Fundamental water and salt transport properties of pol

Progress in Polymer Science 39, 1-42 DOI: 10.1016/j.progpolymsci.2013.07.001

Citation Report

#	Article	IF	CITATIONS
9	Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy. ACS Macro Letters, 2013, 2, 814-817.	2.3	29
10	Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes. ACS Applied Materials & Interfaces, 2013, 5, 10294-10301.	4.0	232
11	Dissolution Control of Mg by Cellulose Acetate–Polyelectrolyte Membranes. ACS Applied Materials & Interfaces, 2014, 6, 22393-22399.	4.0	11
13	Relationship between ion transport and the failure behavior of epoxy resin coatings. Corrosion Science, 2014, 78, 22-28.	3.0	56
14	Poly(arylene ether sulfone) containing thioether units: synthesis, oxidation and properties. RSC Advances, 2014, 4, 23191-23201.	1.7	15
15	Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy and Environmental Science, 2014, 7, 1434-1445.	15.6	179
16	Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Physical Chemistry Chemical Physics, 2014, 16, 21673-21681.	1.3	160
17	Graphene Oxide: A New Platform for Highâ€Performance Cas―and Liquidâ€5eparation Membranes. Angewandte Chemie - International Edition, 2014, 53, 10286-10288.	7.2	130
18	Effect of <i>N</i> -methyl amide linkage on hydrogen bonding behavior and water transport properties of partially <i>N</i> -methylated random aromatic copolyamides. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.5	2
19	Enhancement of Salt Rejection and Water Flux by Crosslinking-Induced Microstructure Change of N-substituted Polybenzimidazole Membranes. Materials Research Society Symposia Proceedings, 2015, 1745, 16.	0.1	1
20	Effects of monovalent ions on membrane potential and permselectivity: evaluation of fixed charge density of polymer based zirconium aluminophosphate composite membrane. RSC Advances, 2015, 5, 96008-96018.	1.7	17
21	Redox Active Compounds in Controlled Radical Polymerization and Dyeâ€Sensitized Solar Cells: Mutual Solutions to Disparate Problems. Chemistry - A European Journal, 2015, 21, 18516-18527.	1.7	11
22	Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination, 2015, 370, 7-16.	4.0	85
23	Impregnated Membranes for Water Purification Using Forward Osmosis. Industrial & Engineering Chemistry Research, 2015, 54, 12354-12366.	1.8	27
24	Synthesis and properties of sodium vinylbenzene sulfonate-grafted poly(vinylidene fluoride) cation exchange membranes for membrane capacitive deionization process. Macromolecular Research, 2015, 23, 1126-1133.	1.0	18
25	Tailor-Made Polyamide Membranes for Water Desalination. ACS Nano, 2015, 9, 345-355.	7.3	109
26	Effect of ambient carbon dioxide on salt permeability and sorption measurements in ion-exchange membranes. Journal of Membrane Science, 2015, 479, 55-66.	4.1	40
27	Water and salt transport properties of zwitterionic polymers film. Journal of Membrane Science, 2015, 491, 73-81.	4.1	53

#	Article	IF	CITATIONS
28	Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination, 2015, 373, 38-46.	4.0	87
29	Predicting the Rejection of Major Seawater Ions by Spiral-Wound Nanofiltration Membranes. Environmental Science & Technology, 2015, 49, 8631-8638.	4.6	35
30	Correlation between macroscopic sugar transfer and nanoscale interactions in cation exchange membranes. Journal of Membrane Science, 2015, 493, 311-320.	4.1	20
31	Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490, 72-83.	4.1	194
32	Predicting Permeate Fluxes and Rejection Rates in Reverse Osmosis and Tightâ€Nanofiltration Processes. Chemical Engineering and Technology, 2015, 38, 585-594.	0.9	8
33	Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: Gaining more insight into the transport of water and small solutes. Journal of Membrane Science, 2015, 486, 106-118.	4.1	108
34	Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures. Environmental Science & Technology, 2015, 49, 12551-12559.	4.6	46
35	Ion Activity Coefficients in Ion Exchange Polymers: Applicability of Manning's Counterion Condensation Theory. Macromolecules, 2015, 48, 8011-8024.	2.2	154
36	Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents. Langmuir, 2015, 31, 11113-11123.	1.6	41
37	Co-ion fluxes of simple inorganic ions in electrodialysis metathesis and conventional electrodialysis. Journal of Membrane Science, 2015, 492, 263-270.	4.1	33
38	Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2015, 26, 224.	1.7	8
39	Planar Porous Graphene Woven Fabric/Epoxy Composites with Exceptional Electrical, Mechanical Properties, and Fracture Toughness. ACS Applied Materials & Interfaces, 2015, 7, 21455-21464.	4.0	36
40	Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes. Polymer Chemistry, 2015, 6, 543-554.	1.9	54
41	Do silicone- based membranes permeate or reject salts?. Desalination, 2015, 357, 121-130.	4.0	1
43	Polymer Inclusion Membranes (PIM) for the Recovery of Potassium in the Presence of Competitive Cations. Polymers, 2016, 8, 76.	2.0	20
44	Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymer, 2016, 99, 72-82.	1.8	68
45	Semipermeable membranes based on polybenzimidazole: Simultaneous improvement in water flux and salt rejection by facile cross-linking. Desalination, 2016, 395, 1-7.	4.0	11
46	Increased Hydrogel Swelling Induced by Absorption of Small Molecules. ACS Applied Materials & Interfaces, 2016, 8, 14263-14270.	4.0	42

ARTICLE IF CITATIONS # Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange 4.1 100 47 membranes. Journal of Membrane Science, 2016, 508, 146-152. How can osmosis and solute diffusion be coupled for the simultaneous measurement of the solvent 48 4.0 and solute permeabilities of membranes?. Desalination, 2016, 387, 61-74. Effect of gamma irradiation at intermediate doses on the performance of reverse osmosis membranes. 49 1.4 12 Radiation Physics and Chemistry, 2016, 124, 241-245. Liquid methanol sorption, diffusion and permeation in charged and uncharged polymers. Polymer, 1.8 2016, 102, 281-291. Substantial Changes in the Transport Model of Reverse Osmosis and Nanofiltration by Incorporating Accurate Activity Data of Electrolytes. Industrial & amp; Engineering Chemistry Research, 2016, 55, 52 1.8 9 11139-11149. Semi-aromatic polyamides containing methylene and thioether units: synthesis and membrane properties. RSC Advances, 2016, 6, 99184-99194. 1.7 Sulfonated poly(arylene thioether sulfone) cation exchange membranes with improved 54 4.1 22 permselectivity/ion conductivity trade-off. Journal of Membrane Science, 2016, 520, 731-739. Modeling the water permeability and water/salt selectivity tradeoff in polymer membranes. Journal of 4.1 Membrane Science, 2016, 520, 790-800. Effect of Mg2+ ions on energy generation by Reverse Electrodialysis. Journal of Membrane Science, 56 4.1 82 2016, 520, 499-506. Statistical Mechanical Theory of Penetrant Diffusion in Polymer Melts and Glasses. Macromolecules, 2.2 2016, 49, 5727-5739. 2D nanostructures for water purification: graphene and beyond. Nanoscale, 2016, 8, 15115-15131. 58 2.8 318 A Method for the Efficient Fabrication of Multifunctional Mosaic Membranes by Inkjet Printing. ACS Applied Materials & amp; Interfaces, 2016, 8, 19772-19779. Materials for next-generation desalination and water purification membranes. Nature Reviews 60 23.3 1,977 Materials, 2016, 1, . Reverse electrodialysis., 2016, , 77-133. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment. 62 39 1.6 Scientific Reports, 2016, 6, 36078. Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithiumâ€lon Separation. Angewandte Chemie, 2016, 128, 15344-15348. Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure and Applied Chemistry, 2016, 88, 64 0.9 13 905-916. Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and 272 Selective Lithiumâ€Ion Separation. Angewandte Chemie - International Edition, 2016, 55, 15120-15124.

#	ARTICLE Rejection of ammonium and nitrate from sodium chloride solutions by nanofiltration: Effect of	IF	CITATIONS
66	dominant-salt concentration on the trace-ion rejection. Chemical Engineering Journal, 2016, 303, 401-408.	6.6	33
67	Evolution of micro-deformation in inner-selective thin film composite hollow fiber membranes and its implications for osmotic power generation. Journal of Membrane Science, 2016, 516, 104-112.	4.1	35
68	Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under compressed carbon dioxide. Polymer, 2016, 98, 100-109.	1.8	29
69	Experiments and Modeling of Boric Acid Permeation through Double-Skinned Forward Osmosis Membranes. Environmental Science & Technology, 2016, 50, 7696-7705.	4.6	19
70	Cross-Linked Disulfonated Poly(arylene ether sulfone) Telechelic Oligomers. 2. Elevated Transport Performance with Increasing Hydrophilicity. Industrial & Engineering Chemistry Research, 2016, 55, 1419-1426.	1.8	10
71	Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS Applied Materials & Interfaces, 2016, 8, 2097-2103.	4.0	113
72	Hydrothermally synthesized graphene and Fe ₃ O ₄ nanocomposites for high performance capacitive deionization. RSC Advances, 2016, 6, 11967-11972.	1.7	52
73	A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Advances, 2016, 6, 8134-8163.	1.7	107
74	Charged Polymer Membranes for Environmental/Energy Applications. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 111-133.	3.3	102
75	Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation. Physical Chemistry Chemical Physics, 2016, 18, 6021-6031.	1.3	148
76	Deviations from Electroneutrality in Membrane Barrier Layers: A Possible Mechanism Underlying High Salt Rejections. Langmuir, 2016, 32, 2644-2658.	1.6	15
77	The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. Environmental Science and Technology Letters, 2016, 3, 112-120.	3.9	527
78	Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 2016, 91, 104-114.	5.3	99
79	Recent trends in membranes and membrane processes for desalination. Desalination, 2016, 391, 43-60.	4.0	223
80	Pressure-retarded osmosis for power generation from salinity gradients: is it viable?. Energy and Environmental Science, 2016, 9, 31-48.	15.6	289
81	Thin film composite nanofiltration membranes fabricated from quaternized poly(ether ether ketone) with crosslinkable moiety using a benign solvent. Journal of Colloid and Interface Science, 2016, 463, 332-341.	5.0	10
82	Mixed Matrix Membranes for Water Purification Applications. Separation and Purification Reviews, 2017, 46, 62-80.	2.8	134
83	A Nafionâ€filled Polycarbonate Trackâ€Etched Composite Membrane with Enhanced Selectivity for Direct Methanol Fuel Cells, Fuel Cells, 2017, 17, 56-66	1.5	10

#	Article	IF	CITATIONS
84	Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16, 289-297.	13.3	831
85	Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. Journal of Membrane Science, 2017, 527, 121-128.	4.1	117

 $_{86}$ Improved electrical power production of thermally regenerative batteries using a poly(phenylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 e

87	Effect of post-polymerization anion-exchange on the rejection of uncharged aqueous solutes in nanoporous, ionic, lyotropic liquid crystal polymer membranes. Journal of Membrane Science, 2017, 529, 72-79.	4.1	25
88	When Salt-Rejecting Polymers Meet Protons: An Electrochemical Impedance Spectroscopy Investigation. Langmuir, 2017, 33, 1391-1397.	1.6	17
89	Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes. ACS Applied Materials & Interfaces, 2017, 9, 4044-4056.	4.0	126
90	Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. Environmental Science & Technology, 2017, 51, 2295-2303.	4.6	24
91	One-Step Assembly of Molecular Separation Membranes by Direct Atomizing Oligomers. ACS Applied Materials & Interfaces, 2017, 9, 4074-4083.	4.0	11
92	Measurable and Influential Parameters That Influence Corrosion Performance Differences between Multiwall Carbon Nanotube Coating Material Combinations and Model Parent Material Combinations Derived from Epoxy-Amine Matrix Materials. ACS Applied Materials & Interfaces, 2017, 9, 6356-6368.	4.0	12
93	Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes. Journal of Materials Chemistry A, 2017, 5, 4638-4650.	5.2	105
94	Monovalent and divalent ion sorption in a cation exchange membrane based on cross-linked poly (p-styrene sulfonate-co-divinylbenzene). Journal of Membrane Science, 2017, 535, 132-142.	4.1	64
95	Isomeric influences of naphthalene based sulfonated poly(arylene ether sulfone) membranes for energy generation using reverse electrodialysis and polymer electrolyte membrane fuel cell. Journal of Membrane Science, 2017, 535, 35-44.	4.1	24
96	Adsorption of polyelectrolyte multilayers imparts high monovalent/divalent cation selectivity to aliphatic polyamide cation-exchange membranes. Journal of Membrane Science, 2017, 537, 177-185.	4.1	45
97	The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes. Macromolecules, 2017, 50, 3831-3840.	2.2	249
98	Ultrathin Alginate Coatings as Selective Layers for Nanofiltration Membranes with High Performance. ChemSusChem, 2017, 10, 2788-2795.	3.6	35
99	Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes. Journal of Membrane Science, 2017, 535, 357-364.	4.1	58
100	The Role of Experimental Factors in Membrane Permselectivity Measurements. Industrial & Engineering Chemistry Research, 2017, 56, 7559-7566.	1.8	27
101	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	6.0	1,864

#	Article	IF	CITATIONS
102	Accounting for frame of reference and thermodynamic non-idealities when calculating salt diffusion coefficients in ion exchange membranes. Journal of Membrane Science, 2017, 537, 396-406.	4.1	46
103	Self-organized microporous cellulose-nylon membranes. Polymer, 2017, 120, 255-263.	1.8	7
104	Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination, 2017, 420, 330-383.	4.0	214
105	Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide. Applied Surface Science, 2017, 413, 99-108.	3.1	131
106	Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 612-622.	2.4	21
107	Decoupling energetic modifications to diffusion from free volume in polymer/nanoparticle composites. Soft Matter, 2017, 13, 677-685.	1.2	6
108	Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: Selectivity and implications for treatment. Journal of Membrane Science, 2017, 543, 319-327.	4.1	34
109	Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited. Journal of Membrane Science, 2017, 544, 425-435.	4.1	93
110	Synthesis and transport of impurities in electrodialysis metathesis: Production of choline dihydrogen phosphate. Journal of Membrane Science, 2017, 541, 550-557.	4.1	16
111	Multicomponent transport of alcohols in an anion exchange membrane measured by in-situ ATR FTIR spectroscopy. Polymer, 2017, 123, 144-152.	1.8	22
112	In situ monitoring the change of mechanical response induced by the diffusion of saline water in glassy cellulose acetate. Desalination, 2017, 420, 191-207.	4.0	4
113	Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	56
114	Sulfonic Membrane Sorption and Permeation Properties: Complementary Approaches to Select a Membrane for Pervaporation. Journal of Physical Chemistry B, 2017, 121, 8523-8538.	1.2	3
115	Structure-property relationships of crosslinked disulfonated poly(arylene ether sulfone) membranes for desalination of water. Polymer, 2017, 132, 286-293.	1.8	11
116	Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions. Journal of Chemical Physics, 2017, 146, 194906.	1.2	29
117	Wearable and Washable Conductors for Active Textiles. ACS Applied Materials & Interfaces, 2017, 9, 25542-25552.	4.0	118
118	Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydrate Polymers, 2017, 174, 658-668.	5.1	83
119	A large deformation poroplasticity theory for microporous polymeric materials. Journal of the Mechanics and Physics of Solids, 2017, 98, 126-155.	2.3	15

#	Article	IF	CITATIONS
120	An analytical solution of the solution-diffusion-electromigration equations reproduces trends in ion rejections during nanofiltration of mixed electrolytes. Journal of Membrane Science, 2017, 523, 361-372.	4.1	35
121	Can batch or semi-batch processes save energy in reverse-osmosis desalination?. Desalination, 2017, 402, 109-122.	4.0	105
122	Autoclave foaming of chemically modified polylactide. Journal of Cellular Plastics, 2017, 53, 481-489.	1.2	10
123	Critical aspects of RO desalination: A combination strategy. Desalination, 2017, 401, 68-87.	4.0	40
124	The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation. Membranes, 2017, 7, 54.	1.4	78
125	Effect of Different Salts on Mass Transfer Coefficient and Inorganic Fouling of TFC Membranes. Journal of Membrane Science & Technology, 2017, 07, .	0.5	5
126	Transport of small and neutral solutes through reverse osmosis membranes: Role of skin layer conformation of the polyamide film. Journal of Membrane Science, 2018, 554, 301-308.	4.1	33
127	Impact of solution composition on the resistance of ion exchange membranes. Journal of Membrane Science, 2018, 554, 39-47.	4.1	55
128	Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. Journal of Membrane Science, 2018, 551, 315-325.	4.1	36
129	Large-scale polymeric carbon nanotube membranes with sub–1.27-nm pores. Science Advances, 2018, 4, e1700938.	4.7	46
130	Benzimidazole-based dendritic nanofiltration membranes. Iranian Polymer Journal (English Edition), 2018, 27, 225-237.	1.3	6
131	Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property. Journal of Membrane Science, 2018, 554, 221-231.	4.1	41
132	Time-Dependent Behavior of Cation Transport through Cellulose Acetate-Cationic Polyelectrolyte Membranes. Journal of the Electrochemical Society, 2018, 165, H39-H44.	1.3	0
133	Anomalous toluene transport in model segmented polyurethane–urea/clay nanocomposites. Soft Matter, 2018, 14, 3870-3881.	1.2	8
134	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
135	Tuning the Morphology of an Acrylate-Based Metallo-Supramolecular Network: From Vesicles to Cylinders. Macromolecules, 2018, 51, 1636-1643.	2.2	11
136	Increasing salt size selectivity in low water content polymers via polymer backbone dynamics. Journal of Membrane Science, 2018, 552, 43-50.	4.1	24
137	Hybrid organic-inorganic anion-exchange pore-filled membranes for the recovery of nitric acid from highly acidic aqueous waste streams. Water Research, 2018, 133, 87-98.	5.3	27

#	Article	IF	CITATIONS
138	Hydrogen Evolution at the Buried Interface between Pt Thin Films and Silicon Oxide Nanomembranes. ACS Catalysis, 2018, 8, 1767-1778.	5.5	48
139	Novel Dimensionally Controlled Nanopore Forming Template in Forward Osmosis Membranes. Environmental Science & Technology, 2018, 52, 2704-2716.	4.6	48
140	Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination, 2018, 433, 132-140.	4.0	70
141	MoS 2 /polyelectrolytes hybrid nanofiltration (NF) membranes with enhanced permselectivity. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 196-202.	2.7	31
142	Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures. Journal of Physical Chemistry B, 2018, 122, 3465-3479.	1.2	20
143	Water and Salt Transport Properties of Triptycene-Containing Sulfonated Polysulfone Materials for Desalination Membrane Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 4102-4112.	4.0	45
144	Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Scientific Reports, 2018, 8, 784.	1.6	131
145	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	11.1	85
146	Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. Journal of Membrane Science, 2018, 550, 348-356.	4.1	47
147	Immobilization of poly(N-acryoyl morpholine) via hydrogen-bonded interactions for improved separation and antifouling properties of poly(vinylidene fluoride) membranes. Reactive and Functional Polymers, 2018, 123, 80-90.	2.0	18
148	Salt sorption on regenerated cellulosic fibers: electrokinetic measurements. Cellulose, 2018, 25, 3307-3314.	2.4	8
149	Polymersomes-based high-performance reverse osmosis membrane for desalination. Journal of Membrane Science, 2018, 555, 177-184.	4.1	53
150	Cationic diodes by hot-pressing of Fumasep FKS-30 ionomer film onto a microhole in polyethylene terephthalate (PET). Journal of Electroanalytical Chemistry, 2018, 815, 114-122.	1.9	10
151	The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO 2 purging versus three different antiscalants. Journal of Membrane Science, 2018, 546, 61-69.	4.1	32
152	Boron transfer during desalination by electrodialysis. Journal of Membrane Science, 2018, 547, 64-72.	4.1	22
153	Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 2018, 547, 123-133.	4.1	119
154	Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner's guide. Reviews in Chemical Engineering, 2018, 34, 455-479.	2.3	29
155	Polyimide-graphene oxide nanofiltration membrane: Characterizations and application in enhanced high concentration salt removal. Chemical Engineering Science, 2018, 177, 218-233.	1.9	35

#	Article	IF	Citations
156	Permeation mechanism and interplay between ions in nanofiltration. Journal of Membrane Science, 2018, 548, 449-458.	4.1	32
157	Dynamics of overall swelling profile of multiresponsive ionic dimethylacrylamide-based hydrogels and cryogels: Diffusion characteristics evaluation of salt-dependent swelling. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 597-611.	1.8	1
158	Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance. Membranes, 2018, 8, 111.	1.4	16
159	High Selectivities among Monovalent Cations in Dialysis through Cation-Exchange Membranes Coated with Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces, 2018, 10, 44134-44143.	4.0	37
160	Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes. Macromolecules, 2018, 51, 9222-9233.	2.2	22
161	Study of Mass Transfer during Reverse-Osmosis Demineralization of Dilute Solutions of Strong Electrolytes. Petroleum Chemistry, 2018, 58, 1107-1112.	0.4	0
162	Impact of cross-linking of polymers on transport of salt and water in polyelectrolyte membranes: A mesoscopic simulation study. Journal of Chemical Physics, 2018, 149, 224902.	1.2	10
163	Design Strategy for Zinc Anodes with Enhanced Utilization and Retention: Electrodeposited Zinc Oxide on Carbon Mesh Protected by Ionomeric Layers. ACS Applied Energy Materials, 0, , .	2.5	15
164	Electrodialysis-based desalination and reuse of sea and brackish polymer-flooding produced water. Desalination, 2018, 447, 120-132.	4.0	49
165	Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes. ACS Applied Materials & Interfaces, 2018, 10, 39745-39756.	4.0	72
166	Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. Reactive and Functional Polymers, 2018, 133, 126-135.	2.0	20
167	New crosslinked poly (ionic liquid) cryogels for fast removal of methylene blue from waste water. Reactive and Functional Polymers, 2018, 131, 420-429.	2.0	19
168	Equilibrium ion partitioning between aqueous salt solutions and inhomogeneous ion exchange membranes. Desalination, 2018, 446, 31-41.	4.0	35
169	Reverse Electrodialysis for energy production from natural river water and seawater. Energy, 2018, 165, 512-521.	4.5	66
170	Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy, 2018, 53, 643-649.	8.2	144
171	Effect of fixed charge group concentration on salt permeability and diffusion coefficients in ion exchange membranes. Journal of Membrane Science, 2018, 566, 307-316.	4.1	34
172	Application of a constant hole volume Sanchez–Lacombe equation of state to mixtures relevant to polymeric foaming. Soft Matter, 2018, 14, 4603-4614.	1.2	16
173	Outlook for graphene-based desalination membranes. Npj Clean Water, 2018, 1, .	3.1	142

#	Article	IF	CITATIONS
174	Graphene Oxideâ€Based Polymeric Membranes for Water Treatment. Advanced Materials Interfaces, 2018, 5, 1701427.	1.9	70
175	Specific co-ion sorption and diffusion properties influence membrane permselectivity. Journal of Membrane Science, 2018, 563, 492-504.	4.1	49
176	Permselectivity limits of biomimetic desalination membranes. Science Advances, 2018, 4, eaar8266.	4.7	72
177	Water/salt transport properties of organic/inorganic hybrid films based on cellulose triacetate. Journal of Membrane Science, 2018, 563, 571-583.	4.1	17
178	Graphene Oxide Sieving Membrane for Improved Cycle Life in Highâ€Efficiency Redoxâ€Mediated Li–O ₂ batteries. Small, 2018, 14, e1801456.	5.2	30
179	The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic liquids as draw solutes for forward osmosis. Desalination, 2018, 444, 94-106.	4.0	33
180	Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam. Journal of Materials Science, 2018, 53, 16132-16145.	1.7	20
181	Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. , 2018, , 25-70.		31
182	Water and ion sorption in a series of cross-linked AMPS/PEGDA hydrogel membranes. Polymer, 2018, 146, 196-208.	1.8	32
183	A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. Environmental Science & Technology, 2018, 52, 10737-10747.	4.6	36
184	Blocking Polysulfides and Facilitating Lithium-Ion Transport: Polystyrene Sulfonate@HKUST-1 Membrane for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30451-30459.	4.0	69
185	Swelling and Diffusion during Methanol Sorption into Hydrated Nafion. Journal of Physical Chemistry B, 2018, 122, 8255-8268.	1.2	16
186	Feasibility of forward osmosis using ultra low pressure RO membrane and Glauber salt as draw solute for wastewater treatment. Journal of Environmental Chemical Engineering, 2018, 6, 5635-5644.	3.3	21
187	Diffusivity of Mono- and Divalent Salts and Water in Polyelectrolyte Desalination Membranes. Journal of Physical Chemistry B, 2018, 122, 8098-8110.	1.2	16
188	Electrolyte transport in polymer barrier coatings: perspectives from other disciplines. Progress in Organic Coatings, 2018, 124, 41-48.	1.9	21
189	Reversal of Salt Concentration Dependencies of Salt and Water Diffusivities in Polymer Electrolyte Membranes. ACS Macro Letters, 2018, 7, 739-744.	2.3	32
190	Versatile Amorphous Structures of Phosphonate Metalâ`'Organic Framework/Alginate Composite for Tunable Sieving of Ions. Advanced Functional Materials, 2019, 29, 1904016.	7.8	20
191	Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. E-Polymers, 2019, 19, 297-304.	1.3	22

#	Article	IF	CITATIONS
192	Activity-derived model for water and salt transport in reverse osmosis membranes: A combination of film theory and electrolyte theory. Desalination, 2019, 469, 114094.	4.0	14
193	Engineering Selective Desalination Membranes via Molecular Control of Polymer Functional Groups. Environmental Science and Technology Letters, 2019, 6, 462-466.	3.9	22
194	Next-Generation Asymmetric Membranes Using Thin-Film Liftoff. Nano Letters, 2019, 19, 5036-5043.	4.5	28
195	Functional group configuration influences salt transport in desalination membrane materials. Journal of Membrane Science, 2019, 590, 117295.	4.1	17
196	Evaluation of a nanoporous lyotropic liquid crystal polymer membrane for the treatment of hydraulic fracturing produced water via cross-flow filtration. Journal of Membrane Science, 2019, 592, 117313.	4.1	19
198	Influence of membrane characteristics on performance in soil-membrane-water subsurface desalination irrigation systems. Journal of Water Process Engineering, 2019, 32, 100984.	2.6	3
199	A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration. Journal of Environmental Chemical Engineering, 2019, 7, 102824.	3.3	33
200	Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology. Accounts of Chemical Research, 2019, 52, 2745-2755.	7.6	134
201	Simultaneous Recovery of Metal Ions and Electricity Harvesting via K-Carrageenan@ZIF-8 Membrane. ACS Applied Materials & Interfaces, 2019, 11, 34039-34045.	4.0	23
202	Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. Environmental Science & Technology, 2019, 53, 11066-11079.	4.6	126
203	Polymerization of Counteranions in the Cationic Nanopores of a Cross-linked Lyotropic Liquid Crystal Network to Modify Ion Transport Properties. , 2019, 1, 452-458.		10
204	Influence of Water Uptake, Charge, Manning Parameter, and Contact Angle on Water and Salt Transport in Commercial Ion Exchange Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 18663-18674.	1.8	27
205	Leaching Behavior and Corrosion Inhibition of a Rare Earth Carboxylate Incorporated Epoxy Coating System. ACS Applied Materials & Interfaces, 2019, 11, 36154-36168.	4.0	26
206	Aqueous Nanoclusters Govern Ion Partitioning in Dense Polymer Membranes. ACS Nano, 2019, 13, 11224-11234.	7.3	20
207	Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater before Anaerobic Digestion: A Pilot Scale Study. Membranes, 2019, 9, 97.	1.4	24
208	CuFe2O4 magnetic nanoparticles to improve the ionic transfer properties of electrodialysis heterogeneous cation exchange membrane. Ionics, 2019, 25, 1725-1734.	1.2	2
209	Ion partitioning between brines and ion exchange polymers. Polymer, 2019, 165, 91-100.	1.8	36
210	Self assembled, sulfonated pentablock copolymer cation exchange coatings for membrane capacitive deionization. Molecular Systems Design and Engineering, 2019, 4, 348-356.	1.7	19

#	Article	IF	CITATIONS
211	Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 2019, 455, 100-114.	4.0	210
212	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) Diacrylate.1. Ion sorption. Polymer, 2019, 178, 121554.	1.8	25
213	Transport Characteristics of Homogeneous and Heterogeneous Ion-Exchange Membranes in Sodium Chloride, Calcium Chloride, and Sodium Sulfate Solutions. Membranes and Membrane Technologies, 2019, 1, 168-182.	0.6	29
214	Synthesis and characterization of post-sulfonated poly(arylene ether sulfone) membranes for potential applications in water desalination. Polymer, 2019, 177, 250-261.	1.8	17
215	Polysulfone–Ceria Mixed-Matrix Membrane with Enhanced Radiation Resistance Behavior. ACS Applied Polymer Materials, 2019, 1, 1854-1865.	2.0	19
216	Monte Carlo Simulations of Framework Defects in Layered Two-Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. Environmental Science & Technology, 2019, 53, 6214-6224.	4.6	80
217	Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal. Chemical Engineering Research and Design, 2019, 147, 222-231.	2.7	36
218	Li leaching from Lithium Carbonate-primer: An emerging perspective of transport pathway development. Progress in Organic Coatings, 2019, 134, 103-118.	1.9	15
219	Molecular Insights into the Composition–Structure–Property Relationships of Polyamide Thin Films for Reverse Osmosis Desalination. Environmental Science & Technology, 2019, 53, 6374-6382.	4.6	39
220	Measuring the permeability of thin solid layers of natural waxes. Journal of Colloid and Interface Science, 2019, 551, 270-282.	5.0	12
221	Codeposition Modification of Cation Exchange Membranes with Dopamine and Crown Ether To Achieve High K ⁺ Electrodialysis Selectivity. ACS Applied Materials & Interfaces, 2019, 11, 17730-17741.	4.0	61
222	Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy. Journal of Membrane Science, 2019, 583, 248-257.	4.1	35
223	Modelling nanofiltration of electrolyte solutions. Advances in Colloid and Interface Science, 2019, 268, 39-63.	7.0	78
224	Anomalous Dynamics of Water in Polyamide Matrix. Journal of Physical Chemistry B, 2019, 123, 3086-3095.	1.2	8
225	Preparation and characterization of crosslinked poly(vinylimidazolium) anion exchange membranes for artificial photosynthesis. Journal of Materials Chemistry A, 2019, 7, 23818-23829.	5.2	21
226	Effect of Water Content on Sodium Chloride Sorption in Cross-Linked Cation Exchange Membranes. Macromolecules, 2019, 52, 2569-2579.	2.2	14
227	Improving the conductivity and permselectivity of ion-exchange membranes by introduction of inorganic oxide nanoparticles: impact of acid–base properties. Colloid and Polymer Science, 2019, 297, 741-748.	1.0	29
228	Ultraâ€thin skin carbon hollow fiber membranes for sustainable molecular separations. AICHE Journal, 2019, 65, e16611.	1.8	36

	Сітатіог	n Report	
#	Article	IF	CITATIONS
229	Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance. Separation and Purification Technology, 2019, 221, 201-210.	3.9	66
230	Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. Journal of Membrane Science, 2019, 580, 316-326.	4.1	146
231	Electrospun Nanofibrous Membranes for Desalination. , 2019, , 81-104.		13
232	Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 2019, 11, 306.	2.0	118
234	<i>110th Anniversary:</i> The Dehydration and Loss of Ionic Conductivity in Anion Exchange Membranes Due to FeCl ₄ [–] Ion Exchange and the Role of Membrane Microstructure. Industrial & Engineering Chemistry Research, 2019, 58, 22250-22259.	1.8	9
235	Preparation of a novel double-skinned forward osmosis membrane by reserve draw solute in support layer. Environmental Science: Water Research and Technology, 2019, 5, 2124-2131.	1.2	1
236	Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nature Communications, 2019, 10, 5793.	5.8	317
237	Non-destructive analysis of polymers and polymer-based materials by compact NMR. Magnetic Resonance Imaging, 2019, 56, 119-125.	1.0	13
238	High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization. Journal of Materials Science, 2019, 54, 886-900.	1.7	38
239	Elucidating the relationship between states of water and ion transport properties in hydrated polymers. Journal of Membrane Science, 2019, 574, 299-308.	4.1	33
240	Transport of <i>N</i> -Nitrosamines through a Reverse Osmosis Membrane: Role of Molecular Size and Nitrogen Atoms. Environmental Science and Technology Letters, 2019, 6, 44-48.	3.9	22
241	Modelling of Ion Transport in Electromembrane Systems: Impacts of Membrane Bulk and Surface Heterogeneity. Applied Sciences (Switzerland), 2019, 9, 25.	1.3	43
242	Water content, relative permittivity, and ion sorption properties of polymers for membrane desalination. Journal of Membrane Science, 2019, 574, 24-32.	4.1	37
243	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	7.8	116
244	Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. Journal of Membrane Science, 2019, 572, 668-675.	4.1	36
245	Characterization of transport through polymers for fracking fluid treatment and organic acid concentration in extractive membrane bioreactors. Journal of Chemical Technology and Biotechnology, 2019, 94, 690-700.	1.6	5
246	Poly(hydroxyamide) as support for thin-film composite membranes for water treatment. Polymer Bulletin, 2019, 76, 4613-4625.	1.7	1
247	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	3.2	140

#	Article	IF	CITATIONS
248	Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations. Electrochimica Acta, 2019, 295, 164-172.	2.6	26
249	Pore size tailoring from ultrafiltration to nanofiltration with PVC-g-PDMA via rapid immersion thermal annealing. Journal of Membrane Science, 2019, 572, 401-409.	4.1	19
250	A novel poly(arylene ether nitrile) ultrafiltration membrane for water purification and its antifouling property with in situ-generated SiO ₂ nanoparticles. High Performance Polymers, 2019, 31, 977-985.	0.8	6
251	Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae. Separation and Purification Technology, 2019, 212, 611-618.	3.9	37
252	Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 2019, 573, 668-681.	4.1	81
253	ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. Journal of Membrane Science, 2019, 570-571, 23-33.	4.1	146
254	Fabrication of new type of barium ferrite/copper oxide composite nanoparticles blended polyvinylchloride based heterogeneous ion exchange membrane. Arabian Journal of Chemistry, 2020, 13, 2470-2482.	2.3	16
255	Dielectric Permittivity Properties of Hydrated Polymers: Measurement and Connection to Ion Transport Properties. Industrial & Engineering Chemistry Research, 2020, 59, 5205-5217.	1.8	24
256	Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination. Separation and Purification Technology, 2020, 235, 116134.	3.9	54
257	Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy. Polymer Bulletin, 2020, 77, 3411-3427.	1.7	7
258	An improved model for membrane characterization in forward osmosis. Journal of Membrane Science, 2020, 598, 117668.	4.1	25
259	Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 2020, 596, 117604.	4.1	138
260	Interactions between feed solutes and inorganic electrolytic draw solutes in forward osmosis. Journal of Membrane Science, 2020, 597, 117636.	4.1	6
261	High-Performance Polyamide Thin-Film Nanocomposite Membranes Containing ZIF-8/CNT Hybrid Nanofillers for Reverse Osmosis Desalination. Industrial & Engineering Chemistry Research, 2020, 59, 5324-5332.	1.8	55
262	Transport of Neutral and Charged Solutes in Imidazolium-Functionalized Poly(phenylene oxide) Membranes for Artificial Photosynthesis. Industrial & Engineering Chemistry Research, 2020, 59, 5257-5266.	1.8	17
263	On operation of reverse electrodialysis (RED) and membrane capacitive deionisation (MCDI) with natural saline streams: A critical review. Desalination, 2020, 476, 114183.	4.0	42
264	Ion mobility and partition determine the counter-ion selectivity of ion exchange membranes. Journal of Membrane Science, 2020, 597, 117645.	4.1	49
265	Physicochemical stability of contact lenses materials for biomedical applications. Journal of Optometry, 2020, 13, 120-127.	0.7	4

#	Article	IF	CITATIONS
266	PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. Journal of Membrane Science, 2020, 596, 117724.	4.1	87
267	Performance of low pressure nanofiltration membrane in forward osmosis using magnesium chloride as draw solute. Journal of Water Process Engineering, 2020, 33, 101092.	2.6	16
268	Upgrading polyamide TFC BWRO and SWRO membranes to higher SWRO membrane performance via surface nano-structuring with tethered poly(acrylic acid). Journal of Membrane Science, 2020, 597, 117736.	4.1	13
269	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	13.3	237
270	"Nonstick―Membranes Prepared by Facile Surface Fluorination for Water Purification. Industrial & Engineering Chemistry Research, 2020, 59, 5307-5314.	1.8	7
271	Water and salt transport properties of the cellulose triacetate/reduced graphene oxide nanocomposite membranes. Polymer, 2020, 210, 122976.	1.8	10
272	Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. Journal of Materials Chemistry A, 2020, 8, 21862-21871.	5.2	33
273	Concentration of lithium by forward osmosis. Hydrometallurgy, 2020, 197, 105485.	1.8	17
274	Effect of chemistry and geometry of GO nanochannels on the Li ion selectivity and recovery. Desalination, 2020, 496, 114729.	4.0	42
275	Enhanced micropollutants removal by nanofiltration and their environmental risks in wastewater reclamation: A pilot-scale study. Science of the Total Environment, 2020, 744, 140954.	3.9	21
276	Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 14189-14206.	1.8	28
277	Ionization behavior of nanoporous polyamide membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30191-30200.	3.3	82
278	Co-ion specific effect on sodium halides sorption and transport in a cross-linked poly(p-styrene) Tj ETQq0 0 0 rgBT 118410.	/Overlock 4.1	8 10 Tf 50 26 8
279	Multicomponent transport of methanol and acetate in a series of crosslinked PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 2020, 614, 118486.	4.1	10
280	Advanced Characterization in Clean Water Technologies. Joule, 2020, 4, 1637-1659.	11.7	33
281	Multicomponent transport of methanol and sodium acetate in poly(ethylene glycol) diacrylate membranes of varied fractional free volume. European Polymer Journal, 2020, 134, 109809.	2.6	14
282	Functionalized Carbon Nanotube-Mediated Transport in Membranes Containing Fixed-Site Carriers for Fast Pervaporation Desalination. ACS Applied Materials & amp; Interfaces, 2020, 12, 50918-50928.	4.0	13
283	Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS Nano, 2020, 14, 10894-10916.	7.3	72

#	Article	IF	CITATIONS
284	Transport Models of Ammonium Nitrogen in Wastewater from Rare Earth Smelteries by Reverse Osmosis Membranes. Sustainability, 2020, 12, 6230.	1.6	10
285	Using reverse osmosis membranes to control ion transport during water electrolysis. Energy and Environmental Science, 2020, 13, 3138-3148.	15.6	49
286	Corrosion of Copper Wire bonded Packages by Chlorine Containing Foreign Particles. , 2020, , .		10
287	Transport and Electrochemical Characteristics of CJMCED Homogeneous Cation Exchange Membranes in Sodium Chloride, Calcium Chloride, and Sodium Sulfate Solutions. Membranes, 2020, 10, 165.	1.4	16
288	Thermoresponsive Al3+-crosslinked poly(N-isopropylacrylamide)/alginate composite for green recovery of lithium from Li-spiked seawater. Green Energy and Environment, 2022, 7, 334-344.	4.7	9
289	Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. ACS Macro Letters, 2020, 9, 1709-1717.	2.3	62
290	Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. Journal of the American Chemical Society, 2020, 142, 9827-9833.	6.6	41
291	Recovery of ammonium and phosphate using battery deionization in a background electrolyte. Environmental Science: Water Research and Technology, 2020, 6, 1688-1696.	1.2	13
292	Light-gated cation-selective transport in metal–organic framework membranes. Journal of Materials Chemistry A, 2020, 8, 11399-11405.	5.2	54
293	Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. ACS Applied Materials & amp; Interfaces, 2020, 12, 25304-25315.	4.0	101
294	Tuning thin-film composite reverse osmosis membranes using deep eutectic solvents and ionic liquids toward enhanced water permeation. Journal of Membrane Science, 2020, 610, 118267.	4.1	30
295	Comparative impact of <scp>SiO₂</scp> and <scp>TiO₂</scp> nanofillers on the performance of thinâ€film nanocomposite membranes. Journal of Applied Polymer Science, 2020, 137, 49382.	1.3	16
296	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) diacrylate.2. Ion diffusion. Polymer, 2020, 192, 122316.	1.8	21
297	On the permselectivity of di- and mono-valent cations: Influence of applied current density and ionic species concentration. Desalination, 2020, 488, 114521.	4.0	17
298	A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. Journal of Environmental Management, 2020, 270, 110909.	3.8	101
299	Measurement of moisture-dependent ion diffusion constants in wood cell wall layers using time-lapse micro X-ray fluorescence microscopy. Scientific Reports, 2020, 10, 9919.	1.6	18
300	Zirconium Metal–Organic Framework Materials for Efficient Ion Adsorption and Sieving. Industrial & Engineering Chemistry Research, 2020, 59, 12907-12923.	1.8	60
301	Advances in Membrane Materials and Processes for Water and Wastewater Treatment. ACS Symposium Series, 2020, , 3-35.	0.5	13

#	Article	IF	Citations
302	Effects of fixed charge group physicochemistry on anion exchange membrane permselectivity and ion transport. Physical Chemistry Chemical Physics, 2020, 22, 7283-7293.	1.3	20
303	Evaluation of the Zero Shear Viscosity, the D-Content and Processing Conditions as Foam Relevant Parameters for Autoclave Foaming of Standard Polylactide (PLA). Materials, 2020, 13, 1371.	1.3	20
304	Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 2020, 604, 117998.	4.1	31
305	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie, 2020, 132, 9651-9660.	1.6	20
306	The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy and Environmental Science, 2020, 13, 1694-1710.	15.6	206
307	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie - International Edition, 2020, 59, 9564-9573.	7.2	145
308	Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research, 2020, 175, 115681.	5.3	43
309	Influence of casting substrate on bulk morphology and vanadium ion transport in ionomer nanocomposites. Journal of Applied Physics, 2020, 127, 174701.	1.1	2
310	Ultrathin, long-term stable, solid-state reference electrode enabled by enhanced interfacial adhesion and conformal coating of AgCl. Sensors and Actuators B: Chemical, 2020, 309, 127761.	4.0	21
311	Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination. Journal of Membrane Science, 2020, 613, 118460.	4.1	28
312	Hydrocarbon separations by glassy polymer membranes. Journal of Polymer Science, 2020, 58, 2482-2517.	2.0	29
313	Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation. Journal of the Electrochemical Society, 2020, 167, 013548.	1.3	27
314	Capillary-driven desalination in a synthetic mangrove. Science Advances, 2020, 6, eaax5253.	4.7	47
315	Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. Environmental Science & Technology, 2020, 54, 3628-3635.	4.6	32
316	Engineering Leaf-Like UiO-66-SO3H Membranes for Selective Transport of Cations. Nano-Micro Letters, 2020, 12, 51.	14.4	64
317	Experimental characterization of polymeric membranes for selective ion transport. Current Opinion in Chemical Engineering, 2020, 28, 36-42.	3.8	22
318	Role of free volume in molecular mobility and performance of glassy polymers for corrosion-protective coatings. Corrosion Engineering Science and Technology, 2020, 55, 145-158.	0.7	11
319	Advanced porous polymer membranes from self-assembling block copolymers. Progress in Polymer Science, 2020, 102, 101219.	11.8	119

#	Article	IF	CITATIONS
320	Pervaporative desalination of concentrated brine solution employing crosslinked PVA/silicate nanoclay membranes. Chemical Engineering Research and Design, 2020, 155, 229-238.	2.7	22
321	lon partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 2020, 277, 102107.	7.0	47
322	A novel mixed matrix membrane framework for ultrafast cation sieving. Chemical Communications, 2020, 56, 6543-6546.	2.2	7
323	Poly-hydroxyethylidene-1,1-diphosphonic acid (PHEDP) as a highly effective water-retentive and proton-conductive material for low-humidity proton exchange membranes. Journal of Membrane Science, 2020, 606, 118144.	4.1	8
324	Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part I. Thermodynamic Model and Validation. Journal of the Electrochemical Society, 2020, 167, 013547.	1.3	29
325	Relating Geometric Nanoconfinement and Local Molecular Environment to Diffusion in Ionic Polymer Membranes. Macromolecules, 2020, 53, 3296-3305.	2.2	16
326	Conductivity, permeability, and stability properties of chemically tailored poly(phenylene oxide) membranes for Li+ conductive non-aqueous redox flow battery separators. Journal of Power Sources, 2020, 460, 228107.	4.0	18
327	Stepwise ammonium enrichment using selective battery electrodes. Environmental Science: Water Research and Technology, 2020, 6, 1649-1657.	1.2	8
328	Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning's counter-ion condensation theory. Journal of Membrane Science, 2021, 620, 118411.	4.1	35
329	A Brief Review on Highâ€Performance Capacitive Deionization Enabled by Intercalation Electrodes. Global Challenges, 2021, 5, 2000054.	1.8	26
330	Carbon Nanopore-Tailored Reverse Osmotic Water Desalination. ACS ES&T Water, 2021, 1, 34-47.	2.3	15
331	lonic conductivity of ion-exchange membranes: Measurement techniques and salt concentration dependence. Journal of Membrane Science, 2021, 618, 118718.	4.1	28
332	Recent advances in high-performance TFC membranes: A review of the functional interlayers. Desalination, 2021, 500, 114869.	4.0	127
333	Overcoming the permeability-selectivity trade-off of desalination membranes via controlled solvent activation. Journal of Membrane Science, 2021, 620, 118870.	4.1	37
334	Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. Water Research, 2021, 189, 116666.	5.3	40
335	Influence of Salt Concentration on Hydrated Polymer Relative Permittivity and State of Water Properties. Macromolecules, 2021, 54, 637-646.	2.2	14
336	Membrane Technology for Desalination and Wastewater Recycling. Energy, Environment, and Sustainability, 2021, , 137-156.	0.6	1
337	Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks. Macromolecules, 2021, 54, 866-873.	2.2	9

#	Article	IF	CITATIONS
338	Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 2021, 1, 851-864.	3.7	81
339	Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. , 2021, , 163-185.		Ο
340	Feed Temperature Effects on Organic Fouling of Reverse Osmosis Membranes: Competition of Interfacial and Transport Properties. ACS ES&T Engineering, 2021, 1, 591-602.	3.7	7
341	Toward predictive permeabilities: Experimental measurements and multiscale simulation of methanol transport in Nafion. Journal of Polymer Science, 2021, 59, 594-613.	2.0	6
342	Novel Proton Exchange Membrane with Long-Range Acid–Base-Pair Proton Transfer Pathways Based on Functionalized Polyethyleneimine. ACS Sustainable Chemistry and Engineering, 2021, 9, 3963-3974.	3.2	16
343	Comonomer effects on co-permeation of methanol and acetate in cation exchange membranes. European Polymer Journal, 2021, 147, 110307.	2.6	11
344	Amphiphilic poly(arylene ether sulfone) multiblock copolymers with quaternary ammonium groups for novel thin-film composite nanofiltration membranes. Polymer, 2021, 217, 123446.	1.8	5
345	Crosslinked electrospun composite membranes of poly(vinyl alcohol) and poly(vinyl chloride): tunable mechanical properties, porosity and performance. Polymer International, 2021, 70, 1495-1507.	1.6	2
346	Nanofiltration of Multi-Ion Solutions: Quantitative Control of Concentration Polarization and Interpretation by Solution-Diffusion-Electro-Migration Model. Membranes, 2021, 11, 272.	1.4	6
347	Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. Chemistry Letters, 2021, 50, 697-710.	0.7	7
348	Effect of pressure and temperature on solvent transport across nanofiltration and reverse osmosis membranes: An activity-derived transport model. Desalination, 2021, 501, 114905.	4.0	13
349	Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery. ACS Applied Materials & Interfaces, 2021, 13, 16906-16915.	4.0	70
350	Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization. Chinese Journal of Chemical Engineering, 2022, 45, 194-202.	1.7	6
351	A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings. Polymers, 2021, 13, 1517.	2.0	18
352	Chain and Solvent Dynamics in Polymer Membrane Films Supported on a Polymeric Substrate. ACS Applied Polymer Materials, 2021, 3, 3164-3174.	2.0	1
353	Advances in the Understanding of the Transfer of Saccharides through NF Membranes in the Presence of Electrolytes by Coupling Quantum Mechanics and Thermodynamic Methods. Membranes, 2021, 11, 341.	1.4	1
354	A Dopamine/Tannic-Acid-Based Co-Deposition Combined with Phytic Acid Modification to Enhance the Anti-Fouling Property of RO Membrane. Membranes, 2021, 11, 342.	1.4	11
355		1.3	0

#	Article	IF	CITATIONS
356	Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination. Separation and Purification Technology, 2021, 265, 118526.	3.9	18
357	Acid and metal reclamation from mining effluents: Current practices and future perspectives towards sustainability. Journal of Environmental Chemical Engineering, 2021, 9, 105169.	3.3	19
358	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
359	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	1.7	14
360	Multistage electrodialysis for desalination of natural seawater. Desalination, 2021, 505, 114973.	4.0	75
361	Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules, 2021, 26, 3331.	1.7	26
362	Zwitterionic Ion-Selective Membranes with Tunable Subnanometer Pores and Excellent Fouling Resistance. Chemistry of Materials, 2021, 33, 4408-4416.	3.2	34
363	Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. Reviews in Chemical Engineering, 2022, 38, 921-958.	2.3	14
364	Efficient separation of small organic contaminants in water using functionalized nanoporous graphene membranes: Insights from molecular dynamics simulations. Journal of Membrane Science, 2021, 630, 119331.	4.1	30
365	Selective membranes in water and wastewater treatment: Role of advanced materials. Materials Today, 2021, 50, 516-532.	8.3	106
367	Transport and coâ€transport of carboxylate ions and alcohols in cation exchange membranes. Journal of Polymer Science, 2021, 59, 2545-2558.	2.0	8
368	Polyoxometalate-cored supramolecular star polymers as a novel crosslinker for graphene oxide-based forward osmosis membranes: Anti-fouling, super hydrophilic and high water permeable. Separation and Purification Technology, 2021, 267, 118578.	3.9	26
369	Reformulating the <scp>permselectivityâ€conductivity</scp> tradeoff relation in <scp>ionâ€exchange</scp> membranes. Journal of Polymer Science, 2021, 59, 2510-2520.	2.0	15
370	Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties. Journal of Polymer Science, 0, , .	2.0	1
371	Combining Manning's theory and the ionic conductivity experimental approach to characterize selectivity of cation exchange membranes. Journal of Membrane Science, 2021, 629, 119263.	4.1	15
372	Preparation and modification of thin film composite membrane using a bulky dianhydride monomer. Journal of Applied Polymer Science, 2021, 138, 51389.	1.3	7
374	Methoxy groups increase water and decrease salt permeability properties of sulfonated polysulfone desalination membranes. Journal of Membrane Science, 2021, 630, 119298.	4.1	10
375	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2100049.	6.9	62

#	Article	IF	CITATIONS
376	Transport and Co-Transport of Carboxylate lons and Ethanol in Anion Exchange Membranes. Polymers, 2021, 13, 2885.	2.0	9
377	An engineering model for solute transport in semi-aromatic polymeric nanofiltration membranes: Extension of Solution-Electro-Diffusion model to complex mixtures. Journal of Environmental Chemical Engineering, 2021, 9, 105262.	3.3	9
378	Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. Water Research, 2021, 201, 117311.	5.3	20
379	Two-dimensional graphene oxide based membranes for ionic and molecular separation: Current status and challenges. Journal of Environmental Chemical Engineering, 2021, 9, 105605.	3.3	63
380	Theory of the effect of external stress on the activated dynamics and transport of dilute penetrants in supercooled liquids and glasses. Journal of Chemical Physics, 2021, 155, 054505.	1.2	10
381	Electrochemical effect and permselectivity of monovalent ions in polystyrene-bismuth oxyiodide composite membrane. Groundwater for Sustainable Development, 2021, 14, 100635.	2.3	1
382	Membrane Materials for Selective Ion Separations at the Water–Energy Nexus. Advanced Materials, 2021, 33, e2101312.	11.1	100
383	Efficiency, operational stability and biofouling of novel sulfomethylated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene cation exchange membrane in microbial fuel cells. Bioresource Technology, 2021, 333, 125153.	4.8	12
384	3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioactive Materials, 2022, 10, 48-55.	8.6	13
385	Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
386	Interaction-based ion selectivity exhibited by self-assembled, cross-linked zwitterionic copolymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	20
387	The open membrane database: Synthesis–structure–performance relationships of reverse osmosis membranes. Journal of Membrane Science, 2022, 641, 119927.	4.1	62
388	Li leaching from Li carbonate-primer: Transport pathway development from the scribe edge of a primer/topcoat system. Progress in Organic Coatings, 2021, 158, 106284.	1.9	3
389	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2170026.	6.9	8
390	The role of oxidation level in mass-transport properties and dehumidification performance of graphene oxide membranes. Carbon, 2021, 183, 404-414.	5.4	26
391	Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization. Journal of Membrane Science, 2021, 636, 119478.	4.1	62
392	Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranes. Journal of Membrane Science, 2021, 635, 119447.	4.1	9
393	Performance optimization of diamine cross-linked mixed matrix membrane for high value organic acid recovery. Journal of Membrane Science, 2021, 635, 119543.	4.1	1

#	Article	IF	CITATIONS
394	Boric acid removal with polyol-functionalized polyether membranes. Journal of Membrane Science, 2021, 638, 119690.	4.1	4
395	Aqueous ion partitioning in Nafion: Applicability of Manning's counter-ion condensation theory. Journal of Membrane Science, 2021, 638, 119687.	4.1	19
396	Chlorination as a simple but effective method to improve the water/salt selectivity of polybenzimidazole for desalination membrane applications. Journal of Membrane Science, 2021, 638, 119745.	4.1	8
397	Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Materials, 2021, 43, 97-119.	9.5	24
398	Water and salt transport properties of pentiptycene-containing sulfonated polysulfones for desalination membrane applications. Journal of Membrane Science, 2021, 640, 119806.	4.1	9
399	The use of polymer-graphene composites as membrane. , 2022, , 557-588.		0
400	Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility. Soft Matter, 2021, 17, 2624-2639.	1.2	16
401	Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Advances, 2021, 11, 7981-8002.	1.7	32
402	Making wastewater obsolete: Selective separations to enable circular water treatment. Environmental Science and Ecotechnology, 2021, 5, 100078.	6.7	35
403	Pore-Filled Ion-Exchange Membranes with Optimal Cross-Linking Degrees for Efficient Membrane Capacitive Deionization. Macromolecular Research, 2020, 28, 1268-1275.	1.0	5
404	Transport and structural properties of osmotic membranes in high-salinity desalination using cascading osmotically mediated reverse osmosis. Desalination, 2020, 479, 114335.	4.0	31
405	Environmental impact of emerging desalination technologies: A preliminary evaluation. Journal of Environmental Chemical Engineering, 2020, 8, 104099.	3.3	102
406	Operation setup of a nanofiltration membrane unit for purification of two-phase olives and olive oil washing wastewaters. Science of the Total Environment, 2018, 612, 758-766.	3.9	13
407	Elucidating the Role of Embedded Metal–Organic Frameworks in Water and Ion Transport Properties in Polymer Nanocomposite Membranes. Chemistry of Materials, 2020, 32, 10165-10175.	3.2	23
408	Hydration Effects on the Permselectivity-Conductivity Trade-Off in Polymer Electrolytes. Macromolecules, 2020, 53, 1014-1023.	2.2	19
409	How the Shape and Chemistry of Molecular Penetrants Control Responsive Hydrogel Permeability. ACS Nano, 2021, 15, 614-624.	7.3	30
410	Membranes for Solar Fuels Devices. RSC Energy and Environment Series, 2018, , 341-385.	0.2	6
411	Grafting polysiloxane onto ultrafiltration membranes to optimize surface energy and mitigate fouling. Soft Matter, 2020, 16, 5044-5053.	1.2	12

#	Article	IF	CITATIONS
412	A Review on Ion-Exchange Membranes Fouling during Electrodialysis Process in Food Industry, Part 2: Influence on Transport Properties and Electrochemical Characteristics, Cleaning and Its Consequences. Membranes, 2021, 11, 811.	1.4	17
413	Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes. ACS Applied Materials & Interfaces, 2021, 13, 49331-49339.	4.0	6
414	A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. Membranes, 2021, 11, 789.	1.4	31
415	Diffusion and Osmotic Permeability of Ion Exchange Membrane MK-40 Using Sodium Chloride Solution. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	1
416	The present and future of SWRO-PRO hybrid desalination technology development. Journal of the Korean Society of Water and Wastewater, 2016, 30, 401-408.	0.3	1
417	Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review. Journal of Applied Membrane Science & Technology, 2018, 22, .	0.3	1
418	Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS Applied Materials & Interfaces, 2021, 13, 52647-52658.	4.0	6
419	Permselectivity of ionene-based, Aemion® anion exchange membranes. Journal of Membrane Science, 2022, 641, 119917.	4.1	13
420	Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 2022, 642, 119950.	4.1	6
421	Transport Properties of Polymers. , 2021, , 377-452.		0
422	Fabrication of an antimony doped tin oxide–graphene nanocomposite for highly effective capacitive deionization of saline water. RSC Advances, 2020, 10, 39130-39136.	1.7	5
423	Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes. Environmental Science & Technology, 2021, 55, 14863-14875.	4.6	26
424	Swelling of a non-vascular-plant-inspired soft composite. Matter, 2021, 4, 3991-4005.	5.0	9
425	Molecular methods for assessing the morphology, topology, and performance of polyamide membranes. Journal of Membrane Science, 2022, 644, 120110.	4.1	11
426	Polymeric Hydrogels—A Promising Platform in Enhancing Water Security for a Sustainable Future. Advanced Materials Interfaces, 2021, 8, 2100580.	1.9	46
427	Local Water Transport in Rubbery versus Glassy Separation Membranes and Analogous Solutions. Macromolecules, 2021, 54, 11187-11197.	2.2	6
428	A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. Journal of Membrane Science, 2022, 645, 120041.	4.1	38
429	Ultrahigh Molecular Weight Polyethylene Lamellarâ€Thin Framework on Square Meter Scale. Advanced Materials, 2022, 34, e2107941	11.1	7

#	ARTICLE	IF	CITATIONS
430	How bulk and surface properties of sulfonated cation-exchange membranes response to their exposure to electric current during electrodialysis of a Ca2+ containing solution. Journal of Membrane Science, 2022, 644, 120149.	4.1	16
431	Recent advances of thin film composite membranes for pervaporation applications: A comprehensive review. , 2021, 1, 100008.		15
432	Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chemical Society Reviews, 2022, 51, 672-719.	18.7	182
433	Module-scale analysis of low-salt-rejection reverse osmosis: Design guidelines and system performance. Water Research, 2022, 209, 117936.	5.3	9
434	Influence of fixed charge concentration and water uptake on ion sorption in AMPS/PEGDA membranes. Journal of Membrane Science, 2022, 644, 120171.	4.1	16
435	Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination, 2022, 525, 115492.	4.0	57
436	Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 2022, 8, eabl5771.	4.7	45
437	Membranes for blue energy conversion by reverse electrodialysis (RED). , 2022, , 91-137.		0
438	Structure and Population of Complex Ionic Species in FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy. Molecules, 2022, 27, 642.	1.7	2
439	Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selectivity. Desalination, 2022, 527, 115553.	4.0	19
440	Enhancing desalination performance by manipulating block ratios in a polyethylene-based triblock copolymer anion exchange membrane for electrodialysis. Journal of Membrane Science, 2022, 647, 120295.	4.1	9
441	Salt and Ion Transport in a Series of Crosslinked Amps/Pegda Hydrogel Membranes. SSRN Electronic Journal, 0, , .	0.4	0
442	Hybrid Forward Osmosis - Freeze Concentration: A Promising Future in the Desalination of Effluents in Cold Regions. SSRN Electronic Journal, 0, , .	0.4	0
443	Laser Interferometry for Precise Measurement of Ultralow Flow Rates from Permeable Materials. Environmental Science and Technology Letters, 2022, 9, 233-238.	3.9	0
444	Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 2022, 8, eabm9436.	4.7	50
445	Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform. Micromachines, 2022, 13, 487.	1.4	2
446	Membrane fouling in aqueous redox flow batteries. Journal of Power Sources, 2022, 527, 231180.	4.0	12
447	Salt and ion transport in a series of crosslinked AMPS/PEGDA hydrogel membranes. Journal of Membrane Science, 2022, 653, 120549.	4.1	9

#	Article	IF	CITATIONS
448	Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. Journal of Membrane Science, 2022, 650, 120398.	4.1	23
449	Potential of nanofiltration technology in recirculating aquaculture systems in a context of circular economy. Chemical Engineering Journal Advances, 2022, 10, 100269.	2.4	9
450	Preparation of highly selective reverse osmosis membranes by introducing a nonionic surfactant in the organic phase. Journal of Membrane Science, 2022, 651, 120453.	4.1	13
451	A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film. Desalination, 2022, 532, 115733.	4.0	26
452	Hybrid forward osmosis - freeze concentration: A promising future in the desalination of effluents in cold regions. Journal of Water Process Engineering, 2022, 47, 102711.	2.6	6
453	Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. Journal of Membrane Science, 2022, 653, 120515.	4.1	14
454	High permeable and anti-fouling forward osmosis membranes modified with Grafted Graphene Oxide to Polyacrylamide (GO-PAAm). Journal of Polymer Research, 2022, 29, 1.	1.2	4
455	Elastic Forces and Molecular Transport through Polymer Matrices. Macromolecules, 2022, 55, 3762-3768.	2.2	2
457	Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews, 2022, 122, 11022-11084.	23.0	46
458	Re-thinking polyamide thin film formation: How does interfacial destabilization dictate film morphology?. Journal of Membrane Science, 2022, 656, 120593.	4.1	24
459	Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review. Environmental Science & Technology, 2022, 56, 7467-7483.	4.6	26
460	Multimodal confined water dynamics in reverse osmosis polyamide membranes. Nature Communications, 2022, 13, 2809.	5.8	16
461	Impact of Cation–Ligand Interactions on the Permselectivity of Ligand-Functionalized Polymer Membranes in Single and Mixed Salt Systems. Macromolecules, 2022, 55, 4821-4831.	2.2	9
462	Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. Reviews in Chemical Engineering, 2023, 39, 875-910.	2.3	4
463	Inadequacy of Current Approaches for Characterizing Membrane Transport Properties at High Salinities. SSRN Electronic Journal, 0, , .	0.4	0
464	Cationic Stabilized Layered Graphene Oxide (Go) Membrane For Shale Gas Wastewater Treatment: An Atomistic Insight. SSRN Electronic Journal, 0, , .	0.4	0
465	Development of an Efficient System for Blue Energy Production Based on Reverse Electrodialysis (RED) by Optimizing Electrolyte Composition: Experimental and Theoretical Simulations. Energy & Fuels, 2022, 36, 6353-6361.	2.5	4
466	Polar liquids at charged interfaces: A dipolar shell theory. Journal of Chemical Physics, 2022, 156, .	1.2	8

#	Article	IF	CITATIONS
467	A two-phase model that unifies and extends the classical models of membrane transport. Science, 2022, 377, 186-191.	6.0	22
468	Bridging membrane transport models. Science, 2022, 377, 152-152.	6.0	0
469	Impact of hydrophobic pendant phenyl groups on transport and co-transport of methanol and acetate in PEGDA-SPMAK cation exchange membranes. Chemical Engineering Research and Design, 2022, 185, 418-429.	2.7	3
470	Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. Chemical Engineering Journal Advances, 2022, 12, 100372.	2.4	20
471	Desalination characteristics of new blend membranes based on sulfonated polybenzimidazole and sulfonated poly(arylene ether sulfone). Polymer Bulletin, 2023, 80, 7805-7824.	1.7	1
473	Influence of Mesoscale Interactions on Proton, Water, and Electrokinetic Transport in Solvent-Filled Membranes: Theory and Simulation. Langmuir, 2022, 38, 10362-10374.	1.6	3
474	Transport properties of graphene oxide nanofiltration membranes: Electrokinetic modeling and experimental validation. AICHE Journal, 2022, 68, .	1.8	1
475	Effect of Dielectric Saturation on Ion Activity Coefficients in Ion Exchange Membranes. ACS Omega, 2022, 7, 30823-30834.	1.6	2
476	Surface modification of rGO with PEG for the improvement of water/salt selectivity of CTA/rGO nanocomposites for desalination membrane applications. Polymer, 2022, 256, 125228.	1.8	2
477	Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination, 2022, 542, 116043.	4.0	32
478	Limited ion-ion selectivity of salt-rejecting membranes due to enthalpy-entropy compensation. Desalination, 2022, 541, 116041.	4.0	11
479	Sulfonated polymer coating enhances selective removal of calcium in membrane capacitive deionization. Journal of Membrane Science, 2022, 662, 120974.	4.1	1
480	Impact of polymer molecular weight on the efficiency of temperature swing solvent extraction for desalination of concentrated brines. Desalination, 2022, 543, 116104.	4.0	1
481	Membrane Characterization with Model-Based Design of Experiments. Computer Aided Chemical Engineering, 2022, , 859-864.	0.3	0
482	Prediction of Equilibrium Water Uptake and Ions Diffusivities in Ion-Exchange Membranes Combining Molecular Dynamics and Analytical Models. SSRN Electronic Journal, 0, , .	0.4	0
483	Salinity Gradient Energy Production by Custom-Made Interpolymer Ion Exchange Membranes Utilized in Reverse Electrodialysis System. SSRN Electronic Journal, 0, , .	0.4	0
484	Crosslinked polyethersulfone membranes for organic solvent nanofiltration in polar aprotic and halogenated solvents. Journal of Membrane Science, 2022, 663, 120963.	4.1	4
485	Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8

#	Article	IF	CITATIONS
486	Sulfonated Pentablock Copolymer Membrane Morphological Anisotropy and Its Impact on Dimensional Swelling, Proton Conductivity, and the Transport of Protons and Water. Macromolecules, 2022, 55, 9269-9281.	2.2	4
487	Theory of the Effects of Specific Attractions and Chain Connectivity on the Activated Dynamics and Selective Transport of Penetrants in Polymer Melts. Macromolecules, 2022, 55, 9134-9151.	2.2	5
488	Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. Journal of Membrane Science, 2023, 666, 121133.	4.1	14
489	The Application of Cellulose Acetate Membranes for Separation of Fermentation Broths by the Reverse Osmosis: A Feasibility Study. International Journal of Molecular Sciences, 2022, 23, 11738.	1.8	6
490	An interdisciplinary framework for the characterization of extracellular matrix-hydrogels for biomedical applications. Matter, 2022, 5, 3659-3705.	5.0	5
491	Polymeric membranes for desalination. Journal of Polymer Science, 2022, 60, 2927-2928.	2.0	0
492	Elevating the water/salt selectivity of polybenzimidazole to the empirical upper bound of desalting polymers by marrying N-substitution with chlorination. Polymer, 2022, 261, 125419.	1.8	3
493	Polyelectrolyte multilayers coating of aliphatic polyamide anion-exchange membranes to increase monovalent/divalent anions selectivity in electrodialysis. Desalination, 2023, 545, 116159.	4.0	8
494	Prediction of single salt rejection in PES/CMS based membranes. Chemosphere, 2023, 311, 136987.	4.2	0
495	Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	23
496	Influence of electrolyte on concentration-induced conductivity-permselectivity tradeoff of ion-exchange membranes. Journal of Membrane Science, 2023, 668, 121184.	4.1	10
497	Ultra-microporous anion conductive membranes for crossover-free pH-neutral aqueous organic flow batteries. Journal of Membrane Science, 2023, 668, 121195.	4.1	3
498	Theoretical Pathway toward Improved Reverse Osmosis Membrane Selectivity for Neutral Solutes: Inspiration from Gas Separations. Journal of Physical Chemistry C, 2022, 126, 19496-19506.	1.5	0
499	MPD and TMC supply as parameters to describe synthesis-morphology-performance relationships of polyamide thin film composite membranes. Journal of Membrane Science, 2023, 667, 121155.	4.1	10
500	Pervaporative desalination using MIL 140ÂA loaded polylactic acid nanocomposite membrane. Chemical Engineering Research and Design, 2023, 169, 447-457.	2.7	5
501	Inadequacy of current approaches for characterizing membrane transport properties at high salinities. Journal of Membrane Science, 2023, 668, 121246.	4.1	1
502	Prediction of equilibrium water uptake and ions diffusivities in ion-exchange membranes combining molecular dynamics and analytical models. Journal of Membrane Science, 2023, 668, 121283.	4.1	4
503	Interfacial interactions between polymers and selective adsorbents influence ion transport properties of boron scavenging ion-exchange membranes. Journal of Membrane Science, 2023, 669, 121301.	4.1	3

#	ARTICLE Molecular Design of the Polyamide Layer Structure of Nanofiltration Membranes by Sacrificing	IF	Citations
504	Hydrolyzable Groups toward Enhanced Separation Performance. Environmental Science & amp; Technology, 2022, 56, 17955-17964.	4.6	11
505	Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs. Membranes, 2022, 12, 1240.	1.4	3
506	Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. Science Advances, 2023, 9, .	4.7	16
507	Ion-Selective Separation Using MXene-Based Membranes: A Review. , 2023, 5, 341-356.		25
508	Oxygen transport through epoxy-based powder coatings in humid environments. Progress in Organic Coatings, 2023, 175, 107295.	1.9	1
509	Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. Environmental Science & Technology, 2023, 57, 6331-6341.	4.6	6
510	Solvent transport model for polyamide nanofilm membranes based on accurate Hansen solubility parameters. Journal of Membrane Science, 2023, 674, 121505.	4.1	10
511	Interplay between membrane imperfections and external concentration polarization. Journal of Membrane Science, 2023, 676, 121579.	4.1	3
512	The need for ion-exchange membranes with high charge densities. Journal of Membrane Science, 2023, 677, 121608.	4.1	16
513	Poly-lactic acid coatings on the biomedical WE43 Mg alloy: Protection mechanism and ion permeation effects. Progress in Organic Coatings, 2023, 177, 107427.	1.9	4
514	Research on Membranes and Their Associated Processes at the Université Paris-Est Créteil: Progress Report, Perspectives, and National and International Collaborations. Membranes, 2023, 13, 252.	1.4	1
515	Molecular Design of Hydrophilized Polyethersulfone to Enhance Water/Salt Selectivity. Macromolecules, 2023, 56, 2027-2037.	2.2	4
516	Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes. Environmental Science & Technology, 2023, 57, 3930-3939.	4.6	10
517	How Segmental Dynamics and Mesh Confinement Determine the Selective Diffusivity of Molecules in Cross-Linked Dense Polymer Networks. ACS Central Science, 2023, 9, 508-518.	5.3	9
518	The Adverse Effect of Concentration Polarization on Ion–Ion Selectivity in Nanofiltration. Environmental Science and Technology Letters, 2023, 10, 363-371.	3.9	3
519	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
520	Salt Transport in Crosslinked Hydrogel Membranes Containing Zwitterionic Sulfobetaine Methacrylate and Hydrophobic Phenyl Acrylate. Polymers, 2023, 15, 1387.	2.0	2
521	Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron–Catechol Complexes. Macromolecules, 2023, 56, 2268-2276.	2.2	4

#	Article	IF	CITATIONS
522	A mechanistic model for salt and water transport in leaky membranes: Implications for low-salt-rejection reverse osmosis membranes. Journal of Membrane Science, 2023, 678, 121642.	4.1	3
538	Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. Journal of Physical Chemistry B, 2023, 127, 5733-5741.	1.2	0
539	Transport and fouling in desalination membranes. , 2024, , 670-684.		0
569	Membrane water processes and nanobubble technology. , 2024, , 489-527.		0
581	Fundamental of ion-exchange membranes. , 2024, , 1-19.		0
582	Organic ion exchange membranes. , 2024, , 21-68.		Ο