Microbiome of prebiotic-treated mice reveals novel targ during obesity

ISME Journal 8, 2116-2130

DOI: 10.1038/ismej.2014.45

Citation Report

#	Article	IF	CITATIONS
1	<i>Saccharomyces boulardii</i> Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low - Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic <i>db</i> /i> Mice. MBio, 2014, 5, e01011-14.	1.8	217
2	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
3	Research highlights for issue 5: the role of the microbiome in shaping evolution. Evolutionary Applications, 2014, 7, 519-520.	1.5	0
4	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	2.0	68
6	Alleviation of high fat dietâ€induced obesity by oligofructose in gnotobiotic mice is independent of presence of <i>Bifidobacterium longum</i> . Molecular Nutrition and Food Research, 2015, 59, 2267-2278.	1.5	31
7	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
8	Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports, 2015, 5, 14405.	1.6	499
9	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11
10	The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS ONE, 2015, 10, e0142334.	1.1	155
11	Gut Microbiota and Metabolic Disorders. Diabetes and Metabolism Journal, 2015, 39, 198.	1.8	182
12	Unraveling the environmental and genetic interactions inÂatherosclerosis: Central role of the gut microbiota. Atherosclerosis, 2015, 241, 387-399.	0.4	67
13	Intestinal Amebae. Clinics in Laboratory Medicine, 2015, 35, 393-422.	0.7	39
14	Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. Journal of Nutritional Biochemistry, 2015, 26, 1136-1146.	1.9	63
15	The application of omics technologies in the functional evaluation of inulin and inulin-containing prebiotics dietary supplementation. Nutrition and Diabetes, 2015, 5, e185-e185.	1.5	14
16	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	2.0	519
17	The potential of resistant starch as a prebiotic. Critical Reviews in Biotechnology, 2016, 36, 1-7.	5.1	113
18	Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 2015, 6, 7489.	5.8	926
19	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	4.9	2,453

#	Article	IF	CITATIONS
20	Effect of Prebiotic Fiber Intake on Adiposity and Inflammation in Overweight and Obese Children: Assessing the Role of the Gut Microbiota. Canadian Journal of Diabetes, 2015, 39, S43.	0.4	7
21	Dietary emulsifiers—sweepers of the gut lining?. Nature Reviews Endocrinology, 2015, 11, 319-320.	4.3	14
22	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	1.5	95
23	<i>In Vivo</i> Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications. Applied and Environmental Microbiology, 2015, 81, 2455-2465.	1.4	47
24	Targeting gut microbiota as a possible therapy for diabetes. Nutrition Research, 2015, 35, 361-367.	1.3	106
25	Cultivating Healthy Growth and Nutrition through the Gut Microbiota. Cell, 2015, 161, 36-48.	13.5	155
26	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5 . 8	144
27	Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 303-310.	8.2	679
28	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	9.4	422
29	Improving healthspan via changes in gut microbiota and fermentation. Age, 2015, 37, 98.	3.0	33
31	Harnessing Genes and Diet to Fine-Tune the Gut Microbial Fitness. Cell Metabolism, 2015, 22, 754-756.	7.2	5
32	Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low <scp>FODMAP</scp> diet in children with the irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2015, 42, 418-427.	1.9	353
33	MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. International Journal of Biological Macromolecules, 2015, 81, 576-583.	3.6	75
34	Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones. Food and Function, 2015, 6, 3720-3727.	2.1	29
35	Personalized Nutrition by Prediction of Glycemic Responses. Cell, 2015, 163, 1079-1094.	13.5	1,816
36	Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clinical Nutrition, 2015, 34, 341-349.	2.3	101
37	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
38	Diet- and Genetically-induced Obesity Produces Alterations in the Microbiome, Inflammation and $\langle i \rangle$ Wnt $\langle i \rangle$ Pathway in the Intestine of Apc $\langle sup \rangle + /1638N \langle sup \rangle$ Mice: Comparisons and Contrasts. Journal of Cancer, 2016, 7, 1780-1790.	1.2	61

#	ARTICLE	IF	Citations
39	Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in <i>ApcMin/+</i> mice. Oncotarget, 2016, 7, 31226-31242.	0.8	57
40	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
41	Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics. PLoS ONE, 2016, 11, e0160488.	1.1	27
42	Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metabolism, 2016, 24, 151-157.	7.2	496
43	Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. Journal of Molecular Biology, 2016, 428, 3230-3252.	2.0	375
44	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	2.3	24
45	Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. American Journal of Physiology - Renal Physiology, 2016, 311, G1-G15.	1.6	116
46	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
47	Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. American Journal of Physiology - Renal Physiology, 2016, 311, G1018-G1036.	1.6	64
48	High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoEâ ⁻ '/â ⁻ ' mice. BMC Microbiology, 2016, 16, 264.	1.3	102
49	Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Research Reviews, 2016, 27, 108-124.	5.0	109
50	Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice. Journal of Functional Foods, 2016, 22, 177-188.	1.6	40
51	Digestive-resistant carbohydrates affect lipid metabolism in rats. Metabolomics, 2016, 12, 1.	1.4	6
52	Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Medicine, 2016, 8, 48.	3.6	153
53	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
54	Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends in Food Science and Technology, 2016, 57, 213-232.	7.8	237
55	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
56	The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Scientific Reports, 2016, 6, 27780.	1.6	34

#	Article	IF	CITATIONS
57	Prenatal caprine milk oligosaccharide consumption affects the development of mice offspring. Molecular Nutrition and Food Research, 2016, 60, 2076-2085.	1.5	17
58	Interactions between gut microbes and host cells control gut barrier and metabolism. International Journal of Obesity Supplements, 2016, 6, S28-S31.	12.5	33
59	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
60	Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism, 2016, 5, 1175-1186.	3.0	216
61	Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Scientific Reports, 2016, 6, 31027.	1.6	99
62	Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, 2016, , .	0.8	1
63	Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research. Advances in Experimental Medicine and Biology, 2016, 939, 117-137.	0.8	3
64	Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. Journal of Ethnopharmacology, 2016, 194, 717-726.	2.0	86
65	Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Beneficial Microbes, 2016, 7, 237-246.	1.0	39
66	Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 2016, 231, 1688-1694.	2.0	98
67	How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism, 2016, 5, 743-752.	3.0	237
68	The obese gut microbiome across the epidemiologic transition. Emerging Themes in Epidemiology, 2016, 13, 2.	1.2	40
69	Prevention of antibioticâ€associated metabolic syndrome in mice by intestinal alkaline phosphatase. Diabetes, Obesity and Metabolism, 2016, 18, 519-527.	2.2	32
70	Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutrition Research, 2016, 36, 337-348.	1.3	136
71	Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clinical Nutrition Experimental, 2016, 6, 25-38.	2.0	163
72	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	1.0	120
73	Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. Journal of Nutritional Biochemistry, 2016, 28, 61-69.	1.9	58
74	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28

#	Article	IF	Citations
75	Gut Microbiota and Obesity. American Journal of Lifestyle Medicine, 2016, 10, 104-106.	0.8	5
76	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149
77	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.	3.3	326
78	Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. Journal of Nutritional Biochemistry, 2016, 27, 123-135.	1.9	80
79	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	1.5	125
80	Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME Journal, 2016, 10, 1217-1227.	4.4	85
81	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	2.4	383
82	Nutritional modulation of gut microbiota â€" the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 2016, 28, 191-200.	1.9	77
83	Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype. ISME Journal, 2016, 10, 145-157.	4.4	44
84	Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition and Food Research, 2017, 61, 1500899.	1.5	138
85	Dietary αâ€eyclodextrin reduces atherosclerosis and modifies gut flora in apolipoprotein Eâ€deficient mice. Molecular Nutrition and Food Research, 2017, 61, 1600804.	1.5	22
86	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2017, 8, 130-142.	4.3	177
87	Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. Journal of Dairy Science, 2017, 100, 2471-2481.	1.4	64
88	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	6.1	370
89	Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. American Journal of Physiology - Renal Physiology, 2017, 312, G474-G487.	1.6	58
90	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	6.1	125
91	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132
92	Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E107-E120.	1.8	49

#	Article	IF	CITATIONS
93	Gastroparesis and lipid metabolism-associated dysbiosis in Wistar-Kyoto rats. American Journal of Physiology - Renal Physiology, 2017, 313, G62-G72.	1.6	25
94	Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 2017, 18, 70.	3.8	245
95	Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol and Alcoholism, 2017, 52, 414-424.	0.9	56
96	A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metabolism, 2017, 25, 1075-1090.e5.	7.2	179
97	The Gut, Its Microbiome, and Hypertension. Current Hypertension Reports, 2017, 19, 36.	1.5	103
98	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	15.2	1,165
99	Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 491-502.	8.2	3,192
100	Inulin prebiotic: is it all about bifidobacteria?. Gut, 2017, 66, 1883-1884.	6.1	12
101	High-cholesterol diet does not alter gut microbiota composition in mice. Nutrition and Metabolism, 2017, 14, 15.	1.3	36
102	Investigating cholesterol metabolism and ageing using a systems biology approach. Proceedings of the Nutrition Society, 2017, 76, 378-391.	0.4	16
103	Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocrine Development, 2017, 32, 139-164.	1.3	30
104	Antiobesity Effect of Exopolysaccharides Isolated from Kefir Grains. Journal of Agricultural and Food Chemistry, 2017, 65, 10011-10019.	2.4	48
105	Lactobacillus plantarum LP-Onlly alters the gut flora and attenuates colitis by inducing microbiome alteration in interleukin-10 knockout mice. Molecular Medicine Reports, 2017, 16, 5979-5985.	1.1	24
106	Effects of microencapsulated <i>Lactobacillus plantarum </i> LIP-1 on the gut microbiota of hyperlipidaemic rats. British Journal of Nutrition, 2017, 118, 481-492.	1.2	79
107	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	3.3	709
108	Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe, 2017, 48, 184-193.	1.0	39
109	Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Scientific Reports, 2017, 7, 5621.	1.6	51
110	Microbiota, metabolome, and immune alterations in obese mice fed a highâ€fat diet containing type 2 resistant starch. Molecular Nutrition and Food Research, 2017, 61, 1700184.	1.5	81

#	Article	IF	Citations
111	Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2715-2726.	1.8	66
112	Acetate. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 477-483.	1.3	56
113	Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180.	0.1	6
114	Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Scientific Reports, 2017, 7, 15876.	1.6	86
115	Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Cell Reports, 2017, 21, 1521-1533.	2.9	177
116	Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 6599-6607.	2.4	66
117	Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Scientific Reports, 2017, 7, 5294.	1.6	71
118	Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacological Research, 2017, 123, 103-113.	3.1	96
119	Effects of deep sea water and Lactobacillus paracasei subsp. paracasei NTU 101 on hypercholesterolemia hamsters gut microbiota. Applied Microbiology and Biotechnology, 2017, 101, 321-329.	1.7	7
120	Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Translational Research, 2017, 179, 155-167.	2.2	36
121	Parasites, microbiota and metabolic disease. Parasite Immunology, 2017, 39, e12390.	0.7	13
122	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
123	Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nature Microbiology, 2017, 2, 16220.	5.9	47
124	Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss. Nutrients, 2017, 9, 821.	1.7	53
125	Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota?. Nutrients, 2017, 9, 633.	1.7	49
126	Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 2017, 8, 563.	1.5	262
127	Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Frontiers in Microbiology, 2017, 8, 1765.	1.5	713
128	Emerging Trends in "Smart Probiotics― Functional Consideration for the Development of Novel Health and Industrial Applications. Frontiers in Microbiology, 2017, 8, 1889.	1.5	134

#	Article	IF	CITATIONS
129	RNA-Based Stable Isotope Probing Suggests <i>Allobaculum</i> spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BioMed Research International, 2017, 2017, 1-13.	0.9	56
130	Dietary choline derived TMAO: new role in thrombosis. AME Medical Journal, 2017, 2, 112-112.	0.4	4
132	Prebiotics, FODMAPs and dietary fiber â€" conflicting concepts in development of functional food products?. Current Opinion in Food Science, 2018, 20, 30-37.	4.1	28
133	The Role of Intestinal Câ€type Regenerating Islet Derivedâ€3 Lectins for Nonalcoholic Steatohepatitis. Hepatology Communications, 2018, 2, 393-406.	2.0	35
134	Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clinical Science, 2018, 132, 791-811.	1.8	32
135	Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. Journal of Nutritional Biochemistry, 2018, 56, 55-64.	1.9	64
136	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	3.1	77
137	Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. Journal of Endocrinology, 2018, 236, R105-R108.	1.2	64
138	Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poultry Science, 2018, 97, 970-979.	1.5	36
139	Particle size determines the anti-inflammatory effect of wheat bran in a model of fructose over-consumption: Implication of the gut microbiota. Journal of Functional Foods, 2018, 41, 155-162.	1.6	24
140	Temporal dynamics of gut microbiota in triclocarban-exposed weaned rats. Environmental Science and Pollution Research, 2018, 25, 14743-14751.	2.7	3
141	The gut microbiota and its potential role in obesity. Future Microbiology, 2018, 13, 589-603.	1.0	32
142	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	6.1	150
143	Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. International Journal of Obesity, 2018, 42, 231-243.	1.6	78
144	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
145	Age-dependent alterations of glucose clearance and homeostasis are temporally separated and modulated by dietary fat. Journal of Nutritional Biochemistry, 2018, 54, 66-76.	1.9	12
146	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
147	Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity, 2018, 42, 746-754.	1.6	31

#	Article	IF	CITATIONS
148	Cereal fiber, fruit fiber, and type 2 diabetes: Explaining the paradox. Journal of Diabetes and Its Complications, 2018, 32, 240-245.	1.2	59
149	Using the natural variation of mouse populations to understand host-gut microbiome interactions. Drug Discovery Today: Disease Models, 2018, 28, 61-71.	1.2	6
150	Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice. BMC Genomics, 2018, 19, 808.	1.2	42
151	Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. Frontiers in Microbiology, 2018, 9, 2552.	1.5	63
152	Is It Time to Use Probiotics to Prevent or Treat Obesity?. Nutrients, 2018, 10, 1613.	1.7	72
153	Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Frontiers in Physiology, 2018, 9, 1813.	1.3	68
154	Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Frontiers in Neuroscience, 2018, 12, 725.	1.4	39
155	Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. International Journal of Molecular Sciences, 2018, 19, 3331.	1.8	38
156	Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Frontiers in Microbiology, 2018, 9, 2323.	1.5	145
157	Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metabolism, 2018, 28, 907-921.e7.	7.2	170
158	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?., 2018,, 131-148.		0
159	The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61, 1838-1848.	2.9	76
160	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257
161	Update on the Gastrointestinal Microbiome in Systemic Sclerosis. Current Rheumatology Reports, 2018, 20, 49.	2.1	42
162	Human gut microbiome: hopes, threats and promises. Gut, 2018, 67, 1716-1725.	6.1	957
163	Microbiota and metabolism: what's new in 2018?. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1-E6.	1.8	19
164	Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model. Frontiers in Microbiology, 2018, 9, 710.	1.5	45
165	Exposure to Formaldehyde Perturbs the Mouse Gut Microbiome. Genes, 2018, 9, 192.	1.0	11

#	Article	IF	CITATIONS
166	Probiotic Lactobacillus Paracasei Expressing a Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv) Enhances Probiotic Activities in Mice Intestine as Revealed by Metagenomic Analyses. Genes, 2018, 9, 276.	1.0	10
167	Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018, 61, 1700-1711.	2.9	74
168	Microbial and metabolic multiâ€omic correlations in systemic sclerosis patients. Annals of the New York Academy of Sciences, 2018, 1421, 97-109.	1.8	50
169	Use of dietary indices to control for diet in human gut microbiota studies. Microbiome, 2018, 6, 77.	4.9	85
170	Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. Journal of Nutritional Biochemistry, 2018, 62, 143-154.	1.9	109
171	Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. Journal of Functional Foods, 2018, 49, 20-31.	1.6	52
172	Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. Journal of Functional Foods, 2018, 47, 423-433.	1.6	56
173	Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers in Medical Science, 2019, 34, 317-327.	1.0	45
174	<i>N</i> â€Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in highâ€fat dietâ€fed mice. Journal of Diabetes, 2019, 11, 32-45.	0.8	39
175	Linggui Zhugan Formula Improves Glucose and Lipid Levels and Alters Gut Microbiota in High-Fat Diet-Induced Diabetic Mice. Frontiers in Physiology, 2019, 10, 918.	1.3	38
176	Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host and Microbe, 2019, 26, 265-272.e4.	5.1	194
177	Highâ€Fat Diet Enriched with Bilberry Modifies Colonic Mucus Dynamics and Restores Marked Alterations of Gut Microbiome in Rats. Molecular Nutrition and Food Research, 2019, 63, e1900117.	1.5	14
178	Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food and Function, 2019, 10, 4505-4521.	2.1	29
179	Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development. Nutrients, 2019, 11, 1375.	1.7	30
180	Inulin and metformin ameliorate polycystic ovary syndrome <i>via</i> anti-inflammation and modulating gut microbiota in mice. Endocrine Journal, 2019, 66, 859-870.	0.7	79
181	Hematopoietic Npc1 mutation shifts gut microbiota composition in Ldlrâ^'/â^' mice on a high-fat, high-cholesterol diet. Scientific Reports, 2019, 9, 14956.	1.6	3
182	Influence of Maternal Inulin-Type Prebiotic Intervention on Glucose Metabolism and Gut Microbiota in the Offspring of C57BL Mice. Frontiers in Endocrinology, 2019, 10, 675.	1.5	16
183	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33

#	Article	IF	CITATIONS
184	Comparative characterization of bacterial communities in geese consuming of different proportions of ryegrass. PLoS ONE, 2019, 14, e0223445.	1.1	27
185	Korean Traditional Medicine (Jakyakgamcho-tang) Ameliorates Colitis by Regulating Gut Microbiota. Metabolites, 2019, 9, 226.	1.3	11
186	The Janus Face of Cereals: Wheatâ€Derived Prebiotics Counteract the Detrimental Effect of Gluten on Metabolic Homeostasis in Mice Fed a Highâ€Fat/Highâ€Sucrose Diet. Molecular Nutrition and Food Research, 2019, 63, e1900632.	1.5	15
187	Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 2019, 26, 314-324.	5.1	247
188	Small talk: microbial metabolites involved in the signaling from microbiota to brain. Current Opinion in Pharmacology, 2019, 48, 99-106.	1.7	69
189	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	5.8	100
190	Dietary Fiber in Bilberry Ameliorates Pre-Obesity Events in Rats by Regulating Lipid Depot, Cecal Short-Chain Fatty Acid Formation and Microbiota Composition. Nutrients, 2019, 11, 1350.	1.7	17
191	Impact of different hypercaloric diets on obesity features in rats: a metagenomics and metabolomics integrative approach. Journal of Nutritional Biochemistry, 2019, 71, 122-131.	1.9	26
192	Yeast fermentate prebiotic improves intestinal barrier integrity during heat stress by modulation of the gut microbiota in rats. Journal of Applied Microbiology, 2019, 127, 1192-1206.	1.4	27
193	Wheat Germ Supplementation Increases Lactobacillaceae and Promotes an Anti-inflammatory Gut Milieu in C57BL/6 Mice Fed a High-Fat, High-Sucrose Diet. Journal of Nutrition, 2019, 149, 1107-1115.	1.3	24
194	Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome. EBioMedicine, 2019, 44, 639-655.	2.7	23
195	Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 2019, 10, 29.	1.8	95
196	Stepwise Development of an in vitro Continuous Fermentation Model for the Murine Caecal Microbiota. Frontiers in Microbiology, 2019, 10, 1166.	1.5	19
197	Reg3 Proteins as Gut Hormones?. Endocrinology, 2019, 160, 1506-1514.	1.4	61
198	Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms, 2019, 7, 97.	1.6	18
199	Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. Journal of Nutrition, 2019, 149, 747-754.	1.3	99
200	Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning. PLoS ONE, 2019, 14, e0216211.	1.1	28
201	Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterology, 2019, 6, e000247.	1.1	23

#	Article	IF	Citations
202	Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice. BMC Microbiology, 2019, 19, 57.	1.3	31
203	Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Reports, 2019, 26, 2704-2719.e6.	2.9	191
204	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019, 44, 665-674.	2.7	66
205	Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules, 2019, 24, 1139.	1.7	58
206	A Mediterranean Diet Mix Has Chemopreventive Effects in a Murine Model of Colorectal Cancer Modulating Apoptosis and the Gut Microbiota. Frontiers in Oncology, 2019, 9, 140.	1.3	26
207	How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles. Microbial Ecology, 2019, 78, 995-1013.	1.4	46
208	The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 2019, 13, 1422-1436.	4.4	146
209	New-Generation Probiotics. , 2019, , 417-424.		9
210	Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism, 2019, 22, 96-109.	3.0	102
211	Sequential Changes in the Mesenteric Lymph Node Microbiome and Immune Response during Cirrhosis Induction in Rats. MSystems, 2019, 4, .	1.7	14
212	Intestinal nerve cell injury occurs prior to insulin resistance in female mice ingesting a high-fat diet. Cell and Tissue Research, 2019, 376, 325-340.	1.5	21
213	Impaired glucose metabolism and altered gut microbiome despite calorie restriction of ob/ob mice. Animal Microbiome, 2019, $1,11.$	1.5	15
214	Baicalin Protects Against Hypertension-Associated Intestinal Barrier Impairment in Part Through Enhanced Microbial Production of Short-Chain Fatty Acids. Frontiers in Pharmacology, 2019, 10, 1271.	1.6	42
215	Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microbial Cell, 2019, 6, 454-481.	1.4	161
216	Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food and Function, 2019, 10, 7498-7508.	2.1	14
217	Characterization of the cecal microbiome composition of Wenchang chickens before and after fattening. PLoS ONE, 2019, 14, e0225692.	1.1	25
218	Akkermansia muciniphila: a promising target for the therapy of metabolic syndrome and related diseases. Chinese Journal of Natural Medicines, 2019, 17, 835-841.	0.7	31
219	The Role of Succinate in the Regulation of Intestinal Inflammation. Nutrients, 2019, 11, 25.	1.7	183

#	Article	IF	Citations
220	Assessing the Influence of Dietary History on Gut Microbiota. Current Microbiology, 2019, 76, 237-247.	1.0	10
221	Antimicrobial proteins: intestinal guards to protect against liver disease. Journal of Gastroenterology, 2019, 54, 209-217.	2.3	33
222	Targeting obesity management through gut microbiota modulation by herbal products: A systematic review. Complementary Therapies in Medicine, 2019, 42, 184-204.	1.3	20
223	The Gut–Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome― Nutrients, 2019, 11, 156.	1.7	50
224	Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 2019, 10, 80.	5.8	378
225	A next generation probiotic, <i>Akkermansia muciniphila</i> Nutrition, 2019, 59, 3227-3236.	5. 4	244
226	SIRT3 Deficiency Promotes Highâ€Fat Dietâ€Induced Nonalcoholic Fatty Liver Disease in Correlation with Impaired Intestinal Permeability through Gut Microbial Dysbiosis. Molecular Nutrition and Food Research, 2019, 63, e1800612.	1. 5	63
227	Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria. European Journal of Nutrition, 2019, 58, 1771-1784.	1.8	30
228	Antibiotic-induced Disruption of Intestinal Microbiota Contributes to Failure of Vertical Sleeve Gastrectomy. Annals of Surgery, 2019, 269, 1092-1100.	2.1	29
229	Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian Journal of Microbiology, 2020, 60, 12-25.	1.5	70
230	Food processing, gut microbiota and the globesity problem. Critical Reviews in Food Science and Nutrition, 2020, 60, 1769-1782.	5.4	51
231	Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. European Journal of Nutrition, 2020, 59, 699-718.	1.8	110
232	Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158530.	1.2	49
233	No changes in gut microbiota after two-week sleep extension in chronically sleep-deprived individuals. Sleep Medicine, 2020, 68, 27-30.	0.8	12
234	Pelargonidin-3- <i>O</i> -glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 13025-13037.	2.4	63
235	Metabolically and immunologically beneficial impact of extra virgin olive and flaxseed oils on composition of gut microbiota in mice. European Journal of Nutrition, 2020, 59, 2411-2425.	1.8	22
236	Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut, 2020, 69, 283-294.	6.1	336
237	Natural diets promote retention of the native gut microbiota in captive rodents. ISME Journal, 2020, 14, 67-78.	4.4	83

#	Article	IF	CITATIONS
238	Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. Journal of Eukaryotic Microbiology, 2020, 67, 279-295.	0.8	16
239	Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE, 2020, 15, e0227373.	1.1	18
240	From anaerobes to aerointolerant prokaryotes. Human Microbiome Journal, 2020, 15, 100068.	3.8	9
241	Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 2020, 6, 379-388.	2.1	40
242	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
243	The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon. PLoS ONE, 2020, 15, e0239681.	1.1	3
244	Research on the mechanism of microwave-toughened starch on glucolipid metabolism in mice. Food and Function, 2020, $11,9789-9800$.	2.1	5
245	Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. International Journal of Molecular Sciences, 2020, 21, 4929.	1.8	31
246	Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut Microbes, 2020, 12, 1842990.	4.3	117
247	Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Frontiers in Microbiology, 2020, 11, 591568.	1.5	27
248	Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles. Microbial Cell Factories, 2020, 19, 219.	1.9	22
249	Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. Journal of Functional Foods, 2020, 75, 104278.	1.6	32
250	Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes (T2DM). Nutrients, 2020, 12, 3719.	1.7	96
251	Highly Branched Neo-Fructans (Agavins) Attenuate Metabolic Endotoxemia and Low-Grade Inflammation in Association with Gut Microbiota Modulation on High-Fat Diet-Fed Mice. Foods, 2020, 9, 1792.	1.9	22
252	Microbiome Profiling Reveals Gut Dysbiosis in the Metabotropic Glutamate Receptor 5 Knockout Mouse Model of Schizophrenia. Frontiers in Cell and Developmental Biology, 2020, 8, 582320.	1.8	16
253	Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of <i>Akkermansia muciniphila</i> Cellular Longevity, 2020, 2020, 1-20.	1.9	27
254	A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 2020, 12, 3197.	1.7	155
255	The role of probiotics on the roadmap to a healthy microbiota: a symposium report. Gut Microbiome, 2020, 1 , .	0.8	2

#	ARTICLE	IF	CITATIONS
256	Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E779-E791.	1.8	19
257	The Potential Role of Gut Microbiota in the Prevention and Treatment of Lipid Metabolism Disorders. International Journal of Endocrinology, 2020, 2020, 1-9.	0.6	15
258	High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Frontiers in Microbiology, 2020, 11, 564160.	1.5	9
259	The sad weekend: A perilous North American tradition. Neurobiology of Pain (Cambridge, Mass), 2020, 8, 100053.	1.0	2
260	A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley \hat{l}^2 -glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydrate Polymers, 2020, 243, 116398.	5.1	45
261	Effects of Agave Fructans, Inulin, and Starch on Metabolic Syndrome Aspects in Healthy Wistar Rats. ACS Omega, 2020, 5, 10740-10749.	1.6	11
262	Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food and Nutrition Research, 2020, 64, .	1.2	50
263	<i>Trans</i> -fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. British Journal of Nutrition, 2020, 124, 1251-1263.	1.2	19
264	Eggshell membrane powder lowers plasma triglyceride and liver total cholesterol by modulating gut microbiota and accelerating lipid metabolism in highâ€fat dietâ€fed mice. Food Science and Nutrition, 2020, 8, 2512-2523.	1.5	16
265	Human Milk Oligosaccharide Supplementation Affects Intestinal Barrier Function and Microbial Composition in the Gastrointestinal Tract of Young Sprague Dawley Rats. Nutrients, 2020, 12, 1532.	1.7	23
266	Intestinal microbiota transplantation reveals the role of microbiota in dietary regulation of RegIIIÎ ² and RegIIIÎ ³ expression in mouse intestine. Biochemical and Biophysical Research Communications, 2020, 529, 64-69.	1.0	8
267	Suppression of High-Fat Diet–Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota. Journal of Nutrition, 2020, 150, 2364-2374.	1.3	17
268	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	2.2	20
269	Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota, improving intestinal mucosal barrier function. International Journal of Obesity, 2020, 44, 1052-1061.	1.6	3
270	Pasteurized <i> Akkermansia muciniphila </i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	4.3	134
271	Highâ€fat diet–induced alterations to gut microbiota and gutâ€derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterology and Motility, 2020, 32, e13838.	1.6	19
272	Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoEâ [^] /â [^] Mice. Frontiers in Pharmacology, 2020, 11, 223.	1.6	129
273	An Integrated Metagenome Catalog Reveals New Insights into the Murine Gut Microbiome. Cell Reports, 2020, 30, 2909-2922.e6.	2.9	85

#	Article	IF	CITATIONS
274	The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiology International, 2020, 37, 1067-1081.	0.9	32
275	Highly Branched RG-I Domain Enrichment Is Indispensable for Pectin Mitigating against High-Fat Diet-Induced Obesity. Journal of Agricultural and Food Chemistry, 2020, 68, 8688-8701.	2.4	52
276	A comparative study of microbial community and functions of type 2 diabetes mellitus patients with obesity and healthy people. Applied Microbiology and Biotechnology, 2020, 104, 7143-7153.	1.7	31
277	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	0.6	123
278	Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H590-H603.	1.5	16
279	Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. Journal of Nutritional Biochemistry, 2020, 81, 108363.	1.9	74
280	Prebiotic inulin consumption reduces dioxin-like PCB 126-mediated hepatotoxicity and gut dysbiosis in hyperlipidemic Ldlr deficient mice. Environmental Pollution, 2020, 261, 114183.	3.7	20
281	Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods, 2020, 66, 103838.	1.6	70
282	Effects of dietary fibers and prebiotics in adiposity regulation via modulation of gut microbiota. Applied Biological Chemistry, 2020, 63, .	0.7	17
283	Effects of Nondigestible Oligosaccharides on Obesity. Annual Review of Food Science and Technology, 2020, 11, 205-233.	5.1	29
284	Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 2020, 69, 1975-1987.	6.1	141
285	Metabolic benefits of annatto-extracted tocotrienol on glucose homeostasis, inflammation, and gut microbiome. Nutrition Research, 2020, 77, 97-107.	1.3	29
286	The prolonged disruption of a single-course amoxicillin on mice gut microbiota and resistome, and recovery by inulin, Bifidobacterium longum and fecal microbiota transplantation. Environmental Pollution, 2020, 265, 114651.	3.7	23
287	Relationships between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content. Microorganisms, 2020, 8, 513.	1.6	22
288	The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Critical Reviews in Food Science and Nutrition, 2021, 61, 337-355.	5.4	60
289	Supernatants of intestinal luminal contents from mice fed highâ€fat diet impair intestinal motility by injuring enteric neurons and smooth muscle cells. Neurogastroenterology and Motility, 2021, 33, e13990.	1.6	2
290	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Healthâ€"Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	0.6	169
291	Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. International Journal of Obesity, 2021, 45, 143-154.	1.6	53

#	Article	IF	CITATIONS
292	Abnormal food timing and predisposition to weight gain: Role of barrier dysfunction and microbiota. Translational Research, 2021, 231, 113-123.	2.2	13
293	<i>Porphyromonas gingivalis</i> impairs glucose uptake in skeletal muscle associated with altering gut microbiota. FASEB Journal, 2021, 35, e21171.	0.2	30
294	Pinto beans modulate the gut microbiome, augment MHC II protein, and antimicrobial peptide gene expression in mice fed a normal or western-style diet. Journal of Nutritional Biochemistry, 2021, 88, 108543.	1.9	13
295	Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut, 2021, 70, 1088-1097.	6.1	105
296	The gut microbiota–brain axis and role of probiotics. , 2021, , 175-191.		1
297	Gut microbes participate in food preference alterations during obesity. Gut Microbes, 2021, 13, 1959242.	4.3	35
298	A Single Dose of Synbiotics and Vitamins at Birth Affects Piglet Microbiota before Weaning and Modifies Post-Weaning Performance. Animals, 2021, 11, 84.	1.0	5
299	Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Current Obesity Reports, 2021, 10, 70-80.	3.5	50
300	A comprehensive systematic review of the effectiveness of <i>Akkermansia muciniphila</i> , a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Archives of Physiology and Biochemistry, 2023, 129, 741-751.	1.0	14
301	An Expanded Gene Catalog of Mouse Gut Metagenomes. MSphere, 2021, 6, .	1.3	13
302	Emergence of nosocomial associated opportunistic pathogens in the gut microbiome after antibiotic treatment. Antimicrobial Resistance and Infection Control, 2021, 10, 36.	1.5	18
303	Host/microbiota interactions in health and diseases—Time for mucosal microbiology!. Mucosal Immunology, 2021, 14, 1006-1016.	2.7	51
304	Prebiotic Effect of Berberine and Curcumin Is Associated with the Improvement of Obesity in Mice. Nutrients, 2021, 13, 1436.	1.7	22
305	Oral Dysbiosis and Inflammation in Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 619-631.	1.5	35
306	The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101542.	2,2	21
307	Prevotella histicola Protects From Arthritis by Expansion of Allobaculum and Augmenting Butyrate Production in Humanized Mice. Frontiers in Immunology, 2021, 12, 609644.	2.2	53
308	Allobaculum Involves in the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Frontiers in Nutrition, 2021, 8, 690138.	1.6	65
309	Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112.	1.9	68

#	Article	IF	CITATIONS
310	Impact of the Gut Microbiota Balance on the Health–Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods, 2021, 10, 1261.	1.9	27
311	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	6.1	95
312	Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota. Frontiers in Pharmacology, 2021, 12, 694107.	1.6	7
313	Hepatic Adenosine Triphosphate Reduction Through the Shortâ€Chain Fatty Acids–Peroxisome Proliferatorâ€Activated Receptor γ–Uncoupling Protein 2 Axis Alleviates Immuneâ€Mediated Acute Hepatitis in Inulinâ€Supplemented Mice. Hepatology Communications, 2021, 5, 1555-1570.	2.0	10
314	Dysbiosis of gut microbiota after cholecystectomy is associated with nonâ€alcoholic fatty liver disease in mice. FEBS Open Bio, 2021, 11, 2329-2339.	1.0	4
315	Oral Limonite Supplement Ameliorates Glucose Intolerance in Diabetic and Obese Mice. Journal of Inflammation Research, 2021, Volume 14, 3089-3105.	1.6	1
316	Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 8017-8027.	2.4	21
317	Effectiveness of Two Plant-Based In-Feed Additives against an Escherichia coli F4 Oral Challenge in Weaned Piglets. Animals, 2021, 11, 2024.	1.0	7
319	Lactococcus lactis and Resveratrol Decrease Body Weight and Increase Benefic Gastrointestinal Microbiota in Mice. Protein and Peptide Letters, 2021, 28, 761-768.	0.4	3
320	Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World Journal of Diabetes, 2021, 12, 1146-1163.	1.3	23
321	Nanopore-Based Surveillance of Zoonotic Bacterial Pathogens in Farm-Dwelling Peridomestic Rodents. Pathogens, 2021, 10, 1183.	1.2	10
322	The Role of Gut Microbiota and Gut–Brain Interplay in Selected Diseases of the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 10028.	1.8	41
323	Similarities and differences of oligo/poly-saccharides' impact on human fecal microbiota identified by in vitro fermentation. Applied Microbiology and Biotechnology, 2021, 105, 7475-7486.	1.7	8
324	Î ² -Glucan Extracted from Highland Barley Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in C57BL/6J Mice. Molecules, 2021, 26, 5812.	1.7	18
325	Evolution of human diet and microbiome-driven disease. Current Opinion in Physiology, 2021, 23, 100455.	0.9	1
326	Anti-obesity effects of Lactobacillus rhamnosus 4B15, and its synergy with hydrolysed lactose skim milk powder. International Dairy Journal, 2021, 123, 104997.	1.5	7
327	Mechanisms of Gut Microbiota Modulation by Food, Probiotics, Prebiotics and More., 2021,, 84-84.		1
328	Protective effect of <i>Ganoderma lucidum</i> spore extract in trimethylamineâ€ <i>N</i> â€oxideâ€induced cardiac dysfunction in rats. Journal of Food Science, 2021, 86, 546-562.	1.5	20

#	Article	IF	Citations
329	Preparation, structural characteristics and physiological property of resistant starch. Advances in Food and Nutrition Research, 2021, 95, 1-40.	1.5	3
330	Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie, 2020, 178, 124-136.	1.3	44
331	Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.4	3
338	Fatty acids from diet and microbiota regulate energy metabolism. F1000Research, 2015, 4, 738.	0.8	29
339	Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biology, 2016, 14, e2000225.	2.6	475
340	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
341	Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but Not Gut Microbial Responses to Prenatal Metformin Exposure. PLoS ONE, 2016, 11, e0163805.	1.1	35
342	Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS ONE, 2017, 12, e0182805.	1.1	20
343	Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE, 2017, 12, e0186216.	1.1	55
344	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
345	Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms, 2020, 8, 1500.	1.6	14
346	Combined Soluble Fiber-Mediated Intestinal Microbiota Improve Insulin Sensitivity of Obese Mice. Nutrients, 2020, 12, 351.	1.7	28
347	<i>Akkermansia muciniphila</i> : is it the Holy Grail for ameliorating metabolic diseases?. Gut Microbes, 2021, 13, 1984104.	4.3	44
348	Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods, 2021, 10, 2528.	1.9	9
349	Linking Inflammation, Obesity and Diabetes. , 2015, , 1-24.		0
353	Overview of Prebiotics: Membership, Physiological Effects and their Health Attributes., 2018,, 289-348.		3
356	Akkermansia muciniphila and host interaction within the intestinal tract. Anaerobe, 2021, 72, 102472.	1.0	5
357	Metformin as a drug modifyinggut microbiota. Clinical Endocrinology and Endocrine Surgery, 2020, .	0.1	0

#	Article	IF	CITATIONS
359	Targeting gut microbiota: a potential promising therapy for diabetic kidney disease. American Journal of Translational Research (discontinued), 2016, 8, 4009-4016.	0.0	13
360	Novel prebiotics and next-generation probiotics: opportunities and challenges., 2022,, 431-457.		3
361	Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using ⟨scp⟩Spragueâ€Dawley⟨/scp⟩ rats. Journal of the Science of Food and Agriculture, 2022, 102, 3179-3192.	1.7	6
362	Prebiotics in Pediatrics., 2022, , 713-719.		2
363	Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota. Nutrients, 2021, 13, 4188.	1.7	10
364	Supplemental Aspergillus Lipase and Protease Preparations Display Powerful Bifidogenic Effects and Modulate the Gut Microbiota Community of Rats. Fermentation, 2021, 7, 294.	1.4	6
365	Impacts of changes in intestinal flora on the metabolism of Sprague–Dawley rats. Bioengineered, 2021, 12, 10603-10611.	1.4	1
366	Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology, 2021, 12, 833544.	1.5	28
367	Plant secondary compound- and antibiotic-induced community disturbances improve the establishment of foreign gut microbiota. FEMS Microbiology Ecology, 2022, 98, .	1.3	4
368	Skate-skin mucin, rich in sulfated sugars and threonine, promotes proliferation of Akkermansia muciniphila in feeding tests in rats and in vitro fermentation using human feces. Bioscience, Biotechnology and Biochemistry, 2022, , .	0.6	1
370	Aspergillus-Derived Cellulase Preparation Exhibits Prebiotic-like Effects on Gut Microbiota in Rats. Fermentation, 2022, 8, 71.	1.4	4
371	Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiology Spectrum, 2022, 10, e0017022.	1.2	13
372	<i>Akkermansia muciniphila</i> : from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Critical Reviews in Food Science and Nutrition, 2023, 63, 7357-7377.	5.4	35
374	Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites, 2022, 12, 301.	1.3	7
375	Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 3339.	1.8	21
376	Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Computational Biology, 2022, 18, e1009947.	1.5	36
377	Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health. Carbohydrate Polymers, 2022, 287, 119363.	5.1	42
378	Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes, 2022, 14, 2009297.	4.3	15

#	Article	IF	CITATIONS
379	Djulis Hull Improves Insulin Resistance and Modulates the Gut Microbiota in High-Fat Diet (HFD)-Induced Hyperglycaemia. Antioxidants, 2022, 11, 45.	2.2	8
380	Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Frontiers in Microbiology, 2022, 13, 826487.	1.5	16
381	High-fat diet disrupts REG3 \hat{I}^3 and gut microbial rhythms promoting metabolic dysfunction. Cell Host and Microbe, 2022, 30, 809-823.e6.	5.1	26
403	Effective Regulation of Gut Microbiota With Probiotics and Prebiotics May Prevent or Alleviate COVID-19 Through the Gut-Lung Axis. Frontiers in Pharmacology, 2022, 13, 895193.	1.6	10
404	Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods, 2022, 11, 1401.	1.9	40
405	Implications of microbe-mediated crosstalk in the gut: Impact on metabolic diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, , 159180.	1.2	2
406	Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome, 2022, 10, .	4.9	35
407	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	8.2	239
408	The Microbiota and It's Correlation With Metabolites in the Gut of Mice With Nonalcoholic Fatty Liver Disease. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	8
409	Effects of agavins in high fat-high sucrose diet-fed mice: an exploratory study. CYTA - Journal of Food, 2022, 20, 66-77.	0.9	2
410	Addition of Soluble Fiber in Low-Fat Purified Diets Maintains Cecal and Colonic Morphology, Modulates Bacterial Populations and Predicted Functions, and Improves Glucose Tolerance Compared with Traditional AIN Diets in Male Mice. Current Developments in Nutrition, 2022, 6, nzac105.	0.1	2
411	Fat Absorption, Metabolism, and Global Regulation. Food Chemistry, Function and Analysis, 2022, , 68-85.	0.1	0
412	<i>Codonopsis pilosula</i> oligosaccharides modulate the gut microbiota and change serum metabolomic profiles in high-fat diet-induced obese mice. Food and Function, 2022, 13, 8143-8157.	2.1	10
414	The Role of Gut Microbiota in the Skeletal Muscle Development and Fat Deposition in Pigs. Antibiotics, 2022, 11, 793.	1.5	7
415	Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, .	0.7	37
416	Comparative Genomics and Pan-Genome Driven Prediction of a Reduced Genome of Akkermansia muciniphila. Microorganisms, 2022, 10, 1350.	1.6	5
417	Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Molecular Metabolism, 2022, 63, 101546.	3.0	27
418	Gynostemma pentaphyllum polysaccharides ameliorate non-alcoholic steatohepatitis in mice associated with gut microbiota and the TLR2/NLRP3 pathway. Frontiers in Endocrinology, 0, 13, .	1.5	11

#	Article	IF	CITATIONS
419	Probiotics Administration in Cystic Fibrosis: What Is the Evidence?. Nutrients, 2022, 14, 3160.	1.7	9
420	Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Frontiers in Microbiology, 0, 13, .	1.5	12
421	Functional fiber enhances the effect of every-other-day fasting on insulin sensitivity by regulating the gut microecosystem. Journal of Nutritional Biochemistry, 2022, , 109122.	1.9	0
422	Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clinical Nutrition, 2022, 41, 2333-2344.	2.3	32
423	Beneficial role of gut microbiome in metabolic syndrome, obesity, and cardiovascular diseases. , 2022, , 149-166.		0
424	Two-Week Repair Alleviates Hexavalent Chromium-Induced Hepatotoxicity, Hepatic Metabolic and Gut Microbial Changes: A Subchronic Dynamic Inhalation Exposure Model in Male Mice. SSRN Electronic Journal, 0, , .	0.4	0
425	Practical Recommendation of the Scientific Đ¡ommunity for Human Microbiome Research (CHMR) and the Russian Gastroenterological Association (RGA) on Small Intestinal Bacterial Overgrowth in Adults. Russian Journal of Gastroenterology Hepatology Coloproctology, 2022, 32, 68-85.	0.2	6
426	Akkermansia muciniphila Reduces Peritonitis and Improves Intestinal Tissue Wound Healing after a Colonic Transmural Defect by a MyD88-Dependent Mechanism. Cells, 2022, 11, 2666.	1.8	9
427	Synbiotic Supplementation Modulates Gut Microbiota, Regulates \hat{I}^2 -Catenin Expression and Prevents Weight Gain in ob/ob Mice: Preliminary Findings. International Journal of Molecular Sciences, 2022, 23, 10483.	1.8	1
428	Does the Gut Microbial Metabolome Really Matter? The Connection between GUT Metabolome and Neurological Disorders. Nutrients, 2022, 14, 3967.	1.7	17
429	The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiological Research, 2023, 266, 127245.	2.5	13
430	Structural Alteration of Gut Microbiota During the Amelioration of Chronic Psychological Stress-Aggravated Diabetes-Associated Cognitive Decline by a Traditional Chinese Herbal Formula, ZiBu PiYin Recipe. Journal of Alzheimer's Disease, 2022, , 1-19.	1.2	0
431	Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives. Frontiers of Medicine, 2022, 16, 667-685.	1.5	10
432	Two-week repair alleviates hexavalent chromium-induced hepatotoxicity, hepatic metabolic and gut microbial changes: A dynamic inhalation exposure model in male mice. Science of the Total Environment, 2023, 857, 159429.	3.9	6
433	<i>Salvia miltiorrhiza</i> extract may exert an anti-obesity effect in rats with high-fat diet-induced obesity by modulating gut microbiome and lipid metabolism. World Journal of Gastroenterology, 0, 28, 6131-6156.	1.4	2
434	Dysregulated hepatic lipid metabolism and gut microbiota associated with early-stage NAFLD in ASPP2-deficiency mice. Frontiers in Immunology, 0, 13 , .	2.2	2
435	Early life microbiota transplantation from highly feed-efficient broiler improved weight gain by reshaping the gut microbiota in laying chicken. Frontiers in Microbiology, 0, 13, .	1.5	10
436	Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes, 2022, 14, .	4.3	19

#	ARTICLE	IF	CITATIONS
438	Effects of Bifidobacterium with the Ability of 2′-Fucosyllactose Utilization on Intestinal Microecology of Mice. Nutrients, 2022, 14, 5392.	1.7	0
439	Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, 2023, 35, 361-375.e9.	7.2	28
441	Comparing Transgenic Production to Supplementation of ï‰-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. Function, 2023, 4, .	1.1	4
443	Both live and heat-killed <i>Bifidobacterium animalis</i> J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food and Function, 2023, 14, 2045-2058.	2.1	1
444	Preclinical and Clinical Fructan Studies. , 2023, , 235-256.		0
445	Intestinal $\hat{I}\pm$ -Defensins Play a Minor Role in Modulating the Small Intestinal Microbiota Composition as Compared to Diet. Microbiology Spectrum, 0, , .	1.2	0
446	The impact of metallic nanoparticles on gut fermentation processes: An integrated metabolomics and metagenomics approach following an in vitro digestion and fecal fermentation model. Journal of Hazardous Materials, 2023, 453, 131331.	6. 5	1
447	The Positive Effect of 6-Gingerol on High-Fat Diet and Streptozotocin-Induced Prediabetic Mice: Potential Pathways and Underlying Mechanisms. Nutrients, 2023, 15, 824.	1.7	1
448	Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Critical Reviews in Food Science and Nutrition, 0, , 1-23.	5.4	2
449	Inulin increases the beneficial effects of rhubarb supplementation on high-fat high-sugar diet-induced metabolic disorders in mice: impact on energy expenditure, brown adipose tissue activity, and microbiota. Gut Microbes, 2023, 15, .	4.3	4
450	Intestinal group 1 innate lymphoid cells drive macrophage-induced inflammation and endocrine defects in obesity and promote insulinemia. Gut Microbes, 2023, 15 , .	4.3	2
451	Omega-3-Rich Fish-Oil-Influenced Mouse Gut Microbiome Shaped by Intermittent Consumption of Beef. Current Microbiology, 2023, 80, .	1.0	0
452	Excessive consumption of mucin by over-colonized Akkermansia muciniphila promotes intestinal barrier damage during malignant intestinal environment. Frontiers in Microbiology, 0, 14 , .	1.5	14
453	Diets, Gut Microbiota and Metabolites. Phenomics, 2023, 3, 268-284.	0.9	4
454	Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites, 2023, 13, 415.	1.3	2
455	Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Molecular Brain, 2023, 16, .	1.3	3
456	Indoleacrylic acid produced by Parabacteroides distasonis alleviates type 2 diabetes via activation of AhR to repair intestinal barrier. BMC Biology, 2023, 21, .	1.7	5
467	Reg $3\hat{l}^3$: current understanding and future therapeutic opportunities in metabolic disease. Experimental and Molecular Medicine, 2023, 55, 1672-1677.	3.2	3

#	Article	IF	CITATIONS
480	Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 164-183.	8.2	1
486	The human microbiota and its therapeutic options. , 2024, , 1993-2005.		0
488	Linking Inflammation, Obesity, and Diabetes. , 2023, , 429-448.		0
489	Effects of dietary fibre on metabolic health and obesity. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	0