Wafer-Scale Growth of Single-Crystal Monolayer Graph Hydrogen-Terminated Germanium

Science 344, 286-289 DOI: 10.1126/science.1252268

Citation Report

#	Article	IF	CITATIONS
3	Liquid-phase exfoliated graphene: functionalization, characterization, and applications. Beilstein Journal of Nanotechnology, 2014, 5, 2328-2338.	1.5	28
4	Directional transport of molecular mass on graphene by straining. Extreme Mechanics Letters, 2014, 1, 83-89.	2.0	24
5	Chemical vapor deposited graphene: From synthesis to applications. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2439-2449.	0.8	81
6	Techniques for Production of Large Area Graphene for Electronic and Sensor Device Applications. Graphene and 2D Materials, 2014, 1, .	2.0	0
7	Shapers: Capturing Free Form Shapes for Bendable Device Interactions. Procedia Computer Science, 2014, 39, 158-161.	1.2	1
8	Understanding intercalation structures formed under graphene on Ir(111). Physical Review B, 2014, 90, .	1.1	36
9	Cu hill and graphene grain evolution in the synthesis of millimeter-sized single crystal graphene during low pressure chemical vapor deposition. RSC Advances, 2014, 4, 32941-32945.	1.7	15
10	Controlling the direct growth of graphene on an insulating substrate by the solid phase reaction of a polymer layer. RSC Advances, 2014, 4, 38450-38454.	1.7	10
11	Repeated Growth–Etching–Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano, 2014, 8, 12806-12813.	7.3	100
12	Exceptionally strong and robust millimeter-scale graphene–alumina composite membranes. Nanotechnology, 2014, 25, 355701.	1.3	4
13	Graphene synthesis. Diamond and Related Materials, 2014, 46, 25-34.	1.8	215
14	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
15	Nanoscale control of graphene electrodes. Physical Chemistry Chemical Physics, 2014, 16, 20398-20401.	1.3	67
16	Oxidized Titanium as a Gate Dielectric for Graphene Field Effect Transistors and Its Tunneling Mechanisms. ACS Nano, 2014, 8, 10480-10485.	7.3	16
17	Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale, 2014, 6, 12250-12272.	2.8	323
18	Influence of graphene-substrate interactions on configurations of organic molecules on graphene: Pentacene/epitaxial graphene/SiC. Applied Physics Letters, 2014, 105, .	1.5	12
19	Polycrystalline Graphene with Single Crystalline Electronic Structure. Nano Letters, 2014, 14, 5706-5711.	4.5	134
20	Interface Engineering for CVD Graphene: Current Status and Progress. Small, 2014, 10, 4443-4454.	5.2	29

#	Article	IF	CITATIONS
21	Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. Journal of Alloys and Compounds, 2014, 614, 323-329.	2.8	45
22	Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. Chemical Communications, 2014, 50, 11012-11015.	2.2	28
23	Ageing mechanisms and reliability of graphene-based electrodes. Nano Research, 2014, 7, 1820-1831.	5.8	23
24	Twoâ€Ðimensional Material Membranes: An Emerging Platform for Controllable Mass Transport Applications. Small, 2014, 10, 4521-4542.	5.2	115
25	Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction. Journal of the American Chemical Society, 2014, 136, 13698-13708.	6.6	95
26	Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano, 2014, 8, 10471-10479.	7.3	87
27	Electronics based on two-dimensional materials. Nature Nanotechnology, 2014, 9, 768-779.	15.6	2,505
28	Direct growth of graphene on Si(111). Journal of Applied Physics, 2014, 115, 223704.	1.1	21
29	On the rotational alignment of graphene domains grown on Ge(110) andGe(111). MRS Communications, 2015, 5, 539-546.	0.8	19
30	Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Optics Express, 2015, 23, 30721.	1.7	50
31	Large area preparation of multilayered graphene films by chemical vapour deposition with high electrocatalytic activity toward hydrogen peroxide. Materials Technology, 2015, 30, 121-126.	1.5	8
32	Monolayer charge-neutral graphene on platinum with extremely weak electron-phonon coupling. Physical Review B, 2015, 92, .	1.1	12
33	The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Scientific Reports, 2015, 5, 13205.	1.6	79
34	Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 2015, 5, 13480.	1.6	64
35	van der Waals Heteroepitaxy of Semiconductor Nanowires. Semiconductors and Semimetals, 2015, , 125-172.	0.4	7
36	Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains. Scientific Reports, 2015, 5, 16159.	1.6	72
37	Atomically precise semiconductor—graphene and hBN interfaces by Ge intercalation. Scientific Reports, 2015, 5, 17700.	1.6	24
38	Distribution of free carriers near heavily-doped epitaxial surfaces of n-type Ge(100) upon HF and HCl treatments. AIP Advances, 2015, 5, .	0.6	2

#	Article	IF	CITATIONS
39	Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu. Nanotechnology, 2015, 26, 455304.	1.3	6
41	PEEM and Micro PES Study of Graphene Growth on Ni(110) Substrate. E-Journal of Surface Science and Nanotechnology, 2015, 13, 347-351.	0.1	6
42	Design and properties of low-energy X-ray transmission windows based on graphenic carbon. Physica Status Solidi (B): Basic Research, 2015, 252, 2564-2573.	0.7	15
44	Kinetic Nature of Grain Boundary Formation in Asâ€Grown MoS ₂ Monolayers. Advanced Materials, 2015, 27, 4069-4074.	11.1	130
45	Thermoelectric Properties of Nanowires with a Graphitic Shell. ChemSusChem, 2015, 8, 2372-2377.	3.6	3
46	Aligned Growth of Hexagonal Boron Nitride Monolayer on Germanium. Small, 2015, 11, 5375-5380.	5.2	56
47	Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes. Sensors, 2015, 15, 14766-14787.	2.1	29
48	Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale, 2015, 7, 9859-9867.	2.8	45
49	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	7.3	97
50	Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1). Journal Physics D: Applied Physics, 2015, 48, 115306.	1.3	23
51	Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene Layer on a Wide-Band Gap Semiconductor. Journal of the American Chemical Society, 2015, 137, 6897-6905.	6.6	55
52	Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Materials, 2015, 2, 034003.	2.0	38
53	In Situ Synthesis of Covalent Organic Frameworks (COFs) on Carbon Nanotubes and Graphenes by Sonochemical Reaction for CO2 Adsorbents. Chemistry Letters, 2015, 44, 560-562.	0.7	26
54	Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan, 2015, 84, 121013.	0.7	24
55	Water-mediated and instantaneous transfer of graphene grown at 220 °C enabled by a plasma. Nanoscale, 2015, 7, 20564-20570.	2.8	24
56	Cu diffusion barrier: Graphene benchmarked to TaN for ultimate interconnect scaling. , 2015, , .		16
57	Building graphene p–n junctions for next-generation photodetection. Nano Today, 2015, 10, 701-716.	6.2	45
58	Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today, 2015, 10, 681-700.	6.2	73

IF ARTICLE CITATIONS # Synthesis of graphene and other 2D material: The past and future of chemical vapor deposition., 2015, 59 0 Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology, 2015, 26, 045301. 1.3 High-Speed Planar GaAs Nanowire Arrays with <i>f</i></sub>max</sub> > 75 GHz by Wafer-Scale 61 4.5 56 Bottom-up Growth. Nano Letters, 2015, 15, 2780-2786. Fluorinated Graphene in Interface Engineering of Geâ€Based Nanoelectronics. Advanced Functional Materials, 2015, 25, 1805-1813. Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods. Jom, 2015, 67, 44-52. 63 0.9 27 Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. Journal of Materials Chemistry C, 2015, 3, 3530-3535. Breaking of Symmetry in Graphene Growth on Metal Substrates. Physical Review Letters, 2015, 114, 65 2.9 68 115502. Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry. Nano 4.5 66 14 Letters, 2015, 15, 2555-2561. Graphene base heterojunction transistor: An explorative study on device potential, optimization, and 67 0.8 7 base parasitics. Solid-Štate Electronics, 2015, 114, 23-29. Step-Edge-Guided Nucleation and Growth of Aligned WSe₂ on Sapphire <i>via</i> 168 Layer-over-Layer Growth Mode. ACS Nano, 2015, 9, 8368-8375. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface. Acta Materialia, 69 3.8 8 2015, 96, 18-23. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation. Journal 0.3 of the Korean Physical Society, 2015, 66, 1852-1855. Vertical and Lateral Copper Transport through Graphene Layers. ACS Nano, 2015, 9, 8361-8367. 71 7.3 31 Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Science Advances, 2015, 1, e1500222. Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems. Nanoscience and 73 1.5 1 Technology, 2015, , 379-424. Large area CVD growth of graphene. Synthetic Metals, 2015, 210, 95-108. 74 182 On the ageing mechanisms of graphene-on-metal electrodes., 2015,,. 75 2 High Performance X-Ray Transmission Windows Based on Graphenic Carbon. IEEE Transactions on 1.2 Nuclear Science, 2015, 62, 588-593.

0			D -	
	ТΛТ	ON	IVE	PORT
	IAU			FURT

#	Article	IF	CITATIONS
77	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	2.1	316
78	Realization of Large-Area Wrinkle-Free Monolayer Graphene Films Transferred to Functional Substrates. Scientific Reports, 2015, 5, 9610.	1.6	22
79	Growth Dynamics of Single-Layer Graphene on Epitaxial Cu Surfaces. Chemistry of Materials, 2015, 27, 5377-5385.	3.2	65
80	A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances, 2015, 5, 62772-62777.	1.7	20
81	Scalable Transfer of Suspended Two-Dimensional Single Crystals. Nano Letters, 2015, 15, 5089-5097.	4.5	38
82	Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nature Communications, 2015, 6, 6499.	5.8	173
83	CVD-Enabled Graphene Manufacture and Technology. Journal of Physical Chemistry Letters, 2015, 6, 2714-2721.	2.1	100
84	Interface engineering for high performance graphene electronic devices. Nano Convergence, 2015, 2, .	6.3	22
85	Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. Nano Letters, 2015, 15, 3254-3260.	4.5	272
86	Polymer-free graphene transfer on moldable cellulose acetate based paper by hot press technique. Surface and Coatings Technology, 2015, 275, 369-373.	2.2	8
87	Real-time observation of epitaxial graphene domain reorientation. Nature Communications, 2015, 6, 6880.	5.8	33
88	Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale, 2015, 7, 9963-9969.	2.8	41
89	Graphene Single Crystals: Size and Morphology Engineering. Advanced Materials, 2015, 27, 2821-2837.	11.1	99
90	Single-step deposition of high-mobility graphene at reduced temperatures. Nature Communications, 2015, 6, 6620.	5.8	173
91	Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition. Nanoscale, 2015, 7, 10357-10361.	2.8	16
92	Ultrathin Singleâ€Crystalline Boron Nanosheets for Enhanced Electroâ€Optical Performances. Advanced Science, 2015, 2, 1500023.	5.6	78
93	Towards Wafer-Scale Monocrystalline Graphene Growth and Characterization. Small, 2015, 11, 3512-3528.	5.2	54
94	Electron transfer induced thermochromism in a VO ₂ –graphene–Ge heterostructure. Journal of Materials Chemistry C, 2015, 3, 5089-5097.	2.7	36

#	Article	IF	CITATIONS
95	Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Materials Today, 2015, 18, 336-344.	8.3	133
96	Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon, 2015, 84, 519-550.	5.4	202
97	Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Applied Physics Letters, 2015, 106, .	1.5	13
98	Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Reports on Progress in Physics, 2015, 78, 036501.	8.1	93
99	Long distance spin communication in chemical vapour deposited graphene. Nature Communications, 2015, 6, 6766.	5.8	202
100	Determination of quantitative structure-property and structure-process relationships for graphene production in water. Nano Research, 2015, 8, 1865-1881.	5.8	16
101	Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene. ACS Nano, 2015, 9, 4776-4785.	7.3	250
102	Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale, 2015, 7, 9105-9121.	2.8	47
103	Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition. Nano Letters, 2015, 15, 7414-7420.	4.5	103
104	Direct oriented growth of armchair graphene nanoribbons on germanium. Nature Communications, 2015, 6, 8006.	5.8	157
105	Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Physical Chemistry Chemical Physics, 2015, 17, 30270-30278.	1.3	4
106	Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO. Nanoscale, 2015, 7, 17702-17709.	2.8	19
107	Fracture of graphene: a review. International Journal of Fracture, 2015, 196, 1-31.	1.1	144
108	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Research, 2015, 8, 3164-3176.	5.8	171
109	Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science, 2015, 6, 6705-6716.	3.7	206
110	Going ballistic: Graphene hot electron transistors. Solid State Communications, 2015, 224, 64-75.	0.9	37
111	Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature communications, 2015, 6, 8294.	5.8	277
112	Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nature Communications, 2015, 6, 8969.	5.8	197

#	Article	IF	Citations
113	The growth behavior of graphene on iron-trichloride-solution-soaked copper substrates in a low pressure chemical vapor deposition. RSC Advances, 2015, 5, 2328-2332.	1.7	2
114	Seamless Stitching of Graphene Domains on Polished Copper (111) Foil. Advanced Materials, 2015, 27, 1376-1382.	11.1	314
115	Band Engineering for Novel Twoâ€Ðimensional Atomic Layers. Small, 2015, 11, 1868-1884.	5.2	96
116	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	4.5	136
117	Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015, 132, 192-206.	1.1	191
118	Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition. Carbon, 2015, 81, 814-820.	5.4	45
119	Electronic Transport in Heterostructures of Chemical Vapor Deposited Graphene and Hexagonal Boron Nitride. Small, 2015, 11, 1402-1408.	5.2	14
120	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	18.7	334
121	Optoelectronic investigation of corundum Mg4Nb2O9 single crystal. Journal of Alloys and Compounds, 2015, 619, 240-243.	2.8	4
122	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
123	Towards a Graphene-Based Low Intensity Photon Counting Photodetector. Sensors, 2016, 16, 1351.	2.1	3
124	Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotechnology, 2016, 11, 954-959.	15.6	251
125	Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation. Small, 2016, 12, 3645-3650.	5.2	62
126	Synthesis of Millimeterâ€Scale Transition Metal Dichalcogenides Single Crystals. Advanced Functional Materials, 2016, 26, 2009-2015.	7.8	152
127	Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transferâ€Free Device Fabrication. Advanced Materials, 2016, 28, 4956-4975.	11.1	113
128	Graphene Coating of Silicon Nanoparticles with CO ₂ â€Enhanced Chemical Vapor Deposition. Small, 2016, 12, 658-667.	5.2	27
129	Grapheneâ€Based Flexible and Stretchable Electronics. Advanced Materials, 2016, 28, 4184-4202.	11.1	537
130	A Surface Plasmon Enhanced Nearâ€Infrared Nanophotodetector. Advanced Optical Materials, 2016, 4, 763-771.	3.6	45

#	Article	IF	CITATIONS
131	Structural and electronic properties of Pt induced nanowires on Ge(110). Applied Surface Science, 2016, 387, 766-770.	3.1	6
132	Direct Conversion of Greenhouse Gas CO ₂ into Graphene via Molten Salts Electrolysis. ChemSusChem, 2016, 9, 588-594.	3.6	80
133	Oxidativeâ€Etchingâ€Assisted Synthesis of Centimeterâ€6ized Singleâ€Crystalline Graphene. Advanced Materials, 2016, 28, 3152-3158.	11.1	81
134	Heteroepitaxial Growth of GaN on Unconventional Templates and Layerâ€Transfer Techniques for Largeâ€Area, Flexible/Stretchable Lightâ€Emitting Diodes. Advanced Optical Materials, 2016, 4, 505-521.	3.6	27
135	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
136	Inversion of Spin Signal and Spin Filtering in Ferromagnet Hexagonal Boron Nitride-Graphene van der Waals Heterostructures. Scientific Reports, 2016, 6, 21168.	1.6	79
137	Self-Heating and Failure in Scalable Graphene Devices. Scientific Reports, 2016, 6, 26457.	1.6	18
138	Infrared spectroscopic study of carrier scattering in gated CVD graphene. Physical Review B, 2016, 94, .	1.1	11
139	Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy. Journal of Applied Physics, 2016, 120, 045309.	1.1	7
140	The Nature of Metastable AA' Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Scientific Reports, 2016, 6, 39624.	1.6	34
141	CMOS-compatible catalytic growth of graphene on a silicon dioxide substrate. Applied Physics Letters, 2016, 109, .	1.5	14
142	Graphene growth on Ge(100)/Si(100) substrates by CVD method. Scientific Reports, 2016, 6, 21773.	1.6	83
143	Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Applied Physics Letters, 2016, 108, .	1.5	81
144	Facile fabrication of properties-controllable graphene sheet. Scientific Reports, 2016, 6, 24525.	1.6	16
145	Review of Graphene as a Solid State Diffusion Barrier. Small, 2016, 12, 120-134.	5.2	38
146	Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 2016, 394, 162-175.	4.0	105
147	Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic Devices. Nano Letters, 2016, 16, 2951-2957.	4.5	39
148	Mechanical characterisation of nanocrystalline graphite using micromechanical structures. Microelectronic Engineering, 2016, 159, 184-189.	1.1	18

#	Article	IF	CITATIONS
149	Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition. 2D Materials, 2016, 3, 021001.	2.0	12
150	Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces. Nanoscale, 2016, 8, 11503-11510.	2.8	11
151	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Letters, 2016, 16, 3160-3165.	4.5	92
152	Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. Nano Letters, 2016, 16, 3360-3366.	4.5	167
153	Large-area high-quality graphene on Ge(001)/Si(001) substrates. Nanoscale, 2016, 8, 11241-11247.	2.8	48
154	Heterogeneous Epitaxy: Designed Peptides Scale Graphene's Surface. Biophysical Journal, 2016, 110, 2291-2292.	0.2	0
156	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
157	Modulation of N-bonding configurations and their influence on the electrical properties of nitrogen-doped graphene. RSC Advances, 2016, 6, 92682-92687.	1.7	10
158	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C, 2016, 4, 7464-7471.	2.7	28
159	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie - International Edition, 2016, 55, 10656-10661.	7.2	27
160	van der Waals Heteroepitaxy of Germanene Islands on Graphite. Journal of Physical Chemistry Letters, 2016, 7, 3246-3251.	2.1	42
161	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie, 2016, 128, 10814-10819.	1.6	17
162	High-yield fabrication of suspended two-dimensional materials for atomic resolution imaging. RSC Advances, 2016, 6, 76273-76279.	1.7	2
163	A facile method for the synthesis of transfer-free graphene from co-deposited nickel–carbon layers. Carbon, 2016, 109, 154-162.	5.4	9
164	Graphene-Enabled Heterostructures: Role in Future-Generation Carbon Electronics. , 2016, , 441-452.		1
165	Graphene Applications. , 2016, , 665-686.		0
166	Versatile optical determination of two-dimensional atomic crystal layers. Carbon, 2016, 109, 384-389.	5.4	8
167	In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils. Nano Letters, 2016, 16, 6196-6206.	4.5	62

#	Article	IF	CITATIONS
168	Single-Layer Graphene Synthesis on a Al2O3(0001)/Cu(111) Template Using Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2016, 5, Q3060-Q3066.	0.9	8
169	Surface Monocrystallization of Copper Foil for Fast Growth of Large Single rystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
170	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	14.8	104
171	Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging. Chemistry of Materials, 2016, 28, 8905-8915.	3.2	128
172	Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nature Communications, 2016, 7, 10783.	5.8	80
173	Advances in 2D Materials for Electronic Devices. Semiconductors and Semimetals, 2016, 95, 221-277.	0.4	8
174	Charge transfer in crystalline germanium/monolayer MoS ₂ heterostructures prepared by chemical vapor deposition. Nanoscale, 2016, 8, 18675-18681.	2.8	25
175	Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon, 2016, 110, 384-389.	5.4	9
176	Fabrication Considerations for Graphene Devices. , 2016, , 19-30.		0
177	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
178	Graphene Synthesis. , 2016, , 19-61.		2
179	Organic Dye Graphene Hybrid Structures with Spectral Color Selectivity. Advanced Functional Materials, 2016, 26, 6593-6600.	7.8	31
180	Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Applied Materials & Interfaces, 2016, 8, 33072-33082.	4.0	40
181	Investigating the CVD Synthesis of Graphene on Ge(100): toward Layer-by-Layer Growth. ACS Applied Materials & Interfaces, 2016, 8, 33083-33090.	4.0	48
182	Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns. Scientific Reports, 2016, 6, 31407.	1.6	20
183	Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 2016, 6, 31994.	1.6	192
184	Understanding the growth mechanism of graphene on Ge/Si(001) surfaces. Scientific Reports, 2016, 6, 31639.	1.6	44
185	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93

#	Article	IF	CITATIONS
186	Robust ultra-low-friction state of graphene via moir $ ilde{A}$ © superlattice confinement. Nature Communications, 2016, 7, 13204.	5.8	116
187	PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Scientific Reports, 2016, 6, 33096.	1.6	83
188	Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale. Nature Communications, 2016, 7, 12099.	5.8	70
189	Templating for hierarchical structure control in carbon materials. Nanoscale, 2016, 8, 18828-18848.	2.8	34
190	Tunable graphene micro-emitters with fast temporal response and controllable electron emission. Nature Communications, 2016, 7, 11513.	5.8	48
191	Preparation of Carbon Nanosheets at Room Temperature. Journal of Visualized Experiments, 2016, , .	0.2	0
192	Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 2016, 12, 3480-3502.	5.2	337
193	Synthetic Twoâ€Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Advanced Materials, 2016, 28, 6529-6545.	11.1	192
194	High Capacity Retention Anode Material for Lithium Ion Battery. Electrochimica Acta, 2016, 211, 156-163.	2.6	44
195	Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method. Nanoscale, 2016, 8, 13781-13789.	2.8	23
196	Spanning the "Parameter Space―of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations. Journal of Physical Chemistry C, 2016, 120, 13851-13864.	1.5	14
197	On the Mechanism of Hydrophilicity of Graphene. Nano Letters, 2016, 16, 4447-4453.	4.5	148
198	Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene. Chemistry of Materials, 2016, 28, 3789-3795.	3.2	44
199	High Luminescence Efficiency in MoS ₂ Grown by Chemical Vapor Deposition. ACS Nano, 2016, 10, 6535-6541.	7.3	140
200	Flexible GaN Lightâ€Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots. Advanced Materials, 2016, 28, 7688-7694.	11.1	75
201	Tunable functionalization of graphene nanosheets for graphene-organic hybrid photodetectors. Nanotechnology, 2016, 27, 075709.	1.3	16
202	Photonic Integration Circuits in China. IEEE Journal of Quantum Electronics, 2016, 52, 1-17.	1.0	6
203	Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures. Nano Letters, 2016, 16, 1179-1185.	4.5	20

#	Article	IF	CITATIONS
204	Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering. Nano Letters, 2016, 16, 1455-1461.	4.5	19
205	Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene. ACS Nano, 2016, 10, 1681-1689.	7.3	13
206	Epitaxial Al ₂ O ₃ (0001)/Cu(111) Template Development for CVD Graphene Growth. Journal of Physical Chemistry C, 2016, 120, 297-304.	1.5	51
207	Graphene Functionalization forÂBiosensor Applications. , 2016, , 85-141.		43
208	CVD graphene recrystallization as a new route to tune graphene structure and properties. Carbon, 2016, 102, 499-505.	5.4	23
209	Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Research, 2016, 9, 249-259.	5.8	24
210	Local transport measurements in graphene on SiO2 using Kelvin probe force microscopy. Carbon, 2016, 102, 470-476.	5.4	16
211	Chemical Vapor Deposited Graphene for Opto-Electronic Applications. Journal of Nano Research, 2016, 39, 57-68.	0.8	0
212	Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016, 3, 186-207.	6.4	127
	Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and		
213	Stretchable Devices. ACS Nano, 2016, 10, 1539-1545.	7.3	47
213 214	Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	7.3 23.0	47
	Stretchable Devices. ACS Nano, 2016, 10, 1539-1545.		
214	Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214. Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor	23.0	163
214 215	 Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214. Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon, 2016, 100, 1-6. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni 	23.0 5.4	163 26
214 215 216	 Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214. Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon, 2016, 100, 1-6. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nature Materials, 2016, 15, 43-47. Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST 	23.0 5.4 13.3	163 26 515
214 215 216 217	 Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214. Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon, 2016, 100, 1-6. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nature Materials, 2016, 15, 43-47. Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series, 2016, Assessing kinetics of surface adsorption–desorption of gas molecules via electrical measurements. 	23.0 5.4 13.3 1.5	163 26 515 7
214 215 216 217 218	 Stretchable Devices. ACS Nano, 2016, 10, 1539-1545. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214. Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon, 2016, 100, 1-6. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nature Materials, 2016, 15, 43-47. Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series, 2016, Assessing kinetics of surface adsorption–desorption of gas molecules via electrical measurements. Sensors and Actuators B: Chemical, 2016, 223, 791-798. Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related 	23.0 5.4 13.3 1.5 4.0	163 26 515 7 21

#	Article	IF	CITATIONS
222	Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride. Carbon, 2017, 114, 579-584.	5.4	12
223	Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals. Nano Research, 2017, 10, 826-833.	5.8	12
224	Direct observation of grain boundaries in chemical vapor deposited graphene. Carbon, 2017, 115, 147-153.	5.4	22
225	Controlled Electrochemical Deposition of Largeâ€Area MoS ₂ on Graphene for Highâ€Responsivity Photodetectors. Advanced Functional Materials, 2017, 27, 1603998.	7.8	45
226	Atomically thin semiconducting layers and nanomembranes: a review. Semiconductor Science and Technology, 2017, 32, 033001.	1.0	9
227	Solid source growth of graphene with Ni–Cu catalysts: towards high quality <i>in situ</i> graphene on silicon. Journal Physics D: Applied Physics, 2017, 50, 095302.	1.3	20
228	Influence of the copper substrate roughness on the electrical quality of graphene. Materials Research Express, 2017, 4, 015604.	0.8	9
229	Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 2017, 1, .	13.8	671
230	Synthesis of Single‣ayer Graphene on Nickel Using a Droplet CVD Process. Advanced Materials Interfaces, 2017, 4, 1600783.	1.9	18
231	Review—Critical Considerations of High Quality Graphene Synthesized by Plasma-Enhanced Chemical Vapor Deposition for Electronic and Energy Storage Devices. ECS Journal of Solid State Science and Technology, 2017, 6, M3035-M3048.	0.9	30
232	Controlled synthesis and characterization of multilayer graphene films on the Câ€face of silicon carbide. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600721.	0.8	14
233	Arrayed Van Der Waals Broadband Detectors for Dualâ€Band Detection. Advanced Materials, 2017, 29, 1604439.	11.1	218
234	Exploring oxygen in graphene chemical vapor deposition synthesis. Nanoscale, 2017, 9, 3719-3735.	2.8	31
235	Identifying suitable substrates for high-quality graphene-based heterostructures. 2D Materials, 2017, 4, 025030.	2.0	83
236	Realization of continuous Zachariasen carbon monolayer. Science Advances, 2017, 3, e1601821.	4.7	46
237	Vertical Charge Transfer and Lateral Transport in Graphene/Germanium Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 15830-15840.	4.0	2
238	Twoâ€Dimensional Semiconductors: From Materials Preparation to Electronic Applications. Advanced Electronic Materials, 2017, 3, 1700045.	2.6	94
239	A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C ₅ NCl ₅ Precursors. Journal of the American Chemical Society, 2017, 139, 7196-7202.	6.6	16

#	Article	IF	CITATIONS
240	Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers. Catalysis Science and Technology, 2017, 7, 2744-2752.	2.1	123
241	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
242	Very large scale characterization of graphene mechanical devices using a colorimetry technique. Nanoscale, 2017, 9, 7559-7564.	2.8	14
243	Graphene Synthesis and Processing on Ge Substrates. ECS Journal of Solid State Science and Technology, 2017, 6, M55-M59.	0.9	9
244	Epitaxial growth of a graphene single crystal on the Ni(111) surface. JETP Letters, 2017, 105, 185-188.	0.4	9
245	van der Waals epitaxy of CdS thin films on single-crystalline graphene. Applied Physics Letters, 2017, 110, .	1.5	24
246	Decoupling of graphene from Ni(111) via formation of an interfacial NiO layer. Carbon, 2017, 121, 10-16.	5.4	34
247	Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small, 2017, 13, 1700651.	5.2	33
248	The Way towards Ultrafast Growth of Singleâ€Crystal Graphene on Copper. Advanced Science, 2017, 4, 1700087.	5.6	40
249	Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel. Nanoscale, 2017, 9, 9631-9640.	2.8	17
250	All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6717-6721.	3.3	144
251	Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth. Scientific Reports, 2017, 7, 45358.	1.6	34
252	Rapid growth of angle-confined large-domain graphene bicrystals. Nano Research, 2017, 10, 1189-1199.	5.8	9
253	Graphene–Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy. Small, 2017, 13, 1603269.	5.2	11
254	Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes. Advanced Materials, 2017, 29, 1605896.	11.1	46
255	Highly Stable and Effective Doping of Graphene by Selective Atomic Layer Deposition of Ruthenium. ACS Applied Materials & Interfaces, 2017, 9, 701-709.	4.0	29
256	Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS ₂ . Advanced Materials, 2017, 29, 1603550.	11.1	77
257	Controlling Water Intercalation Is Key to a Direct Graphene Transfer. ACS Applied Materials & Interfaces, 2017, 9, 37484-37492.	4.0	47

#	Article	IF	CITATIONS
258	The study of the interactions between graphene and Ge(001)/Si(001). Nano Research, 2017, 10, 3648-3661.	5.8	23
259	Monolithic Cu/C hybrid beads with well-developed porosity for the reduction of 4-nitrophenol to 4-aminophenol. New Journal of Chemistry, 2017, 41, 13230-13234.	1.4	23
260	Quantum materials discovery from a synthesis perspective. Nature Materials, 2017, 16, 1068-1076.	13.3	59
261	Surface morphology, structural and electronic properties of graphene on Ge(111) via direct deposition of solid-state carbon atoms. Thin Solid Films, 2017, 639, 84-90.	0.8	7
262	Catalytic CVD synthesis of boron nitride and carbon nanomaterials – synergies between experiment and theory. Physical Chemistry Chemical Physics, 2017, 19, 26466-26494.	1.3	24
263	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11
264	A Survey of Graphene-Based Field Effect Transistors for Bio-sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 165-200.	0.5	2
265	CVD Synthesis of Graphene. , 2017, , 19-56.		9
266	Optimized Trajectories to the Nearest Stars Using Lightweight High-velocity Photon Sails. Astronomical Journal, 2017, 154, 115.	1.9	44
267	Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chemical Society Reviews, 2017, 46, 6276-6300.	18.7	81
268	High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium. ACS Nano, 2017, 11, 8924-8929.	7.3	38
269	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	23.0	258
270	Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene. 2D Materials, 2017, 4, 045017.	2.0	17
271	Mapping the electrical properties of large-area graphene. 2D Materials, 2017, 4, 042003.	2.0	113
272	Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy. Scientific Reports, 2017, 7, 10625.	1.6	35
273	Progress of Largeâ€Scale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098.	5.2	54
274	Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling. Journal of Micromechanics and Microengineering, 2017, 27, 095015.	1.5	9
275	Metre-size single-crystal graphene becomes a reality. Science Bulletin, 2017, 62, 1039-1040.	4.3	7

#	Article	IF	Citations
276	First-principle investigation of TcSe2 monolayer as an efficient visible light photocatalyst for water splitting hydrogen production. Research on Chemical Intermediates, 2017, 43, 5271-5282.	1.3	14
277	Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO ₂ /Si: An Azimuthal RHEED Approach. ACS Applied Materials & Interfaces, 2017, 9, 23081-23091.	4.0	27
278	Transferable single-crystal GaN thin films grown on chemical vapor-deposited hexagonal BN sheets. NPG Asia Materials, 2017, 9, e410-e410.	3.8	32
279	Domain size, layer number and morphology control for graphene grown by chemical vapor deposition. Functional Materials Letters, 2017, 10, 1730003.	0.7	8
280	Advancements in 2D flexible nanoelectronics: from material perspectives to RF applications. Flexible and Printed Electronics, 2017, 2, 043001.	1.5	37
281	Single Crystalline Metal Films as Substrates for Graphene Growth. Annalen Der Physik, 2017, 529, 1700023.	0.9	5
282	Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Metals. , 2017, , 238-256.		1
283	Alloyed surfaces: New substrates for graphene growth. Surface Science, 2017, 665, 28-31.	0.8	2
284	Growth of Graphene/h-BN Heterostructures on Recyclable Pt Foils by One-Batch Chemical Vapor Deposition. Scientific Reports, 2017, 7, 17083.	1.6	19
285	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	7.3	172
286	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
287	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	2.1	114
288	(Invited) Scalable Growth of Two-Dimensional Materials – a Prerequisite for Process Integration. ECS Transactions, 2017, 80, 259-270.	0.3	0
289	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	2.8	120
290	Replacing copper interconnects with graphene at a 7-nm node. , 2017, , .		22
291	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	4.3	454
292	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309
293	Growth and electronic structure of graphene on semiconducting Ge(110). Carbon, 2017, 122, 428-433.	5.4	25

ARTICLE IF CITATIONS # Graphene integration with nitride semiconductors for high power and high frequency electronics. 294 0.8 38 Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600460. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical 38 vapor deposition. 2D Materials, 2017, 4, 015009. Deposition Methods of Graphene as Electrode Material for Organic Solar Cells. Advanced Energy 296 10.2 56 Materials, 2017, 7, 1601393. Mixed-dimensional van der Waals heterostructures. Nature Materials, 2017, 16, 170-181. 1,220 Advances in scalable gas-phase manufacturing and processing of nanostructured solids: A review. 298 2.0 $\mathbf{31}$ Particuology, 2017, 30, 15-39. Synthesis of Graphene by Magnetron-Plasma-Enhanced Chemical Vapor Deposition on Different Substrate Materials. Journal of the Vacuum Society of Japan, 2017, 60, 459-462. 299 0.3 Ellipsometric Monitoring of First Stages of Graphene Growth in Plasma-Enhanced Chemical Vapor 300 0.3 2 Deposition. Journal of the Vacuum Society of Japan, 2017, 60, 135-138. 4. Controlled Chemical Synthesis in CVD Graphene., 2017, , . 302 Controlled Chemical Synthesis in CVD Graphene. ChemistrySelect, 2017, 2, . 0.7 7 The integration of graphene into microelectronic devices. Beilstein Journal of Nanotechnology, 2017, 1.5 8, 1056-1064. The graphene/n-Ge(110) interface: structure, doping, and electronic properties. Nanoscale, 2018, 10, 304 2.8 28 6088-6098. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates. Nanotechnology, 2018, 29, 215711. 1.3 Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surfaceâ€Adhered 306 11.1 18 Solid Carbon Source. Ádvanced Materials, 2018, 30, e1706569. Membrane cholesterol mediates the cellular effects of monolayer graphene substrates. Nature 5.8 Communications, 2018, 9, 796. Bimetallic junction mediated synthesis of multilayer graphene edges towards ultrahigh capacity for 308 2.8 4 lithium ion batteries. Nanoscale, 2018, 10, 5214-5220. Effect of friction on oxidative graphite intercalation and high-quality graphene formation. Nature 309 5.8 79 Communications, 2018, 9, 836. 310 Early stage of CVD graphene synthesis on Ge(001) substrate. Carbon, 2018, 134, 183-188. 5.427 Surface Science and Vacuum. Vacuum and Surface Science, 2018, 61, 15-20.

		CITATION REPORT		
#	Article		IF	CITATIONS
312	The chemistry of CVD graphene. Journal of Materials Chemistry C, 2018, 6, 6082-6101		2.7	95
313	Atomically flat and thermally stable graphene on Si(111) with preserved intrinsic electr properties. Nanoscale, 2018, 10, 8377-8384.	ronic	2.8	4
314	On the Generalized Thermal Conductance Characterizations of Mixed One-Dimensional–Two-Dimensional van der Waals Heterostructures and Their Implic Pressure Sensors. ACS Applied Materials & Interfaces, 2018, 10, 14221-14229.	ation for	4.0	16
315	Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition. Appl 2018, 447, 816-821.	ied Surface Science,	3.1	20
316	Layerâ€byâ€Layer Decoupling of Twisted Graphene Sheets Epitaxially Grown on a Meta 2018, 14, e1703701.	al Substrate. Small,	5.2	17
317	Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano 11, 4082-4089.	Research, 2018,	5.8	22
318	Enhanced nucleation of germanium on graphene <i>via</i> dipole engineering. Nanoso 5689-5694.	cale, 2018, 10,	2.8	14
319	High Performance Amplifier Element Realization via MoS ₂ /GaTe Heterost Advanced Science, 2018, 5, 1700830.	ructures.	5.6	27
320	Controlling Fundamental Fluctuations for Reproducible Growth of Large Single-Crystal ACS Nano, 2018, 12, 1778-1784.	Graphene.	7.3	31
321	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Mono Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	mer Design to	23.0	410
322	2D Doping Layer for Flexible Transparent Conducting Graphene Electrodes with Low Sl and High Stability. Advanced Electronic Materials, 2018, 4, 1700622.	neet Resistance	2.6	17
323	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	d Their	23.0	1,000
324	Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition ACS Nano, 2018, 12, 2008-2016.	with No Transfer.	7.3	55
325	Growth dynamics controllable deposition of homoepitaxial MgO films on the IBAD-Mg Applied Surface Science, 2018, 435, 225-228.	O substrates.	3.1	3
326	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemist	try, 2018, 2, .	13.8	228
327	Local long-distance spin transport in single layer graphene spin filter. AIP Advances, 20	18, 8, 055911.	0.6	0
328	Wafer-Scale Ultrathin Two-Dimensional Conjugated Microporous Polymers: Preparatio Application in Heterostructure Devices. ACS Applied Materials & Interfaces, 2018,	n and , 10, 4010-4017.	4.0	18
329	THz photonics in two dimensional materials and metamaterials: properties, devices and Journal of Materials Chemistry C, 2018, 6, 1291-1306.	d prospects.	2.7	124

#	Article	IF	CITATIONS
330	van der Waals epitaxial ZnTe thin film on single-crystalline graphene. Journal of Applied Physics, 2018, 123, .	1.1	11
331	One-pot size-controlled growth of graphene-encapsulated germanium nanocrystals. Applied Surface Science, 2018, 440, 553-559.	3.1	2
332	Single crystalline electronic structure and growth mechanism of aligned square graphene sheets. APL Materials, 2018, 6, .	2.2	2
333	Promising Photocatalysts for Water Splitting in BeN ₂ and MgN ₂ Monolayers. Journal of Physical Chemistry C, 2018, 122, 8102-8108.	1.5	32
334	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	18.7	339
335	Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nature Materials, 2018, 17, 318-322.	13.3	204
336	Old materials with new properties II: The metal carbides. Nano Today, 2018, 18, 12-14.	6.2	26
337	Interfacial monolayer graphene growth on arbitrary substrate by nickel-assisted ion implantation. Journal of Materials Science, 2018, 53, 2631-2637.	1.7	8
338	Oxygen-Promoted Methane Activation on Copper. Journal of Physical Chemistry B, 2018, 122, 855-863.	1.2	29
339	Two-dimensional sheet resistance model for polycrystalline graphene with overlapped grain boundaries. FlatChem, 2018, 7, 19-25.	2.8	7
340	Formation of carbon composite structures on the Ge(110) surfaces. Current Applied Physics, 2018, 18, 96-101.	1.1	2
341	Smooth epitaxial copper film on sapphire surface suitable for high quality graphene growth. Thin Solid Films, 2018, 646, 12-16.	0.8	8
342	The influence of hydrogen on transition metal - Catalysed graphene nucleation. Carbon, 2018, 128, 215-223.	5.4	11
343	Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition. Nano-Micro Letters, 2018, 10, 20.	14.4	57
344	Thermoplastic SEBS Elastomer Nanocomposites Reinforced with Functionalized Graphene Dispersions. Macromolecular Materials and Engineering, 2018, 303, 1700324.	1.7	22
345	Selective-area heteroepitaxial growth of <i>h</i> -BN micropatterns on graphene layers. 2D Materials, 2018, 5, 015021.	2.0	5
346	Scanning probe assisted local oxidation nanolithography of CVD grown graphene on Ge(l00). , 2018, , .		0
347	Remote homoepitaxy of ZnO microrods across graphene layers. Nanoscale, 2018, 10, 22970-22980.	2.8	33

#	Article	IF	CITATIONS
348	Direct Growth of Graphene on Flexible Substrates toward Flexible Electronics: A Promising Perspective. , 0, , .		10
349	The Existence of Strong Solutions for a Class of Stochastic Differential Equations. International Journal of Differential Equations, 2018, 2018, 1-5.	0.3	0
350	Combined Ultra High Vacuum Raman and Electronic Transport Characterization of Largeâ€Area Graphene on SiO2. Physica Status Solidi (B): Basic Research, 2018, 255, 1800456.	0.7	4
351	Old materials with new properties III: Antimony. Nano Today, 2018, 23, 8-10.	6.2	0
352	Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing. Applied Physics Letters, 2018, 113, .	1.5	9
353	Ethanol-CVD Growth of Sub-mm Single-Crystal Graphene on Flat Cu Surfaces. Journal of Physical Chemistry C, 2018, 122, 28830-28838.	1.5	23
354	Structural superlubricity and ultralow friction across the length scales. Nature, 2018, 563, 485-492.	13.7	382
355	2D Material Membranes for Operando Atmospheric Pressure Photoelectron Spectroscopy. Topics in Catalysis, 2018, 61, 2085-2102.	1.3	26
356	Growth of Millimeter-Sized Graphene Single Crystals on Al ₂ O ₃ (0001)/Pt(111) Template Wafers Using Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2018, 7, M195-M200.	0.9	20
357	Modulated Resonant Transmission of Graphene Plasmons Across a <i>λ</i> /50 Plasmonic Waveguide Gap. Physical Review Applied, 2018, 10, .	1.5	13
358	Band gap modulation of graphene on SiC. European Physical Journal B, 2018, 91, 1.	0.6	1
359	Progress of Graphene–Silicon Heterojunction Photovoltaic Devices. Advanced Materials Interfaces, 2018, 5, 1801520.	1.9	22
360	Unraveling the Structural and Electronic Properties of Graphene/Ge(110). Journal of Physical Chemistry Letters, 2018, 9, 7059-7063.	2.1	13
361	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
362	Controllable Growth of Graphene on Liquid Surfaces. Advanced Materials, 2019, 31, e1800690.	11.1	47
363	Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications. Nanoscale Research Letters, 2018, 13, 181.	3.1	16
364	Facile Fabrication of Largeâ€Area Atomically Thin Membranes by Direct Synthesis of Graphene with Nanoscale Porosity. Advanced Materials, 2018, 30, e1804977.	11.1	56
365	Kinetic pathways towards mass production of single crystalline stanene on topological insulator substrates. Nanoscale, 2018, 10, 18988-18994.	2.8	8

		15	0
#	ARTICLE Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting	IF	CITATIONS
366	Substrates. Advanced Science, 2018, 5, 1800050.	5.6	81
367	Spectroscopic and microscopic investigations of organic ultrathin films: Correlation between geometrical structures and unoccupied electronic states. Progress in Surface Science, 2018, 93, 108-130.	3.8	16
368	Strain-Induced Band Structure Modulation in Hexagonal Boron Phosphide/Blue Phosphorene vdW Heterostructure. Journal of Physical Chemistry C, 2018, 122, 26120-26129.	1.5	28
369	Unveiling the Direct Correlation between the CVD-Grown Graphene and the Growth Template. Journal of Nanomaterials, 2018, 2018, 1-6.	1.5	4
370	Electronic Structure of Graphene Grown on a Hydrogen-terminated Ge (110) Wafer. Journal of the Korean Physical Society, 2018, 73, 656-660.	0.3	5
371	Bridging the Cap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
372	Liquid catalysts: an innovative solution to 2D materials in CVD processes. Materials Horizons, 2018, 5, 1021-1034.	6.4	19
373	Surface Reconstruction of Germanium: Hydrogen Intercalation and Graphene Protection. Journal of Physical Chemistry C, 2018, 122, 21874-21882.	1.5	19
374	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	1.6	47
375	Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. ACS Nano, 2018, 12, 6117-6127.	7.3	132
376	Transfer of wafer-scale graphene onto arbitrary substrates: steps towards the reuse and recycling of the catalyst. 2D Materials, 2018, 5, 042001.	2.0	7
377	Weak localization behavior observed in graphene grown on germanium substrate. AIP Advances, 2018, 8, .	0.6	4
378	Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays. Optics Letters, 2018, 43, 46.	1.7	29
379	Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Singleâ€Crystal Graphene. Advanced Materials, 2018, 30, e1802441.	11.1	17
380	2.2 Carbonaceous Materials. , 2018, , 40-71.		3
381	Electronics and Optoelectronics Based on Two-Dimensional Materials. Journal of the Korean Physical Society, 2018, 73, 1-15.	0.3	16
382	Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications. Crystals, 2018, 8, 252.	1.0	7
383	Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode. Materials, 2018, 11, 345.	1.3	12

		CITATION REPORT		
#	Article	I	IF	Citations
384	Kelvin force and Raman microscopies of flat SiGe structures with different compositions g Si(111) at high temperatures. Materials Science in Semiconductor Processing, 2018, 83,		1.9	2
385	Direct integration of polycrystalline graphene on silicon as a photodetector <i>via</i> plasma-assisted chemical vapor deposition. Journal of Materials Chemistry C, 2018, 6, 96	82-9690.	2.7	11
386	Vertical Transistors Based on 2D Materials: Status and Prospects. Crystals, 2018, 8, 70.	:	1.0	71
387	Stateâ€ofâ€theâ€Art and Future Prospects for Atomically Thin Membranes from 2D Mate Materials, 2018, 30, e1801179.	rials. Advanced	11.1	79
388	Intelligent identification of two-dimensional nanostructures by machine-learning optical r Nano Research, 2018, 11, 6316-6324.	nicroscopy.	5.8	59
389	Direct synthesis of graphene on silicon oxide by low temperature plasma enhanced chem deposition. Nanoscale, 2018, 10, 12779-12787.	ical vapor	2.8	26
390	Double quantum criticality in superconducting tin arrays-graphene hybrid. Nature Comm 2018, 9, 2159.	unications,	5.8	16
391	Formation of nanocrystalline graphene on germanium. Nanoscale, 2018, 10, 12156-1216	2.	2.8	10
392	TOPSIS based Taguchi design optimization for CVD growth of graphene using different consources: Graphene thickness, defectiveness and homogeneity. Chinese Journal of Chemic Engineering, 2019, 27, 685-694.		1.7	15
393	Surface structures of single-crystal graphene on Cu/Ni(111) and Ge(110) substrates stud tunneling microscopy. Journal of Applied Physics, 2019, 126, .	ied by scanning	1.1	2
394	Controlled Nucleation of Graphene Domains on Copper With an Oxide Layer by Atmosph Chemical Vapor Deposition. Frontiers in Materials, 2019, 6, .	eric Pressure	1.2	4
395	Macroscale single crystal graphene templated directional alignment of liquid-crystal micro for light field imaging. Applied Physics Letters, 2019, 115, .	blens array	1.5	6
396	Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Ma 7, .	terials, 2019,	2.2	16
397	Kinetic modulation of graphene growth by fluorine through spatially confined decomposi metal fluorides. Nature Chemistry, 2019, 11, 730-736.	tion of	6.6	82
398	Synthesis of edge-rich vertical multilayer graphene nanotube arrays towards high-perform supercapacitors. Nanotechnology, 2019, 30, 425401.	ance	1.3	5
399	Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Communications, 2019, 10, 3127.	Nature	5.8	69
400	Tailored Langmuir–Schaefer Deposition of Few-Layer MoS ₂ Nanosheet Fil Electronic Applications. Langmuir, 2019, 35, 9802-9808.	ns for	1.6	22
401	Synthesis of Armchair Graphene Nanoribbons on Germanium-on-Silicon. Journal of Physic C, 2019, 123, 18445-18454.	al Chemistry	1.5	12

#	Article	IF	CITATIONS
402	Simultaneous Electrochemical Dualâ€Electrode Exfoliation of Graphite toward Scalable Production of Highâ€Quality Graphene. Advanced Functional Materials, 2019, 29, 1902171.	7.8	63
403	Grapheneâ€Based Mixedâ€Dimensional van der Waals Heterostructures for Advanced Optoelectronics. Advanced Materials, 2019, 31, e1806411.	11.1	115
404	A facile approach to direct growth of layer-tunable graphene on Ge substrates. Carbon, 2019, 153, 776-782.	5.4	10
405	Functionalization of graphene layers and advancements in device applications. Carbon, 2019, 152, 954-985.	5.4	110
406	Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks. ACS Nano, 2019, 13, 12322-12344.	7.3	36
407	Adlayerâ€Free Largeâ€Area Single Crystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2019, 31, e1903615.	11.1	89
410	Natural Amino Acids: High-Efficiency Intercalants for Graphene Exfoliation. ACS Sustainable Chemistry and Engineering, 2019, 7, 18819-18825.	3.2	30
412	Vaporâ€phase growth of highâ€quality waferâ€scale twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 3 460-478.	¹ ,8.5	46
413	Ageing effects at graphene/germanium interface. Applied Surface Science, 2019, 497, 143779.	3.1	7
414	Direct growth of single-layer terminated vertical graphene array on germanium by plasma enhanced chemical vapor deposition. Carbon, 2019, 155, 320-325.	5.4	19
415	Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65, 104018.	8.2	77
416	A laser-fabricated nanometer-thick carbon film and its strain-engineering for achieving ultrahigh piezoresistive sensitivity. Journal of Materials Chemistry C, 2019, 7, 11276-11284.	2.7	12
417	CVD graphene/Ge interface: morphological and electronic characterization of ripples. Scientific Reports, 2019, 9, 12547.	1.6	13
418	Submicron Size Schottky Junctions on As-Grown Monolayer Epitaxial Graphene on Ge(100): A Low-Invasive Scanned-Probe-Based Study. ACS Applied Materials & Interfaces, 2019, 11, 35079-35087.	4.0	7
419	Electronic Transport Properties of Silicane Determined from First Principles. Materials, 2019, 12, 2935.	1.3	14
420	Graphene at Fifteen. ACS Nano, 2019, 13, 10872-10878.	7.3	92
421	Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507-518.	13.7	936
422	Control of etch pit formation for epitaxial growth of graphene on germanium. Journal of Applied Physics, 2019, 126, 085306.	1.1	5

#	Article	IF	Citations
423	Thickness-tunable growth of ultra-large, continuous and high-dielectric h-BN thin films. Journal of Materials Chemistry C, 2019, 7, 1871-1879.	2.7	17
424	Synthesis and applications of three-dimensional graphene network structures. Materials Today Nano, 2019, 5, 100027.	2.3	60
425	Selective soluble polymer–assisted electrochemical delamination of chemical vapor deposition graphene. Journal of Solid State Electrochemistry, 2019, 23, 943-951.	1.2	6
426	Electrically tunable physical properties of two-dimensional materials. Nano Today, 2019, 27, 99-119.	6.2	35
427	The Accelerating World of Graphdiynes. Advanced Materials, 2019, 31, e1804211.	11.1	86
428	Strategies for fabricating versatile carbon nanomaterials from polymer precursors. Carbon, 2019, 152, 796-817.	5.4	29
429	Passivation of Germanium by Graphene for Stable Graphene/Germanium Heterostructure Devices. ACS Applied Nano Materials, 2019, 2, 4313-4322.	2.4	11
430	Electronic Transport and Thermopower in 2D and 3D Heterostructures—A Theory Perspective. Annalen Der Physik, 2019, 531, 1800510.	0.9	9
431	Single-Crystalline Monolayer Graphene Wafer on Dielectric Substrate of SiON without Metal Catalysts. ACS Nano, 2019, 13, 6662-6669.	7.3	15
432	Dirac Electron Behavior for Spin-Up Electrons in Strongly Interacting Graphene on Ferromagnetic Mn ₅ Ge ₃ . Journal of Physical Chemistry Letters, 2019, 10, 3212-3216.	2.1	7
433	Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18, 550-560.	13.3	211
434	Growth of umbrella-like millimeter-scale single-crystalline graphene on liquid copper. Carbon, 2019, 150, 356-362.	5.4	9
435	Effect of Carbon Diffusion on Friction and Wear Behaviors of Diamond-Like Carbon Coating Against Germanium in Boundary Base Oil Lubrication. Tribology Letters, 2019, 67, 1.	1.2	24
436	Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors. Advanced Functional Materials, 2019, 29, 1901388.	7.8	81
437	All-Dry Transfer of Graphene Film by van der Waals Interactions. Nano Letters, 2019, 19, 3590-3596.	4.5	36
438	Temperature Characteristics of a Pressure Sensor Based on BN/Graphene/BN Heterostructure. Sensors, 2019, 19, 2223.	2.1	12
439	Fermi level depinning in Ti/n-type Ge Schottky junction by the insertion of fluorinated graphene. Journal of Alloys and Compounds, 2019, 794, 218-222.	2.8	7
440	Formation of Twinned Graphene Polycrystals. Angewandte Chemie, 2019, 131, 7805-7809.	1.6	6

#	Article	IF	CITATIONS
441	An Ecoâ€Friendly, CMOSâ€Compatible Transfer Process for Largeâ€Scale CVDâ€Graphene. Advanced Materials Interfaces, 2019, 6, 1900084.	1.9	15
442	Early oxidation stages of germanium substrate in the graphene/Ge(001) system. Carbon, 2019, 149, 290-296.	5.4	9
443	Onâ€Chip Rolling Design for Controllable Strain Engineering and Enhanced Photon–Phonon Interaction in Graphene. Small, 2019, 15, e1805477.	5.2	15
444	Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. ACS Applied Materials & Interfaces, 2019, 11, 17629-17636.	4.0	10
445	Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Science Bulletin, 2019, 64, 659-668.	4.3	66
446	SiOCâ€Accelerated Graphene Grown on SiO ₂ /Si with Tunable Electronic Properties. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900017.	1.2	2
447	Structural Engineering of Hierarchical Microâ€nanostructured Ge–C Framework by Controlling the Nucleation for Ultralongâ€Life Li Storage. Advanced Energy Materials, 2019, 9, 1900081.	10.2	99
448	Hydrogen-assisted step-edge nucleation of MoSe ₂ monolayers on sapphire substrates. Nanoscale, 2019, 11, 7701-7709.	2.8	25
449	Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry, 2019, 377, 10.	3.0	95
450	GaN microstructure light-emitting diodes directly fabricated on tungsten-metal electrodes using a micro-patterned graphene interlayer. Nano Energy, 2019, 60, 82-86.	8.2	15
451	Physical mechanism on edge-dependent electrons transfer in graphene in mid infrared region. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 136-145.	2.0	7
452	Formation of Twinned Graphene Polycrystals. Angewandte Chemie - International Edition, 2019, 58, 7723-7727.	7.2	25
453	Epitaxial Growth of 6 in. Singleâ€Crystalline Graphene on a Cu/Ni (111) Film at 750 °C via Chemical Vapor Deposition. Small, 2019, 15, e1805395.	5.2	71
455	Elastic Anisotropy and Optic Isotropy in Black Phosphorene/Transition-Metal Trisulfide van der Waals Heterostructures. ACS Omega, 2019, 4, 4101-4108.	1.6	15
456	Recent Developments in Controlled Vaporâ€Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Advanced Materials, 2019, 31, e1804939.	11.1	100
457	Challenges for continuous graphene as a corrosion barrier. 2D Materials, 2019, 6, 022002.	2.0	33
458	Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation. Applied Surface Science, 2019, 479, 669-678.	3.1	17
459	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, 2019, , .	0.5	3

	CITATION	Report	
#	Article	IF	CITATIONS
460	Alignment of semiconducting graphene nanoribbons on vicinal Ge(001). Nanoscale, 2019, 11, 4864-4875.	2.8	26
461	Graphene on Groupâ€№ Elementary Semiconductors: The Direct Growth Approach and Its Applications. Advanced Materials, 2019, 31, e1803469.	11.1	21
462	Chemical vapor deposition synthesis of graphene films. APL Materials, 2019, 7, .	2.2	22
463	Atomic-scale Investigation of Interface Between Graphene Monolayer and Ge(110). Journal of the Korean Physical Society, 2019, 74, 241-244.	0.3	1
464	Gas-Flow-Driven Aligned Growth of Graphene on Liquid Copper. Chemistry of Materials, 2019, 31, 1231-1236.	3.2	31
465	Tailoring the growth and electronic structures of organic molecular thin films. Journal of Physics Condensed Matter, 2019, 31, 503001.	0.7	9
466	Pattern Pick and Place Method for Twisted Bi- and Multi-Layer Graphene. Materials, 2019, 12, 3740.	1.3	3
467	Methane-Mediated Vapor Transport Growth of Monolayer WSe2 Crystals. Nanomaterials, 2019, 9, 1642.	1.9	1
468	Improvement of Graphene FET Characteristics by Eliminating Aromatic Rings in Fabrication Resist. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 685-691.	0.1	0
469	Path towards graphene commercialization from lab to market. Nature Nanotechnology, 2019, 14, 927-938.	15.6	235
470	Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics, 2019, 2, 439-450.	13.1	155
471	<i>In situ</i> synthesis of monolayer graphene on silicon for near-infrared photodetectors. RSC Advances, 2019, 9, 37512-37517.	1.7	7
472	Electromigration effect on the surface morphology during the Ge deposition on Si(1â€1â€1) at high temperatures. Applied Surface Science, 2019, 465, 10-14.	3.1	12
473	Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth. Carbon, 2019, 141, 316-322.	5.4	21
474	Morphology of Ti on Monolayer Nanocrystalline Graphene and Its Unexpectedly Low Hydrogen Adsorption. Journal of Physical Chemistry C, 2019, 123, 1572-1578.	1.5	6
475	Hydrogen intercalation of CVD graphene on germanium (001) – Strain and doping analysis using Raman spectroscopy. Applied Surface Science, 2019, 473, 203-208.	3.1	13
476	Plan-view transmission electron microscopy specimen preparation for atomic layer materials using a focused ion beam approach. Ultramicroscopy, 2019, 197, 95-99.	0.8	11
477	Millimeter-Scale Growth of Single-Oriented Graphene on a Palladium Silicide Amorphous Film. ACS Nano, 2019, 13, 1127-1135.	7.3	1

#	Article	IF	Citations
" 478	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science,	3.1	44
470	2019, 470, 129-134.	3.1	
479	Processing and integration of graphene in a 200â€ [–] mm wafer Si technology environment. Microelectronic Engineering, 2019, 205, 44-52.	1.1	5
480	Atmospheric Pressure Chemical Vapor Deposition of Graphene. , 2019, , .		6
481	Abrupt changes in the graphene on Ge(001) system at the onset of surface melting. Carbon, 2019, 145, 345-351.	5.4	12
482	A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals. ACS Nano, 2019, 13, 2114-2126.	7.3	35
483	Electronic and Interface Properties in Graphene Oxide/Hydrogenâ€Passivated Ge Heterostructure. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800461.	1.2	31
484	Recent Advances in Lowâ€Dimensional Heterojunctionâ€Based Tunnel Field Effect Transistors. Advanced Electronic Materials, 2019, 5, 1800569.	2.6	53
485	Kinetics of Graphene and 2D Materials Growth. Advanced Materials, 2019, 31, e1801583.	11.1	91
486	Recent Advances in the Functional 2D Photonic and Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1801274.	3.6	209
487	Controlled Growth of Unidirectionally Aligned Hexagonal Boron Nitride Domains on Single Crystal Ni (111)/MgO Thin Films. Crystal Growth and Design, 2019, 19, 453-459.	1.4	3
488	Wafer scale quasi single crystalline MoS ₂ realized by epitaxial phase conversion. 2D Materials, 2019, 6, 015030.	2.0	31
489	Effects of grain boundary on wear of graphene at the nanoscale: A molecular dynamics study. Carbon, 2019, 143, 578-586.	5.4	42
490	SYNTHESES OF LARGE-SIZED SINGLE CRYSTAL GRAPHENE: A REVIEW OF RECENT DEVELOPMENTS. Surface Review and Letters, 2019, 26, 1830007.	0.5	4
491	Driving with temperature the synthesis of graphene on Ge(110). Applied Surface Science, 2020, 499, 143923.	3.1	22
492	Impact of germanium substrate orientation on morphological and structural properties of graphene grown by CVD method. Applied Surface Science, 2020, 499, 143913.	3.1	10
493	Graphene related materials for thermal management. 2D Materials, 2020, 7, 012001.	2.0	161
494	Controlled Growth of Single rystal Graphene Films. Advanced Materials, 2020, 32, e1903266.	11.1	95
495	Chemical interaction between nitrogen-doped graphene defects and a copper (1â€ ⁻ 1â€ ⁻ 1) surface: Effects on water molecule adsorption. Applied Surface Science, 2020, 502, 144149.	3.1	10

28

ARTICLE IF CITATIONS # Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and 496 2 applicable devices. , 2020, , 199-252. Direct Growth of Unidirectional Graphene Nanoribbons on Vicinal Ge(001). Physica Status Solidi -1.2 Rapid Research Letters, 2020, 14, 1900398. 498 Proton-assisted growth of ultra-flat graphene films. Nature, 2020, 577, 204-208. 13.7 111 p-Type Epitaxial Graphene on Cubic Silicon Carbide on Silicon for Integrated Silicon Technologies. ACS 499 2.4 Applied Nano Materials, 2020, 3, 830-841. Recent Progress in Artificial Synapses Based on Two-Dimensional van der Waals Materials for 500 2.0 110 Brain-Inspired Computing. ACS Applied Electronic Materials, 2020, 2, 371-388. Investigation of the Oxidation Behavior of Graphene/Ge(001) Versus Graphene/Ge(110) Systems. ACS 4.0 Applied Materials & amp; Interfaces, 2020, 12, 3188-3197. Large magnetotransport properties in mixed-dimensional van der Waals heterostructures of graphene 502 5.4 15 foam. Carbon, 2020, 159, 648-655. A Strategy To Prepare High-Quality Monocrystalline Graphene: Inducing Graphene Growth with Seeding Chemical Vapor Deposition and Its Mechanism. ACS Applied Materials & amp; Interfaces, 2020, 12, 1306-1314. 4.0 Fast synthesis of large-scale single-crystal graphene with well-defined edges upon sodium chloride 504 3 5.4 addition. Carbon, 2020, 158, 904-911. Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis. Nanomaterials, 2020, 10, 2050. Robust atomic-structure of the 6 \tilde{A} - 2 reconstruction surface of Ge(110) protected by the electronically transparent graphene monolayer. Physical Chemistry Chemical Physics, 2020, 22, 506 4 1.3 22711-22718. Gate-tunable two-dimensional superconductivity revealed in flexible wafer-scale hybrid structures. Journal of Materials Chemistry C, 2020, 8, 14605-14610. Catalytically mediated epitaxy of 3D semiconductors on van der Waals substrates. Applied Physics 508 5.5 15 Reviews, 2020, 7, . Computational screening of vdWs heterostructures of BSe with MoSe2 and WSe2 as sustainable 509 1.1 hydrogen production materials. Current Applied Physics, 2020, , . 510 The epitaxy of 2D materials growth. Nature Communications, 2020, 11, 5862. 130 5.8 Mapping Graphene Grain Orientation by the Growth of WS₂ Films with Oriented Cracks. 3.2 Chemistry of Materials, 2020, 32, 7484-7491. Light-Induced Fabrication of Patterned Conductive Nanocarbon Films for Flexible Electrode. ACS 512 2.4 4 Applied Nano Materials, 2020, 3, 8866-8874. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 8.3 2020, 40, 132-139.

#	Article	IF	CITATIONS
514	Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550.	1.3	6
515	Growth and Grain Boundaries in 2D Materials. ACS Nano, 2020, 14, 9320-9346.	7.3	62
516	Layer-engineered large-area exfoliation of graphene. Science Advances, 2020, 6, .	4.7	81
517	Wide application feasibility report on graphene. Emerging Materials Research, 2020, 9, 1168-1194.	0.4	1
518	Coulomb drag transistor using a graphene and MoS2 heterostructure. Communications Physics, 2020, 3, .	2.0	11
519	Integration of 3D nanographene into mesoporous germanium. Nanoscale, 2020, 12, 23984-23994.	2.8	6
520	Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale. Advanced Materials, 2020, 32, 2002755.	11.1	6
521	A comprehensive study of charge transport in Au-contacted graphene on Ge/Si(001). Applied Physics Letters, 2020, 117, .	1.5	1
522	Role of interfacial 2D graphene in high performance 3D graphene/germanium Schottky junction humidity sensors. Journal of Materials Chemistry C, 2020, 8, 14196-14202.	2.7	6
523	Semi-transparent graphite films growth on Ni and their double-sided polymer-free transfer. Scientific Reports, 2020, 10, 14703.	1.6	6
524	Influence of temperature on growth of graphene on germanium. Journal of Applied Physics, 2020, 128, 045310.	1.1	4
525	Direct growth of graphene on Ge(100) and Ge(110) via thermal and plasma enhanced CVD. Scientific Reports, 2020, 10, 12938.	1.6	9
526	Disorderâ€Induced Quantum Griffiths Singularity Revealed in an Artificial 2D Superconducting System. Advanced Science, 2020, 7, 1902849.	5.6	10
527	Energy-Efficient Tunneling Field-Effect Transistors for Low-Power Device Applications: Challenges and Opportunities. ACS Applied Materials & Interfaces, 2020, 12, 47127-47163.	4.0	51
528	Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chemistry of Materials, 2020, 32, 10321-10347.	3.2	72
529	Epitaxial graphene/Ge interfaces: a minireview. Nanoscale, 2020, 12, 11416-11426.	2.8	22
530	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	3.0	65
531	Highly Efficient n-Type Doping of Graphene by Vacuum Annealed Amine-Rich Macromolecules. Materials, 2020, 13, 2166.	1.3	10

	CITAT	ION REPORT	
#	Article	IF	CITATIONS
532	Growth of Graphene on the Cu(110) Surface. Journal of Physical Chemistry C, 2020, 124, 12106-12111.	1.5	5
533	Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon, 2020, 168, 748-845.	5.4	102
534	Wafer-scale growth of single-crystal graphene on vicinal Ge(001) substrate. Nano Today, 2020, 34, 100908.	6.2	23
535	Layer-Selective Synthesis of MoS ₂ and WS ₂ Structures under Ambient Conditions for Customized Electronics. ACS Nano, 2020, 14, 8485-8494.	7.3	41
536	Macroscopic Versus Microscopic Schottky Barrier Determination at (Au/Pt)/Ge(100): Interfacial Local Modulation. ACS Applied Materials & Interfaces, 2020, 12, 28894-28902.	4.0	4
537	Superfast Selfâ€Healing and Photothermal Active Hydrogel with Nondefective Graphene as Effective Additive. Macromolecular Materials and Engineering, 2020, 305, 2000172.	1.7	10
538	Oxidative Originators of Graphene Barrier Coating Grown on Surfaces. ChemNanoMat, 2020, 6, 1285-1297.	1.5	6
539	Interface Engineering-Assisted 3D-Graphene/Germanium Heterojunction for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 15606-15614.	4.0	33
540	Two-dimensional O-phase group III monochalcogenides for photocatalytic water splitting. Journal of Physics Condensed Matter, 2020, 32, 065501.	0.7	6
541	Spin-valve effect of 2D-materials based magnetic junctions. , 2020, , 253-272.		2
542	Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. Npj Computational Materials, 2020, 6, .	3.5	29
543	Designed Growth of Large‧ize 2D Single Crystals. Advanced Materials, 2020, 32, e2000046.	11.1	71
544	New approach for the molecular beam epitaxy growth of scalable WSe ₂ monolayers. Nanotechnology, 2020, 31, 255602.	1.3	14
545	Synthesis of Highly Oriented Graphite Films with a Low Wrinkle Density and Near-Millimeter-Scale Lateral Grains. Chemistry of Materials, 2020, 32, 3134-3143.	3.2	9
546	Wafer-scale fabrication of single-crystal graphene on Ge(1 1 0) substrate by optimized CH4/H2 ratio. Applied Surface Science, 2020, 529, 147066.	3.1	17
547	Heterogeneous deformation of two-dimensional materials for emerging functionalities. Journal of Materials Research, 2020, 35, 1369-1385.	1.2	9
548	Enhanced Peltier Effect in Wrinkled Graphene Constriction by Nanoâ€Bubble Engineering. Small, 2020, 16, e1907170.	5.2	19
549	Compact Graphene Plasmonic Slot Photodetector on Silicon-on-Insulator with High Responsivity. ACS Photonics, 2020, 7, 932-940.	3.2	63

#	Article	IF	CITATIONS
550	Towards graphene-based new energy devices. IOP Conference Series: Materials Science and Engineering, 2020, 744, 012022.	0.3	0
551	Wafer-scale transfer-free process of multi-layered graphene grown by chemical vapor deposition. Materials Research Express, 2020, 7, 035001.	0.8	3
552	Toward Scalable Growth for Single-Crystal Graphene on Polycrystalline Metal Foil. ACS Nano, 2020, 14, 3141-3149.	7.3	26
553	Stability of Graphene Growth on CuNi Thin Films in a High-Temperature Hydrogen/Oxygen Atmosphere. Crystal Growth and Design, 2020, 20, 1211-1217.	1.4	0
554	Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Research, 2020, 13, 1789-1794.	5.8	20
555	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
556	Electromagnetic Shielding of Monolayer MXene Assemblies. Advanced Materials, 2020, 32, e1906769.	11.1	410
557	Metal-graphene interfaces in epitaxial and bulk systems: A review. Progress in Materials Science, 2020, 110, 100652.	16.0	114
558	Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 2020, 5, 10-29.	1.5	318
559	2D materials-based membranes for hydrogen purification: Current status and future prospects. International Journal of Hydrogen Energy, 2021, 46, 11389-11410.	3.8	35
560	Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. National Science Review, 2021, 8, nwaa115.	4.6	42
561	Epitaxial Growth of Main Group Monoelemental 2D Materials. Advanced Functional Materials, 2021, 31, 2006997.	7.8	37
562	Super-Nernstian pH Sensor Based on Anomalous Charge Transfer Doping of Defect-Engineered Graphene. Nano Letters, 2021, 21, 34-42.	4.5	29
563	Monolithic integration of mesoporous germanium: A step toward high-performance on-chip anode. Materials Today Communications, 2021, 26, 101820.	0.9	4
564	Centimeter-Scale Ge-Assisted Grown Graphene Directly on SiO2/Si for NO2 Gas Sensors. IEEE Sensors Journal, 2021, 21, 5164-5172.	2.4	2
565	3D-graphene-laser patterned p-type silicon Schottky diode. Materials Science in Semiconductor Processing, 2021, 121, 105454.	1.9	6
566	Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation. Computational Materials Science, 2021, 186, 110013.	1.4	8
567	2D Material Based Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials, 2021, 31, 2005443.	7.8	165

#	Article		CITATIONS
568	Unidirectional growth of graphene nano-islands from carbon cluster seeds on Ge(1 1 0). Applied Surface Science, 2021, 536, 147722.	3.1	3
569	Recent Advances in Growth of Largeâ€Sized 2D Single Crystals on Cu Substrates. Advanced Materials, 2021, 33, e2003956.	11.1	26
570	Inhomogeneous work-function hysteresis in chemical vapor deposition-grown graphene field-effect devices. Carbon, 2021, 173, 594-599.	5.4	6
571	Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14, 1840-1862.	5.8	36
572	CVD growth of high-quality graphene over Ge (100) by annihilation of thermal pits. Carbon, 2021, 174, 214-226.	5.4	7
573	2D Graphene in Interface Engineering of 3D Grapheneâ€Based Thermal Management. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000576.	0.8	3
574	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	11.8	244
575	A minireview on chemical vapor deposition growth of wafer-scale monolayer <i>h</i> -BN single crystals. Nanoscale, 2021, 13, 17310-17317.	2.8	14
576	Graphene-Based Nanocomposites for Renewable Energy Application. , 2021, , 929-963.		0
577	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. Journal of Materials Chemistry C, 2021, 9, 7829-7851.	2.7	11
578	High-performance near-infrared photodetectors based on C ₃ N quantum dots integrated with single-crystal graphene. Journal of Materials Chemistry C, 2021, 9, 1333-1338.	2.7	7
579	Direct Growth of Highly Conductive Largeâ€Area Stretchable Graphene. Advanced Science, 2021, 8, 2003697.	5.6	11
580	Deep-learning-based semantic image segmentation of graphene field-effect transistors. Applied Physics Express, 2021, 14, 036504.	1.1	9
581	The Fabrication of Wrinkleâ€Free Graphene Patterns on Ge(110) Substrate. Physica Status Solidi (B): Basic Research, 2021, 258, 2000560.	0.7	2
582	Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano, 2021, 15, 3171-3187.	7.3	75
583	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	4.6	25
584	WS ₂ Nanosheet/Si p–n Heterojunction Diodes for UV–Visible Broadband Photodetection. ACS Applied Nano Materials, 2021, 4, 3241-3251.	2.4	17
585	Seeded Growth of Ultrathin Carbon Films Directly onto Silicon Substrates. ACS Omega, 2021, 6, 8829-8836.	1.6	4

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
586	Coating performance of hexagonal boron nitride and graphene layers. 2D Materials, 2021, 8, 034002.	2.0	14
587	Chemical vapor deposition of graphene on thin-metal films. Cell Reports Physical Science, 2021, 2, 100372.	2.8	44
588	Promises and prospects of two-dimensional transistors. Nature, 2021, 591, 43-53.	13.7	548
589	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
590	Scalable Preparation of Ultrathin Graphene-Reinforced Copper Composite Foils with High Mechanical Properties and Excellent Heat Dissipation. ACS Applied Materials & Interfaces, 2021, 13, 21714-21723.	4.0	13
591	Realizing the Intrinsic Anisotropic Growth of 1T′ ReS ₂ on Selected Au(101) Substrate toward Largeâ€Scale Single Crystal Fabrication. Advanced Functional Materials, 2021, 31, 2102138.	7.8	27
592	Van der Waals Integration Based on Twoâ€Dimensional Materials for Highâ€Performance Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2103106.	7.8	112
593	Anisotropic mesoporous germanium nanostructures by fast bipolar electrochemical etching. Electrochimica Acta, 2021, 378, 137935.	2.6	15
594	Toward Waferâ€Scale Production of 2D Transition Metal Chalcogenides. Advanced Electronic Materials, 2021, 7, 2100278.	2.6	16
595	Silicon-assisted growth of hexagonal boron nitride to improve oxidation resistance of germanium. 2D Materials, 2021, 8, 035041.	2.0	5
596	Epitaxial Growth of 2D Materials on Highâ€index Substrate Surfaces. Advanced Functional Materials, 2021, 31, 2100503.	7.8	18
597	Pristine Graphene Insertion at the Metal/Semiconductor Interface to Minimize Metal-Induced Gap States. ACS Applied Materials & amp; Interfaces, 2021, 13, 22828-22835.	4.0	8
598	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224.	2.8	143
599	Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chemical Reviews, 2021, 121, 6321-6372.	23.0	96
600	Intact Vertical 3D–0D–2D Carbonâ€Based p–n Junctions for Use in Highâ€Performance Photodetectors. Advanced Optical Materials, 2021, 9, 2100387.	3.6	7
601	Suspended graphene on germanium: selective local etching via laser-induced photocorrosion of germanium. 2D Materials, 2021, 8, 035043.	2.0	3
602	Emerging 2D Memory Devices for Inâ€Memory Computing. Advanced Materials, 2021, 33, e2007081.	11.1	92
603	Impact of 2D–3D Heterointerface on Remote Epitaxial Interaction through Graphene. ACS Nano, 2021, 15, 10587-10596.	7.3	57

ARTICLE IF CITATIONS One-dimensional semiconductor nanostructures grown on two-dimensional nanomaterials for 604 2.2 22 flexible device applications. APL Materials, 2021, 9, . Towards intrinsically pure graphene grown on copper. Nano Research, 2022, 15, 919-924. 5.8 Defect-Free Single-Layer Graphene by 10 s Microwave Solid Exfoliation and Its Application for Catalytic 606 4.0 17 Water Splitting. ACS Applied Materials & amp; Interfaces, 2021, 13, 28600-28609. Defect-Free Mechanical Graphene Transfer Using <i>n-</i>Doping Adhesive Gel Buffer. ACS Nano, 2021, 15, 11276-11284. Controllable Synthesis of Waferâ€Scale Graphene Films: Challenges, Status, and Perspectives. Small, 608 5.2 23 2021, 17, e2008017. Introduction, production, characterization and applications of defects in graphene. Journal of Materials Science: Materials in Electronics, 2021, 32, 19991-20030. 609 1.1 610 The way towards for ultraflat and superclean graphene. Nano Select, 2022, 3, 485-504. 1.9 2 Controlled growth of in-plane graphene/h-BN heterostructure on a single crystal Ge substrate. 3.1 Applied Surface Science, 2021, 554, 149655. Surface Diffusion and Epitaxial Selfâ€Planarization for Waferâ€Scale Singleâ€Grain Metal Chalcogenide 612 11.1 13 Thin Films. Advanced Materials, 2021, 33, e2102252. Single-crystal, large-area, fold-free monolayer graphene. Nature, 2021, 596, 519-524. 13.7 Recent Progress in the Nanoskiving Approach: A Review of Methodology, Devices, and Applications. 614 4 3.0Advanced Materials Technologies, 2021, 6, 2100477. Epitaxial growth of wafer scale antioxidant single-crystal graphene on twinned Pt(111). Carbon, 2021, 5.4 181, 225-233. Largeâ€Area Tellurium/Germanium Heterojunction Grown by Molecular Beam Epitaxy for 616 3.6 29 Highâ€Performance Selfâ€Powered Photodetector. Advanced Optical Materials, 2021, 9, 2101052. Experimental advances in charge and spin transport in chemical vapor deposited graphene. JPhys 1.8 Materials, 2021, 4, 042007. Performance enhancement of amorphous WO3 assisted graphene-based electronic devices: Aspect of 618 2 3.1surface engineering. Applied Surface Science, 2021, 556, 149763. Elimination of Grain Boundaries in Graphene Growth on a Cu–Ni Alloyed Substrate by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2021, 125, 18217-18224. Graphene nanoribbons for quantum electronics. Nature Reviews Physics, 2021, 3, 791-802. 620 11.9 141 Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 5.8 19 2989-3026.

#	Article		CITATIONS
622	Influence of surface and subsurface Co–Ir alloy on the electronic properties of graphene. Carbon, 2021, 183, 251-258.		2
623	Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127393.	2.3	13
624	Role of hydrogen and oxygen in the study of substrate surface impurities and defects in the chemical vapor deposition of graphene. Carbon, 2021, 185, 82-95.	5.4	10
625	Emerging two-dimensional silicene nanosheets for biomedical applications. Materials Today Nano, 2021, 16, 100132.	2.3	19
626	Growth and <i>in situ</i> characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. Nanoscale, 2021, 13, 3346-3373.	2.8	30
627	When graphene meets white graphene – recent advances in the construction of graphene and <i>h</i> -BN heterostructures. Nanoscale, 2021, 13, 13174-13194.	2.8	9
628	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
629	New Insight into the Metal-Catalyst-Free Direct Chemical Vapor Deposition Growth of Graphene on Silicon Substrates. Journal of Physical Chemistry C, 2021, 125, 1774-1783.	1.5	23
630	Tuning the Doping of Epitaxial Graphene on a Conventional Semiconductor via Substrate Surface Reconstruction. Journal of Physical Chemistry Letters, 2021, 12, 1262-1267.	2.1	4
631	Graphene-based 3D lightweight cellular structures: Synthesis and applications. Korean Journal of Chemical Engineering, 2020, 37, 189-208.	1.2	10
633	Passivation of Germanium by Graphene. ACS Applied Materials & amp; Interfaces, 2017, 9, 17629-17636.	4.0	25
634	Unusual magnetotransport properties in graphene fibers. Physical Chemistry Chemical Physics, 2020, 22, 25712-25719.	1.3	3
635	Epitaxial graphene-encapsulated surface reconstruction of Ge(110). Physical Review Materials, 2018, 2, .	0.9	16
637	Graphene-based adaptive liquid-crystal microlens array for a wide infrared spectral region. Optical Materials Express, 2019, 9, 183.	1.6	12
638	Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	1
639	Surface Reactions of Atomic Hydrogen with Ge(100) in Comparison with Si(100). Applied Science and Convergence Technology, 2017, 26, 174-178.	0.3	2
640	Intercalation and its mechanism of high quality large area graphene on metal substrate. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 216803.	0.2	4
641	Recent progresses of thermal conduction in two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 196602.	0.2	12

#	RTICLE		CITATIONS
642	Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides. Applied Microscopy, 2015, 45, 119-125.	0.8	7
643	Self-Rolling of Monolayer Graphene for Ultrasensitive Molecular Sensing. ACS Applied Materials & Interfaces, 2021, 13, 49146-49152.	4.0	6
644	Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem, 2021, 30, 100305.	2.8	65
645	Unveiling the Formation of Graphene Moiré Patterns on Fourfold-Symmetric Supports: Geometrical Insight. Journal of Physical Chemistry C, 2021, 125, 22705-22712.	1.5	3
646	Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sensors, 2021, 6, 3841-3881.	4.0	45
647	Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, 8, .	5.5	19
651	Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 166801.	0.2	3
652	Defect Characterization and Metrology. , 2017, , 631-678.		0
653	Ultra-compact optical switch based on Fano resonance in graphene-functionalized plasmonic nano-cavity. , 2018, , .		0
654	Graphene-Based Nanocomposites for Renewable Energy Application. , 2019, , 1-36.		0
655			
	Synthesis of nanogate structure in GO-ZnS sandwich material. Scientific Reports, 2019, 9, 937.	1.6	2
656	Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10) Tj ETQq1 1 0.7843		
656 657			
	Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10) Tj ETQq1 1 0.7843 Biosensing Platforms Based on Graphene Field Effect Transistors. Vacuum and Surface Science, 2020,	14 rgBT /0	Dverlock 10 Tf
657	Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10) Tj ETQq1 1 0.7843 Biosensing Platforms Based on Graphene Field Effect Transistors. Vacuum and Surface Science, 2020, 63, 358-363. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. Journal of Applied	14 _{СЕ} ВТ /С 0.0	Overlock 10 Tf
657 658	 Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10) Tj ETQq1 1 0.7843 Biosensing Platforms Based on Graphene Field Effect Transistors. Vacuum and Surface Science, 2020, 63, 358-363. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. Journal of Applied Physics, 2021, 130,. Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing 	14 _С ВТ /С 0.0 1.1	Overlock 10 Tf 0 23
657 658 659	 Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10) Tj ETQq1 1 0.7843 Biosensing Platforms Based on Graphene Field Effect Transistors. Vacuum and Surface Science, 2020, 63, 358-363. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. Journal of Applied Physics, 2021, 130, . Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications. RSC Advances, 2020, 10, 13379-13385. Subatomic species transport through atomically thin membranes: Present and future applications. 	14 हुन्दुमे /C 0.0 1.1 1.7	Overlock 10 Tf 0 23 2

#	Article	IF	CITATIONS
663	Synthesis of Large-Scale Transition Metal Dichalcogenides for Their Commercialization. Applied Science and Convergence Technology, 2020, 29, 133-142.	0.3	5
664	Lattice Polarity Manipulation of Quasiâ€vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration. Advanced Materials, 2022, 34, e2106814.	11.1	19
665	The development of integrated circuits based on two-dimensional materials. Nature Electronics, 2021, 4, 775-785.	13.1	129
666	2D materials grow large. Nature Nanotechnology, 2021, 16, 1179-1179.	15.6	4
667	Growth and Etching of the Grain Boundaries in Polygonal Graphene Islands. ChemPhysChem, 2021, , .	1.0	0
668	Surface Engineering of Substrates for Chemical Vapor Deposition Growth of Graphene and Applications in Electronic and Spintronic Devices. Chemistry of Materials, 2021, 33, 8960-8989.	3.2	9
669	Electrodeposited WS ₂ monolayers on patterned graphene. 2D Materials, 2022, 9, 015025.	2.0	3
670	Modification of the Magnetic and Electronic Properties of the Grapheneâ€Ni(111) Interface via Halogens Intercalation. Advanced Theory and Simulations, 0, , 2100319.	1.3	1
671	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
672	Mechanism of 2D Materials' Seamless Coalescence on a Liquid Substrate. ACS Nano, 2021, 15, 19387-19393.	7.3	6
673	Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022, 34, e2108258.	11.1	43
674	Diffusion-enhanced preferential growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e570" altimg="si37.svg"><mml:mi>m</mml:mi>-oriented GaN micro-domains on directly grown graphene with a large domain size on Ti/SiO2/Si(001). Materials Today Communications. 2022. 30. 103113.</mml:math 	0.9	3
675	Thermodynamic Margin in Carbon Network Modulated Activity Control of Oxygen Reduction Reaction Iron Catalyst. Journal of Physical Chemistry C, 2020, 124, 26982-26989.	1.5	1
676	Continuous orientated growth of scaled single-crystal 2D monolayer films. Nanoscale Advances, 2021, 3, 6545-6567.	2.2	3
677	Additiveâ€Assisted Growth of Scaled and Quality 2D Materials. Small, 2022, 18, e2107241.	5.2	11
678	Creating custom-designed patterns of nanoscale graphene quantum dots. 2D Materials, 2022, 9, 021002.	2.0	3
679	Fabrication Technologies for the On hip Integration of 2D Materials. Small Methods, 2022, 6, e2101435.	4.6	39
680	Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chemical Society Reviews, 2022, 51, 803-811.	18.7	18

		CITATION RE	EPORT	
#	ARTICLE Epitaxy of 2D Materials toward Single Crystals. Advanced Science, 2022, 9, e2105201.		IF 5.6	Citations 24
682	Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in F Electro-Catalysis. Nano-Micro Letters, 2022, 14, 55.	Photo- and	14.4	40
683	Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial mod Wuli Xuebao/Acta Physica Sinica, 2022, 71, 108103.	Julation.	0.2	1
684	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportuni Challenges. Chemical Reviews, 2022, 122, 6514-6613.	ties, and	23.0	187
685	Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals. Nano Letters, 2022, , .		4.5	11
686	Novel charm of 2D materials engineering in memristor: when electronics encounter layered morphology. Nanoscale Horizons, 2022, 7, 480-507.		4.1	40
687	Materials engineering $\hat{a} \in $ defect healing & passivation. , 2022, , 195-219.			0
688	Reducing Contact Resistance and Boosting Device Performance of Monolayer MoS _{2 Situ Fe Doping. Advanced Materials, 2022, 34, e2200885.}	by In	11.1	34
689	Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates. N Communications, 2022, 13, 1773.	ature	5.8	12
690	Single-crystal graphene on Ir(110). Physical Review B, 2022, 105, .		1.1	7
691	Relating the orientation of graphene on Cu grains by Euler Angles. Surfaces and Interfaces, 101837.	2022, 30,	1.5	1
692	Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils. ACS Nano, 202	22, 16, 285-294.	7.3	40
693	High-performance photodetectors based on Schottky junctions formed by vertical 2D-3D-2 sandwich nanocavity and germanium substrate. Diamond and Related Materials, 2022, , 10		1.8	0
694	Fundamentals of Chemical Vapor Deposition of Atomic Layer Materials. Vacuum and Surface 2022, 65, 169-176.	ce Science,	0.0	0
695	Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Ch Materials, 2022, 34, 3588-3615.	emistry of	3.2	16
697	Engineering of Chemical Vapor Deposition Graphene Layers: Growth, Characterization, and Advanced Functional Materials, 2022, 32, .	Properties.	7.8	8
698	The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanism Advanced Materials, 2022, 34, e2201916.	IS.	11.1	37
699	Mechanisms of the epitaxial growth of two-dimensional polycrystals. Npj Computational M 2022, 8, .	aterials,	3.5	4

#	Article	IF	CITATIONS
700	Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Advanced Functional Materials, 2022, 32, .	7.8	20
701	Graphene Membranes for Multiâ€Ðimensional Electron Microscopy Imaging: Preparation, Application, and Prospect. Advanced Functional Materials, 2022, 32, .	7.8	4
702	A graphene pH sensor fabrication process for a nanotechnology laboratory course. Journal of the Society for Information Display, 0, , .	0.8	0
703	Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nature Electronics, 2022, 5, 275-280.	13.1	61
704	Mechanics and Strategies for Wrinkling Suppression: A Review. Frontiers in Mechanical Engineering, 2022, 8, .	0.8	1
705	Double-balanced mixer based on monolayer graphene field-effect transistors. Journal of Semiconductors, 2022, 43, 052002.	2.0	0
706	Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge. Nature Communications, 2022, 13, .	5.8	22
707	Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature, 2022, 606, 88-93.	13.7	97
708	Remote epitaxy. Nature Reviews Methods Primers, 2022, 2, .	11.8	47
709	Hyperspectral Imaging of Complex Dielectric Functions in 2d Materials. SSRN Electronic Journal, 0, , .	0.4	0
710	Improved Crystallinity of Graphene Grown on Cu/Ni (111) through Sequential Mobile Hot-Wire Heat Treatment. Nano Letters, 2022, 22, 5198-5206.	4.5	3
711	Formation of GeO2 under Graphene on Ge(001)/Si(001) Substrates Using Water Vapor. Molecules, 2022, 27, 3636.	1.7	0
712	Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, 606, 663-673.	13.7	116
713	Tunable ion transport across graphene through tailoring grain boundaries. Cell Reports Physical Science, 2022, , 100947.	2.8	2
714	High Thermal Conductivity 2D Materials: From Theory and Engineering to Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	13
715	Embedded Pseudo Graphene Nanoribbons Oriented Via Ge(110) Surface Reconstruction. SSRN Electronic Journal, 0, , .	0.4	0
716	High-performance dual-gate graphene pH sensors. Applied Physics Letters, 2022, 120, 263701.	1.5	1
717	Effect of Germanium Surface Orientation on Graphene Chemical Vapor Deposition and Graphene-Induced Germanium Nanofaceting. Chemistry of Materials, 2022, 34, 6769-6778.	3.2	4

#	Article	IF	CITATIONS
718	Large-Area Uniaxial-Oriented Growth of Free-Standing Thin Films at the Liquid–Air Interface with Millimeter-Sized Grains. ACS Nano, 2022, 16, 11802-11814.	7.3	1
719	Tracking interfacial changes of graphene/Ge(1 1 0) during in-vacuum annealing. Applied Surface Science, 2022, 602, 154291.	3.1	2
720	Engineering Grain Boundaries in Twoâ€Dimensional Electronic Materials. Advanced Materials, 2023, 35, .	11.1	6
721	Structural properties of grain boundary in graphene grown on germanium substrates with different orientations. Applied Physics Letters, 2022, 121, 011901.	1.5	1
722	Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. , 2022, 1, 100017.		25
723	Concentrated Solar Induced Graphene. ACS Omega, 2022, 7, 27263-27271.	1.6	7
724	High uniformity and stability of graphene transparent conducting electrodes by dual-side doping. Applied Surface Science, 2022, 605, 154569.	3.1	2
725	Electrophoresed Graphene Coatings for Corrosion Prevention: A Review. Nano, 2022, 17, .	0.5	1
726	Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Frontiers of Physics, 2022, 17, .	2.4	10
727	Direct precipitation of multilayer graphene on c-plane sapphire using a crystallized Ni catalyst. Journal of Crystal Growth, 2022, 598, 126885.	0.7	1
728	Reliable metal–graphene contact formation process flows in a CMOS-compatible environment. Nanoscale Advances, 0, , .	2.2	2
729	2D magnetic phases of Eu on Ge(110). Nanoscale, 2022, 14, 12377-12385.	2.8	3
730	Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nature Communications, 2022, 13, .	5.8	28
731	Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nature Nanotechnology, 2022, 17, 1054-1059.	15.6	25
732	Synthesis of twoâ€dimensional materials: How computational studies can help?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	1
733	Chemical vapor deposition: a potential tool for wafer scale growth of two-dimensional layered materials. Journal Physics D: Applied Physics, 2022, 55, 473001.	1.3	15
734	Epitaxy of III-nitrides on two-dimensional materials and its applications. Chinese Physics B, 2022, 31, 117702.	0.7	3
735	Designed growth of large bilayer graphene with arbitrary twist angles. Nature Materials, 2022, 21, 1263-1268.	13.3	45

#	Article	IF	Citations
736	Atomistic Insight into the Epitaxial Growth Mechanism of Single-Crystal Two-Dimensional Transition-Metal Dichalcogenides on Au(111) Substrate. ACS Nano, 2022, 16, 17356-17364.	7.3	11
737	2D Layers of Group VA Semiconductors: Fundamental Properties and Potential Applications. Advanced Science, 2023, 10, .	5.6	10
738	Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nature Nanotechnology, 2022, 17, 1258-1264.	15.6	25
739	Embedded pseudo graphene nanoribbons oriented via Ge(110) surface reconstruction. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115531.	1.3	1
740	2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devices. Journal of Applied Physics, 2022, 132, .	1.1	7
741	Emerging 2D Metal Oxides: From Synthesis to Device Integration. Advanced Materials, 2023, 35, .	11.1	18
743	Chemical Vapor Deposition of Graphene on Self-Limited SiC Interfacial Layers Formed on Silicon Substrates for Heterojunction Devices. ACS Applied Nano Materials, 2022, 5, 17544-17555.	2.4	25
744	Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. Materials Horizons, 2023, 10, 1105-1120.	6.4	2
745	Wet Synthesis of Graphene-Polypyrrole Nanocomposites via Graphite Intercalation Compounds. Crystals, 2022, 12, 1793.	1.0	2
746	Two-dimensional layered materials and heterostructures for flexible electronics. Matter, 2022, 5, 4116-4132.	5.0	10
747	Flexible Highâ€Performance Photovoltaic Devices based on 2D MoS ₂ Diodes with Geometrically Asymmetric Contact Areas. Advanced Functional Materials, 2023, 33, .	7.8	12
748	2D Materials in the Display Industry: Status and Prospects. Advanced Materials, 2023, 35, .	11.1	3
749	Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes. Nature Communications, 2022, 13, .	5.8	11
751	Nanomaterials in 2-dimensions for flexible solar cell applications – a review. Cogent Engineering, 2022, 9, .	1.1	6
752	Ultrathin Ruthenium Films on Graphene Buffered SiO ₂ via Quasi Van der Waals Epitaxy. ACS Applied Electronic Materials, 2022, 4, 5775-5788.	2.0	5
753	Photoâ€Carrier Lifetime in Binary and Ternary Heterostructures of Transition Metal Dichalcogenides. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	2
754	A brief review of low-temperature graphene growth via chemical vapor deposition. Ceramist, 2022, 25, 396-411.	0.0	0
755	Low-Temperature Direct Growth of Amorphous Boron Nitride Films for High-Performance Nanoelectronic Device Applications. ACS Applied Materials & Interfaces, 2023, 15, 7274-7281.	4.0	5

	Сітатіо	CITATION REPORT	
# 756	ARTICLE Design, mechanism, and performance of cement-based materials with 1D nanomaterials. , 2023, , 93-126.	IF	CITATIONS
750	Design, mechanism, and performance of cement-based materials with 10 hanomaterials. , 2023, , 75-120.		0
757	Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS Nano, 2023, 17, 1831-1844.	7.3	22
758	Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chemical Society Reviews, 2023, 52, 1650-1671.	18.7	24
759	2D materials for flexible electronics. , 2023, , 169-206.		1
760	Graphene in Field Effect Transistor-Based Biosensors. , 2023, , 49-78.		0
761	High Crystallinity Ge Growth on Si (111) and Si (110) by Using Reduced Pressure Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2023, 12, 023014.	0.9	0
762	Thermally induced surface faceting on heteroepitaxial layers. Journal of Applied Physics, 2023, 133, .	1.1	2
763	2D Material Infrared Photonics and Plasmonics. ACS Nano, 2023, 17, 4134-4179.	7.3	30
764	Transfer-free graphene passivation of sub 100Ânm thin Pt and Pt–Cu electrodes for memristive devices. SN Applied Sciences, 2023, 5, .	1.5	0
765	Raman spectroscopic characterizations of graphene on oxide substrates for remote epitaxy. Journal of Applied Physics, 2023, 133, .	1.1	1
766	Graphene assisted III-V layer epitaxy for transferable solar cells. , 2023, , .		1
767	Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science, 2023, 136, 101112.	16.0	8
768	Bridging Synthesis and Controllable Doping of Monolayer 4 in. Length Transitionâ€Metal Dichalcogenides Single Crystals with High Electron Mobility. Advanced Materials, 2023, 35, .	11.1	8
769	Wafer-Scale Epitaxial Growth of an Atomically Thin Single-Crystal Insulator as a Substrate of Two-Dimensional Material Field-Effect Transistors. Nano Letters, 2023, 23, 3054-3061.	4.5	0
770	A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications. Physica Scripta, 2023, 98, 052002.	1.2	7
771	Bottom-up synthesis of mesoscale nanomeshes of graphene nanoribbons on germanium. APL Materials, 2023, 11, .	2.2	1
772	Designed Production of Atomic-Scale Nanowindows in Single-Walled Carbon Nanotubes. Langmuir, 0, ,	1.6	0
773	Grain Size Engineering of CVDâ€Grown Largeâ€Area Graphene Films. Small Methods, 2023, 7, .	4.6	2

#	Article	IF	CITATIONS
780	Determining Graphene and Substrate Quality from the Coupled Hall Mobility Measurements and Theoretical Modeling. , 2023, , .		0
782	Controllable growth of two-dimensional quantum materials. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	2
795	Transfer-free chemical vapor deposition graphene for nitride epitaxy: challenges, current status and future outlook. Science China Chemistry, 2024, 67, 824-840.	4.2	0
821	Precise synthesis of graphene by chemical vapor deposition. Nanoscale, 2024, 16, 4407-4433.	2.8	0
831	Two-Dimensional Carbon Graphenylene. , 2024, , 1-37.		0