A ring system detected around the Centaur (10199) Char

Nature 508, 72-75 DOI: 10.1038/nature13155

Citation Report

#	Article	IF	CITATIONS
2	Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6871-6875.	3.3	53
3	Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo. Astronomy and Astrophysics, 2014, 568, A79.	2.1	36
4	The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity. Astronomy and Astrophysics, 2014, 568, L11.	2.1	22
5	Ring in the new. Nature, 2014, 508, 48-49.	13.7	0
6	Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2244-2255.	1.6	152
7	Stellar occultation by (119951) 2002 KX ₁₄ on April 26, 2012. Astronomy and Astrophysics, 2014, 571, A48.	2.1	18
8	DIVISION F COMMISSION 15: PHYSICAL STUDY OF COMETS AND MINOR PLANETS. Proceedings of the International Astronomical Union, 2015, 11, 316-339.	0.0	1
9	Results of two multichord stellar occultations by dwarf planet (1) Ceres. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2295-2302.	1.6	10
10	Collisions of small ice particles under microgravity conditions. Astronomy and Astrophysics, 2015, 575, A6.	2.1	4
11	Shepherds of Saturn's ring. Nature Geoscience, 2015, 8, 666-667.	5.4	1
12	A SEARCH FOR RINGED EXOPLANETS USING <i>KEPLER</i> PHOTOMETRY. Astrophysical Journal, 2015, 814, 81.	1.6	45
14	Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations. Astronomy and Astrophysics, 2015, 584, A96.	2.1	39
15	Search for signatures of dust in the Pluto–Charon system using <i>Herschel</i> /PACS observations. Astronomy and Astrophysics, 2015, 579, L9.	2.1	5
16	Developing partnerships. Nature, 2015, 527, S60-S63.	13.7	5
17	The two-colour EMCCD instrument for the Danish 1.54 m telescope and SONG. Astronomy and Astrophysics, 2015, 574, A54.	2.1	40
18	Possible ring material around centaur (2060) Chiron. Astronomy and Astrophysics, 2015, 576, A18.	2.1	92
19	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118
20	Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations. Astronomy and Astrophysics, 2015, 580, A76.	2.1	20

#	Article	IF	CITATIONS
21	Astrometry of the main satellites of Uranus: 18 years of observations. Astronomy and Astrophysics, 2015, 582, A8.	2.1	10
22	WHY ARE DENSE PLANETARY RINGS ONLY FOUND BETWEEN 8 AND 20 AU?. Astrophysical Journal Letters, 2015, 801, L33.	3.0	34
23	MODELING GIANT EXTRASOLAR RING SYSTEMS IN ECLIPSE AND THE CASE OF J1407B: SCULPTING BY EXOMOONS?. Astrophysical Journal, 2015, 800, 126.	1.6	89
24	29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 2015, 252, 271-276.	1.1	59
25	Size distribution of particles in Saturn's rings from aggregation and fragmentation. Proceedings of the United States of America, 2015, 112, 9536-9541.	3.3	108
26	FORMATION AND EVOLUTION OF PLUTO'S SMALL SATELLITES. Astronomical Journal, 2015, 150, 11.	1.9	40
27	On the Evolution of Comets. Space Science Reviews, 2015, 197, 271-296.	3.7	23
28	Verifying Timestamps of Occultation Observation Systems. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	8
29	Planetary rings: a post-equinox view. Contemporary Physics, 2015, 56, 484-486.	0.8	0
30	Limits on Pluto's ring system from the June 12 2006 stellar occultation and implications for the New Horizons impact hazard. Icarus, 2015, 246, 345-351.	1.1	7
31	Celestial Shadows. Astrophysics and Space Science Library, 2015, , .	1.0	3
32	Absolute magnitudes and phase coefficients of trans-Neptunian objects. Astronomy and Astrophysics, 2016, 586, A155.	2.1	19
33	Effects of disc asymmetries on astrometric measurements. Astronomy and Astrophysics, 2016, 592, A39.	2.1	9
34	Cometary Science with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018009.	1.0	19
35	RESULTS FROM THE 2014 NOVEMBER 15TH MULTI-CHORD STELLAR OCCULTATION BY THE TNO (229762) 2007 UK ₁₂₆ . Astronomical Journal, 2016, 152, 156.	1.9	30
36	Close stellar conjunctions of <i>α</i> Centauri A and B until 2050. Astronomy and Astrophysics, 2016, 594, A107.	2.1	42
37	Physical Characterization of TNOs with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018010.	1.0	11
38	FORMATION OF CENTAURS' RINGS THROUGH THEIR PARTIAL TIDAL DISRUPTION DURING PLANETARY ENCOUNTERS. Astrophysical Journal Letters, 2016, 828, L8.	3.0	50

#	Article	IF	CITATIONS
39	Observing Planetary Rings and Small Satellites with the <i>James Webb Space Telescope</i> : Science Justification and Observation Requirements. Publications of the Astronomical Society of the Pacific, 2016, 128, 018008.	1.0	24
40	Implementation and Operation of a Robotic Telescope on Skynet. Publications of the Astronomical Society of the Pacific, 2016, 128, 055002.	1.0	11
41	Dynamics of Centaur Chariklo and evolution of its rings. Astrophysics and Space Science, 2016, 361, 1.	0.5	3
42	Science with OCTOCAM: a new workhorse instrument proposed for Gemini. , 2016, , .		0
43	Physical properties of centaur (54598) Bienor from photometry. Monthly Notices of the Royal Astronomical Society, 0, , stw3264.	1.6	7
44	ON THE MASS AND ORIGIN OF CHARIKLO'S RINGS. Astrophysical Journal, 2016, 821, 18.	1.6	53
45	Photometry of Centaurs and trans-Neptunian objects: 2060 Chiron (1977 UB), 10199 Chariklo (1997) Tj ETQqO Space Science, 2016, 361, 1.	0 0 rgBT /0 0.5	Dverlock 107 16
46	THE RINGS OF CHARIKLO UNDER CLOSE ENCOUNTERS WITH THE GIANT PLANETS. Astrophysical Journal, 2016, 824, 80.	1.6	44
48	<i>James Webb Space Telescope</i> Observations of Stellar Occultations by Solar System Bodies and Rings. Publications of the Astronomical Society of the Pacific, 2016, 128, 018011.	1.0	13
49	THE \ddot{A} SEARCH FOR EXTRATERRESTRIAL CIVILIZATIONS WITH LARGE ENERGY SUPPLIES. IV. THE SIGNATURES AND INFORMATION CONTENT OF TRANSITING MEGASTRUCTURES. Astrophysical Journal, 2016, 816, 17.	1.6	94
50	Equilibrium points in the restricted synchronous three-body problem using a mass dipole model. Astrophysics and Space Science, 2017, 362, 1.	0.5	10
51	Simulating the Smallest Ring World of Chariklo. Astrophysical Journal Letters, 2017, 837, L13.	3.0	14
52	Study of the Plutino Object (208996) 2003 AZ ₈₄ from Stellar Occultations: Size, Shape, and Topographic Features. Astronomical Journal, 2017, 154, 22.	1.9	31
53	Assessment of different formation scenarios for the ring system of (10199) Chariklo. Astronomy and Astrophysics, 2017, 602, A27.	2.1	15
54	Detecting and Characterizing Exomoons and Exorings. , 2017, , 1-17.		1
55	Ring detected around a dwarf planet. Nature, 2017, 550, 197-198.	13.7	0
56	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	13.7	179
57	The Structure of Chariklo's Rings from Stellar Occultations. Astronomical Journal, 2017, 154, 144.	1.9	52

ARTICLE IF CITATIONS # Results from a triple chord stellar occultation and far-infrared photometry of the trans-Neptunian 58 2.1 16 object (229762) 2007 UK₁₂₆. Astronomy and Astrophysics, 2017, 600, A12. The Dynamical History of Chariklo and Its Rings. Astronomical Journal, 2017, 153, 245. Size and Shape of Chariklo from Multi-epoch Stellar Occultations^{*}. Astronomical 61 1.9 34 Journal, 2017, 154, 159. Exploring the Solar System using stellar occultations. Proceedings of the International Astronomical Union, 2017, 12, 377-381. Trajectory Optimization for Missions to Small Bodies with a Focus on Scientific Merit. Computing in 63 1.2 4 Science and Engineering, 2017, 19, 18-28. Characterizing exo-ring systems around fast-rotating stars using the Rossiter–McLaughlin effect. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2713-2721. 1.6 The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA 65 2.1 34 observations. Astronomy and Astrophysics, 2017, 608, A45. Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2672-2683. 1.6 29 66 67 Space Age Studies of Planetary Rings., 0, , 3-29. 1 Rings Beyond the Giant Planets., 0, , 135-154. Narrow Rings, Gaps, and Sharp Edges., 0, , 276-307. 69 4 The Origin of Planetary Ring Systems., 0,, 517-538. Future Missions to Planetary Rings., 0, , 541-548. 71 0 The journey of Typhon-Echidna as a binary system through the planetary region. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5323-5331. 1.6 Strategies to Find Orbits around the Triple Asteroid 2001₂₆₃., 2018, , . 73 0 The ABCs of Viewing Ringed Planets. Mathematical Intelligencer, 2018, 40, 4-13. 74 The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia 75 0.9 9 astrometry and the deep sky surveys. Planetary and Space Science, 2018, 154, 59-62. Rings of non-spherical, axisymmetric bodies. Icarus, 2018, 299, 97-116. 1.1

	A	15	0
#	ARTICLE Small Bodies Near and Far (SBNAF): A benchmark study on physical and thermal properties of small	IF	CITATIONS
77	bodies in the Solar System. Advances in Space Research, 2018, 62, 2326-2341.	1.2	13
78	The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system. Icarus, 2018, 301, 155-172.	1.1	11
79	The Dynamical History of 2060 Chiron and Its Proposed Ring System. Astronomical Journal, 2018, 155, 2.	1.9	28
80	Can Rocky Exoplanets with Rings Pose as Sub-Neptunes?. Astronomical Journal, 2018, 156, 80.	1.9	6
81	Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate. Astronomical Journal, 2018, 155, 206.	1.9	12
82	Colors of Centaurs observed by the Subaru/Hyper Suprime-Cam and implications for their origin. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	1
83	GravityCam: Wide-field high-resolution high-cadence imaging surveys in the visible from the ground. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	22
84	The Dynamical Complexity of Surface Mass Shedding from a Top-shaped Asteroid Near the Critical Spin Limit. Astronomical Journal, 2018, 156, 59.	1.9	29
85	Detecting and Characterizing Exomoons and Exorings. , 2018, , 835-851.		4
86	Rings in the Solar System: A Short Review. , 2018, , 375-394.		1
87	Probing the Hill Sphere of (486958) 2014 MU ₆₉ : HST FCS Observations during the 2017 July 17 Stellar Occultation. Astronomical Journal, 2018, 156, 72.	1.9	9
89	Radial velocities. , 0, , 17-80.		0
90	Astrometry. , 0, , 81-102.		0
91	Timing. , 0, , 103-118.		0
92	Microlensing. , 0, , 119-152.		0
94	Host stars. , 0, , 373-428.		0
95	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
96	Formation and evolution. , 0, , 449-558.		0

#	Article	IF	Citations
97	Interiors and atmospheres. , 0, , 559-648.		0
98	The solar system. , 0, , 649-700.		0
106	Measuring the Severity of Close Encounters Between Ringed Small Bodies and Planets. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2
107	Activity of (2060) Chiron possibly caused by impacts?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2512-2518.	1.6	4
108	Rings in the Solar System: A Short Review. , 2018, , 1-20.		2
109	Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU ₆₉ ("Ultima Thuleâ€). Geophysical Research Letters, 2018, 45, 8111-8120.	1.5	14
110	Camilla: A centaur reconnaissance and impact mission concept. Planetary and Space Science, 2018, 164, 184-193.	0.9	0
111	Expansion of the Potential of a Homogeneous Circular Torus in Terms of Geometrical Parameter. Technical Physics, 2018, 63, 311-314.	0.2	3
112	The New Horizons Kuiper Belt Extended Mission. Space Science Reviews, 2018, 214, 1.	3.7	35
113	Transits. , 0, , 153-328.		0
114	Dynamics of Haumea's dust ring. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4560-4565.	1.6	4
115	Rings under close encounters with the giant planets: Chariklo versus Chiron. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4770-4777.	1.6	4
116	On the origin of internal layers in comet nuclei. Icarus, 2018, 314, 364-375.	1.1	7
117	High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69. Astronomical Journal, 2018, 156, 20.	1.9	39
118	First stellar occultation by the Galilean moon Europa and upcoming events between 2019 and 2021. Astronomy and Astrophysics, 2019, 626, L4.	2.1	11
119	Analysis of synchronism and response velocity in instrumental assemblies for the observation of stellar occultations. Journal of Physics: Conference Series, 2019, 1247, 012041.	0.3	2
120	Fast and precise light-curve model for transiting exoplanets with rings. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1111-1119.	1.6	7
121	The Trans-Neptunian Object (84922) 2003 VS ₂ through Stellar Occultations. Astronomical Journal, 2019, 158, 159.	1.9	10

# 122	ARTICLE Minerva-Australis. I. Design, Commissioning, and First Photometric Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 115003.	IF 1.0	Citations 65
123	Haumea's thermal emission revisited in the light of the occultation results. Icarus, 2019, 334, 39-51.	1.1	9
124	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	3.7	8
125	Small Solar System Bodies as granular media. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	31
126	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	6.0	113
127	Three Dynamical Evolution Regimes for Coupled Ring-satellite Systems and Implications for the Formation of the Uranian Satellite Miranda. Astronomical Journal, 2019, 157, 30.	1.9	12
128	Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey. Astronomical Journal, 2019, 157, 120.	1.9	8
129	Skynet Algorithm for Single-dish Radio Mapping. I. Contaminant-cleaning, Mapping, and Photometering Small-scale Structures. Astrophysical Journal, Supplement Series, 2019, 240, 12.	3.0	4
130	Probing the Hill Sphere of (486958) 2014 MU ₆₉ . II. Hubble Space Telescope Fine Guidance Sensors Observations during the 2018 August 4 Stellar Occultation. Astronomical Journal, 2019, 158, 168.	1.9	1
131	Database on detected stellar occultations by small outer Solar System objects. Journal of Physics: Conference Series, 2019, 1365, 012024.	0.3	7
132	Mutual Energy of Gaussian Rings. Technical Physics, 2019, 64, 1395-1399.	0.2	3
133	Physical Characterization of the 2017 December Outburst of the Centaur 174P/Echeclus. Astronomical Journal, 2019, 158, 255.	1.9	14
134	Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea. Nature Astronomy, 2019, 3, 146-153.	4.2	26
135	A stellar occultation by Vanth, a satellite of (90482) Orcus. Icarus, 2019, 319, 657-668.	1.1	13
136	A radar package for asteroid subsurface investigations: Implications of implementing and integration into the MASCOT nanoscale landing platform from science requirements to baseline design. Acta Astronautica, 2019, 156, 317-329.	1.7	12
137	Apse-alignment in narrow-eccentric ringlets and its implications for the ϵ-ring of Uranus and the ring system of (10199) Chariklo. Icarus, 2020, 335, 113366.	1.1	2
138	Characterization of material around the centaur (2060) Chiron from a visible and near-infrared stellar occultation in 2011. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3643-3654.	1.6	15
139	Surface composition of Trans-Neptunian objects. , 2020, , 109-126.		8

#	Article	IF	CITATIONS
140	Volatile evolution and atmospheres of Trans-Neptunian objects. , 2020, , 127-151.		3
141	Trans-Neptunian objects and Centaurs at thermal wavelengths. , 2020, , 153-181.		19
142	The dynamics of rings around Centaurs and Trans-Neptunian objects. , 2020, , 249-269.		6
143	From Centaurs to comets: 40 Years. , 2020, , 307-329.		10
144	Stellar occultations by Trans-Neptunian objects: From predictions to observations and prospects for the future. , 2020, , 413-437.		14
145	A versatile smoothed particle hydrodynamics code for graphic cards. Astronomy and Computing, 2020, 33, 100410.	0.8	10
146	N-body Simulations of the Ring Formation Process around the Dwarf Planet Haumea. Astrophysical Journal, 2020, 897, 21.	1.6	4
147	The large trans-Neptunian object 2002 TC ₃₀₂ from combined stellar occultation, photometry, and astrometry data. Astronomy and Astrophysics, 2020, 639, A134.	2.1	13
148	Centaur and giant planet crossing populations: origin and distribution. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	17
149	Topography and geology of Uranian mid-sized icy satellites in comparison with Saturnian and Plutonian satellites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200102.	1.6	24
150	Secular Evolution of Rings around Rotating Triaxial Gravitating Bodies. Astronomy Reports, 2020, 64, 870-875.	0.2	1
151	Mid-range natural orbits around the triple asteroid 2001SN263. European Physical Journal: Special Topics, 2020, 229, 1557-1572.	1.2	2
152	Mutual Gravitational Energy of Gaussian Rings and the Problem of Perturbations in Celestial Mechanics. Astronomy Reports, 2020, 64, 434-446.	0.2	9
153	Resonances in Nonaxisymmetric Gravitational Potentials. Astronomical Journal, 2020, 159, 102.	1.9	6
154	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	76
155	Utilizing Small Telescopes Operated by Citizen Scientists for Transiting Exoplanet Follow-up. Publications of the Astronomical Society of the Pacific, 2020, 132, 054401.	1.0	31
156	The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period. Monthly Notices of the Royal Astronomical Society, 2020, 492, 770-781.	1.6	6
157	Illuminating the dark side of the asteroid population: Visible near-infrared (0.7–2.45Âμm) surface mineralogy modeling of D-type asteroids using Shkuratov theory. Icarus, 2021, 354, 114043.	1.1	5

#	Article	IF	CITATIONS
158	Observation of Stellar Occultations by Asteroid (259) Alethea and Comet 21P/Jacobiniâ^'Zinner. Kinematics and Physics of Celestial Bodies, 2021, 37, 41-51.	0.2	4
159	Contemporaneous Multiwavelength and Precovery Observations of the Active Centaur P/2019 LD2 (ATLAS). Planetary Science Journal, 2021, 2, 48.	1.5	10
160	Occultation of a Large Star by the Large Plutino (28978) Ixion on 2020 October 13 UTC. Astronomical Journal, 2021, 161, 210.	1.9	5
161	Zonal harmonics of azimuthally averaged potential of rotating inhomogeneous ellipsoids. Astrophysics and Space Science, 2021, 366, 1.	0.5	0
162	Uranus's Hidden Narrow Rings. Planetary Science Journal, 2021, 2, 107.	1.5	4
163	Year 1 of the Legacy Survey of Space and Time (LSST): Recommendations for Template Production to Enable Solar System Small Body Transient and Time Domain Science. Research Notes of the AAS, 2021, 5, 143.	0.3	2
164	Same family, different neighborhoods: Visible near-infrared (0.7–2.45Âμm) spectral distinctions of D-type asteroids at different heliocentric distances. Icarus, 2021, 363, 114295.	1.1	5
165	Quasi circular orbits around prolate bodies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3068-3078.	1.6	4
166	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	1.6	4
167	Refined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020. Astronomy and Astrophysics, 2021, 652, A141.	2.1	17
168	Lucy Mission to the Trojan Asteroids: Science Goals. Planetary Science Journal, 2021, 2, 171.	1.5	54
169	UMaMI: A New Frontiers-style Mission Concept to Explore the Uranian System. Planetary Science Journal, 2021, 2, 174.	1.5	11
170	A search for transiting companions in the J1407 (V1400 Cen) system. Astronomy and Astrophysics, 2021, 652, A117.	2.1	0
171	A new spacecraft mission concept combining the first exploration of the Centaurs and an astrophysical space telescope for the outer solar system. Planetary and Space Science, 2021, 205, 105290.	0.9	0
172	The observation of stars occultation by asteroid (259) Alethea and comet 21P/Jacobini- Zinner. Kinematika I Fizika Nebesnykh Tel, 2021, 37, 71-88.	0.1	1
175	A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda. Astronomy and Astrophysics, 2020, 643, A125.	2.1	17
176	Ring dynamics around an oblate body with an inclined satellite: the case of Haumea. Astronomy and Astrophysics, 2020, 643, A67.	2.1	4
177	Stellar occultations enable milliarcsecond astrometry for Trans-Neptunian objects and Centaurs. Astronomy and Astrophysics, 2020, 644, A40.	2.1	11

#	Article	IF	CITATIONS
178	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
179	Solar system science with the Wide-Field Infrared Survey Telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.0	5
180	Asteroid Systems: Binaries, Triples, and Pairs. , 2015, , .		30
181	Asteroids can have rings, too. Nature, 0, , .	13.7	1
182	When Stars Wink Out. Astrophysics and Space Science Library, 2015, , 507-557.	1.0	0
183	Itaipu Technology Park: A Territorial Development Tool. , 2016, , 197-213.		0
184	Shape Models and Physical Properties of Asteroids. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 55-71.	0.3	2
185	Some Dynamic Characteristics of Binary Near-Earth Asteroids. Nauka Ta Innovacii, 2017, 13, 34-37.	0.2	0
186	On the Evolution of Comets. , 2017, , 271-296.		0
187	Some Dynamic Characteristics of Binary Near-Earth Asteroids. Science and Innovation, 2017, 13, 30-33.	0.2	0
188	A prediction method for ground-based stellar occultations by ellipsoidal solar system bodies and its application. Research in Astronomy and Astrophysics, 2017, 17, 045.	0.7	1
189	Ringed Small Bodies. SpringerBriefs in Astronomy, 2019, , 93-111.	1.6	0
190	The 2017 May 20 stellar occultation by the elongated centaur (95626) 2002 GZ32. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6062-6075.	1.6	3
191	Are Centaurs Comet Nuclei?. Research Notes of the AAS, 2020, 4, 120.	0.3	0
192	A survey for occultation astrometry of main belt: expected astrometric performances. Astronomy and Astrophysics, 2020, 641, A81.	2.1	2
193	<i>Cronomoons</i> : origin, dynamics, and light-curve features of ringed exomoons. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1032-1044.	1.6	6
194	The five largest satellites of Uranus: Astrometric observations spread over 29 years at the Pico dos Dias Observatory. Planetary and Space Science, 2022, 210, 105376.	0.9	6
196	SORA: Stellar occultation reduction and analysis. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1167-1181.	1.6	17

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
197	Disruption of Saturn's ring particles by thermal stress. Icarus, 2022, 378, 114919.		1.1	1
198	Modeling Long-Term Photometric Data of Trans-Neptunian Objects and Centaurs. Front Astronomy and Space Sciences, 2022, 9, .	iers in	1.1	0
199	The fate of particles in the dynamical environment around Kuiper-Belt object (486958) / Astrophysics and Space Science, 2022, 367, 1.	Arrokoth.	0.5	2
200	Extended use of the Ariel Core Survey Data. Experimental Astronomy, 0, , 1.		1.6	0
201	Kuiper Belt. , 2022, , 1-14.			0
202	Dynamics around non-spherical symmetric bodies $\hat{a} \in I$. The case of a spherical body wit Monthly Notices of the Royal Astronomical Society, 2021, 510, 1450-1469.	h mass anomaly.	1.6	5
203	The multichord stellar occultation on 2019 October 22 by the trans-Neptunian object (8 VS ₂ . Astronomy and Astrophysics, 2022, 663, A121.	34922) 2003	2.1	4
204	The Diverse Shapes of Dwarf Planet and Large KBO Phase Curves Observed from New H Planetary Science Journal, 2022, 3, 95.	orizons.	1.5	10
205	A Framework for Characterizing Transmission Spectra of Exoplanets with Circumplaneta Astrophysical Journal, 2022, 930, 50.	ary Rings.	1.6	4
206	Dynamical Evolution of Ejecta from the DART Impact on Dimorphos. Planetary Science J 118.	ournal, 2022, 3,	1.5	17
207	Physical properties of the trans-Neptunian object (38628) Huya from a multi-chord stell occultation. Astronomy and Astrophysics, 2022, 664, A130.	ar	2.1	7
208	Occultation portal: A web-based platform for data collection and analysis of stellar occu Monthly Notices of the Royal Astronomical Society, 2022, 515, 1346-1357.	ltations.	1.6	5
209	A stellar occultation by the transneptunian object (50000) Quaoar observed by CHEOP and Astrophysics, 2022, 664, L15.	S. Astronomy	2.1	3
210	The multichord stellar occultation by the centaur Bienor on January 11, 2019. Astronom Astrophysics, 2023, 669, A112.	iy and	2.1	1
211	Star occultation by small bodies of the Solar system: current state of observations in Uk KosmìÄna Nauka ì Tehnologìâ, 2022, 28, 56-66.	raine.	0.1	1
212	ODNet: A Convolutional Neural Network for Asteroid Occultation Detection. Astronomi 2023, 165, 11.	cal Journal,	1.9	3
213	A dense ring of the trans-Neptunian object Quaoar outside its Roche limit. Nature, 2023	3, 614, 239-243.	13.7	20
214	A planetary ring in a surprising place. Nature, 2023, 614, 232-233.		13.7	0

		CITATION REPORT	
#	Article	IF	Citations
215	The two rings of (50000) Quaoar. Astronomy and Astrophysics, 2023, 673, L4.	2.1	11
217	Kuiper Belt. , 2023, , 1623-1636.		0