Symbiotic digestion of lignocellulose in termite guts

Nature Reviews Microbiology 12, 168-180

DOI: 10.1038/nrmicro3182

Citation Report

#	Article	IF	CITATIONS
1	Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Frontiers in Microbiology, 2014, 5, 607.	1.5	48
2	Identifying the core microbial community in the gut of fungusâ€growing termites. Molecular Ecology, 2014, 23, 4631-4644.	2.0	151
3	Metabolomic profiling of ¹³ C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140990.	1.2	58
4	In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Frontiers in Microbiology, 2014, 5, 576.	1.5	72
5	The fibreâ€associated cellulolytic bacterial community in the hindgut of woodâ€feeding higher termites (<scp><i>N</i></scp> <i>asutitermes</i> spp.). Environmental Microbiology, 2014, 16, 2711-2722.	1.8	57
6	The Molecular Basis of Bacterial–Insect Symbiosis. Journal of Molecular Biology, 2014, 426, 3830-3837.	2.0	112
7	Key roles for freshwater <scp>A</scp> ctinobacteria revealed by deep metagenomic sequencing. Molecular Ecology, 2014, 23, 6073-6090.	2.0	170
8	Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5096-104.	3.3	98
9	Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae). Journal of Insect Physiology, 2014, 67, 64-69.	0.9	26
10	Who digests the lignocellulose?. Environmental Microbiology, 2014, 16, 2644-2645.	1.8	2
11	Phylogeny and Ultrastructure of Oxymonas jouteli, a Rostellum-free Species, and Opisthomitus longiflagellatus sp. nov., Oxymonadid Flagellates from the Gut of Neotermes jouteli. Protist, 2014, 165, 384-399.	0.6	11
12	Insectâ€mediated nitrogen dynamics in decomposing wood. Ecological Entomology, 2015, 40, 97-112.	1.1	46
13	Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology, 2015, 40, 323-335.	1.1	142
14	Population Structure of Endomicrobia in Single Host Cells of Termite Gut Flagellates (<i>Trichonympha</i> spp.). Microbes and Environments, 2015, 30, 92-98.	0.7	29
15	Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome, 2015, 3, 56.	4.9	65
16	Complete Genome Sequence of Elizabethkingia sp. BM10, a Symbiotic Bacterium of the Wood-Feeding Termite Reticulitermes speratus KMT1. Genome Announcements, 2015, 3, .	0.8	6
17	EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE <i>Reticulitermes flavipes</i> . Archives of Insect Biochemistry and Physiology, 2015, 90, 89-103.	0.6	10
18	Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environmental Microbiology, 2015, 17, 4942-4953.	1.8	55

#	Article	IF	CITATIONS
19	Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 2015, 24, 5284-5295.	2.0	143
20	Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis. Genetics and Molecular Research, 2015, 14, 13954-13967.	0.3	4
21	Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut. PLoS ONE, 2015, 10, e0123391.	1.1	17
22	Origin and Alteration of Organic Matter in Termite Mounds from Different Feeding Guilds of the Amazon Rainforests. PLoS ONE, 2015, 10, e0123790.	1.1	7
23	Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites. PLoS ONE, 2015, 10, e0136573.	1.1	24
24	Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing. PLoS ONE, 2015, 10, e0140014.	1.1	23
25	Cellulase gene expression profiles in termites according to habitat and diet. Journal of Asia-Pacific Entomology, 2015, 18, 369-375.	0.4	2
26	Predominant expression and activity of vacuolar H+-ATPases in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis. Journal of Insect Physiology, 2015, 78, 1-8.	0.9	5
27	Towards an integrated understanding of the consequences of fungus domestication on the fungus $\hat{a} \in \hat{g}$ rowing termite gut microbiota. Environmental Microbiology, 2015, 17, 2562-2572.	1.8	34
28	Dietary and phylogenetic correlates of digestive trypsin activity in insect pests. Entomologia Experimentalis Et Applicata, 2015, 157, 123-151.	0.7	34
29	Draft Genome Sequence of Clostridium beijerinckii Ne1, Clostridia from an Enrichment Culture Obtained from Australian Subterranean Termite, Nasutitermes exitiosus. Genome Announcements, 2015, 3, .	0.8	2
30	Gut bacteria mediate aggregation in the German cockroach. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15678-15683.	3.3	167
31	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	2.8	478
32	Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electronic Journal of Biotechnology, 2015, 18, 103-109.	1.2	23
33	Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecology, 2015, 14, 133-137.	0.7	44
34	Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology, 2015, 55, 1021-1028.	1.8	15
35	Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 2015, 5, 15.	1.4	110
36	Complete Genome Sequence of the Opitutaceae Bacterium Strain TAV5, a Potential Facultative Methylotroph of the Wood-Feeding Termite Reticulitermes flavipes. Genome Announcements, 2015, 3, .	0.8	22

CITAT	Report
CHAL	REPORT

#	Article	IF	CITATIONS
37	Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Applied Microbiology and Biotechnology, 2015, 99, 5801-5815.	1.7	24
38	The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annual Review of Microbiology, 2015, 69, 145-166.	2.9	312
39	Isolation of methanotrophic bacteria from termite gut. Microbiological Research, 2015, 179, 29-37.	2.5	20
40	A genomic comparison of two termites with different social complexity. Frontiers in Genetics, 2015, 6, 9.	1.1	60
41	Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiology Ecology, 2015, 91, 1-14.	1.3	50
42	The Gut Microbiota of Workers of the Litter-Feeding Termite Syntermes wheeleri (Termitidae:) Tj ETQq1 1 0.7843	14 rgBT /(1.4	Overlock 10
43	Characterization of N2O emission and associated bacterial communities from the gut of wood-feeding termite Nasutitermes voeltzkowi. Folia Microbiologica, 2015, 60, 425-433.	1.1	8
44	A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome, 2015, 3, 5.	4.9	110
45	Omic research in termites: an overview and a roadmap. Frontiers in Genetics, 2015, 6, 76.	1.1	54
46	The multi-tasking gut epithelium of insects. Insect Biochemistry and Molecular Biology, 2015, 67, 15-20.	1.2	82
47	Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Science, 2015, 234, 180-193.	1.7	71
48	Bacteria-Mediated Effects of Antibiotics on <i>Daphnia</i> Nutrition. Environmental Science & Technology, 2015, 49, 5779-5787.	4.6	79
49	Acetogenesis from H ₂ plus CO ₂ and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10224-10230.	3.3	108
50	Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Systematic and Applied Microbiology, 2015, 38, 472-482.	1.2	87
51	Elimination of the Mound-Building Termite, <i>Nasutitermes exitiosus</i> (Isoptera: Termitidae) in South-Eastern Australia Using Bistrifluron Bait. Journal of Economic Entomology, 2015, 108, 2702-2710.	0.8	8
52	The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Applied and Environmental Microbiology, 2015, 81, 6577-6588.	1.4	18
53	Comparative Analysis of Microbial Diversity in Termite Gut and Termite Nest Using Ion Sequencing. Current Microbiology, 2016, 72, 267-75.	1.0	28
54	Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 681-685.	0.8	73

#	Article	IF	CITATIONS
55	[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1350-1369.	1.9	400
56	GC×GC-TOFMS for the Analysis of Metabolites Produced by Termites (Reticulitermes flavipes) Bred on Different Carbon Sources. Separations, 2016, 3, 19.	1.1	2
57	A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres. Frontiers in Microbiology, 2015, 6, 1469.	1.5	125
58	Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea. Frontiers in Microbiology, 2016, 7, 285.	1.5	41
59	Lower Termite Associations with Microbes: Synergy, Protection, and Interplay. Frontiers in Microbiology, 2016, 7, 422.	1.5	52
60	Bacteriome-Localized Intracellular Symbionts in Pollen-Feeding Beetles of the Genus Dasytes (Coleoptera, Dasytidae). Frontiers in Microbiology, 2016, 7, 1486.	1.5	26
61	Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Frontiers in Microbiology, 2016, 7, 1518.	1.5	26
62	Microbial Communities of Lycaenid Butterflies Do Not Correlate with Larval Diet. Frontiers in Microbiology, 2016, 7, 1920.	1.5	75
63	Potential for Nitrogen Fixation in the Fungus-Growing Termite Symbiosis. Frontiers in Microbiology, 2016, 7, 1993.	1.5	37
64	Gut Bacterial Community of the Xylophagous Cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana. PLoS ONE, 2016, 11, e0152400.	1.1	32
65	Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. Frontiers in Plant Science, 2016, 7, 675.	1.7	17
66	Age polyethism drives community structure of the bacterial gut microbiota in the fungusâ€cultivating termite <scp> <i>O</i> </scp> <i>dontotermes formosanus</i> . Environmental Microbiology, 2016, 18, 1440-1451.	1.8	33
67	Bacterial cell biology outside the streetlight. Environmental Microbiology, 2016, 18, 2305-2318.	1.8	12
68	Slowing them down will make them lose: a role for attine ant crop fungus in defending pupae against infections?. Journal of Animal Ecology, 2016, 85, 1210-1221.	1.3	7
69	â€~ <i>Candidatus</i> Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deepâ€branching clade of <i>Deltaproteobacteria</i> and a putative homoacetogen. Environmental Microbiology, 2016, 18, 2548-2564.	1.8	50
71	Microbial Metabolomics in Biomass Waste Management. , 2016, , 261-288.		0
72	Predicting microbial interactions through computational approaches. Methods, 2016, 102, 12-19.	1.9	49
73	<scp><i>E</i></scp> <i>ndomicrobium proavitum</i> , the first isolate of <scp><i>E</i></scp> <i>ndomicrobia</i> class. nov. (phylum <scp><i>E</i></scp> <i>lusimicrobia</i>) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a <scp>G</scp> roup <scp>IV</scp> nitrogenase. Environmental Microbiology. 2016. 18. 191-204.	1.8	125

	CITA	CITATION REPORT	
#	Article	IF	Citations
74	The Mechanistic Benefits of Microbial Symbionts. Advances in Environmental Microbiology, 2016, , .	0.1	2
75	Correlation between rearing temperature and the dual cellulolytic system of Coptotermes formosanus Shiraki and its intestinal microenvironment. Journal of Asia-Pacific Entomology, 2016, 19, 209-215.	0.4	2
76	Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2016, 160-161, 63-72.	1.9	13
77	Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 2016, 100, 1567-1577.	1.7	132
78	Towards a Unified Understanding of Evolution, Habitat and Niche. Advances in Environmental Microbiology, 2016, , 1-33.	0.1	4
79	Gut microbial communities of social bees. Nature Reviews Microbiology, 2016, 14, 374-384.	13.6	648
80	Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod Structure and Development, 2016, 45, 462-474.	0.8	13
81	Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150309.	1.8	116
82	Biological valorization of low molecular weight lignin. Biotechnology Advances, 2016, 34, 1318-1346.	6.0	304
83	Lessons from Digestive-Tract Symbioses Between Bacteria and Invertebrates. Annual Review of Microbiology, 2016, 70, 375-393.	2.9	28
84	Lignocellulosic bioma ss : Biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences, 2016, 16, 1-16.	2.0	171
85	Genome analysis of â€~ <i>Candidatus</i> Ancillula trichonymphae', first representative of a deepâ€branching clade of <i>Bifidobacteriales</i> , strengthens evidence for convergent evolution in flagellate endosymbionts. Environmental Microbiology Reports, 2016, 8, 865-873.	1.0	16
86	From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels, Bioproducts and Biorefining, 2016, 10, 864-882.	1.9	41
87	Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites. Journal of Insect Science, 2016, 16, 97.	0.6	49
88	Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13887-13	3892. ^{3.3}	112
89	Diversity and resilience of the woodâ€feeding higher termite <i>Mironasutitermes shangchengensis</i> gut microbiota in response to temporal and diet variations. Ecology and Evolution, 2016, 6, 8235-8242.	0.8	23
90	Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Molecular Ecology, 2016, 25, 6092-6106.	2.0	79
91	Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Scientific Reports, 2016, 6, 27277.	1.6	76

#	Article	IF	CITATIONS
92	Elemental concentrations in the frass of saproxylic insects suggest a role in micronutrient cycling. Ecosphere, 2016, 7, e01300.	1.0	12
93	The Role of Symbionts in the Evolution of Termites and Their Rise to Ecological Dominance in the Tropics. Advances in Environmental Microbiology, 2016, , 121-172.	0.1	14
94	Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecology, 2016, 71, 207-220.	1.4	48
95	Metabolic pathways in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis (Blattodea (Isoptera): Termitidae). Applied Entomology and Zoology, 2016, 51, 429-440.	0.6	6
96	The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility. Open Biology, 2016, 6, 160080.	1.5	8
97	The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (<i>Cornitermes</i> sp., <i>Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger,) Tj ETQq1 I Sequencing, and Analysis, 2016, 27, 3903-3904.</i>	0,784314 0.7	rgBT /Overl
98	Wood decomposition as influenced by invertebrates. Biological Reviews, 2016, 91, 70-85.	4.7	220
99	Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches. Applied and Environmental Microbiology, 2016, 82, 1256-1263.	1.4	59
100	Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model. Applied and Environmental Microbiology, 2016, 82, 1080-1089.	1.4	42
101	Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod <i>Armadillidium vulgare</i> . FEMS Microbiology Ecology, 2016, 92, fiw063.	1.3	41
102	Digestion of Termiticide Bait Matrices by the Pest TermiteReticulitermes flavipes(Isoptera:) Tj ETQq0 0 0 rgBT /Ov	verlock 10⊺ 0.8k 10⊺	Γf ₄ 50 342 Td
103	The holobiont concept: the case of xylophagous termites and cockroaches. Symbiosis, 2016, 68, 49-60.	1.2	25
104	Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment. Die Naturwissenschaften, 2016, 103, 14.	0.6	7
105	Long-Term Enrichment on Cellulose or Xylan Causes Functional and Taxonomic Convergence of Microbial Communities from Anaerobic Digesters. Applied and Environmental Microbiology, 2016, 82, 1519-1529.	1.4	28
106	Essential Amino Acid Supplementation by Gut Microbes of a Wood-Feeding Cerambycid. Environmental Entomology, 2016, 45, 66-73.	0.7	55
107	Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18, 1306-1312.	4.6	172
108	The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Annals of Microbiology, 2016, 66, 253-260.	1.1	20
109	Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Regional Environmental Change, 2017, 17, 1445-1454.	1.4	21

#	Article	IF	CITATIONS
110	Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (<i>Trinervitermes trinervoides</i>) and the characterization of a multimodular βâ€1,4â€xylanase (GH11). Biotechnology and Applied Biochemistry, 2017, 64, 174-186.	1.4	22
111	Morphophysiological study of digestive system litter-feeding termite Cornitermes cumulans (Kollar,) Tj ETQq1 1	0.784314 1.5	rg&T /Overlo
112	The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnology for Biofuels, 2017, 10, 4.	6.2	27
113	Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME Journal, 2017, 11, 1232-1244.	4.4	84
114	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiology Spectrum, 2017, 5, .	1.2	16
115	Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Archives of Microbiology, 2017, 199, 963-970.	1.0	21
116	Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4709-4714.	3.3	107
117	The complete mitochondrial genomes of the higher termitesLabiotermes labralisandEmbiratermes neotenicus(Termitidae: Syntermitinae). Mitochondrial DNA Part B: Resources, 2017, 2, 109-110.	0.2	5
118	Strong spatialâ€genetic congruence between a woodâ€feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. Journal of Biogeography, 2017, 44, 1500-1511.	1.4	17
119	The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. Journal of Plant Ecology, 2017, 10, 170-178.	1.2	19
120	Cost-effective screening and isolation of xylano-cellulolytic positive microbes from termite gut and termitarium. 3 Biotech, 2017, 7, 108.	1.1	11
121	Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology, 2017, 17, 635-646.	10.6	283
122	The Natural Biotic Environment of <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 55-86.	1.2	339
123	Defining the functional traits that drive bacterial decomposer community productivity. ISME Journal, 2017, 11, 1680-1687.	4.4	39
124	A meta-analysis testing eusocial co-option theories in termite gut physiology and symbiosis. Communicative and Integrative Biology, 2017, 10, e1295187.	0.6	9
125	Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends in Microbiology, 2017, 25, 375-390.	3.5	244
126	Detoxifying symbionts in agriculturally important pest insects. Microbial Biotechnology, 2017, 10, 531-540.	2.0	125
127	Lignocellulose deconstruction in the biosphere. Current Opinion in Chemical Biology, 2017, 41, 61-70.	2.8	110

#	Article	IF	CITATIONS
128	Symbiotic bacteria associated with puffer fish Gastrophysus spadiceus and evaluation of their antimicrobial activities. 3 Biotech, 2017, 7, 366.	1.1	1
129	Draft Genome Sequence of <i>Lactococcus</i> sp. Strain Rs-Y01, Isolated from the Gut of the Lower Termite <i>Reticulitermes speratus</i> . Genome Announcements, 2017, 5, .	0.8	1
130	Production of mealworms for human consumption in Finland: a preliminary life cycle assessment. Journal of Insects As Food and Feed, 2017, 3, 211-216.	2.1	15
131	Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63.	0.9	6
132	Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7592-E7601.	3.3	64
133	Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis. Journal of Insect Physiology, 2017, 102, 27-35.	0.9	10
134	Symbiogenesis: Beyond the endosymbiosis theory?. Journal of Theoretical Biology, 2017, 434, 99-103.	0.8	36
135	A genomic investigation of ecological differentiation between freeâ€living and <i>Drosophila</i> â€associated bacteria. Molecular Ecology, 2017, 26, 4536-4550.	2.0	52
136	Effects of heartwood extractives on symbiotic protozoan communities and mortality in two termite species. International Biodeterioration and Biodegradation, 2017, 123, 27-36.	1.9	30
137	Aseptic rearing procedure for the stinkbug Plautia stali (Hemiptera: Pentatomidae) by sterilizing food-derived bacterial contaminants. Applied Entomology and Zoology, 2017, 52, 407-415.	0.6	16
138	Symbiotic bacteria associated with gut symbiotic organs and female genital accessory organs of the leaf beetle Bromius obscurus (Coleoptera: Chrysomelidae). Applied Entomology and Zoology, 2017, 52, 589-598.	0.6	12
139	Big Role for a Tiny Genome. Cell, 2017, 171, 1472-1473.	13.5	0
140	Genome Analysis of Endomicrobium proavitum Suggests Loss and Gain of Relevant Functions during the Evolution of Intracellular Symbionts. Applied and Environmental Microbiology, 2017, 83, .	1.4	17
141	Molecular Cloning and Characterization of a Putative β-glucosidase from the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). Journal of Entomological Science, 2017, 52, 177-192.	0.2	3
142	Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	63
143	Cloning, Production and Characterization of a Glycoside Hydrolase Family 7 Enzyme from the Gut Microbiota of the Termite Coptotermes curvignathus. Molecular Biotechnology, 2017, 59, 271-283.	1.3	8
144	The effects of various lignocelluloses and lignins on physiological responses of a lower termite, Coptotermes formosanus. Journal of Wood Science, 2017, 63, 464-472.	0.9	14
145	Genome of â€~ <i>Ca.</i> Desulfovibrio trichonymphae', an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME Journal, 2017, 11, 766-776.	4.4	38

#	Article	IF	CITATIONS
146	Biocatalytic characterization of an endo-β-1,4-mannanase produced by Paenibacillus sp. strain HY-8. Biotechnology Letters, 2017, 39, 149-155.	1.1	8
147	Pectin-non-starch nanofibers biocomposites as novel gastrointestinal-resistant prebiotics. International Journal of Biological Macromolecules, 2017, 94, 131-144.	3.6	23
148	Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiology Ecology, 2017, 93, fiw210.	1.3	59
149	Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. Journal of Pest Science, 2017, 90, 19-37.	1.9	11
150	Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets. Applied Biochemistry and Biotechnology, 2017, 181, 32-47.	1.4	29
151	Pseudotrichonympha leei, Pseudotrichonympha lifesoni, and Pseudotrichonympha pearti, new species of parabasalian flagellates and the description of a rotating subcellular structure. Scientific Reports, 2017, 7, 16349.	1.6	5
152	The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. Biotechnology for Biofuels, 2017, 10, 230.	6.2	6
153	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
154	New Insights into the Microbiota of Moth Pests. International Journal of Molecular Sciences, 2017, 18, 2450.	1.8	60
155	A Geometric Analysis of the Regulation of Inorganic Nutrient Intake by the Subterranean Termite Reticulitermes flavipes Kollar. Insects, 2017, 8, 97.	1.0	7
156	Saccharification of Agricultural Lignocellulose Feedstocks and Protein-Level Responses by a Termite Gut-Microbe Bioreactor. Frontiers in Energy Research, 2017, 5, .	1.2	10
157	The Role of Microbes in the Nutrition of Detritivorous Invertebrates: A Stoichiometric Analysis. Frontiers in Microbiology, 2016, 7, 2113.	1.5	26
158	Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes. Frontiers in Microbiology, 2017, 8, 2181.	1.5	33
159	Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Frontiers in Microbiology, 2017, 8, 2623.	1.5	64
160	Taxonomic differences of gut microbiomes drive cellulolytic enzymatic potential within hind-gut fermenting mammals. PLoS ONE, 2017, 12, e0189404.	1.1	22
161	Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zoological Letters, 2017, 3, 13.	0.7	17
162	Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut. Microbes and Environments, 2017, 32, 112-117.	0.7	37
163	Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics, 2017, 18, 681.	1.2	29

		REPORT	
# 165	ARTICLE Cues Used by Subterranean Termites During Foraging and Food Assessment. , 2018, , 159-180.	IF	CITATIONS 2
166	Lignocellulose Degradation by Termites. , 2018, , 101-117.		5
167	Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiology Letters, 2018, 365, .	0.7	19
168	When Darwin's Special Difficulty Promotes Diversification in Insects. Systematic Biology, 2018, 67, 873-887.	2.7	18
169	Termites as Food in Africa. , 2018, , 217-240.		6
170	16S rRNA metagenomic analysis of the symbiotic community structures of bacteria in foregut, midgut, and hindgut of the wood-feeding termite Bulbitermes sp Symbiosis, 2018, 76, 187-197.	1.2	15
171	Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environmental Microbiology, 2018, 20, 2002-2011.	1.8	33
172	Bacterial community structure and diversity in the gut of the muga silkworm, <i>Antheraea assamensis</i> (Lepidoptera: Saturniidae), from India. Insect Molecular Biology, 2018, 27, 603-619.	1.0	29
173	Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides inÂinsects. Natural Product Reports, 2018, 35, 434-454.	5.2	161
174	NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Scientific Reports, 2018, 8, 1290.	1.6	39
175	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
176	The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16, 263-276.	13.6	2,269
177	Yeastâ€insect associations: It takes guts. Yeast, 2018, 35, 315-330.	0.8	174
178	Physicochemical characterization of pectinase activity from <i>Bacillus</i> spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass. Journal of Applied Microbiology, 2018, 124, 1147-1163.	1.4	21
179	Rampant Host Switching Shaped the Termite Gut Microbiome. Current Biology, 2018, 28, 649-654.e2.	1.8	101
180	Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?. Microbial Ecology, 2018, 76, 492-505.	1.4	12
181	Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
182	Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability, 2018, , .	0.6	16

#	Article	IF	CITATIONS
183	Insect Gut Bacteria and Their Potential Application in Degradation of Lignocellulosic Biomass: A Review. Energy, Environment, and Sustainability, 2018, , 277-299.	0.6	6
184	Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiology Ecology, 2018, 94, .	1.3	43
185	Trp residue at subsite â~' 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut. Applied Microbiology and Biotechnology, 2018, 102, 1737-1747.	1.7	7
186	Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnology for Biofuels, 2018, 11, 59.	6.2	42
187	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.	4.9	326
188	Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore. Microbiome, 2018, 6, 60.	4.9	50
189	Aerobic gut bacterial flora of Cydia pomonella (L.) (Lepidoptera: Tortricidae) and their virulence to the host. Egyptian Journal of Biological Pest Control, 2018, 28, .	0.8	2
190	Nutrient-Dependent Impact of Microbes on <i>Drosophila suzukii</i> Development. MBio, 2018, 9, .	1.8	109
191	Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid. Journal of Insect Physiology, 2018, 106, 13-19.	0.9	28
192	Seasonal Stability in the Microbiomes of Temperate Gorgonians and the Red Coral Corallium rubrum Across the Mediterranean Sea. Microbial Ecology, 2018, 75, 274-288.	1.4	69
193	Gut Microbiomics—A Solution to Unloose the Gordian Knot of Biological Effects of Ionizing Radiation. Journal of Heredity, 2018, 109, 212-221.	1.0	16
194	The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. Applied and Environmental Microbiology, 2018, 84, .	1.4	38
195	Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Antonie Van Leeuwenhoek, 2018, 111, 573-587.	0.7	15
196	Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 2018, 47, 1609-1617.	0.7	84
198	Termite Gut Flagellates and Their Methanogenic and Eubacterial Symbionts. Microbiology Monographs, 2018, , 55-80.	0.3	8
200	Termite mounds mitigate half of termite methane emissions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13306-13311.	3.3	51
201	(Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, 2018, , .	0.3	9
202	Gut microbiota dynamics and functionality in Reticulitermes grassei after a 7-day dietary shift and ciprofloxacin treatment. PLoS ONE, 2018, 13, e0209789.	1.1	11

#	Article	IF	CITATIONS
203	Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11996-E12004.	3.3	90
204	Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nature Communications, 2018, 9, 5125.	5.8	29
205	Extended mutualism between termites and gut microbes: nutritional symbionts contribute to nest hygiene. Die Naturwissenschaften, 2018, 105, 52.	0.6	11
206	Characterization of gut bacterial community associated with worker and soldier castes of Globitermes sulphureus Haviland (Blattodea: Termitidae) using 16S rRNA metagenomic. Journal of Asia-Pacific Entomology, 2018, 21, 1268-1274.	0.4	7
207	Screening of Phytophagous and Xylophagous Insects Guts Microbiota Abilities to Degrade Lignocellulose in Bioreactor. Frontiers in Microbiology, 2018, 9, 2222.	1.5	17
208	Host blood meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiology Ecology, 2019, 95, .	1.3	80
209	Tracking acetate through a journey of living world: Evolution as alternative cellular fuel with potential for application in cancer therapeutics. Life Sciences, 2018, 215, 86-95.	2.0	10
210	Phylogenetic Diversity and Single-Cell Genome Analysis of " <i>Melainabacteria</i> â€; a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut. Microbes and Environments, 2018, 33, 50-57.	0.7	33
211	Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnology for Biofuels, 2018, 11, 284.	6.2	32
212	Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae). Current Microbiology, 2018, 75, 1609-1618.	1.0	13
213	The Potential Control Strategies Based on the Interaction Between Indoor Cockroaches and Their Symbionts in China. Advances in Insect Physiology, 2018, 55, 55-122.	1.1	23
214	Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome, 2018, 6, 162.	4.9	70
215	Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera <i>Teranympha</i> and <i>Eucomonympha</i> and their <i>Treponema</i> Endosymbionts. Microbes and Environments, 2018, 33, 26-33.	0.7	47
216	Insect-Fungus Interactions in Dead Wood Systems. Zoological Monographs, 2018, , 377-427.	1.1	45
217	Microbiota of edible Liometopum apiculatum ant larvae reveals potential functions related to their nutritional value. Food Research International, 2018, 109, 497-505.	2.9	10
218	Filling Voids in Subterranean Termite (Blattodea: Rhinotermitidae) Bait Stations With Soil or Clay Improves Preference and Performance. Journal of Economic Entomology, 2018, 111, 2303-2311.	0.8	5
219	Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Applied and Environmental Microbiology, 2018, 84, .	1.4	67
220	Heterologous expression and biochemical characterization of a GHF9 endoglucanase from the termite Reticulitermes speratus in Pichia pastoris. BMC Biotechnology, 2018, 18, 35.	1.7	4

#	Article	IF	CITATIONS
221	Mixed evolutionary origins of endogenous biomass-depolymerizing enzymes in animals. BMC Genomics, 2018, 19, 483.	1.2	8
222	Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community. Frontiers in Microbiology, 2017, 8, 2548.	1.5	34
223	Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Frontiers in Microbiology, 2018, 9, 223.	1.5	15
224	Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Frontiers in Microbiology, 2018, 9, 556.	1.5	243
225	Mosquito microbiota cluster by host sampling location. Parasites and Vectors, 2018, 11, 468.	1.0	61
226	Methanogenesis in the Digestive Tracts of Insects and Other Arthropods. , 2018, , 1-32.		3
227	Endoglucanase activity in Neoteredo reynei (Bivalvia, Teredinidae) digestive organs and its content. World Journal of Microbiology and Biotechnology, 2018, 34, 84.	1.7	5
228	A Metabolite-Triggered Tuft Cell-ILC2 Circuit Drives Small Intestinal Remodeling. Cell, 2018, 174, 271-284.e14.	13.5	320
229	Arthropods. , 2018, , 29-54.		3
230	Ants alter molecular characteristics of soil organic carbon determined by pyrolysis-chromatography/mass spectrometry. Applied Soil Ecology, 2018, 130, 91-97.	2.1	9
231		2.1	
	Unprecedented Symbiont Eukaryote Diversity Is Governed by Internal Trophic Webs in a Wild Non-Human Primate. Protist, 2018, 169, 307-320.	0.6	11
232			11 31
232 233	Non-Human Primate. Protist, 2018, 169, 307-320. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019,	0.6	
	Non-Human Primate. Protist, 2018, 169, 307-320. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019, 77, 230-242. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from	0.6	31
233	Non-Human Primate. Protist, 2018, 169, 307-320. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019, 77, 230-242. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. International Microbiology, 2019, 22, 29-39. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of	0.6 1.4 1.1	31 50
233 234	 Non-Human Primate. Protist, 2018, 169, 307-320. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019, 77, 230-242. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. International Microbiology, 2019, 22, 29-39. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite. Current Microbiology, 2019, 76, 755-761. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME Journal, 2019, 13, 	0.6 1.4 1.1 1.0	31 50 24
233 234 235	Non-Human Primate. Protist, 2018, 169, 307-320. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019, 77, 230-242. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. International Microbiology, 2019, 22, 29-39. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite. Current Microbiology, 2019, 76, 755-761. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME Journal, 2019, 13, 104-117. Distribution and relative abundance of three protist genera within the Zootermopsis nevadensis	0.6 1.4 1.1 1.0 4.4	 31 50 24 93

#	Article	IF	CITATIONS
239	Validation of a universal set of primers to study animalâ€associated microeukaryotic communities. Environmental Microbiology, 2019, 21, 3855-3861.	1.8	34
240	Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. MSphere, 2019, 4, .	1.3	35
241	Novel Lineages of Oxymonad Flagellates from the Termite Porotermes adamsoni (Stolotermitidae): the Genera Oxynympha and Termitimonas. Protist, 2019, 170, 125683.	0.6	5
242	An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution; International Journal of Organic Evolution, 2019, 73, 2333-2342.	1.1	18
243	Angiosperm to Gymnosperm hostâ€plant switch entails shifts in microbiota of the <i>Welwitschia</i> bug, <i>Probergrothius angolensis</i> (Distant, 1902). Molecular Ecology, 2019, 28, 5172-5187.	2.0	20
244	Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Current Biology, 2019, 29, 3728-3734.e4.	1.8	110
245	Species-wide Metabolic Interaction Network for Understanding Natural Lignocellulose Digestion in Termite Gut Microbiota. Scientific Reports, 2019, 9, 16329.	1.6	28
246	Ecological specificity of the metagenome in a set of lower termite species supports contribution of the host. Animal Microbiome, 2019, 1, 13.	1.5	21
247	Diet is not the primary driver of bacterial community structure in the gut of litter-feeding cockroaches. BMC Microbiology, 2019, 19, 238.	1.3	23
248	Tuning the Optical and Electrical Properties of Few‣ayer Black Phosphorus via Physisorption of Small Solvent Molecules. Small, 2019, 15, e1903432.	5.2	21
249	Revealing the metabolic capacity of <i>Streblomastix strix</i> and its bacterial symbionts using single-cell metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19675-19684.	3.3	40
250	Next-generation sequencing reveals endosymbiont variability in cassava whitefly, <i>Bemisia tabaci</i> , across the agro-ecological zones of Kerala, India. Genome, 2019, 62, 571-584.	0.9	6
251	The relationship between oxidant levels and gut physiology in a litter-feeding termite. Scientific Reports, 2019, 9, 670.	1.6	5
252	Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. MBio, 2019, 10, .	1.8	88
253	Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera:) Tj ETQq0 () 0 rgBT /C	Overlock 10 T
254	Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life. BMC Genomics, 2019, 20, 462.	1.2	22
255	Is there convergence of gut microbes in blood-feeding vertebrates?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180249.	1.8	21
256	Energy conservation in the gut microbe <i>Methanomassiliicoccus luminyensis</i> is based on membraneâ€bound ferredoxin oxidation coupled to heterodisulfide reduction. FEBS Journal, 2019, 286, 3831-3843.	2.2	18

#	Article	IF	CITATIONS
257	Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere, 2019, 231, 588-606.	4.2	120
258	Genome Sequences of Microviruses Associated with <i>Coptotermes formosanus</i> . Microbiology Resource Announcements, 2019, 8, .	0.3	7
259	Positive effects of the tea catechin (-)-epigallocatechin-3-gallate on gut bacteria and fitness of Ectropis obliqua Prout (Lepidoptera: Geometridae). Scientific Reports, 2019, 9, 5021.	1.6	7
260	Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nature Microbiology, 2019, 4, 864-875.	5.9	68
261	Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm <i>Metaphire sieboldi</i> . Environmental Science & Technology, 2019, 53, 3841-3849.	4.6	78
262	Metagenomic assessment of body surface bacterial communities of the sea urchin, Tripneustes gratilla. Marine Genomics, 2019, 47, 100675.	0.4	8
263	Bacterial communities within Phengaris (Maculinea) alcon caterpillars are shifted following transition from solitary living to social parasitism of Myrmica ant colonies. Ecology and Evolution, 2019, 9, 4452-4464.	0.8	10
264	Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. Insects, 2019, 10, 87.	1.0	38
265	Metagenomic Analysis of the Whole Gut Microbiota in Brazilian Termitidae Termites Cornitermes cumulans, Cyrilliotermes strictinasus, Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus, Grigiotermes bequaerti, and Orthognathotermes mirim. Current Microbiology, 2019, 76, 687-697.	1.0	16
266	Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 2019, 17, 247-260.	13.6	965
267	Potential Distribution of Six North American Higher-Attine Fungus-Farming Ant (Hymenoptera:) Tj ETQq0 0 0 rgBT	- Qverloch	2 10 Tf 50 34
268	The influence of dietary sources on the biological changes of a subterranean termite, Coptotermes formosanus Shiraki. IOP Conference Series: Earth and Environmental Science, 2019, 361, 012025.	0.2	0
269	The de novo transcriptome of workers head of the higher group termite Globitermes sulphureus Haviland (Blattodea: Termitidae). Heliyon, 2019, 5, e02969.	1.4	0
270	Plant cell wall degradation in insects: Recent progress on endogenous enzymes revealed by multi-omics technologies. Advances in Insect Physiology, 2019, , 97-136.	1.1	33
271	Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecology and Evolution, 2019, 9, 13450-13467.	0.8	21
272	Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs, 2019, 89, e01331.	2.4	127
273	Evidence for the Role of Subterranean Termites (Reticulitermes spp.) in Temperate Forest Soil Nutrient Cycling. Ecosystems, 2019, 22, 602-618.	1.6	14
274	Gut microbial compositions mirror casteâ€specific diets in a major lineage of social insects. Environmental Microbiology Reports, 2019, 11, 196-205.	1.0	34

#	Article	IF	CITATIONS
275	Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biology and Biochemistry, 2019, 130, 141-149.	4.2	34
276	Termites mitigate the effects of drought in tropical rainforest. Science, 2019, 363, 174-177.	6.0	98
277	Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity. Carbohydrate Research, 2019, 474, 1-7.	1.1	3
278	Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of <i>Eriocheir sinensis</i> . MicrobiologyOpen, 2019, 8, e00727.	1.2	28
279	Genome analyses of uncultured TG2/ZB3 bacteria in â€~Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME Journal, 2019, 13, 455-467.	4.4	55
280	Microbiota comparison in the intestine of juvenile Chinese mitten crab Eriocheir sinensis fed different diets. Aquaculture, 2020, 515, 734518.	1.7	20
281	Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 2020, 256, 113265.	3.7	87
282	Versatile and Dynamic Symbioses Between Insects and <i>Burkholderia</i> Bacteria. Annual Review of Entomology, 2020, 65, 145-170.	5.7	56
283	Rambling facets of manure-based biogas production in Europe: A briefing. Renewable and Sustainable Energy Reviews, 2020, 119, 109566.	8.2	41
284	Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Applied Microbiology and Biotechnology, 2020, 104, 489-508.	1.7	39
285	Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a woodâ€feeding termite. Molecular Ecology, 2020, 29, 308-324.	2.0	32
286	Response of the subterranean termite Reticulitermes grassei Clément (Isoptera: Rhinotermitidae) to pH of substrate. Pedobiologia, 2020, 78, 150608.	0.5	1
287	A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria). Environmental Entomology, 2020, 49, 21-32.	0.7	4
288	The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Functional Ecology, 2020, 34, 2045-2054.	1.7	34
289	Siteâ€specific profiles of biochemical properties in the larval digestive tract of Japanese rhinoceros beetle, <i>Trypoxylus dichotomus</i> (Coleoptera: Scarabaeidae). Entomological Science, 2020, 23, 33-43.	0.3	5
290	Re-opening of the symbiont sorting organ with aging in Riptortus pedestris. Journal of Asia-Pacific Entomology, 2020, 23, 1089-1095.	0.4	6
291	Friend or foe? Effects of host immune activation on the gut microbiome in the caterpillar <i>Manduca sexta</i> . Journal of Experimental Biology, 2020, 223, .	0.8	6
292	Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri. International Journal of Biological Macromolecules, 2020, 165, 822-834.	3.6	9

ARTICLE

293 The gut microbiota structure of the terrestrial isopod <i>Porcellionides pruinosus</i> (Isopoda:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74

294	Impact of Facultative Bacteria on the Metabolic Function of an Obligate Insect-Bacterial Symbiosis. MBio, 2020, 11, .	1.8	7
295	Environmental Nutrients Alter Bacterial and Fungal Gut Microbiomes in the Common Meadow Katydid, Orchelimum vulgare. Frontiers in Microbiology, 2020, 11, 557980.	1.5	9
296	Multipartite symbioses in fungusâ€growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. Insect Science, 2021, 28, 1512-1529.	1.5	8
297	The hemolymph of <i>Biomphalaria</i> snail vectors of schistosomiasis supports a diverse microbiome. Environmental Microbiology, 2020, 22, 5450-5466.	1.8	9
298	Challenges and physiological implications of wood feeding in termites. Current Opinion in Insect Science, 2020, 41, 79-85.	2.2	7
299	Gut Content and Laboratory Survival of the Termite Cornitermes cumulans (Isoptera: Termitidae:) Tj ETQq0 0 0 rg 677-684.	gBT /Overl 0.5	ock 10 T 2
300	Termitomyces heimii Associated with Fungus-Growing Termite Produces Volatile Organic Compounds (VOCs) and Lignocellulose-Degrading Enzymes. Applied Biochemistry and Biotechnology, 2020, 192, 1270-1283.	1.4	15
301	On the Three Major Recycling Pathways in Terrestrial Ecosystems. Trends in Ecology and Evolution, 2020, 35, 767-775.	4.2	48
302	Enzymatic path to bioconversion of lignocellulosic biomass. , 2020, , 5-32.		1
303	A Novel Digestive GH16 β-1,3(4)-Glucanase from the Fungus-Growing Termite Macrotermes barneyi. Applied Biochemistry and Biotechnology, 2020, 192, 1284-1297.	1.4	5
304	Combination of antibiotics and chitin synthesis inhibitors for the control of Microcerotermes diversus (Isoptera: Termitidae). Journal of Asia-Pacific Entomology, 2020, 23, 957-962.	0.4	0
305	The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. Environmental Pollution, 2020, 267, 115633.	3.7	17
306	Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India. Mycobiology, 2020, 48, 501-511.	0.6	16
307	Thermophilic Co-Fermentation of Wood Wastes and High in Nitrogen Animal Manures into Bio-Methane with the Aid of Fungi and its Potential in the USA. Energies, 2020, 13, 4257.	1.6	5
308	The gut bacterial community affects immunity but not metabolism in a specialist herbivorous butterfly. Ecology and Evolution, 2020, 10, 8755-8769.	0.8	14
309	The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 5

310A Study of the Gut Bacterial Community of Reticulitermes virginicus Exposed to Chitosan Treatment.1.05Insects, 2020, 11, 681.

		CITATION REPO	RT	
#	Article	IF		CITATIONS
311	Unmapped RNA Virus Diversity in Termites and Their Symbionts. Viruses, 2020, 12, 1145.	1.	5	28
312	Why We Never Eat Alone: The Overlooked Role of Microbes and Partners in Obesity Debates ir Bioethics. Journal of Bioethical Inquiry, 2020, 17, 435-448.	1 0.	.9	1
313	Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. Frontiers in Sustainable Food Systems, 2020, 4, .	1.	8	30
314	Exploring the effect of plant substrates on bacterial community structure in termite fungus-co PLoS ONE, 2020, 15, e0232329.	mbs. 1.	1	12
315	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. S 2020, 16, e2000598.	Small, 5.	2	35
316	Commensal Bacteria Impact a Protozoan's Integration into the Murine Gut Microbiota in a Nutrient-Dependent Manner. Applied and Environmental Microbiology, 2020, 86, .	Dietary 1.	4	15
317	Anoxic Microbial Community Robustness Under Variation of Hydraulic Retention Time and Ava of Endogenous Electron Donors. Applied Biochemistry and Biotechnology, 2020, 192, 443-454		4	4
318	Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Science and Biotechnology, 2020, 19, 621-64	8. 3.	9	95
319	Parallel reductive genome evolution in <i>Desulfovibrio</i> ectosymbionts independently acqu <i>Trichonympha</i> protists in the termite gut. ISME Journal, 2020, 14, 2288-2301.	uired by 4.	.4	10
320	Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Communications Biology, 2020, 3, 275.	2.	.0	47
321	Single-cell amplicon sequencing reveals community structures and transmission trends of protist-associatedÂbacteria in aÂtermite host. PLoS ONE, 2020, 15, e0233065.	1.	1	8
322	Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting I and Mosquitoes. Microbial Ecology, 2020, 80, 703-717.	Midges 1.	4	19
323	Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles Nature Communications, 2020, 11, 2964.	. 5.	8	42
324	Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. Advances Physiology, 2020, , 161-205.	in Insect 1.	1	19
325	Microeukaryotes in animal and plant microbiomes: Ecologies of disease?. European Journal of Protistology, 2020, 76, 125719.	0	.5	30
326	Division of functional roles for termite gut protists revealed by single-cell transcriptomes. ISME Journal, 2020, 14, 2449-2460.	4.	4	34
327	Impact of the insect gut microbiota on ecology, evolution, and industry. Current Opinion in Ins Science, 2020, 41, 33-39.	sect 2.	.2	90
328	Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?. Microbiome, 2020, 8, 38.	4.	.9	167

ARTICLE IF CITATIONS Microbial symbioses and host nutrition., 2020,, 78-97. 329 1 Isopod holobionts as promising models for lignocellulose degradation. Biotechnology for Biofuels, 6.2 23 2020, 13, 49. Molecular aspects of prokaryotic and eukaryotic cellulases and their modulation for potential 331 2 application in biofuel production., 2020, , 81-95. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Scientific Reports, 2020, 10, 3864. Methane Production in Soil Environmentsâ€"Anaerobic Biogeochemistry and Microbial Life between 333 1.6 61 Flooding and Desiccation. Microorganisms, 2020, 8, 881. Insect gut microbiome and its applications., 2020, , 379-395. Compositional and functional characterisation of biomass-degrading microbial communities in guts 335 4.9 31 of plant fibre- and soil-feeding higher termites. Microbiome, 2020, 8, 96. Bacterial diversity in the <i>clarki</i> ecotype of the photosynthetic sacoglossan, <i>Elysia 1.2 crispata</i>. MicrobiologyOpen, 2020, 9, e1098. A d-glucose- and d-xylose-tolerant GH1 l²-glucosidase from Cellulosimicrobium funkei HY-13, a fibrolytic 337 1.8 4 gut bacterium of Eisenia fetida. Process Biochemistry, 2020, 94, 282-288. Origin of Mutualism Between Termites and Flagellated Gut Protists: Transition From Horizontal to 1.1 Vertical Transmission. Frontiers in Ecology and Evolution, 2020, 8, . Tephritidae fruit fly gut microbiome diversity, function and potential for applications. Bulletin of 339 0.5 45 Entomological Research, 2020, 110, 423-437. Impacts of biofilms on the conversion of cellulose. Applied Microbiology and Biotechnology, 2020, 44 104, 5201-5212. Validation and extension of the Tea Bag Index to collect decomposition data from termite-rich 341 0.5 12 ecosystems. Pedobiologia, 2020, 80, 150639. Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Structure and 342 0.8 39 Development, 2020, 56, 100931. Cultivable, Host-Specific <i>Bacteroidetes</i> Symbionts Exhibit Diverse Polysaccharolytic Strategies. 343 30 1.4 Applied and Environmental Microbiology, 2020, 86, . Draft Genome Sequences of Strains TAV3 and TAV4 (<i>Verrucomicrobia</i>: <i>Opitutaceae</i>), Isolated from a Wood-Feeding Termite, and <i>In Silico</i> Analysis of Their Polysaccharide-Degrading 344 Enzymes. Microbiology Resource Announcements, 2020, 9, . Substrate-Dependent Fermentation of Bamboo in Giant Panda Gut Microbiomes: Leaf Primarily to 345 1.57 Ethanol and Pith to Lactate. Frontiers in Microbiology, 2020, 11, 530. Synergies Between Division of Labor and Gut Microbiomes of Social Insects. Frontiers in Ecology and 346 1.1 Evolution, 2020, 7, .

#	Article	IF	CITATIONS
347	Unraveling Assemblage, Functions and Stability of the Gut Microbiota of Blattella germanica by Antibiotic Treatment. Frontiers in Microbiology, 2020, 11, 487.	1.5	15
348	From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production. Waste and Biomass Valorization, 2021, 12, 165-174.	1.8	34
349	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	1.5	16
350	Expression profiles of neotropical termites reveal microbiotaâ€associated, casteâ€biased genes and biotechnological targets. Insect Molecular Biology, 2021, 30, 152-164.	1.0	1
351	A novel SAR324 bacterium associated with abalone, Haliotis diversicolor. Aquaculture Research, 2021, 52, 1945-1953.	0.9	0
352	Termites Are Associated with External Species-Specific Bacterial Communities. Applied and Environmental Microbiology, 2021, 87, .	1.4	10
353	Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies. Journal of Hazardous Materials, 2021, 403, 123840.	6.5	12
354	Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. Annual Review of Entomology, 2021, 66, 297-316.	5.7	37
355	Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. Insect Science, 2021, 28, 2-20.	1.5	43
356	Termite Gut Microbiota Contribution to Wheat Straw Delignification in Anaerobic Bioreactors. ACS Sustainable Chemistry and Engineering, 2021, 9, 2191-2202.	3.2	33
357	Reduced Environmental Microbial Diversity on the Cuticle and in the Galleries of a Subterranean Termite Compared to Surrounding Soil. Microbial Ecology, 2021, 81, 1054-1063.	1.4	10
358	A Century of Synergy in Termite Symbiosis Research: Linking the Past with New Genomic Insights. Annual Review of Entomology, 2021, 66, 23-43.	5.7	15
359	Termites. , 2021, , 51-104.		3
360	Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod. Microorganisms, 2021, 9, 148.	1.6	3
361	Feeding Ecology of Lake Tanganyika Cichlids. , 2021, , 715-751.		2
362	Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cellular and Molecular Life Sciences, 2021, 78, 2749-2769.	2.4	63
364	Discovering symbiosis in the supralittoral: bacterial metabarcoding analysis from the hepatopancreas of Orchestia and Tylos (Crustacea). Symbiosis, 2021, 83, 225-236.	1.2	3
365	Identification of Cellulolytic Bacteria from Guts of Microcerotermes diversus Silvestri (Isoptera:) Tj ETQq1 1 0.784	4314 rgBT 1.0	/Qverlock 10

367	Bathyarchaeia From Termite Guts â€ [™] A Genome-Centric Analysis. Frontiers in Microbiology, 2020, 11, 635786.	1.5	23
368	Feeding Preferences of Subterranean Termites, Odontotermes obesus (Ramber) (Blattoidea: Termitidae) in Field and Their Control and Developing Bait Strategies. Egyptian Academic Journal of Biological Sciences, 2021, 14, 83-92.	0.1	1
369	Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	58
370	Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera) Tj ETQq0 0	0 rgBT /C)verlock 10 T
371	Environmental Acquisition of Gut Symbiotic Bacteria in the Saw-Toothed Stinkbug, Megymenum gracilicorne (Hemiptera: Pentatomoidea: Dinidoridae). Zoological Science, 2021, 38, 213-222.	0.3	6
372	Characterization of new cristamonad species from kalotermitid termites including a novel genus, Runanympha. Scientific Reports, 2021, 11, 7270.	1.6	0
373	Metagenomic Analysis of Microbial Community Affiliated with Termitarium Reveals High Lignocellulolytic Potential. Current Microbiology, 2021, 78, 1551-1565.	1.0	0
374	Interactions of hostâ€associated multispecies bacterial communities. Periodontology 2000, 2021, 86, 14-31.	6.3	3
375	Metagenomics approach to identify lignocellulose-degrading enzymes in the gut microbiota of the Chinese bamboo rat cecum. Electronic Journal of Biotechnology, 2021, 50, 29-36.	1.2	8
376	Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests. Ecosystems, 2021, 24, 1875-1890.	1.6	2
377	Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for Biofuels, 2021, 14, 61.	6.2	56
378	Potential of termite gut microbiota for biomethanation of lignocellulosic wastes: current status and future perspectives. Reviews in Environmental Science and Biotechnology, 2021, 20, 419-438.	3.9	12
379	Deconstruction of Lignin: From Enzymes to Microorganisms. Molecules, 2021, 26, 2299.	1.7	43
380	Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ, 2021, 9, e10959.	0.9	14
381	Complementary Contribution of Fungi and Bacteria to Lignocellulose Digestion in the Food Stored by a Neotropical Higher Termite. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
382	An alkaline thermostable laccase from termite gut associated strain of Bacillus stratosphericus. International Journal of Biological Macromolecules, 2021, 179, 270-278.	3.6	12
383	Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microbial Cell Factories, 2021, 20, 107.	1.9	22

ARTICLE

#

#	Article	IF	CITATIONS
384	Collaborative Response of the Host and Symbiotic Lignocellulytic System to Non-Lethal Toxic Stress in Coptotermes formosanus Skiraki. Insects, 2021, 12, 510.	1.0	2
385	Experimental Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern Subterranean Termite, Reticulitermes flavipes (Kollar). Frontiers in Microbiology, 2021, 12, 632715.	1.5	8
386	Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect―are associated with Gene Loss in <i>Blattabacterium</i> , A Cockroach Endosymbiont. Molecular Biology and Evolution, 2021, 38, 3820-3831.	3.5	13
387	Interactions between Humic Substances and Microorganisms and Their Implications for Nature-like Bioremediation Technologies. Molecules, 2021, 26, 2706.	1.7	55
388	Editorial: Advances in the Evolutionary Ecology of Termites. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
389	Friends or Foes—Microbial Interactions in Nature. Biology, 2021, 10, 496.	1.3	31
390	Termite mound cover and abundance respond to herbivoreâ€nediated biotic changes in a Kenyan savanna. Ecology and Evolution, 2021, 11, 7226-7238.	0.8	1
391	Characterization and phylogenomic analysis of <i>Breznakiella homolactica</i> gen. nov. sp. nov. indicate that termite gut treponemes evolved from nonâ€acetogenic spirochetes in cockroaches. Environmental Microbiology, 2021, 23, 4228-4245.	1.8	15
392	Origin of symbiotic gut spirochetes as key players in the nutrition of termites. Environmental Microbiology, 2021, 23, 4092-4097.	1.8	2
393	Dereplication, Annotation, and Characterization of 74 Potential Antimicrobial Metabolites from Penicillium Sclerotiorum Using t-SNE Molecular Networks. Metabolites, 2021, 11, 444.	1.3	15
394	Bacterial and archaeal symbioses with protists. Current Biology, 2021, 31, R862-R877.	1.8	74
395	Structure and Dynamics of the Gut Bacterial Community Across the Developmental Stages of the Coffee Berry Borer, Hypothenemus hampei. Frontiers in Microbiology, 2021, 12, 639868.	1.5	9
396	Phylogenetic identification of symbiotic protists of five Chinese <i>Reticulitermes</i> species indicates a cospeciation of gut microfauna with host termites. Journal of Eukaryotic Microbiology, 2021, 68, e12862.	0.8	3
397	Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand. Biodiversitas, 2021, 22, .	0.2	2
398	Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda. Soil, 2021, 7, 433-451.	2.2	8
399	Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13. Biomolecules, 2021, 11, 1080.	1.8	9
400	Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Scientific Reports, 2021, 11, 13955.	1.6	8
401	Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15

		CITATION I	Report	
#	Article		IF	Citations
402	Identifying fungal-host associations in an amphibian host system. PLoS ONE, 2021, 16, e0.	256328.	1.1	5
403	Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Frontiers in Microbiology, 2021, 12, 702763.		1.5	8
404	Microbial community in human gut: a therapeutic prospect and implication in health and d Letters in Applied Microbiology, 2021, 73, 553-568.	iseases.	1.0	4
405	Competition-based screening helps to secure the evolutionary stability of a defensive micr BMC Biology, 2021, 19, 205.	obiome.	1.7	10
406	Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biored Molecules, 2021, 26, 5411.	inery.	1.7	40
407	Characterization of bacterial community structure in two alcyonacean soft corals (Litophy	ton sp.) Tj ETQq1 1 C).784314 rg 0.9	;BT ₄ /Overloc
408	Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annual Re Virology, 2021, 8, 95-113.	2view of	3.0	17
410	Mutualistic relation of termites with associated microbes for their harmonious survival. Syn 2021, 85, 145.	mbiosis,	1.2	2
412	Eukaryotic Microorganisms are Part of Holobionts. The Microbiomes of Humans, Animals, I the Environment, 2021, , 195-229.	Plants, and	0.2	0
413	Mechanisms underlying gut microbiota–host interactions in insects. Journal of Experime 2021, 224, .	ntal Biology,	0.8	61
414	Wood degradation by Panaque nigrolineatus, a neotropical catfish: diversity and activity or gastrointestinal tract lignocellulolytic and nitrogen fixing communities. Advances in Botan Research, 2021, , 209-238.		0.5	2
415	Gut Microbiome of Two Different Honeybee Workers Subspecies In Saudi Arabia Bioscien Biotechnology Research Asia, 2021, 17, 659-671.	ces,	0.2	0
416	Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites?. Evo Ecology, 2021, 35, 165-182.	olutionary	0.5	9
417	Evolution of Holobionts: The Hologenome Concept. The Microbiomes of Humans, Animals, the Environment, 2021, , 317-352.	Plants, and	0.2	1
418	Methanogenesis in the Digestive Tracts of Insects and Other Arthropods. , 2019, , 229-260).		12
419	Toxin-mediated protection against natural enemies by insect defensive symbionts. Advanc Physiology, 2020, 58, 277-316.	es in Insect	1.1	23
420	Symbiont-mediated degradation of dietary carbon sources in social herbivorous insects. Ac Insect Physiology, 2020, 58, 63-109.	lvances in	1.1	7
421	Termites host specific fungal communities that differ from those in their ambient environn Fungal Ecology, 2020, 48, 100991.	nents.	0.7	11

#	Article	IF	CITATIONS
422	Sugiyamaella mastotermitis sp. nov. and Papiliotrema odontotermitis f.a., sp. nov. from the gut of the termites Mastotermes darwiniensis and Odontotermes obesus. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4600-4608.	0.8	20
423	Lactococcus reticulitermitis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 596-601.	0.8	14
424	Lactococcus termiticola sp. nov., isolated from the gut of the wood-feeding higher termite Nasutitermes takasagoensis. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3832-3836.	0.8	10
425	Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology (United Kingdom), 2019, 165, 292-301.	0.7	21
432	Exclusive Gut Flagellates of Serritermitidae Suggest a Major Transfaunation Event in Lower Termites: Description of <i>Heliconympha glossotermitis</i> gen. nov. spec. nov Journal of Eukaryotic Microbiology, 2018, 65, 77-92.	0.8	29
433	Comparative Study of Resistance and Feeding Preference of 24 Wood Species to Attack by Heterotermes indicola (Wasmann) and Coptotermes heimi (Isoptera: Rhinotermitidae, Termitidae) in Pakistan Sociobiology, 2015, 62, 417.	0.2	8
434	The Role of Salivary Enzymes in the Detection of Polysaccharides in the Termite Reticulitermes flavipes Kollar (Isoptera: Rhinotermitidae). Sociobiology, 2016, 62, .	0.2	3
435	Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 2017, 15, e2003467.	2.6	270
436	Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?. PLoS ONE, 2015, 10, e0144340.	1.1	22
437	Comparative Analysis of Transcriptomes from Secondary Reproductives of Three Reticulitermes Termite Species. PLoS ONE, 2015, 10, e0145596.	1.1	14
437 438		1.1	14 20
	Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile		
438	Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the	1.1	20
438 439	 Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS ONE, 2017, 12, e0181141. Cultivation and characterization of symbiotic bacteria from the gut of Reticulitermes chinensis. 	1.1	20 65
438 439 440	 Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS ONE, 2017, 12, e0181141. Cultivation and characterization of symbiotic bacteria from the gut of Reticulitermes chinensis. Applied Environmental Biotechnology, 2016, 1, 3. A NOVEL LIGNOCELLULOLYTIC BACTERIUM FOR BIOCONVERSION OF RICE STRAW. Pakistan Journal of 	1.1 1.1 1.0	20 65 5
438 439 440 441	 Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS ONE, 2017, 12, e0181141. Cultivation and characterization of symbiotic bacteria from the gut of Reticulitermes chinensis. Applied Environmental Biotechnology, 2016, 1, 3. A NOVEL LIGNOCELLUL OLYTIC BACTERIUM FOR BIOCONVERSION OF RICE STRAW. Pakistan Journal of Agricultural Sciences, 2016, 53, 523-533. Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value 	1.1 1.1 1.0 0.1	20 65 5 4
 438 439 440 441 442 	 Termite Species. PLoS ONE, 2015, 10, e0145596. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS ONE, 2017, 12, e0181141. Cultivation and characterization of symbiotic bacteria from the gut of Reticulitermes chinensis. Applied Environmental Biotechnology, 2016, 1, 3. A NOVEL LIGNOCELLULOLYTIC BACTERIUM FOR BIOCONVERSION OF RICE STRAW. Pakistan Journal of Agricultural Sciences, 2016, 53, 523-533. Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts. Current Medicinal Chemistry, 2019, 26, 2475-2484. Internal ornamentation of the first proctodeal segment of the digestive tube of Syntermitinae (Isoptera, Termitidae). Mitteilungen Aus Dem Museum Fur Naturkunde in Berlin - Deutsche 	1.1 1.1 1.0 0.1 1.2	20 65 5 4 9

#	Article	IF	CITATIONS
446	Cloning, expression and characterization of a cold-adapted endo-1, 4- <i>β</i> -glucanase from <i>Citrobacter farmeri</i> A1, a symbiotic bacterium of <i>Reticulitermes labralis</i> . PeerJ, 2016, 4, e2679.	0.9	10
447	RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ, 2014, 2, e494.	0.9	140
448	Comparison of bacterial diversity and abundance between sexes of <i>Leptocybe invasa</i> Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ, 2020, 8, e8411.	0.9	10
449	Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ, 2020, 8, e8614.	0.9	43
450	Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects. Korean Journal of Microbiology, 2015, 51, 209-220.	0.2	9
451	Greenhouse gas emissions and carbon sink potential in Eastern Africa rangeland ecosystems: A review. Pastoralism, 2021, 11, .	0.3	3
452	Disentangling host–microbiota complexity through hologenomics. Nature Reviews Genetics, 2022, 23, 281-297.	7.7	44
453	GC/TOF-MS-Based Metabolomics Reveals Altered Metabolic Profiles in Wood-Feeding Termite Coptotermes formosanus Shiraki Digesting the Weed Mikania micrantha Kunth. Insects, 2021, 12, 927.	1.0	1
454	Molecular Phylogenetic Position of Microjoenia (Parabasalia: Spirotrichonymphea) from Reticulitermes and Hodotermopsis Termite Hosts. Protist, 2021, 172, 125836.	0.6	3
456	Termite Holobiont: Microbe Matters. Agricultural Research & Technology: Open Access Journal, 2017, 6, .	0.1	0
457	Comparison of gut morphology and distribution of trehalase activity in the gut of wood-feeding and fungus-growing termites (Isoptera: Termitidae). European Journal of Entomology, 0, 114, 508-516.	1.2	2
462	Mycoremediation of Lignocelluloses. , 2019, , 1086-1108.		0
463	Isolation, Characterization and Molecular Identification of Culturable Gut Bacteria in Diamondback Moth, Plutella xylostella (Linnaeus). International Journal of Current Microbiology and Applied Sciences, 2019, 8, 3291-3298.	0.0	0
465	Lactococcus insecticola sp. nov. and Lactococcus hodotermopsidis sp. nov., isolated from the gut of the wood-feeding lower termite Hodotermopsis sjostedti. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4515-4522.	0.8	10
467	Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.). Science of the Total Environment, 2022, 806, 151221.	3.9	2
468	Soil organic matter is essential for colony growth in subterranean termites. Scientific Reports, 2021, 11, 21252.	1.6	20
470	Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresource Technology, 2022, 343, 126123.	4.8	166
471	Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel, 2022, 310, 122333.	3.4	42

		CITATION REPORT		
#	Article		IF	CITATIONS
472	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation	, 2020, 2020, .	1.4	8
475	Impacts of fungus-growing termites on surficial geology parameters: A review. Earth-So 2021, 223, 103862.	cience Reviews,	4.0	9
476	Overview of Lignocellulolytic Enzyme Systems with Special Reference to Valorization o Lignocellulosic Biomass. Protein and Peptide Letters, 2021, 28, 1349-1364.	f	0.4	2
480	Microbial diversity in termite gut ecosystem and their role in lignocellulosic degradatio 155-175.	n. , 2022, ,		3
481	Microbial Response to Fungal Infection in a Fungus-Growing Termite, Odontotermes fo (Shiraki). Frontiers in Microbiology, 2021, 12, 723508.	ormosanus	1.5	2
482	Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Sy Eisenia fetida, Cellulosimicrobium funkei HY-13. Biomolecules, 2021, 11, 1735.	mbiont of	1.8	5
484	Symbiotic Bacterial Flora Changes in Response to Low Temperature in Reticulitermes s Journal of the Korean Wood Science and Technology, 2018, 46, 713-725.	peratus KMT001.	0.8	2
485	Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its develop gnotobiotic coral model. Access Microbiology, 2022, 4, 000314.	ment as a	0.2	4
486	Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles	(Coleoptera:) Tj ETQq0 0 (Ͻ rgBT /Ον ቿ.	erlock 10 Tf 14
487	Feeding habits and multifunctional classification of soilâ€associated consumers from p vertebrates. Biological Reviews, 2022, 97, 1057-1117.	protists to	4.7	113
488	Production of Activated Carbon Electrode for Energy Storage Application in Supercapa Activation of Waste Termite Biomass. Waste and Biomass Valorization, 2022, 13, 268	citors via KOH 9-2704.	1.8	9
489	Saccharification of agricultural lignocellulosic feedstocks by endogenous and symbioti from the subterranean termites. Biocatalysis and Agricultural Biotechnology, 2022, 39	c cellulases , 102265.	1.5	1
490	Termites, Social Cockroaches. , 2024, , 517-541.			0
491	Simultaneous Single-Cell Genome and Transcriptome Sequencing of Termite Hindgut F Metabolic and Evolutionary Traits of Their Endosymbionts. MSphere, 2022, 7, e000212		1.3	1
492	The impact of termites on soil sheeting properties is better explained by environmenta their feeding and building strategies. Geoderma, 2022, 412, 115706.	l factors than by	2.3	7
493	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biom fuels. Energy and Environmental Science, 2022, 15, 938-990.	ass to	15.6	93
494	Exploring the regionâ€wise diversity and functions of symbiotic bacteria in the gut sys woodâ€feeding termite, <i>Coptotermes formosanus</i> , toward the degradation of o hemicellulose, and organic dyes. Insect Science, 2022, 29, 1414-1432.		1.5	7
497	Structural basis of lignocellulose deconstruction by the wood-feeding anobiid beetle N hirtum. Journal of Wood Science, 2022, 68, .	icobium	0.9	2

#	Article	IF	CITATIONS
498	Tenebrionibacter intestinalis gen. nov., sp. nov., a member of a novel genus of the family Enterobacteriaceae, isolated from the gut of the plastic-eating mealworm Tenebrio molitor L International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	8
499	Oxidative cleavage of cellulose in the horse gut. Microbial Cell Factories, 2022, 21, 38.	1.9	2
500	Fungus-insect symbiosis: Diversity and negative ecological role of the hypocrealean fungus Trichoderma harzianum in colonies of neotropical termites (Blattodea: Termitidae). Fungal Ecology, 2022, 57-58, 101152.	0.7	2
501	Long-Term Cellulose Enrichment Selects for Highly Cellulolytic Consortia and Competition for Public Goods. MSystems, 2022, 7, e0151921.	1.7	5
502	Analysis of Factors Affecting Termite Damage to Wooden Architectural Heritage Buildings in Korea. Forests, 2022, 13, 465.	0.9	2
503	Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? AAcritical state-of-the-artÂreview. , 2022, 15, 35.		14
504	A bio-inspired flexible squeezing reactor for efficient enzymatic hydrolysis of lignocellulosic biomass for bioenergy production. Renewable Energy, 2022, 191, 92-100.	4.3	7
505	Shift and interaction of intestinal bacterial community in juvenile Chinese mitten crab Eriocheir sinensis upon astaxanthin feeding. Aquaculture, 2022, 555, 738203.	1.7	5
506	Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS ONE, 2021, 16, e0261654.	1.1	8
507	Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites, 2021, 11, 839.	1.3	5
507 508	Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites, 2021, 11, 839. The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021, 12, .	1.3 1.0	5
	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021,		
508	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021, 12, .		3
508 509	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021, 12, . Macrofaunal consumption as a mineralization pathway. , 2022, , 133-165. The dose makes the poison: feeding of antibiotic-treated winter honey bees, Apis mellifera, with	1.0	3 0
508 509 510	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021, 12, . Macrofaunal consumption as a mineralization pathway. , 2022, , 133-165. The dose makes the poison: feeding of antibiotic-treated winter honey bees, Apis mellifera, with probiotics and b-vitamins. Apidologie, 2022, 53, 1. The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper	1.0 0.9	3 0 5
508 509 510 511	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> . Ecosphere, 2021, 12, . Macrofaunal consumption as a mineralization pathway., 2022,, 133-165. The dose makes the poison: feeding of antibiotic-treated winter honey bees, Apis mellifera, with probiotics and b-vitamins. Apidologie, 2022, 53, 1. The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper Species From the Loess Plateau. Frontiers in Microbiology, 2022, 13, 806927. A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proceedings of the National Academy of Sciences of the United States of America,	1.0 0.9 1.5	3 0 5 2
 508 509 510 511 512 	The fate of carbon utilized by the subterranean termite <i>Reticulitermes flavipes</i> Ecosphere, 2021, 12, . Macrofaunal consumption as a mineralization pathway. , 2022, , 133-165. The dose makes the poison: feeding of antibiotic-treated winter honey bees, Apis mellifera, with probiotics and b-vitamins. Apidologie, 2022, 53, 1. The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper Species From the Loess Plateau. Frontiers in Microbiology, 2022, 13, 806927. A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120048119.	1.0 0.9 1.5 3.3	3 0 5 2 6

ARTICLE IF CITATIONS Identification of a New Endo-12-1,4-xylanase Prospected from the Microbiota of the Termite 544 1.6 1 Heterotermes tenuis. Microorganisms, 2022, 10, 906. Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (Hermetia illucens; Linnaeus,) Tj ETQq1 1 0.784314 rgBT/Overlo Gut Lignocellulose Activity and Microbiota in Asian Longhorned Beetle and Their Predicted 546 10 1.5 Contribution to Larval Nutrition. Frontiers in Microbiology, 2022, 13, . The functional evolution of termite gut microbiota. Microbiome, 2022, 10, . 548 4.9 Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in 549 1.5 5 Microbiology, 2022, 13, . Genomics and Geographic Diversity of Bacteriophages Associated With Endosymbionts in the Guts of Workers and Alates of Coptotermés Species (Blattodea: Rhinotermitidae). Frontiers in Ecology and 1.1 Evolution, 0, 10, . Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly 551 4.9 18 designed microbial fermentation production line. Microbiome, 2022, 10, . Turtle ants harbor metabolically versatile microbiomes with conserved functions across 1.3 development and phylogeny. FEMS Microbiology Ecology, 2022, 98, . Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation 553 2.5 24 using yeast symbionts of termite guts: A critical review. Energy Reports, 2022, 8, 7557-7581. Lignocellulose breakdown through metabolic interaction network of gut microbiota in termite. 554 2022, , 179-194. A chromosome-level genome assembly and intestinal transcriptome of <i>Trypoxylus dichotomus</i> 555 3.3 5 (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. CigaScience, 2022, 11, . Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiology Reviews, 2022, 46, . Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on 557 1.5 8 insect growth and development. Insect Science, 2023, 30, 947-963. The Role of Feeding Characteristics in Shaping Gut Microbiota Composition and Function of Ensifera 558 1.0 (Orthoptera). Insects, 2022, 13, 719. Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. 559 2 1.1 Frontiers in Ecology and Evolution, 0, 10, . Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota. BioSystems, 2022, 221, 104763. Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura). 561 1.51 Frontiers in Microbiology, 0, 13, . Rapid elimination of symbiotic intestinal protists during the neotenic differentiation in a subterranean termite, Reticulitermes speratus. Insectes Sociaux, 2022, 69, 335-343.

#	Article	IF	CITATIONS
564	Larval gut microbiome of Pelidnota luridipes (Coleoptera: Scarabaeidae): high bacterial diversity, different metabolic profiles on gut chambers and species with probiotic potential. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	3
565	Improving the saccharification efficiency of lignocellulosic biomass using a bio-inspired two-stage microreactor system loaded with complex enzymes. Green Chemistry, 2022, 24, 9519-9529.	4.6	5
566	Diversity of cellulolytic bacteria from Macrotermes gilvus gut isolated from Indralaya peatland region, Indonesia. Biodiversitas, 2021, 23, .	0.2	1
567	Termites are the main dung removals in a degraded landscape in Brazil. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
569	Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). Microbial Ecology, 2023, 86, 1307-1318.	1.4	3
570	Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. Microbiome, 2022, 10, .	4.9	8
571	Host's demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Frontiers in Physiology, 0, 13, .	1.3	3
573	Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Microbiology Spectrum, 2022, 10, .	1.2	7
574	Combining OSMAC, metabolomic and genomic methods for the production and annotation of halogenated azaphilones and ilicicolins in termite symbiotic fungi. Scientific Reports, 2022, 12, .	1.6	8
575	Agarose gel microcapsules enable easy-to-prepare, picolitre-scale, single-cell genomics, yielding high-coverage genome sequences. Scientific Reports, 2022, 12, .	1.6	3
576	Spiroplasma as facultative bacterial symbionts of stinkbugs. Frontiers in Microbiology, 0, 13, .	1.5	0
577	Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Frontiers in Microbiology, 0, 13, .	1.5	5
578	Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production. Renewable and Sustainable Energy Reviews, 2022, 170, 112995.	8.2	26
579	Oil palm trunk waste: Environmental impacts and management strategies. Industrial Crops and Products, 2022, 189, 115827.	2.5	12
580	A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. Fuel, 2023, 333, 126469.	3.4	9
582	How can we possibly resolve the planet's nitrogen dilemma?. Microbial Biotechnology, 2023, 16, 15-27.	2.0	7
583	Environmental and Human Health Impact of Disposable Face Masks During the COVID-19 Pandemic: Wood-Feeding Termites as a Model for Plastic Biodegradation. Applied Biochemistry and Biotechnology, 2023, 195, 2093-2113.	1.4	9
584	Transport of symbiont-encoded cellulases from the gill to the gut of shipworms via the enigmatic ducts of Deshayes: a 174-year mystery solved. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2

#	Article	IF	CITATIONS
585	Food origin influences microbiota and stable isotope enrichment profiles of cold-adapted Collembola (Desoria ruseki). Frontiers in Microbiology, 0, 13, .	1.5	3
586	Community structure and antifungal activity of actinobacteria in a fungusâ€growing termite. Ecological Entomology, 2023, 48, 251-262.	1.1	3
587	Partner fidelity and environmental filtering preserve stageâ€specific turtle ant gut symbioses for over 40 million years. Ecological Monographs, 2023, 93, .	2.4	9
588	Estimate of the degradation potentials of cellulose, xylan, and chitin across global prokaryotic communities. Environmental Microbiology, 2023, 25, 397-409.	1.8	2
589	King- and queen-specific degradation of uric acid contributes to reproduction in termites. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	7
590	Succession of the microbiota in the gut of reproductives of Macrotermes subhyalinus (Termitidae) at colony foundation gives insights into symbionts transmission. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
591	Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from Pachnoda marginata Larva Gut. Fermentation, 2023, 9, 60.	1.4	5
592	Metagenome-Assembled Genome Sequence of a Strain of Burkholderia cepacia Isolated from the Gut of Macrotermes bellicosus in Nigeria. Microbiology Resource Announcements, 0, , .	0.3	0
595	New insights into the coevolutionary history of termites and their gut flagellates: Description of Retractinympha glossotermitis gen. nov. sp. nov. (Retractinymphidae fam. nov.). Frontiers in Ecology and Evolution, 0, 11, .	1.1	2
596	Biological Deterioration and Natural Durability of Wood in Europe. Forests, 2023, 14, 283.	0.9	9
599	A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. BMC Genomics, 2023, 24, .	1.2	3
600	First report the Syntermes molestus Burm. (1839) (Isoptera: Termitidae) causing severe mechanical damage to Solanum tuberosum roots. Brazilian Journal of Biology, 0, 83, .	0.4	0
601	Inhibitory effect of usnic acid on the gut microbiota of the termite Constrictotermes cyphergaster. Symbiosis, 2023, 89, 329-335.	1.2	0
602	Complete genome sequences and comparative secretomic analysis for the industrially cultivated edible mushroom Lyophyllum decastes reveals insights on evolution and lignocellulose degradation potential. Frontiers in Microbiology, 0, 14, .	1.5	1
604	The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Communications Biology, 2023, 6, .	2.0	0
605	Mechanisms Underpinning Morphogenesis of a Symbiotic Organ Specialized for Hosting an Indispensable Microbial Symbiont in Stinkbugs. MBio, 2023, 14, .	1.8	4
606	Evolution of Linoleic Acid Biosynthesis Paved the Way for Ecological Success of Termites. Molecular Biology and Evolution, 2023, 40, .	3.5	1
607	Termites from the Northern Atlantic Forest, Brazil: Ecology and Conservation. , 2023, , 121-132.		2

#	Article	IF	CITATIONS
608	Impact of Wood Age on Termite Microbial Assemblages. Applied and Environmental Microbiology, 2023, 89, .	1.4	1
609	Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion. Insects, 2023, 14, 403.	1.0	11
617	Microbial bioprocesses in remediation of contaminated environments and resource recovery. , 2023, , 225-274.		0
634	Media made from brown-rotted elm and pine wood for rearing Reticulitermes termites. Insectes Sociaux, 2023, 70, 381-389.	0.7	0
639	Role of Microorganisms in Digestion and Nutrition. True Bugs (Heteroptera) of the Neotropics, 2023, , 185-191.	1.2	0
640	Plant, Bacterial, and Fungal Cell Wall-Degrading Enzymes. True Bugs (Heteroptera) of the Neotropics, 2023, , 153-163.	1.2	0
641	Molecular View of Digestion and Absorption in the Major Insect Orders. True Bugs (Heteroptera) of the Neotropics, 2023, , 193-230.	1.2	0
661	Symbiosis and microbiome in termite guts: a unique quadripartite system. , 2023, , 144-170.		0
670	Degradation of lignocelluloses by microorganisms. , 2024, , 91-106.		0
671	Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production. Advanced Composites and Hybrid Materials, 2024, 7	9.9	0