Carbons and Electrolytes for Advanced Supercapacitors

Advanced Materials 26, 2219-2251 DOI: 10.1002/adma.201304137

Citation Report

#	Article	IF	CITATIONS
1	Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes. Faraday Discussions, 2014, 172, 139-62.	1.6	54
2	Cross-linked polymers of diethynylbenzene and phenylacetylene as new polymer precursors for high-yield synthesis of high-performance nanoporous activated carbons for supercapacitors, hydrogen storage, and CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 20316-20330.	5.2	40
3	An ionic liquid template approach to graphene–carbon xerogel composites for supercapacitors with enhanced performance. Journal of Materials Chemistry A, 2014, 2, 14329.	5.2	31
4	New Waterâ€Stable Ionic Liquids Based on Tetrakisâ€(2,2,2â€trifluoroethoxy)borate. ChemPhysChem, 2014, 15, 3729-3731.	1.0	12
5	Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. Journal of Power Sources, 2014, 272, 1122-1133.	4.0	99
6	High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam. Nanoscale Research Letters, 2014, 9, 492.	3.1	60
7	Graphitization as a Universal Tool to Tailor the Potentialâ€Dependent Capacitance of Carbon Supercapacitors. Advanced Energy Materials, 2014, 4, 1400316.	10.2	201
8	Continuous operation of an electrochemical flow capacitor. Electrochemistry Communications, 2014, 48, 178-181.	2.3	31
9	Controllable synthesis of large-area free-standing amorphous carbon films and their potential application in supercapacitors. RSC Advances, 2014, 4, 63734-63740.	1.7	14
10	Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 2014, 2, 17649-17654.	5.2	54
11	Reduced graphene oxide derived from used cell graphite and its green fabrication as an eco-friendly supercapacitor. RSC Advances, 2014, 4, 60039-60051.	1.7	22
12	An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores. Physical Chemistry Chemical Physics, 2014, 16, 21219-21224.	1.3	30
13	Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochimica Acta, 2014, 148, 164-169.	2.6	47
14	Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 2014, 114, 11619-11635.	23.0	632
15	Supercapacitive properties of coiled carbon nanotubes directly grown on nickel nanowires. Journal of Materials Chemistry A, 2014, 2, 17446-17453.	5.2	30
16	Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application. RSC Advances, 2014, 4, 45647-45652.	1.7	30
17	A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale, 2014, 6, 13831-13837.	2.8	434
18	Synthesis of polyaniline/SnO 2 nanocomposite and its improved electrochemical performance. Materials Research Bulletin, 2014, 60, 105-110.	2.7	47

#	Article	IF	CITATIONS
19	A Nitrogen-doped Hierarchical Mesoporous/Microporous Carbon for Supercapacitors. Electrochimica Acta, 2014, 146, 485-494.	2.6	31
20	Physicochemical Investigation of Adiponitrile-Based Electrolytes for Electrical Double Layer Capacitor. Journal of Physical Chemistry C, 2014, 118, 14107-14123.	1.5	43
21	A facile one-pot fabrication of flowerlike graphene-based particles for electric double-layer capacitors. Materials Chemistry and Physics, 2014, 148, 631-638.	2.0	3
22	Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14413-14420.	5.2	215
23	A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes. Electrochimica Acta, 2014, 145, 40-52.	2.6	52
24	Recent advances in porous graphene materials for supercapacitor applications. RSC Advances, 2014, 4, 45862-45884.	1.7	213
25	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	7.3	50
26	Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Journal of Materials Chemistry A, 2014, 2, 9313.	5.2	233
27	Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes. Journal of Power Sources, 2014, 266, 374-383.	4.0	102
28	Carbon additives for electrical double layer capacitor electrodes. Journal of Power Sources, 2014, 266, 475-480.	4.0	32
29	Quinoneâ€Decorated Onionâ€Like Carbon/Carbon Fiber Hybrid Electrodes for Highâ€Rate Supercapacitor Applications. ChemElectroChem, 2015, 2, 1117-1127.	1.7	49
30	Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors. Scientific Reports, 2015, 5, 16584.	1.6	81
31	Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte. Scientific Reports, 2015, 5, 15551.	1.6	114
32	From Soybean residue to advanced supercapacitors. Scientific Reports, 2015, 5, 16618.	1.6	134
33	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
34	Sieving Effects in Electrical Doubleâ€Layer Capacitors Based on Neat [Al(hfip) ₄] ^{â^'} and [NTf ₂] ^{â^'} Ionic Liquids. ChemElectroChem, 2015, 2, 829-836.	1.7	6
35	Highly Compressible and Allâ€5olidâ€5tate Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	11.1	217
36	Fast Ion and Electron Transport in a Supercapacitor Based on Monolithic Nanowireâ€Array Electrodes Prepared from a Defectâ€Free Anodic Aluminium Oxide Mold. Advanced Materials Interfaces, 2015, 2, 1500354.	1.9	11

#	Article	IF	CITATIONS
37	Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage. Journal of Physics: Conference Series, 2015, 660, 012062.	0.3	2
38	Tuning Surface Wettability and Adhesivity of a Nitrogenâ€Doped Graphene Foam after Water Vapor Treatment for Efficient Oil Removal. Advanced Materials Interfaces, 2015, 2, 1500243.	1.9	30
40	Selfâ€Protection of Electrochemical Storage Devices via a Thermal Reversible Sol–Gel Transition. Advanced Materials, 2015, 27, 5593-5598.	11.1	94
41	Highâ€5urfaceâ€Area Nitrogenâ€Doped Reduced Graphene Oxide for Electric Doubleâ€Layer Capacitors. ChemSusChem, 2015, 8, 1875-1884.	3.6	83
42	Hierarchical Porous Polystyrene Monoliths from PolyHIPE. Macromolecular Rapid Communications, 2015, 36, 1553-1558.	2.0	56
43	Capacitive Deionization using Biomassâ€based Microporous Saltâ€Templated Heteroatomâ€Doped Carbons. ChemSusChem, 2015, 8, 1867-1874.	3.6	104
44	Freeâ€Standing, Multilayered Graphene/Polyanilineâ€Glue/Graphene Nanostructures for Flexible, Solidâ€State Electrochemical Capacitor Application. Advanced Materials Interfaces, 2015, 2, 1500117.	1.9	66
45	Fabrication of Highâ€Power Liâ€lon Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage. Advanced Energy Materials, 2015, 5, 1500550.	10.2	203
47	Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy and Environmental Science, 2015, 8, 1725-1735.	15.6	126
48	Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 2015, 93, 412-420.	5.4	281
49	Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Progress in Materials Science, 2015, 74, 51-124.	16.0	449
50	Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Materials Chemistry and Physics, 2015, 160, 59-65.	2.0	26
51	Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Advances, 2015, 5, 44416-44422.	1.7	59
52	High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. Journal of Power Sources, 2015, 293, 65-70.	4.0	68
53	Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device. Journal of Power Sources, 2015, 293, 42-50.	4.0	40
54	Toward New Solvents for EDLCs: From Computational Screening to Electrochemical Validation. Journal of Physical Chemistry C, 2015, 119, 13413-13424.	1.5	66
55	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	18.7	2,723
56	Sol Processing of Conjugated Carbon Nitride Powders for Thinâ€Film Fabrication. Angewandte Chemie - International Edition, 2015, 54, 6297-6301.	7.2	354

#	Article	IF	CITATIONS
57	One-Dimensional Vanadium Nitride Nanofibers Fabricated by Electrospinning for Supercapacitors. Electrochimica Acta, 2015, 173, 680-686.	2.6	64
58	Complementary Effects of Pore Accessibility and Decoordination on the Capacitance of Nanoporous Carbon Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 28809-28818.	1.5	18
59	Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Advances, 2015, 5, 107482-107487.	1.7	83
60	Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Advances, 2015, 5, 97427-97434.	1.7	61
61	Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. Journal of Materials Chemistry A, 2015, 3, 18906-18912.	5.2	69
62	Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance. Electrochimica Acta, 2015, 178, 312-320.	2.6	33
63	High-performance supercapacitor of electrodeposited porous 3D polyaniline nanorods on functionalized carbon fiber paper: Effects of hydrophobic and hydrophilic surfaces of conductive carbon paper substrates. Materials Today Communications, 2015, 4, 176-185.	0.9	19
64	Comment on <i>Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance</i> . Advanced Functional Materials, 2015, 25, 179-181.	7.8	23
65	Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application. Journal of Electroanalytical Chemistry, 2015, 739, 156-163.	1.9	141
66	Electrochemical performance improvement of N-doped graphene as electrode materials for supercapacitors by optimizing the functional groups. RSC Advances, 2015, 5, 12583-12591.	1.7	15
67	Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12, 141-151.	8.2	540
68	High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like α-nickel hydroxide. Journal of Power Sources, 2015, 273, 914-922.	4.0	36
69	On the influence of polarization effects in predicting the interfacial structure and capacitance of graphene-like electrodes in ionic liquids. Journal of Chemical Physics, 2015, 142, 024701.	1.2	44
70	All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure. Nanotechnology, 2015, 26, 045401.	1.3	14
71	Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Scientific Reports, 2014, 4, 7050.	1.6	29
72	Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4344-4353.	4.0	220
73	Redox Electrolytes in Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5054-A5059.	1.3	394
74	Single-walled carbon nanotube embedded porous carbon nanofiber with enhanced electrochemical capacitive performance. Materials Letters, 2015, 144, 123-126.	1.3	12

#	Article	IF	CITATIONS
75	Au-Embedded ZnO/NiO Hybrid with Excellent Electrochemical Performance as Advanced Electrode Materials for Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 2480-2485.	4.0	114
76	Atomic Layer Deposition Encapsulated Activated Carbon Electrodes for High Voltage Stable Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 1899-1906.	4.0	30
77	A one-step, cost-effective green method to in situ fabricate Ni(OH) ₂ hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. Journal of Materials Chemistry A, 2015, 3, 1953-1960.	5.2	179
78	Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes. Journal of Power Sources, 2015, 279, 323-333.	4.0	51
79	Ethylenediamine-assisted crystallization of Fe ₂ O ₃ microspindles with controllable size and their pseudocapacitance performance. CrystEngComm, 2015, 17, 1521-1525.	1.3	39
80	Solvent-Free Electrolytes for Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5037-A5040.	1.3	44
81	Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Journal of Colloid and Interface Science, 2015, 447, 282-301.	5.0	43
82	Low Temperature Performance of Electrochemical Double-Layer Capacitor based on Electrospun Half-Cells. Journal of the Electrochemical Society, 2015, 162, A5031-A5036.	1.3	6
83	Crystallization of FeOOH via iron salts: an anion-chemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. CrystEngComm, 2015, 17, 1917-1922.	1.3	45
84	Strategies to Improve the Performance of Carbon/Carbon Capacitors in Salt Aqueous Electrolytes. Journal of the Electrochemical Society, 2015, 162, A5148-A5157.	1.3	103
85	Grapheneâ€Based Integrated Photovoltaic Energy Harvesting/Storage Device. Small, 2015, 11, 2929-2937.	5.2	90
86	3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2015, 648, 414-418.	2.8	46
87	Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. Journal of Materials Chemistry A, 2015, 3, 18154-18162.	5.2	424
88	Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage. ACS Central Science, 2015, 1, 261-269.	5.3	195
89	A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. Journal of Power Sources, 2015, 296, 186-196.	4.0	111
90	Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy, 2015, 90, 1490-1496.	4.5	56
91	Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine. Electrochimica Acta, 2015, 176, 941-948.	2.6	33
92	One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe ₂ O ₄ nanocomposites. Japanese Journal of Applied Physics, 2015, 54, 06FH10.	0.8	32

#	Article	IF	CITATIONS
93	Facile one-step hydrothermal preparation ofÂmolybdenum disulfide/carbon composite forÂuseÂinÂsupercapacitor. International Journal of Hydrogen Energy, 2015, 40, 10150-10157.	3.8	179
94	Parylene-Coated Ionic Liquid–Carbon Nanotube Actuators for User-Safe Haptic Devices. ACS Applied Materials & Interfaces, 2015, 7, 15542-15550.	4.0	16
95	Hierarchical porous CNTs@NCS@MnO ₂ composites: rational design and high asymmetric supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 15642-15649.	5.2	39
96	Characterization of MoS ₂ –Graphene Composites for High-Performance Coin Cell Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 17388-17398.	4.0	388
97	Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors. 2D Materials, 2015, 2, 024006.	2.0	3
98	Synthesis of carbon core–shell pore structures and their performance as supercapacitors. Microporous and Mesoporous Materials, 2015, 218, 130-136.	2.2	35
99	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	5.2	41
100	High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon, 2015, 94, 41-52.	5.4	98
101	Effect of Dimethyl Carbonate on the Dynamic Properties and Ionicities of Ionic Liquids with [M ^{III} (hfip) ₄] ^{â^²} (M=B, Al) Anions. ChemPhysChem, 2015, 16, 1940-1947.	1.0	9
102	Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes. Electrochimica Acta, 2015, 167, 348-356.	2.6	29
103	Interfacial Redox Phenomena for Enhanced Aqueous Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5140-A5147.	1.3	75
104	Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.	6.6	832
105	"Double-Salt―Electrolytes for High Voltage Electrochemical Double-Layer Capacitors. Journal of Solution Chemistry, 2015, 44, 528-537.	0.6	10
106	Research Progress on Negative Electrodes for Practical Liâ€lon Batteries: Beyond Carbonaceous Anodes. Advanced Energy Materials, 2015, 5, 1402225.	10.2	415
107	Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochimica Acta, 2015, 169, 342-350.	2.6	139
108	Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. Journal of Materials Chemistry A, 2015, 3, 6542-6548.	5.2	81
109	Facile synthesis of a Co ₃ O ₄ @carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 13011-13015.	5.2	64
110	NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors. Journal of the American Chemical Society, 2015, 137, 7231-7242.	6.6	182

#	Article	IF	CITATIONS
111	Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano, 2015, 9, 2556-2564.	7.3	1,375
112	Facile synthesis of flower-like CoMn ₂ O ₄ microspheres for electrochemical supercapacitors. RSC Advances, 2015, 5, 30963-30969.	1.7	86
113	High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. Journal of Power Sources, 2015, 285, 63-69.	4.0	357
114	Hierarchical Porous Graphene Carbon-Based Supercapacitors. Chemistry of Materials, 2015, 27, 2107-2113.	3.2	204
115	Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy and Environmental Science, 2015, 8, 2296-2319.	15.6	1,273
116	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44, 5181-5199.	18.7	546
117	Highly ordered mesoporous NiCo ₂ O ₄ with superior pseudocapacitance performance for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11503-11510.	5.2	36
118	Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040.	5.8	159
119	Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy, 2015, 13, 702-708.	8.2	62
120	Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochimica Acta, 2015, 166, 150-156.	2.6	113
122	Cobalt sulfide nanosheets coated on NiCo ₂ S ₄ nanotube arrays as electrode materials for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 10492-10497.	5.2	161
124	High performance solid-state supercapacitors based on compressed graphene foam. RSC Advances, 2015, 5, 84836-84839.	1.7	17
125	Towards sustainable power sources: chitin-bound carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 22923-22930.	5.2	22
126	Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences, 2015, 58, 1871-1876.	2.0	11
127	Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution. Electrochimica Acta, 2015, 185, 40-51.	2.6	68
128	Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage Materials, 2015, 1, 82-102.	9.5	114
129	Fabrication of coral like carbon black/MnO ₂ nano composites from commercial carbon black and their application in supercapacitors. RSC Advances, 2015, 5, 97080-97088.	1.7	8
130	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	8.2	166

#	Article	IF	CITATIONS
131	Diamond-coated silicon nanowires for enhanced micro-supercapacitor with ionic liquids. , 2015, , .		3
132	Facile Synthesis of Co3O4 Nanosheets Electrode with Ultrahigh Specific Capacitance for Electrochemical Supercapacitors. Electrochimica Acta, 2015, 182, 1101-1106.	2.6	70
133	A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors. Dalton Transactions, 2015, 44, 19175-19184.	1.6	78
134	Polyacrylamide-derived carbon materials: outstanding enhancement of supercapacitor capacitance simply by introducing redox additive of p-aminobenzenesulfonate into KOH electrolyte. RSC Advances, 2015, 5, 87571-87579.	1.7	2
135	Functional Pillared Graphene Frameworks for Ultrahigh Volumetric Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1500771.	10.2	184
136	New insight into the heteroatom-doped carbon as the electrode material for supercapacitors. Electrochimica Acta, 2015, 180, 879-886.	2.6	71
137	Multifunctional Carbon for Electrochemical Double‣ayer Capacitors. Advanced Functional Materials, 2015, 25, 6775-6785.	7.8	32
138	A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. Journal of Materials Chemistry A, 2015, 3, 23483-23492.	5.2	128
139	Ionic Liquids Containing Sulfonium Cations as Electrolytes for Electrochemical Double Layer Capacitors. Journal of Physical Chemistry C, 2015, 119, 23865-23874.	1.5	59
140	Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor. Physica Scripta, 2015, 90, 095702.	1.2	8
141	Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide. Applied Surface Science, 2015, 358, 100-109.	3.1	47
142	Rate and cycle performances of supercapacitors with different electrode thickness using non-aqueous electrolyte. Journal of Energy Storage, 2015, 3, 10-17.	3.9	33
143	Preparation and electrochemical performance of corn straw-based nanoporous carbon. Journal of Porous Materials, 2015, 22, 1351-1355.	1.3	2
144	Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V ₂ O ₅ for High Performance Supercapacitors. Chemistry of Materials, 2015, 27, 6524-6534.	3.2	78
145	Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes. Journal of the American Chemical Society, 2015, 137, 12627-12632.	6.6	152
146	Three-Dimensional Expanded Graphene–Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 22364-22371.	4.0	58
147	Tuning and understanding the supercapacitance of heteroatom-doped graphene. Energy Storage Materials, 2015, 1, 103-111.	9.5	50
148	Synthesis of ternary graphene/molybdenum oxide/poly(p-phenylenediamine) nanocomposites for symmetric supercapacitors. RSC Advances, 2015, 5, 98278-98287.	1.7	23

#	Article	IF	CITATIONS
149	A smart self-regenerative lithium ion supercapacitor with a real-time safety monitor. Energy Storage Materials, 2015, 1, 146-151.	9.5	28
150	Graphene in Supercapacitor Applications. Current Opinion in Colloid and Interface Science, 2015, 20, 416-428.	3.4	154
151	Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor. Materials Chemistry and Physics, 2015, 168, 127-131.	2.0	61
152	Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. Journal of Materials Chemistry A, 2015, 3, 23323-23332.	5.2	58
153	From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon. Scientific Reports, 2014, 4, 7260.	1.6	128
154	Cr2O3: a novel supercapacitor electrode material with high capacitive performance. Materials Letters, 2015, 142, 172-175.	1.3	54
155	A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. Journal of Materials Chemistry A, 2015, 3, 3480-3490.	5.2	93
156	Supercapacitor devices for energy storage and capacitive dye removal from aqueous solutions. RSC Advances, 2015, 5, 320-327.	1.7	25
157	Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study. Journal of the Electrochemical Society, 2015, 162, A44-A51.	1.3	35
158	MnO2@KCu7S4 NWs hybrid compositions for high-power all-solid-state supercapacitor. Journal of Power Sources, 2015, 274, 477-482.	4.0	38
159	Design of Activated Carbon/Activated Carbon Asymmetric Capacitors. Frontiers in Materials, 2016, 3, .	1.2	49
160	New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Materials, 2016, 9, 734.	1.3	25
161	Frame-filling structural nanoporous carbon from amphiphilic carbonaceous mixture comprising graphite oxide. Carbon, 2016, 108, 225-233.	5.4	18
162	Hierarchically porous carbon foams for electric double layer capacitors. Nano Research, 2016, 9, 2875-2888.	5.8	120
163	Effects of hydrothermal carbonization conditions on the textural and electrical properties of activated carbons. Carbon, 2016, 107, 619-621.	5.4	13
164	Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research, 2016, 9, 2510-2519.	5.8	73
165	Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochimica Acta, 2016, 211, 941-949.	2.6	42
167	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. Advanced Functional Materials, 2016, 26, 3472-3479.	7.8	72

#	Article	IF	CITATIONS
168	Highâ€Rate and Highâ€Volumetric Capacitance of Compact Graphene–Polyaniline Hydrogel Electrodes. Advanced Energy Materials, 2016, 6, 1600185.	10.2	91
169	Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosensors and Bioelectronics, 2016, 86, 459-465.	5.3	59

A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2ÅV (IES) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 6

171	Using Asphaltene Supermolecules Derived from Coal for the Preparation of Efficient Carbon Electrodes for Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 15105-15113.	1.5	43
172	In-Situ-Activated N-Doped Mesoporous Carbon from a Protic Salt and Its Performance in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 35243-35252.	4.0	37
173	Hierarchical cellulose-derived CNF/CNT composites for electrostatic energy storage. Journal of Micromechanics and Microengineering, 2016, 26, 124001.	1.5	11
174	MgO-templated mesoporous carbons using a pitch-based thermosetting carbon precursor. RSC Advances, 2016, 6, 100546-100553.	1.7	5
175	An optimization of hybrid capacitor with respect to mass of electrode material. , 2016, , .		4
176	A Perspective: Could Carbon Current Collectors Improve the Energy Density of Aqueous Alkaline Symmetric Supercapacitors?. Energy Harvesting and Systems, 2016, 3, 287-296.	1.7	0
177	Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. Journal of Power Sources, 2016, 326, 660-671.	4.0	115
178	Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor. Journal of Power Sources, 2016, 317, 10-18.	4.0	87
179	New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016, 138, 5731-5744.	6.6	529
180	Simply incorporating an efficient redox additive into KOH electrolyte for largely improving electrochemical performances. Journal of Electroanalytical Chemistry, 2016, 770, 62-72.	1.9	17
181	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	7.8	607
182	Degradation Characteristics of Electric Double-Layer Capacitors Consisting of High Surface Area Carbon Electrodes with Organic Electrolyte Solutions. Electrochimica Acta, 2016, 209, 210-218.	2.6	34
183	Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chemical Engineering Journal, 2016, 302, 437-445.	6.6	159
184	Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. ACS Sustainable Chemistry and Engineering, 2016, 4, 3750-3756.	3.2	261
185	Controllable synthesis of 2D amorphous carbon and partially graphitic carbon materials: Large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte. Electrochimica Acta, 2016, 200, 247-258.	2.6	36

#	Article	IF	CITATIONS
186	Nanoporous graphitic carbon materials: Systematic incorporation of p-/m-/o-nitroaniline as effective redox additives for largely improving the capacitive performance. Carbon, 2016, 100, 564-577.	5.4	16
187	RGO/MnO 2 /polypyrrole ternary film electrode for supercapacitor. Materials Chemistry and Physics, 2016, 177, 40-47.	2.0	44
188	Aerogel Microparticles from Oil-in-Oil Emulsion Systems. Langmuir, 2016, 32, 5637-5645.	1.6	23
189	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
190	High Performing Biobased Ionic Liquid Crystal Electrolytes for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3535-3543.	3.2	61
191	Hierarchically nanostructured hollow carbon nanospheres for ultra-fast and long-life energy storage. Carbon, 2016, 106, 306-313.	5.4	31
192	Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors. Electrochimica Acta, 2016, 209, 557-564.	2.6	102
193	Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. Journal of Power Sources, 2016, 317, 57-64.	4.0	45
194	Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications. Journal of Power Sources, 2016, 316, 60-71.	4.0	41
195	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon, 2016, 105, 260-267.	5.4	108
196	Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale, 2016, 8, 10406-10414.	2.8	82
197	Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. Journal of Power Sources, 2016, 326, 652-659.	4.0	48
198	The modified activated carbon treated with a low-temperature iodine plasma used as electrode material for electrochemical capacitors. Materials Letters, 2016, 175, 96-100.	1.3	18
199	High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte. Journal of Power Sources, 2016, 318, 235-241.	4.0	62
200	Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. Journal of Power Sources, 2016, 326, 624-634.	4.0	68
201	Research progress in Na-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 7538-7548.	5.2	131
202	Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems. Journal of Power Sources, 2016, 326, 717-725.	4.0	82
203	Hierarchical core/shell Janus-type α-Fe ₂ O ₃ /PEDOT nanoparticles for high performance flexible energy storage devices. Journal of Materials Chemistry A, 2016, 4, 8263-8271.	5.2	51

#	Article	IF	CITATIONS
204	Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. Journal of Materials Chemistry A, 2016, 4, 8421-8427.	5.2	61
205	Self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte. Electrochimica Acta, 2016, 202, 66-72.	2.6	41
206	Microwave synthesis: Characterization and electrochemical properties of amorphous activated carbon-MnO2 nanocomposite electrodes. Journal of Alloys and Compounds, 2016, 681, 293-300.	2.8	35
207	A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale, 2016, 8, 11136-11142.	2.8	53
208	Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation. Nanoscale Research Letters, 2016, 11, 245.	3.1	24
209	Reproducibly creating hierarchical 3D carbon to study the effect of Si surface functionalization on the oxygen reduction reaction. Nanoscale, 2016, 8, 11617-11624.	2.8	1
210	A new benzimidazole based covalent organic polymer having high energy storage capacity. Chemical Communications, 2016, 52, 7592-7595.	2.2	97
211	Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon, 2016, 105, 628-637.	5.4	84
212	Use of pyrocatechol violet as an effective redox additive for highly promoting the supercapacitor performances. Journal of Power Sources, 2016, 323, 8-16.	4.0	23
213	Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors. Journal of Power Sources, 2016, 329, 432-440.	4.0	10
214	Preparation of High-Performance Internal Tandem Electric Double-Layer Capacitors (IT-EDLCs) from Melt-Spun Lignin Fibers. Journal of Wood Chemistry and Technology, 2016, 36, 418-431.	0.9	9
215	Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. Journal of Power Sources, 2016, 329, 536-545.	4.0	26
216	Three-dimensional flower-like α-Co(OH)2 architectures assembled by nanoplates for lithium ion batteries. Materials Letters, 2016, 185, 495-498.	1.3	10
217	Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions. Journal of Physical Chemistry Letters, 2016, 7, 4015-4021.	2.1	72
218	Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 16588-16596.	5.2	34
219	"Brick-and-mortar―sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V sâ^1 for supercapacitors. Nano Energy, 2016, 30, 84-92.	8.2	84
220	Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 2016, 4, 16879-16885.	5.2	33
221	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17

#	Article	IF	CITATIONS
222	A comparative study of Ni–Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 30068-30078.	1.3	64
223	Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries. Current Opinion in Chemical Engineering, 2016, 13, 150-160.	3.8	44
224	Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016, 1, .	19.8	1,655
225	Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid–water mixtures. Journal of Physics Condensed Matter, 2016, 28, 464001.	0.7	44
226	Assembly of porous NiO nanowires on carbon cloth as a flexible electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 74874-74877.	1.7	19
227	Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 20756-20765.	4.0	30
228	Specific-ion effects in non-aqueous systems. Current Opinion in Colloid and Interface Science, 2016, 23, 82-93.	3.4	60
229	Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors. Journal of Power Sources, 2016, 327, 535-542.	4.0	32
230	Highly flexible binder-free core–shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles. Nanotechnology, 2016, 27, 325402.	1.3	10
231	Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry. Electrochemistry Communications, 2016, 70, 73-77.	2.3	40
232	Graphene oxide-modified nickel (II) tetra-aminophthalocyanine nanocomposites for high-power symmetric pseudocapacitor. Electrochimica Acta, 2016, 212, 876-882.	2.6	14
233	A high-voltage asymmetric electrical double-layer capacitors using propylene carbonate. Electrochemistry Communications, 2016, 70, 23-27.	2.3	28
234	Fundamentals of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 1-30.	0.0	4
235	Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions. Advances in Colloid and Interface Science, 2016, 236, 113-141.	7.0	30
236	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
237	Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline–Carbon Nanotube Nanofibers. ACS Applied Materials & Interfaces, 2016, 8, 21261-21269.	4.0	242
238	Lithium rhenium(<scp>vii</scp>) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 12609-12615.	5.2	77
239	Electroactive polymer/graphene oxide nanostructured composites; evidence for direct chemical interactions between PEDOT and GOx. Synthetic Metals, 2016, 220, 334-346.	2.1	23

#	Article	IF	CITATIONS
240	Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives. Electroanalysis, 2016, 28, 27-34.	1.5	79
241	Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO ₂ @CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23721-23728.	4.0	83
242	Three-dimensional flexible carbon electrode for symmetrical supercapacitors. Materials Letters, 2016, 185, 193-196.	1.3	11
243	A New Approach to Tuning Carbon Ultramicropore Size at Subâ€Angstrom Level for Maximizing Specific Capacitance and CO ₂ Uptake. Advanced Functional Materials, 2016, 26, 7955-7964.	7.8	128
244	NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. Journal of Power Sources, 2016, 329, 238-246.	4.0	54
245	Highly conjugated graphitic 3D carbon frameworks for supercapacitors with long cycling stability. Carbon, 2016, 109, 650-657.	5.4	19
246	High Performance Hybrid Energy Storage with Potassium Ferricyanide Redox Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 23676-23687.	4.0	123
247	How can we describe the adsorption of quinones on activated carbon surfaces?. Current Applied Physics, 2016, 16, 1437-1441.	1.1	7
248	Understanding the redox effects of amine and hydroxyl groups of p-aminophenol upon the capacitive performance in KOH and H2SO4 electrolyte. Journal of Electroanalytical Chemistry, 2016, 778, 80-86.	1.9	11
249	Highly Porous Renewable Carbons for Enhanced Storage of Energy-Related Gases (H ₂ and) Tj ETQq1	$1_{3.2}^{0.78431}$.4 rgBT /Ove 64
250	Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 15006-15014.	5.2	108
251	Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. Journal of Power Sources, 2016, 328, 520-526.	4.0	35
252	Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. Journal of Power Sources, 2016, 328, 510-519.	4.0	123
253	Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors. RSC Advances, 2016, 6, 81017-81027.	1.7	38
254	Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy, 2016, 28, 232-240.	8.2	67
255	Enhancing the charge-storage performance of N -doped reduced graphene oxide aerogel supercapacitors by adsorption of the cationic electrolytes with single-stand deoxyribonucleic acid. Carbon, 2016, 109, 314-320.	5.4	36
256	Silicon Carbide Nanocauliflowers for Symmetric Supercapacitor Devices. Industrial & Engineering Chemistry Research, 2016, 55, 9452-9458.	1.8	66
257	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409

#	Article	IF	CITATIONS
258	Electrospray of Precursor Sol on Carbon Paper and <i>in Situ</i> Carbonization for Making Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2016, 55, 10073-10083.	1.8	13
259	From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte. Electrochimica Acta, 2016, 216, 405-411.	2.6	98
260	Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes. Journal of Materials Chemistry A, 2016, 4, 16003-16016.	5.2	51
261	Symmetric and asymmetric supercapacitors derived from banyan tree leaves and rose petals. , 2016, , .		5
262	A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. Journal of Materials Chemistry A, 2016, 4, 16312-16317.	5.2	213
263	Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Advances, 2016, 6, 88826-88836.	1.7	18
264	Potentiostatic activation of as-made graphene electrodes for high-rate performance in supercapacitors. Journal of Power Sources, 2016, 329, 558-566.	4.0	12
265	Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. Nano Letters, 2016, 16, 6695-6700.	4.5	171
266	Applications of Ionic Liquids. , 2016, , 1-58.		13
267	Nanostructured Manganese Oxides in Supercapacitors. Nanostructure Science and Technology, 2016, , 345-376.	0.1	3
268	Space-Confined Synthesis of Three-Dimensional Boron/Nitrogen-Doped Carbon Nanotubes/Carbon Nanosheets Line-in-Wall Hybrids and Their Electrochemical Energy Storage Applications. Electrochimica Acta, 2016, 212, 621-629.	2.6	42
269	An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors. Journal of Power Sources, 2016, 326, 549-559.	4.0	27
270	Asymmetric Behavior of Positive and Negative Electrodes in Carbon/Carbon Supercapacitors and Its Underlying Mechanism. Journal of Physical Chemistry C, 2016, 120, 24675-24681.	1.5	38
271	The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochimica Acta, 2016, 220, 146-155.	2.6	41
272	Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016, 1, .	23.3	511
273	Facile fabrication of Co ₂ CuS ₄ nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17560-17571.	5.2	147
274	Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Scientific Reports, 2016, 6, 25684.	1.6	68
275	Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 33626-33634.	4.0	222

#	ARTICLE	IF	CITATIONS
276	Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries. Scientific Reports, 2016, 6, 27365.	1.6	49
277	Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors. Scientific Reports, 2016, 6, 37560.	1.6	85
278	Charging Rate Dependence of Ion Migration and Stagnation in Ionic-Liquid-Filled Carbon Nanopores. Journal of Physical Chemistry C, 2016, 120, 24560-24567.	1.5	35
279	Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 222, 773-780.	2.6	120
280	High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water. RSC Advances, 2016, 6, 106081-106089.	1.7	32
281	Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. RSC Advances, 2016, 6, 107163-107179.	1.7	14
282	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426.	4.0	31
283	Tailored activated carbons for supercapacitors derived from hydrothermally carbonized sugars by chemical activation. RSC Advances, 2016, 6, 110629-110641.	1.7	17
284	The decisive role of electrolyte concentration in the performance of aqueous chloride-based carbon/carbon supercapacitors with extended voltage window. Electrochimica Acta, 2016, 221, 177-183.	2.6	24
285	Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 29452-29460.	4.0	29
286	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
287	Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes. Scientific Reports, 2016, 6, 25793.	1.6	71
288	Graphene quantum dots as the electrolyte for solid state supercapacitors. Scientific Reports, 2016, 6, 19292.	1.6	46
289	Illustrating the redox roles of amine and nitro groups linked to p-phenylenediamine and p-nitroaniline upon the improved capacitive performances. Journal of Electroanalytical Chemistry, 2016, 783, 295-303.	1.9	6
290	Design of Hierarchically Porous Carbons with Interlinked Hydrophilic and Hydrophobic Surface and Their Capacitive Behavior. Chemistry of Materials, 2016, 28, 8715-8725.	3.2	35
291	Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid. ChemSusChem, 2016, 9, 3093-3101.	3.6	33
292	3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Scientific Reports, 2016, 6, 21002.	1.6	94
293	Carbon Redox-Polymer-Gel Hybrid Supercapacitors. Scientific Reports, 2016, 6, 22194.	1.6	49

#	Article	IF	CITATIONS
294	Porous tungsten trioxide nanolamellae with uniform structures for high-performance ethanol sensing. CrystEngComm, 2016, 18, 8411-8418.	1.3	25
295	Challenges and progresses of energy storage technology and its application in power systems. Journal of Modern Power Systems and Clean Energy, 2016, 4, 519-528.	3.3	171
296	Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 29628-29636.	4.0	37
297	Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors. Scientific Reports, 2016, 6, 22062.	1.6	52
298	Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 18899-18909.	5.2	30
299	High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte. Scientific Reports, 2016, 6, 22048.	1.6	36
300	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333.	10.2	268
301	On the Importance of Regulating Hydroxyl Coverage on the Basal Plane of Graphene Oxide for Supercapacitors. ChemElectroChem, 2016, 3, 741-748.	1.7	6
302	3 D Interlayer Nanohybrids Composed of Sulfamicâ€Acidâ€Doped PEdot Grown on Expanded Graphite for Highâ€Performance Supercapacitors. ChemPlusChem, 2016, 81, 242-250.	1.3	10
303	Armoring Graphene Cathodes for Highâ€Rate and Long‣ife Lithium Ion Supercapacitors. Advanced Energy Materials, 2016, 6, 1502064.	10.2	83
304	Electrochemical stability of graphene cathode for highâ€voltage lithium ion capacitors. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 407-414.	0.8	3
305	Facile preparation of N,S-doped hierarchical porous carbons based on 3-aminophenol-3-mercaptophenol co-resins for supercapacitor applications. RSC Advances, 2016, 6, 58764-58770.	1.7	16
306	Nanosized BaMnO3 as high performance supercapacitor electrode material: Fabrication and characterization. Materials Letters, 2016, 181, 335-339.	1.3	10
307	Glucose derived ionothermal carbons with tailor-made porosity. Carbon, 2016, 107, 288-296.	5.4	64
308	Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20ºC–80ºC. Journal of Power Sources, 2016, 324, 615-624.	4.0	30
309	The rise of organic electrode materials for energy storage. Chemical Society Reviews, 2016, 45, 6345-6404.	18.7	840
310	Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors. RSC Advances, 2016, 6, 55577-55583.	1.7	7
311	Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy and Environmental Science, 2016, 9, 3392-3398.	15.6	121

#	Article	IF	Citations
312	Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10869-10877.	5.2	83
313	Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors. Energy Storage Materials, 2016, 5, 111-115.	9.5	39
314	Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11388-11396.	5.2	151
315	A high energy density asymmetric supercapacitor from ultrathin manganese molybdate nanosheets. Electrochimica Acta, 2016, 211, 217-224.	2.6	63
316	Microspherical ZnO synthesized from a metal-organic precursor for supercapacitors. Ionics, 2016, 22, 2169-2174.	1.2	21
317	Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 13406-13413.	1.5	72
318	Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes. Journal of Power Sources, 2016, 326, 569-574.	4.0	59
319	Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. Journal of Alloys and Compounds, 2016, 685, 384-390.	2.8	80
320	Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016, 45, 4340-4363.	18.7	480
321	Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon, 2016, 107, 638-645.	5.4	93
322	MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochimica Acta, 2016, 191, 854-863.	2.6	141
323	High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 2016, 192, 110-119.	2.6	384
324	Porous silicon carbide flakes derived from waste silicon wafer for electrochemical supercapacitor. Chemical Engineering Journal, 2016, 289, 170-179.	6.6	31
325	A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. Journal of Power Sources, 2016, 307, 401-409.	4.0	144
326	Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101, 49-56.	5.4	275
327	The suitability of infinite slit-shaped pore model to describe the pores in highly porous carbon materials. Carbon, 2016, 100, 617-624.	5.4	50
328	Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance. Nanoscale, 2016, 8, 3620-3628.	2.8	75
329	Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte. Electrochimica Acta, 2016, 191, 284-298.	2.6	62

#	Article	IF	CITATIONS
330	Geometrically confined favourable ion packing for high gravimetric capacitance in carbon–ionic liquid supercapacitors. Energy and Environmental Science, 2016, 9, 232-239.	15.6	109
331	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
332	Graphene-metal oxides/hydroxide nanocomposite materials: Fabrication advancements and supercapacitive performance. Journal of Alloys and Compounds, 2016, 671, 1-10.	2.8	39
333	High capacitance of coarse-grained carbide derived carbon electrodes. Journal of Power Sources, 2016, 306, 32-41.	4.0	65
334	Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy and Environmental Science, 2016, 9, 623-633.	15.6	204
335	Review: carbon onions for electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 3172-3196.	5.2	360
336	Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power. Biosensors and Bioelectronics, 2016, 78, 229-235.	5.3	112
337	Fabrication of hierarchical porous cobalt manganese spinel graphene hybrid nanoplates for electrochemical supercapacitors. Electrochimica Acta, 2016, 188, 704-709.	2.6	28
338	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 2016, 9, 729-762.	15.6	1,037
339	Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance. Nanoscale, 2016, 8, 7889-7898.	2.8	54
340	Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. Journal of Materials Chemistry A, 2016, 4, 1251-1263.	5.2	136
341	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
342	Adjust the electrochemical performances of graphene oxide nanosheets-loaded poly(3,4-ethylenedioxythiophene) composites for supercapacitors with ultralong cycle life. Journal of Materials Science: Materials in Electronics, 2016, 27, 2773-2782.	1.1	16
343	The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 10438-10452.	1.3	27
344	Improving the energy density of quasi-solid-state supercapacitors by assembling two redox-active gel electrolytes. International Journal of Hydrogen Energy, 2016, 41, 5725-5732.	3.8	51
345	High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Advances, 2016, 6, 29840-29847.	1.7	75
346	Enhanced Electrochemical Energy Storage by Nanoscopic Decoration of Endohedral and Exohedral Carbon with Vanadium Oxide via Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 2802-2813.	3.2	44
347	Symmetric pseudocapacitors based on molybdenum disulfide (MoS ₂)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage. Journal of Materials Chemistry A, 2016, 4, 6411-6425.	5.2	116

#	Article	IF	CITATIONS
348	Fabrication of 3D foam-like hybrid carbon materials of porous carbon/graphene and its electrochemical performance. Electrochimica Acta, 2016, 196, 153-161.	2.6	13
349	Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 9104-9115.	4.0	53
350	Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 667-677.	1.5	82
351	Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. Journal of Power Sources, 2016, 310, 145-153.	4.0	161
352	Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. Journal of Materials Chemistry A, 2016, 4, 4570-4579.	5.2	48
353	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493
354	Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes. Electrochimica Acta, 2016, 206, 496-503.	2.6	66
355	An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes. Journal of Power Sources, 2016, 309, 212-220.	4.0	73
356	Flexible solid-state CuxO-based pseudo-supercapacitor by thermal oxidation of copper foils. International Journal of Hydrogen Energy, 2016, 41, 11700-11708.	3.8	44
357	Cobalt-Based Layered Metal–Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Applied Materials & Interfaces, 2016, 8, 4585-4591.	4.0	323
358	Nitrogen-doped nanoporous carbon materials derived from folic acid: Simply introducing redox additive of p-phenylenediamine into KOH electrolyte for greatly improving the supercapacitor performance. Journal of Electroanalytical Chemistry, 2016, 764, 45-55.	1.9	18
359	Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes. Journal of Applied Electrochemistry, 2016, 46, 567-573.	1.5	13
360	Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. Journal of Materials Science, 2016, 51, 4358-4370.	1.7	18
361	Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors. Journal of Power Sources, 2016, 308, 149-157.	4.0	117
362	Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors. Electrochimica Acta, 2016, 194, 143-150.	2.6	23
363	Significant strain and force improvements of single-walled carbon nanotube actuator: A metal chalcogenides approach. Sensors and Actuators B: Chemical, 2016, 230, 673-683.	4.0	14
364	Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochimica Acta, 2016, 196, 309-315.	2.6	17
365	Nitrogen-Doped Porous Multi-Nano-Channel Nanocarbons for Use in High-Performance Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2439-2448.	3.2	55

#	Article	IF	CITATIONS
366	3D Graphene-Nickel Hydroxide Hydrogel Electrode for High-Performance Supercapacitor. Electrochimica Acta, 2016, 196, 653-660.	2.6	83
367	Synthesis of Lateral Size-Controlled Monolayer 1 <i>H-</i> MoS ₂ @Oleylamine as Supercapacitor Electrodes Chemistry of Materials, 2016, 28, 657-664.	3.2	134
368	Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Applied Surface Science, 2016, 364, 850-861.	3.1	52
369	GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 2016, 8, 2418-2427.	2.8	69
370	Recycling supercapacitors based on shredding and mild thermal treatment. Waste Management, 2016, 48, 465-470.	3.7	32
371	Extraordinarily high-rate capability of polyaniline nanorod arrays on graphene nanomesh. Journal of Power Sources, 2016, 304, 111-118.	4.0	68
372	Gelatin-Based Microporous Carbon Nanosheets as High Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2016, 4, 1328-1337.	3.2	109
373	Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal–organic frameworks with superior capacitive properties. New Journal of Chemistry, 2016, 40, 1100-1103.	1.4	28
374	Microporous carbonaceous materials prepared from biowaste for supercapacitor application. Electrochimica Acta, 2016, 206, 452-457.	2.6	33
375	Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science, 2016, 466, 291-296.	5.0	94
376	Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1144-1173.	5.2	879
377	The electrolyte layer composition: A key element for improving the performance of carbon nanotube actuator. Sensors and Actuators B: Chemical, 2016, 222, 1073-1082.	4.0	3
378	Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307, 361-381.	9.5	1,098
379	Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors. Journal of Colloid and Interface Science, 2016, 461, 96-103.	5.0	43
380	Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. Journal of Solid State Electrochemistry, 2016, 20, 319-325.	1.2	34
381	Introduction and Literature Background. Springer Theses, 2017, , 1-37.	0.0	1
382	Electrochemical performance of microporous and mesoporous activated carbons in neat and diluted 1-ethyl-3-methylimidazolium tetrafluoroborate. Journal of Power Sources, 2017, 343, 303-315.	4.0	5
383	High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous and Mesoporous Materials, 2017, 241, 202-209.	2.2	62

#	Article	IF	CITATIONS
384	The fabrication of polypyrrole/ d -tartaric acid composite used as electrode in supercapacitors. Materials Letters, 2017, 190, 240-243.	1.3	3
385	Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 2792-2801.	5.2	19
386	Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nature Energy, 2017, 2, .	19.8	210
387	Synergistic capacitive behavior between polyaniline and carbon black. Electrochimica Acta, 2017, 230, 236-244.	2.6	38
388	Compact graphene/MoS ₂ composite films for highly flexible and stretchable all-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 3267-3273.	5.2	123
389	Moderne Anorganische Aerogele. Angewandte Chemie, 2017, 129, 13380-13403.	1.6	11
390	Modern Inorganic Aerogels. Angewandte Chemie - International Edition, 2017, 56, 13200-13221.	7.2	303
391	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	6.6	90
392	Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte. Journal of Power Sources, 2017, 342, 1006-1016.	4.0	11
393	Facile strategy to produce N-doped carbon aerogels derived from seaweed for lithium-ion battery anode. Journal of Alloys and Compounds, 2017, 701, 256-261.	2.8	55
394	Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials. Scientific Reports, 2017, 7, 39836.	1.6	83
395	Trade-off between capacitance and cycling at elevated temperatures in redox additive aqueous electrolyte based high performance asymmetric supercapacitors. Electrochimica Acta, 2017, 229, 291-298.	2.6	25
396	In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors. Journal of Alloys and Compounds, 2017, 702, 693-699.	2.8	33
397	Design and integration of flexible planar micro-supercapacitors. Nano Research, 2017, 10, 1524-1544.	5.8	67
398	A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon, 2017, 115, 754-762.	5.4	50
399	A novel fluffy nanostructured 3D network of Ni(C7H4O5) for supercapacitors. Electrochimica Acta, 2017, 230, 141-150.	2.6	2
400	High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: Unravelling the intrinsic properties of OLC against other carbon supports. Carbon, 2017, 117, 20-32.	5.4	63
401	High capacitive property for supercapacitor using Fe 3+ /Fe 2+ redox couple additive electrolyte. Electrochimica Acta, 2017, 231, 705-712.	2.6	66

#	Article	IF	CITATIONS
402	Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 706, 41-47.	2.8	91
403	Nanotechnology in Electrochemical Capacitors. , 2017, , 131-169.		4
404	Maximizing volumetric energy density of all-graphene-oxide-supercapacitors and their potential applications for energy harvest. Journal of Power Sources, 2017, 346, 113-119.	4.0	29
405	Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance. Materials Chemistry and Physics, 2017, 192, 100-107.	2.0	24
406	Thiocyanates as attractive redox-active electrolytes for high-energy and environmentally-friendly electrochemical capacitors. Physical Chemistry Chemical Physics, 2017, 19, 7923-7935.	1.3	34
407	Enhancement of Li+ ions mobility on activated carbon electrode for lithium ion capacitor. Electrochimica Acta, 2017, 232, 596-600.	2.6	5
408	Flower-like hierarchical porous nitrogen-doped carbon spheres from a facile one-step carbonization method for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 9301-9308.	1.1	9
409	Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte. Ionics, 2017, 23, 2657-2662.	1.2	4
410	The electrochemical enhancement due to the aligned structural effect of carbon nanofibers in a supercapacitor electrode. Synthetic Metals, 2017, 226, 195-206.	2.1	4
411	Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy, 2017, 34, 515-523.	8.2	56
412	Explore the influence of coverage percentage of sulfur electrode on the cycle performance of lithium-sulfur batteries. Journal of Power Sources, 2017, 347, 238-246.	4.0	17
413	Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes. Applied Materials Today, 2017, 7, 47-54.	2.3	39
414	Nanoporous graphitic carbon materials: largely elevating the capacitive performance by simple incorporation of redox additive. Journal of Solid State Electrochemistry, 2017, 21, 591-601.	1.2	5
415	Synergetic effects of K ⁺ and Mg ²⁺ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti ₃ C ₂ MXene. Faraday Discussions, 2017, 199, 393-403.	1.6	55
416	From condiment to metal–organic framework and its derived 3D architecture nanoporous carbon for supercapacitor electrodes. Materials Research Express, 2017, 4, 025505.	0.8	5
417	On-Silicon Supercapacitors with Enhanced Storage Performance. Journal of the Electrochemical Society, 2017, 164, A638-A644.	1.3	16
418	Fabrication of C/SiO1.5 nanospheres by emulsion polymerization of twin monomer for high-performance lithium-ion battery anode. Journal of Alloys and Compounds, 2017, 701, 487-493.	2.8	4
419	Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon, 2017, 117, 163-173.	5.4	105

#	Article	IF	CITATIONS
420	In situ synthesis of interlinked three-dimensional graphene foam/polyaniline nanorod supercapacitor. Electrochimica Acta, 2017, 230, 342-349.	2.6	53
421	Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance. Journal of Materials Research, 2017, 32, 1248-1257.	1.2	7
422	Lubricantâ€Infused Anisotropic Porous Surface Design of Reduced Graphene Oxide Toward Electrically Driven Smart Control of Conductive Droplets' Motion. Advanced Functional Materials, 2017, 27, 1606199.	7.8	71
423	Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors. Journal of Power Sources, 2017, 353, 260-269.	4.0	119
424	Nanostructured (Co, Mn)3O4 for High Capacitive Supercapacitor Applications. Nanoscale Research Letters, 2017, 12, 214.	3.1	22
425	Unveiling two-dimensional TiS ₂ as an insertion host for the construction of high energy Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 9177-9181.	5.2	76
426	Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Scientific Reports, 2017, 7, 45378.	1.6	33
427	Unconventional mesopore carbon nanomesh prepared through explosion–assisted activation approach: A robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon, 2017, 119, 30-39.	5.4	80
428	Construction of Hierarchically One-Dimensional Core–Shell CNT@Microporous Carbon by Covalent Bond-Induced Surface-Confined Cross-Linking for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 15557-15565.	4.0	34
429	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36, 322-330.	8.2	469
430	Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance. Carbon, 2017, 119, 296-304.	5.4	27
431	Solventâ€Free Mechanochemical Synthesis of Nitrogenâ€Doped Nanoporous Carbon for Electrochemical Energy Storage. ChemSusChem, 2017, 10, 2416-2424.	3.6	109
432	Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon, 2017, 119, 287-295.	5.4	79
433	Thin sandwich graphene oxide@N-doped carbon composites for high-performance supercapacitors. RSC Advances, 2017, 7, 22071-22078.	1.7	6
434	Hierarchical design of nitrogen-doped porous carbon nanorods for use in high efficiency capacitive energy storage. RSC Advances, 2017, 7, 22447-22453.	1.7	19
435	Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. Journal of Power Sources, 2017, 356, 371-380.	4.0	108
436	Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance. Journal of Physical Chemistry C, 2017, 121, 9370-9380.	1.5	23
437	In-situ MgO (CaCO 3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chemical Engineering Journal, 2017, 321, 301-313.	6.6	117

#	Article	IF	CITATIONS
438	Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale. ACS Nano, 2017, 11, 5405-5416.	7.3	39
439	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	6.0	1,229
440	Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. ACS Applied Materials & Interfaces, 2017, 9, 18986-18993.	4.0	69
441	The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths. Electrochimica Acta, 2017, 242, 100-106.	2.6	51
442	Synthesis of polymer bead nano-necklaces on aligned carbon nanotube scaffolds. Nanotechnology, 2017, 28, 24LT01.	1.3	10
443	Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochimica Acta, 2017, 238, 310-318.	2.6	139
444	Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Advances, 2017, 7, 23859-23865.	1.7	87
445	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2017, 5, 10827-10835.	5.2	94
446	Ionothermal Synthesis of Graphene-Based Hierarchically Porous Carbon for High-Energy Supercapacitors with Ionic Liquid Electrolyte. Electrochimica Acta, 2017, 241, 124-131.	2.6	21
447	Effect of surface oxygen functionalities on capacitance of activated carbon in non-aqueous electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 2029-2036.	1.2	14
448	Activated graphene oxide/reduced graphene oxide electrodes and low viscous sulfonium cation based ionic liquid incorporated flexible gel polymer electrolyte for high rate supercapacitors. Journal of Alloys and Compounds, 2017, 695, 3376-3392.	2.8	26
449	High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). Journal of Materials Science, 2017, 52, 10600-10613.	1.7	47
450	Ionic liquids containing tricyanomethanide anions: physicochemical characterisation and performance as electrochemical double-layer capacitor electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 16867-16874.	1.3	27
451	Recent Progress on Integrated Energy Conversion and Storage Systems. Advanced Science, 2017, 4, 1700104.	5.6	162
452	Contribution of Cations and Anions of Aqueous Electrolytes to the Charge Stored at the Electric Electrolyte/Electrode Interface of Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 12053-12062.	1.5	35
453	Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy and Fuels, 2017, 1, 1265-1281.	2.5	287
454	Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammoniumâ€based Ionic Liquids as Potential Electrolytes for Electrochemical Applications. ChemPhysChem, 2017, 18, 2040-2057.	1.0	38
455	Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes. Carbon, 2017, 120, 281-293.	5.4	46

#	Article	IF	CITATIONS
456	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes. Journal of Materials Chemistry A, 2017, 5, 13039-13051.	5.2	41
457	Improvement of the Structural and Chemical Properties of Carbon Nanoâ€onions for Electrocatalysis. ChemNanoMat, 2017, 3, 583-590.	1.5	24
458	High-performance method of carbon nanotubes modification by microwave plasma for thin composite films preparation. RSC Advances, 2017, 7, 31940-31949.	1.7	56
459	Mesoporous soft solid electrolyte-based quaternary ammonium salt. Journal of Solid State Electrochemistry, 2017, 21, 3011-3019.	1.2	2
460	βâ€Co(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	1.7	40
461	Highly Doped Carbon Nanobelts with Ultrahigh Nitrogen Content as Highâ€Performance Supercapacitor Materials. Small, 2017, 13, 1700834.	5.2	40
462	Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	11
463	Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications. Electrochimica Acta, 2017, 246, 391-398.	2.6	29
464	Needle-like Co Mo O with multi-modal porosity for pseudocapacitors. Materials Chemistry and Physics, 2017, 198, 258-265.	2.0	16
465	Template Synthesis of 2D Carbon Nanosheets: Improving Energy Density of Supercapacitors by Dual Redox Additives Anthraquinone-2-sulfonic Acid Sodium and KI. ACS Sustainable Chemistry and Engineering, 2017, 5, 5972-5981.	3.2	32
466	Tensile force-induced tearing and collapse of ultrathin carbon shells to surface-wrinkled grape skins for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 14190-14197.	5.2	22
467	Microporous Carbon Materials by Hydrogen Treatment: The Balance of Porosity and Graphitization upon the Capacitive Performance. Industrial & Engineering Chemistry Research, 2017, 56, 7253-7259.	1.8	13
468	Influence of Iodide Ions Concentration on the Stability of 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molybdenum Carbide Derived Carbon Electrode Interface. Journal of the Electrochemical Society, 2017, 164, A1110-A1119.	1.3	13
469	High performance solid-state flexible supercapacitor based on Fe ₃ O ₄ /carbon nanotube/polyaniline ternary films. Journal of Materials Chemistry A, 2017, 5, 11271-11277.	5.2	106
470	Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes. Scientific Reports, 2017, 7, 1685.	1.6	102
471	Intrinsic limitations of atomic layer deposition for pseudocapacitive metal oxides in porous electrochemical capacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 13086-13097.	5.2	15
472	Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105
473	Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. Journal of Power Sources, 2017, 359, 556-567.	4.0	121

#	Article	IF	CITATIONS
474	Electrode and electrolyte materials for electrochemical capacitors. International Journal of Hydrogen Energy, 2017, 42, 25565-25587.	3.8	93
475	An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy. Journal of Materials Chemistry A, 2017, 5, 8461-8476.	5.2	83
476	Synthesis of Hierarchically Porous Nitrogenâ€Doped Carbon Nanosheets from Agaric for Highâ€Performance Symmetric Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1700033.	1.9	77
477	Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor. ACS Applied Materials & Interfaces, 2017, 9, 13761-13769.	4.0	32
478	Effect of low water content in protic ionic liquid on ions electrosorption in porous carbon: application to electrochemical capacitors. Physical Chemistry Chemical Physics, 2017, 19, 11173-11186.	1.3	25
479	The nanostructure of a lithium glyme solvate ionic liquid at electrified interfaces. Physical Chemistry Chemical Physics, 2017, 19, 11004-11010.	1.3	27
480	Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano Structures Nano Objects, 2017, 10, 42-50.	1.9	67
481	High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochimica Acta, 2017, 238, 64-73.	2.6	23
482	Promoting power density by cleaving LiCoO2 into nano-flake structure for high performance supercapacitor. Nanoscale, 2017, 9, 5509-5516.	2.8	26
483	Bioinspired fractal electrodes for solar energy storages. Scientific Reports, 2017, 7, 45585.	1.6	54
484	From diverse polycyclic aromatic molecules to interconnected graphene nanocapsules for supercapacitors. Microporous and Mesoporous Materials, 2017, 245, 73-81.	2.2	12
485	Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors. Electrochimica Acta, 2017, 236, 53-60.	2.6	31
486	Biomass Organs Control the Porosity of Their Pyrolyzed Carbon. Advanced Functional Materials, 2017, 27, 1604687.	7.8	154
487	Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon, 2017, 113, 266-273.	5.4	147
488	Physical–Chemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications. Journal of Chemical & Engineering Data, 2017, 62, 376-390.	1.0	37
489	High-Voltage Supercapacitors with Solutions Based on Adiponitrile Solvent. Journal of the Electrochemical Society, 2017, 164, A231-A236.	1.3	18
490	Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy, 2017, 118, 1313-1321.	4.5	58
491	Nanoconfined Ionic Liquids. Chemical Reviews, 2017, 117, 6755-6833.	23.0	499

ARTICLE IF CITATIONS Stable Electrolyte for High Voltage Electrochemical Double-Layer Capacitors. Journal of the 492 1.3 25 Electrochemical Society, 2017, 164, A277-A283. 1.5 Scalable Selfâ€Propagating Highâ€Temperature Synthesis of Graphene for Supercapacitors with Superior 494 11.1 186 Power Density and Cyclic Stability. Advanced Materials, 2017, 29, 1604690. Porous 3D Fewâ€Layer Grapheneâ€like Carbon for Ultrahighâ€Power Supercapacitors with Wellâ€Defined 11.1 Structure–Performance Relationship. Advanced Materials, 2017, 29, 1604569. Metalâ€"Organic Coaxial Nanowire Array Electrodes Combining Large Energy Capacity and High Rate 496 3.6 9 Capability. ČhemSusChem, 2017, 10, 701-710. Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers, 2017, 1, 584-618. 3.2 Capacitive performance of porous carbon nanosheets derived from biomass cornstalk. RSC Advances, 498 1.7 44 2017, 7, 1067-1074. Frequency response of electrolyte-gated graphene electrodes and transistors. Journal Physics D: 400 1.3 Applied Physics, 2017, 50, 095304. From current peaks to waves and capacitive currentsâ€"on the origins of capacitor-like electrode 500 1.2 16 behavior. Journal of Solid State Electrochemistry, 2017, 21, 2601-2607. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in 2.8 154 electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243. Cyano Ester as Solvent for High Voltage Electrochemical Double Layer Capacitors. Electrochimica 502 22 2.6 Ácta, 2017, 224, 278-284. The synergistic effect achieved by combining different nitrogen-doped carbon shells for high 2.2 performance capacitance. Chemical Communications, 2017, 53, 857-860. Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. Journal 504 5.2 74 of Materials Chemistry A, 2017, 5, 1778-1785. Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428. 5.2 Hierarchically nanostructured boron-doped diamond electrode surface. Diamond and Related 506 1.8 22 Materials, 2017, 72, 13-19. Facile method to prepare 3D foam-like MnO2 film/multilayer graphene film/Ni foam hybrid structure for flexible supercapacitors. Journal of Alloys and Compounds, 2017, 696, 1159-1167. Polyaniline Enriched Flexible Carbon Nanofibers with Core–Shell Structure for Highâ€Performance 508 1.9 36 Wearable Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1700855. Using Polymeric Ionic Liquids as an Active Binder in Supercapacitors. Journal of the Electrochemical 509 1.3 Society, 2017, 164, A3253-A3258.

#	Article	IF	CITATIONS
510	Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Advances, 2017, 7, 45968-45977.	1.7	76
511	Facile synthesis of γ-MnO2/rice husk-based-activated carbon and its electrochemical properties. Functional Materials Letters, 2017, 10, 1750057.	0.7	5
512	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	5.2	158
513	A simple strategy toward hierarchically porous graphene/nitrogen-rich carbon foams for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24178-24184.	5.2	37
514	Confinement of iodides in carbon porosity to prevent from positive electrode oxidation in high voltage aqueous hybrid electrochemical capacitors. Carbon, 2017, 125, 391-400.	5.4	30
515	Redox-Enhanced Electrochemical Capacitors: Status, Opportunity, and Best Practices for Performance Evaluation. ACS Energy Letters, 2017, 2, 2581-2590.	8.8	164
516	Tailored Mesoporous Carbon/Vanadium Pentoxide Hybrid Electrodes for High Power Pseudocapacitive Lithium and Sodium Intercalation. Chemistry of Materials, 2017, 29, 8653-8662.	3.2	34
517	Exploring the effects of carbon meso-structure and macrostructure on the rate performance of porous carbon supercapacitors. Journal of Applied Electrochemistry, 2017, 47, 1213-1226.	1.5	5
518	Hybridizing Fe ₃ O ₄ nanocrystals with nitrogen-doped carbon nanowires for high-performance supercapacitors. RSC Advances, 2017, 7, 48039-48046.	1.7	17
519	Organic salt-derived nitrogen-rich, hierarchical porous carbon for ultrafast supercapacitors. New Journal of Chemistry, 2017, 41, 13611-13618.	1.4	13
520	On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats. Journal of Applied Physics, 2017, 122, 105104.	1.1	6
521	Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors. ACS Nano, 2017, 11, 11056-11065.	7.3	110
522	Carbonized Enteromorpha prolifera with porous architecture and its polyaniline composites as high-performance electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2017, 802, 15-21.	1.9	26
523	Elucidating the Importance of Pore Structure in Determining the Double-Layer Capacitance of Nanoporous Carbon Materials. Journal of Physical Chemistry C, 2017, 121, 20555-20566.	1.5	11
524	Electrolyte Engineering: Optimizing Highâ€Rate Doubleâ€Layer Capacitances of Micropore―and Mesoporeâ€Rich Activated Carbon. ChemSusChem, 2017, 10, 3534-3539.	3.6	5
525	Nitrogen and Sulfur Doped Mesoporous Carbons, Prepared from Templating Silica, as Interesting Material for Supercapacitors. ChemistrySelect, 2017, 2, 7082-7090.	0.7	23
526	Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor. Synthetic Metals, 2017, 232, 87-95.	2.1	14
527	Quantitative Information about Electrosorption of Ionic Liquids in Carbon Nanopores from Electrochemical Dilatometry and Quartz Crystal Microbalance Measurements. Journal of Physical Chemistry C, 2017, 121, 19120-19128.	1.5	23

#	Article	IF	CITATIONS
528	Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes. Materials Today Energy, 2017, 6, 36-45.	2.5	74
529	Hierarchical SnO ₂ Nanosheets Array as Ultralong-Life Integrated Anode for Lithium-Ion Batteries. Nano, 2017, 12, 1750077.	0.5	5
531	Conductivity, viscosity, and thermodynamic properties of propylene carbonate solutions in ionic liquids. Journal of Molecular Liquids, 2017, 246, 215-220.	2.3	22
532	Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy, 2017, 41, 193-200.	8.2	20
533	Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 33749-33757.	4.0	55
534	Facile synthesis of hierarchical porous carbon derived from carboxyl graphene oxide/phenolic foam for high performance supercapacitors. RSC Advances, 2017, 7, 43965-43977.	1.7	18
535	High-voltage aqueous supercapacitors based on NaTFSI. Sustainable Energy and Fuels, 2017, 1, 2155-2161.	2.5	76
536	A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte. Electrochimica Acta, 2017, 252, 109-118.	2.6	22
537	Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New Journal of Chemistry, 2017, 41, 11456-11470.	1.4	132
538	Lightweight, interconnected VO ₂ nanoflowers hydrothermally grown on 3D graphene networks for wide-voltage-window supercapacitors. RSC Advances, 2017, 7, 35558-35564.	1.7	42
539	Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochimica Acta, 2017, 247, 1060-1071.	2.6	34
540	Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017, 20, 629-656.	8.3	133
541	Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. Physical Chemistry Chemical Physics, 2017, 19, 23570-23584.	1.3	71
542	Sulfur and nitrogen co-doped holey graphene aerogel for structurally resilient solid-state supercapacitors under high compressions. Journal of Materials Chemistry A, 2017, 5, 17253-17266.	5.2	68
543	Nitrogen-enriched flexible porous carbon/graphene composite cloth as free-standing electrodes for high performance aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2017, 801, 57-64.	1.9	19
544	A Lowâ€Cost, Selfâ€Standing NiCo ₂ O ₄ @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702160.	7.8	277
545	Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadiumâ€Pentoxideâ€Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017, 10, 3611-3623.	3.6	89
546	Nâ€doping Hierarchical Porosity Carbon from Biowaste for Highâ€Rate Supercapacitive Application. ChemistrySelect, 2017, 2, 6194-6199.	0.7	16

#	Article	IF	Citations
548	Embedding Reduced Graphene Oxide in Bacterial Celluloseâ€Derived Carbon Nanofibril Networks for Supercapacitors. ChemElectroChem, 2017, 4, 2448-2452.	1.7	14
549	Vertically Aligned Graphene Nanosheet Arrays: Synthesis, Properties and Applications in Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2017, 7, 1700678.	10.2	126
550	Hierarchical 3D Cobaltâ€Doped Fe ₃ O ₄ Nanospheres@NG Hybrid as an Advanced Anode Material for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701275.	5.2	100
551	Controllable morphologies and electrochemical properties of graphitizing MCMB-based hybrids with nanostructure via a simple chemical vapor deposition method. Journal of Alloys and Compounds, 2017, 724, 443-449.	2.8	5
552	Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. Journal of Power Sources, 2017, 362, 184-191.	4.0	93
553	An excellent strategy for synthesis of coral-like ZnFe2O4 particles for capacitive pseudocapacitors. Journal of Alloys and Compounds, 2017, 726, 154-163.	2.8	18
554	Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy, 2017, 40, 49-64.	8.2	101
556	Dielectric study on mixtures of ionic liquids. Scientific Reports, 2017, 7, 7463.	1.6	38
557	Flexible carbon@graphene composite cloth for advanced lithium–sulfur batteries and supercapacitors with enhanced energy storage capability. Journal of Materials Science, 2017, 52, 13478-13489.	1.7	20
558	Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances. Electrochimica Acta, 2017, 257, 504-509.	2.6	8
559	Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 30626-30634.	4.0	227
560	Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Materials, 2017, 32, 213-220.	2.9	25
561	High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage. Nano Energy, 2017, 40, 107-114.	8.2	75
562	Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. Journal of Power Sources, 2017, 363, 375-383.	4.0	192
563	Functional materials from polymer derivatives. , 2017, , 1-38.		1
564	Orange Peel Derived Activated Carbon for Fabrication of Highâ€Energy and Highâ€Rate Supercapacitors. ChemistrySelect, 2017, 2, 11384-11392.	0.7	103
565	Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 44429-44440.	4.0	46
566	Facile synthesis of nitrogen-doped porous carbon for high-performance supercapacitors. RSC Advances, 2017, 7, 55257-55263.	1.7	14

#	Article	IF	CITATIONS
567	Perovskite solar cell – electrochemical double layer capacitor interplay. Electrochimica Acta, 2017, 258, 825-833.	2.6	18
568	Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 42797-42805.	4.0	92
569	Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. Journal of the American Chemical Society, 2017, 139, 18681-18687.	6.6	101
570	The Electrochemical Behavior of 1-Ethyl-3-Methyl Imidazolium Tetracyanoborate Visualized by In Situ X-ray Photoelectron Spectroscopy at the Negatively and Positively Polarized Micro-Mesoporous Carbon Electrode. Journal of the Electrochemical Society, 2017, 164, A3393-A3402.	1.3	17
571	Scalable Approach to Highly Efficient and Rapid Capacitive Deionization with CNT-Thread As Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 39907-39915.	4.0	45
572	Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination. Chemistry of Materials, 2017, 29, 9964-9973.	3.2	112
573	Hierarchical porous carbon with network morphology derived from natural leaf for superior aqueous symmetrical supercapacitors. Electrochimica Acta, 2017, 258, 504-511.	2.6	60
574	Electrochemical properties of NiCoO ₂ synthesized by hydrothermal method. RSC Advances, 2017, 7, 50753-50759.	1.7	49
575	Novel fullerene-based porous materials constructed by a solvent knitting strategy. Chemical Communications, 2017, 53, 12758-12761.	2.2	9
576	Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors. Journal of Power Sources, 2017, 372, 286-296.	4.0	51
577	Carbon-encapsulated NiO nanoparticle decorated single-walled carbon nanotube thin films for binderless flexible electrodes of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24813-24819.	5.2	25
578	Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. Advanced Materials, 2017, 29, 1702747.	11.1	27
579	Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Advances, 2017, 7, 51888-51895.	1.7	98
580	Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Research, 2017, 10, 3743-3753.	5.8	27
581	Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 2017, 122, 329-335.	5.4	149
582	Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 15243-15252.	5.2	132
583	Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor. Journal of the American Chemical Society, 2017, 139, 9985-9993.	6.6	115
584	Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature. RSC Advances, 2017, 7, 34488-34496.	1.7	12

#	Article	IF	CITATIONS
585	Large-scale synthesis of porous NiCo ₂ O ₄ and rGO–NiCo ₂ O ₄ hollow-spheres with superior electrochemical performance as a faradaic electrode. Journal of Materials Chemistry A, 2017, 5, 16854-16864.	5.2	80
586	Manganese-enriched electrochemistry of LiFePO ₄ /RGO nanohybrid for aqueous energy storage. Materials Research Express, 2017, 4, 075504.	0.8	5
587	Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors. Carbon, 2017, 122, 538-546.	5.4	91
588	Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. Journal of Power Sources, 2017, 361, 182-194.	4.0	39
589	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochimica Acta, 2017, 247, 400-409.	2.6	76
590	Mechanisms and Designs of Asymmetrical Electrochemical Capacitors. Electrochimica Acta, 2017, 247, 344-357.	2.6	60
591	Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Advances, 2017, 7, 31342-31351.	1.7	55
592	In Situ Measurement of Electrosorption-Induced Deformation Reveals the Importance of Micropores in Hierarchical Carbons. ACS Applied Materials & amp; Interfaces, 2017, 9, 23319-23324.	4.0	29
593	Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Advanced Energy Materials, 2017, 7, 1601301.	10.2	334
594	Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance. Journal of Power Sources, 2017, 337, 65-72.	4.0	44
595	High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. Journal of Power Sources, 2017, 337, 45-53.	4.0	121
596	Design of Architectures and Materials in Inâ€Plane Microâ€supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017, 29, 1602802.	11.1	373
597	Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale, 2017, 9, 193-200.	2.8	104
598	Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews, 2017, 62, 173-202.	9.4	518
599	Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta, 2017, 162, 574-582.	2.9	107
600	Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon, 2017, 111, 658-666.	5.4	104
601	Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Current Applied Physics, 2017, 17, 66-71.	1.1	20
602	Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017, 5, 181-188.	5.2	130

#	Article	IF	CITATIONS
603	Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Applied Energy, 2017, 195, 1071-1078.	5.1	60
604	Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties. Applied Surface Science, 2017, 392, 244-255.	3.1	32
605	Flexible Asymmetric Supercapacitors via Spray Coating of a New Electrochromic Donor–Acceptor Polymer. Advanced Energy Materials, 2017, 7, 1601623.	10.2	131
606	Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 2017, 16, 220-224.	13.3	1,805
607	An ultrahigh performance supercapacitors based on simultaneous redox in both electrode and electrolyte. Journal of Alloys and Compounds, 2017, 694, 136-144.	2.8	21
608	Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance. ACS Applied Materials & Interfaces, 2017, 9, 4362-4373.	4.0	33
609	Construction of hierarchical porous graphene–carbon nanotubes hybrid with high surface area for high performance supercapacitor applications. Journal of Solid State Electrochemistry, 2017, 21, 563-571.	1.2	12
610	Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage. Carbon, 2017, 113, 100-107.	5.4	39
611	ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. Journal of Power Sources, 2017, 340, 183-191.	4.0	212
612	Unique porous carbon constructed by highly interconnected naonowalls for high-performance supercapacitor in organic electrolyte. Materials Letters, 2017, 189, 50-53.	1.3	15
613	The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation. Journal of Electronic Materials, 2017, 46, 1163-1189.	1.0	13
614	Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chemical Engineering Journal, 2017, 312, 191-203.	6.6	110
615	Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon, 2017, 113, 283-291.	5.4	171
616	Carbon nitride doped TiO 2 photoelectrodes for photocatalysts and quantum dot sensitized solar cells. Materials Research Bulletin, 2017, 85, 209-215.	2.7	31
617	Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nature Communications, 2017, 8, 2188.	5.8	103
618	The diffusion behavior and capacitance of tetraethylammonium/tetrafluoroborate ions in acetonitrile with different molar concentrations: a molecular dynamics study. RSC Advances, 2017, 7, 55044-55050.	1.7	11
619	Physical and Electrochemical Investigations into Blended Electrolytes Containing a Glyme Solvent and Two Bis { (trifluoromethyl)sulfonyl } imide-Based Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, H5124-H5134.	1.3	9
620	Enlarging energy density of supercapacitors using unequal graphene electrodes and ionic liquid electrolyte. Electrochimica Acta, 2017, 258, 1053-1058.	2.6	25

#	Article	IF	CITATIONS
621	Symmetric Supercapacitor Electrodes from KOH Activation of Pristine, Carbonized, and Hydrothermally Treated Melia azedarach Stones. Materials, 2017, 10, 747.	1.3	15
622	NiCo2O4-Based Supercapacitor Nanomaterials. Nanomaterials, 2017, 7, 41.	1.9	129
623	Status of Biomass Derived Carbon Materials for Supercapacitor Application. International Journal of Electrochemistry, 2017, 2017, 1-14.	2.4	72
624	Ionic Liquids/Ionic Liquid Crystals for Safe and Sustainable Energy Storage Systems. , 0, , .		8
625	Electrolytes in Metal Oxide Supercapacitors. , 2017, , 49-78.		5
626	Heteroatom-enhanced the Formation of Mesoporous Carbon Microspheres with High Surface Area as Supercapacitor Electrode Materials. International Journal of Electrochemical Science, 2017, 12, 10687-10700.	0.5	5
627	Processing Organic Waste Towards High Performance Carbon Electrodes for Electrochemical Capacitors. International Journal of Electrochemical Science, 2017, 12, 128-143.	0.5	11
628	Multi-responsive actuators based on a graphene oxide composite: intelligent robot and bioinspired applications. Nanoscale, 2017, 9, 9825-9833.	2.8	153
629	Oxygen and Nitrogen Coâ€enriched Sustainable Porous Carbon Hollow Microspheres from Sodium Lignosulfonate for Supercapacitors with High Volumetric Energy Densities. ChemElectroChem, 2018, 5, 1306-1320.	1.7	47
630	Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochimica Acta, 2018, 268, 20-26.	2.6	65
631	Graphite as Cointercalation Electrode for Sodiumâ€ion Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (SEI). Advanced Energy Materials, 2018, 8, 1702724.	10.2	191
632	Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chemical Engineering Journal, 2018, 342, 474-483.	6.6	61
633	Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel–Cobalt Sulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 10087-10095.	4.0	111
634	Ultrathin Hierarchical Porous Carbon Nanosheets for Highâ€Performance Supercapacitors and Redox Electrolyte Energy Storage. Advanced Materials, 2018, 30, e1705789.	11.1	309
635	Tunable synthesis of nanocarbon architectures and their application in advanced symmetric supercapacitors. Applied Surface Science, 2018, 443, 291-300.	3.1	26
636	Capacitive Enhancement Mechanisms and Design Principles of Highâ€Performance Graphene Oxideâ€Based Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1706721.	7.8	27
637	Valenceâ€Tuned Lithium Titanate Nanopowder for Highâ€Rate Electrochemical Energy Storage. Batteries and Supercaps, 2018, 1, 11-26.	2.4	17
638	Electrochemical characterization of laserâ€carbonized polyacrylonitrile nanofiber nonwovens. Journal of Applied Polymer Science, 2018, 135, 46398.	1.3	6

#	Article	IF	CITATIONS
639	Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor. Journal of Power Sources, 2018, 384, 214-222.	4.0	98
640	Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors. ChemSusChem, 2018, 11, 1678-1685.	3.6	90
641	Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage. Journal of Power Sources, 2018, 384, 145-155.	4.0	19
642	Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 10476-10481.	1.5	53
643	Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode. RSC Advances, 2018, 8, 13393-13400.	1.7	10
644	Morphology- and ion size-induced actuation of carbon nanotube architectures. International Journal of Smart and Nano Materials, 2018, 9, 111-134.	2.0	9
645	A self-template and self-activation co-coupling green strategy to synthesize high surface area ternary-doped hollow carbon microspheres for high performance supercapacitors. Journal of Colloid and Interface Science, 2018, 524, 165-176.	5.0	51
646	Ion Sieving Effects in Chemically Tuned Pillared Graphene Materials for Electrochemical Capacitors. Chemistry of Materials, 2018, 30, 3040-3047.	3.2	37
647	Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, 12143-12153.	1.7	37
648	Rational synthesis of porous carbon nanocages and their potential application in high rate supercapacitors. Journal of Electroanalytical Chemistry, 2018, 815, 166-174.	1.9	22
649	Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors. Journal of Materials Science and Technology, 2018, 34, 2189-2196.	5.6	71
650	Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor. Journal of Physics: Conference Series, 2018, 979, 012024.	0.3	5
651	Non-aqueous electrolytes for electrochemical capacitors. Current Opinion in Electrochemistry, 2018, 9, 64-69.	2.5	40
652	Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Advances, 2018, 8, 12300-12309.	1.7	38
653	Redox flow batteries—Concepts and chemistries for cost-effective energy storage. Frontiers in Energy, 2018, 12, 198-224.	1.2	28
654	High powered hybrid supercapacitor with microporous activated carbon. Solid State Ionics, 2018, 321, 15-22.	1.3	29
655	A rationally designed self-standing V ₂ O ₅ electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors. Nanoscale, 2018, 10, 8741-8751.	2.8	30
656	Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. Journal of Alloys and Compounds, 2018, 751, 107-116.	2.8	84

#	Article	IF	CITATIONS
657	A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochimica Acta, 2018, 274, 121-130.	2.6	44
658	Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 419-436.	8.3	335
659	Mesoporous tubular graphene electrode for high performance supercapacitor. Chinese Chemical Letters, 2018, 29, 599-602.	4.8	21
660	Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. Journal of Power Sources, 2018, 379, 74-83.	4.0	101
661	Polyaniline-carbon based binder-free asymmetric supercapacitor in neutral aqueous electrolyte. Electrochimica Acta, 2018, 268, 131-138.	2.6	45
662	Coal-Based Hierarchical Porous Carbon Synthesized with a Soluble Salt Self-Assembly-Assisted Method for High Performance Supercapacitors and Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 3255-3263.	3.2	80
663	Green Synthesis of Hierarchically Porous Carbon Nanotubes as Advanced Materials for Highâ€Efficient Energy Storage. Small, 2018, 14, e1703950.	5.2	100
664	Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochimica Acta, 2018, 268, 562-568.	2.6	92
665	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338
666	"Solvent-in-salt―systems for design of new materials in chemistry, biology and energy research. Chemical Society Reviews, 2018, 47, 1250-1284.	18.7	151
667	High-rate, flexible all-solid-state super-capacitor based on porous aerogel hybrids of MoS 2 /reduced graphene oxide. Journal of Electroanalytical Chemistry, 2018, 811, 96-104.	1.9	18
668	Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Advanced Energy Materials, 2018, 8, 1702630.	10.2	201
669	EMIMBF ₄ –GBL binary electrolyte working at â^'70 °C and 3.7 V for a high performance graphene-based capacitor. Journal of Materials Chemistry A, 2018, 6, 3593-3601.	5.2	46
670	Investigating the Effects of Biochar Electrode Macrostructure and Dimension on Electrical Double-Layer Capacitor Performance. Journal of the Electrochemical Society, 2018, 165, A305-A313.	1.3	7
671	Batteryâ€like Supercapacitors from Vertically Aligned Carbon Nanofiber Coated Diamond: Design and Demonstrator. Advanced Energy Materials, 2018, 8, 1702947.	10.2	70
672	Facile synthesis of petroleum-based activated carbons/tubular polypyrrole composites with enhanced electrochemical performanceÂas supercapacitor electrode materials. Electrochimica Acta, 2018, 263, 447-453.	2.6	36
673	Water Desalination with Energy Storage Electrode Materials. Joule, 2018, 2, 10-15.	11.7	217
674	Electrochemical, top-down nanostructured pseudocapacitive electrodes for enhanced specific capacitance and cycling efficiency. Nanoscale, 2018, 10, 3663-3672.	2.8	10

ARTICLE IF CITATIONS # One-step synthesis of ultra-high surface area nanoporous carbons and their application for 675 5.4 119 electrochemical energy storage. Carbon, 2018, 131, 193-200. Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon, 676 5.4 2018, 132, 220-231 Fabrication and investigation of high performance CNT-incorporated tin-oxide supercapacitor. 677 1.1 5 Journal of Materials Science: Materials in Electronics, 2018, 29, 7468-7479. Thermalâ€Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices. Advanced 678 11.1 Materials, 2018, 30, e1704347. Tailoring the porous texture of activated carbons by CO2 reactivation to produce electrodes for 679 1.2 6 organic electrolyte-based EDLCs. Ionics, 2018, 24, 2055-2061. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4†V operating voltage. Journal 680 4.0 of Power Sources, 2018, 378, 209-215. Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets 681 5.2 98 on anisotropic slippery surfaces. Journal of Materials Chemistry A, 2018, 6, 3414-3421. Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. 7.1 21 Journal of Energy Chemistry, 2018, 27, 1-5. Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion 683 9.5 174 capacitors. Energy Storage Materials, 2018, 12, 145-152. Scalable fabrication of hierarchically porous N-doped carbon electrode materials for 684 1.7 high-performance aqueous symmetric supercapacitor. Journal of Materials Science, 2018, 53, 5194-5203. Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based 685 79 5.4supercapacitors. Čarbon, 2018, 129, 510-519. Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable 686 26 supercapacitors. Journal of Materials Science, 2018, 53, 5229-5241. Electrodeposition of hydrated vanadium pentoxide on nanoporous carbon cloth for hybrid energy 687 2.5 30 storage. Sustainable Energy and Fuels, 2018, 2, 577-588. Biomass-derived carbon materials with structural diversities and their applications in energy storage. 3.5 Science China Materials, 2018, 61, 133-158. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by 689 potassium hydroxide and urea for high-performance supercapacitors. Journal of Power Sources, 2018, 246 4.0 378, 579-588. Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters, 2018, 29, 571-581. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions. 691 1.7 34 ChemElectroChem, 2018, 5, 598-604. Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochimica Acta, 2018, 262, 54 66-73.

#	Article	IF	CITATIONS
693	Potentialâ€Ðependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. ChemSusChem, 2018, 11, 2091-2100.	3.6	33
694	Highly efficient gel polymer electrolytes for all solid-state electrochemical charge storage devices. Electrochimica Acta, 2018, 278, 137-148.	2.6	31
695	Performance and limitations of Cu2O:Graphene composite electrode materials for aqueous hybrid electrochemical capacitors. Electrochimica Acta, 2018, 279, 161-167.	2.6	8
696	Template-free synthesis of nitrogen-doped hierarchical porous carbon for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 9673-9682.	1.1	4
697	Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochimica Acta, 2018, 276, 28-36.	2.6	26
698	Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochimica Acta, 2018, 271, 507-518.	2.6	42
699	Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21, 437-454.	8.3	255
700	Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes. Advanced Materials, 2018, 30, e1705713.	11.1	195
701	Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor. Chemical Engineering Journal, 2018, 345, 39-47.	6.6	66
702	ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes. Carbon, 2018, 134, 15-21.	5.4	76
703	Flexible all-fiber electrospun supercapacitor. Journal of Power Sources, 2018, 384, 264-269.	4.0	77
704	Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. Journal of Power Sources, 2018, 387, 81-90.	4.0	158
705	Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance. Journal of Power Sources, 2018, 387, 108-116.	4.0	97
706	DFT study of nano zinc/copper voltaic cells. Journal of Molecular Modeling, 2018, 24, 103.	0.8	1
707	In-Situ Grown Ni(OH) ₂ Nanosheets on Ni Foam for Hybrid Supercapacitors with High Electrochemical Performance. Journal of the Electrochemical Society, 2018, 165, A882-A890.	1.3	17
708	High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator. Applied Surface Science, 2018, 443, 412-420.	3.1	33
709	Design considerations for ionic liquid based electrochemical double layer capacitors. Electrochimica Acta, 2018, 270, 453-460.	2.6	18
710	Incorporation of iron oxide into CNT/GNF as a high-performance supercapacitor electrode. Materials Chemistry and Physics, 2018, 212, 318-324.	2.0	12

#	Article	IF	CITATIONS
711	Ni-Co hydroxide nanoneedles embedded in graphene hydrogel as a binder-free electrode for high-performance asymmetric supercapacitor. Electrochimica Acta, 2018, 270, 156-164.	2.6	28
712	Alkali metal boosted atom rearrangement in amorphous carbon towards crystalline graphitic belt skeleton for high performance supercapacitors. Energy Storage Materials, 2018, 15, 82-90.	9.5	50
713	Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor. Journal of Alloys and Compounds, 2018, 749, 305-312.	2.8	56
714	Highly sp2 hybridized and nitrogen, oxygen dual-doped nanoporous carbon network: Synthesis and application for ionic liquid supercapacitors. Microporous and Mesoporous Materials, 2018, 259, 229-237.	2.2	18
715	Synthesis of N-doped mesoporous carbons under different carbonization temperature and their application in supercapacitors. Journal of Porous Materials, 2018, 25, 503-509.	1.3	4
716	Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Journal of Alloys and Compounds, 2018, 733, 8-14.	2.8	113
717	On the interaction of carbon electrodes and non conventional electrolytes in high-voltage electrochemical capacitors. Journal of Solid State Electrochemistry, 2018, 22, 717-725.	1.2	9
718	MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors. Journal of Alloys and Compounds, 2018, 734, 1-8.	2.8	152
719	Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes. Desalination, 2018, 425, 104-110.	4.0	51
720	One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127, 85-92.	5.4	337
721	Role of different nitrogen functionalities on the electrochemical performance of activated carbons. Carbon, 2018, 126, 65-76.	5.4	33
722	Ruthenium based materials as electrode materials for supercapacitors. Chemical Engineering Journal, 2018, 333, 505-518.	6.6	147
723	In-suit Mg(OH)2 template synthesis of nitrogen-doped porous carbon materials from glutinous rice for supercapacitors with excellent electrochemical performance. Composites Part A: Applied Science and Manufacturing, 2018, 107, 105-111.	3.8	13
724	Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications. Applied Surface Science, 2018, 427, 1055-1064.	3.1	47
725	Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films. Applied Surface Science, 2018, 427, 598-604.	3.1	11
726	V 2 O 5 / nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous and Mesoporous Materials, 2018, 258, 83-94.	2.2	43
727	Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes. Journal of Applied Polymer Science, 2018, 135, 45723.	1.3	28
728	Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry, 2018, 9, 18-24.	3.2	64

#	Article	IF	CITATIONS
729	Tailored metallacarboranes as mediators for boosting the stability of carbon-based aqueous supercapacitors. Sustainable Energy and Fuels, 2018, 2, 345-352.	2.5	13
730	Inâ€Plane Assembled Orthorhombic Nb ₂ O ₅ Nanorod Films with Highâ€Rate Li ⁺ Intercalation for Highâ€Performance Flexible Liâ€Ion Capacitors. Advanced Functional Materials, 2018, 28, 1704330.	7.8	207
731	Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2018, 334, 1573-1583.	6.6	360
732	Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Applied Surface Science, 2018, 436, 486-494.	3.1	58
733	Functional Group-Dependent Supercapacitive and Aging Properties of Activated Carbon Electrodes in Organic Electrolyte. ACS Sustainable Chemistry and Engineering, 2018, 6, 1208-1214.	3.2	41
734	Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4334-4344.	1.1	48
735	Electrolyte mobility in supercapacitor electrodes – Solid state NMR studies on hierarchical and narrow pore sized carbons. Energy Storage Materials, 2018, 12, 183-190.	9.5	33
736	Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 2018, 12, 128-136.	9.5	167
737	A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. Journal of Materials Chemistry A, 2018, 6, 1244-1254.	5.2	360
738	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Doubleâ€Layer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	2.7	46
739	Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. Journal of Materials Chemistry A, 2018, 6, 1523-1530.	5.2	104
740	Sustainable Carbon/Carbon Supercapacitors Operating Down to â^'40 °C in Aqueous Electrolyte Made with Cholinium Salt. ChemSusChem, 2018, 11, 975-984.	3.6	45
741	Supercapacitive properties of activated carbon electrode using ammonium based proton conducting electrolytes. International Journal of Hydrogen Energy, 2018, 43, 1667-1674.	3.8	24
742	Recent Smart Methods for Achieving Highâ€Energy Asymmetric Supercapacitors. Small Methods, 2018, 2, 1700230.	4.6	147
743	Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces. Carbon, 2018, 129, 104-118.	5.4	36
744	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon, 2018, 129, 85-94.	5.4	84
745	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
746	A Three-Dimensional Copper Coordination Polymer Constructed by 3-Methyl-1 <i>H</i> -pyrazole-4-carboxylic Acid with Higher Capacitance for Supercapacitors. Crystal Growth and Design, 2018, 18, 280-285.	1.4	36

#	Article	IF	CITATIONS
747	Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon, 2018, 127, 557-567.	5.4	302
748	Improving the capacitance of derived porous carbon by oxygen functional groups for supercapacitor. Materials Letters, 2018, 214, 134-137.	1.3	14
749	Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustainable Energy and Fuels, 2018, 2, 381-391.	2.5	43
750	Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 2018, 5, 1700322.	5.6	1,043
751	Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Applied Surface Science, 2018, 427, 807-813.	3.1	167
752	Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 2018, 82, 1393-1414.	8.2	630
753	Electrochemical Features of Symmetric and Asymmetric Supercapacitors Based on Nanostructured Mn-Cuo Electrodes. Oriental Journal of Chemistry, 2018, 34, 3058-3063.	0.1	8
754	Nitrogen-doped micro-nano carbon spheres with multi-scale pore structure obtained from interpenetrating polymer networks for electrochemical capacitors. RSC Advances, 2018, 8, 35083-35093.	1.7	3
755	Interrogating the effects of ion-implantation-induced defects on the energy storage properties of bulk molybdenum disulphide. Physical Chemistry Chemical Physics, 2018, 20, 28232-28240.	1.3	14
756	Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides. Transactions of Nonferrous Metals Society of China, 2018, 28, 1980-2001.	1.7	88
757	Konjac Sponge Derived Carbon Flakes with Optimized Pore Structure for High-Performance Supercapacitor. Journal of Nanotechnology, 2018, 2018, 1-12.	1.5	5
758	Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 23372-23381.	3.8	68
759	A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustainable Chemistry and Engineering, 2018, 6, 16323-16331.	3.2	57
760	Benign Solvation Effect on Electrochemical Intercalation of Triethylmethyl Ammonium into Graphite from Propylene Carbonate. Journal of the Electrochemical Society, 2018, 165, A4012-A4017.	1.3	6
761	Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23521-23530.	5.2	61
762	Effect of gel polymer electrolyte based on polyvinyl alcohol/polyethylene oxide blend and sodium salts on the performance of solid-state supercapacitor. Bulletin of Materials Science, 2018, 41, 1.	0.8	20
763	3D structure of the electric double layer of ionic liquid–alcohol mixtures at the electrochemical interface. Physical Chemistry Chemical Physics, 2018, 20, 30412-30427.	1.3	20
764	Supercapacitive Properties of Micropore―and Mesoporeâ€Rich Activated Carbon in Ionic‣iquid Electrolytes with Various Constituent Ions. ChemSusChem, 2019, 12, 449-456.	3.6	20

#	Article	IF	CITATIONS
765	Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors. Nature Communications, 2018, 9, 4145.	5.8	85
766	Polyaniline Enhanced Supercapacitance of Cobalt Hydroxide Nanowires/Carbon Nanotube Containing Polymer Sponge Layered Composite. Key Engineering Materials, 2018, 778, 175-180.	0.4	0
767	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Door for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	7.8	110
768	Toward High-Voltage/Energy Symmetric Supercapacitors via Interface Engineering. , 0, , .		1
769	Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations. European Physical Journal E, 2018, 41, 113.	0.7	14
770	The "In Situ Electrolyte―Concept: Using Activation Chemicals as Electrolytes for Carbonâ€Based Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1800087.	2.7	7
771	Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives. Nanotechnology, 2018, 29, 502001.	1.3	46
772	Origins and Implications of Interfacial Capacitance Enhancements in C ₆₀ -Modified Graphene Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 36860-36865.	4.0	23
773	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37046-37056.	4.0	38
774	Porous Biomass Carbon Derived from Peanut Shells as Electrode Materials with Enhanced Electrochemical Performance for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 5370-5381.	0.5	45
775	Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Advanced Functional Materials, 2018, 28, 1805898.	7.8	152
776	One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance. Chemical Research in Chinese Universities, 2018, 34, 882-886.	1.3	17
777	Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. Chemical Research in Chinese Universities, 2018, 34, 983-988.	1.3	15
778	Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	24
779	Storing Energy in Biodegradable Electrochemical Supercapacitors. ACS Omega, 2018, 3, 13869-13875.	1.6	46
780	Investigation of disorder in carbon encapsulated core-shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diamond and Related Materials, 2018, 90, 62-71.	1.8	40
781	A high-performance carbon-carbon(C/C) Quasi-Solid-State Supercapacitor with Conducting Gel Electrolyte. International Journal of Electrochemical Science, 2018, 13, 2530-2543.	0.5	13
782	Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures. ChemElectroChem, 2019, 6, 566-573.	1.7	21

ARTICLE IF CITATIONS Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for 783 4.0 97 supercapacitors. Journal of Power Sources, 2018, 405, 132-141. The influence of the electrolyte composition on the electrochemical behaviour of cathodic materials 784 23 for organic radical batteries. Journal of Power Sources, 2018, 405, 142-149. Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. 785 3.2 92 Chemistry of Materials, 2018, 30, 7391-7412. In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and 786 Battery-like Charge/Discharge Behavior in Aqueous Electrolytes. Langmuir, 2018, 34, 13132-13143. Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and 787 4.0 46 viscosity of ionic liquids. Journal of Power Sources, 2018, 406, 128-140. Crossâ€Coupled Macroâ€Mesoporous Carbon Network toward Record High Energyâ€Power Density Supercapacitor at 4 V. Advanced Functional Materials, 2018, 28, 1806153. 788 7.8 Preparation and Characterization of Carbon Nanotube/Graphite/Zinc Oxide Composite as 789 0.3 8 Supercapacitor Electrode Material. Materials Science Forum, 0, 929, 121-127. Acid-Assisted Strategy Combined with KOH Activation to Efficiently Optimize Carbon Architectures from Green Copolymer Adhesive for Solid-State Supercapacitors. ACS Sustainable Chemistry and 790 3.2 16 Engineering, 2018, 6, 14838-14846. Fluorine and oxygen co-doped porous carbons derived from third-class red dates for 791 high-performance symmetrical supercapacitors. Journal of Materials Science: Materials in 1.1 15 Electronics, 2018, 29, 18674-18683. Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous 792 5.2 and ionic liquid electrolytes. Journal of Materials Chemistry A, 2018, 6, 18701-18711. Atom-economical construction of carbon nanotube architectures for flexible supercapacitors with 793 5.2 24 ultrahigh areal and volumetric capacities. Journal of Materials Chemistry A, 2018, 6, 21287-21294. Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. Energy and Environmental Science, 2018, 11, 3069-3074. 794 15.6 Understanding the Roles of Sulfur Doping for Enhancing of Hydrophilicity and Electrochemical 795 2.5 5 Performance of N,S-Codoped Hierarchically Porous Carbon. ACS Applied Energy Materials, 0, , . Ionic Liquid for High Voltage Supercapacitor., 0, , . 796 Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene 797 oxide for high performance faradaic energy storage. Journal of Materials Chemistry A, 2018, 6, 5.250 18827-18832 Carbon Xerogels: The Bespoke Nanoporous Carbons., 2018,,. 798 799 Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280. 2,379 23.0 Role of Stefan–Maxwell fluxes in the dynamics of concentrated electrolytes. Soft Matter, 2018, 14, 1.2 8267-8275.

ARTICLE IF CITATIONS Tridimensional few-layer graphene-like structures from sugar-salt mixtures as high-performance 801 2.5 3 supercapacitor electrodes. Materials Today Energy, 2018, 10, 118-125. Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 3.2 12716-12726. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese 803 oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. 23 2.6 Electrochimica Acta, 2018, 289, 363-375. Heteroatom doped porous carbon sheets derived from protein-rich wheat gluten for supercapacitors: The synergistic effect of pore properties and heteroatom on the electrochemical performance in different electrolytes. Journal of Power Sources, 2018, 401, 375-385. 804 Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices. Langmuir, 2018, 34, 805 1.6 53 10897-10904. Hierarchical Flowerlike Highly Synergistic Three-Dimensional Iron Tungsten Oxide Nanostructure-Anchored Nitrogen-Doped Graphene as an Efficient and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 32220-32232. 4.0 An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A 807 2.3 78 review. Journal of Molecular Liquids, 2018, 271, 403-420. A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance 808 192 and excellent rate performance. Chemical Communications, 2018, 54, 10499-10502. Nitrogen- and sulfur-enriched porous carbon from waste watermelon seeds for high-energy 809 5.2 45 high-temperature green ultracapacitors. Journal of Materials Chemistry A, 2018, 6, 17751-17762. Analysis of Supercapacitor based on Carbon-Graphite-Metal oxide composition., 2018, , . An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance 811 3.1 28 performances for supercapacitor. Applied Surface Science, 2018, 453, 63-72. Redox active electrolytes in carbon/carbon electrochemical capacitors. Current Opinion in 2.5 Electrochemistry, 2018, 9, 95-105. Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable 813 11.1 178 Microâ€Supercapacitors with Ultrahigh Power Output. Advanced Materials, 2018, 30, e1801384. Design and Fabrication of Printed Paperâ€Based Hybrid Microâ€Supercapacitor by using Graphene and Redoxâ€Active Electrolyte. ChemSusChem, 2018, 11, 1849-1856. 814 3.6 46 All-carbon hybrids for high performance supercapacitors. International Journal of Energy Research, 815 2.2 43 2018, 42, 3575-3587. Photoelectric Synergetic Responsive Slippery Surfaces Based on Tailored Anisotropic Films Generated by Interfacial Directional Freezing. Advanced Functional Materials, 2018, 28, 1801310. Hybrid MnO/C nanorod arrays derived from a MOF precursor with enhanced oxygen evolution 817 1.7 11 activity. Journal of Materials Science, 2018, 53, 11574-11583. Effect of benzoquinone additives on the performance of symmetric carbon/carbon capacitors – electrochemical impedance study. Journal of Energy Storage, 2018, 18, 340-348.

#		ιc	CITATIONS
#	ARTICLE	IF	CITATIONS
819	Recent Progress in Biomassâ€Derived Electrode Materials for High Volumetric Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801007.	10.2	213
820	High-Performance Ionic Liquid-Based Gel Polymer Electrolyte Incorporating Anion-Trapping Boron Sites for All-Solid-State Supercapacitor Application. ACS Applied Materials & Interfaces, 2018, 10, 39570-39580.	4.0	78
821	Functionalized graphene–polyaniline nanocomposite as electrode material for asymmetric supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 2917-2928.	1.2	14
822	Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance. ACS Applied Materials & Interfaces, 2018, 10, 18675-18684.	4.0	37
823	Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon, 2018, 137, 31-40.	5.4	48
824	Highly nitrogen-doped graphitic carbon fibers from sustainable plant protein for supercapacitor. Industrial Crops and Products, 2018, 121, 226-235.	2.5	47
825	Interfacial Constructing Flexible V ₂ O ₅ @Polypyrrole Core–Shell Nanowire Membrane with Superior Supercapacitive Performance. ACS Applied Materials & Interfaces, 2018, 10, 18816-18823.	4.0	117
826	The way to improve the energy density of supercapacitors: Progress and perspective. Science China Materials, 2018, 61, 1517-1526.	3.5	102
827	High-performance aqueous symmetric supercapacitor based on polyaniline/vertical graphene/Ti multilayer electrodes. Electrochimica Acta, 2018, 283, 410-418.	2.6	39
828	High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. Journal of Electroanalytical Chemistry, 2018, 823, 474-481.	1.9	18
829	High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes. Nanoscale, 2018, 10, 13335-13342.	2.8	53
830	High-performance hybrid supercapacitors enabled by protected lithium negative electrode and "water-in-salt―electrolyte. Journal of Power Sources, 2018, 396, 498-505.	4.0	43
831	Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors. Advanced Energy Materials, 2018, 8, 1800892.	10.2	79
832	Capacitance characteristics of carbon-based electrochemical capacitors exposed to heteropolytungstic acid electrolyte. Electrochimica Acta, 2018, 282, 533-543.	2.6	13
833	Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes. Carbon, 2018, 139, 299-308.	5.4	32
834	Flexible binderless capacitors based on P- and N-containing fibrous activated carbons from denim cloth waste. Carbon, 2018, 139, 599-608.	5.4	23
835	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
836	Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17905-17914.	5.2	189

ARTICLE IF CITATIONS Confined Redox Reactions of Iodide in Carbon Nanopores for Fast and Energyâ€Efficient Desalination of 837 3.6 46 Brackish Water and Seawater. ChemSusChem, 2018, 11, 3460-3472. Transitionâ€Metal Oxides Anchored on Nitrogenâ€Enriched Carbon Ribbons for Highâ€Performance 838 1.7 Pseudocapacitors. Chemistry - A European Journal, 2018, 24, 16104-16112. Hydrophilic Ionic Liquid Mixtures of Weakly and Strongly Coordinating Anions with and without 839 1.6 35 Water. ACS Omega, 2018, 3, 8567-8582. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies, 840 134 2018, 11, 216. Breaking the Limits of Ionic Liquidâ€Based Supercapacitors: Mesoporous Carbon Electrodes 841 Functionalized with Manganese Oxide Nanosplotches for Dense, Stable, and Wideâ€Temperature Energy 7.8 75 Storage. Advanced Functional Materials, 2018, 28, 1801298. 842 2.2 Carbonaceous Materials., 2018, , 40-71. Improving energy density of supercapacitors using heteroatom-incorporated three-dimensional 843 macro-porous graphene electrodes and organic electrolytes. Journal of Power Sources, 2018, 399, 4.0 33 83-88. Influence of Nitrogenâ€Doping for Carbideâ€Derived Carbons on the Supercapacitor Performance in an 844 2.4 Organic Electrolyte and an lonic Liquid. Batteries and Supercaps, 2018, 1, 135-148. Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible 845 1.6 34 all-solid-state asymmetric supercapacitor. Dalton Transactions, 2018, 47, 11503-11511. Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance 846 2.6 supercapacitor. Electrochimica Acta, 2018, 284, 336-345. Nanostructured porous carbons for electrochemical energy conversion and storage. Surface and 847 2.2 16 Coatings Technology, 2018, 350, 307-312. Al(TFSI)₃ as a Conducting Salt for High-Voltage Electrochemical Double-Layer Capacitors. 848 3.2 38 Chemistry of Materials, 2018, 30, 4857-4863. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors 849 1.3 4 with Excellent Rate Performance. Materials, 2018, 11, 556. An Organoâ€Fluorine Compound Mixed Electrolyte for Ultrafast Electric Double Layer Supercapacitors. ChemElectroChem, 2018, 5, 2767-2773. 1.7 14 Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for 851 1.7 48 symmetrical supercapacitors. RSC Advances, 2018, 8, 24796-24804. Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems. Journal of Power Sources, 2018, 397, 252-261. Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation 853 3.118 for high-performance supercapacitor. Applied Surface Science, 2018, 440, 606-613. 854 RNA as a Precursor to N-Doped Activated Carbon. ACS Applied Energy Materials, 2018, 1, 3815-3825.

#	Article	IF	CITATIONS
855	Effect of Redox Electrolyte on the Specific Capacitance of SrRuO3–Reduced Graphene Oxide Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 11641-11650.	1.5	15
856	Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews, 2018, 369, 15-38.	9.5	271
857	Chromium(II) Hexacyanoferrate-Based Thin Films as a Material for Aqueous Alkali Metal Cation Batteries. ACS Omega, 2018, 3, 5111-5115.	1.6	9
858	Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance. Journal of Power Sources, 2018, 393, 135-144.	4.0	78
859	Glyoxalâ€Based Solvents for Electrochemical Energyâ€Storage Devices. ChemSusChem, 2018, 11, 1919-1926.	3.6	26
860	Carbon xerogel based electric double layer capacitors with polymer gel electrolytes – Improving the performance by adjusting the type of electrolyte and its processing. Electrochimica Acta, 2018, 278, 196-203.	2.6	9
861	Carbon aerogels with improved flexibility by sphere templating. RSC Advances, 2018, 8, 27326-27331.	1.7	13
862	Nitrogen-oxygen co-doped corrugation-like porous carbon for high performance supercapacitor. Frontiers of Materials Science, 2018, 12, 283-291.	1.1	7
863	rGO Functionalized with a Highly Electronegative Keplerateâ€Type Polyoxometalate for Highâ€Energyâ€Density Aqueous Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2018, 13, 3304-3313.	1.7	38
864	Water-in-Acid Gel Polymer Electrolyte Realized through a Phosphoric Acid-Enriched Polyelectrolyte Matrix toward Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 12630-12640.	3.2	17
865	Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 035008.	0.7	45
866	Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Applied Surface Science, 2018, 462, 444-452.	3.1	30
867	Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17653-17661.	5.2	102
868	Direct Laser Writing of Supercapacitors. , 0, , .		1
869	Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte. Desalination, 2018, 443, 56-61.	4.0	39
870	Enhanced electrochemical charge storage performance by doping of copper phthalocyanine-3,4′,4″,4à€´tetrasulfonic acid tetrasodium salt into polypyrrole/multi-walled carbon nanotubes 3D-nanostructured electrodes. Electrochimica Acta, 2018, 265, 594-600.	2.6	14
871	High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites. Scientific Reports, 2018, 8, 9005.	1.6	91
872	1,2-butylene carbonate as solvent for EDLCs. Electrochimica Acta, 2018, 281, 437-444.	2.6	21

#	Article	IF	CITATIONS
873	Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. Journal of Power Sources, 2018, 395, 271-279.	4.0	62
874	2.21 Supercapacitors. , 2018, , 663-695.		8
875	New Trends in Electrochemical Capacitors. Advances in Inorganic Chemistry, 2018, 72, 247-286.	0.4	9
876	Contributions of storage sites located in micro- and meso/macropores to the capacitance of carbonaceous double layer capacitor electrodes. Electrochimica Acta, 2018, 281, 753-760.	2.6	5
877	Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 2018, 51, 366-372.	8.2	289
878	A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochimica Acta, 2018, 282, 97-104.	2.6	48
879	MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Letters, 2018, 3, 1597-1603.	8.8	389
880	Fiberâ€Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications. Advanced Science, 2018, 5, 1800340.	5.6	108
881	Illustrating the effect of electron withdrawing and electron donating groups adherent to p-hydroquinone on supercapacitor performance: The cases of sulfonic acid and methoxyl groups. Electrochimica Acta, 2018, 282, 563-574.	2.6	12
882	Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application. AIP Advances, 2018, 8, .	0.6	20
883	Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage. Energy and Environmental Science, 2018, 11, 2865-2875.	15.6	58
884	High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Materials, 2019, 16, 391-399.	9.5	54
885	Scalable exfoliation and activation of graphite into porous graphene using microwaves for high–performance supercapacitors. Journal of Alloys and Compounds, 2019, 770, 458-465.	2.8	15
886	Preparation of amorphous detrital Ni (OH)2-reduced graphene oxide composite as electrode material for supercapacitor. Ionics, 2019, 25, 2401-2409.	1.2	9
887	One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite for supercapacitor. lonics, 2019, 25, 2411-2418.	1.2	7
888	Supercapacitors: A new source of power for electric cars?. Economic Analysis and Policy, 2019, 61, 93-103.	3.2	120
889	Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors. Electrochimica Acta, 2019, 296, 268-275.	2.6	44
890	Bis(oxalate)borate-containing electrolytes for high voltage electric double-layer capacitors: A comparative study. Electrochimica Acta, 2019, 321, 134649.	2.6	19

#	Article	IF	CITATIONS
891	A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19939-19949.	5.2	71
892	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	9.5	43
893	Influence of Water on Structure, Dynamics, and Electrostatics of Hydrophilic and Hydrophobic Ionic Liquids in Charged and Hydrophilic Confinement between Mica Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 33465-33477.	4.0	28
894	<i>N</i> -Ethyl- <i>N</i> -propylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolytes for Sodium Secondary Batteries: Effects of Na Ion Concentration. Journal of Physical Chemistry C, 2019, 123, 22018-22026.	1.5	24
895	Ionic liquid-solvent mixture of propylene carbonate and 1,2-dimethoxyethane as electrolyte for electric double-layer capacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 13933-13938.	1.1	12
896	Electrospun poly(acrylonitrile- <i>co</i> -itaconic acid) as a porous carbon precursor for high performance supercapacitor: study of the porosity induced by <i>in situ</i> porogen activity of itaconic acid. Nanotechnology, 2019, 30, 435401.	1.3	12
897	All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing. Applied Physics Letters, 2019, 115, .	1.5	46
898	Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Applied Surface Science, 2019, 496, 143643.	3.1	26
899	Ti-Doped Tunnel-Type Na ₄ Mn ₉ O ₁₈ Nanoparticles as Novel Anode Materials for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 28900-28908.	4.0	23
900	Pulverized Graphite by Ball Milling for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A2471-A2476.	1.3	5
901	All-Solid-State Supercapacitor Based on MoS2–Graphite Composite Prepared by the Vacuum Kinetic Spray Method. Journal of Thermal Spray Technology, 2019, 28, 963-973.	1.6	7
902	Zinc Ion-Induced Assembly of Crystalline Carbon Dots with Excellent Supercapacitor Performance. Journal of Physical Chemistry C, 2019, 123, 19421-19428.	1.5	15
903	Biomassâ€Derived Carbon: A Valueâ€Added Journey Towards Constructing Highâ€Energy Supercapacitors in an Asymmetric Fashion. ChemSusChem, 2019, 12, 4353-4382.	3.6	51
904	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 13060-13065.	7.2	49
905	A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 13636-13646.	1.1	7
906	Synthesis of ultra-long boron nanowires as supercapacitor electrode material. Applied Surface Science, 2019, 493, 787-794.	3.1	2
907	Facile preparation and properties of porous carbon from chlorinated polymer with high chlorine content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123628.	2.3	5
908	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie, 2019, 131, 13194-13199.	1.6	6

#	Article	IF	CITATIONS
909	In Situ Templating Approach To Fabricate Small-Mesopore-Dominant S-Doped Porous Carbon Electrodes for Supercapacitors and Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5591-5599.	2.5	24
910	Ionic liquid electrolytes in electric double layer capacitors. Science China Materials, 2019, 62, 1537-1555.	3.5	33
911	Sulfonated Hollow Silica Spheres as Electrolyte Store/Release Agents: Highâ€Performance Supercapacitor Applications. Energy Technology, 2019, 7, 1900511.	1.8	32
912	Partially delocalized charge in Fe-doped NiCo ₂ S ₄ nanosheet–mesoporous carbon-composites for high-voltage supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19342-19347.	5.2	59
913	Characterization of Hierarchical Porous Carbons Made from Bean Curd via K ₂ CO ₃ Activation as a Supercapacitor Electrode. ChemElectroChem, 2019, 6, 4022-4030.	1.7	23
914	Transition Metal Dichalcogenides for Energy Storage Applications. , 2019, , 173-201.		2
915	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	3.9	417
916	An atomistic physico-chemical description of acetonitrile/tricyanomethanide based electrolytes. Journal of Molecular Liquids, 2019, 292, 111439.	2.3	4
917	Hierarchical Nanosheets/Walls Structured Carbonâ€Coated Porous Vanadium Nitride Anodes Enable Wideâ€Voltageâ€Window Aqueous Asymmetric Supercapacitors with High Energy Density. Advanced Science, 2019, 6, 1900550.	5.6	61
918	On the cycling stability of biomass-derived carbons as electrodes in supercapacitors. Journal of Alloys and Compounds, 2019, 803, 882-890.	2.8	25
919	Effect of alkali and halide ion doping on the energy storage characteristics of ionic liquid based supercapacitors. Electrochimica Acta, 2019, 319, 82-87.	2.6	12
920	Nanofibers versus Nanopores: A Comparison of the Electrochemical Performance of Hierarchically Ordered Porous Carbons. ACS Applied Energy Materials, 2019, 2, 5279-5291.	2.5	15
921	Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface. Nanomaterials, 2019, 9, 923.	1.9	13
922	Electrochemical properties of rGO/CoFe2O4 nanocomposites for energy storage application. Ionics, 2019, 25, 5401-5409.	1.2	15
923	Graphene quantum dots/graphene fiber nanochannels for osmotic power generation. Journal of Materials Chemistry A, 2019, 7, 23727-23732.	5.2	30
924	Towards Real-Time Ion-Specific Structural Sensitivity in Nanoporous Carbon Electrodes Using In Situ Anomalous Small-Angle X-ray Scattering. ACS Applied Materials & Interfaces, 2019, 11, 42214-42220.	4.0	13
925	Faradaic processes on quinone-grafted carbons in protic ionic liquid electrolyte. Electrochimica Acta, 2019, 328, 135090.	2.6	5
926	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	7.8	94

#	Article	IF	CITATIONS
927	One‣tep Synthesis of Monodispersed Mesoporous Carbon Nanospheres for Highâ€Performance Flexible Quasi‣olid‣tate Micro‣upercapacitors. Small, 2019, 15, e1903836.	5.2	45
928	Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors. Nanomaterials, 2019, 9, 1413.	1.9	11
929	Temperature-dependent performance of carbon-based supercapacitors with water-in-salt electrolyte. Journal of Power Sources, 2019, 441, 227220.	4.0	53
930	Starch as a Green Binder for the Formulation of Conducting Glue in Supercapacitors. Polymers, 2019, 11, 1648.	2.0	28
931	High-rate aqueous/ionic liquid dual electrolyte supercapacitor using 3D graphene sponge with an ultrahigh pore volume. Electrochimica Acta, 2019, 327, 135014.	2.6	14
932	The Influence of Carbon Material Modification on The Pseudocapacitive Effect. Materials Today: Proceedings, 2019, 6, 36-41.	0.9	4
933	Carbon nanofibers as thick electrodes for aqueous supercapacitors. Journal of Energy Storage, 2019, 26, 100981.	3.9	16
934	Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 42680-42689.	4.0	25
935	Green synthesis of carbon nanotubes@tetraferrocenylporphyrin/copper nanohybrid and evaluation of its ability as a supercapacitor. Journal of Organometallic Chemistry, 2019, 899, 120915.	0.8	26
936	Pore Sizeâ€Engineered Threeâ€Dimensional Ordered Mesoporous Carbons with Improved Electrochemical Performance for Supercapacitor and Lithiumâ€ion Battery Applications. ChemistrySelect, 2019, 4, 10104-10112.	0.7	11
937	Porous Carbon Hollow Rod for Supercapacitors with High Energy Density. Industrial & Engineering Chemistry Research, 2019, 58, 22124-22132.	1.8	19
938	Flexible Freestanding MoO 3â^' x –Carbon Nanotubes–Nanocellulose Paper Electrodes for Charge‣torage Applications. ChemSusChem, 2019, 12, 5157-5163.	3.6	20
939	Vanadium Nitride/Porous Carbon Composites on Ni Foam for Highâ€Performance Supercapacitance. ChemistrySelect, 2019, 4, 11189-11195.	0.7	1
940	Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials, 2019, 9, 1902007.	10.2	793
941	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Chemie, 2019, 131, 18137-18145.	1.6	1
942	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Chemie - International Edition, 2019, 58, 17969-17977.	7.2	18
943	Curvature affects electrolyte relaxation: Studies of spherical and cylindrical electrodes. Physical Review E, 2019, 100, 042602.	0.8	16
944	Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 2019, 1, 3807-3835.	2.2	702

#	Article	IF	CITATIONS
945	Hall Effect Measurements of the Double-Layer Capacitance of the Graphene–Electrolyte Interface. Journal of Physical Chemistry C, 2019, 123, 22706-22710.	1.5	5
946	Investigation on Self-Discharge Mechanism of Neutral Aqueous Electrolyte Based Electric Double Layer Supercapacitor. , 2019, , .		4
947	Enhanced Power Performance of Highly Mesoporous Sol-Gel TiC Derived Carbons in Ionic Liquid and Non-Aqueous Electrolyte Based Capacitors. Journal of the Electrochemical Society, 2019, 166, A2887-A2895.	1.3	11
948	High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes. Nanoscale, 2019, 11, 17939-17946.	2.8	30
949	2D nitrogen-doped porous carbon nanosheets derived from cellulose nanofiber/silk fibroin nanohybrid cellular monoliths with promising capacitive performance. Cellulose, 2019, 26, 9241-9254.	2.4	5
950	Revealing anion chemistry above 3V in Li-ion capacitors. Electrochimica Acta, 2019, 324, 134871.	2.6	10
951	One-pot synthesis of unique skin-tissue-bone structured porous carbons for enhanced supercapacitor performance. Journal of Colloid and Interface Science, 2019, 557, 519-527.	5.0	10
952	Synthesis of novel functionalized graphene oxide with incorporation pyrimidine group including cobalt-iodine bonds their nanocomposites with p-type conductive polymer as excellent pseudocapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 18439-18451.	1.1	9
953	Design and Synthesis of Highly Porous Activated Carbons from Sargassum as Advanced Electrode Materials for Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A3109-A3118.	1.3	25
954	Design of highly capacitive and durable supercapacitors using activated carbons with different pore structures: Petroleum coke and oil palm. Journal of Industrial and Engineering Chemistry, 2019, 80, 301-310.	2.9	20
955	Electrochemical Capacitive Characteristics of TiO2 Coated on Vertically Aligned Carbon Nanotubes. International Journal of Electrochemical Science, 2019, , 7758-7772.	0.5	3
956	One-pot synthesis of a CoS-AC electrode in a redox electrolyte for high-performance supercapacitors. Journal of Applied Electrochemistry, 2019, 49, 1069-1077.	1.5	13
957	Evaluation of laser-induced carbons with concentric graphitic layers for highly durable and adaptable at low humidity. International Journal of Hydrogen Energy, 2019, 44, 26589-26596.	3.8	2
958	Commercial-Level Energy Storage via Free-Standing Stacking Electrodes. Matter, 2019, 1, 1694-1709.	5.0	19
959	Effect of Structural Orientation on the Performance of Supercapacitor Electrodes from Electrospun Coal-Derived Carbon Nanofibers (CCNFs). Journal of the Electrochemical Society, 2019, 166, A3294-A3304.	1.3	24
960	Effects of the composition of reduced graphene oxide/carbon nanofiber nanocomposite on charge storage behaviors. Composites Part B: Engineering, 2019, 178, 107500.	5.9	30
961	Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochimica Acta, 2019, 326, 134989.	2.6	59
962	Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 2019, 852, 113507.	1.9	29

#	Article	IF	CITATIONS
963	Fabrication of mesoporous TiVN powders and their electrochemical performance. Journal of the Ceramic Society of Japan, 2019, 127, 728-735.	0.5	6
964	Core-shell Cu2-xS @ CoS2 heterogeneous nanowire array with superior electrochemical performance for supercapacitor application. Electrochimica Acta, 2019, 323, 134839.	2.6	23
965	Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3298-3306.	5.2	73
966	Open-ended carbon microtubes/carbon nanotubes for high-performance supercapacitors. Materials Letters, 2019, 241, 80-83.	1.3	11
967	Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials. Chemical Communications, 2019, 55, 1486-1489.	2.2	103
968	Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chemical Science, 2019, 10, 2980-2988.	3.7	88
969	Low concentrated carbonaceous suspensions assisted with carboxymethyl cellulose as electrode for electrochemical flow capacitor. European Physical Journal E, 2019, 42, 8.	0.7	6
970	Boron-Doped Graphene Directly Grown on Boron-Doped Diamond for High-Voltage Aqueous Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1526-1536.	2.5	49
971	Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors. Electrochimica Acta, 2019, 301, 294-303.	2.6	86
972	A Ni(OH) ₂ nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. Beilstein Journal of Nanotechnology, 2019, 10, 281-293.	1.5	22
973	Unraveling the Correlation between Structures of Carbon Nanospheres Derived from Polymeric Spheres and Their Electrochemical Performance to Achieve Highâ€Rate Supercapacitors. Macromolecular Rapid Communications, 2019, 40, e1800770.	2.0	20
974	Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Materials, 2019, 18, 133-138.	9.5	43
975	Electrochemical capacitor with water-based electrolyte operating at wide temperature range. Journal of Power Sources, 2019, 414, 183-191.	4.0	29
976	A novel coral structured porous-like amorphous carbon derived from zinc-based fluorinated metal-organic framework as superior cathode material for high performance supercapacitors. Journal of Power Sources, 2019, 414, 401-411.	4.0	57
977	Polysiloxane microspheres encapsulated in carbon allotropes: A promising material for supercapacitor and carbon dioxide capture. Journal of Colloid and Interface Science, 2019, 542, 91-101.	5.0	15
978	Biomassâ€Derived Carbon Materials as Prospective Electrodes for Highâ€Energy Lithium―and Sodiumâ€ŀon Capacitors. Chemistry - an Asian Journal, 2019, 14, 936-951.	1.7	55
979	Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3941-3952.	5.2	74
980	Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. Journal of Physical Chemistry Letters, 2019, 10, 617-623.	2.1	50

#	Article	IF	CITATIONS
981	Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochimica Acta, 2019, 300, 373-379.	2.6	38
982	A structural supercapacitor based on activated carbon fabric and a solid electrolyte. Materials Science and Technology, 2019, 35, 368-375.	0.8	39
983	The relevance of conductive additive addition methodology for optimizing the performance of electrodes based on carbon xerogels in aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 45-49.	1.9	7
984	A Desolvated Solid–Solid Interface for a Highâ€Capacitance Electric Double Layer. Advanced Energy Materials, 2019, 9, 1803715.	10.2	20
985	A novel way to synthesize nitrogen doped porous carbon materials with high rate performance and energy density for supercapacitors. Journal of Alloys and Compounds, 2019, 785, 110-116.	2.8	41
986	Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. Journal of Power Sources, 2019, 414, 383-392.	4.0	39
987	Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. Green Chemistry, 2019, 21, 550-559.	4.6	111
988	3D flower-like binary nickel cobalt oxide decorated coiled carbon nanotubes directly grown on nickel nanocones and binder-free hydrothermal carbons for advanced asymmetric supercapacitors. Nanoscale, 2019, 11, 2901-2915.	2.8	66
989	Effect of graphene oxide/carbon nanotube ratio on electrochemical behaviors of spongy bone-like reduced graphene oxide/carbon nanotube foam prepared by simple and green approach. Chemical Engineering Journal, 2019, 373, 1020-1029.	6.6	30
990	Poly(ionic liquid)/carboxymethyl chitosan complex-derived nitrogen and sulfur codoped porous carbon for high-performance supercapacitors. Ionics, 2019, 25, 4915-4924.	1.2	15
991	Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials, 2019, 9, 1900334.	10.2	151
992	One step synthesis of ultrathin 2D carbon nanosheets for high-performance supercapacitors. Applied Surface Science, 2019, 490, 604-610.	3.1	14
993	The Effect of Air on Electrochemical Behavior of Activated Carbon at Negative Potentials in Aqueous Li2SO4 Electrolyte. International Journal of Electrochemical Science, 2019, 14, 6257-6266.	0.5	1
994	One-step synthesis of N, S-codoped porous graphitic carbon derived from lotus leaves for high-performance supercapacitors. Ionics, 2019, 25, 4891-4903.	1.2	17
995	Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior. Journal of Electronic Materials, 2019, 48, 5813-5820.	1.0	22
996	On the use of 3-cyanopropionic acid methyl ester as alternative solvent for high voltage dual carbon lithium ion capacitors. Journal of Power Sources, 2019, 434, 226757.	4.0	13
997	Cobalt Diselenide@Reduced graphene oxide based nanohybrid for supercapacitor applications. Composites Part B: Engineering, 2019, 174, 107001.	5.9	18
998	Controlling synthesis of nitrogen-doped hierarchical porous graphene-like carbon with coral flower structure for high-performance supercapacitors. Ionics, 2019, 25, 5429-5443.	1.2	6

#	Article	IF	CITATIONS
999	Corrugated Paper-Based Activated Carbon as a Bifunctional Material for the Electrocatalytic Degradation and High-Performance Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A2199-A2208.	1.3	8
1000	Metal-free multiporous carbon for electrochemical energy storage and electrocatalysis applications. New Journal of Chemistry, 2019, 43, 11653-11659.	1.4	31
1001	Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors. Microporous and Mesoporous Materials, 2019, 287, 101-106.	2.2	13
1002	Overcoming diffusion limitations in supercapacitors using layered electrodes. Journal of Power Sources, 2019, 433, 126579.	4.0	30
1003	Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7, 16028-16045.	5.2	694
1004	Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering, 2019, 3, 58.	1.0	0
1005	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-Materiály, 2019, 1, 130-139.	8.5	97
1006	Synthesis and electrochemical performance of high surface area hierarchical porous carbon with ultrahigh mesoporosity for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2019, 23, 2153-2163.	1.2	5
1007	Nitrogen and oxygen co-doped hierarchical porous carbon for high performance supercapacitor electrodes. Chemical Physics Letters, 2019, 730, 32-38.	1.2	12
1008	Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor. ACS Applied Energy Materials, 2019, 2, 4234-4243.	2.5	41
1009	State-of-the-art materials for high power and high energy supercapacitors: Performance metrics and obstacles for the transition from lab to industrial scale – A critical approach. Chemical Engineering Journal, 2019, 374, 1153-1179.	6.6	76
1010	Al(TFSI) ₃ in Acetonitrile as Electrolytes for Electrochemical Double Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A1763-A1768.	1.3	12
1011	Mild acidic mixed electrolyte for high-performance electrical double layer capacitor. Applied Surface Science, 2019, 489, 867-874.	3.1	7
1012	3D Ni3S2@Mn-Co-OH cross-linked nanosheets on Ni foam for high performance supercapacitor. lonics, 2019, 25, 5485-5494.	1.2	3
1013	Electrolytic molecule in-pore structure and capacitance of supercapacitors with nanoporous carbon electrodes: A coarse-grained molecular dynamics study. Computational Materials Science, 2019, 166, 293-302.	1.4	8
1014	Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon, 2019, 151, 28-35.	5.4	74
1015	Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors. Advanced Science, 2019, 6, 1802355.	5.6	69
1016	High Electrochemical Seawater Desalination Performance Enabled by an Iodide Redox Electrolyte Paired with a Sodium Superionic Conductor. ACS Sustainable Chemistry and Engineering, 2019, 7, 10132-10142.	3.2	32

#	Article	IF	CITATIONS
1017	Boron-Doped Diamond Powders for Aqueous Supercapacitors with High Energy and High Power Density. Journal of the Electrochemical Society, 2019, 166, A1425-A1431.	1.3	16
1018	Water-based synthesis of spiro-(1,1′)-bipyrrolidinium bis(fluorosulfonyl)imide electrolyte for high-voltage and low-temperature supercapacitor. Chemical Engineering Journal, 2019, 373, 1012-1019.	6.6	27
1019	Super-activated biochar from poultry litter for high-performance supercapacitors. Microporous and Mesoporous Materials, 2019, 285, 161-169.	2.2	58
1020	High Performance of Chitosan Derived Porous Carbon as Supercapacitor Electrodes. International Journal of Electrochemical Science, 2019, 14, 4034-4046.	0.5	6
1021	Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technology, 2019, 7, 1900430.	1.8	20
1022	Fabrication of symmetric supercapacitor based on relatively long lifetime polyaniline grown on reduced graphene oxide via Fe2+ oxidation sites. Diamond and Related Materials, 2019, 96, 182-194.	1.8	22
1023	Highly Stable and Efficient Performance of Binder-Free Symmetric Supercapacitor Fabricated with Electroactive Polymer Synthesized via Interfacial Polymerization. Materials, 2019, 12, 1626.	1.3	23
1024	Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochimica Acta, 2019, 314, 1-8.	2.6	15
1025	Organic and Carbon Gels: From Laboratory to Industry?. Advances in Sol-gel Derived Materials and Technologies, 2019, , 1-26.	0.3	1
1026	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.3	1
1027	Redox activity of selenocyanate anion in electrochemical capacitor application. Synthetic Metals, 2019, 253, 62-72.	2.1	22
1028	Gunpowder chemistry-assisted exfoliation approach for the synthesis of porous carbon nanosheets for high-performance ionic liquid based supercapacitors. Journal of Energy Storage, 2019, 24, 100764.	3.9	12
1029	Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors. Composites Part B: Engineering, 2019, 172, 41-53.	5.9	59
1030	Synergetic effect of swelling and chemical blowing to develop peach gum derived nitrogen-doped porous carbon nanosheets for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 24-30.	2.7	31
1031	Hybrid solar energy harvesting and storage devices: The promises and challenges. Materials Today Energy, 2019, 13, 22-44.	2.5	71
1032	Transition Metal Oxide-Based Nano-materials for Energy Storage Application. , 0, , .		12
1033	Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes. Electrochimica Acta, 2019, 311, 211-220.	2.6	30
1034	Understanding Interlayer Deprotonation of Hydrogen Titanium Oxide for High-Power Electrochemical Energy Storage. ACS Applied Energy Materials, 2019, 2, 3633-3641.	2.5	13

#	Article	IF	CITATIONS
1035	In situ preparation of P, O co-doped carbon spheres for high-energy density supercapacitor. Journal of Applied Electrochemistry, 2019, 49, 599-607.	1.5	17
1036	On the origin of mesopore collapse in functionalized porous carbons. Carbon, 2019, 149, 743-749.	5.4	14
1037	Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors. Energy Storage Materials, 2019, 20, 188-195.	9.5	26
1038	Redoxâ€Mediated Poly(2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid)/Ammonium Molybdate Hydrogels Highly Effective Flexible Supercapacitors. ChemElectroChem, 2019, 6, 2876-2882.	for 1.7	38
1039	Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. Journal of Physical Chemistry C, 2019, 123, 12583-12591.	1.5	15
1040	A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1536-1544.	2.5	30
1041	Effect of Cation n-Alkyl Side-Chain Length, Temperature, and Pressure on the Glass-Transition Dynamics and Crystallization Tendency of the [CnC1Pyrr]+[Tf2N]â^' lonic Liquid Family. Journal of Physical Chemistry C, 2019, , .	1.5	16
1042	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
1043	Nitrogen-doped 3D web-like interconnected porous carbon prepared by a simple method for supercapacitors. Ionics, 2019, 25, 4333-4340.	1.2	8
1044	Porous nitrogen-doped carbon networks derived from orange peel for high-performance supercapacitors. Ionics, 2019, 25, 4371-4380.	1.2	18
1045	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12654-12660.	5.2	86
1046	The template effect of silica in rice husk for efficient synthesis of the activated carbon based electrode material. Journal of Alloys and Compounds, 2019, 789, 777-784.	2.8	35
1047	Plasma-Assisted Simultaneous Reduction and Nitrogen/Sulfur Codoping of Graphene Oxide for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7597-7608.	3.2	84
1048	Ionic liquid - Electrode materials interactions studied by NMR spectroscopy, cyclic voltammetry, and impedance spectroscopy. Energy Storage Materials, 2019, 19, 432-438.	9.5	21
1049	Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. Journal of Alloys and Compounds, 2019, 790, 760-771.	2.8	69
1050	Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance. ACS Applied Materials & Interfaces, 2019, 11, 13822-13830.	4.0	8
1051	Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. Nanoscale, 2019, 11, 7304-7316.	2.8	24
1052	From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale, 2019, 11, 6610-6619.	2.8	24

#	Article	IF	CITATIONS
1053	Synthesis and Electrical Conducting Properties of Poly(aniline) Doped With Zeolite HY Nanocomposites Containing SnO2 for High-Performance Supercapacitor Electrode. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1548-1558.	1.9	16
1054	N, S Codoped Hierarchical Porous Graphene Nanosheets Derived from Petroleum Asphalt via in Situ Texturing Strategy for High-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2019, 58, 4487-4494.	1.8	37
1056	Electrochemical response of a high-power asymmetric supercapacitor based on tailored MnOx/Ni foam and carbon cloth in neutral and alkaline electrolytes. Journal of Energy Storage, 2019, 22, 345-353.	3.9	23
1057	Fractionation of mono- and divalent ions by capacitive deionization with nanofiltration membrane. Journal of Colloid and Interface Science, 2019, 544, 321-328.	5.0	23
1058	The use of α-MnOOH nanosheets as battery-type electrode for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 8201-8209.	1.1	12
1059	Supercapacitors (electrochemical capacitors). , 2019, , 383-427.		6
1060	Synthesis of a porous interconnected nitrogen-doped graphene aerogel matrix incorporated with ytterbium oxide nanoparticles and its application in superior symmetric supercapacitors. Electrochimica Acta, 2019, 306, 480-488.	2.6	33
1061	A novel way to synthesize nitrogen and oxygen co-doped porous carbon for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 282, 114-120.	2.2	33
1062	Engineering pore ratio in hierarchical porous carbons towards high-rate and large-volumetric performances. Microporous and Mesoporous Materials, 2019, 282, 205-210.	2.2	12
1063	A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5â€V carbon-based supercapacitor. Energy Storage Materials, 2019, 23, 603-609.	9.5	102
1064	The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon, 2019, 147, 451-459.	5.4	46
1065	High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. Chemical Communications, 2019, 55, 4083-4086.	2.2	29
1066	A low-cost "water-in-salt―electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A, 2019, 7, 7541-7547.	5.2	260
1067	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, 19, 212-241.	9.5	163
1068	Dynamic Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density Functional Theory Study. Langmuir, 2019, 35, 4254-4262.	1.6	19
1069	A simple and practical hybrid ionic liquid/aqueous dual electrolyte configuration for safe and ion-exchange membrane-free high cell potential supercapacitor. Electrochimica Acta, 2019, 305, 443-451.	2.6	10
1070	High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics. Journal of Power Sources, 2019, 422, 73-83.	4.0	46
1071	Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency. Journal of Energy Chemistry, 2019, 38, 214-218.	7.1	31

#	Article	IF	CITATIONS
1072	Effects of Carbon Pore Size on the Contribution of Ionic Liquid Electrolyte Phase Transitions to Energy Storage in Supercapacitors. Frontiers in Materials, 2019, 6, .	1.2	13
1073	Bare Ni foam electrode-ferricyanides redox electrolyte system with high capacitive performance. International Journal of Hydrogen Energy, 2019, 44, 10554-10560.	3.8	5
1074	Flexible all-solid-state asymmetric supercapacitor based on three-dimensional MoS2/Ketjen black nanoflower arrays. International Journal of Hydrogen Energy, 2019, 44, 13690-13699.	3.8	25
1075	Superb Electrolyte Penetration/Absorption of Three-Dimensional Porous Carbon Nanosheets for Multifunctional Supercapacitor. ACS Applied Energy Materials, 2019, 2, 3185-3193.	2.5	46
1076	Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V ₂ O ₅ /PEDOT Nanocable-Based Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 16647-16655.	4.0	57
1077	Boosting the Electrical Doubleâ€Layer Capacitance of Graphene by Selfâ€Doped Defects through Ballâ€Milling. Advanced Functional Materials, 2019, 29, 1901127.	7.8	258
1078	The impact of carbonate solvents on the self-discharge, thermal stability and performance retention of high voltage electrochemical double layer capacitors. Physical Chemistry Chemical Physics, 2019, 21, 9089-9097.	1.3	23
1079	Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH) ₂ supercapacitor electrodes. Nanoscale, 2019, 11, 9598-9607.	2.8	90
1080	Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices and Microstructures, 2019, 130, 50-60.	1.4	34
1081	Covalent Organic Frameworks: A New Class of Porous Organic Frameworks for Supercapacitor Electrodes. ChemElectroChem, 2019, 6, 2984-2997.	1.7	64
1082	"lon sliding―on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horizons, 2019, 4, 1077-1091.	4.1	22
1083	Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. RSC Advances, 2019, 9, 9878-9886.	1.7	18
1084	Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424, 108-130.	4.0	305
1085	ZnFe ₂ O ₄ @Carbon Core–Shell Nanoparticles Encapsulated in Reduced Graphene Oxide for High-Performance Li-Ion Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 14713-14721.	4.0	40
1086	Monolithic carbon xerogel with co-continuous hierarchical porosity <i>via</i> one-step, template- and catalyst-free hydrothermal reaction with resorcinol and formaldehyde. RSC Advances, 2019, 9, 9480-9485.	1.7	6
1087	Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 2019, 548, 322-332.	5.0	80
1088	Optimizing carbon/carbon supercapacitors in aqueous alkali sulfates electrolytes. Journal of Energy Chemistry, 2019, 38, 219-224.	7.1	34
1089	lonic liquids combined with membrane separation processes: A review. Separation and Purification Technology, 2019, 222, 230-253.	3.9	203

#	Article	IF	CITATIONS
1090	Polyhydroxyalkanoateâ€Modified Bacterium Regulates Biomass Structure and Promotes Synthesis of Carbon Materials for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 1732-1742.	3.6	22
1091	Oxygen vacancies modulation in graphene/MnOx composite for high performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 10-17.	2.3	22
1092	Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Needâ€Tailored Devices. Advanced Science, 2019, 6, 1801797.	5.6	250
1093	Noble Metal–Manganese Oxide Nanohybrids Based Supercapacitors. , 2019, , 549-564.		2
1094	Understanding the supercapacitor properties of electrospun carbon nanofibers from Powder River Basin coal. Fuel, 2019, 245, 148-159.	3.4	43
1095	Direct Observation of a Liâ€lonic Spaceâ€Charge Layer Formed at an Electrode/Solidâ€Electrolyte Interface. Angewandte Chemie - International Edition, 2019, 58, 5292-5296.	7.2	43
1096	Direct Observation of a Liâ€lonic Spaceâ€Charge Layer Formed at an Electrode/Solidâ€Electrolyte Interface. Angewandte Chemie, 2019, 131, 5346-5350.	1.6	23
1097	Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 542, 400-409.	5.0	72
1098	Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. Journal of Materials Chemistry A, 2019, 7, 6021-6027.	5.2	145
1099	Nanofiber Celluloseâ€Incorporated Nanomesh Graphene–Carbon Nanotube Buckypaper and Ionic Liquidâ€Based Solid Polymer Electrolyte for Flexible Supercapacitors. Energy Technology, 2019, 7, 1900014.	1.8	7
1100	Carbide derived carbons investigated by small angle X-ray scattering: Inner surface and porosity vs. graphitization. Carbon, 2019, 146, 284-292.	5.4	25
1101	A versatile Co-Activation strategy towards porous carbon nanosheets for high performance ionic liquid based supercapacitor applications. Journal of Alloys and Compounds, 2019, 786, 109-117.	2.8	18
1102	Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 163-187.	0.3	2
1103	Nanostructured Metal Oxides for Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 247-303.	0.3	5
1104	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	1.2	43
1105	An Eco-Friendly, Nanocellulose/RGO/in Situ Formed Polyaniline for Flexible and Free-Standing Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 4766-4776.	3.2	66
1106	High-performance pseudocapacitive micro-supercapacitors with three-dimensional current collector of vertical ITO nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 6220-6227.	5.2	24
1107	Postsynthetic treatment of carbon nano-onions: Surface modification by heteroatoms to enhance their capacitive and electrocatalytic properties. Carbon, 2019, 147, 90-104.	5.4	26

CITATION REPORT	
-----------------	--

#	Article	IF	CITATIONS
1108	Structural Evolution of Phosphorus Species on Graphene with a Stabilized Electrochemical Interface. ACS Applied Materials & Interfaces, 2019, 11, 11421-11430.	4.0	104
1109	in Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate. Nanomaterials, 2019, 9, 304.	1.9	11
1110	A Hollow Microtubular Triazine―and Benzobisoxazoleâ€Based Covalent Organic Framework Presenting Spongeâ€Like Shells That Functions as a Highâ€Performance Supercapacitor. Chemistry - an Asian Journal, 2019, 14, 1429-1435.	1.7	76
1111	Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems. ACS Applied Materials & Interfaces, 2019, 11, 9301-9308.	4.0	44
1112	Surface Characteristics and Electrochemical Performance of Activated Carbons from Schinus molle Stones Prepared by Hydrothermal Carbonization and KOH Activation. International Journal of Electrochemical Science, 2019, , 11138-11151.	0.5	0
1113	High energy density and high working voltage of a quasi-solid-state supercapacitor with a redox-active ionic liquid added gel polymer electrolyte. New Journal of Chemistry, 2019, 43, 18935-18942.	1.4	29
1114	Polymer network-derived nitrogen/sulphur co-doped three-dimensionally interconnected hierarchically porous carbon for oxygen reduction, lithium-ion battery, and supercapacitor. RSC Advances, 2019, 9, 36570-36577.	1.7	3
1115	Magnesium Perchlorate Mixed and Glutaraldehyde Crosslinked Potato Starch: An Economical and Flexible Electrolyte Membrane. Macromolecular Symposia, 2019, 388, 1900033.	0.4	3
1116	Excellent supercapacitor and sensor performance of robust cobalt phosphinate ferrocenyl organic framework materials achieved by intrinsic redox and structure properties. Dalton Transactions, 2019, 48, 16986-16992.	1.6	18
1117	Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. Communications Chemistry, 2019, 2, .	2.0	20
1118	Boron-doped Nanodiamond as an Electrode Material for Aqueous Electric Double-layer Capacitors. Scientific Reports, 2019, 9, 17846.	1.6	18
1119	Overcharge Cycling Effect on the Surface Layers and Crystalline Structure of LiFePO4 Cathodes of Li-Ion Batteries. Energies, 2019, 12, 4652.	1.6	13
1120	Ureaâ€assisted Strategy Controlling The Pore Structure And Chemical Composition Of The Porous Carbon For Highâ€performance Supercapacitors. ChemistrySelect, 2019, 4, 13012-13020.	0.7	1
1121	Dual surface modification of carbon materials by polydopamine and phosphomolybdic acid for supercapacitor application. Dalton Transactions, 2019, 48, 17321-17330.	1.6	19
1122	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	2.8	15
1123	A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte. Carbon, 2019, 141, 40-49.	5.4	32
1124	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Đerived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	1.8	24
1125	Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Applied Surface Science, 2019, 464, 479-487.	3.1	81

#	Article	IF	Citations
1126	Silica-grafted ionic liquid for maximizing the operational voltage of electrical double-layer capacitors. Energy Storage Materials, 2019, 18, 253-259.	9.5	18
1127	Covalently functionalized graphene as a supercapacitor electrode material. FlatChem, 2019, 13, 25-33.	2.8	61
1128	Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Applied Surface Science, 2019, 473, 1014-1023.	3.1	20
1129	Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chemical Engineering Journal, 2019, 361, 1030-1042.	6.6	74
1130	1,1-Dimethylpyrrolidinium tetrafluoroborate as novel salt for high-voltage electric double-layer capacitors. Electrochimica Acta, 2019, 299, 98-106.	2.6	32
1131	Electrolytes based on Nâ€Butylâ€Nâ€Methylâ€Pyrrolidinium 4,5â€Dicyanoâ€2â€(Trifluoromethyl) Imidazole for F Voltage Electrochemical Double Layer Capacitors. ChemElectroChem, 2019, 6, 552-557.	ligh 1.7	9
1132	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
1133	Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application. Journal of Electronic Materials, 2019, 48, 717-744.	1.0	54
1134	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte. Advanced Science, 2019, 6, 1801665.	5.6	124
1135	Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 2019, 410-411, 69-77.	4.0	159
1136	Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceramics International, 2019, 45, 4283-4289.	2.3	38
1137	Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO4 electrolyte. Journal of Colloid and Interface Science, 2019, 537, 475-485.	5.0	14
1138	Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode. Journal of Electroanalytical Chemistry, 2019, 832, 284-292.	1.9	31
1139	Redoxâ€Mediatorâ€Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. ChemSusChem, 2019, 12, 1118-1132.	3.6	67
1140	Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. Materials Technology, 2019, 34, 232-245.	1.5	47
1141	Investigation of ion transport in chemically tuned pillared graphene materials through electrochemical impedance analysis. Electrochimica Acta, 2019, 296, 882-890.	2.6	27
1142	Recent progress of graphene-based materials in lithium-ion capacitors. Journal Physics D: Applied Physics, 2019, 52, 143001.	1.3	36
1143	High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology, 2019, 30, 155402.	1.3	43

#	Article	IF	CITATIONS
1144	Thermally Activated Multilayered Carbon Cloth as Flexible Supercapacitor Electrode Material with Significantly Enhanced Areal Energy Density. ChemElectroChem, 2019, 6, 1768-1775.	1.7	31
1145	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	2.5	63
1146	Applications of carbon in lead-acid batteries: a review. Journal of Solid State Electrochemistry, 2019, 23, 693-705.	1.2	87
1147	Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. Journal of Physical Chemistry B, 2019, 123, 1340-1347.	1.2	58
1148	Heteroatom-Doped Sheet-Like and Hierarchical Porous Carbon Based on Natural Biomass Small Molecule Peach Gum for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 3389-3403.	3.2	126
1149	Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor application. Carbohydrate Polymers, 2019, 207, 764-774.	5.1	75
1150	Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2019, 362, 600-608.	6.6	16
1151	Improvement of high-rate performance of LiFePO4 cathode with through-holed LiFePO4/Activated carbon hybrid electrode structure fabricated with a pico-second pulsed laser. Electrochimica Acta, 2019, 298, 827-834.	2.6	14
1152	Rationally assembled porous carbon superstructures for advanced supercapacitors. Chemical Engineering Journal, 2019, 361, 1296-1303.	6.6	67
1153	Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity. ACS Nano, 2019, 13, 1443-1453.	7.3	81
1154	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	11.1	74
1155	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	16.0	111
1156	The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochimica Acta, 2019, 295, 693-702.	2.6	18
1157	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
1158	Hierarchical NiSe@Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochimica Acta, 2019, 294, 325-336.	2.6	55
1159	Electrode mass ratio impact on electrochemical capacitor performance. Electrochimica Acta, 2019, 298, 347-359.	2.6	27
1160	Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. Journal of Colloid and Interface Science, 2019, 540, 88-96.	5.0	105
1161	Construction of CuO@Ni–Fe layered double hydroxide hierarchical core–shell nanorods arrays on copper foam for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics. 2019. 30. 2080-2088.	1.1	19

#	Article	IF	CITATIONS
1162	Facile synthesis of B/N co-doped 2D porous carbon nanosheets derived from ammonium humate for supercapacitor electrodes. Electrochimica Acta, 2019, 298, 1-13.	2.6	61
1163	Effects of Sodium Alginate on the Composition, Morphology, and Electrochemical Properties of Electrospun Carbon Nanofibers as Electrodes for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 632-640.	3.2	30
1164	Phosphorusâ€Doped Nanocrystalline Diamond for Supercapacitor Application. ChemElectroChem, 2019, 6, 1088-1093.	1.7	26
1165	Carbon materials for high-voltage supercapacitors. Carbon, 2019, 145, 529-548.	5.4	252
1166	Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon, 2019, 141, 748-757.	5.4	108
1167	Nitrogenâ€Doped Biomassâ€Derived Carbon Formed by Mechanochemical Synthesis for Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 310-319.	3.6	81
1168	High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors. Journal of Materials Science, 2019, 54, 2446-2457.	1.7	43
1169	Perspective to the Potential Use of Graphene in Liâ€lon Battery and Supercapacitor. Chemical Record, 2019, 19, 1256-1262.	2.9	17
1170	Transformation of Plant Biomass Waste into Resourceful Activated Carbon Nanostructures for Mixed-Assembly Type Electrochemical Capacitors. Waste and Biomass Valorization, 2019, 10, 1741-1753.	1.8	15
1171	Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16, 126-145.	9.5	214
1172	Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 1620-1624.	4.8	31
1173	Synthesis, characterization and supercapacitor application of ionic liquid incorporated nanocomposites based on SPSU/Silicon dioxide. Journal of Physics and Chemistry of Solids, 2020, 137, 109209.	1.9	18
1174	Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitors. Carbon, 2020, 156, 359-369.	5.4	67
1175	Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnology Advances, 2020, 39, 107456.	6.0	55
1176	Facile large-scaled fabrication of graphene-like materials by ultrasonic assisted shear exfoliation method for enhanced performance on flexible supercapacitor applications. Applied Nanoscience (Switzerland), 2020, 10, 1131-1139.	1.6	6
1177	Water desalination by capacitive electrodialysis: Experiments and modelling. Desalination, 2020, 473, 114150.	4.0	23
1178	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. Carbon, 2020, 157, 55-63.	5.4	62
1179	Binary mixtures of ionic liquids based on EMIm cation and fluorinated anions: physico-chemical characterization in view of their application as low-temperature electrolytes. Journal of Molecular Liquids, 2020, 298, 111959.	2.3	31

#	Article	IF	CITATIONS
1180	Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chemical Engineering Journal, 2020, 380, 122543.	6.6	157
1181	Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Storage Materials, 2020, 24, 6-21.	9.5	108
1182	2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt― gel electrolyte and N-Doped graphene fiber. Energy Storage Materials, 2020, 24, 495-503.	9.5	71
1183	Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 2020, 63, 185-206.	3.5	40
1184	High power density and improved H2 evolution reaction on MoO3/Activated carbon composite. International Journal of Hydrogen Energy, 2020, 45, 7801-7812.	3.8	13
1185	Characterization and prediction of double-layer capacitance of nanoporous carbon materials using the Quantitative nano-Structure-Property Relationship approach based on experimentally determined porosity descriptors. Carbon, 2020, 158, 494-504.	5.4	12
1186	Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte. Microporous and Mesoporous Materials, 2020, 294, 109851.	2.2	28
1187	Molar optimization of MnO2 to form composite with Co3O4 by potentiodynamic electrodeposition for better electrochemical characterizations. Journal of Materials Science: Materials in Electronics, 2020, 31, 7315-7323.	1.1	10
1188	Preparation of activated carbon decorated with carbon dots and its electrochemical performance. Journal of Industrial and Engineering Chemistry, 2020, 82, 383-389.	2.9	16
1189	Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone. Journal of Power Sources, 2020, 448, 227402.	4.0	14
1190	Sustainable Porous Carbon with High Specific Surface Area from Soybean Shell via Hydrothermal Carbonization with H ₃ PO ₄ for Electric Double‣ayer Capacitor Applications. Energy Technology, 2020, 8, 1901103.	1.8	12
1191	Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chemical Engineering Journal, 2020, 384, 123309.	6.6	52
1192	From Molecular Precursors to Nanoparticles—Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	7.8	57
1193	A facile Zn involved self-sacrificing template-assisted strategy towards porous carbon frameworks for aqueous supercapacitors with high ions diffusion coefficient. Diamond and Related Materials, 2020, 103, 107696.	1.8	10
1194	Facile Fabrication of Fe3O4@TiO2@C Yolk–Shell Spheres as Anode Material for LithiumÂlon Batteries. Transactions of Tianjin University, 2020, 26, 3-12.	3.3	5
1195	Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Advances, 2020, 2, 70-108.	2.2	164
1196	Surface modification of carbon materials by nitrogen/phosphorus co-doping as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors. lonics, 2020, 26, 3027-3039.	1.2	12
1198	Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering. Journal of Materials Chemistry A, 2020, 8, 2505-2517.	5.2	103

#	Article	IF	CITATIONS
1199	Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes. Journal of Materials Chemistry C, 2020, 8, 2008-2013.	2.7	43
1200	Caseinâ€Derived Activated Carbon: Turning Expired Milk into Active Material for Electrochemical Capacitors. Energy Technology, 2020, 8, 1901225.	1.8	2
1201	Recycle of industrial waste: a new method of applying the paint residue to supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 274-285.	1.1	2
1202	Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellae for high-performance supercapacitors. Chemical Engineering Journal, 2020, 387, 123886.	6.6	61
1203	Interfacial aspects induced by saturated aqueous electrolytes in electrochemical capacitor applications. Electrochimica Acta, 2020, 334, 135572.	2.6	23
1205	One-dimensional Mg2+-induced α-Fe2O3 nanowires for high-performance supercapacitor. Results in Materials, 2020, 5, 100052.	0.9	3
1206	Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors. Chinese Chemical Letters, 2020, 31, 903-908.	4.8	3
1207	Influence of carboxymethyl cellulose content on structures and electrochemical behaviors of reduced graphene oxide films. Electrochimica Acta, 2020, 330, 135219.	2.6	10
1208	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
1209	Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chinese Chemical Letters, 2020, 31, 1474-1489.	4.8	68
1210	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	5.2	30
1211	VxOy nanoparticles and activated charcoalÂbased nanocomposite for supercapacitor electrode application. Ionics, 2020, 26, 2581-2598.	1.2	7
1212	A Simple and Green Preparation Method of Nitrogenâ€Đoped Carbon Nanocages for Supercapacitor Application. ChemNanoMat, 2020, 6, 308-315.	1.5	9
1213	Synthesis and Characterization of Reduced Graphene Oxide for Supercapacitor Application with a Biodegradable Electrolyte. Journal of Electronic Materials, 2020, 49, 985-994.	1.0	19
1214	Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. Carbon, 2020, 159, 140-148.	5.4	29
1215	Sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 polyelectrolyte for high-performance all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227587.	4.0	23
1216	Mesopore-rich carbon flakes derived from lotus leaves and it's ultrahigh performance for supercapacitors. Electrochimica Acta, 2020, 333, 135481.	2.6	51
1217	Surface Functionalization of TiO ₂ Nanoparticles Influences the Conductivity of Ionic Liquid-Based Composite Electrolytes. ACS Applied Nano Materials, 2020, 3, 342-350.	2.4	15

#	Article	IF	Citations
1218	Achieving high volumetric EDLC carbons via hydrothermal carbonization and cyclic activation. JPhys Energy, 2020, 2, 025005.	2.3	4
1219	Ionic Liquids under Confinement: From Systematic Variations of the Ion and Pore Sizes toward an Understanding of the Structure and Dynamics in Complex Porous Carbons. ACS Applied Materials & Interfaces, 2020, 12, 1789-1798.	4.0	39
1220	Self-organized bowl-like hollow carbon submicrospheres with hierarchical mesopore-rich structure as superior electrode materials for supercapacitors. Applied Surface Science, 2020, 509, 144841.	3.1	13
1221	Mesoporous ZnCo2O4-CNT microflowers as bifunctional material for supercapacitive and lithium energy storage. Applied Surface Science, 2020, 506, 144964.	3.1	43
1222	Preparation and performance of carbon dot decorated copper sulphide/carbon nanotubes hybrid composite as supercapacitor electrode materials. Journal of Alloys and Compounds, 2020, 817, 153057.	2.8	36
1223	Mixtures of acetonitrile and ethyl isopropyl sulfone as electrolytes for electrochemical double layer capacitors. Electrochimica Acta, 2020, 331, 135421.	2.6	23
1224	Enhancing the energy density of supercapacitors by introducing nitrogen species into hierarchical porous carbon derived from camellia pollen. Ionics, 2020, 26, 2549-2561.	1.2	10
1225	Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Applied Surface Science, 2020, 508, 145260.	3.1	21
1226	Nitrogen Doped Superactivated Carbons Prepared at Mild Conditions as Electrodes for Supercapacitors in Organic Electrolyte. Journal of Carbon Research, 2020, 6, 56.	1.4	3
1227	Electrochemical Evaluation of Directly Electrospun Carbide-Derived Carbon-Based Electrodes in Different Nonaqueous Electrolytes for Energy Storage Applications. Journal of Carbon Research, 2020, 6, 59.	1.4	6
1228	A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochimica Acta, 2020, 363, 137241.	2.6	15
1229	Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. Journal of Energy Storage, 2020, 32, 101795.	3.9	16
1230	Hybrid nanospheres with metastable silica-nanonetwork and confined phenyl for simple fabrication of high-surface-area microporous carbon materials. Carbon, 2020, 170, 658-665.	5.4	8
1231	Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors?. Electrochimica Acta, 2020, 362, 137007.	2.6	22
1232	Activated Microporous Carbon Nanospheres for Use in Supercapacitors. ACS Applied Nano Materials, 2020, 3, 10380-10388.	2.4	30
1233	Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications. Journal of Materials Chemistry A, 2020, 8, 21930-21946.	5.2	94
1234	Enhancing supercapacitor energy density by mass-balancing of graphene composite electrodes. Electrochimica Acta, 2020, 360, 136957.	2.6	35
1235	Supercapacitors in the Light of Solid Waste and Energy Management: A Review. Advanced Sustainable Systems, 2020, 4, 2000182.	2.7	27

#	Article	IF	CITATIONS
1236	A Bottomâ€up Inâ€situ Preparation of Grapheneâ€like Porous Carbon for Ultrahigh Surface Area Specific Capacitance Supercapacitors. ChemNanoMat, 2020, 6, 1789-1796.	1.5	2
1237	Electrochemical Applications of Ferroceneâ€Based Coordination Polymers. ChemPlusChem, 2020, 85, 2397-2418.	1.3	77
1238	Polyindole batteries and supercapacitors. Energy Storage Materials, 2020, 33, 336-359.	9.5	66
1239	A novel electrolyte of ternary deep eutectic solvent for wide temperature region supercapacitor with superior performance. Journal of Energy Storage, 2020, 32, 101904.	3.9	33
1240	Lignin-based dual component additives as effective electrode material for energy management systems. International Journal of Biological Macromolecules, 2020, 165, 268-278.	3.6	4
1241	Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. Materials Today Energy, 2020, 18, 100529.	2.5	32
1242	CuO nanorods grown vertically on graphene nanosheets as a battery-type material for high-performance supercapacitor electrodes. RSC Advances, 2020, 10, 36554-36561.	1.7	14
1243	Tri-rutile layered niobium-molybdates for all solid-state symmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 20141-20150.	5.2	6
1244	Effect of temperature on irreversible and reversible heat generation rates in ionic liquid-based electric double layer capacitors. Electrochimica Acta, 2020, 338, 135802.	2.6	16
1245	Synthesis of a Very High Specific Surface Area Active Carbon and Its Electrical Double-Layer Capacitor Properties in Organic Electrolytes. ChemEngineering, 2020, 4, 43.	1.0	33
1246	Hierarchically porous biochar for supercapacitor and electrochemical H2O2 production. Chemical Engineering Journal, 2020, 402, 126171.	6.6	64
1247	On the challenge of large energy storage by electrochemical devices. Electrochimica Acta, 2020, 354, 136771.	2.6	62
1248	Metal-Free Carbon-Based Supercapacitors—A Comprehensive Review. Electrochem, 2020, 1, 410-438.	1.7	18
1249	The stability of disperse red/reactive-red dye inks. RSC Advances, 2020, 10, 42633-42643.	1.7	4
1250	All-Solid-State Asymmetric Supercapacitors with Novel Ionic Liquid Gel Electrolytes. ACS Applied Electronic Materials, 2020, 2, 3906-3914.	2.0	12
1251	How to speed up ion transport in nanopores. Nature Communications, 2020, 11, 6085.	5.8	57
1252	Waffle-Like Carbons Combined with Enriched Mesopores and Highly Heteroatom-Doped Derived from Sandwiched MOF/LDH/MOF for High-Rate Supercapacitor. Nanomaterials, 2020, 10, 2388.	1.9	17
1253	Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nature Communications, 2020, 11, 6160.	5.8	183

#	Article	IF	CITATIONS
1254	Ambipolar Poly(3,4-ethylenedioxythiophene)-Pendant Tetrachlorinated Perylene Diimide for Symmetric Supercapacitors. ACS Applied Polymer Materials, 2020, 2, 5574-5580.	2.0	14
1255	Long hain Ionic Liquids Based on Monoquaternary DABCO Cations and TFSI Anions: Towards Stable Electrolytes for Electrochemical Capacitors. ChemPlusChem, 2020, 85, 2679-2688.	1.3	7
1256	Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies, 2020, 13, 5847.	1.6	58
1257	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
1258	Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible All olid tate Supercapacitors. Small, 2020, 16, e2003434.	5.2	85
1259	Electrolyte Technologies for High Performance Sodium-Ion Capacitors. Frontiers in Chemistry, 2020, 8, 652.	1.8	16
1260	From cluster design to energy storage device engineering. Frontiers of Nanoscience, 2020, , 31-58.	0.3	0
1261	Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Transactions, 2020, 49, 11792-11818.	1.6	60
1262	Effect of Alkaline-Basic Electrolytes on the Capacitance Performance of Biomass-Derived Carbonaceous Materials. Materials, 2020, 13, 2941.	1.3	16
1263	A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Materials, 2020, 32, 448-457.	9.5	103
1264	How charge regulation and ion–surface affinity affect the differential capacitance of an electrical double layer. Physical Chemistry Chemical Physics, 2020, 22, 18229-18238.	1.3	5
1265	Melting point depression of ionic liquids by their confinement in carbons of controlled mesoporosity. Carbon, 2020, 169, 501-511.	5.4	12
1266	Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17558-17567.	5.2	64
1267	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
1268	Na3PO4 assistant dispersion of nano-CaCO3 template to enhance electrochemical interface: N/O/P co-doped porous carbon hybrids towards high-performance flexible supercapacitors. Composites Part B: Engineering, 2020, 199, 108256.	5.9	33
1269	Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochimica Acta, 2020, 356, 136826.	2.6	68
1270	Dualâ€Carbon Batteries: Materials and Mechanism. Small, 2020, 16, e2002803.	5.2	57
1271	Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon, 2020, 170, 1-29.	5.4	132

			_
#	Article	IF	CITATIONS
1272	Facile Fabrication of Flexible Graphene-Based Micro-Supercapacitors with Ultra-High Areal Performance. ACS Applied Energy Materials, 2020, 3, 8415-8422.	2.5	11
1273	Nanostructured materials for energy conversion and storage. , 2020, , 351-386.		0
1274	Fabrication of heat-treated bulk copper for binder-free electrodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 21168-21179.	1.1	4
1275	Pseudocapacitive Energy Storage and Electrocatalytic Hydrogen-Evolution Activity of Defect-Ordered Perovskites Sr _{<i>x</i>} Ca _{3–<i>x</i>} GaMn ₂ O ₈ (<i>x</i> = 0 and 1). ACS Applied Energy Materials, 2020, 3, 10983-10992.	2.5	24
1276	Flexible Diamond Fibers for Highâ€Energyâ€Density Zincâ€Ion Supercapacitors. Advanced Energy Materials, 2020, 10, 2002202.	10.2	69
1277	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
1278	Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2020, 31, 18541-18553.	1.1	35
1279	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10
1280	Protic Ionic Liquidsâ€Based Crosslinked Polymer Electrolytes: A New Class of Solid Electrolytes for Energy Storage Devices. Energy Technology, 2020, 8, 2000742.	1.8	15
1281	Hydrangea-like Mesoporous Carbon Architectures Embedded with MnOx Nanoparticles for Solid-State Asymmetric Supercapacitors with Enhanced Areal Capacitance. International Journal of Electrochemical Science, 2020, 15, 6841-6851.	0.5	3
1282	Annealing Boosts the Supercapacitive Properties of Molybdenum Disulfide Powder. Electroanalysis, 2020, 32, 2642-2649.	1.5	3
1283	Flexible Solid-State Supercapacitors Derived from Biomass Konjac/Polyacrylonitrile-Based Nitrogen-Doped Porous Carbon. ACS Applied Materials & Interfaces, 2020, 12, 55913-55925.	4.0	60
1284	Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Advances, 2020, 10, 43733-43750.	1.7	69
1285	A Low-Cost and High-Purity Porous Carbon Spheres Based on Starch Gel Toward High-Performance Supercapacitors. Nano, 2020, 15, 2050147.	0.5	3
1286	Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives. Nano Materials Science, 2021, 3, 154-169.	3.9	25
1287	A lignin dissolution-precipitation strategy for porous biomass carbon materials derived from cherry stones with excellent capacitance. Journal of Alloys and Compounds, 2020, 832, 155029.	2.8	27
1288	Porous carbon materials derived from areca palm leaves for high performance symmetrical solid-state supercapacitors. Journal of Materials Science, 2020, 55, 10751-10764.	1.7	40
1289	Preparation and Electrochemical Performance of Chitosan-based Gel Polymer Electrolyte Containing Ionic Liquid for Non-aqueous Electric Double Layer Capacitor. Electrochemistry, 2020, 88, 132-138.	0.6	3

#	Article	IF	CITATIONS
1290	Fitting the porous texture of carbon electrodes to a binary ionic liquid electrolyte for the realization of low temperature EDLCs. Electrochimica Acta, 2020, 350, 136416.	2.6	15
1291	Reduced Graphene Oxide/Poly(Pyrrole-co-Thiophene) Hybrid Composite Materials: Synthesis, Characterization, and Supercapacitive Properties. Polymers, 2020, 12, 1110.	2.0	14
1292	Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems. Renewable Energy, 2020, 157, 782-792.	4.3	29
1293	Synthesis of Nitrogenâ€Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for Highâ€Performance Symmetrical Supercapacitors. ChemElectroChem, 2020, 7, 2592-2598.	1.7	8
1294	Three-Dimensional Walnut-Like, Hierarchically Nanoporous Carbon Microspheres: One-Pot Synthesis, Activation, and Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8024-8036.	3.2	32
1295	Nitrogen–oxygen co-doped porous carbons prepared by mild potassium hydroxide activation of cicada slough for high-performance supercapacitors. Journal of Energy Storage, 2020, 29, 101433.	3.9	11
1296	Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from â^35 to +65 °C. ACS Applied Materials & Interfaces, 2020, 12, 29181-29193.	4.0	10
1297	Large-sized and ultrathin biomass-derived hierarchically porous carbon nanosheets prepared by a facile way for high-performance supercapacitors. Applied Surface Science, 2020, 526, 146770.	3.1	12
1298	Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage. Journal of Materials Science, 2020, 55, 10121-10141.	1.7	20
1299	Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. Journal of Electroanalytical Chemistry, 2020, 868, 114197.	1.9	49
1300	Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage. Carbon, 2020, 167, 896-905.	5.4	22
1301	Coral-like carbon structures derived from the complex of metal-organic frameworks and melamine formaldehyde resin with ideal electrochemical performances. Electrochimica Acta, 2020, 353, 136528.	2.6	15
1302	Enhancing the Performance of Supercapacitor Activated Carbon Electrodes by Oxidation. , 2020, , .		7
1303	Electric double layer formation and storing energy processes on graphene-based supercapacitors from electrical and thermodynamic perspectives. Journal of Molecular Modeling, 2020, 26, 159.	0.8	11
1304	Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. Journal of Energy Chemistry, 2020, 51, 396-404.	7.1	71
1305	Heteroatom-Doped Pillared Porous Carbon Architectures with Ultrafast Electron and Ion Transport Capabilities under High Mass Loadings for High-Rate Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 8664-8674.	3.2	56
1306	Hybrid capacitor with anthraquinone-grafted carbon as a battery-type electrode operating in a low pH aqueous salt solution. Journal of Materials Chemistry A, 2020, 8, 13548-13557.	5.2	10
1307	Revealing ion transport in supercapacitors with Sub-2 nm two-dimensional graphene channels. Energy Storage Materials, 2020, 31, 64-71.	9.5	31

#	Article	IF	CITATIONS
1308	Nanoengineered Skeletonâ€surface of Nickel Foam with Additional Dual Functions of Rateâ€capability Promotion and Cyclingâ€life Stabilization for Nickel Sulfide Electrodes. ChemNanoMat, 2020, 6, 1365-1372.	1.5	1
1309	Fluorine-Free Ionic Liquid-Based Electrolyte for Supercapacitors Operating at Elevated Temperatures. ACS Sustainable Chemistry and Engineering, 2020, 8, 10212-10221.	3.2	19
1310	Ultra-fast and ultra-long-life Li ion batteries with 3D surface-porous graphene anodes synthesized from CO ₂ . Journal of Materials Chemistry A, 2020, 8, 13385-13392.	5.2	23
1311	Suppressed self-discharge of an aqueous supercapacitor using Earth-abundant materials. Journal of Electroanalytical Chemistry, 2020, 871, 114307.	1.9	15
1312	Hetero carbon structures derived from waste plastics as an efficient electrocatalyst for water splitting and high-performance capacitors. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114284.	1.3	8
1313	Nitrogen doping of mesoporous graphene nanoflakes as a way to enhance their electrochemical performance in ionic liquid-based supercapacitors. Journal of Energy Storage, 2020, 30, 101464.	3.9	9
1314	O/N Coâ€Doped, Layered Porous Carbon with Mesoporosity up to 99 % for Ultrahighâ€Rate Capability Supercapacitors. Batteries and Supercaps, 2020, 3, 1091-1098.	2.4	14
1315	CuCo ₂ S ₄ –rGO Microflowers: Firstâ€Principle Calculation and Application in Energy Storage. Small, 2020, 16, e2001468.	5.2	39
1316	Fast Charging Materials for High Power Applications. Advanced Energy Materials, 2020, 10, 2001128.	10.2	136
1317	Augmenting the nickel-cobalt layered double hydroxide performance: Virtue of doping. Journal of Energy Storage, 2020, 31, 101604.	3.9	6
1318	Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 831, 154745.	2.8	25
1319	Evaluation of the Covalent Functionalization of Carbon Nano-Onions with Pyrene Moieties for Supercapacitor Applications. Materials, 2020, 13, 1141.	1.3	30
1320	Electrolyte materials for supercapacitors. , 2020, , 205-314.		6
1321	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie - International Edition, 2020, 59, 9773-9779.	7.2	15
1322	Microstructure design of porous nanocarbons for ultrahigh-energy and power density supercapacitors in ionic liquid electrolyte. Journal of Materials Science, 2020, 55, 7477-7491.	1.7	11
1323	Switchable Supercapacitors with Transistorâ€Like Gating Characteristics (Gâ€Cap). Advanced Functional Materials, 2020, 30, 1910439.	7.8	23
1324	Aqueous based dual-electrolyte rechargeable Pb–Zn battery with a 2.8ÂV operating voltage. Journal of Energy Storage, 2020, 29, 101305.	3.9	4
1325	A Novel Flexible Hybrid Battery–Supercapacitor Based on a Selfâ€Assembled Vanadiumâ€Graphene Hydrogel. Advanced Functional Materials, 2020, 30, 1910738.	7.8	53

#	Article	IF	CITATIONS
1326	Oligoether Ester-Functionalized ProDOT Copolymers on Si/Monolayer Graphene as Capacitive Thin Film Electrodes. Journal of the Electrochemical Society, 2020, 167, 070543.	1.3	9
1327	Fiber-shaped Supercapacitors: Advanced Strategies toward High-performances and Multi-functions. Chinese Journal of Polymer Science (English Edition), 2020, 38, 403-422.	2.0	13
1328	Metal and Metal Oxide Electrocatalysts for Redox Flow Batteries. Advanced Functional Materials, 2020, 30, 1910564.	7.8	69
1329	Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164, 42-50.	5.4	114
1330	Cellulose-derived carbon-based electrodes with high capacitance for advanced asymmetric supercapacitors. Journal of Power Sources, 2020, 457, 228056.	4.0	39
1331	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	8.2	78
1332	Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors. Scientific Reports, 2020, 10, 5282.	1.6	14
1333	Inâ€Situ Generation of Electrolyte inside Pyridineâ€Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. ChemSusChem, 2020, 13, 3192-3198.	3.6	14
1334	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie, 2020, 132, 9860-9866.	1.6	4
1335	Determining Realistic Electrochemical Stability Windows of Electrolytes for Electrical Double‣ayer Capacitors. Batteries and Supercaps, 2020, 3, 698-707.	2.4	33
1336	Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors. Frontiers in Chemistry, 2020, 8, 43.	1.8	27
1337	Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chemical Engineering Journal, 2020, 390, 124645.	6.6	34
1338	Insight into the unusual intercalation/deintercalation phenomena of alkali cations in the layered manganese oxide for electrochemical capacitors. Journal of Power Sources, 2020, 455, 227969.	4.0	6
1339	Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Materials, 2020, 28, 122-145.	9.5	413
1340	Adiabatic motion and statistical mechanics <i>via</i> mass-zero constrained dynamics. Physical Chemistry Chemical Physics, 2020, 22, 10775-10785.	1.3	15
1341	P-Functionalized and O-deficient TiO _n /VO _m nanoparticles grown on Ni foam as an electrode for supercapacitors: epitaxial grown heterojunction and visible-light-driven photoresponse. Dalton Transactions, 2020, 49, 4476-4490.	1.6	4
1342	Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors. Journal of Alloys and Compounds, 2020, 844, 156217.	2.8	37
1343	Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321.	4.7	57

#	Article	IF	Citations
1344	Insights on the Behavior of Imidazolium Ionic Liquids as Electrolytes in Carbon-Based Supercapacitors: An Applied Electrochemical Approach. Journal of Physical Chemistry C, 2020, 124, 15818-15830.	1.5	34
1345	Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2020, 124, 6679-6689.	1.2	20
1346	Heteroatomâ€Doped and Oxygenâ€Functionalized Nanocarbons for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2020, 10, 2001239.	10.2	362
1347	Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochimica Acta, 2020, 354, 136717.	2.6	44
1348	Facile synthesis of microporous N-doped carbon material and its application in supercapacitor. Microporous and Mesoporous Materials, 2020, 306, 110483.	2.2	11
1349	Synthesis of new carbon material produced from human hair and its evaluation as electrochemical supercapacitor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 2346-2356.	1.2	10
1350	Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Materials Chemistry Frontiers, 2020, 4, 2610-2634.	3.2	91
1351	An Acidâ€Resistant Gel Polymer Electrolyte Based on Lignocellulose of Natural Biomass for Supercapacitors. Energy Technology, 2020, 8, 2000009.	1.8	15
1352	A laser synthesis of vanadium oxide bonded graphene for high-rate supercapacitors. Journal of Energy Chemistry, 2020, 49, 174-178.	7.1	12
1353	Postulates of Supercapacitor and Performance Assessment Parameters: A Technical Overview. Materials Today: Proceedings, 2020, 21, 1911-1918.	0.9	1
1354	Willow Bark for Sustainable Energy Storage Systems. Materials, 2020, 13, 1016.	1.3	9
1355	One-step green and scalable dry synthesis of nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles as high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2020, 834, 154477.	2.8	15
1356	Highly boosting the supercapacitor performance by polydopamine-induced surface modification of carbon materials and use of hydroquinone as an electrolyte additive. Electrochimica Acta, 2020, 339, 135940.	2.6	23
1357	Solid-state transformation of aqueous to organic electrolyte – Enhancing the operating voltage window of â€~ <i>in situ</i> electrolyte' supercapacitors. Sustainable Energy and Fuels, 2020, 4, 2438-2447.	2.5	11
1358	Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Materials Technology, 2020, 35, 625-634.	1.5	18
1359	Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 11669-11678.	4.0	67
1360	An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452, 227847.	4.0	69
1361	Surface engineered carbon-cloth with broadening voltage window for boosted energy density aqueous supercapacitors. Carbon, 2020, 162, 136-146.	5.4	42

#	Article	IF	Citations
1362	Interweaving Activated Carbon with Multi-dimensional Carbon Nanomaterials for High-performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 040507.	1.3	9
1363	Investigation of electrochemical performance of MgNiO2 prepared by sol-gel synthesis route for aqueous-based supercapacitor application. Current Applied Physics, 2020, 20, 628-637.	1.1	11
1364	All-Temperature Flexible Supercapacitors Enabled by Antifreezing and Thermally Stable Hydrogel Electrolyte. Nano Letters, 2020, 20, 1907-1914.	4.5	232
1365	Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance. Nanomaterials, 2020, 10, 345.	1.9	21
1366	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
1367	Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading. Journal of Power Sources, 2020, 454, 227917.	4.0	37
1368	Nitrogen and sulfur co-doped NaTi2(PO4)3/hole graphene composite as high-performance electrosorption electrodes for hybrid capacitive deionization. Journal of Materials Science, 2020, 55, 6017-6029.	1.7	23
1369	One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244, 122701.	2.0	27
1370	Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Separation and Purification Technology, 2020, 241, 116724.	3.9	67
1371	Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. International Journal of Hydrogen Energy, 2020, 45, 8843-8852.	3.8	41
1372	Morphology control of nanoscale metal-organic frameworks for high-performance supercapacitors. Electrochimica Acta, 2020, 343, 135617.	2.6	36
1373	A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Applied Surface Science, 2020, 510, 145384.	3.1	127
1374	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	5.4	77
1375	Comparison of organic electrolytes at various temperatures for 2.8ÂV–Li-ion hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135760.	2.6	15
1376	Towards an optimized hybrid electrochemical capacitor in iodide based aqueous redox-electrolyte: Shift of equilibrium potential by electrodes mass-balancing. Electrochimica Acta, 2020, 337, 135785.	2.6	17
1377	Nitrogen-rich hierarchically porous carbon foams as high-performance electrodes for lithium-based dual-ion capacitor. Journal of Energy Chemistry, 2020, 48, 187-194.	7.1	34
1378	Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Applied Energy Materials, 2020, 3, 1559-1568.	2.5	64
1379	Effects of high-shear mixing and the graphene oxide weight fraction on the electrochemical properties of the GO/Ni(OH) ₂ electrode. Dalton Transactions, 2020, 49, 1752-1764.	1.6	4

#	Article	IF	CITATIONS
1380	Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon, 2020, 161, 89-96.	5.4	65
1381	Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2020, 22, 3906-3913.	1.3	26
1382	Electrochemical capacitors operating in aqueous electrolyte with volumetric characteristics improved by sustainable templating of electrode materials. Electrochimica Acta, 2020, 338, 135788.	2.6	20
1383	Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Materials, 2020, 27, 169-186.	9.5	64
1384	Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbonâ€Đioxide, Hydrogen, Water, and Electric Charge. Advanced Energy Materials, 2020, 10, 1903649.	10.2	41
1385	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92
1386	A Critical Analysis about the Underestimated Role of the Electrolyte in Batteries Based on Organic Materials. ChemElectroChem, 2020, 7, 2364-2375.	1.7	17
1387	N-doped carbon derived from the monomer of chitin for high-performance supercapacitor. Applied Surface Science, 2020, 517, 146140.	3.1	51
1388	Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance. Applied Surface Science, 2020, 519, 146252.	3.1	25
1389	Activated coal-based graphene with hierarchical porous structures for ultra-high energy density supercapacitors. Diamond and Related Materials, 2020, 106, 107827.	1.8	26
1390	Lignin-based multi-channels carbon nanofibers @ SnO2 nanocomposites for high-performance supercapacitors. Electrochimica Acta, 2020, 345, 136172.	2.6	49
1391	Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics, 2020, 26, 4103-4111.	1.2	27
1392	Activated carbon xerogels derived from phenolic oil: Basic catalysis synthesis and electrochemical performances. Fuel Processing Technology, 2020, 205, 106427.	3.7	7
1393	Effect of Long-Chain Ionic Liquids on the Capacitive Performance of Carbon Nanotube-Sulfonated Polyaniline Hydrogels for Energy Storage Applications. Journal of Physical Chemistry C, 2020, 124, 9810-9821.	1.5	32
1394	Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 2020, 5, 517-538.	23.3	360
1395	Morphological optimization and nitrogen functionalization of vertically oriented CNW for high performance electrical double layer capacitor electrode. Electrochimica Acta, 2020, 348, 136210.	2.6	9
1396	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale, 2020, 12, 10685-10692.	2.8	58
1397	The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Advanced Energy Materials, 2020, 10, 1903848.	10.2	152

#	Article	lF	CITATIONS
1398	Hierarchically Porous Biomass Carbon Derived from Natural Withered Rose Flowers as Highâ€Performance Material for Advanced Supercapacitors. Batteries and Supercaps, 2020, 3, 731-737.	2.4	57
1399	Supercapacitive operational mode in microbial fuel cell. Current Opinion in Electrochemistry, 2020, 22, 1-8.	2.5	32
1400	Controlling Surface Oxygen Concentration of a Nanocarbon Film Electrode for Improvement of Target Analytes. Analytical Sciences, 2020, 36, 441-446.	0.8	3
1401	A Holey Graphene Additive for Boosting Performance of Electric Double-Layer Supercapacitors. Polymers, 2020, 12, 765.	2.0	7
1402	Mussel-Inspired Autonomously Self-Healable All-in-One Supercapacitor with Biocompatible Hydrogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 6935-6948.	3.2	41
1403	Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews, 2020, 49, 3005-3039.	18.7	391
1404	Advances in in-situ characterizations of electrode materials for better supercapacitors. Journal of Energy Chemistry, 2021, 54, 242-253.	7.1	37
1405	Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 54, 352-367.	7.1	97
1406	Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2295-2328.	6.6	24
1407	Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review. Synthetic Metals, 2021, 271, 116609.	2.1	84
1408	A Living Biotic–Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage. Advanced Functional Materials, 2021, 31, 2007351.	7.8	20
1409	Potassium-assisted carbonization of chlorobenzene in Ar/H2 to prepare porous carbon with low oxygen content for high withstanding voltage EDLCs. Carbon, 2021, 172, 154-161.	5.4	14
1410	Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions. Separation and Purification Technology, 2021, 272, 117559.	3.9	23
1411	Preparation of activated carbon derived from oil palm empty fruit bunches and its modification by nitrogen doping for supercapacitors. Journal of Porous Materials, 2021, 28, 9-18.	1.3	21
1412	Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors. Chinese Chemical Letters, 2021, 32, 830-833.	4.8	7
1413	New types of hybrid electrolytes for supercapacitors. Journal of Energy Chemistry, 2021, 57, 219-232.	7.1	106
1414	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	9.5	61
1415	New cathode material of NiCo2Crx-OH (x=0, 1, 1.5, 2.0) and anode material of one-off chopsticks derived carbon for high performance supercapacitor. Journal of Alloys and Compounds, 2021, 851, 156792.	2.8	11

#	Article	IF	CITATIONS
1416	Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.	2.2	10
1417	In-situ hydrothermal synthesis of Î-MnO2/soybean pod carbon and its high performance application on supercapacitor. Journal of Alloys and Compounds, 2021, 853, 157357.	2.8	18
1418	The preparation of porous carbon materials derived from bio-protic ionic liquid with application in flexible solid-state supercapacitors. Journal of Hazardous Materials, 2021, 402, 124023.	6.5	50
1419	Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units. Nano-Micro Letters, 2021, 13, 19.	14.4	81
1420	Synthesis of mesoporous hollow carbon microcages by combining hard and soft template method for high performance supercapacitors. Ceramics International, 2021, 47, 5968-5976.	2.3	16
1421	Nanostructured CeO2/NiV–LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst. Chemical Engineering Journal, 2021, 417, 128019.	6.6	72
1422	Induced symmetric 2D Mesoporous Graphitic Carbon Spinel Cobalt Ferrite (CoFe2O4/2D-C) with high porosity fabricated via a facile and swift sucrose templated microwave combustion route for an improved supercapacitive performance. Materials Research Bulletin, 2021, 133, 111053.	2.7	7
1423	Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529.	7.1	56
1424	Preparation of Hierarchical Porous Activated Carbon from Banana Leaves for Highâ€performance Supercapacitor: Effect of Type of Electrolytes on Performance. Chemistry - an Asian Journal, 2021, 16, 296-308.	1.7	88
1425	Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. Journal of Power Sources, 2021, 483, 229219.	4.0	52
1426	Review on supercapacitors: Technologies and performance evaluation. Journal of Energy Chemistry, 2021, 59, 276-291.	7.1	260
1427	Preparation of novel CaTi2O4(OH)2 ultrathin nanosheets and their excellent electrochemical properties for supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 851, 156771.	2.8	1
1428	Polytetrafluoroethylene-assisted removal of hard-template to prepare hierarchically porous carbon for high energy density supercapacitor with KI-additive electrolyte. Electrochimica Acta, 2021, 368, 137610.	2.6	14
1429	Nickel cobalt bimetallic metal-organic frameworks with a layer-and-channel structure for high-performance supercapacitors. Journal of Energy Storage, 2021, 33, 102149.	3.9	35
1430	Electrochemical capacitors: Materials, technologies and performance. Energy Storage Materials, 2021, 36, 31-55.	9.5	87
1431	Development of hierarchically structured nanosheet arrays of CuMnO2-MnxOy@graphene foam as a nanohybrid electrode material for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2021, 858, 158343.	2.8	21
1432	Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation. Journal of Power Sources, 2021, 485, 229328.	4.0	38
1433	Lamellar hierarchically porous carbon derived from discarded Barbary figs husk: Preparation, characterization, and its excellent capacitive properties. Journal of Electroanalytical Chemistry, 2021,	1.9	12

#	Article	IF	CITATIONS
1434	Sâ€doped <scp>3D</scp> porous carbons derived from potassium thioacetate activation strategy for zincâ€ion hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 2498-2510.	2.2	41
1435	Green Precursors and Soft Templating for Printing Porous Carbonâ€Based Microâ€supercapacitors. Chemistry - A European Journal, 2021, 27, 1356-1363.	1.7	6
1436	Functional Carbon Electrodes from Phyllanthus acidus Leaves as High Performance of Supercapacitors. Lecture Notes in Electrical Engineering, 2021, , 813-829.	0.3	0
1437	Synthesis and structural/electrochemical evaluation of N, S coâ€doped activated porous carbon spheres as efficient electrode material for supercapacitors. Electrochemical Science Advances, 2021, 1, e2000021.	1.2	2
1438	Building next-generation supercapacitors with battery type Ni(OH) ₂ . Journal of Materials Chemistry A, 2021, 9, 15542-15585.	5.2	74
1439	The solar reduction of graphene oxide on a large scale for high density electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 2724-2733.	2.5	9
1440	Development of Novel Carbon Electrode for Electrochemical Energy Storage. Nano-sized Carbon and Classic Carbon Electrodes for Capacitors. Electrochemistry, 2021, 89, 491-499.	0.6	5
1441	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
1442	Solvothermal preparation of spherical Bi ₂ O ₃ nanoparticles uniformly distributed on Ti ₃ C ₂ T _{<i>x</i>} for enhanced capacitive performance. Nanoscale Advances, 2021, 3, 5312-5321.	2.2	4
1443	Robust, flexible, freestanding and high surface area activated carbon and multi-walled carbon nanotubes composite material with outstanding electrode properties for aqueous-based supercapacitors. Materials Advances, 2021, 2, 4264-4276.	2.6	18
1444	Sustainable Doughâ€Based Gel Electrolytes for Aqueous Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2009209.	7.8	37
1445	Link between Alkali Metals in Salt Templates and in Electrolytes for Improved Carbon-Based Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 2584-2599.	4.0	20
1446	Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior. Journal of Composites Science, 2021, 5, 25.	1.4	2
1447	Titanium Dioxide Nanostructured Based Supercapacitors. , 2022, , 361-373.		1
1448	High-power graphene supercapacitors for the effective storage of regenerative energy during the braking and deceleration process in electric vehicles. Materials Chemistry Frontiers, 2021, 5, 6200-6211.	3.2	41
1449	Electrical Double‣ayer Capacitors Based on a Ternary Ionic Liquid Electrolyte Operating at Low Temperature with Realistic Gravimetric and Volumetric Energy Outputs. ChemSusChem, 2021, 14, 1196-1208.	3.6	19
1450	Fabrication of nitrogen-doped hierarchical porous carbons from <i>Sargassum</i> as advanced electrode materials for supercapacitors. New Journal of Chemistry, 2021, 45, 15514-15524.	1.4	14
1451	Porous graphene nanocages with wrinkled surfaces enhancing electrocatalytic activity of lithium/sulfuryl chloride batteries. RSC Advances, 2021, 11, 9469-9475.	1.7	1

#	Article	IF	Citations
1452	Poly(<i>ortho</i> -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A, 2021, 9, 10487-10496.	5.2	5
1453	Separator Material Selection for Supercapacitors. Springer Series in Materials Science, 2021, , 201-232.	0.4	4
1454	Porous Electrodes in Redox Flow Batteries. , 2022, , 466-479.		0
1455	KCl-assisted activation: Moringa oleifera branch-derived porous carbon for high performance supercapacitor. New Journal of Chemistry, 2021, 45, 5712-5719.	1.4	10
1456	Coupling anodic/cathodic energy storage through <i>in situ</i> heterostructure regulation of ordered microporous carbon for sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 3360-3368.	5.2	15
1457	Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte. Chemical Communications, 2021, 57, 1246-1249.	2.2	50
1458	High specific energy supercapacitor electrode prepared from MnS/Ni ₃ S ₂ composite grown on nickel foam. New Journal of Chemistry, 2021, 45, 18641-18650.	1.4	17
1459	Recent advances in engineered metal oxide nanostructures for supercapacitor applications: experimental and theoretical aspects. Journal of Materials Chemistry A, 2021, 9, 17643-17700.	5.2	127
1460	When water becomes an integral part of carbon – combining theory and experiment to understand the zeolite-like water adsorption properties of porous C ₂ N materials. Journal of Materials Chemistry A, 2021, 9, 22563-22572.	5.2	8
1461	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
1462	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	5.2	64
1463	Understanding Structure–Property Relationships under Experimental Conditions for the Optimization of Lithium″on Capacitor Anodes based on All arbonâ€Composite Materials. Energy Technology, 2021, 9, 2001054.	1.8	2
1464	3D Graphene Nanocomposite by Electrospinning for Supercapacitor. Carbon Nanostructures, 2021, , 93-118.	0.1	0
1465	Background of energy storage. , 2021, , 1-26.		3
1466	Phase Changing Materials Based Super Capacitors. , 2021, , .		0
1467	Unveiling the Relationship between the Surface Chemistry of Nanoparticles and Ion Transport Properties of the Resulting Composite Electrolytes. Journal of Physical Chemistry Letters, 2021, 12, 642-649.	2.1	4
1468	A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications. Nanotechnology, 2021, 32, 185403.	1.3	4
1469	Effect of the particle size of graphene oxide powders on the electrochemical performance of graphene-based supercapacitors. Functional Composites and Structures, 2021, 3, 015005.	1.6	8

#	Article	IF	CITATIONS
1470	Controllable Synthesis of Nickel Sulfide Nanosheet/Carbon Fibers Composite and Its Electrochemical Performances. International Journal of Electrochemical Science, 2021, 16, 210254.	0.5	2
1471	Effect of side chain modifications in imidazolium ionic liquids on the properties of the electrical double layer at a molybdenum disulfide electrode. Journal of Chemical Physics, 2021, 154, 084504.	1.2	13
1472	Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Research, 2021, 14, 3669-3689.	5.8	78
1473	Designing a Zn(BF ₄) ₂ â€Based Ionic Liquid Electrolyte to Realize Superior Energy Density in a Carbonâ€Based Zincâ€Ion Hybrid Capacitor. ChemElectroChem, 2021, 8, 1289-1297.	1.7	22
1474	High-Capacitance Pseudocapacitors from Li ⁺ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 2285-2292.	6.6	99
1475	Ball-milling-enhanced capacitive charge storage of activated graphene in aqueous, organic and ionic liquid electrolytes. Electrochimica Acta, 2021, 370, 137738.	2.6	16
1476	Progress in the Regulation of Electrode/Electrolyte Interfacial Reactions toward Highâ€voltage Aqueous Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 717-732.	2.4	2
1477	Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors, 2021, 11, 41.	2.3	9
1478	Boron/oxygen-induced surface modification of carbon material and the use of p-aminophenol as electrolyte additive: Cooperative effect for increased capacitive performance in acidic or alkaline electrolyte. Journal of Electroanalytical Chemistry, 2021, 882, 114991.	1.9	0
1479	Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochemical Energy Reviews, 2021, 4, 219-248.	13.1	118
1480	The effects of anions on the structure and the electrochemical performance of carbon materials for supercapacitors. Journal of Physics and Chemistry of Solids, 2021, 150, 109847.	1.9	4
1481	Investigation on the Mass Distribution and Chemical Compositions of Various Ionic Liquids-Extracted Coal Fragments and Their Effects on the Electrochemical Performance of Coal-Derived Carbon Nanofibers (CCNFs). Nanomaterials, 2021, 11, 664.	1.9	1
1482	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
1483	A new formula for the faradaic fraction used to estimate the coulombic hysteresis in the charge/discharge profiles of electrochemical energy storage systems. Electrochimica Acta, 2021, 371, 137788.	2.6	6
1484	A flowerâ€like αâ€phase nickelâ€cobaltâ€manganese hydroxide modified with twoâ€dimensional Ti ₃ C ₂ for high performance hybrid supercapacitors. Electrochemical Science Advances, 2021, 1, e2100018.	1.2	5
1485	Application of Carbon Materials in Aqueous Zinc Ion Energy Storage Devices. Small, 2021, 17, e2100219.	5.2	68
1486	Electric Double Layer Capacitors Based on Porous Three-Dimensional Graphene Materials for Energy Storage. Journal of Electronic Materials, 2021, 50, 3043-3063.	1.0	12
1487	Understanding Electric Fieldâ€Dependent Structure Variation of Functional Ionic Liquids at the Electrode Interface. ChemElectroChem, 2021, 8, 1588-1595.	1.7	6

#	Article	IF	CITATIONS
1488	Heat generation in electric double layer capacitors with neat and diluted ionic liquid electrolytes under large potential window between 5 and 80°C. Journal of Power Sources, 2021, 488, 229368.	4.0	16
1489	Comparative Studies of Solutions of Homogeneous Electrochemical Capacitors Models. Journal of Energy Storage, 2021, 35, 102221.	3.9	1
1490	Hierarchical Lignin-Based Carbon Matrix and Carbon Dot Composite Electrodes for High-Performance Supercapacitors. ACS Omega, 2021, 6, 7851-7861.	1.6	20
1491	Suppressing early capacitance fade of electrochemical capacitors with water-in-salt electrolytes. Electrochimica Acta, 2021, 372, 137854.	2.6	8
1492	Anti–corrosive siloxane coatings for improved long–term performance of supercapacitors with an aqueous electrolyte. Electrochimica Acta, 2021, 372, 137840.	2.6	18
1493	Iron induced porosity of the templated carbon for enhancement of electrochemical capacitance. Applied Surface Science, 2021, 543, 148565.	3.1	3
1494	The Functional Chameleon of Materials Chemistry—Combining Carbon Structures into Allâ€Carbon Hybrid Nanomaterials with Intrinsic Porosity to Overcome the "Functionalityâ€Conductivityâ€Dilemma―in Electrochemical Energy Storage and Electrocatalysis. Small, 2021, 17, e2007508.	5.2	10
1495	Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage. ACS Applied Nano Materials, 2021, 4, 4007-4015.	2.4	12
1496	The prospects and challenges of solar electrochemical capacitors. Journal of Energy Storage, 2021, 35, 102294.	3.9	10
1497	Porous monoliths of 3D graphene for electric doubleâ€layer supercapacitors. , 2021, 3, 193-224.		46
1498	Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy, 2021, 286, 116431.	5.1	22
1499	Superionic Liquids in Conducting Nanoslits: Insights from Theory and Simulations. Journal of Physical Chemistry C, 2021, 125, 4968-4976.	1.5	11
1500	Regeneration of Fully-discharged Graphite-Fluoride Lithium Primary Battery as Electrochemical Capacitor. Electrochemistry, 2021, 89, 87-93.	0.6	5
1501	Hetero-Porous, High-Surface Area Green Carbon Aerogels for the Next-Generation Energy Storage Applications. Nanomaterials, 2021, 11, 653.	1.9	29
1502	Preventing Graphene from Restacking <i>via</i> Bioinspired Chemical Inserts: Toward a Superior 2D Micro-supercapacitor Electrode. ACS Applied Nano Materials, 2021, 4, 4964-4973.	2.4	10
1503	Conductive Boron-doped Diamond Powder/Nanoparticles for Electrochemical Applications. Chemistry Letters, 2021, 50, 733-741.	0.7	12
1504	Dual-doping activated carbon with hierarchical pore structure derived from polymeric porous monolith for high performance EDLC. Electrochimica Acta, 2021, 375, 137927.	2.6	15
1505	Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diamond and Related Materials, 2021, 114, 108316.	1.8	41

CITATION REPORT ARTICLE IF CITATIONS Modular Platform for Synthesis of Poly(Ionic Liquid) Electrolytes for Electrochemical Applications 0.7 3 in Supercapacitors. ChemistrySelect, 2021, 6, 3795-3801. A Composite Mesh of N-doped Carbon/Polyaniline Nanowire Arrays for a Flexible Self-Supporting Interdigital Solid Supercapacitor. Journal of Electronic Materials, 2021, 50, 4222-4229. 1.0 Large-surface-area activated carbon with high density by electrostatic densification for 5.491 supercapacitor electrodes. Carbon, 2021, 175, 281-288. $Co₉S₈@CN Composites Obtained from Thiacalix[4]areneâ\inBased Coordination$ Polymers for Supercapacitor Applications. Chemistry - an Asian Journal, 2021, 16, 1486-1492. Impact of carbon pores size on ionic liquid based-supercapacitor performance. Journal of Colloid and 5.0 29 Interface Science, 2021, 588, 705-712. The impact of the thermal stability of non-conventional electrolytes on the behavior of high voltage electrochemical capacitors operating at $60\hat{A}^{\circ}$ C. Electrochimica Acta, 2021, 374, 137919. 2.6 Biomass-Derived Ternary-Doped Porous Carbon Electrodes for Li-Ion Capacitors: Rational Preparation 1.34 and Energy-Storage Mechanism Study. Journal of the Electrochemical Society, 2021, 168, 040521. Design and theoretical study of novel deep eutectic solvents: The effects of bromine and chloride anions on solvation structure and supercapacitor performance. Journal of Power Sources, 2021, 492, 4.0 229634. Capillary Ionization and Jumps of Capacitive Energy Stored in Mesopores. Journal of Physical 1.5 4 Chemistry C, 2021, 125, 10243-10249. Preparation of hierarchically porous carbon nanosheets by carbonizing resol resin for 1.3 supercapacitors. Journal of Porous Materials, 2021, 28, 1187-1196. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, 11.8 117 computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374. Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications. Chemical Engineering Journal, 2021, 409, 127891. 6.6 Fabrication of high energy density supercapacitor device based on hollow iridium oxide nanofibers by 3.1 29 single nozzle electrospinning. Applied Surface Science, 2021, 546, 149102. Novel cobalt (II) phthalocyanine with appliance of CNTs on GCE: Flexible superâ€capacitance by 1.2 electrochemical methods. Electrochemical Science Advances, 2022, 2, e2100006. The Performance of Fibrous CDC Electrodes in Aqueous and Non-Aqueous Electrolytes. Journal of 2 1.4 Carbon Research, 2021, 7, 46. "Waterâ€inâ€Saltâ€Electrolytes for Supercapacitors: A Review. ChemSusChem, 2021, 14, 2501-2515. 3.6

1522	Revealing the Impact of Hierarchical Pore Organization in Supercapacitor Electrodes by Coupling Ionic Dynamics at Micro―and Macroscales. Advanced Energy Materials, 2021, 11, 2100700.	10.2	23
1523	In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors. Carbon, 2021, 176, 296-306.	5.4	37

1506

1508

1509

1510

1512

1514

1516

1518

#	Article	IF	CITATIONS
1525	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. Energies, 2021, 14, 2649.	1.6	26
1526	Application of Ionic Liquids for Batteries and Supercapacitors. Materials, 2021, 14, 2942.	1.3	66
1527	Transformation of Supercapacitive Charge Storage Behaviour in a Multi elemental Spinel CuMn2O4 Nanofibers with Alkaline and Neutral Electrolytes. Advanced Fiber Materials, 2021, 3, 265-274.	7.9	24
1528	Green preparation of hierarchical porous carbon with tunable pore size for supercapacitors. Ionics, 2021, 27, 3077-3087.	1.2	7
1529	New insight into ion dynamics in nanoporous carbon materials: An application of the step potential electrochemical spectroscopy (SPECS) technique and electrochemical dilatometry. Electrochimica Acta, 2021, 377, 138115.	2.6	6
1530	Hydrothermal synthesis of CuS nanochips and their nanohybrids with CNTs for electrochemical energy storage applications. Ceramics International, 2021, 47, 13613-13621.	2.3	63
1531	Smart confinement of MnO enabling highly reversible Mn(II)/Mn(III) redox for asymmetric supercapacitors. Journal of Power Sources, 2021, 495, 229801.	4.0	14
1532	Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Letters, 2021, 31, 581-592.	3.3	29
1533	Co ₃ O ₄ Nanoparticles Embedded in Mesoporous Carbon for Supercapacitor Applications. ACS Applied Nano Materials, 2021, 4, 5022-5037.	2.4	55
1534	Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide. Renewable and Sustainable Energy Reviews, 2021, 141, 110798.	8.2	51
1535	Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Letters, 2021, 13, 129.	14.4	75
1536	Properties of electrochemically copolymerized aniline and melamine on functionalized multiwalledâ€carbon nanotube film electrodes. Electrochemical Science Advances, 2022, 2, e2100021.	1.2	2
1537	A dual-template strategy of N and O co-doped hierarchically porous carbon derived from waste tea for excellent supercapacitor performance. lonics, 2021, 27, 3195-3205.	1.2	7
1539	Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications. Electrochimica Acta, 2021, 379, 138170.	2.6	39
1542	Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor. Diamond and Related Materials, 2021, 116, 108447.	1.8	25
1543	Polyacrylamide Gel-Derived Nitrogen-Doped Carbon Foam Yields High Performance in Supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 6719-6729.	2.5	22
1544	Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template. Materials Today Chemistry, 2021, 20, 100410.	1.7	2
1545	Electrostatic and electrochemical charging mechanisms for electric-double-layer gating media based on a crystalline LaF3 solid electrolyte. APL Materials, 2021, 9, .	2.2	2

#	Article	IF	CITATIONS
1546	Water/acetonitrile hybrid electrolyte enables using smaller ions for achieving superior energy density in carbon-based supercapacitors. Journal of Power Sources, 2021, 498, 229905.	4.0	8
1547	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
1548	Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 2021, 46, 21534-21541.	3.8	23
1549	Magnetic field-induced capacitance change in aqueous carbon-based supercapacitors. Cell Reports Physical Science, 2021, 2, 100455.	2.8	13
1550	Sequential Production of Levulinic Acid and Supercapacitor Electrode Materials from Cassava Rhizome through an Integrated Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 7824-7836.	3.2	15
1551	Boosting the capacitive property of cobalt sulfide through interface engineering for high-performance supercapacitors. Ceramics International, 2021, 47, 24973-24981.	2.3	14
1552	Cucurbit[8]uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. Journal of Energy Storage, 2021, 38, 102527.	3.9	11
1553	Diamond supercapacitors: Progress and perspectives. Current Opinion in Solid State and Materials Science, 2021, 25, 100922.	5.6	18
1554	Electrolyte structure near electrodes with molecular-size roughness. Physical Review E, 2021, 103, L060102.	0.8	12
1555	Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. Journal of Energy Storage, 2021, 38, 102534.	3.9	23
1556	Conversion of Lagenaria Siceraria peel to reduced graphene oxide doped with zinc oxide nanoparticles for supercapacitor applications. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2021, 24, 115-123.	0.3	2
1557	Role of morphological features and oxygen vacancies on electrocatalytic oxygen evolution reaction (OER) activity and pseudocapacitance performance of BiVO4 structures. Applied Physics Letters, 2021, 118, .	1.5	5
1558	Elastic properties of confined fluids from molecular modeling to ultrasonic experiments on porous solids. Applied Physics Reviews, 2021, 8, .	5.5	14
1559	Organic cation linkers polyoxomolybdate-polypyrrole nanocomposite-based supercapacitors. lonics, 2021, 27, 4023-4035.	1.2	2
1560	Metal phthalocyanine-based conjugated microporous polymer/carbon nanotube composites as flexible electrodes for supercapacitors. Dyes and Pigments, 2021, 190, 109299.	2.0	10
1561	Towards understanding the impact of operating voltage on the stability of adiponitrile-based electrical double-layer capacitors. Journal of Power Sources, 2021, 496, 229841.	4.0	9
1563	Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid—Solvent Mixtures. Molecules, 2021, 26, 3668.	1.7	17
1564	Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 2021, 32, 18123-18137.	1.1	14

#	Article	IF	CITATIONS
1565	1.8 V Aqueous Symmetric Carbon-Based Supercapacitors with Agarose-Bound Activated Carbons in an Acidic Electrolyte. Nanomaterials, 2021, 11, 1731.	1.9	18
1566	Construction of Supercapacitorâ€Based Ionic Diodes with Adjustable Bias Directions by Using Poly(ionic) Tj ETQq	1 1 0.784 11.1	314 rgBT /0
1567	Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte. Carbon, 2021, 178, 540-551.	5.4	31
1568	Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.	4.0	16
1569	Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide with remarkable performance in the supercapacitor. Frontiers of Chemical Science and Engineering, 2022, 16, 420-432.	2.3	8
1570	Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technologies and Environmental Policy, 0, , 1.	2.1	6
1571	A two-step thermal treatment method to produce reduced graphene oxide with selectively increasing electrochemically active carbonyl group content for high-performance supercapacitor electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126573.	2.3	10
1572	Energy-Dense Aqueous Carbon/Carbon Supercapacitor with a Wide Voltage Window. Journal of the Electrochemical Society, 2021, 168, 070538.	1.3	9
1573	Hierarchical Co3S4/CoS/MoS2 leaf-like nanoflakes array derived from Co-ZIF-L as an advanced anode for flexible supercapacitor. Journal of Alloys and Compounds, 2021, 870, 159393.	2.8	35
1574	Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy, 2021, 85, 105942.	8.2	230
1575	Design and Use of a Novel In Situ Simultaneous Thermal Analysis Cell for an Accurate "Real Time― Monitoring of the Heat and Weight Changes Occurring in Electrochemical Capacitors. Energy Technology, 2021, 9, 2100329.	1.8	10
1576	Anion Coordination Improves High-Temperature Performance and Stability of NaPF6-Based Electrolytes for Supercapacitors. Energies, 2021, 14, 4409.	1.6	4
1577	Co-activation Pore Engineering of Polyphthalocyanine-Derived Carbon Nanosheets for Supercapacitors in Organic Electrolytes. ACS Applied Energy Materials, 2021, 4, 7751-7758.	2.5	9
1578	Free-Standing, Flexible Nanofeatured Polymeric Films Prepared by Spin-Coating and Anodic Polymerization as Electrodes for Supercapacitors. Molecules, 2021, 26, 4345.	1.7	5
1579	Capacitance and Structure of Electric Double Layers: Comparing Brownian Dynamics and Classical Density Functional Theory. Journal of Solution Chemistry, 2022, 51, 296-319.	0.6	19
1580	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	7.8	57
1581	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	2.3	18
1582	Redox Active Organic-Carbon Composites for Capacitive Electrodes: A Review. Sustainable Chemistry, 2021, 2, 407-440.	2.2	23

#	Article	IF	CITATIONS
1583	Enhanced Cyclic Stability of Sulfur Electrode by a Liâ€Nafionâ€&upported Encapsulated Configuration. Energy Technology, 2021, 9, 2100418.	1.8	5
1584	Biosupercapacitor with an enzymatic cascade at the anode working in a sucrose solution. Biosensors and Bioelectronics, 2021, 186, 113248.	5.3	8
1585	Dilute Aqueousâ€Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Advanced Materials, 2021, 33, e2102390.	11.1	28
1586	Sustainable 3D Structural Binder for Highâ€Performance Supercapacitor by Biosynthesis Process. Advanced Functional Materials, 2021, 31, 2105070.	7.8	32
1587	Synthesis and applications of nano-MgO and composites for medicine, energy, and environmental remediation: a review. Environmental Chemistry Letters, 2021, 19, 4415-4454.	8.3	40
1588	Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review. Nano Energy, 2021, 86, 106070.	8.2	85
1589	Mass-Zero constrained dynamics and statistics for the shell model in magnetic field. European Physical Journal B, 2021, 94, 1.	0.6	3
1590	Self-Doped Activated Carbons from Car Exhaust as High-Performance Supercapacitor Electrode Materials for Sustainable Energy Storage System. Journal of the Electrochemical Society, 2021, 168, 080535.	1.3	4
1591	Application of aprotic ionic liquids based on bis(trifluoromethylsulfonyl)imide anion as polymer gel electrolytes for cobalt oxide symmetric supercapacitors. Journal of Energy Storage, 2021, 40, 102761.	3.9	10
1592	One-step synthesis of amino acid-derived HTC/NiO/Ni(OH)2@Ni cathode for high performance supercapacitors. Applied Surface Science, 2021, 558, 149853.	3.1	4
1593	Zn(ClO4)2 aqueous solution–based Zn thin foil carbon cloth two-electrode single-cell characteristics. Journal of Solid State Electrochemistry, 2021, 25, 2869-2880.	1.2	5
1594	Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications. Journal of Applied Electrochemistry, 2022, 52, 125-137.	1.5	5
1595	Asymmetric Supercapacitors Based on Co3O4@MnO2@PPy Porous Pattern Core-Shell Structure Cathode Materials. Journal of Electrochemical Science and Technology, 2021, 12, 346-357.	0.9	14
1596	Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. Journal of Industrial and Engineering Chemistry, 2021, 104, 155-171.	2.9	82
1597	Fabrication of efficient electrochemical capacitors rooted in sol-gel derived NiMn2O4 nanoparticles. Journal of Electroanalytical Chemistry, 2021, 897, 115548.	1.9	8
1598	Influence of acidic type on nanostructures and electrochemical performance of polyaniline for flexible supercapacitors and improved performance based on 3D honeycomb-like nanosheet by doping HPF6 acid. Electrochimica Acta, 2021, 390, 138818.	2.6	11
1599	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€Ion Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	10.2	73
1600	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 506, 230131.	4.0	7

#	Article	IF	CITATIONS
1601	Construction of copper porphyrin-linked conjugated microporous polymer/carbon nanotube composite as flexible electrodes for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 24953-24963.	1.1	12
1602	<i>In Situ</i> Growth of 3D Lamellar Mn(OH) ₂ on CuO-Coated Carbon Cloth for Flexible Asymmetric Supercapacitors with a High Working Voltage of 2.4 V. ACS Sustainable Chemistry and Engineering, 2021, 9, 13385-13394.	3.2	10
1603	Valorization of biodigestor plant waste in electrodes for supercapacitors and microbial fuel cells. Electrochimica Acta, 2021, 391, 138960.	2.6	22
1604	A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. Energies, 2021, 14, 5819.	1.6	7
1605	EMIMBF4 in ternary liquid mixtures of water, dimethyl sulfoxide and acetonitrile as "tri-solvent-in-salt―electrolytes for high-performance supercapacitors operating at -70°C. Energy Storage Materials, 2021, 40, 368-385.	9.5	25
1606	Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems. Energy Storage Materials, 2021, 40, 22-30.	9.5	17
1607	Mohr's salt assisted KOH activation strategy to customize S-doped hierarchical carbon frameworks enabling satisfactory rate performance of supercapacitors. Journal of Alloys and Compounds, 2021, 876, 160203.	2.8	20
1608	All-solid-state Na+ ion supercapacitors using Na3Zr2Si2PO12-polymer hybrid films as electrolyte. Journal of Energy Storage, 2021, 41, 102984.	3.9	8
1609	Redefining high-k dielectric materials vision at nanoscale for energy storage: A new electrochemically active protection barrier. Electrochimica Acta, 2021, 389, 138727.	2.6	3
1610	New bifunctional carbon material of metalâ€free pomegranate peel catalyst and supercapacitor for highly efficient hydrogen production and energy storage. International Journal of Energy Research, 2022, 46, 1789-1802.	2.2	13
1611	sp2–sp3 Hybrid Porous Carbon Materials Applied for Supercapacitors. Energies, 2021, 14, 5990.	1.6	5
1612	Deep Eutectic Solvents for Highâ€Temperature Electrochemical Capacitors. ChemElectroChem, 2021, 8, 4028-4037.	1.7	8
1613	Monte Carlo simulations and mean-field modeling of electric double layers at weakly and moderately charged spherical macroions. Physical Review E, 2021, 104, 034609.	0.8	5
1614	Honeysuckle flowers-derived hierarchical porous carbon matching with ionic liquid electrolyte for high-energy supercapacitors. Journal of Energy Storage, 2021, 41, 102988.	3.9	20
1615	Electrochemical hydrogen storage in porous carbons with acidic electrolytes: Uncovering the potential. Current Opinion in Electrochemistry, 2022, 31, 100850.	2.5	14
1616	Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.	2.6	14
1617	Hydrothermal synthesis of reduced graphene oxide for supercapacitor electrode materials and the effect of added sodium alginate on its structure and performance. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
1618	Understanding electrochemical capacitors with in-situ techniques. Renewable and Sustainable Energy Reviews, 2021, 149, 111418.	8.2	32

#	Article	IF	CITATIONS
1619	Preparation and capacitive storage properties of multidimensional (1-D and 2-D) nanocarbon-hybridized N-containing porous carbon for carbon/carbon supercapacitor: Nanocarbon-aided capacitance boosting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127225.	2.3	0
1620	Molten salt synthesis of porous carbon and its application in supercapacitors: A review. Journal of Energy Chemistry, 2021, 61, 622-640.	7.1	94
1621	Three-dimensional nanobranched TiO2-carbon nanotube for high performance supercapacitors. Applied Surface Science, 2021, 563, 150301.	3.1	22
1622	MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochimica Acta, 2021, 394, 139058.	2.6	67
1623	Dualâ€Ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie - International Edition, 2021, 60, 27119-27125.	7.2	17
1624	An emerging machine learning strategy for the assistedâ€design of high-performance supercapacitor materials by mining the relationship between capacitance and structural features of porous carbon. Journal of Electroanalytical Chemistry, 2021, 899, 115684.	1.9	22
1625	Dualâ€Ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie, 2021, 133, 27325-27331.	1.6	2
1626	Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere, 2021, 282, 131033.	4.2	36
1627	Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor. Composites Part B: Engineering, 2021, 225, 109256.	5.9	38
1628	Boosted energy storage via carbon surface passivation. Carbon, 2021, 185, 105-112.	5.4	5
1628 1629	Boosted energy storage via carbon surface passivation. Carbon, 2021, 185, 105-112. Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949.	5.4 3.3	5
	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor		
1629	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and	3.3	11
1629 1630	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and hollow carbon nano-rods cathode. Chemical Engineering Science, 2021, 245, 116968. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds.	3.3 1.9	11 6
1629 1630 1631	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and hollow carbon nano-rods cathode. Chemical Engineering Science, 2021, 245, 116968. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. Journal of Solid State Chemistry, 2021, 304, 122566. Smart dual-functional energy storage/fluorescent textile device based on a new redox-active	3.3 1.9 1.4	11 6 4
1629 1630 1631 1632	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and hollow carbon nano-rods cathode. Chemical Engineering Science, 2021, 245, 116968. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. Journal of Solid State Chemistry, 2021, 304, 122566. Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chemical Engineering Journal, 2021, 426, 131274. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance.	 3.3 1.9 1.4 6.6 	11 6 4 2
1629 1630 1631 1632 1633	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and hollow carbon nano-rods cathode. Chemical Engineering Science, 2021, 245, 116968. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. Journal of Solid State Chemistry, 2021, 304, 122566. Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chemical Engineering Journal, 2021, 426, 131274. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. Journal of Colloid and Interface Science, 2021, 604, 239-247. Algal-based polysaccharides as polymer electrolytes in modern electrochemical energy conversion	 3.3 1.9 1.4 6.6 5.0 	11 6 4 2 30

#	Article	IF	CITATIONS
1637	Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2022, 428, 132470.	6.6	74
1638	Ultralong-Life Supercapacitors Using Pyridine-Derived Porous Carbon Materials. Energy & Fuels, 2021, 35, 3407-3416.	2.5	26
1639	Minimization of ion transport resistance: diblock copolymer micelle derived nitrogen-doped hierarchically porous carbon spheres for superior rate and power Zn-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 8435-8443.	5.2	45
1640	Specific carbon/iodide interactions in electrochemical capacitors monitored by EQCM technique. Energy and Environmental Science, 2021, 14, 2381-2393.	15.6	25
1641	Progress of Biomaterials Applications in Supercapacitors. , 2021, , .		0
1642	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	3.2	4
1643	Enhancing the performance of carbon electrodes in supercapacitors through medium-temperature fluoroalkylation. Applied Nanoscience (Switzerland), 2022, 12, 361-376.	1.6	8
1644	NiO nanoflakes decorated needle-like MnCo2O4 hierarchical structure on nickle foam as an additive-free and high performance supercapacitor electrode. Journal of Materials Science, 2021, 56, 8613-8626.	1.7	21
1645	Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and carbon nanotubes: From preparation to applications. , 2021, , 65-98.		5
1646	Redox Activity of Bromides in Carbonâ€Based Electrochemical Capacitors. Batteries and Supercaps, 2020, 3, 1080-1090.	2.4	5
1647	Anodic Dissolution of Al Current Collectors in Unconventional Solvents for High Voltage Electrochemical Double‣ayer Capacitors. ChemSusChem, 2017, 10, 4178-4189.	3.6	26
1648	Design of highâ€performance flexible symmetric supercapacitors energized by redoxâ€mediated hydrogels including metalâ€doped acidic polyelectrolyte. International Journal of Energy Research, 2020, 44, 4309-4320.	2.2	12
1649	Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages. SpringerBriefs in Materials, 2020, , 11-36.	0.1	6
1650	MXenes for Supercapacitor Application. , 2019, , 349-365.		3
1651	Components of Supercapacitor. SpringerBriefs in Materials, 2018, , 11-39.	0.1	11
1652	High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons. Diamond and Related Materials, 2020, 109, 108044.	1.8	25
1653	A one-step preparation and enhanced electrochemical properties of C-TiO2 composite films. Electrochimica Acta, 2017, 254, 320-327.	2.6	9
1654	Understanding the rate performance of microporous carbons in aqueous electrolytes. Electrochimica Acta, 2020, 350, 136408.	2.6	3

#	Article	IF	CITATIONS
1655	Nitrogen-doped mesoporous graphene nanoflakes for high performance ionic liquid supercapacitors. Electrochimica Acta, 2020, 353, 136463.	2.6	22
1656	Recent progress in aqueous based flexible energy storage devices. Energy Storage Materials, 2020, 30, 260-286.	9.5	87
1657	Assessing the potential of LiPON-based electrical double layer microsupercapacitors for on-chip power storage. Journal of Power Sources, 2020, 451, 227786.	4.0	13
1658	Layered carbon-based pseudocapacitive materials for lithium/sodium-ion capacitor with high energy-power densities and long cycle life. Progress in Natural Science: Materials International, 2020, 30, 20-27.	1.8	8
1659	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 44458-44465.	4.0	57
1660	A carbon nanopore model to quantify structure and kinetics of ion electrosorption with in situ small-angle X-ray scattering. Physical Chemistry Chemical Physics, 2017, 19, 15549-15561.	1.3	39
1661	A chemically bonded NaTi ₂ (PO ₄) ₃ /rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 17506-17516.	5.2	80
1662	Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications. Sustainable Energy and Fuels, 2020, 4, 1554-1576.	2.5	21
1663	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	2.8	28
1664	Enhanced performance of supercapacitors by constructing a "mini parallel-plate capacitor―in an electrode with high dielectric constant materials. Journal of Materials Chemistry A, 2020, 8, 16661-16668.	5.2	14
1665	Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor. Physical Review Materials, 2017, 1, .	0.9	15
1666	Measurements of flicker noise in supercapacitor cells. , 2017, , .		6
1667	Editors' Choice—Review—Conductive Forms of MoS ₂ and Their Applications in Energy Storage and Conversion. Journal of the Electrochemical Society, 2020, 167, 126517.	1.3	46
1668	Electrolytes for Electrochemical Supercapacitors. , 0, , .		44
1669	Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors. PLoS ONE, 2016, 11, e0163146.	1.1	17
1670	Enhancement Supercapcitive Behaviour of Cobalt(II) Tetrasulfanilamide Phthalocyanine with Composite rGO on Modified GCE. Asian Journal of Chemistry, 2020, 32, 2722-2730.	0.1	3
1671	Structure-properties relationship for energy storage redox polymers: a review. Journal of Polymer Engineering, 2020, 40, 373-393.	0.6	1
1672	A REVIEW- SUPER CAPACITOR SYSTEMS AND ITS PERFORMANCE. International Journal of Research in Engineering and Technology, 2016, 05, 1-8.	0.1	1

#	Article	IF	CITATIONS
1673	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.3	5
1674	Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications. Journal of Electrochemical Science and Technology, 2017, 8, 314-322.	0.9	3
1675	Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Research, 2020, 2020, 8685436.	2.8	47
1676	Capacitance Properties and Durability of Various Single-Walled Carbon Nanotube Electrodes for Electric Double Layer Capacitor. Electrochemistry, 2020, 88, 369-373.	0.6	3
1677	Tetragonal CoMn ₂ O ₄ nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. Dalton Transactions, 2021, 50, 15669-15678.	1.6	7
1678	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
1679	Capacitive energy storage in single-file pores: Exactly solvable models and simulations. Journal of Chemical Physics, 2021, 155, 174112.	1.2	8
1680	Understanding the pore-structure dependence of supercapacitive performance for microporous carbon in aqueous KOH and H2SO4 electrolytes. Electrochimica Acta, 2022, 401, 139422.	2.6	12
1681	Review on Microstructural and Ionâ€conductivity Properties of Biodegradable Starchâ€Based Solid Polymer Electrolyte Membranes. Starch/Staerke, 2022, 74, .	1.1	4
1682	A review of tin disulfide (SnS ₂) composite electrode materials for supercapacitors. Energy Storage, 2022, 4, .	2.3	10
1683	Carbon–carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. Journal of Chemical Physics, 2021, 155, 184703.	1.2	17
1684	Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors. Journal Physics D: Applied Physics, 2022, 55, 045501.	1.3	9
1685	Morphology Controlled Synthesis of Heteroatom-Doped Spherical Porous Carbon Particles Retaining High Specific Capacitance at High Current Density. ACS Applied Energy Materials, 2021, 4, 10810-10825.	2.5	13
1686	Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H2SO4 Electrolyte. Nanomaterials, 2021, 11, 2838.	1.9	5
1687	Synthesis and characterization of Nickel sulfide and Nickel sulfide/Molybdenum disulfide nanocomposite modified ITO electrode as efficient anode for methanol electrooxidation. Applied Surface Science Advances, 2021, 6, 100187.	2.9	5
1688	Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte. Korean Journal of Materials Research, 2015, 25, 132-137.	0.1	0
1689	Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes. Korean Chemical Engineering Research, 2016, 54, 293-298.	0.2	0
1690	Hybrid Supercapacitor-Battery Energy Storage. , 2019, , 1-39.		0

# 1691	ARTICLE Highly Concentrated Aqueous Electrolyte With a Large Stable Potential Window for Electrochemical Double-Layer Capacitors. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	IF 1.1	CITATIONS
1692	Graphene-Based Materials for Flexible Supercapacitors. Engineering Materials, 2020, , 297-326.	0.3	2
1693	Nanostructure Engineering of Graphitic Carbon Nitride for Electrochemical Applications. ACS Nano, 2021, 15, 18777-18793.	7.3	61
1694	TiCl4 Dissolved in Ionic Liquid Mixtures from Đb Initio Molecular Dynamics Simulations. Molecules, 2021, 26, 79.	1.7	5
1695	High Voltage Carbonâ€Based Cathodes for Nonâ€Aqueous Aluminiumâ€Ion Batteries**. ChemElectroChem, 2021, 8, 492-499.	1.7	13
1696	High voltage electrochemical capacitors operating at elevated temperature based on 1,1-dimethylpyrrolidinium tetrafluoroborate. Energy Storage Materials, 2022, 44, 66-72.	9.5	27
1697	Hybrid organic polymer electrolytes for dye-sensitized solar cells. , 2022, , 181-212.		2
1698	Nanoporous carbon materials: from char to sophisticated 3-D graphene-like structures. , 2020, , 45-64.		3
1699	Hybrid Supercapacitor-Battery Energy Storage. , 2020, , 1259-1296.		2
1700	Recent Advancements of Supercapacitor Electrode Materials Derived From Agriculture Waste Biomass. , 2022, , 382-397.		5
1701	Ultrafast Nonvolatile Ionic Liquids-Based Supercapacitors with Al Foam-Enhanced Carbon Electrode. ACS Applied Materials & Interfaces, 2021, 13, 53904-53914.	4.0	4
1702	On charge distribution and storage in porous conductive carbon structure. Electrochimica Acta, 2021, , 139534.	2.6	5
1703	Nanostructured Carbon-Based Electrode Materials for Supercapacitor Applications. , 2021, , 317-355.		3
1704	Carbon Materials as Electrodes of Electrochemical Double-Layer Capacitors: Textural and Electrochemical Characterization. , 2021, , 149-185.		0
1705	The role of nanomaterials for supercapacitors and hybrid devices. Frontiers of Nanoscience, 2021, 19, 99-136.	0.3	5
1706	Advanced Semiconductor/Conductor Materials. , 2022, , 557-596.		3
1707	One-Step Hydrothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Hausmannite Manganese Oxide for Symmetric and Asymmetric Pseudocapacitors. ACS Omega, 2021, 6, 31421-31434.	1.6	6
1708	Electrochemical storage reactions of hydrogen in activated carbon from phenolic resin. Catalysis Today, 2022, 397-399, 155-164.	2.2	10

#	Article	IF	CITATIONS
1709	Electrochemical Sensitization of Activated Carbon by Microporous MOF for Supercapacitor Applications. ChemElectroChem, 2022, 9, e202101425.	1.7	0
1710	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	1.4	7
1711	Sustainable Preparation of Nanoporous Carbons via Dry Ball Milling: Electrochemical Studies Using Nanocarbon Composite Electrodes and a Deep Eutectic Solvent as Electrolyte. Nanomaterials, 2021, 11, 3258.	1.9	10
1712	Electrochemical Performance of Delafossite, AgFeO ₂ : A Pseudo-Capacitive Electrode in Neutral Aqueous Na ₂ SO ₄ Electrolyte. Journal of the Electrochemical Society, 2021, 168, 120512.	1.3	6
1713	A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies, 2021, 14, 7779.	1.6	94
1714	Zinc-salt assisted synthesis of three-dimensional oxygen and nitrogen co-doped hierarchical micro-meso porous carbon foam for supercapacitors. Scientific Reports, 2021, 11, 21798.	1.6	9
1715	Conducting polymer hydrogel based electrode materials for supercapacitor applications. Journal of Energy Storage, 2022, 45, 103510.	3.9	70
1716	Influence of sequential HTC pre-treatment and pyrolysis on wet food-industry wastes: Optimisation toward nitrogen-rich hierarchical carbonaceous materials intended for use in energy storage solutions. Science of the Total Environment, 2022, 816, 151648.	3.9	11
1717	Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. Journal of Colloid and Interface Science, 2022, 609, 434-446.	5.0	69
1718	Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors. Nanotechnology, 2022, 33, 085602.	1.3	1
1719	Exploiting low-grade waste heat to produce electricity through supercapacitor containing carbon electrodes and ionic liquid electrolytes. Electrochimica Acta, 2022, 403, 139640.	2.6	6
1720	The Modification of Co/Ni Metal-Organic-Framework Based Electrode Materials: Enhancing of Conductivity, Tuning of Integral Stability, and Potential Candidates for Use in Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	Ο
1721	Engineering encapsulated ionic liquids for next-generation applications. RSC Advances, 2021, 11, 36273-36288.	1.7	16
1722	Macromolecular Engineering of Polyquinone-Based Electrode Materials for High-Energy Supercapacitors. ACS Applied Energy Materials, 2022, 5, 1331-1340.	2.5	3
1723	An Effective Designing of Supercapacitor Mitigating Self-Discharge. Key Engineering Materials, 0, 905, 147-159.	0.4	0
1724	Optimal Design of a Small-Molecule Crowding Electrolyte and Molecular Dynamics Simulation of an Electrode–Electrolyte Interface for Aqueous Supercapacitors with a Wide Operating Temperature Range. ACS Applied Energy Materials, 2022, 5, 355-366.	2.5	6
1725	lon transport from water-in-salt electrolyte through porosity of hierarchical porous carbons unraveled by solid-state NMR. Electrochimica Acta, 2022, 404, 139716.	2.6	4
1726	A tailor-made deep eutectic solvent for 2.2ÂV wide temperature-tolerant supercapacitors via optimization of N,N-dimethylformamide/water co-solvents. Journal of Power Sources, 2022, 521, 230954.	4.0	12

#	Article	IF	Citations
1727	Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Applied Materials Today, 2022, 26, 101297.	2.3	23
1728	Combined capacitive and electrochemical charge storage mechanism in high-performance graphene-based lithium-ion batteries. Materials Today Energy, 2022, 24, 100928.	2.5	9
1729	Deep eutectic solvents as effective electrolyte from potassium iodide and ethylene glycol exhibiting redox behavior for supercapacitor application. Journal of Energy Storage, 2022, 48, 103955.	3.9	16
1730	Vanadomanganate as a synergistic component in high-performance symmetric supercapacitor. Journal of Alloys and Compounds, 2022, 899, 163239.	2.8	3
1731	Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. Journal of Energy Storage, 2022, 48, 103871.	3.9	99
1732	Eco-Friendly Construction of Mesoporous Sulfonated Carbon to Boost Rapid Conversion of Carbohydrates to 5-Ethoxymethylfurfural. SSRN Electronic Journal, 0, , .	0.4	0
1733	Cotton Fibers/PVA Based Neutral Hydrogel with Internal Cross-Linking as Electrolyte for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1734	Enhancing the Performance of a Metal-Free Self-Supported Carbon Felt-Based Supercapacitor with Facile Two-Step Electrochemical Activation. Nanomaterials, 2022, 12, 427.	1.9	6
1735	Snow crystal-like structure of NiSe as a binder-free electrode for high-performance hybrid supercapacitor. Journal of Materials Science, 2022, 57, 9955-9970.	1.7	16
1736	Ultraflexible all-in-one supercapacitors with high capacitance and ultrastable cycle performance enabled by wood cellulose network. Materials Advances, 2022, 3, 2026-2036.	2.6	7
1737	A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Applied Sciences (Switzerland), 2022, 12, 862.	1.3	24
1738	Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condensed Matter, 2022, 7, 6.	0.8	66
1739	Ultrahigh-power supercapacitors from commercial activated carbon enabled by compositing with carbon nanomaterials. Electrochimica Acta, 2022, 403, 139728.	2.6	11
1740	NiCo2O4 with unique 3D miniature sea urchins as binder-free electrode for high performance asymmetric supercapacitor. Journal of Electroanalytical Chemistry, 2022, 908, 116068.	1.9	11
1741	Cellulose-based composite carbon nanofibers. , 2022, , 159-174.		0
1743	The Mechanochemical Synthesis and Activation of Carbonâ€Rich <i>Ï€</i> onjugated Materials. Advanced Science, 2022, 9, e2105497.	5.6	28
1744	Energy Storage Technologies Based on Electrochemical Double Layer Capacitors: A Review. Theoretical and Experimental Chemistry, 2021, 57, 311-324.	0.2	5
1745	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	2.3	26

#	Article	IF	CITATIONS
1746	Gold nanoparticles for power retention in electrochemical capacitors with KSCN-based aqueous electrolyte. Journal of Power Sources Advances, 2022, 14, 100087.	2.6	0
1747	Propping the electrochemical impedance spectra at different voltages reveals the untapped supercapacitive performance of materials. Electrochimica Acta, 2022, 408, 139932.	2.6	18
1748	Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synthetic Metals, 2022, 285, 117017.	2.1	22
1749	Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon, 2022, 191, 19-27.	5.4	64
1750	Effect of structural variation in biomass-derived nonfluorinated ionic liquids electrolytes on the performance of supercapacitors. Journal of Energy Chemistry, 2022, 69, 174-184.	7.1	14
1751	In-situ growth of CNTs-porous carbon from asphalt with superior double-layer capacitive performance. Applied Surface Science, 2022, 583, 152549.	3.1	9
1752	Preparation of N/O-codoped quinoline pitch-based porous carbons for high-quality supercapacitor electrodes. New Journal of Chemistry, 2022, 46, 5266-5277.	1.4	5
1753	N/S co-doped interconnected 3D carbon frameworks for aqueous and high voltage flexible quasi-solid-state supercapacitors. Ionics, 2022, 28, 2377.	1.2	1
1754	Emerging smart design of electrodes for microâ€supercapacitors: A review. SmartMat, 2022, 3, 447-473.	6.4	16
1755	Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives. Journal of Alloys and Compounds, 2022, 905, 164163.	2.8	27
1756	Biowaste-derived electrode and electrolyte materials for flexible supercapacitors. Chemical Engineering Journal, 2022, 435, 135058.	6.6	25
1757	Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. Journal of Energy Storage, 2022, 49, 104120.	3.9	49
1759	A 'Reservoir-Pipe' Design of Heterogeneous Stacking Carbon Films for Optimized Supercapacitor Performance. SSRN Electronic Journal, 0, , .	0.4	0
1760	Self-Growing Graphite Felt/Vanadic Oxide/Polyindole Ternary Composite as Binder-Free Electrode for Supercapacitor with 1.8 V Operating Potential Window and Excellent Electrochemical Performance. SSRN Electronic Journal, 0, , .	0.4	0
1761	Ionic liquid surfactant-derived carbon micro/nanostructures toward application of supercapacitors. Inorganic Chemistry Frontiers, 2022, 9, 1609-1621.	3.0	5
1762	Gel Electrolytes and Aerogel Electrodes from Oil-in-Water Emulsions for Supercapacitor Applications. SSRN Electronic Journal, 0, , .	0.4	0
1763	Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy and Environmental Science, 2022, 15, 2233-2258.	15.6	76
1764	Photoelectrochemical properties for metal oxide–carbon hybrid materials. , 2022, , 75-102.		0

#	Article	IF	CITATIONS
1765	Flexible Supercapacitors Based on Free-Standing Polyaniline/Single-Walled Carbon Nanotube Films. SSRN Electronic Journal, 0, , .	0.4	0
1767	Sequential and simultaneous ion transfer into carbon nanopores during charge–discharge cycles in electrical double layer capacitors. Sustainable Energy and Fuels, 2022, 6, 2001-2009.	2.5	5
1768	Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H2O, and CO2. Nanomaterials, 2022, 12, 677.	1.9	5
1770	Electrochemical evaluation of porous CaFe2O4 anode material prepared via solution combustion synthesis at increasing fuel-to-oxidizer ratios and calcination temperatures. Scientific Reports, 2022, 12, 3082.	1.6	5
1771	Ionic liquids in conducting nanoslits: how important is the range of the screened electrostatic interactions?. Journal of Physics Condensed Matter, 2022, 34, 26LT01.	0.7	4
1772	Conductive Metal–Organic Frameworks for Supercapacitors. Advanced Materials, 2022, 34, e2200999.	11.1	101
1773	Coherent V4+-rich V2O5/carbon aerogel nanocomposites for high performance supercapacitors. Science China Materials, 2022, 65, 1797-1804.	3.5	8
1774	Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types. Materials, 2022, 15, 1867.	1.3	6
1775	Coating of Low-Cost Asphaltenes-Derived Carbon Fibers with V ₂ O ₅ for Supercapacitor Application. Energy & Fuels, 2022, 36, 3328-3338.	2.5	10
1776	Biomassâ€derived porous carbon and <scp>colourâ€tunable</scp> graphene quantum dots for highâ€performance supercapacitor and selective probe for metal ion detection. International Journal of Energy Research, 2022, 46, 10833-10843.	2.2	9
1777	MnO ₂ -MXene Composite as Electrode for Supercapacitor. Journal of the Electrochemical Society, 2022, 169, 030524.	1.3	17
1778	A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage, 2023, 5, .	2.3	63
1779	Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces, 2022, 14, 16800-16808.	4.0	9
1780	Engineering of Thermally Converted 3D-NiO Co3O4/Ni//3D-Ï'-Fe4N C@Ni/SS Porous Electrodes for High-performance Supercapatteries. Electrochimica Acta, 2022, 412, 140076.	2.6	4
1781	Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews, 2022, 122, 10860-10898.	23.0	81
1782	Fabrication of nickel cobalt bimetallic sulfide doped graphite carbon nanohybrids as electrode materials for supercapacitors. Diamond and Related Materials, 2022, 124, 108955.	1.8	15
1783	Monolithic Inâ€Plane Integration of Gateâ€Modulated Switchable Supercapacitors. Energy Technology, 2022, 10, .	1.8	3
1784	Hierarchical Carbon Composites for Highâ€Energy/Powerâ€Density and Highâ€Reliability Supercapacitors with Low Aging Rate. ChemSusChem, 2022, 15, .	3.6	2

#	Article	IF	CITATIONS
1785	Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materials. Electrochimica Acta, 2022, 415, 140239.	2.6	12
1786	Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coordination Chemistry Reviews, 2022, 460, 214467.	9.5	60
1787	Today's progress in the synthesis of porous carbons from biomass and their application for organic electrolyte and ionic liquid based supercapacitors. Journal of Energy Storage, 2022, 50, 104225.	3.9	28
1788	ZIF-67 derived in-situ grown N–Co3S4-GN/CNT interlinked conductive networks for high-performance especially cycling stable supercapacitors. Carbon, 2022, 194, 10-22.	5.4	32
1789	Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications. Journal of Energy Storage, 2022, 51, 104378.	3.9	25
1790	Hierarchical porous activated carbon derived from olives: Preparation, (N, S) co-doping, and its application in supercapacitors. Journal of Energy Storage, 2022, 51, 104348.	3.9	26
1791	Implementation of a choline bis(trifluoromethylsulfonyl)imide aqueous electrolyte for low temperature EDLCs enabled by a cosolvent. Journal of Energy Chemistry, 2022, 70, 84-94.	7.1	4
1792	Flexible Asymmetric Supercapacitors with Extremely Slow Selfâ€Discharge Rate Enabled by a Bilayer Heterostructure Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	11
1793	Schiffâ \in bases for sustainable battery and supercapacitor electrodes. Exploration, 2021, 1, .	5.4	21
1794	Insights into the Influence of Key Preparation Parameters on the Performance of MoS2/Graphene Oxide Composites as Active Materials in Supercapacitors. Catalysts, 2021, 11, 1553.	1.6	3
1795	Li ⁺ -assisted treatment of graphene oxide for ultrahigh volumetric performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 10427-10438.	5.2	5
1796	Nitrate and Copper Ions Adsorption Properties of Carbon Fibers with Amino Groups Prepared by Benkeser Reaction. Journal of Fiber Science and Technology, 2022, 78, 69-80.	0.2	1
1797	Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes. Advanced Materials, 2022, 34, e2202380.	11.1	33
1798	Industrially scalable exfoliated graphene nanoplatelets by high-pressure airless spray technique for high-performance supercapacitors. FlatChem, 2022, 33, 100373.	2.8	18
1799	Renewable waste biomass-derived carbon materials for energy storage. Journal Physics D: Applied Physics, 2022, 55, 313002.	1.3	14
1800	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
1801	Effects of Valence States of Working Cations on the Electrochemical Performance of Sodium Vanadate. ACS Applied Materials & amp; Interfaces, 2022, 14, 19714-19724.	4.0	2
1802	How chemical defects influence the charging of nanoporous carbon supercapacitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121945119.	3.3	3

#	Article	IF	CITATIONS
1803	Facile preparation of Ni(OH)2-B/S composite with an embroidered spherical nanosheet structure for high-performance supercapacitors. Journal of Energy Storage, 2022, 50, 104616.	3.9	9
1804	Electrodeposition of MnPO4·H2O thin film and their characterization as supercapacitor material by potentiodynamic method. Journal of Energy Storage, 2022, 50, 104677.	3.9	1
1805	Functional carbon dots from a mild oxidation of coal liquefaction residue. Fuel, 2022, 322, 124216.	3.4	16
1809	Designing supercapacitor electrolyte <i>via</i> ion counting. Energy and Environmental Science, 2022, 15, 2948-2957.	15.6	17
1810	Biochar-Derived Material Decorated by Mxene/Reduced Graphene Oxide Using One-Step Hydrothermal Treatment as High-Performance Supercapacitor Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
1811	Understanding the Capacitive Charge in Bulk Porous Electrodes by Mathematical Modeling. Physical Review Applied, 2022, 17, .	1.5	2
1812	Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. Nanomaterials, 2022, 12, 1511.	1.9	47
1813	Ionic Liquidâ€Based Redox Active Electrolytes for Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	40
1814	Coâ€doping Graphene with B and N Heteroatoms for Application in Energy Conversion and Storage Devices. ChemNanoMat, 2022, 8, .	1.5	8
1815	N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors. Diamond and Related Materials, 2022, 126, 109080.	1.8	11
1816	How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98, 107336.	8.2	21
1817	Preparation of nanowires on free-standing boron-doped diamond films for high performance micro-capacitors. Electrochimica Acta, 2022, 421, 140500.	2.6	3
1818	Effective conversion of Cassia fistula dry fruits biomass into porous activated carbon for supercapacitors. Materials Chemistry and Physics, 2022, 286, 126188.	2.0	20
1819	General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 2022, 913, 165216.	2.8	17
1820	Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Storage Materials, 2022, 50, 365-372.	9.5	6
1821	High-Voltage Redox Mediator of an Organic Electrolyte for Supercapacitors by Lewis Base Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 24497-24508.	4.0	9
1822	Synthesis of Cobalt Diselenide Nanoparticles for the Integrated All-Solid-State Supercapacitors. Energy & Fuels, 2022, 36, 5928-5936.	2.5	7
1825	Green and universal sulfur doping technique coupled with construction of conductive network for enhanced kinetics of Li-ion capacitors. Chemical Engineering Science, 2022, 258, 117749.	1.9	3

#	Article	IF	CITATIONS
1826	Bio-waste wood-derived porous activated carbon with tuned microporosity for high performance supercapacitors. Journal of Energy Storage, 2022, 52, 104928.	3.9	23
1827	Capacitance of Edge-Free Three-Dimensional Graphene: New Perspectives on the Design of Carbon Structures for Supercapacitor Applications. SSRN Electronic Journal, 0, , .	0.4	0
1828	A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chemical Communications, 2022, 58, 7070-7073.	2.2	1
1829	Thiosalicylic Acid Modified Graphene Aerogel as Efficient Electrode Material for Ionic Liquid Electrolyte-Based Supercapacitors. Journal of Physical Chemistry C, 2022, 126, 9304-9312.	1.5	5
1830	Facile Synthesis of Nitrogen/Sulfur Co-doped Three-Dimensional Holey Graphene Hydrogels for High Supercapacitive Performance. Energy & Fuels, 2022, 36, 6468-6475.	2.5	5
1831	Monolithic carbon electrodes: Synthesis, pore control and electrochemistry. , 2022, 1, 34-49.		0
1832	Recent developments in transition metal-based nanomaterials for supercapacitor applications. Journal of Materials Research, 2022, 37, 2124-2149.	1.2	10
1833	Hierarchical nanoarchitectonics of ordered mesoporous carbon from lignin for high-performance supercapacitors. International Journal of Biological Macromolecules, 2022, 213, 610-620.	3.6	19
1834	Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chemical Engineering Journal, 2022, 446, 137328.	6.6	14
1835	A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability. Materials Today Communications, 2022, 31, 103717.	0.9	0
1836	Electrochemical and physical properties of pulverized graphite for use in electric double layer capacitors. , 2022, 1, 50-58.		0
1837	Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes. Electrochimica Acta, 2022, 424, 140626.	2.6	19
1838	High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochimica Acta, 2022, 424, 140649.	2.6	1
1839	Determination of reliable resistance values for electrical double-layer capacitors. Journal of Power Sources Advances, 2022, 16, 100098.	2.6	10
1840	The hierarchical synthesis of tungsten disulfide coated vertically aligned boron carbon nitride nanotubes composite electrodes for supercapacitors. Journal of Energy Storage, 2022, 52, 104964.	3.9	11
1841	Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. Journal of Power Sources, 2022, 541, 231657.	4.0	8
1842	Self-growing graphite felt/vanadium pentoxide/polyindole ternary composite as binder-free electrode for supercapacitor with 1.8ÂV operating potential window and excellent electrochemical performance. Applied Surface Science, 2022, 598, 153780.	3.1	8
1843	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	1.1	5

		CITATION REPORT		
#	Article		IF	CITATIONS
1844	Microsupercapacitive Stone Module for Natural Energy Storage. ACS Nano, 2022, 16,	11708-11719.	7.3	4
1845	Polyionic liquid membrane: Recent development and perspective. Journal of Industrial a Chemistry, 2022, 113, 96-123.	and Engineering	2.9	19
1846	Graphene-Based Aqueous Magnesium Ion Hybrid Supercapacitors with an Appealing En Advanced by a KI Additive. Energy & Fuels, 2022, 36, 7186-7193.	hergy Density	2.5	7
1847	Insight into the Effects of Current Collectors and In Situ Ni Leaching in Highâ€Voltage Supercapacitors. Advanced Functional Materials, 2022, 32, .	Aqueous	7.8	19
1848	Scaleâ€Up of Solventâ€Free, Mechanochemical Precursor Synthesis for Nanoporous C Extrusion. ChemSusChem, 2022, 15, .	arbon Materials via	3.6	6
1849	A multifunctional potassium peroxodisulfate activation strategy to construction of N, s carbon nanosheets for high-performance Zn-ion hybrid supercapacitors. Biomass Conv Biorefinery, 2024, 14, 7031-7043.		2.9	0
1850	Carbazole-conjugated microporous polymers from Suzuki–Miyaura coupling for sup Polymer, 2022, 254, 125070.	ercapacitors.	1.8	14
1851	Recent development and prospective of carbonaceous material, conducting polymer a composite electrode materials for supercapacitor — A review. Journal of Energy Store 104937.	nd their ige, 2022, 52,	3.9	61
1852	The impact of laser-scribing carbon-based supercapacitor electrodes. Applied Surface S Advances, 2022, 10, 100262.	icience	2.9	5
1853	Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanot Journal of Power Sources, 2022, 541, 231691.	ube films.	4.0	21
1854	Nitrogen-doped holey graphene additive for high-performance electric double-layer sup Electrochimica Acta, 2022, 425, 140713.	ercapacitors.	2.6	2
1855	Porous carbon from conducting polymers for electrochemical applications. , 2022, , 14	-7-180.		0
1856	Diazonium Salts and Related Compounds in Electrochemical Energy Storage and Conv Chemistry in Action, 2022, , 427-451.	ersion. Physical	0.1	2
1857	Review—Understanding and Controlling Charge Functions in Materials for Electroche Mediated Water Treatment. Journal of the Electrochemical Society, 0, , .	emically	1.3	2
1858	A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, a double hydroxide composites for supercapacitor applications. Materials Today Commu 32, 104033.		0.9	44
1859	Enhancement of the performance of a proton battery. Journal of Power Sources, 2022,	, 543, 231808.	4.0	3
1860	Multi-cationic ionic liquid combination enabling 86-fold enhancement in frequency res superior energy density in all-solid-state supercapacitors. Journal of Energy Storage, 20		3.9	3
1861	Novel hydrochar as low-cost alternative adsorbent for the removal of noxious impuritie water. , 2022, , 149-160.	s from		0

#	Article	IF	CITATIONS
1862	Surplus Charge Injection Enables High-Voltage Stable 2d Polyaniline Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1863	The second life of coffee can be even more energizing: Circularity of materials for bio-based electrochemical energy storage devices. MRS Energy & Sustainability, 2022, 9, 443-460.	1.3	1
1864	Constructing Conjugated Microporous Polymers Containing the Pyrene-4,5,9,10-Tetraone Unit for Energy Storage. ACS Applied Energy Materials, 2022, 5, 10130-10140.	2.5	33
1865	The strong correlations between the performance of a <scp>KB</scp> supercapacitor and the properties of <scp> NaClO ₄ </scp> and <scp>LiFSI</scp> electrolytes over wide concentration ranges. International Journal of Energy Research, 2022, 46, 18676-18688.	2.2	2
1867	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
1868	Effect of partial oxidation and repolarization of TiC-derived nanoporous carbon electrodes on supercapacitor performance using a pH-neutral aqueous electrolyte. Journal of Solid State Electrochemistry, 2022, 26, 2365-2378.	1.2	4
1869	Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37782-37792.	4.0	8
1870	Silica-assisted strategy towards hierarchically porous carbon nanofibers for supercapacitor. Journal of Power Sources, 2022, 545, 231922.	4.0	6
1871	Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon, 2022, 199, 258-267.	5.4	69
1872	Capacitance of edge-free three-dimensional graphene: New perspectives on the design of carbon structures for supercapacitor applications. Electrochimica Acta, 2022, 429, 141009.	2.6	6
1873	Overcharging-Non-overcharging transition curve in cylindrical nano-pores. Journal of Molecular Liquids, 2022, 364, 119964.	2.3	0
1874	An aqueous, wide-voltage window and biodegradable all-solid-state supercapacitor with an ultrahigh energy density. Industrial Crops and Products, 2022, 187, 115516.	2.5	7
1875	Preparation of N-doped Polypyrrole-derived Porous Carbon and Its Electrochemical Properties. International Journal of Electrochemical Science, 0, , ArticleID:221028.	0.5	0
1876	Green algae as a sustainable source for energy generation and storage technologies. Sustainable Energy Technologies and Assessments, 2022, 53, 102658.	1.7	5
1877	Analysis of impedance: The distribution of capacitance in halide ion treated supercapacitors. Journal of Electroanalytical Chemistry, 2022, 922, 116754.	1.9	2
1878	A critical review on polyimide derived carbon materials for high-performance supercapacitor electrodes. Journal of Energy Storage, 2022, 55, 105667.	3.9	16
1879	Thermal analysis of electrical double layer capacitors: Present status and remaining challenges. Journal of Power Sources, 2022, 548, 232090.	4.0	10
1880	Disjoining pressure of room temperature ionic liquid in charged slit carbon nanopore: Molecular dynamics study. Journal of Molecular Liquids, 2022, 366, 120307.	2.3	6

#	Article	IF	CITATIONS
1881	Lignin-derived carbon membrane for the preparation of composite electrodes and applications in supercapacitors. Diamond and Related Materials, 2022, 129, 109344.	1.8	1
1882	Multi-scale electrochemical thermal model of Electric Double Layer Capacitor under galvanostatic cycling. Journal of Power Sources, 2022, 548, 231983.	4.0	5
1883	Synthesis of Cnt@Cos/Nico Layered Double Hydroxide with Hollow Nanocage to Enhance Supercapacitors Performance. SSRN Electronic Journal, 0, , .	0.4	2
1884	Nanoconfinement effects on water in narrow graphene-based slit pores as revealed by THz spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 24734-24747.	1.3	6
1885	Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. Materials Horizons, 2022, 9, 2914-2948.	6.4	33
1886	Increasing the molecular weight of conjugated polyelectrolytes improves the electrochemical stability of their pseudocapacitor gels. Journal of Materials Chemistry A, 2022, 10, 21642-21649.	5.2	6
1887	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science, 2022, 13, 11981-12015.	3.7	31
1888	A phonic Braille recognition system based on a self-powered sensor with self-healing ability, temperature resistance, and stretchability. Materials Horizons, 2022, 9, 2603-2612.	6.4	26
1889	New PEDOT Derivatives Electrocoated on Silicon Nanowires Protected with ALD Nanometric Alumina for Ultrastable Microsupercapacitors. Materials, 2022, 15, 5997.	1.3	0
1890	Carboxylated graphene oxide nanosheets as efficient electrodes for high-performance supercapacitors. Frontiers in Chemistry, 0, 10, .	1.8	0
1891	Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 0, , .	2.2	3
1892	Rechargeable Dualâ€Carbon Batteries: A Sustainable Battery Technology. Advanced Energy Materials, 2022, 12, .	10.2	19
1893	Electrochemical Capacitor Based on Reduced Graphene Oxide/NiS ₂ Composite. ChemElectroChem, 2022, 9, .	1.7	2
1894	Caesium Acetateâ€Based Electrolytes for Aqueous Electrical Double Layer Capacitors. ChemElectroChem, 2022, 9, .	1.7	2
1895	Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Industrial & Engineering Chemistry Research, 2022, 61, 14051-14065.	1.8	4
1896	Mechanistic Insights into the Intermolecular Interaction and Li ⁺ Solvation Structure in Small-Molecule Crowding Electrolytes for High-Voltage Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 12067-12077.	2.5	5
1897	Soft Template-Assisted Fabrication of Mesoporous Graphenes for High-Performance Energy Storage Systems. ACS Applied Materials & Interfaces, 2022, 14, 46994-47002.	4.0	12
1898	Efficient electrochemical performance of nitrogen-doped porous activated carbon for high energy symmetric pouch cell supercapacitors. Journal of Energy Storage, 2022, 55, 105698.	3.9	7

# 1899	ARTICLE Effects of dilution in ionic liquid supercapacitors. Physical Chemistry Chemical Physics, 2022, 24, 27362-27374.	IF 1.3	CITATIONS
1900	Molten salt electrolytes for electrochemical capacitors with energy densities exceeding 50 W h kg ^{â^1} . Energy and Environmental Science, 2022, 15, 5229-5239.	15.6	3
1901	The Mechanical Properties of Batteries and Supercapacitors. , 2022, , .		0
1902	Synthesis and Electrochemical Investigation of Hetero Bimetallic Complexes CoMn2O4 Micro Rods for Novel Supercapacitor Electrode. Electronic Materials Letters, 2023, 19, 108-118.	1.0	8
1903	Advances in Supercapacitor Development: Materials, Processes, and Applications. Journal of Electronic Materials, 2023, 52, 96-129.	1.0	26
1904	Recent Progress and Perspective: Na Ion Batteries Used at Low Temperatures. Nanomaterials, 2022, 12, 3529.	1.9	11
1905	Copper-carbon hybrid nanoparticles as antimicrobial additives. MRS Communications, 2022, 12, 1197-1203.	0.8	2
1906	Synthesis of CNT@CoS/NiCo Layered Double Hydroxides with Hollow Nanocages to Enhance Supercapacitors Performance. Nanomaterials, 2022, 12, 3509.	1.9	3
1907	Synthesis of composite graphitic scaffolds using polysaccharide precursors. Journal of Materials Research, 0, , .	1.2	0
1908	Recent Report on the Hydrothermal Growth of LiFePO4 as a Cathode Material. Coatings, 2022, 12, 1543.	1.2	10
1909	Facile Fabrication of Iron Cobalt Sulfide Nanoparticles within N-Doped Graphene for High-Performance Supercapacitors. ACS Applied Nano Materials, 2022, 5, 16553-16563.	2.4	5
1910	A thermostable ionic liquid electrolyte for wide-temperature window supercapacitor. Electrochimica Acta, 2022, 434, 141323.	2.6	3
1911	Facile and sustainable technique to produce low-cost high surface area mangosteen shell activated carbon for supercapacitors applications. Journal of Energy Storage, 2022, 56, 105876.	3.9	7
1912	Optimization of preparation of lignite-based activated carbon for high-performance supercapacitors with response surface methodology. Journal of Energy Storage, 2022, 56, 105913.	3.9	17
1913	Valorizing high-fraction bio-oil to prepare 3D interconnected porous carbon with efficient pore utilization for supercapacitor applications. Fuel Processing Technology, 2023, 239, 107538.	3.7	6
1914	Alkaline hydrogel electrolyte from biosourced chitosan to enhance the rate capability and energy density of carbon-based supercapacitors. Energy Advances, 2022, 1, 1051-1064.	1.4	10
1915	Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chitosan/lignin-reinforced wood for boosted microsupercapacitor. Carbon, 2023, 202, 296-304.	5.4	27
1916	Recent Advances in Capacitive Deionization: Research Progress and Application Prospects. Sustainability, 2022, 14, 14429.	1.6	4

#	Article	IF	CITATIONS
1917	Carbon Microspheres Composite PbO ₂ Anode to Enhance Electrode Activity for Degradation of Isopropylantipyrine: Kinetics and Mechanism. Journal of the Electrochemical Society, 2022, 169, 123502.	1.3	2
1918	Sustainable development of porous activated carbon from Sargassum wightii seaweed for electrode material in symmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 927, 116994.	1.9	5
1919	Transition of electrochemical measurement to machine learning in the perspective of two-dimensional materials. Frontiers in Materials, 0, 9, .	1.2	4
1920	Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. Materials, 2022, 15, 7888.	1.3	9
1921	γâ€Valerolactone as Sustainable and Lowâ€Toxic Solvent for Electrical Double Layer Capacitors. ChemSusChem, 2023, 16, .	3.6	6
1922	Perylene-Templated Hierarchically Porous Carbon Fibers as Efficient Supercapacitor Electrode Material. Bulletin of the Chemical Society of Japan, 2022, 95, 1687-1696.	2.0	4
1923	Zinc–Air Batteries with an Efficient and Stable MnCo ₂ O ₄ /Carbon Fiber Bifunctional Electrocatalyst and a Poly(acrylic Acid)-Based Gel Electrolyte. ACS Applied Energy Materials, 2022, 5, 14164-14174.	2.5	1
1924	A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. Journal of Energy Storage, 2022, 56, 106023.	3.9	34
1925	Pore-tailoring of pruned fruit tree branch derived activated carbon with hierarchical micropore structure for non-aqueous supercapacitors. Journal of Energy Storage, 2022, 56, 106098.	3.9	4
1926	Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries. Carbon, 2023, 203, 445-454.	5.4	2
1927	A novel hierarchical porous activated carbon-organic composite cathode material for high performance aqueous zinc-ion hybrid supercapacitors. Journal of Power Sources, 2023, 557, 232551.	4.0	6
1928	Double-network ionogel solid electrolytes for long-cycling supercapacitors. Chemical Physics Letters, 2023, 812, 140259.	1.2	2
1929	High energy density supercapattery empowered by efficient binder-free three-dimensional carbon coated NiCo2O4/Ni battery and Fe3S4@NiCo pseudocapacitive electrodes. Journal of Energy Storage, 2023, 58, 106220.	3.9	8
1930	Opening tubular structure polyimide/polyvinyl chloride based carbon nanofibers for supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 288, 116169.	1.7	6
1931	WS ₂ -Based Nanomaterials for Visible-Light Photocatalytic Degradation of Organic Pollutants. ACS Symposium Series, 0, , 185-205.	0.5	0
1932	Interactive Nanomaterials for Energy Storage and Conversion. ACS Symposium Series, 0, , 27-81.	0.5	0
1933	Efficient Design Paradigm for Harvesting Solar Energy: Dynamic Tunability of Heating/Cooling Mode Using Advanced Nanotechnology. ACS Symposium Series, 0, , 233-261.	0.5	2
1934	Effect of Alcohol Tail Length on Aggregate Behavior of Alcohol and AOT at the Water-scCO ₂ Interface: MD Simulation Study. ACS Symposium Series, 0, , 263-288.	0.5	Ο

#	Article	lF	CITATIONS
1936	Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. International Advanced Researches and Engineering Journal, 2022, 6, 167-175.	0.4	4
1938	Green Electrocatalytical Synthesis of Ammonia Using Solid Oxide Electrolysis Cells. ACS Symposium Series, 0, , 155-184.	0.5	0
1939	Atomic Layer Deposition Synthesis of Iron, Cobalt, and Nickel Chalcogenides for Electrocatalysis Applications. ACS Symposium Series, 0, , 117-135.	0.5	0
1940	Calix[n]arene-Based Coordination Cage and Its Application to Electrocatalysis. ACS Symposium Series, 0, , 137-154.	0.5	0
1943	Two-Dimensional Metal Phosphorus Trichalcogenide Nanostructure for Sustainable Energy Conversion. ACS Symposium Series, 0, , 1-25.	0.5	3
1945	Solar-Driven Photothermocatalytic Dry Reforming of Methane for Syngas Production. ACS Symposium Series, 0, , 207-232.	0.5	0
1946	Organic-Carbon Composites for Next Generation Capacitive Electrodes. ACS Symposium Series, 0, , 83-115.	0.5	0
1947	The role of oxygen heteroatoms in the surface (electro)chemistry of carbon materials. , 2022, 1, 162-174.		2
1948	Insights into coprecipitated cerium oxide/hydroxide–nickel hydroxide composite for high efficacy supercapacitors. Materials Today Sustainability, 2023, 21, 100291.	1.9	5
1949	Improving the Stability of Supercapacitors at High Voltages and High Temperatures by the Implementation of Ethyl Isopropyl Sulfone as Electrolyte Solvent. Advanced Energy Materials, 2023, 13,	10.2	15
1950	Amino acids assisted to improve the voltage window of deep eutectic electrolyte formed by ethylene glycol and tetra methyl ammonium chloride. Chemical Engineering Journal, 2023, 457, 141143.	6.6	10
1951	Optimising nanoporous supercapacitors for heat-to-electricity conversion. Journal of Molecular Liquids, 2023, 371, 121093.	2.3	4
1952	In situ topotactic preparation of porous plate-like Li2ZnTi3O8 as the lithium-ion batteries anode for enhancing electrochemical reaction kinetics and Li+ storage. Electrochimica Acta, 2023, 440, 141758.	2.6	8
1953	In ₂ O ₃ /MoS ₂ /Reduced Graphene Oxide Nanostructure as Composite Electrodes for Supercapacitors. Key Engineering Materials, 0, 936, 63-71.	0.4	Ο
1954	Critical evaluation of hybrid and organic electrolytes for supercapacitors with optimized porous carbon. Electrochimica Acta, 2023, 441, 141778.	2.6	3
1955	Biomass-derived inherently doped multifunctional hierarchically porous carbon as an efficient electrode material for high-performance supercapacitors. Journal of Porous Materials, 2023, 30, 1129-1141.	1.3	3
1956	Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage. Photochem, 2023, 3, 15-37.	1.3	0
1957	Exploration of Charge Storage Behavior of Binder-Free EDL Capacitors in Aqueous Electrolytes. ACS Omega, 2023, 8, 2629-2638.	1.6	1

#	Article	IF	CITATIONS
1958	Nanocomposite Electrode of Titanium Dioxide Nanoribbons and Multiwalled Carbon Nanotubes for Energy Storage. Materials, 2023, 16, 595.	1.3	4
1959	Natural Biomass-Derived Porous Carbon from Water Hyacinth Used as Composite Cathode for Lithium Sulfur Batteries. Sustainability, 2023, 15, 1039.	1.6	2
1960	Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability. Nanoscale Advances, 2023, 5, 1163-1171.	2.2	16
1961	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 4205-4219.	5.2	10
1962	Solid-liquid interfaces/interphases in electrochemical capacitors: theoretical considerations, practical relevance, and state-of-the-art in-situ/in-operando characterization tools. , 2024, , 428-443.		1
1963	Machine learning approach to understanding the †̃synergistic' pseudocapacitive effects of heteroatom doped graphene. 2D Materials, 2023, 10, 025003.	2.0	6
1964	Cotton Fiber/PVA-Based Neutral Hydrogel with Al ³⁺ as an Electrolyte Additive for High-Performance Supercapacitors. ACS Applied Energy Materials, 2023, 6, 644-656.	2.5	9
1965	Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors. Electrochimica Acta, 2023, 442, 141828.	2.6	17
1966	Redox enhanced membraneless electrochemical capacitor with CO2-derived hierarchical porous carbon electrodes. Electrochimica Acta, 2023, 442, 141871.	2.6	2
1967	Hydrothermal synthesis of polypyrrole/dye-functionalized carbon cloth electrode for wide potential window supercapacitor. Synthetic Metals, 2023, 293, 117275.	2.1	10
1968	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	7.8	66
1969	Graphene-enhanced double-network ionogel electrolytes for energy storage and strain sensing. Polymer Bulletin, 2023, 80, 12895-12905.	1.7	1
1970	Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chemical Communications, 2023, 59, 3175-3192.	2.2	9
1971	Applications of ionic liquids in fuel cells and supercapacitors. , 2023, , 353-364.		0
1972	Progressions in ionic liquid-based electrochemical research. , 2023, , 3-21.		0
1973	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
1974	Electrolyte materials for supercapacitors. , 2023, , 227-254.		3
1975	An environmentally friendly process to derive N/O/S-codoped porous carbon from biomass waste with high yield for high performance supercapacitor. Diamond and Related Materials, 2023, 134, 109798.	1.8	11

ARTICLE IF CITATIONS Experimental and Molecular Dynamic Modeling Studies of Electrospun Carbon Fiber Electrode 1976 2.6 1 Performance Enhancement by Potassium Ferricyanide Addition. Electrochimica Acta, 2023, 446, 142076. Collaborated nanosecond lasers processing of crude graphene oxide for superior supercapacitive 1977 performance. Journal of Energy Storage, 2023, 60, 106669. Tuning the pore size distribution of Ti3C2T porous film for high capacity supercapacitor electrode. 1978 1.9 3 Journal of Electroanalytical Chemistry, 2023, 936, 117358. Boosting ion diffusion at Ni2P@3D nanostructure carbon network interface for superior and 1979 durable sodium-ion hybrid capacitor. Electrochimica Acta, 2023, 453, 142363. Revealing mechanisms of activated carbon capacity fade in lithium-ion capacitors. Electrochimica 1980 2.6 3 Acta, 2023, 453, 142359. Why electrochemical capacitor electrolytes should not be ignored?. Electrochimica Acta, 2023, 452, 142347. 1981 2.6 Facile synthesis of dense porous carbon derived from Linum usitatissimum L. root for high mass 1982 3.9 8 loading supercapacitors. Journal of Energy Storage, 2023, 63, 107039. Development of a high-energy electrical double-layer capacitor demonstrator with 5000ÂF in an 1983 4.0 industrial cell format. Journal of Power Sources, 2023, 571, 233016. Electrochemical characterization of nanoporous SnO2 formed by anodization on cold spray tin 1984 1.9 3 coating for supercapacitor application. Journal of Electroanalytical Chemistry, 2023, 931, 117201. Unraveling the mechanisms of wider negative voltage window in single-layer graphene/DMSO-H2O hybrid electrolyte interface by the theoretical study of the sodium-ion solvation sheath interfacial model. Energy Storage Materials, 2023, 56, 542-550. Extrusion plant microtube synthesis of micron-sized nitrogen-doped hollow porous carbon nanosheets for high rate and high energy density supercapacitors. Diamond and Related Materials, 1986 2 1.8 2023, 133, 109715. Analysis of thermal and electrochemical properties of electrical double-layer capacitors by using an 2.6 in-situ simultaneous thermal analysis cell. Electrochimica Acta, 2023, 444, 141974. Unraveling energy storage behavior of independent ions in carbon electrode for supercapacitors by 1988 polymeric ionic liquids and electrochemical quartz crystal microbalance. Chemical Engineering 6.6 5 journal, 2023, 460, 141704. Covalent Organic Frameworks for Capacitive Energy Storage: Recent Progress and Technological Challenges. Advanced Materials Technologies, 2023, 8, . 1989 Multifunctional Template Prepares N-, O-, and S-Codoped Mesoporous 3D Hollow Nanocage Biochar with a Multilayer Wall Structure for Aqueous High-Performance Supercapacitors. ACS Applied Energy 1990 2.56 Materials, 2023, 6, 2265-2275. Electrode polymer binders for supercapacitor applications: A review. Journal of Materials Research 1991 and Technology, 2023, 23, 3470-3491. Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent 1992 conductivity and integral stability via extended hydrothermal treatment toward improved 1.9 4 performance of supercapacitors. Journal of Electroanalytical Chemistry, 2023, 932, 117265. 1993 A review on surface functionalization of carbon nanotubes: methods and applications., 2023, 18, .

#	Article	IF	CITATIONS
1994	A Review on Thermal Behaviors and Thermal Management Systems for Supercapacitors. Batteries, 2023, 9, 128.	2.1	10
1995	A tribenzocoronene-based 2D conductive metal–organic framework for efficient energy storage. Chemical Communications, 2023, 59, 2978-2981.	2.2	5
1996	Surplus charge injection enables high-cell-potential stable 2D polyaniline supercapacitors. Electrochimica Acta, 2023, 445, 142052.	2.6	5
1997	Weak base-modulated synthesis of bundle-like carbon superstructures from metal-organic framework for high-performance supercapacitors. Chemical Engineering Journal, 2023, 462, 142094.	6.6	19
1998	Improving microbial fuel cells power output using internal and external optimized, tailored and totally green supercapacitor. Journal of Power Sources, 2023, 564, 232780.	4.0	3
1999	Ethanol-mediated dense and N/O/P tri-doped graphene xerogel for ultrahigh volumetric capacitive energy storage. Journal of Power Sources, 2023, 564, 232869.	4.0	8
2000	A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 2023, 206, 383-391.	5.4	46
2001	Chemically Oxidized Carbon Paper as a Freeâ€Standing Electrode for Supercapacitor: An Insight into Surface and Diffusion Contribution. ChemistrySelect, 2023, 8, .	0.7	2
2002	Nickel–cobalt oxide nanosheets asymmetric supercapacitor for energy storage applications. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
2003	Insights into the Charge Storage Mechanism of Binder-Free Electrochemical Capacitors in Ionic Liquid Electrolytes. Industrial & Engineering Chemistry Research, 2023, 62, 4388-4398.	1.8	2
2004	Hierarchical Biobased Macroporous/Mesoporous Carbon: Fabrication, Characterization and Electrochemical/Ion Exchange Properties. Materials, 2023, 16, 2101.	1.3	0
2005	Unlocking the full energy densities of carbon-based supercapacitors. Materials Research Letters, 2023, 11, 517-546.	4.1	9
2006	Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages. Journal of the American Chemical Society, 2023, 145, 6247-6256.	6.6	14
2007	Enhanced activated carbon lithium-ion capacitor electrochemical stability through electrolyte dielectric optimisation. Sustainable Energy and Fuels, 2023, 7, 1846-1854.	2.5	3
2008	Advancement in the Micro-supercapacitors: Synthesis, Design, and Applications. Springer Series in Materials Science, 2023, , 295-330.	0.4	0
2009	Partial Oxidation to Extend the Lifetime of Nanoporous Carbon in an Ultracapacitor with Li2SO4 Electrolyte. Molecules, 2023, 28, 2944.	1.7	2
2010	Carbon-based nanomaterials for supercapacitor applications. , 2023, , 325-342.		0
2011	Microgel-enhanced thermal-sensitive hydrogel electrolyte enables active heat management, controllable energy storage and mechanical flexibility of supercapacitors. Chemical Engineering Journal, 2023, 465, 142923.	6.6	4

#	Article	IF	Citations
2012	Electrochemical performance of supercapacitor electrodes based on carbon aerogel-reinforced spread tow carbon fiber fabrics. Composites Science and Technology, 2023, 238, 110042.	3.8	10
2013	Progress in photocapacitors: A review. Functional Materials Letters, 2023, 16, .	0.7	1
2014	High electrochemical performance of MnCo2O4.5 nanoneedles/NiCo LDH nanosheets as advanced electrodes of supercapacitor. Electrochimica Acta, 2023, 455, 142412.	2.6	15
2015	Electrolyte-philicity of electrode materials. Chemical Communications, 2023, 59, 6969-6986.	2.2	19
2020	New development in carbon-based electrodes and electrolytes for enhancement of supercapacitor performance and safety. , 2023, , 353-408.		1
2041	Recent technological advances in designing electrodes and electrolytes for efficient zinc ion hybrid supercapacitors. Energy Advances, 2023, 2, 1263-1293.	1.4	5
2043	The new focus of energy storage: flexible wearable supercapacitors. Carbon Letters, 2023, 33, 1461-1483.	3.3	2
2054	é«~æ•^âඎ [*] 碳基å,¬åŒ–å‰,çš"ç"ç©¶èį›å±•åŠå¶åœ¨é"Œç©ºæ°"电æ±ä,应用. Science China Materials, 202	3,3666, 338	3123400.
2060	Functionalized Carbon and Its Derivatives Dedicated to Supercapacitors in Industrial Applications. Materials Horizons, 2024, , 569-598.	0.3	0
2084	Physicochemical basics and paradigms of nanomaterials. , 2024, , 93-143.		0
2110	A review on electrolytes for supercapacitor device. Discover Materials, 2023, 3, .	1.0	2
2114	Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chemical Science, 2024, 15, 1953-1965.	3.7	0
2125	Synthesis and Electrochemical Characterization of Activated Porous Carbon Derived from Walnut Shells as an Electrode Material for Symmetric Supercapacitor Application. , 0, , .		0
2139	Unifying electrolyte formulation and electrode nanoconfinement design to enable new ion–solvent cointercalation chemistries. Energy and Environmental Science, 2024, 17, 2100-2116.	15.6	0
2149	Capacitive Deionization: A Promising Water Treatment and Desalination Technology. Advances in Science, Technology and Innovation, 2024, , 25-40.	0.2	0