Genetically Encoding Photoswitchable Click Amino Acie Mammalian Cells

Angewandte Chemie - International Edition 53, 3932-3936 DOI: 10.1002/anie.201400001

Citation Report

#	Article	IF	CITATIONS
1	A Straightforward Approach towards Cyclic Photoactivatable Tubulysin Derivatives. Angewandte Chemie - International Edition, 2014, 53, 11356-11360.	7.2	14
2	Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chemistry and Biology, 2014, 21, 1075-1101.	6.2	627
4	EPR Distance Measurements in Native Proteins with Genetically Encoded Spin Labels. ACS Chemical Biology, 2015, 10, 2764-2771.	1.6	39
5	Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins. Methods in Enzymology, 2015, 563, 483-502.	0.4	16
6	Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins. Organic Letters, 2015, 17, 6258-6261.	2.4	38
7	Photosensitive GFP mutants containing an azobenzene unnatural amino acid. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 470-473.	1.0	8
8	In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light. Journal of the American Chemical Society, 2015, 137, 11218-11221.	6.6	104
9	Synthesis of Heteroâ€bifunctional Azobenzene Glycoconjugates for Bioorthogonal Crossâ€Linking of Proteins. European Journal of Organic Chemistry, 2016, 2016, 1669-1672.	1.2	12
10	Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Scientific Reports, 2016, 6, 34751.	1.6	26
11	Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn ²⁺ Sensor into a Light-Responsive Zn ²⁺ Binding Protein. ACS Synthetic Biology, 2016, 5, 698-709.	1.9	9
12	Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells. Methods in Enzymology, 2016, 580, 89-107.	0.4	20
13	Noncovalent Interactions with Proteins Modify the Physicochemical Properties of a Molecular Switch. ChemPlusChem, 2016, 81, 44-48.	1.3	14
14	Azobenzene photocontrol of peptides and proteins. Chemical Communications, 2016, 52, 12262-12277.	2.2	168
15	Molecular tools for acute spatiotemporal manipulation of signal transduction. Current Opinion in Chemical Biology, 2016, 34, 135-142.	2.8	16
16	Using Protein-Confined Proximity To Determine Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 14832-14835.	6.6	46
17	Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 1-19.	0.6	6
18	Optical Control of a Neuronal Protein Using a Genetically Encoded Unnatural Amino Acid in Neurons. Journal of Visualized Experiments, 2016, , e53818.	0.2	5
19	Chemical Protein Modification through Cysteine. ChemBioChem, 2016, 17, 529-553.	1.3	291

ARTICLE IF CITATIONS # Photochromic Materials in Biochemistry., 0,, 361-391. 20 1 Externally stimulated click reactions for macromolecular syntheses. Progress in Polymer Science, 11.8 2016, 52, 19-78. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chemical 22 23.0 104 Reviews, 2017, 117, 186-245. Optical control of a receptor-linked guanylyl cyclase using a photoswitchable peptidic hormone. Chemical Science, 2017, 8, 4644-4653. Dynamic Modulation of Enzyme Activity by Nearâ€Infrared Light. Angewandte Chemie - International 24 7.2 86 Edition, 2017, 56, 6767-6772. Dynamic Modulation of Enzyme Activity by Nearâ€Infrared Light. Angewandte Chemie, 2017, 129, 6871-6876. 1.6 Let there be light: how to use photoswitchable cross-linker to reprogram proteins. Biochemical 26 1.6 8 Society Transactions, 2017, 45, 831-837. Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nature Chemical 3.9 Biology, 2017, 13, 842-844. Tuning the Effects of Bacterial Membrane Permeability through Photoâ€Isomerization of Antimicrobial 28 1.7 18 Cationic Amphiphiles. Chemistry - A European Journal, 2017, 23, 12724-12728. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts. Accounts 94 of Chemical Research, 2017, 50, 2767-2775. Precise modulation of neuronal activity with synthetic photoswitchable ligands. Current Opinion in 30 2.0 33 Neurobiology, 2017, 45, 202-209. Genetically encoding new bioreactivity. New Biotechnology, 2017, 38, 16-25. 2.4 59 Spontaneous and specific chemical cross-linking in live cells to capture and identify protein 32 5.8 74 interactions. Nature Communications, 2017, 8, 2240. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. ELife, 2017, 6, . 2.8 Probing Ion Channel Structure and Function Using Light-Sensitive Amino Acids. Trends in Biochemical 34 3.7 26 Sciences, 2018, 43, 436-451. Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. Journal of the 93 American Chemical Society, 2018, 140, 3128-3133. Genetically Encoding Unnatural Amino Acids in Neurons In Vitro and in the Embryonic Mouse Brain 36 0.4 2 for Optical Control of Neuronal Proteins. Methods in Molecular Biology, 2018, 1728, 263-277. Optical Control of a Biological Reaction–Diffusion System. Angewandte Chemie, 2018, 130, 2386-2390.

CITATION REPORT

#	Article	IF	CITATIONS
38	Optical Control of a Biological Reaction–Diffusion System. Angewandte Chemie - International Edition, 2018, 57, 2362-2366.	7.2	25
39	Genetically Encoding Fluorosulfate- <scp>l</scp> -tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins <i>in Vivo</i> . Journal of the American Chemical Society, 2018, 140, 4995-4999.	6.6	156
40	Oxidation-induced generation of a mild electrophile for proximity-enhanced protein–protein crosslinking. Chemical Communications, 2018, 54, 4172-4175.	2.2	6
41	A recognition-gated azobenzene photoswitch. New Journal of Chemistry, 2018, 42, 5660-5663.	1.4	4
42	Optochemical Control of Biological Processes in Cells and Animals. Angewandte Chemie - International Edition, 2018, 57, 2768-2798.	7.2	331
43	Optochemische Steuerung biologischer VorgÃ ¤ ge in Zellen und Tieren. Angewandte Chemie, 2018, 130, 2816-2848.	1.6	94
44	Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells. ChemBioChem, 2018, 19, 2178-2185.	1.3	40
45	Application of non-canonical crosslinking amino acids to study protein–protein interactions in live cells. Current Opinion in Chemical Biology, 2018, 46, 156-163.	2.8	53
46	Recent advances in the optical control of protein function through genetic code expansion. Current Opinion in Chemical Biology, 2018, 46, 99-107.	2.8	94
47	Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells. Journal of Visualized Experiments, 2018, , .	0.2	4
48	Expanding the Genetic Code to Study Protein–Protein Interactions. Angewandte Chemie - International Edition, 2018, 57, 14350-14361.	7.2	84
49	Expanding the Genetic Code to Study Protein–Protein Interactions. Angewandte Chemie, 2018, 130, 14548-14559.	1.6	13
50	Genetically Encoding Quinoline Reverses Chromophore Charge and Enables Fluorescent Protein Brightening in Acidic Vesicles. Journal of the American Chemical Society, 2018, 140, 11058-11066.	6.6	20
51	Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo. Journal of the American Chemical Society, 2019, 141, 9458-9462.	6.6	60
52	Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays in Biochemistry, 2019, 63, 237-266.	2.1	72
53	Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins. Methods in Enzymology, 2019, 624, 249-264.	0.4	9
54	Contemporary approaches to site-selective protein modification. Nature Reviews Chemistry, 2019, 3, 147-171.	13.8	325
55	Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry - A European Journal, 2019, 25, 5128-5144.	1.7	232

#	Article	IF	Citations
56	Expanding the enzyme universe with genetically encoded unnatural amino acids. Nature Catalysis, 2020, 3, 193-202.	16.1	131
57	Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1031.	2.0	26
58	Suzuki Crossâ€Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry - A European Journal, 2020, 26, 15938-15943.	1.7	8
59	Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods in Enzymology, 2020, 639, 167-189.	0.4	1
60	Expanding the Genetic Code for Neuronal Studies. ChemBioChem, 2020, 21, 3169-3179.	1.3	24
61	Covalent peptides and proteins for therapeutics. Bioorganic and Medicinal Chemistry, 2021, 29, 115896.	1.4	38
62	InÂvitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid. Biochemical and Biophysical Research Communications, 2021, 535, 47-53.	1.0	6
63	Genetically Encoding Lightâ€Responsive Proteinâ€Polymers Using Translation Machinery for the Multiâ€Site Incorporation of Photoâ€Switchable Unnatural Amino Acids. Advanced Functional Materials, 2021, 31, 2011276.	7.8	15
64	Protein Macrocyclization for Tertiary Structure Stabilization. ChemBioChem, 2021, 22, 2672-2679.	1.3	18
65	A Genetically Encoded Fluorosulfonyloxybenzoyl- <scp>l</scp> -lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry. Journal of the American Chemical Society, 2021, 143, 10341-10351.	6.6	50
66	Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chemical Reviews, 2022, 122, 1752-1829.	23.0	93
67	Computational design and experimental characterization of a photo-controlled mRNA-cap guanine-N7 methyltransferase. RSC Chemical Biology, 2021, 2, 1484-1490.	2.0	2
68	Molecular photoswitches in aqueous environments. Chemical Society Reviews, 2021, 50, 12377-12449.	18.7	170
69	Genetically encoded selective cross-linkers and emerging applications. Biochemical Society Transactions, 2020, 48, 1807-1817.	1.6	4
70	Genetic Code. Biological and Medical Physics Series, 2020, , 417-475.	0.3	0
71	Genetic Code Expansion and Optoproteomics. Yale Journal of Biology and Medicine, 2017, 90, 599-610.	0.2	8
72	New covalent bonding ability for proteins. Protein Science, 2022, 31, 312-322.	3.1	15
73	Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Current Opinion in Chemical Biology, 2022, 66, 102106.	2.8	13

CITATION REPORT

#	Article	IF	CITATIONS
74	The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. Journal of Molecular Biology, 2022, 434, 167453.	2.0	9
75	Combinatorial Approaches for Efficient Design of Photoswitchable Protein-Protein Interactions as In Vivo Actuators. Frontiers in Bioengineering and Biotechnology, 2022, 10, 844405.	2.0	1
76	Using azobenzene photocontrol to set proteins in motion. Nature Reviews Chemistry, 2022, 6, 112-124.	13.8	27
77	Expanding the functionality of proteins with genetically encoded dibenzo[<i>b</i> , <i>f</i>][1,4,5]thiadiazepine: a photo-transducer for photo-click decoration. Chemical Science, 2022, 13, 3571-3581.	3.7	9
78	A guide to designing photocontrol in proteins: methods, strategies and applications. Biological Chemistry, 2022, 403, 573-613.	1.2	14
79	A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. Journal of Molecular Biology, 2022, 434, 167534.	2.0	5
83	Engineering of enzymes using non-natural amino acids. Bioscience Reports, 2022, 42, .	1.1	9
84	Halogenation of tyrosine perturbs large-scale protein self-organization. Nature Communications, 2022, 13, .	5.8	7
85	Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Advanced Drug Delivery Reviews, 2022, 190, 114460.	6.6	2
86	Programmable Synthesis of Biobased Materials Using Cellâ€Free Systems. Advanced Materials, 2023, 35, .	11.1	3
87	Fluorescent azobenzene-confined coiled-coil mesofibers. Soft Matter, 2023, 19, 497-501.	1.2	2
88	Photo-regulated genetic encoding of dibenzo[<i>c,g</i>][1,2]diazocine on proteins <i>via</i> configuration switching. Chemical Communications, 0, , .	2.2	0
89	Rational design, production and in vitro analysis of photoxenoproteins. Methods in Enzymology, 2023, , 247-288.	0.4	0