Electroreduction of carbon monoxide to liquid fuel on copper

Nature 508, 504-507 DOI: 10.1038/nature13249

Citation Report

#	Article	IF	CITATIONS
6	Reduction of Carbon Dioxide: Photo-Catalytic Route to Solar Fuels. Nanostructure Science and Technology, 2014, , 211-233.	0.1	2
8	Catalysis at the boundaries. Nature, 2014, 508, 460-461.	13.7	11
9	Do you hear what I see?. Nature, 2014, 508, 461-462.	13.7	5
10	Active and Selective Conversion of CO ₂ to CO on Ultrathin Au Nanowires. Journal of the American Chemical Society, 2014, 136, 16132-16135.	6.6	784
11	An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting. Journal of the Electrochemical Society, 2014, 161, E3328-E3340.	1.3	31
12	Chitosan coated copper-oxide nano particles: a novel electro-catalyst for CO ₂ reduction. RSC Advances, 2014, 4, 63685-63690.	1.7	18
13	Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15001-15006.	3.3	159
14	Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. Journal of the American Chemical Society, 2014, 136, 13319-13325.	6.6	465
15	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	15.6	1,617
16	Electrochemically reduced Pt oxide thin film as a highly active electrocatalyst for direct ethanol alkaline fuel cell. International Journal of Hydrogen Energy, 2014, 39, 18424-18432.	3.8	17
17	Ten-percent solar-to-fuel conversion with nonprecious materials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14057-14061.	3.3	262
18	A Step Closer to the Electrochemical Production of Liquid Fuels. Angewandte Chemie - International Edition, 2014, 53, 10858-10860.	7.2	56
19	Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, 2014, , .	0.1	9
20	Morphology-controlled CuO nanoparticles for electroreduction of CO ₂ to ethanol. RSC Advances, 2014, 4, 37329-37332.	1.7	71
21	A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals. RSC Advances, 2014, 4, 24551.	1.7	23
22	New reduction mechanism of CO dimer by hydrogenation to C ₂ H ₄ on a Cu(100) surface: theoretical insight into the kinetics of the elementary steps. RSC Advances, 2015, 5, 96281-96289.	1.7	19
23	Fast and sensitive method for detecting volatile species in liquids. Review of Scientific Instruments, 2015, 86, 075006.	0.6	22
25	Engineering Transitionâ€Metal oated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO ₂ to Methane. ChemSusChem, 2015, 8, 2745-2751.	3.6	43

#	Article	IF	CITATIONS
28	Continuous Flow Photoelectrochemical Reactor for Solar Conversion of Carbon Dioxide to Alcohols. Journal of the Electrochemical Society, 2015, 162, E115-E122.	1.3	38
29	Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nature Communications, 2015, 6, 7326.	5.8	295
30	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	3.3	140
31	Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 47-57.	1.7	37
32	Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2337-2342.	3.3	366
33	Alkaline CO ₂ Electrolysis toward Selective and Continuous HCOO [–] Production over SnO ₂ Nanocatalysts. Journal of Physical Chemistry C, 2015, 119, 4884-4890.	1.5	127
34	Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angewandte Chemie - International Edition, 2015, 54, 3259-3266.	7.2	550
35	Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. Journal of Materials Chemistry C, 2015, 3, 644-650.	2.7	39
36	Direct Conversion of Bulk Metals to Sizeâ€Tailored, Monodisperse Spherical Nonâ€Coinageâ€Metal Nanocrystals. Angewandte Chemie - International Edition, 2015, 54, 4787-4791.	7.2	17
37	Efficient Conversion of CO ₂ to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. Journal of the American Chemical Society, 2015, 137, 5021-5027.	6.6	221
38	Component-Controlled Synthesis and Assembly of Cu–Pd Nanocrystals on Graphene for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 5347-5357.	4.0	60
39	Copper Oxide Nanoparticles Stimulate Glycolytic Flux and Increase the Cellular Contents of Glutathione and Metallothioneins in Cultured Astrocytes. Neurochemical Research, 2015, 40, 15-26.	1.6	26
40	Entrapment of a chiral cobalt complex within silver: a novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO ₂ . Chemical Communications, 2015, 51, 12216-12219.	2.2	43
41	Trends in the Reactivity of Molecular O ₂ with Copper Clusters: Influence of Size and Shape. Journal of Physical Chemistry C, 2015, 119, 19832-19846.	1.5	63
42	Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. Journal of the American Chemical Society, 2015, 137, 9808-9811.	6.6	516
43	Selective electrochemical reduction of CO ₂ to CO on CuO-derived Cu nanowires. Physical Chemistry Chemical Physics, 2015, 17, 20861-20867.	1.3	159
44	Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catalysis, 2015, 5, 5145-5153.	5.5	164
45	Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO ₂ Electroreduction. ACS Catalysis, 2015, 5, 5349-5356.	5.5	310

	CHANON		
#	Article	IF	CITATIONS
46	Low Barrier Carbon Induced CO Dissociation on Stepped Cu. Physical Review Letters, 2015, 114, 246101.	2.9	8
47	A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. Journal of Materials Chemistry A, 2015, 3, 16409-16413.	5.2	117
48	Achieving Highly Efficient, Selective, and Stable CO ₂ Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2015, 9, 5364-5371.	7.3	546
49	Heterogeneous catalytic conversion of CO ₂ : a comprehensive theoretical review. Nanoscale, 2015, 7, 8663-8683.	2.8	306
50	Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catalysis, 2015, 5, 2814-2821.	5.5	741
51	Presence of Gap States at Cu/TiO ₂ Anatase Surfaces: Consequences for the Photocatalytic Activity. Journal of Physical Chemistry C, 2015, 119, 6696-6702.	1.5	76
52	Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO ₂ reduction by cobalt–terpyridine complexes. Chemical Science, 2015, 6, 2522-2531.	3.7	152
53	Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2 – The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 26-42.	1.7	26
54	Theoretical Insights into a CO Dimerization Mechanism in CO ₂ Electroreduction. Journal of Physical Chemistry Letters, 2015, 6, 2032-2037.	2.1	606
55	Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano, 2015, 9, 4236-4243.	7.3	419
56	Buckybomb: Reactive Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2015, 6, 913-917.	2.1	31
57	The facile synthesis of Cu@SiO ₂ yolk–shell nanoparticles via a disproportionation reaction of silica-encapsulated Cu ₂ O nanoparticle aggregates. Nanoscale, 2015, 7, 8299-8303.	2.8	31
58	Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals. Nano Letters, 2015, 15, 3634-3639.	4.5	362
59	Recent Advances in Electrocatalytic Reduction of Carbon Dioxide Using Metal-Free Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 4033-4042.	1.8	88
60	Grain-Boundary-Dependent CO ₂ Electroreduction Activity. Journal of the American Chemical Society, 2015, 137, 4606-4609.	6.6	583
61	A Cu ₂₅ Nanocluster with Partial Cu(0) Character. Journal of the American Chemical Society, 2015, 137, 13319-13324.	6.6	234
62	Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. Journal of Physical Chemistry Letters, 2015, 6, 4073-4082.	2.1	1,524
63	Generation of Cu–In alloy surfaces from CuInO ₂ as selective catalytic sites for CO ₂ electroreduction. Journal of Materials Chemistry A, 2015, 3, 19085-19092.	5.2	99

#	Article	IF	CITATIONS
64	Anion-Receptor Mediated Oxidation of Carbon Monoxide to Carbonate by Peroxide Dianion. Journal of the American Chemical Society, 2015, 137, 14562-14565.	6.6	26
65	Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015, 115, 12888-12935.	23.0	1,386
66	CO ₂ Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. ACS Catalysis, 2015, 5, 6658-6664.	5.5	227
67	Selective CO ₂ reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chemical Communications, 2015, 51, 17704-17707.	2.2	70
68	Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond. Journal of the American Chemical Society, 2015, 137, 11631-11636.	6.6	458
69	Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Communications, 2015, 6, 8177.	5.8	456
70	Comparison of rhenium–porphyrin dyads for CO ₂ photoreduction: photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chemical Science, 2015, 6, 6847-6864.	3.7	81
71	Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts. Journal of the American Chemical Society, 2015, 137, 10926-10929.	6.6	95
72	Highly Dense Cu Nanowires for Low-Overpotential CO ₂ Reduction. Nano Letters, 2015, 15, 6829-6835.	4.5	354
73	Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu ₂ O-Derived Copper Catalyst and Palladium(II) Chloride. Journal of Physical Chemistry C, 2015, 119, 26875-26882.	1.5	115
74	Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. Journal of Physical Chemistry Letters, 2015, 6, 4767-4773.	2.1	206
75	A Highly Selective Copper–Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO ₂ to CO. Angewandte Chemie - International Edition, 2015, 54, 2146-2150.	7.2	403
76	Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO ₂ Electroreduction by Process Conditions. ChemElectroChem, 2015, 2, 354-358.	1.7	361
77	Controlling H ⁺ vs CO ₂ Reduction Selectivity on Pb Electrodes. ACS Catalysis, 2015, 5, 465-469.	5.5	294
78	Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications. Small, 2015, 11, 654-666.	5.2	50
79	Resource recovery with microbial electrochemical systems. , 2016, , 321-339.		2
80	Electrode Buildâ€Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide. ChemSusChem, 2016, 9, 333-344.	3.6	72
81	The electrochemical reduction of CO ₂ on a copper electrode in 1- <i>n</i> -butyl-3-methyl imidazolium tetrafluoroborate (BMI.BF ₄) monitored by surface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy, 2016, 47, 674-680.	1.2	31

#	ARTICLE	IF	Citations
82	Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity. ChemCatChem, 2016, 8, 1119-1124.	1.8	76
84	Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts. Angewandte Chemie - International Edition, 2016, 55, 6239-6243.	7.2	87
85	CO ₂ Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. ChemElectroChem, 2016, 3, 1012-1019.	1.7	142
86	Ultrathin Co ₃ O ₄ Layers Realizing Optimized CO ₂ Electroreduction to Formate. Angewandte Chemie - International Edition, 2016, 55, 698-702.	7.2	424
87	Nanoporous copper: fabrication techniques and advanced electrochemical applications. Corrosion Reviews, 2016, 34, 249-276.	1.0	3
88	CO2 electroreduction on P4VPÂmodified copperÂdeposited gas diffusion layer electrode: pH effect. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	1.5	5
89	Elucidating the synergistic mechanism of nickel-molybdenum electrocatalysts for the hydrogen evolution reaction. MRS Communications, 2016, 6, 241-246.	0.8	16
90	An environmentally friendly route to synthesize Cu micro/nanomaterials with "sustainable oxidation resistance―and promising catalytic performance. RSC Advances, 2016, 6, 35036-35043.	1.7	7
91	Nature-Inspired, Highly Durable CO ₂ Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light. Journal of the American Chemical Society, 2016, 138, 5159-5170.	6.6	403
92	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
93	A Z-scheme photocatalyst constructed with an yttrium–tantalum oxynitride and a binuclear Ru(<scp>ii</scp>) complex for visible-light CO ₂ reduction. Chemical Communications, 2016, 52, 7886-7889.	2.2	54
94	Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces. ACS Energy Letters, 2016, 1, 332-338.	8.8	79
95	Biâ€Functional Ironâ€Only Electrodes for Efficient Water Splitting with Enhanced Stability through In Situ Electrochemical Regeneration. Advanced Energy Materials, 2016, 6, 1502095.	10.2	136
96	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie, 2016, 128, 1472-1476.	1.6	39
97	Formation of Copper Catalysts for CO ₂ Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 1466-1470.	2.1	131
98	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.	7.2	166
99	Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol. Catalysis Science and Technology, 2016, 6, 5737-5745.	2.1	15
100	Morphology Matters: Tuning the Product Distribution of CO ₂ Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catalysis, 2016, 6, 3804-3814.	5.5	366

#	Article	IF	CITATIONS
101	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. Journal of Catalysis, 2016, 343, 215-231.	3.1	115
102	Surface Plasmon-Mediated Chemical Solution Deposition of Cu Nanoparticle Films. Journal of Physical Chemistry C, 2016, 120, 20775-20780.	1.5	10
103	Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2016, 138, 6292-6297.	6.6	985
104	Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO ₂ reduction electrocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 26777-26785.	1.3	138
105	New Insight into the Hydrogen Evolution Reaction under Buffered Near-Neutral pH Conditions: Enthalpy and Entropy of Activation. Journal of Physical Chemistry C, 2016, 120, 24187-24196.	1.5	41
106	CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science, 2016, 654, 56-62.	0.8	223
107	Highâ€Selectivity Electrochemical Conversion of CO ₂ to Ethanol using a Copper Nanoparticle/Nâ€Doped Graphene Electrode. ChemistrySelect, 2016, 1, 6055-6061.	0.7	251
108	Solventâ€Driven Reductive Activation of CO ₂ by Bismuth: Switching from Metalloformate Complexes to Oxalate Products. Angewandte Chemie - International Edition, 2016, 55, 15171-15174.	7.2	49
109	Probing the Mechanism of Aqueous CO ₂ Reduction on Post-Transition-Metal Electrodes using ATR-IR Spectroelectrochemistry. ACS Catalysis, 2016, 6, 7824-7833.	5.5	175
110	Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO ₂ to C ₁ Hydrocarbons. ACS Catalysis, 2016, 6, 7769-7777.	5.5	190
111	Low-energy formate production from CO ₂ electroreduction using electrodeposited tin on GDE. Journal of Materials Chemistry A, 2016, 4, 13582-13588.	5.2	96
112	Tracking a Common Surface-Bound Intermediate during CO ₂ -to-Fuels Catalysis. ACS Central Science, 2016, 2, 522-528.	5.3	227
113	Contributors to Enhanced CO ₂ Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst. ChemSusChem, 2016, 9, 2097-2102.	3.6	38
114	Molecular Electrochemistry: Recent Trends and Upcoming Challenges. ChemElectroChem, 2016, 3, 1967-1977.	1.7	28
116	Mechanistic Insights into the Selective Electroreduction of Carbon Dioxide to Ethylene on Cu ₂ O-Derived Copper Catalysts. Journal of Physical Chemistry C, 2016, 120, 20058-20067.	1.5	164
117	Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxideâ€Derived Nanostructured Silver Electrocatalysts. Angewandte Chemie, 2016, 128, 9900-9904.	1.6	117
118	Surface Sites in Cu-Nanoparticles: Chemical Reactivity or Microscopy?. Journal of Physical Chemistry Letters, 2016, 7, 3259-3263.	2.1	30
119	Influence of transition metal modification of oxide-derived Cu electrodes in electroreduction of CO2. Chinese Journal of Catalysis, 2016, 37, 1070-1075.	6.9	13

#	Article	IF	CITATIONS
120	Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property. Nano Letters, 2016, 16, 5669-5674.	4.5	61
121	X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co ₄ O ₄ : Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 11017-11030.	6.6	94
122	Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C–O Bond Cleavage and C–C Bond Formation. Journal of the American Chemical Society, 2016, 138, 16466-16477.	6.6	53
123	Generalized Surface Coordination Number as an Activity Descriptor for CO ₂ Reduction on Cu Surfaces. Journal of Physical Chemistry C, 2016, 120, 28125-28130.	1.5	77
124	Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol. Scientific Reports, 2016, 6, 21178.	1.6	39
125	Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO ₂ over Ag and Cu. Journal of the American Chemical Society, 2016, 138, 13006-13012.	6.6	640
126	Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxideâ€Derived Nanostructured Silver Electrocatalysts. Angewandte Chemie - International Edition, 2016, 55, 9748-9752.	7.2	422
127	Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. Nano Energy, 2016, 27, 121-129.	8.2	100
128	Barriers of Electrochemical CO ₂ Reduction on Transition Metals. Organic Process Research and Development, 2016, 20, 1424-1430.	1.3	135
129	Introduction to CO2 Electroreduction. Electrochemical Energy Storage and Conversion, 2016, , 1-46.	0.0	1
130	CO ₂ Reduction on Cu at Low Overpotentials with Surface-Enhanced in Situ Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 17334-17341.	1.5	163
131	High-Density Nanosharp Microstructures Enable Efficient CO ₂ Electroreduction. Nano Letters, 2016, 16, 7224-7228.	4.5	158
132	Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, 2016, 780, 290-295.	1.9	92
133	Performance Limits of Photoelectrochemical CO ₂ Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products. Chemistry of Materials, 2016, 28, 8844-8850.	3.2	30
134	Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. Journal of the American Chemical Society, 2016, 138, 15927-15934.	6.6	36
135	Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu _{<i>x</i>} Zn Catalysts. ACS Catalysis, 2016, 6, 8239-8247.	5.5	539
136	Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces. ChemSusChem, 2016, 9, 3230-3243.	3.6	34
137	Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature Communications, 2016, 7, 12123.	5.8	896

#	Article	IF	CITATIONS
138	Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nature Communications, 2016, 7, 12697.	5.8	522
139	Recycling electroplating sludge to produce sustainable electrocatalysts for the efficient conversion of carbon dioxide in a microbial electrolysis cell. Electrochimica Acta, 2016, 222, 177-184.	2.6	20
140	Solvensâ€induzierte reduktive Aktivierung von CO ₂ durch Bismut und Änderung des Reaktionsprodukts von Metalloformiat nach Oxalat. Angewandte Chemie, 2016, 128, 15396-15399.	1.6	7
141	A Grossâ€Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO ₂ . ChemSusChem, 2016, 9, 1972-1979.	3.6	485
142	Energy States of a Coreâ€5hell Metal Oxide Photocatalyst Enabling Visible Light Absorption and Utilization in Solarâ€ŧoâ€Fuel Conversion of Carbon Dioxide. Advanced Energy Materials, 2016, 6, 1600583.	10.2	17
143	Defectâ€Rich Metal Nanocrystals in Catalysis. ChemCatChem, 2016, 8, 480-485.	1.8	33
144	A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. Journal of the American Chemical Society, 2016, 138, 8120-8125.	6.6	340
145	Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 2016, 11, 373-391.	6.2	200
146	Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface. Electrocatalysis, 2016, 7, 391-399.	1.5	56
147	Magnetic Co@g-C ₃ N ₄ Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 2016, 32, 6272-6281.	1.6	67
148	Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution. Inorganic Chemistry, 2016, 55, 6750-6758.	1.9	50
149	Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. Science China Materials, 2016, 59, 1-3.	3.5	17
150	Tuned Chemical Bonding Ability of Au at Grain Boundaries for Enhanced Electrochemical CO ₂ Reduction. ACS Catalysis, 2016, 6, 4443-4448.	5.5	103
151	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Advanced Materials, 2016, 28, 3423-3452.	11.1	1,256
152	Recent Advances in Breaking Scaling Relations for Effective Electrochemical Conversion of CO ₂ . Advanced Energy Materials, 2016, 6, 1600463.	10.2	308
153	Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts. Angewandte Chemie, 2016, 128, 6347-6351.	1.6	21
154	Surface structure and composition effects on electrochemical reduction of carbon dioxide. Journal of Solid State Electrochemistry, 2016, 20, 861-873.	1.2	34
155	Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Advances, 2016, 6, 5384-5390.	1.7	97

#	Article	IF	CITATIONS
156	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy and Environmental Science, 2016, 9, 1687-1695.	15.6	290
157	Synthesis of copper nanoparticles within the interlayer space of titania nanosheet transparent films. Journal of Materials Chemistry C, 2016, 4, 1476-1481.	2.7	16
158	Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction. Journal of the American Chemical Society, 2016, 138, 1820-1823.	6.6	167
159	Incorporation of Nitrogen Defects for Efficient Reduction of CO ₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Letters, 2016, 16, 466-470.	4.5	435
160	Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO 2 reduction. Catalysis Today, 2016, 262, 90-94.	2.2	132
161	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205
162	A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Central Science, 2016, 2, 169-174.	5.3	362
163	Clobal change synergies and tradeâ€offs between renewable energy and biodiversity. GCB Bioenergy, 2016, 8, 941-951.	2.5	61
164	Enhanced reduction of copper oxides via internal heating, selective heating, and cleavage of Cu–O bond by microwave magnetic-field irradiation. Materials Chemistry and Physics, 2016, 172, 47-53.	2.0	12
165	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	8.2	104
166	Nickel–Gallium-Catalyzed Electrochemical Reduction of CO ₂ to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 2016, 6, 2100-2104.	5.5	238
167	Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. Journal of Catalysis, 2016, 343, 232-239.	3.1	222
168	Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO ₂ to CO. Journal of Materials Chemistry A, 2016, 4, 4776-4782.	5.2	115
169	Bifunctional alloys for the electroreduction of CO ₂ and CO. Physical Chemistry Chemical Physics, 2016, 18, 9194-9201.	1.3	127
170	Lightweight and high-performance electromagnetic radiation shielding composites based on a surface coating of Cu@Ag nanoflakes on a leather matrix. Journal of Materials Chemistry C, 2016, 4, 914-920.	2.7	56
171	Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature, 2016, 529, 72-75.	13.7	92
172	Electrochemical Reduction of CO2 on Ni- and Pt-Epitaxially Grown Cu(111) Surfaces. Electrocatalysis, 2016, 7, 97-103.	1.5	27
173	Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529, 68-71.	13.7	1,565

#	Article	IF	CITATIONS
174	Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to <i>n</i> Propanol. Journal of Physical Chemistry Letters, 2016, 7, 20-24.	2.1	211
175	Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Journal of the American Chemical Society, 2016, 138, 483-486.	6.6	381
176	Porous indium electrode with large surface area for effective electroreduction of N 2 O. Electrochemistry Communications, 2016, 62, 13-16.	2.3	11
177	The acceleration of methanol synthesis and C2 oxygenates formation on copper grain boundary from syngas. Applied Catalysis A: General, 2016, 509, 97-104.	2.2	23
178	Facet Dependence of CO ₂ Reduction Paths on Cu Electrodes. ACS Catalysis, 2016, 6, 219-229.	5.5	420
179	Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catalysis Today, 2016, 260, 8-13.	2.2	417
180	One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources, 2016, 301, 219-228.	4.0	399
181	Design of an artificial photosynthetic system for production of alcohols in high concentration from CO ₂ . Energy and Environmental Science, 2016, 9, 193-199.	15.6	47
182	Theoretical insight on reactivity trends in CO ₂ electroreduction across transition metals. Catalysis Science and Technology, 2016, 6, 1042-1053.	2.1	57
183	Handling of Copper and Copper Oxide Nanoparticles by Astrocytes. Neurochemical Research, 2016, 41, 33-43.	1.6	24
184	Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catalysis Today, 2017, 288, 18-23.	2.2	33
185	The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 2030-2034.	6.6	133
186	Syngas production by electrochemical CO 2 reduction in an ionic liquid based-electrolyte. Journal of CO2 Utilization, 2017, 18, 62-72.	3.3	52
187	CO ₂ Electroreduction at Low Overpotential on Oxide-Derived Cu/Carbons Fabricated from Metal Organic Framework. ACS Applied Materials & amp; Interfaces, 2017, 9, 5302-5311.	4.0	239
188	Selective Electroreduction of CO ₂ toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density. Advanced Energy Materials, 2017, 7, 1602114.	10.2	210
189	Copper nanoparticle interspersed MoS ₂ nanoflowers with enhanced efficiency for CO ₂ electrochemical reduction to fuel. Dalton Transactions, 2017, 46, 10569-10577.	1.6	81
190	Current Status and Bioinspired Perspective of Electrochemical Conversion of CO ₂ to a Long-Chain Hydrocarbon. Journal of Physical Chemistry Letters, 2017, 8, 538-545.	2.1	109
191	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, .	6.0	7,837

#	Article	IF	CITATIONS
192	Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Research, 2017, 10, 1641-1650.	5.8	35
193	Highly Selective Conversion of CO ₂ to CO Achieved by a Threeâ€Dimensional Porous Silver Electrocatalyst. ChemistrySelect, 2017, 2, 879-884.	0.7	51
194	Electrochemical carbon dioxide reduction on copper-modified palladium nanoparticles synthesized by underpotential deposition. Electrochimica Acta, 2017, 229, 415-421.	2.6	49
195	Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nature Communications, 2017, 8, 14503.	5.8	365
196	Reduced SnO ₂ Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO ₂ â€intoâ€HCOOH Conversion. Angewandte Chemie - International Edition, 2017, 56, 3645-3649.	7.2	376
197	Understanding of Strain Effects in the Electrochemical Reduction of CO ₂ : Using Pd Nanostructures as an Ideal Platform. Angewandte Chemie, 2017, 129, 3648-3652.	1.6	112
198	Understanding of Strain Effects in the Electrochemical Reduction of CO ₂ : Using Pd Nanostructures as an Ideal Platform. Angewandte Chemie - International Edition, 2017, 56, 3594-3598.	7.2	303
199	Reduced SnO ₂ Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO ₂ â€intoâ€HCOOH Conversion. Angewandte Chemie, 2017, 129, 3699-3703.	1.6	41
200	Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem, 2017, 10, 1056-1070.	3.6	154
201	Nanostructured Materials for Heterogeneous Electrocatalytic CO ₂ Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 11326-11353.	7.2	811
202	Nanostrukturierte Materialien für die elektrokatalytische CO ₂ â€Reduktion und ihre Reaktionsmechanismen. Angewandte Chemie, 2017, 129, 11482-11511.	1.6	102
203	Electrocatalytic conversion of carbon dioxide to fuels: a review on the interaction between <scp>CO₂</scp> and the liquid electrolyte. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e239.	1.9	32
204	Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1795-1800.	3.3	414
205	Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface. Ionics, 2017, 23, 1871-1878.	1.2	32
206	Metal organic framework based catalysts for CO ₂ conversion. Materials Horizons, 2017, 4, 345-361.	6.4	359
207	Mechanism of C–C bond formation in the electrocatalytic reduction of CO ₂ to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chemistry, 2017, 19, 2406-2415.	4.6	125
208	Hollow porous Cu particles from silica-encapsulated Cu ₂ O nanoparticle aggregates effectively catalyze 4-nitrophenol reduction. Nanoscale, 2017, 9, 3873-3880.	2.8	73
209	Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO ₂ electroreduction to CO. Sustainable Energy and Fuels, 2017, 1, 1023-1027.	2.5	49

		CITATION R	EPORT	
#	Article		IF	CITATIONS
210	Frustrated Lewis Pair Chemistry: Searching for New Reactions. Chemical Record, 2017	, 17, 803-815.	2.9	63
211	Selective electroreduction of CO 2 to formate on Bi and oxide-derived Bi films. Journal Utilization, 2017, 19, 276-283.	of CO2	3.3	78
212	A breakthrough in electrocatalysis of CO2 conversion. National Science Review, 2017,	4, 155-156.	4.6	8
213	Syngas production from electrochemical reduction of CO ₂ : current statu prospective implementation. Green Chemistry, 2017, 19, 2326-2346.	s and	4.6	281
214	The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts T CO ₂ Electrochemical Reduction Reaction. Journal of Physical Chemistry C 11368-11379.	oward 2, 2017, 121,	1.5	147
215	Ultrathin CoS 2 shells anchored on Co 3 O 4 nanoneedles for efficient hydrogen evolu electrocatalysis. Journal of Power Sources, 2017, 356, 89-96.	tion	4.0	56
216	Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanost enhanced electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 919-924.	tructures for	5.2	32
217	Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO Reduction. Journal of Physical Chemistry C, 2017, 121, 14191-14203.	D ₂	1.5	254
218	Cu metal embedded in oxidized matrix catalyst to promote CO ₂ activati dimerization for electrochemical reduction of CO ₂ . Proceedings of the N Academy of Sciences of the United States of America, 2017, 114, 6685-6688.	on and CO ational	3.3	322
219	Unique copper and reduced graphene oxide nanocomposite toward the efficient electron reduction of carbon dioxide. Scientific Reports, 2017, 7, 3184.	rochemical	1.6	64
220	Improved CO ₂ Electroreduction Performance on Plasma-Activated Cu Ca Electrolyte Design: Halide Effect. ACS Catalysis, 2017, 7, 5112-5120.	talysts via	5.5	233
221	Reprint of: Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduce potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroans Chemistry, 2017, 793, 113-118.	tion alytical	1.9	7
222	Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical dioxide reduction to formate. Nano Energy, 2017, 39, 44-52.	carbon	8.2	265
223	Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 12337-1234		1.5	207
224	Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene 11, 6301-6311.	. ACS Nano, 2017,	7.3	46
225	Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. AC 2017, 7, 4467-4472.	S Catalysis,	5.5	137
226	Li Electrochemical Tuning of Metal Oxide for Highly Selective CO ₂ Reduct 2017, 11, 6451-6458.	tion. ACS Nano,	7.3	123
227	Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Acta, 2017, 245, 456-462.	Electrochimica	2.6	91

#	Article	IF	CITATIONS
228	Sulfur doped-copper oxide nanoclusters synthesized through a facile electroplating process assisted by thiourea for selective photoelectrocatalytic reduction of CO2. Journal of Colloid and Interface Science, 2017, 505, 241-252.	5.0	23
229	Tailoring Metalloporphyrin Frameworks for an Efficient Carbon Dioxide Electroreduction: Selectively Stabilizing Key Intermediates with H-Bonding Pockets. Inorganic Chemistry, 2017, 56, 7200-7209.	1.9	34
230	Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9, 1019-1024.	6.6	757
231	Nanomorphology-Enhanced Gas-Evolution Intensifies CO ₂ Reduction Electrochemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 4031-4040.	3.2	135
232	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
233	Thermochemical CO ₂ splitting using double perovskite-type Ba ₂ Ca _{0.66} Nb _{1.34â^³x} Fe _x O _{6â^³Î} . Journal of Materials Chemistry A, 2017, 5, 6874-6883.	5.2	23
234	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	3.1	332
235	Selective CO 2 electroreduction to C 2 H 4 on porous Cu films synthesized by sacrificial support method. Journal of CO2 Utilization, 2017, 19, 137-145.	3.3	29
236	Partition function of improved Tietz oscillators. Chemical Physics Letters, 2017, 676, 150-153.	1.2	141
237	Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu ₂ 0 Nanoparticles. ACS Nano, 2017, 11, 2714-2723.	7.3	41
238	Self-supported NiMoP ₂ nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.	5.2	168
239	Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. Journal of Materials Chemistry A, 2017, 5, 7184-7190.	5.2	66
240	Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research, 2017, 50, 616-619.	7.6	333
241	Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 39-44.	3.2	51
242	Mechanistic Insights into the Unique Role of Copper in CO ₂ Electroreduction Reactions. ChemSusChem, 2017, 10, 387-393.	3.6	39
243	Facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2 products at lower overpotential for CO2 electrochemical reduction. Surfaces and Interfaces, 2017, 6, 116-121.	1.5	25
244	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	13.3	1,163
245	Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns. Journal of the American Chemical Society, 2017, 139, 47-50.	6.6	632

#	Article	IF	CITATIONS
246	Productivity and Selectivity of Gasâ€Phase CO ₂ Electroreduction to Methane at Copper Nanoparticleâ€Based Electrodes. Energy Technology, 2017, 5, 922-928.	1.8	72
247	Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. Journal of Physical Chemistry Letters, 2017, 8, 285-290.	2.1	332
248	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
249	Highly active two dimensional α-MoO _{3â^'x} for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24223-24231.	5.2	166
250	Catalytic CO ₂ reduction to valuable chemicals using NiFe-based nanoclusters: a first-principles theoretical evaluation. Physical Chemistry Chemical Physics, 2017, 19, 28344-28353.	1.3	18
251	Exclusive Ni–N ₄ Sites Realize Near-Unity CO Selectivity for Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 14889-14892.	6.6	725
252	Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25010-25017.	1.5	92
253	Electrochemical Reduction of CO ₂ into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL) Study. ACS Catalysis, 2017, 7, 7946-7956.	5.5	148
254	Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25003-25009.	1.5	98
255	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	11.7	390
256	Cu nanoparticles decorating rGO nanohybrids as electrocatalyst toward CO 2 reduction. Journal of CO2 Utilization, 2017, 22, 231-237.	3.3	25
257	Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2017, 26, 1050-1066.	7.1	70
258	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
259	Selective CO ₂ Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustainable Chemistry and Engineering, 2017, 5, 11377-11386.	3.2	127
260	Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO ₂ Electrochemical Reduction Reaction on Cu Surfaces. Journal of the American Chemical Society, 2017, 139, 15664-15667.	6.6	468
261	Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes. Journal of the American Chemical Society, 2017, 139, 16412-16419.	6.6	289
262	–CH ₃ Mediated Pathway for the Electroreduction of CO ₂ to Ethane and Ethanol on Thick Oxide-Derived Copper Catalysts at Low Overpotentials. ACS Energy Letters, 2017, 2, 2103-2109.	8.8	117
263	A spongy nickel-organic CO ₂ reduction photocatalyst for nearly 100% selective CO production. Science Advances, 2017, 3, e1700921.	4.7	175

#	Article	IF	CITATIONS
264	A broad parameter range for selective methane production with bicarbonate solution in electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2017, 1, 1734-1739.	2.5	16
265	Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2017, 7, 1701456.	10.2	203
266	Efficient solar-driven electrochemical CO ₂ reduction to hydrocarbons and oxygenates. Energy and Environmental Science, 2017, 10, 2222-2230.	15.6	145
267	Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 2017, 40, 512-539.	8.2	221
268	Copper nanoparticle ensembles for selective electroreduction of CO ₂ to C ₂ –C ₃ products. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10560-10565.	3.3	479
269	Computational Discovery of Nickel-Based Catalysts for CO ₂ Reduction to Formic Acid. Journal of Physical Chemistry C, 2017, 121, 20865-20870.	1.5	39
270	Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate. Journal of Energy Chemistry, 2017, 26, 825-829.	7.1	41
271	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
272	Tuning of CO ₂ Reduction Selectivity on Metal Electrocatalysts. Small, 2017, 13, 1701809.	5.2	182
273	Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction. ACS Central Science, 2017, 3, 1032-1040.	5.3	65
274	Relativistic spinless rotation-vibrational energies of carbon monoxide. European Physical Journal Plus, 2017, 132, 1.	1.2	16
275	Electrochemical CO ₂ Reduction: A Classification Problem. ChemPhysChem, 2017, 18, 3266-3273.	1.0	534
276	Self-healing catalysis in water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13380-13384.	3.3	95
277	Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3, e1701069.	4.7	211
278	CO ₂ Reduction Selective for C _{≥2} Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Central Science, 2017, 3, 853-859.	5.3	226
279	A tunable high-pass filter for simple and inexpensive size-segregation of sub-10-nm nanoparticles. Scientific Reports, 2017, 7, 45678.	1.6	6
280	Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru. Journal of Physical Chemistry Letters, 2017, 8, 3820-3825.	2.1	9
281	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO ₂ reduction to C ₂ H ₄ . Green Chemistry, 2017, 19, 4023-4030.	4.6	58

#	ARTICLE	IF	Citations
	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂		
282	Reduction. ACS Applied Materials & amp; Interfaces, 2017, 9, 28519-28526.	4.0	83
283	Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. Journal of the American Chemical Society, 2017, 139, 11642-11645.	6.6	146
284	Porous Co2P nanowires as high efficient bifunctional catalysts for 4-nitrophenol reduction and sodium borohydride hydrolysis. Journal of Colloid and Interface Science, 2017, 507, 429-436.	5.0	51
285	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO ₂ to Hydrocarbons and Oxygenates. ACS Catalysis, 2017, 7, 6245-6250.	5.5	129
286	Monolithic Nanoporous In–Sn Alloy for Electrochemical Reduction of Carbon Dioxide. ACS Applied Materials & Interfaces, 2017, 9, 43575-43582.	4.0	66
287	Selective increase in CO ₂ electroreduction activity at grain-boundary surface terminations. Science, 2017, 358, 1187-1192.	6.0	596
288	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO ₂ Reduction to Hydrocarbon/Alcohol. Journal of the American Chemical Society, 2017, 139, 18093-18100.	6.6	439
289	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	5.2	90
290	Electrocatalytic reduction of CO ₂ to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. Journal of Materials Chemistry A, 2017, 5, 24867-24873.	5.2	78
291	Mechanistic Insights for Low-Overpotential Electroreduction of CO ₂ to CO on Copper Nanowires. ACS Catalysis, 2017, 7, 8578-8587.	5.5	106
292	Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO ₂ reduction reaction. Catalysis Science and Technology, 2017, 7, 5820-5832.	2.1	29
293	Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics. ACS Applied Materials & Interfaces, 2017, 9, 40281-40289.	4.0	56
294	Electrochemical CO ₂ Conversion Using Skeleton (Sponge) Type of Cu Catalysts. ACS Catalysis, 2017, 7, 5431-5437.	5.5	107
295	Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2017, 2, .	19.8	436
296	Electrolytic CO ₂ Reduction in Tandem with Oxidative Organic Chemistry. ACS Central Science, 2017, 3, 778-783.	5.3	93
297	Copperâ€Based Metal–Organic Porous Materials for CO ₂ Electrocatalytic Reduction to Alcohols. ChemSusChem, 2017, 10, 1100-1109.	3.6	316
298	Colloidal nanocrystals for electrochemical reduction reactions. Journal of Colloid and Interface Science, 2017, 485, 308-327.	5.0	17
299	Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction. Catalysis Today, 2017, 288, 48-53.	2.2	34

#	Article	IF	CITATIONS
300	In situ spectroscopic monitoring of CO ₂ reduction at copper oxide electrode. Faraday Discussions, 2017, 197, 517-532.	1.6	37
301	Electrochemical Production of Glycolic Acid from Oxalic Acid Using a Polymer Electrolyte Alcohol Electrosynthesis Cell Containing a Porous TiO2 Catalyst. Scientific Reports, 2017, 7, 17032.	1.6	34
302	Fabrication of nickel stamp using e-beam evaporation and electroforming for electroreduction of carbon dioxide. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 06C802.	0.6	0
303	Well-Defined Metal Nanoparticles for Electrocatalysis. Studies in Surface Science and Catalysis, 2017, , 123-148.	1.5	4
304	Reactivity of Copper Electrodes towards Functional Groups and Small Molecules in the Context of CO2 Electro-Reductions. Catalysts, 2017, 7, 161.	1.6	28
305	Chelating Nâ€Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie, 2018, 130, 5075-5079.	1.6	39
306	Trends in the Catalytic Activity of Hydrogen Evolution during CO ₂ Electroreduction on Transition Metals. ACS Catalysis, 2018, 8, 3035-3040.	5.5	107
307	Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO ₂ Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 4363-4371.	6.6	84
308	1D SnO ₂ with Wireâ€inâ€Tube Architectures for Highly Selective Electrochemical Reduction of CO ₂ to C ₁ Products. Advanced Functional Materials, 2018, 28, 1706289.	7.8	153
309	Chelating Nâ€Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4981-4985.	7.2	110
310	The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nature Communications, 2018, 9, 925.	5.8	214
311	Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment. Chemical Engineering Communications, 2018, 205, 706-715.	1.5	9
312	A computational exploration of CO ₂ reduction <i>via</i> CO dimerization on mixed-valence copper oxide surface. Physical Chemistry Chemical Physics, 2018, 20, 16906-16909.	1.3	23
313	Identifying Active Sites of Nitrogenâ€Doped Carbon Materials for the CO ₂ Reduction Reaction. Advanced Functional Materials, 2018, 28, 1800499.	7.8	244
314	Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9, 1477.	5.8	60
315	Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 14036-14044.	4.0	44
316	A comparative technoeconomic analysis of pathways for commercial electrochemical CO ₂ reduction to liquid products. Energy and Environmental Science, 2018, 11, 1536-1551.	15.6	352
317	Steric Hindrance in Sulfur Vacancy of Monolayer MoS ₂ Boosts Electrochemical Reduction of Carbon Monoxide to Methane. ChemSusChem, 2018, 11, 1455-1459.	3.6	29

#	Article	IF	CITATIONS
318	Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction. Nano Energy, 2018, 49, 40-50.	8.2	30
319	Ag-doped Co3O4 catalyst derived from heterometallic MOF for syngas production by electrocatalytic reduction of CO2 in water. Journal of Solid State Chemistry, 2018, 263, 44-51.	1.4	37
320	Trends of Electrochemical CO ₂ Reduction Reaction on Transition Metal Oxide Catalysts. Journal of Physical Chemistry C, 2018, 122, 10078-10087.	1.5	54
321	Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol. Electrochimica Acta, 2018, 274, 1-8.	2.6	51
322	Mechanistic Understanding of CO ₂ Electroreduction on Cu ₂ O. Journal of Physical Chemistry C, 2018, 122, 5472-5480.	1.5	23
323	Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. Journal of Materials Chemistry A, 2018, 6, 5025-5031.	5.2	109
324	Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions. Applied Surface Science, 2018, 440, 897-906.	3.1	7
325	The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochimica Acta, 2018, 266, 414-419.	2.6	54
326	Investigating the Role of Copper Oxide in Electrochemical CO ₂ Reduction in Real Time. ACS Applied Materials & Interfaces, 2018, 10, 8574-8584.	4.0	207
327	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 4331-4336.	5.2	27
328	Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO ₂ in Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 3719-3726.	1.5	92
329	Polyhedral Cu2O to Cu pseudomorphic conversion for stereoselective alkyne semihydrogenation. Chemical Science, 2018, 9, 2517-2524.	3.7	34
330	Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO ₂ on Copper?. Journal of Physical Chemistry Letters, 2018, 9, 601-606.	2.1	118
331	Robust and selective electrochemical reduction of CO ₂ : the case of integrated 3D TiO ₂ @MoS ₂ architectures and Ti–S bonding effects. Journal of Materials Chemistry A, 2018, 6, 4706-4713.	5.2	56
332	Electroreduction of CO on Polycrystalline Copper at Low Overpotentials. ACS Energy Letters, 2018, 3, 634-640.	8.8	73
333	Electrochemical processes on solid shaped nanoparticles with defined facets. Chemical Society Reviews, 2018, 47, 715-735.	18.7	129
334	Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO ₂ Reduction. Angewandte Chemie, 2018, 130, 2993-2997.	1.6	55
335	Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 2943-2947.	7.2	209

#	Article	IF	CITATIONS
336	Nonprecious Intermetallic Al ₇ Cu ₄ Ni Nanocrystals Seamlessly Integrated in Freestanding Bimodal Nanoporous Copper for Efficient Hydrogen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706127.	7.8	64
337	Electrolysis of Gaseous CO ₂ to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 2018, 3, 149-154.	8.8	265
338	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 1944-1948.	7.2	888
339	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie, 2018, 130, 1962-1966.	1.6	244
340	Predictions of entropy for diatomic molecules and gaseous substances. Chemical Physics Letters, 2018, 692, 57-60.	1.2	89
341	Low Density Three-Dimensional Metal Foams as Significant Electrocatalysts toward Methanol Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2062-2068.	3.2	19
342	Mechanism of CO ₂ Reduction at Copper Surfaces: Pathways to C ₂ Products. ACS Catalysis, 2018, 8, 1490-1499.	5.5	608
343	One-dimensional Culn alloy nanowires as a robust and efficient electrocatalyst for selective CO2-to-CO conversion. Journal of Power Sources, 2018, 378, 412-417.	4.0	35
344	Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, 2018, 1, 111-119.	16.1	600
345	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018, 2, .	13.8	631
346	Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol. Materials Chemistry and Physics, 2018, 207, 315-324.	2.0	62
347	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reaction. ACS Catalysis, 2018, 8, 1510-1519.	5.5	261
348	High efficiency electrochemical reduction of CO ₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 10313-10319.	5.2	92
349	Multiple Coresâ€Shell Structured Cu@SiO ₂ Ultrathin Leafâ€Shaped Nanocomposite: Facile Fabrication and Excellent Selective Catalytic Hydrogenation Performance. ChemistrySelect, 2018, 3, 4643-4652.	0.7	1
350	A highly efficient flower-like cobalt catalyst for electroreduction of carbon dioxide. Chinese Journal of Catalysis, 2018, 39, 914-919.	6.9	19
351	Enhancing C ₂ –C ₃ Production from CO ₂ on Copper Electrocatalysts via a Potential-Dependent Mesostructure. ACS Applied Energy Materials, 2018, 1, 1965-1972.	2.5	26
352	Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. Journal of Materials Chemistry A, 2018, 6, 9373-9377.	5.2	42
353	Infrared Photodissociation Spectra of [Sn(CO ₂) _{<i>n</i>}] ^{â^`} Cluster Ions. Journal of Physical Chemistry A, 2018, 122, 3772-3779.	1.1	11

#	Article	IF	CITATIONS
354	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271, 544-550.	2.6	49
355	Stannate derived bimetallic nanoparticles for electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 7851-7858.	5.2	61
356	Low Overpotential for Electrochemically Reducing CO ₂ to CO on Nitrogen-Doped Graphene Quantum Dots-Wrapped Single-Crystalline Gold Nanoparticles. ACS Energy Letters, 2018, 3, 946-951.	8.8	48
357	In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide. Applied Surface Science, 2018, 445, 281-286.	3.1	56
358	Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes. Journal of CO2 Utilization, 2018, 24, 522-547.	3.3	40
359	A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Current Opinion in Electrochemistry, 2018, 9, 158-165.	2.5	64
360	High-Rate Electrochemical Reduction of Carbon Monoxide to Ethylene Using Cu-Nanoparticle-Based Gas Diffusion Electrodes. ACS Energy Letters, 2018, 3, 855-860.	8.8	77
361	Solar-powered CO2 reduction by a hybrid biological inorganic system. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 411-415.	2.0	29
362	Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Applied Surface Science, 2018, 427, 1165-1173.	3.1	136
363	Synthesis of Large Surfaceâ€Area gâ€C ₃ N ₄ Comodified with MnO <i>_x</i> and Auâ€TiO ₂ as Efficient Visibleâ€Light Photocatalysts for Fuel Production. Advanced Energy Materials, 2018, 8, 1701580.	10.2	157
364	Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics, products, and toxicity. Chemical Engineering Journal, 2018, 332, 628-636.	6.6	142
365	Ethylene Selectivity in CO Electroreduction when using Cu Oxides: An In Situ ATRâ€ S EIRAS Study. ChemElectroChem, 2018, 5, 558-564.	1.7	23
366	Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2018, 2, 510-537.	2.5	93
367	Semiconductorâ€Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Chemistry - an Asian Journal, 2018, 13, 127-142.	1.7	47
368	Understanding the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide on Oxideâ€Derived Catalysts. ChemElectroChem, 2018, 5, 219-237.	1.7	126
369	Electrocatalytic Alloys for CO ₂ Reduction. ChemSusChem, 2018, 11, 48-57.	3.6	249
370	A Monodispersed Spherical Zrâ€Based Metal–Organic Framework Catalyst, Pt/Au@Pd@UIOâ€66, Comprising an Au@Pd Core–Shell Encapsulated in a UIOâ€66 Center and Its Highly Selective CO ₂ Hydrogenation to Produce CO. Small, 2018, 14, 1702812.	5.2	70
371	Stability of Residual Oxides in Oxideâ€Derived Copper Catalysts for Electrochemical CO ₂ Reduction Investigated with ¹⁸ O Labeling. Angewandte Chemie - International Edition, 2018, 57, 551-554	7.2	300

#	Article	IF	CITATIONS
372	Initial Application of Selectedâ€lon Flowâ€Tube Mass Spectrometry to Realâ€Time Product Detection in Electrochemical CO ₂ Reduction. Energy Technology, 2018, 6, 110-121.	1.8	13
373	Stability of Residual Oxides in Oxideâ€Derived Copper Catalysts for Electrochemical CO 2 Reduction Investigated with 18 O Labeling. Angewandte Chemie, 2018, 130, 560-563.	1.6	43
374	Carbon Dioxide Electrochemical Reduction on Tin and Copper Electrodes. , 2018, , 401-411.		1
375	Potential-Dependent Adsorption of CO and Its Low-Overpotential Reduction to CH ₃ CH ₂ OH on Cu(511) Surface Reconstructed from Cu(pc): Operando Studies by Seriatim STM-EQCN-DEMS. Journal of the Electrochemical Society, 2018, 165, J3350-J3354.	1.3	15
376	Directing the reactivity of metal hydrides for selective CO ₂ reduction. Proceedings of the United States of America, 2018, 115, 12686-12691.	3.3	87
377	Carbon Capture, Utilization, and Storage: An Update. SPE Journal, 2018, 23, 2444-2455.	1.7	57
378	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168
379	The stability of Cu clusters and their adsorption for CH4 and CH3 by first principle calculations. Journal of Chemical Physics, 2018, 149, 204310.	1.2	3
380	Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1, 922-934.	16.1	515
381	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie, 2018, 130, 15702-15706.	1.6	63
382	Electrochemical Surface Science of CO2 Reduction at Well-Defined Cu Electrodes: Surface Characterization by Emersion, Ex Situ, In Situ, and Operando Methods. , 2018, , 562-576.		4
383	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15476-15480.	7.2	162
384	A Surface Reconstruction Route to High Productivity and Selectivity in CO ₂ Electroreduction toward C ₂₊ Hydrocarbons. Advanced Materials, 2018, 30, e1804867.	11.1	200
385	Copper and Copperâ€Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. Advanced Materials Interfaces, 2018, 5, 1800919.	1.9	72
386	Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nature Catalysis, 2018, 1, 764-771.	16.1	501
387	Electrochemical alternative to Fischer–Tropsch. Nature Catalysis, 2018, 1, 741-742.	16.1	17
388	Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule, 2018, 2, 2551-2582.	11.7	459
389	Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Materials Today Energy, 2018, 10, 280-301.	2.5	188

#	Article	IF	CITATIONS
390	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	5.8	153
391	A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry and Engineering, 2018, 6, 15895-15914.	3.2	188
392	Molecularly Defined Interface Created by Porous Polymeric Networks on Gold Surface for Concerted and Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17277-17283.	3.2	26
393	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
394	Effect of Particle Shape and Electrolyte Cation on CO Adsorption to Copper Oxide Nanoparticle Electrocatalysts. Journal of Physical Chemistry C, 2018, 122, 26489-26498.	1.5	33
395	Carbon Monoxide as a Promoter of Atomically Dispersed Platinum Catalyst in Electrochemical Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 16198-16205.	6.6	74
396	Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range. Applied Materials Today, 2018, 13, 135-143.	2.3	58
397	Ni nanoparticle-decorated-MnO ₂ nanodendrites as highly selective and efficient catalysts for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 19438-19444.	5.2	27
398	Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction. CheM, 2018, 4, 2571-2586.	5.8	445
399	The origin of CO2 electroreduction into C1 and C2 species: Mechanistic understanding on the product selectivity of Cu single-crystal faces. Chemical Physics Letters, 2018, 710, 175-179.	1.2	16
400	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	5.8	279
401	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	11.1	51
402	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	7.2	310
403	On the Electrochemical CO ₂ Reduction at Copper Sheet Electrodes with Enhanced Long-Term Stability by Pulsed Electrolysis. Journal of the Electrochemical Society, 2018, 165, J3059-J3068.	1.3	53
404	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	1.6	41
405	Establishing new scaling relations on two-dimensional MXenes for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 21885-21890.	5.2	138
406	Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO ₂ Reduction. ChemSusChem, 2018, 11, 3449-3459.	3.6	80
407	Surfaceâ€Plasmonâ€Assisted Photoelectrochemical Reduction of CO ₂ and NO ₃ ^{â^'} on Nanostructured Silver Electrodes. Advanced Energy Materials, 2018, 8, 1800363.	10.2	50

	CITATION RE	PORT	
#	ARTICLE Highly selective electrochemical reduction of CO ₂ to formate on metal-free	IF	CITATIONS
408	nitrogen-doped PC61BM. Journal of Materials Chemistry A, 2018, 6, 11236-11243.	5.2	62
409	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	6.0	1,638
410	Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21, 41-54.	6.2	374
411	Insights into geometries, stabilities, electronic structures, reactivity descriptors, and magnetic properties of bimetallic Ni m Cu n–m (m  = 1, 2; n  = 3–13) clusters: Comparison with pur clusters. Journal of Computational Chemistry, 2018, 39, 1878-1889.	e aapper	10
412	High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells. Electrochimica Acta, 2018, 280, 206-215.	2.6	19
413	A Tunable Pd–Sn Alloy Electrocatalyst for CO2 Reduction to Value Added Products from DFT Study. Catalysis Letters, 2018, 148, 2117-2126.	1.4	5
414	Recent Advances in CO ₂ Reduction Electrocatalysis on Copper. ACS Energy Letters, 2018, 3, 1545-1556.	8.8	280
415	High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured Copper Electrodes. ACS Catalysis, 2018, 8, 5657-5663.	5.5	35
416	Reducing the onset potential of CO2 electroreduction on CuRu bimetallic particles. Applied Catalysis B: Environmental, 2018, 237, 911-918.	10.8	43
417	The influence of oxygen on the surface interaction between CO2 and copper studied by ambient pressure X-ray photoelectron spectroscopy. Surface Science, 2018, 677, 121-127.	0.8	6
418	Solutions of the Klein–Gordon equation with the improved Tietz potential energy model. Journal of Mathematical Chemistry, 2018, 56, 2982-2994.	0.7	14
419	Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochimica Acta, 2018, 285, 70-77.	2.6	51
420	Beyond Copper in CO ₂ Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts. ACS Catalysis, 2018, 8, 8357-8368.	5.5	119
421	The Electrochemical Conversion of Carbon Dioxide to Carbon Monoxide Over Nanomaterial Based Cathodic Systems: Measures to Take to Apply This Laboratory Process Industrially. , 2018, , 83-131.		2
422	Nanostructured Copperâ€Based Electrocatalysts for CO ₂ Reduction. Small Methods, 2018, 2, 1800121.	4.6	139
423	CuO Nanoparticles Supported on TiO2 with High Efficiency for CO2 Electrochemical Reduction to Ethanol. Catalysts, 2018, 8, 171.	1.6	101
424	Revisiting Electrochemical Reduction of CO ₂ on Cu Electrode: Where Do We Stand about the Intermediates?. Journal of Physical Chemistry C, 2018, 122, 18528-18536.	1.5	32
425	Bismuth Nano-Flowers as a Highly Selective Catalyst for Electrochemical Reduction of CO ₂ to Formate. Journal of the Electrochemical Society, 2018, 165, H594-H600.	1.3	33

ARTICLE IF CITATIONS Sequential catalysis controls selectivity in electrochemical CO₂ reduction on Cu. Energy 426 15.6 165 and Environmental Science, 2018, 11, 2935-2944. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products. Journal of the 427 6.6 170 American Chemical Society, 2018, 140, 9337-9340. Electrochemical Behavior of Single CuO Nanoparticles: Implications for the Assessment of their 428 5.230 Environmental Fate. Small, 2018, 14, e1801765. Sulfide-Derived Copper for Electrochemical Conversion of CO₂ to Formic Acid. Journal 429 of Physical Chemistry Letters, 2018, 9, 4407-4412. Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catalysis, 2018, 8, 430 5.5 305 7445-7454. New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO₂ reduction. Journal of Materials Chemistry A, 2018, 6, 14043-14057. 5.2 118 In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical 432 8.8 136 CO₂ Conversion. ACS Energy Letters, 2018, 3, 1301-1306. A Review of Metal―and Metalâ€Oxideâ€Based Heterogeneous Catalysts for Electroreduction of Carbon 2.7 44 Dioxide. Advanced Sustainable Systems, 2018, 2, 1800028. Characterizing Electrocatalysts with Scanning Electrochemical Microscopy. Industrial & amp; 434 1.8 21 Engineering Chemistry Research, 2018, 57, 7431-7440. High-rate electroreduction of carbon monoxide to multi-carbon products. Nature Catalysis, 2018, 1, 16.1 748-755. Selective Electrochemical Reduction of CO₂ to CO on Zn-Based Foams Produced by Cu²⁺ and Template-Assisted Electrodeposition. ACS Applied Materials & amp; Interfaces, 436 4.065 2018, 10, 31355-31365. Surface Morphology Engineering of Copper Electrodes toward Enhanced CO₂ Electrochemical Reduction Reaction. Chemistry Letters, 2018, 47, 1165-1168. Competition between H and CO for Active Sites Governs Copperâ€Mediated Electrosynthesis of 438 1.6 22 Hydrocarbon Fuels. Angewandte Chemie, 2018, 130, 10378-10382. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nature Communications, 2018, 9, 3117. 5.8 Operando Raman Spectroscopy: Studies on the Reactivity and Stability of SnO2 Nanoparticles During 440 3 Electrochemical CO2 Reduction Reaction., 2018, , 217-226. Effect of Annealing Treatment on Electrocatalytic Properties of Copper Electrodes toward Enhanced 441 CO₂ Reduction. ChemistrySelect, 2018, 3, 9046-9055. Electrocatalytic reduction of CO₂to produce higher alcohols. Sustainable Energy and 442 2.541 Fuels, 2018, 2, 2532-2541. Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with 443 modified carbon supports. Electrochimica Acta, 2018, 281, 684-691.

#	Article	IF	CITATIONS
444	Role of Subsurface Oxygen on Cu Surfaces for CO ₂ Electrochemical Reduction. Journal of Physical Chemistry C, 2018, 122, 16209-16215.	1.5	68
445	Electrochemically mediated CO2 reduction for bio-methane production: a review. Reviews in Environmental Science and Biotechnology, 2018, 17, 531-551.	3.9	29
446	Electrochemical CO2 reduction to formate on Tin cathode: Influence of anode materials. Journal of CO2 Utilization, 2018, 26, 408-414.	3.3	21
447	Competition between H and CO for Active Sites Governs Copperâ€Mediated Electrosynthesis of Hydrocarbon Fuels. Angewandte Chemie - International Edition, 2018, 57, 10221-10225.	7.2	119
448	3D Heterostructured Copper Electrode for Conversion of Carbon Dioxide to Alcohols at Low Overpotentials. Advanced Sustainable Systems, 2019, 3, 1800064.	2.7	37
449	Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chinese Chemical Letters, 2019, 30, 314-318.	4.8	39
450	Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 20478-20493.	5.2	30
451	Metal–Organic-Frameworks-Derived Cu/Cu ₂ O Catalyst with Ultrahigh Current Density for Continuous-Flow CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15739-15746.	3.2	39
452	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie, 2019, 131, 15178-15182.	1.6	33
453	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 15036-15040.	7.2	150
454	Carbonaceous materials for efficient electrocatalysis. , 2019, , 375-394.		2
455	Theoretical insights into selective electrochemical conversion of carbon dioxide. Nano Convergence, 2019, 6, 8.	6.3	22
456	Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2019, 259, 118096.	10.8	35
457	Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nature Chemistry, 2019, 11, 846-851.	6.6	223
458	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO 2. Angewandte Chemie, 2019, 131, 14238-14241.	1.6	20
459	Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO ₂ Reduction into Ethylene. Journal of Physical Chemistry Letters, 2019, 10, 4259-4265.	2.1	52
460	Role of H ₂ 0 in CO ₂ Electrochemical Reduction As Studied in a Water-in-Salt System. ACS Central Science, 2019, 5, 1461-1467.	5.3	46
461	Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review. Journal of Energy Chemistry, 2019, 36, 95-105.	7.1	91

#	Article	IF	CITATIONS
462	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 14100-14103.	7.2	85
463	Two-Stage Tunneling-Dominated Electrodeposition for Large-Scale Production of Ultralong Wavy Metal Microstructures on Native Oxide Layer-Passivated Si Electrode with Specific Surface Configuration. Journal of Physical Chemistry C, 2019, 123, 16326-16331.	1.5	0
464	Early Stages of Electrochemical Oxidation of Cu(111) and Polycrystalline Cu Surfaces Revealed by <i>in Situ</i> Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 12192-12196.	6.6	135
465	Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO ₂ . Inorganic Chemistry Frontiers, 2019, 6, 3363-3380.	3.0	29
466	Evaluation of the Electrochemically Active Surface Area of Microelectrodes by Capacitive and Faradaic Currents. ChemElectroChem, 2019, 6, 4411-4417.	1.7	15
467	Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nature Communications, 2019, 10, 3340.	5.8	150
468	Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels. Journal of Materials Chemistry A, 2019, 7, 19280-19289.	5.2	12
469	Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 14160-14167.	6.6	42
470	Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. Journal of CO2 Utilization, 2019, 33, 452-460.	3.3	66
471	Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renewable and Sustainable Energy Reviews, 2019, 114, 109300.	8.2	197
472	Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation. Nano Letters, 2019, 19, 6363-6369.	4.5	19
473	Probing CO ₂ Conversion Chemistry on Nanostructured Surfaces with Operando Vibrational Spectroscopy. Nano Letters, 2019, 19, 4817-4826.	4.5	86
474	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	11.7	106
475	Self-Selective Catalyst Synthesis for CO2 Reduction. Joule, 2019, 3, 1927-1936.	11.7	63
476	Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2, 648-658.	16.1	838
477	Regulating C–C coupling in thermocatalytic and electrocatalytic CO _x conversion based on surface science. Chemical Science, 2019, 10, 7310-7326.	3.7	34
478	Photo/electrocatalytic hydrogen exploitation for CO2 reduction toward solar fuels production. , 2019, , 365-418.		6
479	How cations determine the interfacial potential profile: Relevance for the CO2 reduction reaction. Electrochimica Acta, 2019, 327, 135055.	2.6	44

#	Article	IF	CITATIONS
480	Electroreduction of CO ₂ on Single‣ite Copperâ€Nitrogenâ€Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angewandte Chemie, 2019, 131, 15242-15247.	1.6	43
481	Cu ₃ N Nanocubes for Selective Electrochemical Reduction of CO ₂ to Ethylene. Nano Letters, 2019, 19, 8658-8663.	4.5	173
482	Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles. Nanomaterials, 2019, 9, 1445.	1.9	14
483	Trace anodic migration of iridium and titanium ions and subsequent cathodic selectivity degradation in acid electrolysis systems. Materials Today Energy, 2019, 14, 100352.	2.5	8
484	Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Experimental Dermatology, 2019, 28, 1289-1297.	1.4	15
485	Electrolyte Effects on the Electrochemical Reduction of CO ₂ . ChemPhysChem, 2019, 20, 2926-2935.	1.0	151
486	Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1657-1676.	1.9	14
487	Electroreduction of CO ₂ on Singleâ€Site Copperâ€Nitrogenâ€Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 15098-15103.	7.2	369
488	Surface Oxide-Derived Nanoporous Gold Catalysts for Electrochemical CO ₂ -to-CO Reduction. ACS Applied Energy Materials, 2019, 2, 7717-7721.	2.5	26
489	Inâ€Situ Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO ₂ : Theory, Practice and Challenges. ChemPhysChem, 2019, 20, 2904-2925.	1.0	66
490	Vertical Silver@Silver Chloride Core–Shell Nanowire Array for Carbon Dioxide Electroreduction. ACS Applied Energy Materials, 2019, 2, 6163-6169.	2.5	20
491	Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules. Journal of the American Chemical Society, 2019, 141, 14093-14097.	6.6	139
492	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
493	Enhancing C–C bond formation by surface strain: a computational investigation for C2 and C3 intermediate formation on strained Cu surfaces. Physical Chemistry Chemical Physics, 2019, 21, 22704-22710.	1.3	17
494	Self-supported copper-based gas diffusion electrodes for CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2019, 7, 26285-26292.	5.2	55
495	An MOF-derived copper@nitrogen-doped carbon composite: the synergistic effects of N-types and copper on selective CO ₂ electroreduction. Catalysis Science and Technology, 2019, 9, 5668-5675.	2.1	57
496	Selective electrochemical reduction of CO ₂ to CO on CuO/In ₂ O ₃ nanocomposites: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 5339-5349.	2.1	25
497	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785.	19.8	458

#	Article	IF	CITATIONS
498	Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4, 732-745.	19.8	1,506
499	Photonic Curing: Activation and Stabilization of Metal Membrane Catalysts (MMCs) for the Electrochemical Reduction of CO2. ACS Catalysis, 2019, 9, 9518-9529.	5.5	9
500	Ensemble Effect in Bimetallic Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16635-16642.	6.6	238
501	Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. ACS Energy Letters, 2019, 4, 2458-2465.	8.8	39
502	Understanding the Impact of <i>N</i> -Arylpyridinium lons on the Selectivity of CO ₂ Reduction at the Cu/Electrolyte Interface. Journal of Physical Chemistry C, 2019, 123, 24453-24460.	1.5	39
503	Metal nanoparticles as effective promotors for Maize production. Scientific Reports, 2019, 9, 13925.	1.6	15
504	A Hybrid Catalyst-Bonded Membrane Device for Electrochemical Carbon Monoxide Reduction at Different Relative Humidities. ACS Sustainable Chemistry and Engineering, 2019, 7, 16964-16970.	3.2	14
505	Photoelectrochemical CO ₂ reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO ₂ /Au photocathodes with low onset potentials. Energy and Environmental Science, 2019, 12, 923-928.	15.6	114
506	Electrochemical Carbon Dioxide Splitting. ChemElectroChem, 2019, 6, 1587-1604.	1.7	22
507	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	6.6	571
508	From CO ₂ methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 2019, 48, 205-259.	18.7	205
509	Theoretical insight into the electrocatalytic reduction of CO ₂ with different metal ratios and reaction mechanisms on palladium–copper alloys. Dalton Transactions, 2019, 48, 1504-1515.	1.6	12
510	Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discussions, 2019, 215, 282-296.	1.6	56
511	Size Distribution Control of Copper Nanoparticles and Oxides: Effect of Wet-Chemical Redox Cycling. Inorganic Chemistry, 2019, 58, 2533-2542.	1.9	8
512	An overview of the concept and technology of ubiquitous energy. Applied Energy, 2019, 238, 284-302.	5.1	81
513	Cu-Based Single-Atom Catalysts Boost Electroreduction of CO ₂ to CH ₃ OH: First-Principles Predictions. Journal of Physical Chemistry C, 2019, 123, 4380-4387.	1.5	68
514	Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A, 2019, 7, 3492-3515.	5.2	252
515	Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 257-268.	5.2	70

#	Article	IF	CITATIONS
516	Progress and Perspectives of Electrochemical CO ₂ Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 2019, 119, 7610-7672.	23.0	2,708
517	Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. Journal of Colloid and Interface Science, 2019, 552, 426-431.	5.0	53
518	Highâ€Throughput Growth of Microscale Gold Bicrystals for Singleâ€Grainâ€Boundary Studies. Advanced Materials, 2019, 31, 1902189.	11.1	6
519	Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A, 2019, 7, 16622-16642.	5.2	59
520	Unraveling Mechanistic Reaction Pathways of the Electrochemical CO ₂ Reduction on Fe–N–C Single-Site Catalysts. ACS Energy Letters, 2019, 4, 1663-1671.	8.8	138
521	Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis, 2019, 2, 702-708.	16.1	170
522	Identifying Active Sites for CO ₂ Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations. Journal of the American Chemical Society, 2019, 141, 11651-11657.	6.6	107
523	Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts. Trends in Chemistry, 2019, 1, 739-750.	4.4	80
524	Paramelaconiteâ€Enriched Copperâ€Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2019, 9, 1901228.	10.2	55
525	Structureâ€ S ensitivity and Electrolyte Effects in CO ₂ Electroreduction: From Model Studies to Applications. ChemCatChem, 2019, 11, 3626-3645.	1.8	61
526	Synthesis and Characterization of Degradationâ€Resistant Cu@CuPd Nanowire Catalysts for the Efficient Production of Formate and CO from CO 2. ChemElectroChem, 2019, 6, 3189-3198.	1.7	15
527	Porous Palladium Nanomeshes with Enhanced Electrochemical CO ₂ â€intoâ€Syngas Conversion over a Wider Applied Potential. ChemSusChem, 2019, 12, 3304-3311.	3.6	12
528	Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C–C Coupled Products. ACS Applied Energy Materials, 2019, 2, 4551-4559.	2.5	64
529	Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO ₂ Reduction. ACS Catalysis, 2019, 9, 6305-6319.	5.5	109
530	Activity–or Lack Thereof–of RuO ₂ -Based Electrodes in the Electrocatalytic Reduction of CO ₂ . Journal of Physical Chemistry C, 2019, 123, 17765-17773.	1.5	13
531	Cu nanowire-catalyzed electrochemical reduction of CO or CO ₂ . Nanoscale, 2019, 11, 12075-12079.	2.8	43
532	Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149.	3.1	13
533	Metal Nanowire Felt as a Flow-Through Electrode for High-Productivity Electrochemistry. ACS Nano, 2019, 13, 6998-7009.	7.3	30

#	Article	IF	CITATIONS
534	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	11.1	769
535	The Effect of Pulse Electrodeposition of Bismuth on Electrochemical Reduction of Carbon Dioxide to Formate. Electronic Materials Letters, 2019, 15, 454-461.	1.0	7
536	Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics, 2019, 21, 12485-12493.	1.3	18
537	Converting two wastes to value. Nature Energy, 2019, 4, 440-441.	19.8	8
538	Electrooxidation of saturated C1-C3 primary alcohols on platinum: Potential-resolved product analysis with electrochemical real-time mass spectrometry (EC-RTMS). Electrochimica Acta, 2019, 315, 67-74.	2.6	6
539	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie - International Edition, 2019, 58, 9459-9463.	7.2	139
540	Effectively Increased Efficiency for Electroreduction of Carbon Monoxide Using Supported Polycrystalline Copper Powder Electrocatalysts. ACS Catalysis, 2019, 9, 4709-4718.	5.5	91
541	Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proceedings of the United States of America, 2019, 116, 9220-9229.	3.3	121
542	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie, 2019, 131, 9559-9563.	1.6	23
543	Graphite-Conjugated Acids Reveal a Molecular Framework for Proton-Coupled Electron Transfer at Electrode Surfaces. ACS Central Science, 2019, 5, 831-841.	5.3	41
544	Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy, 2019, 61, 428-434.	8.2	106
545	Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 5217-5222.	5.5	105
546	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	6.6	711
547	What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364, .	6.0	1,505
548	Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO ₂ Reduction via Robust, Nobleâ€Metalâ€Free Zn Nanosheets with Favorable Adsorption Energy. Advanced Energy Materials, 2019, 9, 1900276.	10.2	95
549	Recent advances in different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and Interface Science, 2019, 550, 17-47.	5.0	26
550	Electrochemical Realâ€Time Mass Spectrometry (ECâ€RTMS): Monitoring Electrochemical Reaction Products in Real Time. Angewandte Chemie, 2019, 131, 7351-7355.	1.6	19
551	Interface and heterostructure design in polyelemental nanoparticles. Science, 2019, 363, 959-964.	6.0	171

#	Article	IF	CITATIONS
552	Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO _{<i>x</i>} /AgO _{<i>x</i>} Catalysts during CO ₂ Electroreduction. Journal of the American Chemical Society, 2019, 141, 5261-5266.	6.6	102
553	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research, 2019, 12, 1167-1172.	5.8	41
554	Low-overpotential selective reduction of CO2 to ethanol on electrodeposited Cu Au nanowire arrays. Journal of Energy Chemistry, 2019, 37, 176-182.	7.1	66
555	Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. Electrochimica Acta, 2019, 307, 164-175.	2.6	58
556	Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7718-7722.	3.3	70
557	Electrochemical Realâ€Time Mass Spectrometry (ECâ€RTMS): Monitoring Electrochemical Reaction Products in Real Time. Angewandte Chemie - International Edition, 2019, 58, 7273-7277.	7.2	50
558	Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis, 2019, 2, 423-430.	16.1	368
559	Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. Journal of CO2 Utilization, 2019, 32, 1-10.	3.3	62
560	Plasma jet based <i>in situ</i> reduction of copper oxide in direct write printing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	14
561	Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system. Nano Energy, 2019, 60, 827-835.	8.2	126
562	Defect engineering in earth-abundant electrocatalysts for CO ₂ and N ₂ reduction. Energy and Environmental Science, 2019, 12, 1730-1750.	15.6	439
563	Electrocatalysis at Organic–Metal Interfaces: Identification of Structure–Reactivity Relationships for CO ₂ Reduction at Modified Cu Surfaces. Journal of the American Chemical Society, 2019, 141, 7355-7364.	6.6	133
564	Strain Engineering Electrocatalysts for Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 980-986.	8.8	115
565	A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Science Bulletin, 2019, 64, 1890-1895.	4.3	61
566	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
567	CO ₂ Electrochemical Reduction As Probed through Infrared Spectroscopy. ACS Energy Letters, 2019, 4, 682-689.	8.8	250
568	Cu(<scp>ii</scp>)-nanoparticle-derived structures under CO ₂ reduction conditions: a matter of shape. Physical Chemistry Chemical Physics, 2019, 21, 5894-5897.	1.3	7
569	Recent Progress of Carbon Dioxide Conversion into Renewable Fuels and Chemicals Using Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 271-293.	0.3	4

#	Article	IF	CITATIONS
570	Directly synthesized silver nanoparticles on gas diffusion layers by electrospray pyrolysis for electrochemical CO2 reduction. Electrochimica Acta, 2019, 303, 118-124.	2.6	21
571	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
572	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	16.1	188
573	Tunable Ag Micromorphologies Show High Activities for Electrochemical H ₂ Evolution and CO ₂ Electrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 6352-6359.	3.2	18
574	Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Sn <i>^{l´}</i> ⁺ Sites. Advanced Materials, 2019, 31, e1808135.	11.1	321
575	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	5.8	446
576	SDSâ€modified Nanoporous Silver as an Efficient Electrocatalyst for Selectively Converting CO 2 to CO in Aqueous Solution. Chinese Journal of Chemistry, 2019, 37, 337-341.	2.6	12
577	Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomaterials Science and Engineering, 2019, 5, 1170-1188.	2.6	253
578	Size-dependent magnetism of patterned MoTe ₂ monolayer. Materials Research Express, 2019, 6, 126115.	0.8	2
579	BMIM–BF ₄ Mediated Electrochemical CO ₂ Reduction to CO Is a Reverse Reaction of CO Oxidation in Air—Experimental Evidence. Journal of Physical Chemistry C, 2019, 123, 30198-30212.	1.5	5
580	Understanding electro-catalysis by using density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 23782-23802.	1.3	53
581	Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO ₂ reduction. Green Chemistry, 2019, 21, 6056-6061.	4.6	33
582	Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO ₂ to formate. Journal of Materials Chemistry A, 2019, 7, 27514-27521.	5.2	73
583	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
584	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	19.8	349
585	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	16.1	214
586	Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nature Catalysis, 2019, 2, 1062-1070.	16.1	260
587	Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuO _{<i>x</i>} on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science, 2019, 5, 1998-2009.	5.3	74

#	Article	IF	CITATIONS
588	Understanding the Electrochemical Reduction of Carbon Dioxide at Copper Surfaces. ACS Symposium Series, 2019, , 209-223.	0.5	1
589	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	18.7	607
590	Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochimica Acta, 2019, 298, 580-586.	2.6	98
591	Theoretical Insights into Heterogeneous (Photo)electrochemical CO ₂ Reduction. Chemical Reviews, 2019, 119, 6631-6669.	23.0	431
592	Modification of CO ₂ Reduction Activity of Nanostructured Silver Electrocatalysts by Surface Halide Anions. ACS Applied Energy Materials, 2019, 2, 102-109.	2.5	46
594	Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nature Catalysis, 2019, 2, 86-93.	16.1	212
595	Facile Synthesis of Nanostructural Highâ€Performance Cu–Pb Electrocatalysts for CO ₂ Reduction. Advanced Materials Interfaces, 2019, 6, 1801200.	1.9	18
596	CO Electroreduction: Current Development and Understanding of Cu-Based Catalysts. ACS Catalysis, 2019, 9, 49-65.	5.5	79
597	Replicating the Defect Structures on Ultrathin Rh Nanowires with Pt to Achieve Superior Electrocatalytic Activity toward Ethanol Oxidation. Advanced Functional Materials, 2019, 29, 1806300.	7.8	97
598	Catalyst Preoxidation and EDTA Electrolyte Additive Remedy Activity and Selectivity Declines During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2019, 123, 2165-2174.	1.5	30
599	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350
600	Electrochemical CO Reduction: A Property of the Electrochemical Interface. Journal of the American Chemical Society, 2019, 141, 1506-1514.	6.6	121
601	Colloidal nanocrystals for heterogeneous catalysis. Nano Today, 2019, 24, 15-47.	6.2	98
602	Silver/Copper Interface for Relay Electroreduction of Carbon Dioxide to Ethylene. ACS Applied Materials & amp; Interfaces, 2019, 11, 2763-2767.	4.0	77
603	Self-assembling of formic acid on the partially oxidizedp(2 × 1) Cu(110) surface reconstruction at low coverages. Journal of Chemical Physics, 2019, 150, 041720.	1.2	3
604	Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion. Joule, 2019, 3, 240-256.	11.7	218
605	Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation. Journal of Physical Chemistry C, 2019, 123, 8112-8121.	1.5	30
606	Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. Bioresource Technology, 2019, 272, 300-307.	4.8	34

ARTICLE IF CITATIONS Operando Spectroscopic Investigations of Copper and Oxide-Derived Copper Catalysts for 607 5.5 80 Electrochemical CO Reduction. ACS Catalysis, 2019, 9, 474-478. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low 608 11.1 134 Overpotentials. Advanced Materials, 2019, 31, e1805405. Metal-Free Boron Nitride Nanoribbon Catalysts for Electrochemical CO₂ Reduction: 609 4.0 66 Combining High Activity and Selectivity. ACS Applied Materials & amp; Interfaces, 2019, 11, 906-915. pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation. Organometallics, 2019, 38, 1286-1291. Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 611 3.1 89 reduction in organic solvents. Applied Surface Science, 2019, 465, 607-613. Enhanced CO2 photoconversion activity of TiO2 via double effect of CoPi as hole traps and high CO2 capture. Catalysis Today, 2020, 340, 204-208. 2.2 Electro-reduction of CO2 onto ZnO–Cu nano composite catalyst. Applied Nanoscience (Switzerland), 613 1.6 4 2020, 10, 159-163. Wafer-scale Si nanoconed arrays induced syngas in the photoelectrochemical CO2 reduction. 614 Catalysis Today, 2020, 339, 321-327. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and 615 10.8 107 low overpotential. Applied Catalysis B: Environmental, 2020, 260, 118134. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis. Applied Catalysis B: 10.8 Environmental, 2020, 261, 118228. Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249. 617 23.0 492 Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2. Applied Surface Science, 2020, 618 3.1 499, 143964. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation 619 towards electrochemical conversion of CO2 to HCOOH. Applied Catalysis B: Environmental, 2020, 261, 10.8 97 118243. Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte 1.6 Chemie, 2020, 132, 160-166. Rational Design of Agâ€Based Catalysts for the Electrochemical CO₂ Reduction to CO: A 621 106 3.6 Review. ChemSusChem, 2020, 13, 39-58. Photocatalytic CO2 reduction over platinum modified hexagonal tungsten oxide: Effects of platinum 38 on forward and back reactions. Applied Catalysis B: Environmental, 2020, 263, 118331. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. 623 3.9 45 Nano Materials Science, 2020, 2, 235-247. Controlled Synthesis of a Vacancyâ€Defect Singleâ€Atom Catalyst for Boosting CO₂ 624 1.6

CITATION REPORT

Electroreduction. Angewandte Chemie, 2020, 132, 1977-1981.

#	Article	IF	CITATIONS
" 625	Controlled Synthesis of a Vacancyâ€Defect Singleâ€Atom Catalyst for Boosting CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 1961-1965.	7.2	255
626	Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte Chemie - International Edition, 2020, 59, 154-160.	7.2	68
627	Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 2020, 10, 1902107.	10.2	76
628	Electrochemical reduction of CO ₂ : Two―or threeâ€electrode configuration. International Journal of Energy Research, 2020, 44, 548-559.	2.2	13
629	Assessing contaminants from ion-exchange membranes in the evaluation of aqueous electrochemical carbon dioxide reduction. Journal of CO2 Utilization, 2020, 35, e298-e302.	3.3	5
630	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie - International Edition, 2020, 59, 798-803.	7.2	315
631	Looking Back and Looking Ahead in Electrochemical Reduction of CO ₂ . Chemical Record, 2020, 20, 89-101.	2.9	9
632	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie, 2020, 132, 808-813.	1.6	33
633	Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region. Electrochimica Acta, 2020, 334, 135583.	2.6	21
634	Bifunctional Nickel–Nitrogen-Doped-Carbon-Supported Copper Electrocatalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2020, 124, 1369-1381.	1.5	23
635	Selective electrochemical CO ₂ conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chemistry, 2020, 22, 71-84.	4.6	66
636	Atomically dispersed asymmetric Cu–B pair on 2D carbon nitride synergistically boosts the conversion of CO into C ₂ products. Journal of Materials Chemistry A, 2020, 8, 599-606.	5.2	58
637	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	6.2	52
638	Mechanistic Understanding of CO ₂ Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. ACS Catalysis, 2020, 10, 1754-1768.	5.5	309
639	New aspects of C2 selectivity in electrochemical CO ₂ reduction over oxide-derived copper. Physical Chemistry Chemical Physics, 2020, 22, 2046-2053.	1.3	35
640	Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO ₂ utilization. Energy and Environmental Science, 2020, 13, 472-494.	15.6	290
641	Bifunctional nickel and copper electrocatalysts for CO ₂ reduction and the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 1741-1748.	5.2	17
642	<pre><mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:mi><mml:mi mathvariant="normal">u</mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi>l`</mml:mi></mml:mrow></mml:msup></mml:math></pre>	ml <mark>an</mark> row>	<b മന്നി:msup

#	Article	IF	CITATIONS
644	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
645	Electrochemical Reduction of CO ₂ to Methane on Platinum Catalysts without Overpotentials: Strategies for Improving Conversion Efficiency. ACS Applied Energy Materials, 2020, 3, 1119-1127.	2.5	55
646	Bi o u Metal Oxide Foam as Significant Electrocatalyst for Methanol Electrooxidation. ChemistrySelect, 2020, 5, 306-311.	0.7	16
647	Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology, 2020, 15, 131-137.	15.6	169
648	Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction. Journal of Energy Chemistry, 2020, 48, 169-180.	7.1	49
649	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	8.2	58
650	Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO ₂ Electrocatalysis. ACS Catalysis, 2020, 10, 1086-1093.	5.5	101
651	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	13.3	175
652	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
653	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
654	Realâ€Time Atomicâ€Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angewandte Chemie - International Edition, 2020, 59, 2505-2509.	7.2	24
655	Realâ€Time Atomicâ€Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angewandte Chemie, 2020, 132, 2526-2530.	1.6	11
656	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	13.3	237
657	Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. Journal of CO2 Utilization, 2020, 36, 263-275.	3.3	48
658	Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Applied Catalysis B: Environmental, 2020, 264, 118502.	10.8	47
659	Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy, 2020, 68, 104331.	8.2	102
660	Effective Descriptor for Designing High-Performance Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 23134-23142.	1.5	20
661	The effect of flue gas contaminants on the CO2 electroreduction to formic acid. Journal of CO2 Utilization, 2020, 42, 101315.	3.3	29

ARTICLE IF CITATIONS Modification of copper electrode with copper nanoparticles@ reduced graphene oxideâ€"Nile blue and 662 2.5 11 its application in electrochemical CO2 conversion. Materials Today Energy, 2020, 18, 100507. Computational Identification of a New Adsorption Site of CO₂ on the Ag (211) Surface. ChemistrySelect, 2020, 5, 11503-11509. Metal-based nanomaterials for efficient CO2 electroreduction: Recent advances in mechanism, 664 8.2 42 material design and selectivity. Nano Energy, 2020, 78, 105311. Comparison of carbon sequestration efficacy between artificial photosynthetic carbon dioxide conversion and timberland reforestation. MRS Energy & Sustainability, 2020, 7, 1. CuO/ZnO/C electrocatalysts for CO2-to-C2+ products conversion with high yield: On the effect of 666 2.2 34 geometric structure and composition. Applied Catalysis A: General, 2020, 606, 117829. Molten Salt Treated Cu Foam Catalyst for Selective Electrochemical CO 2 Reduction Reaction. ChemistrySelect, 2020, 5, 11927-11933. Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. 668 2.2 19 Chemical Communications, 2020, 56, 13261-13272. Visible/infrared light-driven high-efficiency CO₂ conversion into ethane based on a B–Co 5.2 24 synergistic catalyst. Journal of Materials Ćhemistry A, 2020, 8, 22327-22334. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state 670 5.8 294 reactor. Nature Communications, 2020, 11, 3633. Anodic SnO₂ porous nanostructures with rich grain boundaries for efficient 671 1.7 CO₂ electroreduction to formate. RSC Advances, 2020, 10, 22828-22835. Highly Electrocatalytic Ethylene Production from CO₂ on Nanodefective Cu Nanosheets. 672 260 6.6 Journal of the American Chemical Society, 2020, 142, 13606-13613. Electrochemical Fabrication and Reactivation of Nanoporous Gold with Abundant Surface Steps for 5.5 CO₂ Reduction. ACS Catalysis, 2020, 10, 8860-8869. Copper tetrazolate based metalâ€organic frameworks as highly efficient catalysts for artificially 674 1.9 17 chemical and electrochemical CO₂ conversion. Nano Select, 2020, 1, 311-319. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly 5.8 242 selective CO2 reduction. Nature Communications, 2020, 11, 3525. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of 676 1.7 14 Cu-based materials. Sustainable Materials and Technologies, 2020, 25, e00200. Synergistic effects of heteroatom-decorated MXene catalysts for CO reduction reactions. Nanoscale, 2020, 12, 15880-15887. 678 Photo-driven Fischerâ€"Tropsch synthesis. Journal of Materials Chemistry A, 2020, 8, 24253-24266. 5.221 Cation Effect on Interfacial CO₂ Concentration in the Electrochemical CO₂ 679 Reduction Reaction. ACS Catalysis, 2020, 10, 14871-14876.

#	Article	IF	Citations
680	Electrochemical CO ₂ reduction over nanoparticles derived from an oxidized Cu–Ni intermetallic alloy. Chemical Communications, 2020, 56, 15008-15011.	2.2	10
681	pH Dependence of Cu Surface Speciation in the Electrochemical CO Reduction Reaction. ACS Catalysis, 2020, 10, 13737-13747.	5.5	57
682	Recent Advances in the Catalyst Design and Mass Transport Control for the Electrochemical Reduction of Carbon Dioxide to Formate. Catalysts, 2020, 10, 859.	1.6	29
683	Loading Copper Atoms on Graphdiyne for Highly Efficient Hydrogen Production. ChemPhysChem, 2020, 21, 2145-2149.	1.0	40
684	Catalytic oxidation of CO using a silicon-coordinated carbon nitride fullerene. Molecular Physics, 2020, 118, .	0.8	10
685	Highly Selective Electrocatalytic Reduction of CO ₂ into Methane on Cu–Bi Nanoalloys. Journal of Physical Chemistry Letters, 2020, 11, 7261-7266.	2.1	37
686	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	5.8	72
687	Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nature Communications, 2020, 11, 3844.	5.8	102
688	Electrochemical Overhauser dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2020, 22, 17769-17776.	1.3	7
689	Controllably Engineering Mesoporous Surface and Dimensionality of SnO ₂ toward Highâ€Performance CO ₂ Electroreduction. Advanced Functional Materials, 2020, 30, 2002092.	7.8	76
690	Role of ion-selective membranes in the carbon balance for CO ₂ electroreduction <i>via</i> gas diffusion electrode reactor designs. Chemical Science, 2020, 11, 8854-8861.	3.7	84
691	Double atom-anchored Defective Boron Nitride catalyst for efficient electroreduction of CO2 to CH4: A first principles study. Chemical Physics Letters, 2020, 756, 137852.	1.2	25
692	Magnetic relaxation process determination in the Co/Au nanoparticle system. Physical Review B, 2020, 102, .	1.1	2
693	Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts. Applied Energy, 2020, 277, 115557.	5.1	104
694	Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO ₂ photoreduction. Chemical Society Reviews, 2020, 49, 6592-6604.	18.7	220
695	Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13227-13235.	5.5	94
696	Highly Selective Hydrogenation of CO ₂ to Ethanol via Designed Bifunctional Ir ₁ –In ₂ O ₃ Single-Atom Catalyst. Journal of the American Chemical Society, 2020, 142, 19001-19005.	6.6	158
697	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	5.8	62

#	Article	IF	CITATIONS
698	<i>In situ</i> X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 19079-19112.	5.2	98
699	Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO ₂ Reduction. ACS Energy Letters, 2020, 5, 3176-3184.	8.8	71
700	N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Science China Materials, 2020, 63, 2606-2612.	3.5	24
701	Promoting C ₂₊ Production from Electrochemical CO ₂ Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15223-15229.	3.2	51
702	Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO ₂ . Materials Advances, 2020, 1, 2286-2292.	2.6	4
703	Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts. Journal of Molecular Modeling, 2020, 26, 267.	0.8	4
704	Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nature Catalysis, 2020, 3, 804-812.	16.1	298
705	Selective <i>n</i> -propanol formation from CO ₂ over degradation-resistant activated PdCu alloy foam electrocatalysts. Green Chemistry, 2020, 22, 6497-6509.	4.6	43
706	Surface-Adsorbed CO as an Infrared Probe of Electrocatalytic Interfaces. ACS Catalysis, 2020, 10, 11700-11711.	5.5	49
707	On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO ₂ . ACS Catalysis, 2020, 10, 11510-11518.	5.5	39
708	Elucidating the Structure of Ethanol-Producing Active Sites at Oxide-Derived Cu Electrocatalysts. ACS Catalysis, 2020, 10, 10488-10494.	5.5	35
709	In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Advanced Materials, 2020, 32, e2002382.	11.1	56
710	Anisotropic Cathodic Corrosion of Gold Electrodes in the Absence and Presence of Carbon Monoxide. Journal of Physical Chemistry C, 2020, 124, 28539-28554.	1.5	9
711	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	6.6	133
712	Photo-electrochemical CO ₂ reduction at CuInS ₂ thin-film cathodes modified with CuIn alloy particles derived from Cu ₂ O particles. Composite Interfaces, 2021, 28, 1053-1066.	1.3	3
713	Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst. Science China Chemistry, 2020, 63, 1727-1733.	4.2	49
714	Synthesis of nitrogen-doped porous carbon by solid grinding for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 21478-21485.	1.1	1
715	Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3, 478-487.	16.1	788

#	Article	IF	CITATIONS
716	A reconstructed porous copper surface promotes selectivity and efficiency toward C ₂ products by electrocatalytic CO ₂ reduction. Chemical Science, 2020, 11, 10698-10704.	3.7	55
717	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	13.7	807
718	Electrodeposited CuAgHg Multimetallic Thin Films for Improved CO ₂ Conversion: the Dramatic Impact of Hg Incorporation on Product Selectivity. ACS Applied Energy Materials, 2020, 3, 6670-6677.	2.5	17
719	Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Materials Today Advances, 2020, 7, 100074.	2.5	95
720	Actinyl-Modified g-C ₃ N ₄ as CO ₂ Activation Materials for Chemical Conversion and Environmental Remedy via an Artificial Photosynthetic Route. Inorganic Chemistry, 2020, 59, 8369-8379.	1.9	8
721	Insights into Liquid Product Formation during Carbon Dioxide Reduction on Copper and Oxide-Derived Copper from Quantitative Real-Time Measurements. ACS Catalysis, 2020, 10, 6735-6740.	5.5	36
722	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	15.6	251
723	Tuning nanocavities of Au@Cu ₂ O yolk–shell nanoparticles for highly selective electroreduction of CO ₂ to ethanol at low potential. RSC Advances, 2020, 10, 19192-19198.	1.7	33
724	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	5.2	25
725	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	5.2	38
726	Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418, 213372.	9.5	41
727	Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays. Journal of Physics and Chemistry of Solids, 2020, 144, 109507.	1.9	11
728	Electrochemical CO ₂ -to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A, 2020, 8, 15458-15478.	5.2	118
729	Modeling the Performance of A Flow-Through Gas Diffusion Electrode for Electrochemical Reduction of CO or CO ₂ . Journal of the Electrochemical Society, 2020, 167, 114503.	1.3	28
730	Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000588.	10.2	53
731	Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chinese Chemical Letters, 2020, 31, 1415-1421.	4.8	51
732	Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO ₂ Reduction toward Methane. Journal of the American Chemical Society, 2020, 142, 12119-12132.	6.6	200
733	Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 2020, 277, 119252.	10.8	50

#	Article	IF	CITATIONS
734	Surface and Interface Science. , 2020, , .		0
735	Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO ₂ to Formate and C1 Products. ACS Applied Materials & Interfaces, 2020, 12, 16178-16185.	4.0	41
736	Grain-Boundary-Rich Copper for Efficient Solar-Driven Electrochemical CO ₂ Reduction to Ethylene and Ethanol. Journal of the American Chemical Society, 2020, 142, 6878-6883.	6.6	270
737	Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. Journal of Colloid and Interface Science, 2020, 570, 375-381.	5.0	30
738	Highly Selective Reduction of CO ₂ to C ₂₊ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catalysis, 2020, 10, 4103-4111.	5.5	220
739	Decoration of In nanoparticles on In ₂ S ₃ nanosheets enables efficient electrochemical reduction of CO ₂ . Chemical Communications, 2020, 56, 4212-4215.	2.2	30
740	CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study. Applied Surface Science, 2020, 528, 147047.	3.1	46
741	Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arabian Journal of Chemistry, 2020, 13, 6802-6814.	2.3	123
742	Significant role of reconstructed character on CuO-derived catalyst for enhanced electrocatalytic reduction of CO2 to multicarbon products. Electrochimica Acta, 2020, 354, 136753.	2.6	21
743	Fe-decorated all-boron B40 fullerene serving as a potential promising active catalyst for CO oxidation: A DFT mechanistic approach. Polyhedron, 2020, 188, 114699.	1.0	16
744	Correlating Oxidation State and Surface Area to Activity from <i>Operando</i> Studies of Copper CO Electroreduction Catalysts in a Gas-Fed Device. ACS Catalysis, 2020, 10, 8000-8011.	5.5	37
745	CO2 electrolysis – Complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. Journal of Catalysis, 2020, 389, 592-603.	3.1	42
746	Effect of bandgap alignment on the photoreduction of CO ₂ into methane based on Cu ₂ O-decorated CuO microspheres. Nanotechnology, 2020, 31, 425402.	1.3	14
747	An overview of Cu-based heterogeneous electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 4700-4734.	5.2	150
748	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â~2} . Science, 2020, 367, 661-666.	6.0	860
749	Development of mesoporous materials from biomass ash with future applications as adsorbent materials. Microporous and Mesoporous Materials, 2020, 299, 110085.	2.2	10
750	Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nature Communications, 2020, 11, 1088.	5.8	278
751	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO ₂ Reduction Electrocatalysts. Angewandte Chemie, 2020, 132, 8339-8346.	1.6	24

#	Article	IF	CITATIONS
752	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO ₂ Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 8262-8269.	7.2	50
753	Interplay between halides in the electrolyte and the chemical states of Cu in Cu-based electrodes determines the selectivity of the C ₂ product. Sustainable Energy and Fuels, 2020, 4, 2284-2292.	2.5	9
754	High-Entropy Alloys as Catalysts for the CO ₂ and CO Reduction Reactions: Experimental Realization. ACS Catalysis, 2020, 10, 3658-3663.	5.5	244
755	Promotion of CO ₂ Electrochemical Reduction via Cu Nanodendrites. ACS Applied Materials & Interfaces, 2020, 12, 11562-11569.	4.0	54
756	Strategies in catalysts and electrolyzer design for electrochemical CO ₂ reduction toward C ₂₊ products. Science Advances, 2020, 6, eaay3111.	4.7	477
757	Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Accounts of Chemical Research, 2020, 53, 575-587.	7.6	93
758	Understanding How Atomic Sulfur Controls the Selectivity of the Electroreduction of CO ₂ to Formic Acid on Metallic Cu Surfaces. Journal of Physical Chemistry C, 2020, 124, 6145-6153.	1.5	25
759	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	6.6	236
760	Promoting heterogeneous catalysis beyond catalyst design. Chemical Science, 2020, 11, 1456-1468.	3.7	66
761	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
762	Mechanistic Insights into Electroreductive C–C Coupling between CO and Acetaldehyde into Multicarbon Products. Journal of the American Chemical Society, 2020, 142, 2975-2983.	6.6	87
763	Mn-Based Molecular Catalysts for the Electrocatalytic Disproportionation of CO ₂ into CO and CO ₃ ^{2–} . ACS Catalysis, 2020, 10, 1961-1968.	5.5	25
764	External and Internal Interface-Controlled Trimetallic PtCuNi Nanoframes with High Defect Density for Enhanced Electrooxidation of Liquid Fuels. Chemistry of Materials, 2020, 32, 1581-1594.	3.2	41
765	Cu ^I SNS triazole and imidazole pincers as electrocatalyst precursors for the production of solar fuels. Inorganic Chemistry Frontiers, 2020, 7, 1012-1015.	3.0	7
766	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	6.6	154
767	Atomic cale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide. Advanced Energy Materials, 2020, 10, 1903423.	10.2	32
768	Cu ₂ O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO ₂ Electroreduction to Ethylene. Advanced Science, 2020, 7, 1902820.	5.6	196
769	Boosting the Energy Density of Flexible Asymmetric Supercapacitor with Three Dimensional Fe2O3 Composite Brush Anode. Chemical Research in Chinese Universities, 2020, 36, 97-104.	1.3	9

#	Article	IF	CITATIONS
771	Highly efficient binary copperâ´'iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1330-1338.	3.3	93
772	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	10.2	113
773	Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12572-12575.	3.3	85
774	CO2 transformation to multicarbon products by photocatalysis and electrocatalysis. Materials Today Advances, 2020, 6, 100071.	2.5	55
775	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 11559-11566.	1.6	6
776	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11462-11469.	7.2	24
777	Investigation of Structural Evolution of SnO 2 Nanosheets towards Electrocatalytic CO 2 Reduction. Chemistry - an Asian Journal, 2020, 15, 1558-1561.	1.7	13
778	Pulsed Electrochemical Carbon Monoxide Reduction on Oxideâ€Derived Copper Catalyst. ChemSusChem, 2020, 13, 3028-3033.	3.6	20
779	A Cu ₂ B ₂ monolayer with planar hypercoordinate motifs: an efficient catalyst for CO electroreduction to ethanol. Journal of Materials Chemistry A, 2020, 8, 9607-9615.	5.2	32
780	Tandem Electrodes for Carbon Dioxide Reduction into C2+ Products at Simultaneously High Production Efficiency and Rate. Cell Reports Physical Science, 2020, 1, 100051.	2.8	60
781	Speciation of Cu Surfaces During the Electrochemical CO Reduction Reaction. Journal of the American Chemical Society, 2020, 142, 9735-9743.	6.6	123
782	Compositional and Geometrical Effects of Bimetallic Cu–Sn Catalysts on Selective Electrochemical CO ₂ Reduction to CO. ACS Applied Energy Materials, 2020, 3, 4466-4473.	2.5	44
783	Role of H 2 O for CO 2 Reduction Reactions at Platinum/Electrolyte Interfaces in Imidazolium Roomâ€Temperature Ionic Liquids. ChemElectroChem, 2020, 7, 1765-1774.	1.7	14
784	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	4.6	60
785	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO x @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO 2 Reduction System with Solarâ€ŧoâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2000116.	3.1	5
786	Electrochemically scrambled nanocrystals are catalytically active for CO ₂ -to-multicarbons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9194-9201.	3.3	99
787	Synthesis and electrochemical study of coinage metal nanodendrites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 2007-2017.	3.8	6
788	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. Applied Surface Science, 2021, 540, 148293.	3.1	33

		CITATION RE	PORT	
#	Article		IF	Citations
789	CO2 Electrolysis in Integrated Artificial Photosynthesis Systems. Chemistry Letters, 20	21, 50, 166-179.	0.7	17
790	High-entropy alloys: emerging materials for advanced functional applications. Journal c Chemistry A, 2021, 9, 663-701.	f Materials	5.2	196
791	Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects composition and surface morphology. Journal of Electroanalytical Chemistry, 2021, 88	of chemical 0, 114750.	1.9	43
792	Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Gene Electrocatalysts. Matter, 2021, 4, 195-216.	ration	5.0	29
793	Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-9	8.	3.7	13
794	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrod Alcohols. Angewandte Chemie, 2021, 133, 4929-4935.	carbons and	1.6	98
795	N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhance supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587, 780-2	ing 788.	5.0	42
796	The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: Ac challenges, and opportunities. Nano Today, 2021, 36, 101028.	lvances,	6.2	25
797	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrod Alcohols. Angewandte Chemie - International Edition, 2021, 60, 4879-4885.	carbons and	7.2	171
798	Selective CO ₂ reduction towards a single upgraded product: a minireview multi-elemental copper-free electrocatalysts. Catalysis Science and Technology, 2021,	v on 11, 416-424.	2.1	8
799	Regulating the oxidation state of nanomaterials for electrocatalytic CO ₂ Energy and Environmental Science, 2021, 14, 1121-1139.	reduction.	15.6	178
800	The role of atomic carbon in directing electrochemical CO ₍₂₎ reduction to products. Energy and Environmental Science, 2021, 14, 473-482.	multicarbon	15.6	62
801	Tunable N-doped hollow carbon spheres induced by an ionic liquid for energy storage a Materials Chemistry Frontiers, 2021, 5, 843-850.	pplications.	3.2	9
802	Carbonâ€based metalâ€free catalysts for electrochemical CO ₂ reduction and stability. , 2021, 3, 24-49.	Activity, selectivity,		60
803	Strain engineered gas-consumption electroreduction reactions: Fundamentals and per Coordination Chemistry Reviews, 2021, 429, 213649.	spectives.	9.5	6
804	Mechanism for CO2 electroreduction into C2 products at the low overpotential: Theor from an improved electrode/solution interface model. Surface Science, 2021, 705, 121	etical insights 782.	0.8	9
805	Metal chalcogenide-associated catalysts enabling CO ₂ electroreduction t low-carbon fuels for energy storage and emission reduction: catalyst structure, morpho performance, and mechanism. Journal of Materials Chemistry A, 2021, 9, 2526-2559.		5.2	26
806	Determination of the 3D Atomic Structures of Nanoparticles. Small Science, 2021, 1, 2	.000045.	5.8	12

#	Article	IF	CITATIONS
807	Catalytic conversion of C1 molecules under mild conditions. EnergyChem, 2021, 3, 100050.	10.1	42
808	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	15.6	110
809	Recent Progress of Snâ€Based Derivative Catalysts for Electrochemical Reduction of CO ₂ . Energy Technology, 2021, 9, .	1.8	42
810	Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Metals, 2021, 40, 1412-1430.	3.6	61
811	Electrochemical Reduction of CO ₂ at Coinage Metal Nanodendrites in Aqueous Ethanolamine. Chemistry - A European Journal, 2021, 27, 1346-1355.	1.7	11
812	Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564.	9.5	29
813	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	23.0	269
814	Improving CO ₂ Electroreduction Activity by Creating an Oxygen Vacancy-Rich Surface with One-Dimensional In–SnO ₂ Hollow Nanofiber Architecture. Industrial & Engineering Chemistry Research, 2021, 60, 1164-1174.	1.8	9
815	Electrochemical reduction of CO ₂ towards multi-carbon products <i>via</i> a two-step process. Reaction Chemistry and Engineering, 2021, 6, 612-628.	1.9	28
816	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
817	Vacancy-induced high activity of MoS ₂ monolayers for CO electroreduction: a computational study. Sustainable Energy and Fuels, 2021, 5, 4932-4943.	2.5	4
818	Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nature Communications, 2021, 12, 136.	5.8	288
819	A comparative study of the effects of different TiO ₂ supports toward CO ₂ electrochemical reduction on CuO/TiO ₂ electrode. RSC Advances, 2021, 11, 21805-21812.	1.7	3
820	Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nature Communications, 2021, 12, 238.	5.8	169
821	A mini-review of carbon-resistant anode materials for solid oxide fuel cells. Sustainable Energy and Fuels, 2021, 5, 5420-5430.	2.5	18
822	Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	15.6	243
823	Recent advances on enhancing the multicarbon selectivity of nanostructured Cu-based catalysts. Physical Chemistry Chemical Physics, 2021, 23, 12514-12532.	1.3	12
824	Oxide Reduction Precedes Carbon Dioxide Reduction on Oxide-Derived Copper Electrodes. Journal of Physical Chemistry C, 2021, 125, 1833-1838.	1.5	6

ATION R

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
825	Electrochemical Reduction of CO2 on Cu-Based Heterogeneous Catalysts. , 2022, , 807	'-815.		0
826	Planar defect-driven electrocatalysis of CO ₂ -to-C ₂ H _{4< conversion. Journal of Materials Chemistry A, 2021, 9, 19932-19939.}	/sub>	5.2	15
827	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocry highly selective electrochemical CO2 reduction. Nature Communications, 2021, 12, 66	stals for 0.	5.8	68
828	Tuning CO binding strength <i>via</i> engineering the copper/borophene interface for h conversion of CO into ethanol. Journal of Materials Chemistry A, 2021, 9, 13192-13199	ighly efficient	5.2	23

831	Reversed selectivity of photocatalytic CO ₂ reduction over metallic Pt and Pt(<scp>ii</scp>) oxide cocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9407-9417.	1.3	8
832	Design of pre-catalysts for heterogeneous CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2021, 9, 19508-19533.	5.2	24
833	Electrochemical CO ₂ Reduction to Ethanol with Copper-Based Catalysts. ACS Energy Letters, 2021, 6, 694-706.	8.8	130
834	The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nature Communications, 2021, 12, 395.	5.8	170
835	Electrochemical Reduction of Carbon Dioxide to Ethanol: An Approach to Transforming Greenhouse Gas to Fuel Source. Chemistry - an Asian Journal, 2021, 16, 588-603.	1.7	17
836	Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of \$\$CO\$\$ Diatomic Molecule. Journal of Low Temperature Physics, 2021, 203, 84-111.	0.6	39
837	Carbon-Based Materials for Electrochemical Reduction of CO ₂ to C ₂₊ Oxygenates: Recent Progress and Remaining Challenges. ACS Catalysis, 2021, 11, 2076-2097.	5.5	116
839	Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Applied Catalysis B: Environmental, 2021, 281, 119426.	10.8	82
840	Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5, 256-276.	13.8	93
841	Selective CO ₂ Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. Journal of the American Chemical Society, 2021, 143, 2857-2865.	6.6	104
842	Synthesis of Đorous Bimetallic Nanocatalyst for Selective Formate Production by CO2 Еlectroreduction. Russian Journal of Physical Chemistry A, 2021, 95, 372-379.	0.1	1
843	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	5.5	92
844	Near ambient pressure photoelectron spectro-microscopy: from gas–solid interface to operando devices. Journal Physics D: Applied Physics. 2021. 54. 204004.	1.3	11

#	Article	IF	CITATIONS
845	Bismuth coated graphite felt modified by silver particles for selective electroreduction of CO2 into formate in a flow cell. Electrochimica Acta, 2021, 371, 137821.	2.6	11
847	Acceleration of Electrochemical CO ₂ Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catalysis, 2021, 11, 3310-3318.	5.5	92
848	Efficient and Selective Interplay Revealed: CO ₂ Reduction to CO over ZrO ₂ by Light with Further Reduction to Methane over Ni ⁰ by Heat Converted from Light. Angewandte Chemie, 2021, 133, 9127-9136.	1.6	6
849	Derived CuSn Alloys from Heterointerfaces in Bimetallic Oxides Promote the CO ₂ Electroreduction to Formate. ChemElectroChem, 2021, 8, 1150-1155.	1.7	11
850	Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications, 2021, 12, 1449.	5.8	119
851	Singleâ€Unitâ€Cell Catalysis of CO ₂ Electroreduction over Subâ€1 nm Cu ₉ S ₅ Nanowires. Advanced Energy Materials, 2021, 11, 2100272.	10.2	29
852	Efficient and Selective Interplay Revealed: CO ₂ Reduction to CO over ZrO ₂ by Light with Further Reduction to Methane over Ni ⁰ by Heat Converted from Light. Angewandte Chemie - International Edition, 2021, 60, 9045-9054.	7.2	27
853	Hidden Mechanism Behind the Roughnessâ€Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. Angewandte Chemie, 2021, 133, 11233-11237.	1.6	6
854	Cu2O-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO2 to C2 Products. Molecules, 2021, 26, 2175.	1.7	19
855	Highly CO Selective Trimetallic Metal-Organic Framework Electrocatalyst for the Electrochemical Reduction of CO2. Catalysts, 2021, 11, 537.	1.6	8
856	Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. Electrochemical Energy Reviews, 2021, 4, 680-717.	13.1	26
857	Designing Copperâ€Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials, 2021, 33, e2005798.	11.1	145
858	Hidden Mechanism Behind the Roughnessâ€Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. Angewandte Chemie - International Edition, 2021, 60, 11133-11137.	7.2	19
859	Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO ₂ Electrochemical Reduction. Advanced Materials, 2021, 33, e2005484.	11.1	100
860	Revisiting the Grain and Valence Effect of Oxide-Derived Copper on Electrocatalytic CO ₂ Reduction Using Single Crystal Cu(111) Foils. Journal of Physical Chemistry Letters, 2021, 12, 3941-3950.	2.1	16
861	Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5445-5453.	3.2	46
862	Re-assembly: Construction of macropores in carbon sheets with high performance in supercapacitor. Advanced Powder Technology, 2021, 32, 1294-1299.	2.0	17
863	Metal–Organic Frameworks as Heterogeneous Electrocatalysts for Water Splitting and CO ₂ Fixation. Crystal Growth and Design, 2021, 21, 3123-3142.	1.4	24

#	Article	IF	CITATIONS
864	Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nature Catalysis, 2021, 4, 274-283.	16.1	77
865	Selectivity Map for the Late Stages of CO and CO ₂ Reduction to C ₂ Species on Copper Electrodes. Angewandte Chemie - International Edition, 2021, 60, 10784-10790.	7.2	30
866	Selectivity Map for the Late Stages of CO and CO 2 Reduction to C 2 Species on Copper Electrodes. Angewandte Chemie, 2021, 133, 10879-10885.	1.6	3
867	Interface engineering of earth-abundant Cu/In(OH)3 catalysts towards electrochemical reduction of CO2 favoring CO selectivity. Journal of CO2 Utilization, 2021, 46, 101470.	3.3	10
868	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copperâ€Copper lodide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 14329-14333.	7.2	177
869	Zn- and Ti-Doped SnO2 for Enhanced Electroreduction of Carbon Dioxide. Materials, 2021, 14, 2354.	1.3	7
870	Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics. Materials Today Physics, 2021, 18, 100354.	2.9	39
871	How Strain Alters CO ₂ Electroreduction on Model Cu(001) Surfaces. ACS Catalysis, 2021, 11, 6662-6671.	5.5	23
872	Minireview on the Commonly Applied Copper-Based Electrocatalysts for Electrochemical CO ₂ Reduction. Energy & Fuels, 2021, 35, 8585-8601.	2.5	20
873	Tandem catalysis in electrochemical CO2 reduction reaction. Nano Research, 2021, 14, 4471-4486.	5.8	105
874	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copperâ€Copper lodide Catalyst. Angewandte Chemie, 2021, 133, 14450-14454.	1.6	36
875	Architectural Design for Enhanced C ₂ Product Selectivity in Electrochemical CO ₂ Reduction Using Cu-Based Catalysts: A Review. ACS Nano, 2021, 15, 7975-8000.	7.3	183
876	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nature Communications, 2021, 12, 3387.	5.8	70
877	Revealing the CO Coverage-Driven C–C Coupling Mechanism for Electrochemical CO ₂ Reduction on Cu ₂ O Nanocubes <i>via Operando</i> Raman Spectroscopy. ACS Catalysis, 2021, 11, 7694-7701.	5.5	186
878	Electrochemical Generation of Mesopores and Residual Oxygen for the Enhanced Activity of Silver Electrocatalysts. Journal of Physical Chemistry Letters, 2021, 12, 5748-5757.	2.1	5
879	Computational-experimental study of the onset potentials for CO2 reduction on polycrystalline and oxide-derived copper electrodes. Electrochimica Acta, 2021, 380, 138247.	2.6	4
880	Controllable Cu ⁰ u ⁺ Sites for Electrocatalytic Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 15344-15347.	7.2	167
881	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	13.8	253

ARTICLE IF CITATIONS # Electrochemical Carbon Dioxide Reduction on Femtosecond Laser-Processed Copper Electrodes: Effect on the Liquid Products by Structuring and Doping. ACS Applied Energy Materials, 2021, 4, 882 2.5 5 5927-5934. Recent Development of Electrocatalytic CO₂ Reduction Application to Energy Conversion. 5.2 Small, 2021, 17, e2100323. Synergistic Effect of Metal Doping and Tethered Ligand Promoted Highâ€Selectivity Conversion of 884 CO₂ to C₂ Oxygenates at Ultraâ€Low Potential. Energy and Environmental 7.3 14 Materials, 2022, 5, 892-898. Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. Sustainability, 886 2021, 13, 6962. Controllable Cu⁰â€Cu⁺ Sites for Electrocatalytic Reduction of Carbon Dioxide. 887 1.6 33 Angewandte Chemie, 2021, 133, 15472-15475. CdSâ€Enhanced Ethanol Selectivity in Electrocatalytic CO₂ Reduction at Sulfideâ€Derived Cuâ°Cd. ChemSusChem, 2021, 14, 2924-2934. 888 3.6 Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. 889 5.8 80 Nature Communications, 2021, 12, 3264. Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the 890 1.1 electrochemical reduction of CO2. Current Applied Physics, 2021, 27, 31-37. Electrolyte Competition Controls Surface Binding of CO Intermediates to CO₂ Reduction 891 22 1.5 Catalysts. Journal of Physical Chemistry C, 2021, 125, 17042-17050. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano 5.8 54 Research, 2021, 14, 3497-3501. Nanoporous Intermetallic Cu₃Sn/Cu Hybrid Electrodes as Efficient Electrocatalysts for 894 5.2 22 Carbon Dioxide Reduction. Small, 2021, 17, e2100683. Cu Dopingâ€Induced Transformation from [Ag 62 S 12 (SBu t) 32] 2+ to [Ag 62â^'x Cu x S 12 (SBu t) 32] 4+ Nanocluster. Chemistry - an Asian Journal, 2021, 16, 2973-2977. 1.7 Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in 896 10.2 16 Selected Electrolytes. Advanced Energy Materials, 2021, 11, 2101737. The Role of Roughening to Enhance Selectivity to C₂₊ Products during CO₂ 8.8 38 Electroreduction on Copper. ACS Energy Letters, 2021, 6, 3252-3260. Tunable Selectivity for Electrochemical CO₂ Reduction by Bimetallic Cuâ€"Sn Catalysts: 898 5.582 Elucidating the Roles of Cu and Sn. ACS Catalysis, 2021, 11, 11103-11108. Highâ€Pressure CO Electroreduction at Silver Produces Ethanol and Propanol. Angewandte Chemie -29 International Edition, 2021, 60, 21732-21736. Boosting sensitive and selective detection toward Pb(II) via activation effect of Co and orbital 900 coupling between Pb and O over Co@Co3O4 nanocatalyst. Journal of Hazardous Materials, 2021, 416, 6.5 15 126157. Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO₂ Methanation. 4.5 Nano Letters, 2021, 21, 7325-7331.

ARTICLE IF CITATIONS Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon 902 9.5 45 products. Coordination Chemistry Reviews, 2021, 441, 213983. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule, 2021, 5, 1987-2026. 11.7 64 Nanofibers of Polyaniline and Cu(II)–<scp>l</scp>-Aspartic Acid for a Room-Temperature Carbon 904 4.0 27 Monoxide Gas Sensor. ACS Applied Materials & amp; Interfaces, 2021, 13, 39791-39805. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide 4.8 reduction. Chinese Chemical Letters, 2022, 33, 2259-2269. Highâ€Pressure CO Electroreduction at Silver Produces Ethanol and Propanol. Angewandte Chemie, 906 1.6 0 2021, 133, 21900-21904. CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in 2.6 C1-formate production and H2 selectivity. Electrochimica Acta, 2021, 391, 138889. A Metal–Organic Framework derived Cu_{<i>x</i>}O_yC_z Catalyst 908 for Electrochemical CO₂ Reduction and Impact of Local pH Change. Angewandte Chemie -7.2 63 International Edition, 2021, 60, 23427-23434. Microenvironmental Feeding and Stabilization of C₂H₄ Intermediates by Iodide-Doped Copper Nanowire Arrays to Boost C₂H₆ Formation. Energy & amp; 909 2.5 Fuels, 2021, 35, 15987-15994. A New Hexagonal Cobalt Nanosheet Catalyst for Selective CO₂ Conversion to Ethanal. 910 6.6 64 Journal of the American Chemical Society, 2021, 143, 15335-15343. Theoretical Understanding of the Interface Effect in Promoting Electrochemical CO₂ 1.5 Reduction on Cu–Pd Alloys. Journal of Physical Chemistry C, 2021, 125, 21381-21389. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature 912 15.6 282 Nanotechnology, 2021, 16, 1386-1393. Ein MOFâ€basierter Cu_{<i>x</i>}O_{<i>y</i>}C_{<i>z</i>}â€Katalysator für die elektrochemische CO₂â€Reduktion und die Auswirkungen der lokalen pHâ€Ã,,nderung. Angewandte Chemie, 2021, 133, 23616-23624. 1.6 In Situ Growth and Activation of Ag/Ag₂S Nanowire Clusters by H₂S Plasma Treatment for Promoted Electrocatalytic CO₂ Reduction. Advanced Sustainable Systems, 914 2.7 7 2021, 5, 2100256. Reprint of "Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphologyâ€. Journal of Electroanalytical Chemistry, 2021, 896, 115609. Electrochemical Reduction of CO₂ to Alcohols: Current Understanding, Progress, and 916 2.8 16 Challenges. Advanced Energy and Sustainability Research, 2022, 3, 2100131. Efficient reduction of CO2 to CO over grain boundary rich gold film reconstructed by O2 plasma 2.2 treatment. Applied Catalysis A: General, 2021, 625, 118333. In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction. Small Methods, 918 4.6 51 2021, 5, e2100700. Steam-created grain boundaries for methane Câ€"H activation in palladium catalysts. Science, 2021, 373, 919 1518-1523.

#	Article	IF	CITATIONS
920	The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate. Chemical Engineering Journal, 2021, 421, 129606.	6.6	42
921	Boosting the faradaic efficiency for carbon dioxide to monoxide on a phthalocyanine cobalt based gas diffusion electrode to higher than 99% via microstructure regulation of catalyst layer. Electrochimica Acta, 2021, 392, 139023.	2.6	17
922	Amorphous urchin-like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+ products. Journal of Energy Chemistry, 2021, 61, 290-296.	7.1	15
923	Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. Ecotoxicology and Environmental Safety, 2021, 223, 112575.	2.9	13
924	Ultrastable Cu Catalyst for CO ₂ Electroreduction to Multicarbon Liquid Fuels by Tuning C–C Coupling with CuTi Subsurface. Angewandte Chemie, 2021, 133, 26326-26331.	1.6	3
925	Ultrastable Cu Catalyst for CO ₂ Electroreduction to Multicarbon Liquid Fuels by Tuning C–C Coupling with CuTi Subsurface. Angewandte Chemie - International Edition, 2021, 60, 26122-26127.	7.2	56
926	Surface modification and reconstruction of ZnO hollow microspheres for selective electroreduction of CO2 to CO. Journal of Alloys and Compounds, 2021, 882, 160703.	2.8	20
927	Electric-field-driven electrochemical CO2 reduction of sharpened Sn/Cu catalysts. Applied Surface Science, 2021, 565, 150460.	3.1	22
928	Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 298, 120543.	10.8	61
929	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	7.1	28
930	Copper oxide-based cathode for direct NADPH regeneration. Scientific Reports, 2021, 11, 180.	1.6	9
931	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	5.2	36
932	Recent Progress in Electrocatalytic Methanation of CO ₂ at Ambient Conditions. Advanced Functional Materials, 2021, 31, 2009449.	7.8	92
933	Electrocatalysis using nanomaterials. Frontiers of Nanoscience, 2021, 18, 343-420.	0.3	2
934	Nanostructured Cu foam and its derivatives: emerging materials for the heterogeneous conversion of CO2 to fuels. Sustainable Energy and Fuels, 2021, 5, 2393-2414.	2.5	7
935	An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology, 2021, 16, 118-128.	15.6	255
936	Reaction mechanism on Ni-C ₂ -NS single-atom catalysis for the efficient CO ₂ reduction reaction. Journal of Experimental Nanoscience, 2021, 16, 255-264.	1.3	10
937	Electrodeposition of ligand-free copper nanoparticles from aqueous nanodroplets. Journal of Materials Chemistry A, 2021, 9, 20048-20057.	5.2	13

#	Article	IF	Citations
" 938	Emerging dynamic structure of electrocatalysts unveiled by <i>in situ</i> X-ray diffraction/absorption spectroscopy. Energy and Environmental Science, 2021, 14, 1928-1958.	15.6	179
939	Theoretical investigation of defective MXenes as potential electrocatalysts for CO reduction toward C ₂ products. Physical Chemistry Chemical Physics, 2021, 23, 12431-12438.	1.3	11
940	Efficient Hydrogenation of CO ₂ to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. ChemCatChem, 2017, 9, 3691-3696.	1.8	40
941	Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Frameworks Catalyst. Environmental Chemistry for A Sustainable World, 2020, , 91-131.	0.3	1
942	Nanostructured Catalysts for the Electrochemical Reduction of CO2. Nanostructure Science and Technology, 2017, , 337-373.	0.1	4
943	CO2 electroreduction at AuxCu1-x obtained by pulsed laser deposition in O2 atmosphere. Electrochimica Acta, 2017, 246, 115-122.	2.6	18
944	Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy and Environment, 2022, 7, 792-798.	4.7	19
945	Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. Journal of Catalysis, 2020, 383, 42-50.	3.1	22
946	Universal Principle to Describe Reactivity and Selectivity of CO ₂ Electroreduction on Transition Metals and Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25898-25906.	1.5	20
947	Three-Dimensional Carbon Electrocatalysts for CO ₂ or CO Reduction. ACS Catalysis, 2021, 11, 533-541.	5.5	29
948	Comparing Scanning Electron Microscope and Transmission Electron Microscope Grain Mapping Techniques Applied to Well-Defined and Highly Irregular Nanoparticles. ACS Omega, 2020, 5, 2791-2799.	1.6	11
949	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	16.1	390
950	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
951	Insights into the carbon balance for CO ₂ electroreduction on Cu using gas diffusion electrode reactor designs. Energy and Environmental Science, 2020, 13, 977-985.	15.6	313
952	Ag ₂ Cu ₂ O ₃ – a catalyst template material for selective electroreduction of CO to C ₂₊ products. Energy and Environmental Science, 2020, 13, 2993-3006.	15.6	55
953	A strategy to control the grain boundary density and Cu ⁺ /Cu ⁰ ratio of Cu-based catalysts for efficient electroreduction of CO ₂ to C2 products. Green Chemistry, 2020, 22, 1572-1576.	4.6	49
954	Utilizing hydrogen underpotential deposition in CO reduction for highly selective formaldehyde production under ambient conditions. Green Chemistry, 2020, 22, 5639-5647.	4.6	14
955	Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	93

#	Article	IF	CITATIONS
956	Review—A Review on Electrodes Used in Electroorganic Synthesis and the Significance of Coupled Electrocatalytic Reactions. Journal of the Electrochemical Society, 2020, 167, 125503.	1.3	12
959	Plasma-assisted oxidation of Cu(100) and Cu(111). Chemical Science, 2021, 12, 14241-14253.	3.7	13
960	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022 34, e2105789.	'11.1	58
961	Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction. Nano-Micro Letters, 2021, 13, 216.	14.4	58
963	Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO ₂ Reduction. ACS Applied Nano Materials, 2021, 4, 11017-11030.	2.4	24
964	Design of less than 1Ânm Scale Spaces on SnO ₂ Nanoparticles for Highâ€Performance Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2022, 32, 2107349.	7.8	23
965	Loading Singleâ€Ni Atoms on Assembled Hollow Nâ€Rich Carbon Plates for Efficient CO ₂ Electroreduction. Advanced Materials, 2022, 34, e2105204.	11.1	100
966	Effects of surface diffusion in electrocatalytic CO2 reduction on Cu revealed by kinetic Monte Carlo simulations. Journal of Chemical Physics, 2021, 155, 164701.	1.2	7
967	The interface is a tunable dimension in electricityâ€driven organic synthesis. Natural Sciences, 2021, 1, e20210036.	1.0	2
968	Interface interaction in CuBi catalysts with tunable product selectivity for electrochemical CO2 reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127637.	2.3	11
969	A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Ecletica Quimica, 2019, 44, 11.	0.2	6
970	Molecular Stabilization of Subâ€Nanometer Cu Clusters for Selective CO ₂ Electromethanation. ChemSusChem, 2022, 15, .	3.6	11
972	Crystal-plane-controlled restructuring and enhanced oxygen-involving performances of bifunctional catalyst. Applied Catalysis A: General, 2021, , 118417.	2.2	5
973	Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries. Nano Energy, 2022, 91, 106669.	8.2	49
974	Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS Applied Materials & Interfaces, 2021, 13, 52469-52478.	4.0	43
975	Design principles of tandem cascade photoelectrochemical devices. Sustainable Energy and Fuels, 2021, 5, 6361-6371.	2.5	6
976	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	2.5	19
977	Ammonium ionic liquid cation promotes electrochemical CO ₂ reduction to ethylene over formate while inhibiting the hydrogen evolution on a copper electrode. Catalysis Science and Technology, 2022, 12, 519-529.	2.1	14

щ		IF	CITATIONS
#	ARTICLE Growing 3D-nanostructured carbon allotropes from CO2 at room temperature under the dynamic		CITATIONS
978	CO2 electrochemical reduction environment. Carbon, 2022, 187, 241-255.	5.4	10
979	Catalytic reduction of carbon dioxide over two-dimensional boron monolayer. Journal of Materials Science and Technology, 2022, 110, 96-102.	5.6	11
980	Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2. Applied Catalysis B: Environmental, 2022, 304, 120936.	10.8	29
981	Theoretical Screening of Transition Metal Doped Defective MoS ₂ as Efficient Electrocatalyst for CO Conversion to CH ₄ . ChemPhysChem, 2022, 23, .	1.0	2
982	Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Đerived CuÂby Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie, 0, , .	1.6	1
983	Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning. Green Energy and Environment, 2023, 8, 820-830.	4.7	16
984	Copper Aluminum Layered Double Hydroxides with Different Compositions and Morphologies as Electrocatalysts for the Carbon Dioxide Reduction Reaction. ChemSusChem, 2022, 15, .	3.6	15
985	Combining Nanoconfinement in Ag Core/Porous Cu Shell Nanoparticles with Gas Diffusion Electrodes for Improved Electrocatalytic Carbon Dioxide Reduction. ChemElectroChem, 2021, 8, 4848-4853.	1.7	19
986	Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C ₂₊ Products. , 2021, 3, 1729-1737.		66
987	Exploring Trends on Coupling Mechanisms toward C ₃ Product Formation in CO ₍₂₎ R. Journal of Physical Chemistry C, 2021, 125, 26437-26447.	1.5	18
988	Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Derived Cu by Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
989	Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel. Advanced Functional Materials, 2022, 32, 2107182.	7.8	40
990	Tuning the subsurface oxygen of Ag2O-derived Ag nanoparticles to achieve efficient CO2 electroreduction to CO. Electrochimica Acta, 2022, 403, 139656.	2.6	4
991	Valorizing carbon dioxide via electrochemical reduction on gasâ€diffusion electrodes. InformaÄnÃ- Materiály, 2021, 3, 1313-1332.	8.5	37
992	Controlling Plasmon-Aided Reduction of <i>p</i> -Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catalysis, 2021, 11, 14898-14905.	5.5	14
993	Photoelectrochemical technology for solar fuel generation, from single photoelectrodes to unassisted cells: a review. Environmental Chemistry Letters, 2022, 20, 1169-1192.	8.3	13
994	Unexpected high selectivity for acetate formation from CO ₂ reduction with copper based 2D hybrid catalysts at ultralow potentials. Chemical Science, 2021, 12, 15382-15388.	3.7	19
995	Insight into the Activity and Selectivity of Nanostructured Copper Titanates during Electrochemical Conversion of CO ₂ at Neutral pH via In Situ X-ray Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14, 2742-2753.	4.0	8

#	Article	IF	Citations
996	C ₃ production from CO ₂ reduction by concerted *CO trimerization on a single-atom alloy catalyst. Journal of Materials Chemistry A, 2022, 10, 5998-6006.	5.2	25
997	Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454, 214340.	9.5	175
998	Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2022, 305, 121026.	10.8	51
1000	CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations. Crystals, 2022, 12, 194.	1.0	9
1001	Influence of halide ions on the electrochemical reduction of carbon dioxide over a copper surface. Journal of Materials Chemistry A, 2022, 10, 1086-1104.	5.2	31
1002	Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go?. Chemical Science, 2021, 13, 14-26.	3.7	45
1003	Boosting CO ₂ electroreduction towards C ₂₊ products <i>via</i> CO* intermediate manipulation on copper-based catalysts. Environmental Science: Nano, 2022, 9, 911-953.	2.2	23
1004	Monolithic Cl-Modified Nanoporous Ag Nanowires for Electrochemical CO ₂ Reduction to CO. ACS Applied Energy Materials, 2022, 5, 1627-1634.	2.5	11
1005	Customizable CO ₂ Electroreduction to C ₁ or C ₂₊ Products through Cu _{<i>y</i>} /CeO ₂ Interface Engineering. ACS Catalysis, 2022, 12, 1004-1011.	5.5	47
1006	Intermetallic Cu ₁₁ In ₉ <i>in situ</i> formed on hierarchical nanoporous Cu for highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 4333-4343.	5.2	7
1007	Electrochemical Approaches for CO ₂ Conversion to Chemicals: A Journey toward Practical Applications. Accounts of Chemical Research, 2022, 55, 638-648.	7.6	108
1008	Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. Journal of Energy Chemistry, 2022, 68, 721-751.	7.1	58
1009	Determining Structureâ€Activity Relationships in Oxide Derived CuSn Catalysts During CO ₂ Electroreduction Using Xâ€Ray Spectroscopy. Advanced Energy Materials, 2022, 12, .	10.2	44
1010	Mechanistic insights for electrochemical reduction of CO ₂ into hydrocarbon fuels over O-terminated MXenes. Catalysis Science and Technology, 2022, 12, 2223-2231.	2.1	22
1011	Operando X-ray absorption spectroscopic studies of the carbon dioxide reduction reaction in a modified flow cell. Catalysis Science and Technology, 0, , .	2.1	5
1012	Unveiling the Bonding Nature of C3 Intermediates in the CO ₂ Reduction Reaction through the Oxygen-Deficient Cu ₂ O(110) Surface─A DFT Study. Journal of Physical Chemistry C, 2022, 126, 5502-5512.	1.5	11
1013	Promoting the Electrocatalytic Reduction of CO ₂ on Ultrathin Porous Bismuth Nanosheets with Tunable Surface-Active Sites and Local pH Environments. ACS Applied Materials & Interfaces, 2022, 14, 10648-10655.	4.0	23
1014	An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol. Fundamental Research, 2023, 3, 786-795.	1.6	3

#	Article	IF	CITATIONS
1015	Copper Carbonate Hydroxide as Precursor of Interfacial CO in CO ₂ Electroreduction. ChemSusChem, 2022, 15, .	3.6	17
1016	Mitigation of Carbon Crossover in CO ₂ Electrolysis by Use of Bipolar Membranes. Journal of the Electrochemical Society, 2022, 169, 034508.	1.3	14
1017	Self-healing oxygen evolution catalysts. Nature Communications, 2022, 13, 1243.	5.8	46
1018	Nature of the Active Sites of Copper Zinc Catalysts for Carbon Dioxide Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
1019	Interfaced Ag/Cu nanostructures derived from metal thiolate nanoplates: A highly selective catalyst for electrochemical reduction of CO ₂ to ethanol. SmartMat, 2022, 3, 173-182.	6.4	7
1020	The Role of Undercoordinated Sites on Zinc Electrodes for CO ₂ Reduction to CO. Advanced Functional Materials, 2022, 32, .	7.8	30
1021	Electrocatalysts Derived from Copper Complexes Transform CO into C ₂₊ Products Effectively in a Flow Cell. Chemistry - A European Journal, 2022, 28, e202200340.	1.7	10
1022	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	11.1	52
1023	Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nature Catalysis, 2022, 5, 251-258.	16.1	118
1024	Electrochemical Ethylene Oxide Synthesis from Ethanol. ACS Energy Letters, 2022, 7, 1316-1321.	8.8	18
1025	Nature of the Active Sites of Copper Zinc Catalysts for Carbon Dioxide Electroreduction. Angewandte Chemie, 2022, 134, .	1.6	1
1026	Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction. ACS Catalysis, 2022, 12, 4344-4357.	5.5	53
1027	Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nature Communications, 2022, 13, 1399.	5.8	56
1028	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multi arbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
1029	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multi arbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie, 0, , .	1.6	0
1030	Structural Reconstruction of Cu ₂ O Superparticles toward Electrocatalytic CO ₂ Reduction with High C ₂₊ Products Selectivity. Advanced Science, 2022, 9, e2105292.	5.6	65
1031	How computations accelerate electrocatalyst discovery. CheM, 2022, 8, 1575-1610.	5.8	23
1032	Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. Renewable and Sustainable Energy Reviews, 2022, 161, 112329.	8.2	35

#	Article	IF	CITATIONS
1033	Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products. Journal of Energy Chemistry, 2022, 70, 219-223.	7.1	29
1034	Electrochemical conversion of CO2 to value-added chemicals over bimetallic Pd-based nanostructures: Recent progress and emerging trends. Environmental Research, 2022, 211, 113116.	3.7	4
1035	Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Applied Catalysis B: Environmental, 2022, 310, 121362.	10.8	21
1036	Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids. Journal of Materials Science and Technology, 2022, 121, 220-226.	5.6	12
1037	The Crystal Plane is not the Key Factor for CO ₂ â€ŧoâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie, 2022, 134, .	1.6	1
1038	The Crystal Plane is not the Key Factor for CO ₂ â€ŧoâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
1039	Promoting Electrocatalytic Reduction of CO ₂ to C ₂ H ₄ Production by Inhibiting C ₂ H ₅ OH Desorption from Cu ₂ O/C Composite. Small, 2022, 18, e2105212.	5.2	15
1040	Efficient Methanol Electrooxidation Catalyzed by Potentiostatically Grown Cu–O/OH(Ni) Nanowires: Role of Inherent Ni Impurity. ACS Applied Energy Materials, 2022, 5, 419-429.	2.5	10
1041	Exclusive CO2-to-formate conversion over single-atom alloyed Cu-based catalysts. Green Energy and Environment, 2022, 7, 855-857.	4.7	18
1042	Comparative study of oxide-derived Cu electrocatalysts through electrochemical vs. thermal reduction. Chemical Communications, 2022, 58, 6120-6123.	2.2	3
1043	How to Minimise Hydrogen Evolution on Carbon Based Materials?. Journal of the Electrochemical Society, 2022, 169, 054516.	1.3	6
1044	Selective, Stable Production of Ethylene Using a Pulsed Cu-Based Electrode. ACS Applied Materials & Interfaces, 2022, 14, 19388-19396.	4.0	14
1045	Iodide-mediated Cu catalyst restructuring during CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 14041-14050.	5.2	15
1046	Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen. Physical Chemistry Chemical Physics, 2022, 24, 11491-11495.	1.3	2
1047	Local reaction environment for selective electroreduction of carbon monoxide. Energy and Environmental Science, 2022, 15, 2470-2478.	15.6	27
1048	Grain Boundary—A Route to Enhance Electrocatalytic Activity for Hydrogen Evolution Reaction. Applied Sciences (Switzerland), 2022, 12, 4290.	1.3	3
1049	Reduced Graphene Oxide Overlayer on Copper Nanocube Electrodes Steers the Selectivity Towards Ethanol in Electrochemical Reduction of Carbon Dioxide. ChemElectroChem, 2022, 9, .	1.7	3
1050	Modeling Operando Electrochemical CO ₂ Reduction. Chemical Reviews, 2022, 122, 11085-11130.	23.0	66

#	Article	IF	CITATIONS
1051	Production of C ₃ –C ₆ Acetate Esters via CO Electroreduction in a Membrane Electrode Assembly Cell. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1052	Emerging Electrochemical Processes to Decarbonize the Chemical Industry. Jacs Au, 2022, 2, 1054-1070.	3.6	59
1053	Production of C ₃ –C ₆ Acetate Esters via CO Electroreduction in a Membrane Electrode Assembly Cell. Angewandte Chemie, 2022, 134, .	1.6	3
1054	Surface engineering of Cu catalysts for electrochemical reduction of CO2 to value-added multi-carbon products. Chem Catalysis, 2022, 2, 1561-1593.	2.9	33
1055	Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 8641-8648.	6.6	38
1056	Carbon-efficient carbon dioxide electrolysers. Nature Sustainability, 2022, 5, 563-573.	11.5	95
1057	Selective Enhancement of Methane Formation in Electrochemical CO ₂ Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catalysis, 2022, 12, 6036-6046.	5.5	22
1058	Vaporâ€Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickelâ€Coordinated Nitrogenâ€Doped Carbon. Advanced Functional Materials, 2022, 32, .	7.8	15
1059	Molybdenum-Mediated Coupling of Carbon Monoxide to a C ₃ Product on a Single Metal Site. Inorganic Chemistry, 2022, 61, 7710-7714.	1.9	2
1060	Triggering the Direct C–C Coupling of Gaseous CO into C ₂ Oxygenates by Synergizing Interfacial Interactions and Reversible Spatial Dynamic Confinement. Journal of Physical Chemistry C, 2022, 126, 8645-8654.	1.5	5
1061	Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction. Nature Communications, 2022, 13, 2656.	5.8	53
1062	Poly(Ionic Liquid) Boosts Overall Performance of Electrocatalytic Reduction of Low Concentration of Co Gas. SSRN Electronic Journal, 0, , .	0.4	0
1063	Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5, 388-396.	16.1	153
1064	<i>Operando</i> Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 8927-8931.	6.6	18
1065	Electrochemical Reduction of CO ₂ on Copper-Based Electrocatalyst Supported on MWCNTs with Different Functional Groups. Energy & Fuels, 2022, 36, 5833-5842.	2.5	7
1066	Surface cavity effect on C2H4 formation from electrochemical reduction of CO2 as studied using Cu2O cubes. Journal of Solid State Electrochemistry, 0, , .	1.2	6
1067	Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1618-1633.	6.9	6
1068	Recent strategies for the electrochemical reduction of CO2 into methanol. Advances in Catalysis, 2022, , 29-62.	0.1	2

#	Article	IF	CITATIONS
1069	Interface Design for Enhancing Carbon Dioxide Electrolysis in a Fluidized Electrode of Photoelectrochemical Cell. SSRN Electronic Journal, 0, , .	0.4	0
1070	Stabilization of Undercoordinated Cu Sites in Strontium Copper Oxides for Enhanced Formation of C ₂₊ Products in Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 6663-6671.	5.5	28
1071	<i>Operando</i> X-Ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation. Synchrotron Radiation News, 0, , 1-8.	0.2	3
1072	Tuning Ag-Modified Natao3 to Achieve High Co Selectivity for the Photocatalytic Conversion of Co2 Using H2o as the Electron Donor. SSRN Electronic Journal, 0, , .	0.4	0
1073	Scalable preparation of a CuO nanosheet array <i>via</i> corrosion engineering for selective C–C coupling in CO ₂ electroreduction. Journal of Materials Chemistry A, 0, , .	5.2	6
1074	Ni single atoms supported on hierarchically porous carbonized wood with highly active Ni–N ₄ sites as a self-supported electrode for superior CO ₂ electroreduction. Nanoscale, 2022, 14, 10003-10008.	2.8	16
1075	Tuning Ag-Modified Natao3 to Achieve High Co Selectivity for the Photocatalytic Conversion of Co2 Using H2o as the Electron Donor. SSRN Electronic Journal, 0, , .	0.4	0
1076	Tuning Ag-Modified Natao3 to Achieve High Co Selectivity for the Photocatalytic Conversion of Co2 Using H2o as the Electron Donor. SSRN Electronic Journal, 0, , .	0.4	0
1077	Supported Cu ₃ clusters on graphitic carbon nitride as an efficient catalyst for CO electroreduction to propene. Journal of Materials Chemistry A, 2022, 10, 14460-14469.	5.2	17
1078	In situ fabrication of highly porous foam-like Zn nanostructures on gas diffusion layer for selective electrocatalytic reduction of carbon dioxide to carbon monoxide. Journal of Industrial and Engineering Chemistry, 2022, 113, 325-331.	2.9	3
1079	Electrocatalytic CO ₂ reduction towards industrial applications. , 2023, 5, .		41
1080	Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products. Nano-Micro Letters, 2022, 14, .	14.4	20
1081	2022 roadmap on low temperature electrochemical CO ₂ reduction. JPhys Energy, 2022, 4, 042003.	2.3	76
1082	Copper-tetracyanoquinodimethane-derived copper electrocatalysts for highly selective carbon dioxide reduction to ethylene. Nano Research, 2022, 15, 7910-7916.	5.8	9
1083	Understanding the role of Cu ⁺ /Cu ⁰ sites at Cu ₂ O based catalysts in ethanol production from CO ₂ electroreduction -A DFT study. RSC Advances, 2022, 12, 19394-19401.	1.7	9
1084	Concluding remarks: Photoelectron spectroscopy and the future of surface analysis. Faraday Discussions, 0, , .	1.6	1
1085	Toward Effective CO ₂ Reduction in an Acid Medium: Electrocatalysis at Cu ₂ O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO ₃ Nanowires. ACS Measurement Science Au, 2022, 2, 553-567.	1.9	1
1086	A Hybrid Quantum–Classical Study of Ion Adsorption at the Copper Electrode. Journal of Physical Chemistry C, 2022, 126, 12413-12423.	1.5	1

#	Article	IF	CITATIONS
1087	Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. Nanomaterials, 2022, 12, 2389.	1.9	9
1088	Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals. Materials for Renewable and Sustainable Energy, 2022, 11, 115-129.	1.5	8
1089	Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (XÂ= 1–3). Chem Catalysis, 2022, 2, 1961-1988.	2.9	7
1090	Selective Ethylene Production from CO ₂ and CO Reduction via Engineering Membrane Electrode Assembly with Porous Dendritic Copper Oxide. ACS Applied Materials & Interfaces, 2022, 14, 31933-31941.	4.0	16
1091	Rigorous Evaluation of Liquid Products in High-Rate CO ₂ /CO Electrolysis. ACS Energy Letters, 2022, 7, 2595-2601.	8.8	13
1092	Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
1093	Designing Cu-Based Tandem Catalysts for CO ₂ Electroreduction Based on Mass Transport of CO Intermediate. ACS Catalysis, 2022, 12, 9735-9752.	5.5	51
1094	Interface design for enhancing carbon dioxide electrolysis in a fluidized electrode of photoelectrochemical cell. Chemical Engineering Journal, 2022, 450, 138158.	6.6	2
1095	The mechanism for acetate formation in electrochemical CO ₍₂₎ reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy and Environmental Science, 2022, 15, 3978-3990.	15.6	52
1096	Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Science Bulletin, 2022, 67, 1679-1687.	4.3	56
1097	Electrochemical CO ₂ -to-Formate Conversion Over Positive Charge Depleted Tin Sites. ACS Applied Energy Materials, 2022, 5, 9324-9332.	2.5	6
1098	Insights into Metal–Organic Framework-Derived Copper Clusters for CO ₂ Electroreduction. Journal of Physical Chemistry C, 2022, 126, 13649-13659.	1.5	8
1099	Rational Manipulation of Intermediates on Copper for CO2 Electroreduction Toward Multicarbon Products. Transactions of Tianjin University, 2022, 28, 265-291.	3.3	16
1100	Tailoring Electronic Structure of Copper Twin Boundaries Toward Highly Efficient Nitrogen Reduction Reaction. ChemSusChem, 2022, 15, .	3.6	4
1101	Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nature Catalysis, 2022, 5, 738-745.	16.1	49
1102	Chemically dezincified copper nanowires catalysts with competitive selectivity for ethylene production by carbon dioxide reduction reaction. Ionics, 2022, 28, 4817-4824.	1.2	2
1103	Highly Selective Copper-Based Catalysts for Electrochemical Conversion of Carbon Monoxide to Ethylene Using a Gas-Fed Flow Electrolyzer. ACS Catalysis, 2022, 12, 10285-10293.	5.5	14
1104	Copper-based metal-organic frameworks for electrochemical reduction of CO2. Chinese Chemical Letters, 2023, 34, 107757.	4.8	2

#	Article	IF	CITATIONS
1105	Insight Into Heterogeneous Electrocatalyst Design Understanding for the Reduction of Carbon Dioxide. Advanced Energy Materials, 2022, 12, .	10.2	24
1106	Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nature Communications, 2022, 13, .	5.8	55
1107	Room-temperature Electrochemical C1-to-fuel Conversion: Perspectives from Material Engineering and Device Design. EnergyChem, 2022, 4, 100086.	10.1	5
1108	Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH. Journal of Hazardous Materials, 2022, 440, 129828.	6.5	7
1109	Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coordination Chemistry Reviews, 2022, 471, 214737.	9.5	20
1110	Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coordination Chemistry Reviews, 2022, 471, 214716.	9.5	38
1111	Fundamental study on oxidation properties at elevated pressure of typical renewable synthetic liquid fuels through low-temperature CO2 electroreduction. Fuel, 2023, 331, 125705.	3.4	7
1112	Poly(ionic liquid) boosts overall performance of electrocatalytic reduction of low concentration of CO gas. Chemical Engineering Journal, 2023, 451, 138491.	6.6	1
1113	Tuning Ag-modified NaTaO3 to achieve high CO selectivity for the photocatalytic conversion of CO2 using H2O as the electron donor. Applied Catalysis B: Environmental, 2023, 320, 121885.	10.8	10
1114	Elucidating electrochemical CO ₂ reduction reaction processes on Cu(<i>hkl</i>) single-crystal surfaces by <i>in situ</i> Raman spectroscopy. Energy and Environmental Science, 2022, 15, 3968-3977.	15.6	58
1115	<i>In situ</i> oxidative etching-enabled synthesis of hollow Cu ₂ O nanocrystals for efficient CO ₂ RR into C ₂₊ products. Sustainable Energy and Fuels, 2022, 6, 4860-4865.	2.5	6
1116	Axial coordination modification of M–N ₄ single-atom catalysts to regulate the electrocatalytic CO ₂ reduction reaction. Journal of Materials Chemistry C, 2022, 10, 15948-15956.	2.7	14
1117	Plasma-treated functional nanomaterials for CO2 reduction. , 2022, , 359-371.		0
1118	Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Materials Today, 2022, 59, 182-199.	8.3	22
1119	Remarkable Enhancement of Catalytic Activity of Cu omplexes in the Electrochemical Hydrogen Evolution Reaction by Using Triply Fused Porphyrin**. ChemSusChem, 2023, 16, .	3.6	8
1120	Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO ₂ reduction. , 2022, 1, 9140006.		56
1121	Copper-based catalysts for electrochemical carbon monoxide reduction. Cell Reports Physical Science, 2022, 3, 101072.	2.8	6
1122	Gaining the Freedom of Scalable Gas Diffusion Electrodes for the CO ₂ Reduction Reaction. ChemElectroChem, 2022, 9, .	1.7	1

#	Article	IF	CITATIONS
1123	Towards understanding of CO ₂ electroreduction to C ₂₊ products on copperâ€based catalysts. , 2022, 1, .		13
1124	Ampere-level CO ₂ reduction to multicarbon products over a copper gas penetration electrode. Energy and Environmental Science, 2022, 15, 5391-5404.	15.6	33
1125	Improving the Energy Efficiency of CO Electrolysis by Controlling Cu Domain Size in Gas Diffusion Electrodes. ACS Energy Letters, 2022, 7, 4098-4105.	8.8	5
1126	Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery. Chem Catalysis, 2022, 2, 3528-3545.	2.9	9
1127	Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species. Journal of the American Chemical Society, 2022, 144, 20495-20506.	6.6	12
1128	Recent Progress in Surface and Interface Engineering for Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
1129	Controlling Product Distribution of CO ₂ Reduction on CuOâ€Based Gas Diffusion Electrodes by Manipulating Back Pressure. Energy Technology, 2022, 10, .	1.8	5
1130	<i>Operando</i> Constructing Cu/Cu ₂ O Electrocatalysts for Efficient CO ₂ Electroreduction to Ethanol: CO ₂ -Assisted Structural Evolution of Octahedral Cu ₂ O by <i>Operando</i> CV Activation. ACS Catalysis, 2022, 12, 12942-12953.	5.5	20
1131	Progress and Understanding of CO ₂ /CO Electroreduction in Flow Electrolyzers. ACS Catalysis, 2022, 12, 12993-13020.	5.5	25
1132	CO ₂ -assisted formation of grain boundaries for efficient CO–CO coupling on a derived Cu catalyst. , 2023, 2, 20220044.		12
1133	Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Science China Chemistry, 2023, 66, 78-95.	4.2	19
1134	Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. Chinese Journal of Catalysis, 2022, 43, 2772-2791.	6.9	25
1135	Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.	3.1	6
1136	Restructuring of emergent grain boundaries at free surfaces – An interplay between core stabilization and elastic stress generation. Acta Materialia, 2023, 242, 118432.	3.8	5
1137	Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Applied Catalysis B: Environmental, 2023, 322, 122073.	10.8	17
1138	Carbon conversion: opportunities in chemical productions. , 2023, , 479-524.		0
1139	Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts. Chemical Engineering Journal, 2023, 453, 139663.	6.6	55
1140	Bicontinuous Nanoporous Metals with Self-Organized Functionalities. Chemistry of Materials, 2022, 34, 10237-10248.	3.2	3

~		<u> </u>	
CITAT	ION	REDU	RT
011/11			

#	Article	IF	CITATIONS
1142	Surface/interface reconstruction in-situ on Cu2O catalysts with high exponential facets toward enhanced electrocatalysis CO2 reduction to C2+ products. Applied Surface Science, 2023, 611, 155773.	3.1	10
1143	Engineering Surface Oxophilicity of Copper for Electrochemical CO ₂ Reduction to Ethanol. Advanced Science, 2023, 10, .	5.6	28
1144	Electroâ \in Synthesis of Organic Compounds with Heterogeneous Catalysis. Advanced Science, 2023, 10, .	5.6	25
1145	Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. Electrochemical Energy Reviews, 2022, 5, .	13.1	24
1146	Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. Materials Horizons, 2023, 10, 698-721.	6.4	7
1147	Ethanol formation from CO2 hydrogenation at atmospheric pressure using Cu catalysts: Water as a key component. Applied Catalysis B: Environmental, 2023, 324, 122221.	10.8	8
1148	Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions. Science China Chemistry, 2023, 66, 96-106.	4.2	10
1149	Amorphous N _{<i>x</i>} C Coating Promotes Electrochemical CO ₂ Deep Reduction to Hydrocarbons over Ag Nanocatalysts. ACS Catalysis, 2023, 13, 169-178.	5.5	9
1150	Surface and Interface Engineering for the Catalysts of Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
1151	Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts. ACS Catalysis, 2023, 13, 735-743.	5.5	7
1152	Selective Hydrogenation of CO ₂ to CH ₃ OH on a Dynamically Magic Single-Cluster Catalyst: Cu ₃ /MoS ₂ /Ag(111). ACS Catalysis, 2023, 13, 714-724.	5.5	9
1153	Tuning the C ₁ /C ₂ Selectivity of Electrochemical CO ₂ Reduction on Cu–CeO ₂ Nanorods by Oxidation State Control. Advanced Materials, 2023, 35, .	11.1	17
1154	Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets. Journal of Energy Chemistry, 2023, 79, 312-320.	7.1	11
1155	Identifying an Interfacial Stabilizer for Regeneration-Free 300 h Electrochemical CO ₂ Reduction to C ₂ Products. Journal of the American Chemical Society, 2022, 144, 22759-22766.	6.6	24
1156	Tandem Electroreduction of CO ₂ to Programmable Acetate and Syngas via Single-Nickel-Atom-Encapsulated Copper Nanocatalysts. , 2023, 5, 85-94.		9
1157	Can the CO ₂ Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catalysis, 2022, 12, 15737-15749.	5.5	17
1158	A Scientometric Review of CO2 Electroreduction Research from 2005 to 2022. Energies, 2023, 16, 616.	1.6	8
1159	Metal and metal oxide electrocatalysts for the electrochemical reduction of CO ₂ -to-C1 chemicals: are we there yet?. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	10

#	Article	IF	CITATIONS
1160	Nanomaterials as catalysts for CO2 transformation into value-added products: A review. Science of the Total Environment, 2023, 868, 161547.	3.9	28
1161	Hierarchical Nanospheres with Polycrystalline Ir&Cu and Amorphous Cu ₂ O toward Energyâ€Efficient Nitrate Electrolysis to Ammonia. Small, 2023, 19, .	5.2	15
1162	Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. Nature Energy, 2023, 8, 179-190.	19.8	41
1163	The use of plate-type electric force field for the explicit simulations of electrochemical CO dimerization on Cu(1 1 1) surface. Chemical Physics, 2023, 568, 111821.	0.9	2
1164	Coordination Polymer Electrocatalysts Enable Efficient COâ€ŧoâ€Acetate Conversion. Advanced Materials, 2023, 35, .	11.1	18
1165	Temperature, pressure, and adsorption dependent redox potentials: III. Processes of CO conversion to valueâ€added compounds. Energy Science and Engineering, 2024, 12, 362-393.	1.9	0
1166	Product Distribution Control Guided by a Microkinetic Analysis for CO Reduction at High-Flux Electrocatalysis Using Gas-Diffusion Cu Electrodes. ACS Catalysis, 2023, 13, 1791-1803.	5.5	8
1167	Perovskite-based nanomaterials for CO2 conversion. , 2023, , 181-209.		1
1168	A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nature Communications, 2023, 14, .	5.8	23
1169	Electrochemical CO2 reduction catalyzed by organic/inorganic hybrids. EScience, 2023, 3, 100097.	25.0	15
1170	Electrochemical reduction of CO2 to useful fuel: recent advances and prospects. Journal of Applied Electrochemistry, 2023, 53, 1295-1319.	1.5	5
1171	Grain Boundaryâ€Rich Copper Nanocatalysts Generated from Metalâ€Organic Framework Nanoparticles for CO ₂ â€toâ€C ₂₊ Electroconversion. Advanced Science, 2023, 10, .	5.6	4
1172	Copper and silver nanowires for CO ₂ electroreduction. Nanoscale, 2023, 15, 3693-3703.	2.8	6
1173	Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis. ACS Nanoscience Au, 2023, 3, 140-152.	2.0	3
1174	Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
1175	Local hydrophobicity allows high-performance electrochemical carbon monoxide reduction to C ₂₊ products. , 2023, 1, 263-273.		3
1175 1176	Local hydrophobicity allows high-performance electrochemical carbon monoxide reduction to	6.6	3

#	Article	IF	CITATIONS
1178	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
1179	CO2 electrolysis towardÂacetate: A review. Current Opinion in Electrochemistry, 2023, 39, 101253.	2.5	6
1180	New perspectives, rational designs, and engineering of Tin (Sn)-based materials for electrochemical CO2 reduction. Materials Today Sustainability, 2023, 22, 100384.	1.9	6
1181	Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angewandte Chemie, 2023, 135, .	1.6	0
1182	Electrochemical reduction of carbon dioxide into valuable chemicals: a review. Environmental Chemistry Letters, 2023, 21, 1515-1553.	8.3	10
1184	Impact of Pore Structure on Electrochemical Reduction of Carbon Dioxide in Iron- and Nitrogen-Doped Carbon Materials: Solid–Liquid Interface Versus Solid–Gas–Liquid Triple-Phase Boundary. Journal of Physical Chemistry C, 2023, 127, 2981-2987.	1.5	1
1185	Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature, 2023, 614, 262-269.	13.7	189
1186	Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nature Communications, 2023, 14, .	5.8	18
1187	CO ₂ Reduction Mechanism on the Cu ₂ O(110) Surface: A Firstâ€Principles Study. ChemPhysChem, 2023, 24, .	1.0	2
1188	Plasmon-Mediated Reconfiguration of Twin Defect Structures in Silver Nanoparticles. Journal of Physical Chemistry C, 2023, 127, 3890-3897.	1.5	4
1189	<i>g</i> -C ₃ N ₄ Nanosheet Supported CuO Nanocomposites for the Electrochemical Carbon Dioxide Reduction Reaction. ACS Omega, 2023, 8, 7368-7377.	1.6	3
1190	Construction of Nitrogenâ€Doped Carbon Functionalized Ni(OH) ₂ for Selective CO ₂ Photoreduction. ChemCatChem, 2023, 15, .	1.8	1
1191	Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films. Nature Communications, 2023, 14, .	5.8	21
1192	Amino-Functionalized Cu for Efficient Electrochemical Reduction of CO to Acetate. ACS Catalysis, 2023, 13, 3532-3540.	5.5	9
1193	Layer-Stacked Zn with Abundant Corners for Selective CO ₂ Electroreduction to CO. ACS Applied Energy Materials, 2023, 6, 2954-2961.	2.5	7
1194	Advanced electrocatalytic technologies for conversion of carbon dioxide into methanol by electrochemical reduction: Recent progress and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215081.	9.5	16
1195	Challenges and opportunities of process intensification for the conversion of waste CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si42.svg" display="inline" id="d1e74"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>to liquid fuels. Chemical</mml:math 	1.8	4
1196	Engineering and Processing: Process Intensification, 2023, 186, 109329. Accessing the Nature of Active Sites and Particle Size Effect for Reduction of Carbon Dioxide over Copper-Based Catalysts. Journal of Physical Chemistry C, 2023, 127, 4975-4983.	1.5	5

#	Article	IF	CITATIONS
1197	Single-Atom-Anchored Two-Dimensional MoSi ₂ N ₄ Monolayers for Efficient Electroreduction of CO ₂ to Formic Acid and Methane. ACS Applied Energy Materials, 2023, 6, 3236-3243.	2.5	5
1198	Synthesis of MnS/MnO Decorated N, Sâ€Doped Carbon Derived from a Mn(II)â€Coordinated Polymer for the Catalytic Oxidation of H ₂ O ₂ and Bisphenol A. Advanced Functional Materials, 2023, 33, .	7.8	3
1199	A silver–copper oxide catalyst for acetate electrosynthesis from carbon monoxide. , 2023, 2, 448-457.		9
1200	Design of a Four-Atom Cluster Embedded in Carbon Nitride for Electrocatalytic Generation of Multi-Carbon Products. Journal of the American Chemical Society, 2023, 145, 7030-7039.	6.6	18
1201	Electrochemical Manufacturing Routes for Organic Chemical Commodities. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 85-108.	3.3	2
1202	Electrocatalytic amino acid synthesis from biomass-derivable keto acids over ball milled carbon nanotubes. Green Chemistry, 2023, 25, 3117-3126.	4.6	9
1203	Combining First-Principles Kinetics and Experimental Data to Establish Guidelines for Product Selectivity in Electrochemical CO ₂ Reduction. ACS Catalysis, 2023, 13, 5062-5072.	5.5	14
1204	Universal preference for low-energy core-shifted grain boundaries at the surfaces of fcc metals. Physical Review Research, 2023, 5, .	1.3	2
1205	EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions. Journal of Solid State Electrochemistry, 0, , .	1.2	0
1206	Ultrafine Fe ₂ C Iron Carbide Nanoclusters Trapped in Topological Carbon Defects for Efficient Electroreduction of Carbon Dioxide. Advanced Energy Materials, 2023, 13, .	10.2	4
1207	Stabilizing Copper by a Reconstruction-Resistant Atomic Cu–O–Si Interface for Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 0, , .	6.6	12
1208	Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO2 Electroreduction. Nanomaterials, 2023, 13, 1304.	1.9	0
1209	Atomically Dispersed Cu–Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate. ACS Catalysis, 2023, 13, 5689-5696.	5.5	7
1210	Synergetic enhancement of selectivity for electroreduction of CO2 to C2H4 by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides. Materials Reports Energy, 2023, 3, 100195.	1.7	6
1211	Benchmarking of commercial Cu catalysts in CO ₂ electro-reduction using a gas-diffusion type microfluidic flow electrolyzer. Chemical Communications, 2023, 59, 5615-5618.	2.2	3
1212	Breaking BEP Relationship with Strong CO Binding and Low C–C Coupling Barriers for Ethanol Synthesis on Boron-Doped Graphyne: Bond Order Conservation and Flexible Orbital Hybridization. Journal of Physical Chemistry C, 2023, 127, 7683-7694.	1.5	5
1213	Cutting-Edge Electrocatalysts for CO2RR. Molecules, 2023, 28, 3504.	1.7	2
1214	Highly Selective Electrochemical Reduction of CO ₂ into Methane on Nanotwinned Cu. Journal of the American Chemical Society, 2023, 145, 9136-9143.	6.6	19

#	Article	IF	CITATIONS
1215	Operando studies track Cu in action. Joule, 2023, 7, 626-628.	11.7	2
1216	Tandem engineering for CO2 electrolysis toward multicarbon products. Nano Research, 2023, 16, 8670-8683.	5.8	6
1217	CO electroreduction: What can we learn from its parent reaction, CO2 electroreduction?. EScience, 2023, 3, 100137.	25.0	1
1222	Case Studies: Ultraviolet-Visible (UV-Vis) Spectroscopy. Springer Handbooks, 2023, , 265-283.	0.3	0
1237	Electrochemical reduction of carbon dioxide to multicarbon (C ₂₊) products: challenges and perspectives. Energy and Environmental Science, 2023, 16, 4714-4758.	15.6	28
1249	Highly selective reduction of CO ₂ to HCOOH by a ZnO/SnO ₂ electrocatalyst with heterogeneous interfaces. New Journal of Chemistry, 2023, 47, 12075-12079.	1.4	0
1255	The design of alternative anodic reactions paired with electrochemical CO ₂ reduction. Green Chemistry, 2023, 25, 5320-5337.	4.6	5
1263	Inorganic nanoparticles. , 2024, , 49-110.		0
1296	Single-atom sites combined with metal nano-aggregates for efficient electrocatalysis. Energy and Environmental Science, 2023, 16, 5663-5687.	15.6	1
1322	Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nature Catalysis, 2023, 6, 1115-1124.	16.1	2
1349	Free-Standing Single-Atom Catalyst-Based Electrodes for CO2 Reduction. Electrochemical Energy Reviews, 2024, 7, .	13.1	0