fuel cell-thermoelectric devices hybrid system for combined power and cooling purposes. International Journal of Hydrogen Energy, 2017, 42, 30156-30165.	7.1	33
154	Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano, 2017, 11, 7608-7614.	14.6	191
155	Nanostructural Tailoring to Induce Flexibility in Thermoelectric Ca ₃ Co ₄ O ₉ Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 25308-25316.	8.0	70
156	Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. Journal of the American Chemical Society, 2017, 139, 10887-10896.	13.7	110
157	Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature Communications, 2017, 8, 16076.	12.8	233
158	Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials. Chemistry of Materials, 2017, 29, 6396-6404.	6.7	14
159	Smart supercapacitors with deformable and healable functions. Journal of Materials Chemistry A, 2017, 5, 16-30.	10.3	58
160	Human body heat for powering wearable devices: From thermal energy to application. Energy Conversion and Management, 2017, 131, 44-54.	9.2	189
161	Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. Journal of Applied Polymer Science, 2017, 134, .	2.6	90
162	Paper-based origami flexible and foldable thermoelectric nanogenerator. Nano Energy, 2017, 31, 296-301.	16.0	125
163	The bridge between the materials and devices of thermoelectric power generators. Energy and Environmental Science, 2017, 10, 69-85.	30.8	143
164	Post ionized defect engineering of the screen-printed Bi 2 Te 2.7 Se 0.3 thick film for high performance flexible thermoelectric generator. Nano Energy, 2017, 31, 258-263.	16.0	101

#	Article	IF	CITATIONS
165	Radial thermoelectric generator fabricated from n―and pâ€ŧype conducting polymers. Journal of Applied Polymer Science, 2017, 134, .	2.6	52
166	Design of a Wearable Thermoelectric Generator for Harvesting Human Body Energy. Lecture Notes in Electrical Engineering, 2017, , 55-66.	0.4	23
167	Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite. Energy, 2017, 118, 1146-1155.	8.8	28
168	Nanomembraneâ€Based, Thermalâ€Transport Biosensor for Living Cells. Small, 2017, 13, 1603080.	10.0	19
169	Near-optimal energy allocation for self-powered wearable systems. , 2017, , .		15
170	Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments. Micromachines, 2017, 8, 115.	2.9	35
171	Wearable Biomechanical Energy Harvesting Technologies. Energies, 2017, 10, 1483.	3.1	144
172	First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials. Frontiers in Mechanical Engineering, 2017, 3, .	1.8	27
173	Material Optimization for a High Power Thermoelectric Generator in Wearable Applications. Applied Sciences (Switzerland), 2017, 7, 1015.	2.5	9
174	Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy, 2018, 215, 690-698.	10.1	194
175	A lightweight scalable agarose-gel-synthesized thermoelectric composite. Materials Research Express, 2018, 5, 035031.	1.6	1
176	High-Performance PbTe Thermoelectric Films by Scalable and Low-Cost Printing. ACS Energy Letters, 2018, 3, 818-822.	17.4	53
178	Enhanced thermoelectric performance of SnTe: High efficient cation - anion Co-doping, hierarchical microstructure and electro-acoustic decoupling. Nano Energy, 2018, 47, 81-88.	16.0	67
179	An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods. Chinese Physics B, 2018, 27, 047210.	1.4	12
180	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	14.9	192
181	Electric power generation <i>via</i> asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy and Environmental Science, 2018, 11, 1730-1735.	30.8	203
182	Using high thermal stability flexible thin film thermoelectric generator at moderate temperature. Applied Physics Letters, 2018, 112, .	3.3	21
183	Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. Journal of Materials Chemistry C, 2018, 6, 4866-4872.	5.5	63

#	Article	IF	CITATIONS
184	Inkjet Printed Largeâ€Area Flexible Few‣ayer Graphene Thermoelectrics. Advanced Functional Materials, 2018, 28, 1800480.	14.9	136
185	Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano, 2018, 12, 3964-3974.	14.6	218
186	Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy, 2018, 46, 39-44.	16.0	51
187	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	2.7	34
188	Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Letters, 2018, 3, 501-507.	17.4	226
190	Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 2018, 214, 131-138.	10.1	171
191	Thermoelectric energy harvesting for the gas turbine sensing and monitoring system. Energy Conversion and Management, 2018, 157, 215-223.	9.2	50
192	Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables. Energy, 2018, 144, 607-618.	8.8	28
193	Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics. ACS Applied Materials & amp; Interfaces, 2018, 10, 1743-1751.	8.0	85
194	Foldable Electrode Architectures Based on Silverâ€Nanowireâ€Wound or Carbonâ€Nanotubeâ€Webbed Micrometerâ€Scale Fibers of Polyethylene Terephthalate Mats for Flexible Lithiumâ€Ion Batteries. Advanced Materials, 2018, 30, 1705445.	21.0	45
195	3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy, 2018, 3, 301-309.	39.5	237
196	Recent Advances in Wearable Transdermal Delivery Systems. Advanced Materials, 2018, 30, 1704530.	21.0	151
197	Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence. ACS Applied Materials & Interfaces, 2018, 10, 17393-17400.	8.0	34
198	Bendable thermoelectric generators composed of p- and n-type silver chalcogenide nanoparticle thin films. Nano Energy, 2018, 49, 333-337.	16.0	23
199	A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy, 2018, 49, 588-595.	16.0	124
200	A unified theoretical model for Triboelectric Nanogenerators. Nano Energy, 2018, 48, 391-400.	16.0	96
201	Ultrafast and efficient photothermal conversion for sunlight-driven thermal-electric system. Chemical Engineering Journal, 2018, 344, 402-409.	12.7	99
202	High-Output Lead-Free Flexible Piezoelectric Generator Using Single-Crystalline GaN Thin Film. ACS Applied Materials & amp; Interfaces, 2018, 10, 12839-12846.	8.0	51

#	Article	IF	CITATIONS
203	Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. Npj Flexible Electronics, 2018, 2, .	10.7	114
204	Materials and approaches for on-body energy harvesting. MRS Bulletin, 2018, 43, 206-213.	3.5	33
205	Performance analyzes of an integrated phosphoric acid fuel cell and thermoelectric device system for power and cooling cogeneration. International Journal of Refrigeration, 2018, 89, 61-69.	3.4	59
206	Fiberâ€Based Thermoelectric Generators: Materials, Device Structures, Fabrication, Characterization, and Applications. Advanced Energy Materials, 2018, 8, 1700524.	19.5	108
207	A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 2018, 82, 3582-3609.	16.4	169
208	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	10.0	274
209	Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 2018, 6, 256-265.	10.3	53
210	High Performance Thermoelectric Materials: Progress and Their Applications. Advanced Energy Materials, 2018, 8, 1701797.	19.5	548
211	Passivity Analysis for Neural Networks of Neutral Type with Markovian Jumping Parameters and Time-Varying Delay. , 2018, , .		1
212	Development and optimization of high power density micro-thermoelectric generators. Journal of Physics: Conference Series, 2018, 1052, 012009.	0.4	1
213	Thermoelectric Textile Materials. , 2018, , .		4
215	Improved thermoelectric property of B-doped Si/Ge multilayered quantum dot films prepared by RF magnetron sputtering. Japanese Journal of Applied Physics, 2018, 57, 01AF03.	1.5	5
216	Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1, 555-561.	26.0	70
217	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 2018, 4, eaau5849.	10.3	208
218	Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics. APL Materials, 2018, 6, 101106.	5.1	29
219	High-Performance n-Type PbSe–Cu ₂ Se Thermoelectrics through Conduction Band Engineering and Phonon Softening. Journal of the American Chemical Society, 2018, 140, 15535-15545.	13.7	103
220	Washable Smart Threads for Strain Sensing Fabrics. IEEE Sensors Journal, 2018, 18, 9137-9144.	4.7	45
221	Coaxial struts and microfractured structures of compressible thermoelectric foams for self-powered pressure sensors. Nanoscale, 2018, 10, 18370-18377.	5.6	23

#	Article	IF	CITATIONS
222	Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites. APL Materials, 2018, 6, .	5.1	29
223	A Colpitts Oscillator-Based Self-Starting Boost Converter for Thermoelectric Energy Harvesting With 40-mV Startup Voltage and 75% Maximum Efficiency. IEEE Journal of Solid-State Circuits, 2018, 53, 3293-3302.	5.4	43
224	Fully Printed Organic–Inorganic Nanocomposites for Flexible Thermoelectric Applications. ACS Applied Materials & Interfaces, 2018, 10, 19580-19587.	8.0	87
225	Role of surfactant on thermoelectric behaviors of organic-inorganic composites. Journal of Applied Physics, 2018, 123, .	2.5	23
226	Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B, 2018, 6, 4043-4064.	5.8	255
227	Screen-printed radial structure micro radioisotope thermoelectric generator. Applied Energy, 2018, 225, 746-754.	10.1	62
228	Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Applied Energy, 2018, 225, 600-610.	10.1	46
229	Fabrication and characterization of ultrathin thermoelectric device for energy conversion. Journal of Power Sources, 2018, 394, 17-25.	7.8	29
230	Environment-friendly, durable, electro-conductive, and highly transparent heaters based on silver nanowire functionalized keratin nanofiber textiles. Journal of Materials Chemistry C, 2018, 6, 7847-7854.	5.5	17
231	Defect Engineering for High-Performance n-Type PbSe Thermoelectrics. Journal of the American Chemical Society, 2018, 140, 9282-9290.	13.7	123
232	Harvesting electrical energy from torsional thermal actuation driven by natural convection. Scientific Reports, 2018, 8, 8712.	3.3	11
233	Increasing the thermoelectric power factor of solvent-treated PEDOT:PSS thin films on PDMS by stretching. Journal of Materials Chemistry A, 2018, 6, 15621-15629.	10.3	49
234	A nonlinear interface integrated lever mechanism for piezoelectric footstep energy harvesting. Applied Physics Letters, 2018, 113, .	3.3	21
235	A triboelectric nanogenerator using silica-based powder for appropriate technology. Sensors and Actuators A: Physical, 2018, 280, 85-91.	4.1	19
236	Exploiting Dynamic Thermal Energy Harvesting for Reusing in Smartphone with Mobile Applications. , 2018, , .		7
237	Flexible thermoelectric materials and devices. Applied Materials Today, 2018, 12, 366-388.	4.3	415
239	Flexible nanoenergy harvester using piezo-tribo functional polymer and carbon fibre as electrodes. Materials Research Express, 2018, 5, 075509.	1.6	8
240	Design of Substrate Stretchability Using Origami-Like Folding Deformation for Flexible Thermoelectric Generator. Micromachines, 2018, 9, 315.	2.9	27

#	Article	IF	CITATIONS
241	Printing and Folding: A Solution for High-Throughput Processing of Organic Thin-Film Thermoelectric Devices. Sensors, 2018, 18, 989.	3.8	17
242	Flexible and Transparent Organic–Inorganic Hybrid Thermoelectric Modules. ACS Applied Materials & Interfaces, 2018, 10, 26687-26693.	8.0	28
243	Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment. Nanotechnology, 2018, 29, 275403.	2.6	14
244	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Selfâ€Compensation and Mn Alloying. Small, 2018, 14, e1802615.	10.0	132
245	Development of environmental-friendly BZT–BCT/P(VDF–TrFE) composite film for piezoelectric generator. Journal of Materials Science: Materials in Electronics, 2018, 29, 17764-17770.	2.2	16
246	High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance. Journal Physics D: Applied Physics, 2018, 51, 365501.	2.8	44
247	Electrodeposition of Bi2Te3-based p and n-type ternary thermoelectric compounds in chloride baths. Thin Solid Films, 2018, 660, 108-119.	1.8	12
248	All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Applied Energy Materials, 2018, 1, 2934-2941.	5.1	75
249	Carbon Nanotube-Based Thermoelectric Devices. Nanostructure Science and Technology, 2019, , 551-560.	0.1	1
250	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033.	16.0	107
250 251	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262.	16.0 8.0	107 47
250 251 252	 Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag₂Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262. Designing π-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. 	16.0 8.0 10.3	107 47 34
250 251 252 253	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262. Designing π-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. Facile design of a domestic thermoelectric generator by tailoring the thermoelectric performance of volume-controlled expanded graphite/PVDF composites. Composites Part B: Engineering, 2019, 176, 107234.	16.0 8.0 10.3 12.0	107 47 34 19
250 251 252 253 254	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262. Designing ÏE-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. Facile design of a domestic thermoelectric generator by tailoring the thermoelectric performance of volume-controlled expanded graphite/PVDF composites. Composites Part B: Engineering, 2019, 176, 107234. Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative. Advanced Energy Materials, 2019, 9, 1901363.	16.0 8.0 10.3 12.0 19.5	107 47 34 19 60
250 251 252 253 254	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262. Designing ÏE-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. Facile design of a domestic thermoelectric generator by tailoring the thermoelectric performance of volume-controlled expanded graphite/PVDF composites. Composites Part B: Engineering, 2019, 176, 107234. Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative. Advanced Energy Materials, 2019, 9, 1901363. Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors. JPhys Energy, 2019, 1, 042001.	 16.0 8.0 10.3 12.0 19.5 5.3 	 107 47 34 19 60 40
250 251 252 253 254 255	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & Interfaces, 2019, 11, 33254-33262. Designing ĨG-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. Facile design of a domestic thermoelectric generator by tailoring the thermoelectric performance of volume-controlled expanded graphite/PVDF composites. Composites Part B: Engineering, 2019, 176, 107234. Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative. Advanced Energy Materials, 2019, 9, 1901363. Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors. JPhys Energy, 2019, 1, 042001. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials, 2019, 20, 837-857.	 16.0 8.0 10.3 12.0 19.5 5.3 6.1 	107 47 34 19 60 40 79
 250 251 252 253 254 255 256 257 	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033. High Performance and Flexible Polyvinylpyrrolidone/Ag/Ag ₂ Te Ternary Composite Film for Thermoelectric Power Generator. ACS Applied Materials & amp; Interfaces, 2019, 11, 33254-33262. Designing Te-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785. Facile design of a domestic thermoelectric generator by tailoring the thermoelectric performance of volume-controlled expanded graphite/PVDF composites. Composites Part B: Engineering, 2019, 176, 107234. Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative. Advanced Energy Materials, 2019, 9, 1901363. Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors. JPhys Energy, 2019, 1, 042001. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials, 2019, 20, 837-857. A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Composites Science and Technology, 2019, 182, 107767.	 16.0 8.0 10.3 12.0 19.5 5.3 6.1 7.8 	 107 47 34 19 60 40 79 70

#	Article	IF	CITATIONS
259	A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. Journal of Materials Chemistry C, 2019, 7, 9748-9755.	5.5	37
260	Roll-to-roll printing of spatial wearable thermoelectrics. Manufacturing Letters, 2019, 21, 28-34.	2.2	20
261	Growth of halide perovskites thin films for thermoelectric applications. MRS Advances, 2019, 4, 1719-1725.	0.9	27
262	Silicon integrated circuit thermoelectric generators with a high specific power generation capacity. Nature Electronics, 2019, 2, 300-306.	26.0	89
263	Skinâ€Inspired Electronics and Its Applications in Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900063.	6.1	15
264	Liquid Metal Supercooling for Lowâ€Temperature Thermoelectric Wearables. Advanced Functional Materials, 2019, 29, 1906098.	14.9	142
265	Devices for promising applications. , 2019, , 247-314.		0
266	Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system. Journal of Power Sources, 2019, 439, 227069.	7.8	48
267	Stretchable Transparent Wireless Charging Coil Fabricated by Negative Transfer Printing. ACS Applied Materials & Interfaces, 2019, 11, 40677-40684.	8.0	11
268	Electrical Energy Harvesting from Arm Skin Heat using Flexible Thermoelectric Devices. Journal of Physics: Conference Series, 2019, 1259, 012001.	0.4	0
269	Electrolyte Based Thermal to Electric Energy Conversion Utilising 10 nm Diameter AL2O3 Nanochannels. , 2019, , .		1
270	Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy, 2019, 188, 116019.	8.8	55
271	Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures. Scientific Reports, 2019, 9, 14892.	3.3	17
272	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	30.8	188
273	Influence of different substrate materials on thermoelectric module with bulk legs. Journal of Power Sources, 2019, 438, 227055.	7.8	13
274	Thermocouples, Thermopiles and Thermoelectric Generators on Rigid and Flexible Substrates. , 2019, , .		0
275	Methods of energy generation from the human body: a literature review. Journal of Medical Engineering and Technology, 2019, 43, 255-272.	1.4	5
276	Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38616-38624.	8.0	102

#	Article	IF	CITATIONS
277	High-Performance μ-Thermoelectric Device Based on Bi ₂ Te ₃ /Sb ₂ Te ₃ p–n Junctions. ACS Applied Materials & Interfaces, 2019, 11, 38946-38954.	8.0	36
278	Tailoring Nanoporous Structures in Bi ₂ Te ₃ Thin Films for Improved Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 38075-38083.	8.0	41
279	A Wearable Allâ€Fabric Thermoelectric Generator. Advanced Materials Technologies, 2019, 4, 1800615.	5.8	100
280	Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale, 2019, 11, 5222-5230.	5.6	100
281	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	47.7	822
282	Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy, 2019, 58, 365-374.	16.0	69
283	Core–Shell and Helical-Structured Cylindrical Triboelectric Nanogenerator for Wearable Energy Harvesting. ACS Applied Energy Materials, 2019, 2, 1357-1362.	5.1	29
284	Printed Flexible μ-Thermoelectric Device Based on Hybrid Bi ₂ Te ₃ /PVA Composites. ACS Applied Materials & Interfaces, 2019, 11, 8969-8981.	8.0	42
285	Multi-dimensional nanocomposites for stretchable thermoelectric applications. Applied Physics Letters, 2019, 114, .	3.3	20
286	Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. Nanoscale, 2019, 11, 3046-3101.	5.6	57
287	Titanium-based thin film metallic glass as diffusion barrier layer for PbTe-based thermoelectric modules. APL Materials, 2019, 7, .	5.1	12
288	Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials. Polymers, 2019, 11, 167.	4.5	79
289	High performance and thermal stress analysis of a segmented annular thermoelectric generator. Energy Conversion and Management, 2019, 184, 180-193.	9.2	125
290	Flexible thermoelectric modules based on ALD-grown ZnO on different substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 020906.	2.1	8
291	Flexible thermopower generation over broad temperature range by PANI/nanorod hybrid-based p–n couples. Journal of Materials Chemistry A, 2019, 7, 1718-1724.	10.3	29
292	Human Body Micro-power plant. Energy, 2019, 183, 16-24.	8.8	6
293	Thermoelectric properties enhancement of p-type composite films using wood-based binder and mechanical pressing. Scientific Reports, 2019, 9, 7869.	3.3	8
294	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Advanced Materials, 2019, 31, e1807916.	21.0	419

#	ARTICLE	IF	CITATIONS
295	Quasiperiodic Branches in the Thermoelectricity of Nanowires. Journal of Electronic Materials, 2019, 48, 5099-5110.	2.2	2
296	Flexible film-based thermoelectric generators. MRS Advances, 2019, 4, 1691-1697.	0.9	3
297	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€Skin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	21.0	313
298	Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks. Applied Sciences (Switzerland), 2019, 9, 1990.	2.5	28
299	Advanced Electronic Packaging. , 2019, , 1-27.		1
300	Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy, 2019, 179, 12-18.	8.8	95
301	Wearable thermoelectrics for personalized thermoregulation. Science Advances, 2019, 5, eaaw0536.	10.3	299
302	Survey of energy scavenging for wearable and implantable devices. Energy, 2019, 178, 33-49.	8.8	97
303	Highâ€Performance Flexible Thermoelectric Devices Based on Allâ€Inorganic Hybrid Films for Harvesting Lowâ€Grade Heat. Advanced Functional Materials, 2019, 29, 1900304.	14.9	97
304	Thermoelectric polymer composite yarns and an energy harvesting wearable textile. Smart Materials and Structures, 2019, 28, 095006.	3.5	21
305	Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power. Journal of Power Sources, 2019, 428, 53-66.	7.8	76
306	The Rise of Fiber Electronics. Angewandte Chemie, 2019, 131, 13778-13788.	2.0	12
307	The Rise of Fiber Electronics. Angewandte Chemie - International Edition, 2019, 58, 13643-13653.	13.8	86
308	Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renewable and Sustainable Energy Reviews, 2019, 109, 24-54.	16.4	118
309	Printable Thermoelectric Materials and Applications. Frontiers in Materials, 2019, 6, .	2.4	10
310	An intelligent light-driven thermoelectric conversion system through the thermosensitive phase transition of vanadium dioxide. Journal of Materials Chemistry A, 2019, 7, 8521-8526.	10.3	15
311	From Microbial Fuel Cells to Biobatteries: Moving toward Onâ€Demand Micropower Generation for Smallâ€Scale Singleâ€Use Applications. Advanced Materials Technologies, 2019, 4, 1900079.	5.8	29
312	UV urable Silver Electrode for Screenâ€Printed Thermoelectric Generator. Advanced Functional Materials, 2019, 29, 1901505.	14.9	25

#	Article	IF	CITATIONS
313	High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy, 2019, 175, 292-299.	8.8	104
314	Development of Thermoelectric Conversion Materials Using Carbon Nanotube Sheets. Bulletin of the Chemical Society of Japan, 2019, 92, 400-408.	3.2	39
315	Solution-Based Synthesis and Processing of Metal Chalcogenides for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1511.	2.5	12
316	Enhanced Antioxidation and Thermoelectric Properties of the Flexible Screen-Printed Bi ₂ Te ₃ Films through Interface Modification. ACS Applied Energy Materials, 2019, 2, 2828-2836.	5.1	39
317	Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybridsÂwithÂenhanced thermoelectric power factors. Carbon, 2019, 148, 290-296.	10.3	52
318	Second Skin Enabled by Advanced Electronics. Advanced Science, 2019, 6, 1900186.	11.2	177
319	Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Advanced Materials, 2019, 31, e1802898.	21.0	223
320	Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internetâ€ofâ€Things Applications. Advanced Electronic Materials, 2019, 5, 1800823.	5.1	71
321	Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58, 750-758.	16.0	155
322	From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Materials, 2019, 7, .	5.1	116
323	Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy. Applied Energy, 2019, 239, 898-907.	10.1	20
324	Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology. ACS Applied Materials & Interfaces, 2019, 11, 10301-10309.	8.0	79
325	High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nature Communications, 2019, 10, 841.	12.8	291
326	Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems. ACS Applied Materials & Interfaces, 2019, 11, 9301-9308.	8.0	44
327	Three-Phase Boost-Converter Based PMIC for Thermal Electric Generator Application. , 2019, , .		2
328	Hybrid-halide perovskite thin films for thermoelectric application. , 2019, , .		0
329	3D extruded composite thermoelectric threads for flexible energy harvesting. Nature Communications, 2019, 10, 5590.	12.8	56
330	All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nature Communications, 2019, 10, 5541.	12.8	121

#	Article	IF	Citations
331	Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators. International Journal of Energy Research, 2019, 43, 113-140.	4.5	44
332	P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019, 57, 473-479.	16.0	89
333	Ink Processing for Thermoelectric Materials and Powerâ€Generating Devices. Advanced Materials, 2019, 31, e1804930.	21.0	48
334	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	27.5	316
335	Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals. Journal of Solid State Chemistry, 2019, 269, 396-400.	2.9	25
336	Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics. Accounts of Chemical Research, 2019, 52, 53-62.	15.6	59
337	Energy harvesting for wireless communications in nuclear environment. Annals of Nuclear Energy, 2019, 126, 376-388.	1.8	2
338	Thermoelectric transport properties of Pb doped SnSe alloys (PbxSn1-xSe): DFT-BTE simulations. Journal of Solid State Chemistry, 2019, 270, 413-418.	2.9	11
339	In-situ synthesis of flexible hybrid composite films for improved thermoelectric performance. Chemical Engineering Journal, 2019, 357, 547-558.	12.7	30
340	Fiberâ€Based Energy Conversion Devices for Humanâ€Body Energy Harvesting. Advanced Materials, 2020, 32, e1902034.	21.0	204
341	Glass-like electronic and thermal transport in crystalline cubic germanium selenide. Journal of Energy Chemistry, 2020, 45, 83-90.	12.9	16
342	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	21.0	427
343	Telecommunications and Data Processing in Flexible Electronic Systems. Advanced Materials Technologies, 2020, 5, .	5.8	25
344	Disruptive, Soft, Wearable Sensors. Advanced Materials, 2020, 32, e1904664.	21.0	272
345	Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. Small, 2020, 16, e1902827.	10.0	86
346	Green Biocomposites for Thermoelectric Wearable Applications. Advanced Functional Materials, 2020, 30, 1907301.	14.9	74
347	Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. Journal of Materials Chemistry A, 2020, 8, 2984-2994.	10.3	107
348	Flexible Thermoelectric Devices of Ultrahigh Power Factor by Scalable Printing and Interface Engineering. Advanced Functional Materials, 2020, 30, 1905796.	14.9	93

	CITATION R	EPORT	
#	Article	IF	CITATIONS
349	High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. Journal of Alloys and Compounds, 2020, 819, 153027.	5.5	29
350	Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy, 2020, 68, 104349.	16.0	18
351	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	10.1	356
352	Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy, 2020, 78, 105186.	16.0	185
353	Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Topics in Current Chemistry, 2020, 378, 48.	5.8	52
354	Size―and Temperatureâ€Dependent Suppression of Phonon Thermal Conductivity in Carbon Nanotube Thermoelectric Films. Advanced Electronic Materials, 2020, 6, 2000746.	5.1	14
355	Highâ€Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates. Advanced Materials Technologies, 2020, 5, 2000600.	5.8	26
356	Energy-generating textiles. , 2020, , 415-455.		4
357	High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nature Communications, 2020, 11, 5948.	12.8	169
358	Progress in the Applications of Smart Piezoelectric Materials for Medical Devices. Polymers, 2020, 12, 2754.	4.5	78
359	Scalable thermoelectric fibers for multifunctional textile-electronics. Nature Communications, 2020, 11, 6006.	12.8	122
360	Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	6.7	85
362	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
363	Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. Journal of the American Chemical Society, 2020, 142, 15172-15186.	13.7	72
364	Enhancement of power generation of thermoelectric generator using phase change material. IOP Conference Series: Materials Science and Engineering, 2020, 892, 012055.	0.6	1
365	Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Materials Chemistry Frontiers, 2020, 4, 3130-3152.	5.9	161
366	Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. Advanced Science, 2020, 7, 2001362.	11.2	146
367	Simulation and analysis of flexible TEG using polymer based and pyroelectric material for microdevice energy harvesting. Journal of Physics: Conference Series, 2020, 1502, 012022.	0.4	1

#	Article	IF	CITATIONS
368	Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. Journal of Power Sources, 2020, 479, 229044.	7.8	42
369	Human‧kinâ€Inspired Adaptive Smart Textiles Capable of Amplified Latent Heat Transfer for Thermal Comfort. Advanced Intelligent Systems, 2020, 2, 2000163.	6.1	13
370	Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energy and Environmental Science, 2020, 13, 3579-3591.	30.8	32
371	Annual energy harvesting performance of a phase change material-integrated thermoelectric power generation block in building walls. Energy and Buildings, 2020, 228, 110470.	6.7	33
372	Wearable multi-sensing double-chain thermoelectric generator. Microsystems and Nanoengineering, 2020, 6, 68.	7.0	65
373	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	21.0	236
374	High-performance zinc antimonide thermoelectric thin films achieved by a layer-by-layer combination reaction approach. Journal of Materials Science: Materials in Electronics, 2020, 31, 16968-16974.	2.2	1
375	A Flexible Microâ€Thermoelectric Generator Sticker with Trapezoidalâ€Shaped Legs for Large Temperature Gradient and Highâ€Power Density. Advanced Materials Technologies, 2020, 5, 2000486.	5.8	10
376	Transparent flexible thin-film p–n junction thermoelectric module. Npj Flexible Electronics, 2020, 4, .	10.7	37
377	Epoxy/Glass Fiber Nanostructured p- and n-Type Thermoelectric Enabled Model Composite Interphases. Applied Sciences (Switzerland), 2020, 10, 5352.	2.5	10
378	Emerging Thermoelectric Generators Based on Printed and Flexible Electronics Technology. , 2020, , .		4
379	Enhanced power factor of n-type Bi ₂ Te _{2.8} Se _{0.2} alloys through an efficient one-step sintering strategy for low-grade heat harvesting. Journal of Materials Chemistry A, 2020, 8, 24524-24535.	10.3	7
380	A Review of Solar Energy Harvesting Electronic Textiles. Sensors, 2020, 20, 5938.	3.8	37
381	Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Nano Letters, 2020, 20, 4445-4453.	9.1	106
382	Ceramic-based thermoelectric generator processed via spray-coating and laser structuring. Open Ceramics, 2020, 1, 100002.	2.0	6
383	Ultrathin MEMS thermoelectric generator with Bi2Te3/(Pt, Au) multilayers and Sb2Te3 legs. Nano Convergence, 2020, 7, 8.	12.1	26
384	Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy, 2020, 75, 104980.	16.0	71
385	A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Applied Energy, 2020, 271, 115250.	10.1	88

#	Article	IF	CITATIONS
386	Investigation of the Electrophysical and Thermoelectric Properties of Films Fabricated by Screen-printing. , 2020, , .		2
387	Microstructure and Thermoelectric Characterization of Composite Nanofiber Webs Derived from Polyacrylonitrile and Sodium Cobalt Oxide Precursors. Scientific Reports, 2020, 10, 9633.	3.3	12
388	Enhancement of the thermoelectric properties of Bi2Te3 nanocrystal thin films by rapid annealing. Materials Letters, 2020, 275, 128143.	2.6	12
389	A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Advances, 2020, 2, 3244-3251.	4.6	23
390	A New Design of a Thin-Film Thermoelectric Device Based on Multilayer-Structure Module. Nanomaterials, 2020, 10, 990.	4.1	10
391	Smart Textileâ€Based Personal Thermal Comfort Systems: Current Status and Potential Solutions. Advanced Materials Technologies, 2020, 5, 1901155.	5.8	82
392	An Origami Heat Radiation Fin for Use in a Stretchable Thermoelectric Generator. Micromachines, 2020, 11, 263.	2.9	9
393	Levitating oscillator-based triboelectric nanogenerator for harvesting from rotational motion and sensing seismic oscillation. Nano Energy, 2020, 72, 104674.	16.0	27
395	Parametric study of a thermoelectric module used for both power generation and cooling. Renewable Energy, 2020, 154, 542-552.	8.9	81
396	Enhanced Electrical Transport Properties via Defect Control for Screen-Printed Bi ₂ Te ₃ Films over a Wide Temperature Range. ACS Applied Materials & Interfaces, 2020, 12, 16630-16638.	8.0	22
397	Large-scalable fabrication of improved Bi–Te-based flexible thermoelectric modules using a semiconductor manufacturing process. Japanese Journal of Applied Physics, 2020, 59, 046504.	1.5	0
398	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	47.7	644
399	Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Advances, 2020, 10, 8421-8434.	3.6	46
400	Thermoelectric applications of chalcogenides. , 2020, , 31-56.		6
401	Investigation of micro-indentation hardness of Bi2Te3 based composite thermoelectric materials. AIP Conference Proceedings, 2020, , .	0.4	3
402	Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric composites. Materials Advances, 2020, 1, 1038-1054.	5.4	37
403	Comparison of Cooling Methods for a Thermoelectric Generator with Forced Convection. Energies, 2020, 13, 3185.	3.1	8
404	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	47.7	1,248

#	Article	IF	CITATIONS
405	In-Plane Thermoelectric Properties of Flexible and Room-Temperature-Doped Carbon Nanotube Films. ACS Applied Energy Materials, 2020, 3, 6929-6936.	5.1	19
406	Flexible 3D Porous MoS ₂ /CNTs Architectures with <i>ZT</i> of 0.17 at Room Temperature for Wearable Thermoelectric Applications. Advanced Functional Materials, 2020, 30, 2002508.	14.9	31
407	Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4, .	10.7	25
408	Thermoelectric Characterization Platform for Electrochemically Deposited Materials. Advanced Electronic Materials, 2020, 6, 1901288.	5.1	3
409	Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chemical Society Reviews, 2020, 49, 1812-1866.	38.1	310
410	Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid thermoelectric composites fabricated by additive manufacturing. Journal of Materiomics, 2020, 6, 293-299.	5.7	27
411	Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application. Energies, 2020, 13, 674.	3.1	15
412	Manufacturing routes toward flexible and smart energy harvesters and sensors based on functional nanomaterials. , 2020, , 381-437.		2
414	Powering wearable bioelectronic devices. , 2020, , 89-132.		7
415	Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate. ACS Nano, 2020, 14, 2191-2201.	14.6	25
416	Stretchable fabric generates electric power from woven thermoelectric fibers. Nature Communications, 2020, 11, 572.	12.8	212
417	Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Applied Physics Letters, 2020, 116, .	3.3	8
418	Ultrahigh Performance of n-Type Ag ₂ Se Films for Flexible Thermoelectric Power Generators. ACS Applied Materials & Interfaces, 2020, 12, 9646-9655.	8.0	115
419	Textile-Integrated Thermocouples for Temperature Measurement. Materials, 2020, 13, 626.	2.9	21
420	Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect. Energy and Environmental Science, 2020, 13, 2915-2923.	30.8	113
421	Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368, 1091-1098.	12.6	382
422	High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application. Nano Energy, 2020, 72, 104742.	16.0	58
423	Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy, 2020, 73, 104773.	16.0	135

#	Article	IF	CITATIONS
424	High Performance Micro-Thermoelectric Generator Based on Metal Doped Electrochemical Deposition. , 2020, , .		0
425	Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy, 2020, 74, 104824.	16.0	17
426	Parametric study of asymmetric thermoelectric devices for power generation. International Journal of Energy Research, 2020, 44, 6950-6963.	4.5	12
427	Stress-induced change of Cu-doped Bi2Te3 thin films for flexible thermoelectric applications. Materials Letters, 2020, 270, 127697.	2.6	10
428	Boosting thermoelectric performance of n-type PbS through synergistically integrating In resonant level and Cu dynamic doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109640.	4.0	26
429	Preparation of high-performance transparent glass-fiber reinforced composites based on refractive index-tunable epoxy-functionalized siloxane hybrid matrix. Composites Science and Technology, 2021, 201, 108527.	7.8	26
430	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	21.0	278
431	Power Management IC With a Three-Phase Cold Self-Start for Thermoelectric Generators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 103-113.	5.4	6
432	Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy, 2021, 80, 105488.	16.0	82
433	Recent developments in flexible thermoelectrics: From materials to devices. Renewable and Sustainable Energy Reviews, 2021, 137, 110448.	16.4	84
434	Creep behavior and post-creep thermoelectric performance of the n-type Skutterudite alloy Yb0.3Co4Sb12. Journal of Materiomics, 2021, 7, 89-97.	5.7	9
435	Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy, 2021, 81, 105604.	16.0	58
436	The structures and thermoelectric properties of Zn-Sb alloy films fabricated by electron beam evaporation through an ion beam assisted deposition. Applied Surface Science, 2021, 540, 148264.	6.1	4
437	Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator. Current Applied Physics, 2021, 22, 6-13.	2.4	20
438	Thermoelectric Converters Based on Ionic Conductors. Chemistry - an Asian Journal, 2021, 16, 129-141.	3.3	50
439	Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy, 2021, 81, 105683.	16.0	82
440	Wearable fiber-based thermoelectrics from materials to applications. Nano Energy, 2021, 81, 105684.	16.0	92
441	Hybrid tribo-thermoelectric generator for effectively harvesting thermal energy activated by the shape memory alloy. Nano Energy, 2021, 82, 105696.	16.0	17

#	Article	IF	Citations
442	Series Photothermoelectric Coupling Between Two Composite Materials for a Freely Attachable Broadband Imaging Sheet. Advanced Photonics Research, 2021, 2, 2000095.	3.6	16
443	Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chemical Engineering Journal, 2021, 421, 127764.	12.7	14
444	Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy. Small, 2021, 17, e1903469.	10.0	84
445	Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Nanoscale, 2021, 13, 5202-5215.	5.6	7
446	Heatsinks and Airflow Configurations for Wearable Thermoelectric Generators. , 2021, , 221-237.		0
447	Synergistically Improved Thermoelectric Energy Harvesting of Edge-Oxidized-Graphene-Bridged N-Type Bismuth Telluride Thick Films. ACS Applied Materials & Interfaces, 2021, 13, 5125-5132.	8.0	12
448	Design guidelines for chalcogenide-based flexible thermoelectric materials. Materials Advances, 2021, 2, 2584-2593.	5.4	18
449	Achievements and Prospects of Thermoelectric and Hybrid Energy Harvesters for Wearable Electronic Applications. , 2021, , 3-40.		1
450	Energy Harvesters for Wearable Electronics and Biomedical Devices. Advanced Materials Technologies, 2021, 6, 2000771.	5.8	49
451	Printed flexible thermoelectric materials and devices. Journal of Materials Chemistry A, 2021, 9, 19439-19464.	10.3	23
452	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	21.0	91
453	Liquid metal architectures for soft and wearable energy harvesting devices. Multifunctional Materials, 2021, 4, 012001.	3.7	32
454	Solution-Processed Metal Chalcogenide Thermoelectric Thin Films. , 2021, , 59-77.		0
455	Thermal deposition method for p–n patterning of carbon nanotube sheets for planar-type thermoelectric generator. Journal of Materials Chemistry A, 2021, 9, 12188-12195.	10.3	15
457	Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2021, 2, 1927-1956.	5.4	22
458	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	30.8	178
459	Novel Organic Polymer Composite-Based Thermoelectrics. , 2021, , 123-153.		0
460	Design of flexible inorganic thermoelectric devices for decrease of heat loss. Nano Research, 2021, 14, 2090-2104.	10.4	11

#	Article	IF	CITATIONS
461	Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat. RSC Advances, 2021, 11, 16675-16687.	3.6	30
462	The Interface between Nanoenergy and Self-Powered Electronics. Sensors, 2021, 21, 1614.	3.8	3
463	Development of spacer warp knitted thermoelectric generators. Smart Materials and Structures, 2021, 30, 035034.	3.5	4
464	Paper Thermoelectrics by a Solvent-Free Drawing Method of All Carbon-Based Materials. ACS Omega, 2021, 6, 5019-5026.	3.5	10
465	Graphite Nanocomposite Substrates for Improved Performance of Flexible, High-Power AlGaN/GaN Electronic Devices. ACS Applied Electronic Materials, 2021, 3, 1228-1235.	4.3	4
466	Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952.	14.9	35
467	High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Science Advances, 2021, 7, .	10.3	189
468	Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, 2021, 2021, 6849171.	5.7	75
469	Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. Npj Flexible Electronics, 2021, 5, .	10.7	44
470	Experimental Test and Estimation of the Equivalent Thermoelectric Properties for a Thermoelectric Module. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	8
471	Stretchable and Healable Conductive Elastomer Based on PEDOT:PSS/Natural Rubber for Self-Powered Temperature and Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 14599-14611.	8.0	73
472	An Approach toward the Realization of a Through-Thickness Glass Fiber/Epoxy Thermoelectric Generator. Materials, 2021, 14, 2173.	2.9	5
473	Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Letters, 2021, 21, 3879-3886.	9.1	124
474	Fast Solar-to-Thermal Conversion/Storage Nanofibers for Thermoregulation, Stain-Resistant, and Breathable Fabrics. Industrial & Engineering Chemistry Research, 2021, 60, 5869-5878.	3.7	9
475	CoSb ₃ -Based Thin-Film Thermoelectric Devices with High Performance Via Electrode Optimization. ACS Applied Energy Materials, 2021, 4, 5265-5273.	5.1	9
476	pâ€∓ype Plastic Inorganic Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2100883.	19.5	40
477	Polymer–Inorganic Thermoelectric Nanomaterials: Electrical Properties, Interfacial Chemistry Engineering, and Devices. Frontiers in Chemistry, 2021, 9, 677821.	3.6	11
478	Leafâ€Inspired Flexible Thermoelectric Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air. Advanced Science, 2021, 8, 2004947.	11.2	55

ARTICLE IF CITATIONS # Contact resistance optimization for development of thermoelectric modules based on bismuth 479 1.3 3 telluride nanowires. AIP Advances, 2021, 11, 055109. Sustainable wearable energy storage devices selfâ€charged by humanâ€body bioenergy. SusMat, 2021, 1, 480 14.9 285-302. All-yarn triboelectric nanogenerator and supercapacitor based self-charging power cloth for 481 2.6 22 wearable applications. Nanotechnology, 2021, 32, 315404. A Review on Flexible Thermoelectric Technology: Material, Device, and Applications. International Journal of Thermophysics, 2021, 42, 1. Recent Developments in Flexible Thermoelectric Devices. Small Science, 2021, 1, 2100005. 483 9.9 74 484 Energy Solutions for Wearable Sensors: A Review. Sensors, 2021, 21, 3806. 3.8 Reliable Output Performance of a Photovoltaic–Piezoelectric Hybridized Energy Harvester with an 485 Automatic Position-Adjustable Bending Instrument. International Journal of Precision Engineering and 4.9 2 Manufacturing - Green Technology, 2022, 9, 1077-1086. Thermoelectric Materials for Textile Applications. Molecules, 2021, 26, 3154. 486 3.8 16 Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications. 487 3.8 7 Sensors, 2021, 21, 3437. Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental 3.3 Research, 2021, 1, 364-382. Promising Development of Thin Film and Flexible Thermoelectric Devices. Nanobiotechnology Reports, 489 2 0.6 2021, 16, 392-400. A wearable real-time power supply with a Mg3Bi2-based thermoelectric module. Cell Reports Physical 490 5.6 19 Science, 2021, 2, 100412. Review on the operation of wearable sensors through body heat harvesting based on thermoelectric 491 3.3 29 devices. Applied Physics Letters, 2021, 118, . Recyclable, Healable, and Stretchable Highâ€Power Thermoelectric Generator. Advanced Energy 19.5 65 Materials, 2021, 11, 2100920. Advances in organic thermoelectric materials and devices for smart applications. SmartMat, 2021, 2, 493 10.7 62 426-445. Preparation and thermoelectric properties of screen-printable rGO/Sb2Te3/SV4/PEDOT:PSS composite 494 thermoelectric film. Materials Research Express, 2021, 8, 065503. Thermoelectric Generator with Series/Parallel Switching Function for Improvement of Extracted 495 0 Power., 2021,,. Fabrication of Conductive, Adhesive, and Stretchable Agarose-Based Hydrogels for a Wearable Biosensor. ACS Applied Bio Materials, 2021, 4, 6148-6156.

#	Article	IF	CITATIONS
497	Patch-Type Vibration Visualization (PVV) Sensor System Based on Triboelectric Effect. Sensors, 2021, 21, 3976.	3.8	1
498	High-Performance Bismuth Antimony Telluride Thermoelectric Membrane on Curved and Flexible Supports. ACS Energy Letters, 2021, 6, 2378-2385.	17.4	19
499	Thermoelectric generation via tellurene for wearable applications: recent advances, research challenges, and future perspectives. Materials Today Energy, 2021, 20, 100625.	4.7	23
500	A Liquid-Metal-Based Freestanding Triboelectric Generator for Low-Frequency and Multidirectional Vibration. Frontiers in Materials, 2021, 8, .	2.4	4
501	lonic transport properties and their empirical correlations for thermal-to-electrical energy conversion. Materials Today Physics, 2021, 19, 100433.	6.0	12
502	Enhanced Thermoelectric Performance of n-Type Bi2Se3 Nanosheets through Sn Doping. Nanomaterials, 2021, 11, 1827.	4.1	23
503	Experimental investigation and comparative analysis of selected thermoelectric generators operating with automotive waste heat recovery module. Materials Today: Proceedings, 2022, 50, 994-998.	1.8	8
504	High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials. Applied Energy, 2021, 294, 117006.	10.1	11
505	Interface effect and band engineering in Bi2Te3:C and Bi2Te3:Ni-Cu with enhanced thermopower for self-powered wearable thermoelectric generator. Journal of Alloys and Compounds, 2021, 868, 158905.	5.5	17
506	Advances in carbonâ€based thermoelectric materials for highâ€performance, flexible thermoelectric devices. , 2021, 3, 667-708.		41
507	Flexible ball-milled Bi0.4 Sb1.6 Te ₃ /methyl cellulose thermoelectric films fabricated by screen-printing method. Functional Materials Letters, 2021, 14, 2151034.	1.2	5
508	High power factor n-type Ag ₂ Se/SWCNTs hybrid film for flexible thermoelectric generator. Journal Physics D: Applied Physics, 2021, 54, 434004.	2.8	11
509	Fiber Surface/Interfacial Engineering on Wearable Electronics. Small, 2021, 17, e2102903.	10.0	17
510	Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews, 2021, 121, 12465-12547.	47.7	186
511	Highly enhanced field emission properties of a carbon nanotube cathode on a titanium alloy substrate modified by alkali. Vacuum, 2021, 190, 110286.	3.5	6
512	Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications. Advanced Electronic Materials, 2022, 8, 2100578.	5.1	40
513	Synergistic Texturing and Bi/Sbâ€Te Antisite Doping Secure High Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ â€Based Thin Films. Advanced Energy Materials, 2021, 11, 2102578.	19.5	35
514	Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. Journal of Power Sources, 2021, 507, 230323.	7.8	18

#	Article	IF	CITATIONS
515	Wearable Thermoelectric Materials and Devices for Selfâ€Powered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	21.0	221
516	Self-powered skin electronics for energy harvesting and healthcare monitoring. Materials Today Energy, 2021, 21, 100786.	4.7	36
517	Large-Scale Lever-Based Triboelectric Nanogenerator for Sensing Lateral Vibration and Wrist or Finger Bending for Controlling Shooting Game. Micromachines, 2021, 12, 1126.	2.9	1
518	Scalable fabrication of cross-plane thin-film thermoelectric generators on organic substrates. Thin Solid Films, 2021, 734, 138850.	1.8	3
519	A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy, 2021, 89, 106325.	16.0	74
520	Effect of particle-size distribution and pressure-induced densification on the microstructure and properties of printable thermoelectric composites and high energy density flexible devices. Nano Energy, 2021, 89, 106482.	16.0	5
521	High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting. Journal of Alloys and Compounds, 2021, 884, 161098.	5.5	17
522	Fabrication and Simulation of TE Modules for a Feasibility Study on Harvesting Solar Heat Energy from Roof Tiles. Journal of Renewable Materials, 2021, 9, 1685-1697.	2.2	1
523	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	30.8	143
524	Novel Materials and Device Design for Wearable Energy Harvesters. , 2021, , 41-57.		0
524 525	Novel Materials and Device Design for Wearable Energy Harvesters. , 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	12.2	0 21
524 525 526	Novel Materials and Device Design for Wearable Energy Harvesters. , 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155.	12.2 4.5	0 21 67
524 525 526 527	Novel Materials and Device Design for Wearable Energy Harvesters. , 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155. Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370.	12.2 4.5 10.1	0 21 67 113
524 525 526 527 528	Novel Materials and Device Design for Wearable Energy Harvesters., 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155. Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370. All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 2020, 29, 055026.	12.2 4.5 10.1 3.5	0 21 67 113 30
 524 525 526 527 528 529 	Novel Materials and Device Design for Wearable Energy Harvesters., 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155. Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370. All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 2020, 29, 055026. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708.	12.2 4.5 10.1 3.5 2.5	0 21 67 113 30
 524 525 526 527 528 529 530 	Novel Materials and Device Design for Wearable Energy Harvesters. , 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155. Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370. All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 2020, 29, 055026. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708. Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/epoxy Composite Thermoelectric Films. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 679.	12.2 4.5 10.1 3.5 2.5 1.3	0 21 67 113 30 10
 524 525 526 527 528 529 530 531 	Novel Materials and Device Design for Wearable Energy Harvesters., 2021, , 41-57. Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers, 2021, 13, 155. Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy, 2020, 262, 114370. All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 2020, 29, 055026. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708. Fabrication and Planar Cooling Performance of Flexible Bi0.55b1.5Te3/epoxy Composite Thermoelectric Films. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 679. Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1â€xSx System. Research, 2020, 2020, 6591981.	12.2 4.5 10.1 3.5 2.5 1.3 5.7	0 21 67 113 30 10 6 55

#	Article	IF	CITATIONS
534	New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications. Materials, 2021, 14, 6306.	2.9	11
535	Off-Grid Electrical Cell Lysis Microfluidic Device Utilizing Thermoelectricity and Thermal Radiation. Chemosensors, 2021, 9, 292.	3.6	1
536	Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 2021, 42, 101601.	3.7	76
537	A survey of wearable energy harvesting systems. International Journal of Energy Research, 2022, 46, 2277-2329.	4.5	22
538	Prospects for thermoelectric power generation based on carbon materials. Tanso, 2015, 2015, 264-272.	0.1	0
539	Thermoelectric Characteristics of a Thermoelectric Module Consisting of Chalcogenide Nanoparticles and Glass Fibers. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2015, 28, 257-261.	0.0	0
540	Folding and stretching a thermoelectric generator. , 2018, , .		1
541	IntiWear: acrylic glass as a solar energy concentrator for wearables. Journal of Textile Engineering & Fashion Technology, 2018, 4, .	0.3	1
542	Exploiting Dynamic Thermal Energy Harvesting for Reusing in Smartphone with Mobile Applications. ACM SIGPLAN Notices, 2018, 53, 243-256.	0.2	3
543	Study of Temperature Variation Effect on the Thermoelectric Properties of a Thermoelectric Generator with BiCuSeO Molecules. International Journal of Heat and Technology, 2019, 37, 727-732.	0.6	1
544	Investigation of Organic-Based Thermoelectric Materials for Flexible Thermoelectric Generators. Vacuum and Surface Science, 2020, 63, 239-244.	0.1	0
545	Unileg Thermoelectric Module Comprised by Coated Halide-Perovskite Thin Film. Journal of Heat Transfer, 2020, 142, .	2.1	5
546	Advanced Functional Materials for Intelligent Thermoregulation in Personal Protective Equipment. Polymers, 2021, 13, 3711.	4.5	6
548	Low-Power PMIC with Two Hybrid Converters for TEG Application. , 2020, , .		0
549	Advanced self-charging power packs: The assimilation of energy harvesting and storage systems. , 2022, , 441-477.		1
550	Research Background and Current Situation. , 2020, , 1-26.		0
551	Exceptionally High Power Factor Ag ₂ Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators. Advanced Functional Materials, 2022, 32, 2106902.	14.9	49
552	Whole Fabricâ€Assisted Thermoelectric Devices for Wearable Electronics. Advanced Science, 2022, 9, e2103574.	11.2	30

#	Article	IF	Citations
553	Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy, 2022, 92, 106774.	16.0	60
554	Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density. Applied Thermal Engineering, 2022, 202, 117818.	6.0	43
555	Joint-Free Single-Piece Flexible Thermoelectric Devices with Ultrahigh Resolution p–n Patterns toward Energy Harvesting and Solid-State Cooling. ACS Energy Letters, 2021, 6, 4355-4364.	17.4	10
556	Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing. Journal of Alloys and Compounds, 2022, 898, 162889.	5.5	21
557	Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8, 656-661.	5.7	31
558	Combination of Laser and Thermal Sintering ofÂThermoelectric Ca ₃ Co ₄ O ₉ Films. Chemie-Ingenieur-Technik, 2022, 94, 177-185.	0.8	1
559	All-in-one single-piece flexible solar thermoelectric generator with scissored heat rectifying p-n modules. Nano Energy, 2022, 93, 106789.	16.0	18
561	Energy Conversion Efficiency of Thermoelectric Power Generators With Cylindrical Legs. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	10
562	Exceptionally low thermal conductivity realized in the chalcopyrite CuFeS2 via atomic-level lattice engineering. Nano Energy, 2022, 94, 106941.	16.0	19
563	Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy, 2022, 93, 106835.	16.0	55
564	Effect of The Twist Rod Angles on An Inertial Rotary Electromagnetic Energy Harvester. , 2020, , .		0
565	Printed Thermoelectrics. Advanced Materials, 2022, 34, e2108183.	21.0	33
566	High-Performance Conformal Thermoelectric Generator for Environmental Monitoring. ACS Applied Electronic Materials, 2022, 4, 197-205.	4.3	5
567	Enhanced Photoluminescence of Flexible InGaN/GaN Multiple Quantum Wells on Fabric by Piezo-Phototronic Effect. ACS Applied Materials & Interfaces, 2022, 14, 3000-3007.	8.0	7
568	Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators. Small, 2022, 18, e2106875.	10.0	33
569	Rapid Fabrication of Flexible Polymer/Cnt Nanocomposites for Thermoelectric Power Generation. SSRN Electronic Journal, 0, , .	0.4	1
570	Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51, 485-512.	38.1	39
571	Elastic (acrylate/polydimethylsiloxane) substrate-to-coating interlayers for improving the mechanical resilience of thermoelectric films on poly(ethylene terephthalate) during roll-to-roll manufacture and in service operation. Surface and Coatings Technology, 2022, 434, 128167.	4.8	4

	CITATION	Report	
#	Article	IF	CITATIONS
572	Design of a scalable, flexible, and durable thermoelectric cooling device for soft electronics using Kirigami cut patterns. Flexible and Printed Electronics, 2022, 7, 015002.	2.7	3
573	Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy, 2022, 95, 107002.	16.0	29
574	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	17.4	40
575	Thermo-economic investigation on the hydrogen production through the stored solar energy in a salinity gradient solar pond: A comparative study by employing APC and ORC with zeotropic mixture. International Journal of Hydrogen Energy, 2022, 47, 7600-7623.	7.1	6
576	Origami-Type Flexible Thermoelectric Generator Fabricated by Self-Folding Using Linkage Mechanism. , 2022, , .		1
577	Flexible elemental thermoelectrics with ultra-high power density. Materials Today Energy, 2022, 25, 100964.	4.7	20
578	Geometric Study of Polymer Embedded Micro Thermoelectric Cooler with Optimized Contact Resistance. Advanced Electronic Materials, 2022, 8, .	5.1	9
579	Allâ€Inorganicâ€State Fabric Leadâ€Free Piezoelectric Nanogenerators. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	4
580	3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatinâ€KClâ€FeCN ^{4â^'/3â^'} Ionic Thermoelectric Cells. Advanced Energy Materials, 2022, 12, .	19.5	40
581	Flexible pCu2Se-nAg2Se thermoelectric devices via in situ conversion from printed Cu patterns. Chemical Engineering Journal, 2022, 435, 135172.	12.7	14
582	Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi ₂ Te ₃ â€Based Flexible Thinâ€Films. Advanced Science, 2022, 9, e2103547.	11.2	102
583	Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small, 2022, 18, e2104922.	10.0	32
584	RobustÂFlexible Pcu2se-Nag2se Thermoelectric DevicesÂVia in Situ Conversion from Printed Cu Patterns. SSRN Electronic Journal, 0, , .	0.4	0
585	Bi ₂ Te ₃ -based wearable thermoelectric generator with high power density: from structure design to application. Journal of Materials Chemistry C, 2022, 10, 6456-6463.	5.5	13
586	Interfacial Molecular Engineering for Enhanced Polarization of Negative Tribo-Materials. SSRN Electronic Journal, 0, , .	0.4	0
587	Environmental Protection and Energy Color Changing Clothing Design under the Background of Sustainable Development. Journal of Renewable Materials, 2022, 10, 2717-2728.	2.2	3
588	Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy and Environmental Science, 2022, 15, 2374-2385.	30.8	51
589	Energy Harvesting from Human Body Heat Using Highly Flexible Thermoelectric Generator Based on Bi2te3 Particles and Polymer Composite. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
590	A Reconfigurable DC-DC Converter for Maximum Thermoelectric Energy Harvesting in a Battery-Powered Duty-Cycling Wireless Sensor Node. IEEE Journal of Solid-State Circuits, 2022, 57, 2719-2730.	5.4	5
591	Wearable power generation via thermoelectric textile. , 2022, , 41-62.		0
592	Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light. Advanced Science, 2022, 9, e2104915.	11.2	17
593	Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications. JPhys Energy, 2022, 4, 024003.	5.3	11
594	Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics. Nano-Micro Letters, 2022, 14, 86.	27.0	27
595	Multifunctional Wearable Thermoelectrics for Personal Thermal Management. Advanced Functional Materials, 2022, 32, .	14.9	75
596	A review on vibration energy harvesting technologies: analysis and technologies. European Physical Journal: Special Topics, 2022, 231, 1359-1371.	2.6	25
597	High-performance, flexible thermoelectric generator based on bulk materials. Cell Reports Physical Science, 2022, 3, 100780.	5.6	24
598	Novel Wearable Pyrothermoelectric Hybrid Generator for Solar Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 17330-17339.	8.0	12
599	Interfacial molecular engineering for enhanced polarization of negative tribo-materials. Nano Energy, 2022, 96, 107110.	16.0	12
600	Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy, 2022, 97, 107143.	16.0	24
601	Multi-deformable piezoelectric energy nano-generator with high conversion efficiency for subtle body movements. Nano Energy, 2022, 97, 107223.	16.0	16
602	Fabrication and Cooling Performance Optimization of Stretchable Thermoelectric Cooling Device. ACS Applied Electronic Materials, 2021, 3, 5433-5442.	4.3	9
603	Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. ACS Applied Materials & Interfaces, 2022, 14, 1045-1055.	8.0	15
604	Garment-integrated thermoelectric generator arrays for wearable body heat harvesting. Flexible and Printed Electronics, 2021, 6, 044006.	2.7	0
605	Kirigamiâ€Based Stretchable, Deformable, Ultralight Thinâ€Film Thermoelectric Generator for BodyNET Application. Advanced Energy Materials, 2022, 12, .	19.5	23
606	Temperature and Power Analysis of the Thermoelectric Generator in Hybrid Electric Vehicles. , 2021, , .		2
607	Objective evaluation of wearable thermoelectric generator: From platform building to performance verification. Review of Scientific Instruments, 2022, 93, 045105.	1.3	3

#	Article	IF	CITATIONS
608	Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators. ACS Applied Energy Materials, 2022, 5, 5909-5918.	5.1	11
609	Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy, 2022, 98, 107273.	16.0	37
610	High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 21224-21231.	8.0	15
611	Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies, 2022, 15, 3375.	3.1	28
612	Highly Integrated, Wearable Carbonâ€Nanotubeâ€Yarnâ€Based Thermoelectric Generators Achieved by Selective Inkjetâ€Printed Chemical Doping. Advanced Energy Materials, 2022, 12, .	19.5	19
613	A Review on Epidermal Nanogenerators: Recent Progress of the Future Selfâ€Powered Skins. Small Structures, 2022, 3, .	12.0	5
614	Structural Design of Nanowire Wearable Stretchable Thermoelectric Generator. Nano Letters, 2022, 22, 4131-4136.	9.1	17
615	Thermally drawn multifunctional fibers: Toward the next generation of information technology. InformaAnÃ-Materiály, 2022, 4, .	17.3	21
616	Influence of Thermoelectric Properties and Parasitic Effects on the Electrical Power of Thermoelectric Micro-Generators. Energies, 2022, 15, 3746.	3.1	0
617	A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Solar Energy, 2022, 239, 350-358.	6.1	15
618	Nextâ€Generation Energy Harvesting and Storage Technologies for Robots Across All Scales. Advanced Intelligent Systems, 2023, 5, .	6.1	10
619	Thermoelectric textiles with nanostructured copper iodide films on cotton and polyester fabrics, stabilized and reinforced with nanocellulose. Journal of Materials Science: Materials in Electronics, 2022, 33, 16466-16487.	2.2	1
620	Wearable fabric-based hybrid energy harvester from body motion and body heat. Nano Energy, 2022, 100, 107485.	16.0	12
621	Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator. Applied Energy, 2022, 322, 119462.	10.1	5
622	Micro-thermoelectric devices. Nature Electronics, 2022, 5, 333-347.	26.0	84
623	Pushing thermoelectric generators toward energy harvesting from the human body: Challenges and strategies. Materials Today, 2022, 57, 121-145.	14.2	39
624	Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 2022, 3, .	6.9	14
625	Flexible thermoelectric device with excellent durability towards self-powered light intensity detection. Composites Science and Technology, 2022, 227, 109616.	7.8	7

	C	ITATION REP	ORT	
#	ARTICLE		IF	CITATIONS
626	metamaterials. Materials Science in Semiconductor Processing, 2022, 150, 106944.		4.0	10
627	Printing Liquid Metal Elastomer Composites for Highâ€Performance Stretchable Thermoelectric Generators. Advanced Energy Materials, 2022, 12, .		19.5	36
628	A review of medical wearables: materials, power sources, sensors, and manufacturing aspects of human wearable technologies. Journal of Medical Engineering and Technology, 2023, 47, 67-81.		1.4	2
629	Switchless Oscillating Charge Pump-Based Triboelectric Nanogenerator and an Additional Electromagnetic Generator for Harvesting Vertical Vibration Energy. ACS Applied Materials & Interfaces, 2022, 14, 34081-34092.		8.0	7
630	Fully-printed Electronics Technologies. , 2022, , 630-644.			0
632	Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377, 854-858.		12.6	134
633	Thermoelectric Clothing for Body Heat Harvesting and Personal Cooling: Design and Fabrication of a Textileâ€Integrated Flexible and Vertical Device. Energy Technology, 0, , 2200528.		3.8	1
634	Topology optimization design of deformable flexible thermoelectric devices for voltage enhancemen Engineering Optimization, 0, , 1-18.	t.	2.6	1
635	A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity. Applied Energy, 2022, 324, 119738.		10.1	6
636	Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite. Journal of Alloys and Compounds, 2022, 924, 166575.		5.5	18
637	Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance. Composites Communications, 2022, 35, 10127	5.	6.3	25
638	Advances in the design and assembly of flexible thermoelectric device. Progress in Materials Science, 2023, 131, 101003.		32.8	140
639	Specific behavior of transition metal chloride complexes for achieving giant ionic thermoelectric properties. Npj Flexible Electronics, 2022, 6, .		10.7	10
640	High-Throughput Manufacturing of Flexible Thermoelectric Generators for Low- to Medium-Temperature Applications Based on Nano-Silver Bonding. IEEE Transactions on Electron Devices, 2022, 69, 5760-5765.		3.0	1
641	Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Applied Energy, 2022, 326, 119941.		10.1	15
642	Promising transparent and flexible thermoelectric modules based on p-type CuI thin films—A reviev Energy Reports, 2022, 8, 11607-11637.	/.	5.1	5
643	Thermoelectric generators as an alternative for reliable powering of wearable devices with wasted heat. Journal of Solid State Chemistry, 2022, 316, 123543.		2.9	6
644	Ag ₂ Se/nylon self-supporting composite films for wearable photo-thermoelectric generators with high output characteristics. Journal of Materials Chemistry A, 2022, 10, 21080-2109	2.	10.3	9

#	Article	IF	CITATIONS
645	Influence of surface functionalization on the contact electrification of fabrics. New Journal of Chemistry, 2022, 46, 15645-15656.	2.8	1
646	Directional Thermal Diffusion Realizing Inorganic Sb ₂ Te ₃ /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility. Advanced Functional Materials, 2022, 32, .	14.9	51
647	Recent Advances in Solutionâ€processed Inorganic Thermoelectric Thin Films. ChemNanoMat, 2023, 9, .	2.8	1
648	Post-Electric Current Treatment Approaching High-Performance Flexible n-Type Bi2Te3 Thin Films. Micromachines, 2022, 13, 1544.	2.9	4
649	Recent advancements in thermoelectric generators for smart textile application. Materials Today Communications, 2022, 33, 104585.	1.9	7
650	Inorganicâ€Based Printed Thermoelectric Materials and Devices. Advanced Engineering Materials, 2023, 25, .	3.5	5
651	Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices. Energy and Environmental Science, 2022, 15, 5093-5104.	30.8	18
652	Enhanced CO2 Photoreduction over Bi2Te3/TiO2 Nanocomposite via a Seebeck Effect. Catalysts, 2022, 12, 1323.	3.5	2
653	Toward High-Power Output of Generators: High-Power-Factor Ag ₂ Te–Ag Thermoelectric Thin Films Using a Layer-by-Layer Method. ACS Applied Materials & Interfaces, 2022, 14, 48296-48302.	8.0	0
654	Fabric-based flexible thermoelectric generators: Design methods and prospects. Frontiers in Materials, 0, 9, .	2.4	4
655	Thermoelectric Silverâ€Based Chalcogenides. Advanced Science, 2022, 9, .	11.2	29
656	Recent Advances in the Nanomaterials, Design, Fabrication Approaches of Thermoelectric Nanogenerators for Various Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	5
657	Enhanced Thermoelectric Properties of Cu ₂ Se Flexible Thin Films by Optimizing Growth Temperature and Elemental Composition. ACS Applied Energy Materials, 2022, 5, 13964-13970.	5.1	5
658	Achieving metal-like malleability and ductility in Ag2Te1-S inorganic thermoelectric semiconductors with high mobility. Innovation(China), 2022, 3, 100341.	9.1	10
659	High performance flexible thermoelectric generator using bulk legs and integrated electrodes for human energy harvesting. Energy Conversion and Management, 2022, 272, 116337.	9.2	8
660	Realizing record-high output power in flexible gelatin/GTA-KCI-FeCN ^{4â^'/3â^'} ionic thermoelectric cells enabled by extending the working temperature range. Energy and Environmental Science, 2022, 15, 5379-5390.	30.8	16
661	Application of Radiative Cooling in MEMS Thermoelectric Power Generation. Energy and Environment Research in China, 2022, , 143-243.	1.1	1
662	Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy, 2023, 105, 108018.	16.0	21

		CITATION R	PORT	
#	Article		IF	CITATIONS
663	3D stretchable and self-encapsulated multimaterial triboelectric fibers. Science Advance	s, 2022, 8, .	10.3	8
664	Recent advances in modeling and simulation of thermoelectric power generation. Energ and Management, 2022, 273, 116389.	y Conversion	9.2	32
665	Flexible micro thermoelectric generators with high power density and light weight. Nano 2023, 105, 108023.) Energy,	16.0	12
666	A Short Review on Thermoelectric Glazing for Sustainable Built Environment. Energies, 2	2022, 15, 9589.	3.1	6
667	Wearable Triboelectric Visual Sensors for Tactile Perception. Advanced Materials, 2023,	35, .	21.0	77
668	Ink casting and 3D-extrusion printing of the thermoelectric half-Heusler alloy Nb1-xCoSt Manufacturing Letters, 2022, , 100113.	o. Additive	2.1	0
669	Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, Application. Sensors, 2022, 22, 9716.	and	3.8	9
670	Printable lightweight polymer-based energy harvesting systems: materials, processes, ar Materials Today Sustainability, 2023, 21, 100292.	nd applications.	4.1	4
671	Performance comparison and analysis of mathematical, ANSYS and neural network mod electrical generator. Measurement: Sensors, 2023, 26, 100675.	el of a thermo	1.7	1
672	Physics-guided co-designing flexible thermoelectrics with techno-economic sustainabilit low-grade heat harvesting. Science Advances, 2023, 9, .	y for	10.3	15
673	Wearable power management system enables uninterrupted battery-free data-intensive transmission. Nano Energy, 2023, 107, 108107.	sensing and	16.0	6
674	Mechanical properties of thermoelectric generators. Journal of Materials Science and Te 2023, 148, 64-74.	chnology,	10.7	25
675	Advances in Ionic Thermoelectrics: From Materials to Devices. Advanced Energy Materia	ls, 2023, 13, .	19.5	50
676	An improved model for performance predicting and optimization of wearable thermoele generators with radiative cooling. Energy Conversion and Management, 2023, 284, 116	ctric 981.	9.2	7
677	Flexible phase change organogel with visualization function for human heat harvesting. Part A: Applied Science and Manufacturing, 2023, 169, 107540.	Composites	7.6	0
678	Optimized thermoelectric properties of flexible p-type Sb2Te3 thin film prepared by a fa diffusion method. Journal of Alloys and Compounds, 2023, 948, 169730.	cile thermal	5.5	1
679	SnS/PEDOT:PSS composite films with enhanced surface conductivities induced by soluti post-treatment and their application in flexible thermoelectric. Organic Electronics, 202	ion 3, 118, 106799.	2.6	1
680	Optimizing printed thermoelectric generators with geometry and processibility limitatio Conversion and Management, 2023, 279, 116776.	ns. Energy	9.2	4

#	Article	IF	CITATIONS
681	Persistently self-powered wearable thermoelectric generator enabled by phase-change inorganics as the heat sink. Materials Today Physics, 2023, 32, 101011.	6.0	8
682	Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	1
683	Polymerâ€Based nâ€Type Yarn for Organic Thermoelectric Textiles. Advanced Electronic Materials, 2023, 9,	5.1	6
684	Highâ€Performance Stretchable Thermoelectric Generator for Selfâ€Powered Wearable Electronics. Advanced Science, 2023, 10, .	11.2	15
685	Multi-factor roadmap for designing wearable micro thermoelectric generators. Energy Conversion and Management, 2023, 280, 116819.	9.2	4
686	Extreme cold protective textiles. , 2023, , 303-354.		0
687	Robust, Flexible Thermoelectric Film for Energy Harvesting by a Simple and Eco-Friendly Method. ACS Applied Materials & Interfaces, 2023, 15, 13144-13154.	8.0	3
688	Screen-printed, flexible, and eco-friendly thermoelectric touch sensors based on ethyl cellulose and graphite flakes inks. Flexible and Printed Electronics, 2023, 8, 025001.	2.7	1
689	Flexible thermoelectrics: From energy harvesting to human–machine interaction. Journal of Applied Physics, 2023, 133, .	2.5	3
690	Highly deformable Ag2Te1-xSex-based thermoelectric compounds. Materials Today Physics, 2023, 33, 101051.	6.0	1
691	Synthesizing Metal Oxide Semiconductors on Doped Si/SiO ₂ Flexible Fiber Substrates for Wearable Gas Sensing. Research, 2023, 6, .	5.7	4
692	Recent Advances in Multicomponent Organic Composite Thermoelectric Materials. Advanced Electronic Materials, 2023, 9, .	5.1	6
693	Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. EScience, 2023, 3, 100122.	41.6	25
694	Energy Harvesting Through Thermoelectric Generators. , 2023, , 32-66.		0
695	Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives. Heliyon, 2023, 9, e14707.	3.2	4
696	Toughening Thermoelectric Materials: From Mechanisms to Applications. International Journal of Molecular Sciences, 2023, 24, 6325.	4.1	1
697	Carrier concentration and orientation optimization for high performance (Sb,Bi)2Te3 thermoelectric films via magnetron co-sputtering. Journal of Alloys and Compounds, 2023, 950, 169916.	5.5	0
698	Simple Fabrication of Transparent Triboelectric Nanogenerator Based on Coffee-Ring-Free AgNW Electrode via Spray Deposition with Surfactant. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1417-1431.	4.9	2

#	Article	IF	CITATIONS
699	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	18.0	6
700	Flexible Thermoelectrics Based on Plastic Inorganic Semiconductors. Advanced Materials Technologies, 2023, 8, .	5.8	9
701	Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nature Communications, 2023, 14, .	12.8	14
703	Evolution of Micro-Nano Energy Harvesting Technology—Scavenging Energy from Diverse Sources towards Self-Sustained Micro/Nano Systems. Nanoenergy Advances, 2023, 3, 101-125.	7.7	7
704	Robust Flexible Textile Tribovoltaic Nanogenerator via a 2DÂ2Hâ€MoS ₂ /Ta ₄ C ₃ Dynamic Heterojunction. Advanced Functional Materials, 2023, 33, .	14.9	3
705	Rapid Printing of Pseudo-3D Printed SnSe Thermoelectric Generators Utilizing an Inorganic Binder. ACS Applied Materials & Interfaces, 2023, 15, 23068-23076.	8.0	2
706	Solution processed polyaniline anchored graphene on conductive carbon fabric for high performance wearable thermoelectric generators. Materials Chemistry and Physics, 2023, 306, 128022.	4.0	1
707	All Direct Ink Writing of 3D Compliant Carbon Thermoelectric Generators for Highâ€Energy Conversion Efficiency. Advanced Energy Materials, 2023, 13, .	19.5	3
708	Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nature Communications, 2023, 14, .	12.8	11
709	Flexible, Selfâ€powered Thermoelectric Module for Bodyâ€heat Recovery. ChemNanoMat, 0, , .	2.8	0
710	The Design and Development of Woven Textile Solar Panels. Materials, 2023, 16, 4129.	2.9	1
711	Ultra-thin self-powered sensor integration system with multiple charging modes in smart home applications. Materials Today Nano, 2023, 23, 100358.	4.6	4
712	Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system. Energy and Environmental Science, 2023, 16, 4334-4344.	30.8	5
713	High-performance integrated chip-level thermoelectric device for power generation and microflow detection. Nano Energy, 2023, 114, 108611.	16.0	3
714	Preferential perovskite surface-termination induced high piezoresponse in lead-free <i>in situ</i> fabricated Cs ₃ Bi ₂ Br ₉ -PVDF nanocomposites promotes biomechanical energy harvesting. Nanoscale, 2023, 15, 11603-11615.	5.6	5
715	Reduced-order model to predict thermal conductivity of dimensionally confined materials. Applied Physics Letters, 2023, 122, .	3.3	0
716	Uncertainty-aware Energy Harvest Prediction and Management for IoT Devices. ACM Transactions on Design Automation of Electronic Systems, 2023, 28, 1-33.	2.6	1
717	Near-room-temperature waste heat recovery through radiative cooling for both daytime and nighttime power generation. Journal of Materials Chemistry A, 2023, 11, 15183-15195.	10.3	3

#		IC	CITATIONS
# 718	Milliwatt-Scale Body-Heat Harvesting Using Stretchable Thermoelectric Generators for Fully	17.4	3
719	Ab Initio and Experimental Investigation of Thermoelectric Properties in a Silica-Based Superinsulating Material. Journal of Physical Chemistry C, 2023, 127, 9973-9980.	3.1	1
720	Silicone Elastomer: Encapsulating Materials for Flexible Thermoelectric Generator. IEEE Sensors Journal, 2023, , 1-1.	4.7	1
721	Recent development in structural designs and thermal enhancement technologies of thermoelectric generator with different types of heat sources: A review. E-Prime, 2023, 4, 100180.	2.0	0
722	Experimental Study on the Working Efficiency and Exergy Efficiency of the Vehicle-Mounted Thermoelectric Generator for Cold Chain Logistics Transportation Vehicle. Processes, 2023, 11, 1782.	2.8	1
723	Exploring Material Properties and Device Output Performance of a Miniaturized Flexible Thermoelectric Generator Using Scalable Synthesis of Bi2Se3 Nanoflakes. Nanomaterials, 2023, 13, 1937.	4.1	1
724	Recent advances, challenges, and perspective of copperâ€based liquidâ€like thermoelectric chalcogenides: A review. EcoMat, 2023, 5, .	11.9	2
726	Performance degradation analysis and fabrication guidance of μ-TEG from material to device. Energy Conversion and Management, 2023, 292, 117371.	9.2	0
727	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
728	Solvent-assisted synthesis of Ag2Se and Ag2S nanoparticles on carbon fabric for enhanced thermoelectric performance. Journal of Colloid and Interface Science, 2023, 651, 436-447.	9.4	1
729	Advanced Thermoelectric Textiles for Power Generation: Principles, Design, and Manufacturing. Global Challenges, 2024, 8, .	3.6	1
730	Smart Detecting and Versatile Wearable Electrical Sensing Mediums for Healthcare. Sensors, 2023, 23, 6586.	3.8	8
731	A Review of Evaluation, Principles, and Technology of Wearable Electromagnetic Harvesters. ACS Applied Electronic Materials, 2023, 5, 4035-4050.	4.3	0
732	Human body-interfacing material strategies for personal thermal and moisture management of wearable systems. Progress in Materials Science, 2023, 139, 101172.	32.8	0
733	Flexible thermoelectric energy harvesting system based on polymer composites. Chemical Engineering Journal, 2023, 473, 145297.	12.7	3
734	Unlocking microwatt power: enhanced performance of Fe–V–Al thin films in thermoelectric microgenerators. Journal of Materials Chemistry A, 0, , .	10.3	0
735	Flexible thermoelectric generator and energy management electronics powered by body heat. Microsystems and Nanoengineering, 2023, 9, .	7.0	8
736	基于å‰ç"µå技æœ⁻的智能å•ç©¿æˆçººç»‡å"• Laser and Optoelectronics Progress, 2023, 60, 1316004 	. 0.6	0

#	Article	IF	CITATIONS
737	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	38.1	9
738	Ultra-flexible self-supporting Ag2Se/nylon composite films for wearable thermoelectric devices. Composites Part B: Engineering, 2023, 265, 110946.	12.0	2
739	Optimized Thermoelectric Performance and Plasticity of Ductile Semiconductor Ag ₂ S _{0.5} Se _{0.5} Via Dualâ€Phase Engineering. Advanced Energy Materials, 2023, 13, .	19.5	11
740	Flexible thermoelectric composite materials with self-healing ability for harvesting low-grade thermal energy. Composites Science and Technology, 2023, 242, 110179.	7.8	0
741	Enhanced the thermoelectric power factor of n-type Bi2Te3 thin film via energy filtering effect. Inorganic Chemistry Communication, 2023, 157, 111439.	3.9	2
742	Advances in printing techniques for thermoelectric materials and devices. , 0, 3, .		2
743	From Triboelectric Nanogenerator to Hybrid Energy Harvesters: A Review on the Integration Strategy toward High Efficiency and Multifunctionality. Materials, 2023, 16, 6405.	2.9	1
744	Energy harvesting analysis of wearable thermoelectric generators integrated with human skin. Energy, 2023, 282, 128850.	8.8	2
745	Investigation on elastic, optical and thermoelectric properties of 2D MgX (X= O, S, Se, Te) materials under DFT framework. Computational Condensed Matter, 2023, 37, e00836.	2.1	1
746	Hierarchically Porous Cellulose Membrane via Selfâ€Assembly Engineering for Ultra Highâ€Power Thermoelectrical Generation in Natural Convection. Advanced Functional Materials, 2023, 33, .	14.9	3
747	High-performance flexible thermoelectric generator based on silicone rubber and cover with graphite sheet. Applied Thermal Engineering, 2024, 236, 121656.	6.0	1
748	Influence of microstructure and thermoelectric properties on the power density of multi-walled carbon nanotube/ metal oxide hybrid flexible thermoelectric generators. Ceramics International, 2023, 49, 39307-39328.	4.8	0
749	First-principles calculations of structural, electronic, optical and thermoelectric properties of doped binary chalcogenides Sn1-xAxSe (A= Au and Ag) for energy applications. Journal of Solid State Chemistry, 2023, 328, 124357.	2.9	2
750	Thermoelectric cloths using carbon nanotube yarn for wearable electronics. Japanese Journal of Applied Physics, 0, , .	1.5	0
751	ADVANCEMENTS IN WEARABLE THERMOELECTRIC GENERATORS: MATERIALS, DESIGNS, AND MANUFACTURING TECHNIQUES FOR SUSTAINABLE ENERGY HARVESTING. , 2023, , .		0
752	Enhanced thermoelectric performance via quantum confinement in a metal oxide semiconductor field effect transistor for thermal management. Communications Materials, 2023, 4, .	6.9	0
753	Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications. Advanced Materials, 2024, 36, .	21.0	7
754	Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics. Engineering, 2023,	6.7	2

#	Article	IF	CITATIONS
755	Flexible Electrically Conductive Elastomers. Advanced Structured Materials, 2023, , 1-25.	0.5	0
756	Recent Progress in Applicationâ€Oriented Selfâ€Powered Microelectronics. Advanced Energy Materials, 2023, 13, .	19.5	0
757	A biomimetic e-whisker sensor with multimodal perception and stimuli discrimination. , 2023, 1, 100148.		1
758	Advances in Printed Electronic Textiles. Advanced Science, 2024, 11, .	11.2	1
759	A perspective on stretchable ionic thermoelectric supercapacitors for wearable applications: Present and challenges. Applied Physics Letters, 2023, 123, .	3.3	1
760	Stretchable Thermoelectric Generators Based on Bulk Bi ₂ Te ₃ and Liquid Metals. Advanced Electronic Materials, 2023, 9, .	5.1	0
761	Selfâ€Powered Temperature Electronic Skin Based on Islandâ€Bridge Structure and Biâ€Te Microâ€Thermoelectric Generator for Distributed Miniâ€Region Sensing. Advanced Materials, 0, , .	21.0	2
762	High Thermoelectric Performance Related to PVDF Ferroelectric Domains in Pâ€Type Flexible PVDFâ€Bi _{0.5} Sb _{1.5} Te ₃ Composite Film. Small, 0, , .	10.0	0
763	Facile Fabrication of Flexible and Highâ€Performing Thermoelectrics by Direct Laser Printing on Plastic Foil. Advanced Materials, 0, , .	21.0	1
764	Y-type flexible micro thermoelectric generator using novel encapsulation structure for power enhancement. Energy Conversion and Management, 2024, 301, 117950.	9.2	0
765	Improved Thermoelectric Performance of p-Type PbTe by Entropy Engineering and Temperature-Dependent Precipitates. ACS Applied Materials & Interfaces, 2024, 16, 907-914.	8.0	1
766	Additive manufacturing of thermoelectric materials: materials, synthesis and manufacturing: a review. Journal of Materials Science, 0, , .	3.7	0
767	Optimizing Waste Heat Conversion: Integrating Phase-Change Material Heatsinks and Wind Speed Dynamics to Enhance Flexible Thermoelectric Generator Efficiency. Materials, 2024, 17, 420.	2.9	0
768	Thermoelectric coupling effect in BNT-BZT-xGaN pyroelectric ceramics for low-grade temperature-driven energy harvesting. Nature Communications, 2023, 14, .	12.8	1
769	Nature of Thermal Hysteresis of Thermoelectric Properties in Ag ₂ Te _{<i>x</i>} S _{1–<i>x</i>} Compounds. ACS Applied Materials & Interfaces, 2024, 16, 1148-1157.	8.0	0
770	High-performance Bi0.4Sb1.6Te3 alloy prepared by a low-cost method for wearable real-time power supply and local cooling. Chemical Engineering Journal, 2024, 481, 148530.	12.7	0
771	Plastic inorganic thermoelectric materials. Joule, 2024, 8, 622-634.	24.0	1
772	Ambient-Temperature-Independent Power Generation in Wearable Thermoelectric Generator with CNTs/MoS ₂ Solar Absorber. ACS Applied Electronic Materials, 0, , .	4.3	0

#	Article	IF	CITATIONS
773	Long-Range Epitaxial MOF Electronics for Continuous Monitoring of Human Breath Ammonia. Journal of the American Chemical Society, 2024, 146, 4036-4044.	13.7	0
774	Double selective ionic gel with excellent thermopower and ultra-high energy density for low-quality thermal energy harvesting. Energy and Environmental Science, 2024, 17, 1664-1676.	30.8	0
775	Energy density enhancement of scalable thermoelectric devices using a low thermal budget method with film thickness variation. Applied Materials Today, 2024, 37, 102116.	4.3	0
776	Evaluation of Parameters Coupling into ZT for Higher Output Performance. Journal of Electronic Materials, 0, , .	2.2	0
777	Numerical Investigation of a Novel Heat Exchanger in a High-Temperature Thermoelectric Generator. Energies, 2024, 17, 1121.	3.1	0
778	High-performance flexible wavy-structure thermoelectric generator based on (Bi, Sb)2Te3 films for energy harvesting. Journal of Power Sources, 2024, 600, 234260.	7.8	0
779	A Highlyâ€Flexible and Breathable Photoâ€Thermoâ€Electric Membrane for Energy Harvesting. Advanced Energy Materials, 2024, 14, .	19.5	0
780	Ultrahigh thermoelectric properties of <i>p</i> â€ŧype Bi _{<i>x</i>} Sb _{2â~'<i>x</i>} Te ₃ thin films with exceptional flexibility for wearable energy harvesting. , 0, , .		0
781	Recent progress on two-dimensional van der Waals thermoelectric materials with plasticity. Journal of Materiomics, 2024, , .	5.7	0
783	E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chemical Reviews, 2024, 124, 3220-3283.	47.7	0
784	A Novel Piezoelectric Energy Harvester for Earcanal Dynamic Motion Exploitation Using a Bistable Resonator Cycled by Coupled Hydraulic Valves Made of Collapsed Flexible Tubes. Micromachines, 2024, 15, 415.	2.9	0