Topical delivery of ocular therapeutics: carrier systems

Journal of Pharmacy and Pharmacology 66, 507-530 DOI: 10.1111/jphp.12132

Citation Report

#	Article	IF	CITATIONS
1	Advances in ophthalmic drug delivery. Journal of Pharmacy and Pharmacology, 2014, 66, 487-489.	2.4	11
2	Single compartment drug delivery. Journal of Controlled Release, 2014, 190, 157-171.	9.9	46
3	Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. International Journal of Pharmaceutics, 2014, 473, 591-598.	5.2	111
4	Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. Journal of Molecular Liquids, 2014, 199, 251-256.	4.9	41
5	Imprinted Contact Lenses for Sustained Release of Polymyxin B and Related Antimicrobial Peptides. Journal of Pharmaceutical Sciences, 2015, 104, 3386-3394.	3.3	74
8	Nanomedicine Approaches for Corneal Diseases. Journal of Functional Biomaterials, 2015, 6, 277-298.	4.4	78
9	Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Translational Vision Science and Technology, 2015, 4, 1.	2.2	27
10	Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system. Drug Design, Development and Therapy, 2015, 9, 1427.	4.3	19
11	Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Advances, 2015, 5, 100923-100933.	3.6	23
12	Nanotherapies for the treatment of ocular diseases. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 279-293.	4.3	144
13	Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Scientific Reports, 2015, 5, 11337.	3.3	66
14	An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. International Journal of Pharmaceutics, 2015, 490, 375-383.	5.2	92
15	Corneal light backscattering after transepithelial corneal crosslinking using iontophoresis in donor human corneal tissue. Journal of Cataract and Refractive Surgery, 2015, 41, 635-643.	1.5	12
17	Drug-loaded nanocarriers for back-of-the-eye diseases- formulation limitations. Journal of Drug Delivery Science and Technology, 2015, 30, 331-341.	3.0	12
18	Ophthalmic applications of lipid-based drug nanocarriers: an update of research and patenting activity. Therapeutic Delivery, 2015, 6, 1297-1318.	2.2	16
19	Extended Release of an Anti–Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection. , 2016, 57, 169.		39
20	Advanced drug delivery and targeting technologies for the ocular diseases. BioImpacts, 2016, 6, 49-67.	1.5	100
21	Nanoemulsions to Prevent Photoaging. , 2016, , 237-246.		1

TION RE

IF

#	ARTICLE

Nanopreparations for skin cancer therapy., 2016, , 1-28. 22 6 Interaction with therapeutic soft contact lenses affects the intraocular efficacy of tropicamide and 1.3 latanoprost in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2016, 39, 138-143. 24 Topical Versus Systemic Ocular Drug Delivery., 2016, , 53-74. 7 Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Development and Industrial Pharmacy, 2016, 42, 1956-1967. Drug-Loaded Nanoparticles Embedded in a Biomembrane Provide a Dual-Release Mechanism for Drug 26 1.4 7 Delivery to the Eye. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 565-573. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids and Surfaces B: 5.0 64 Biointerfaces, 2016, 148, 19-29. Docosahexaenoic acid triglyceride-based microemulsions with an added dendrimer $\hat{a} \in \mathcal{C}$ Structural 28 9.4 12 considerations. Journal of Colloid and Interface Science, 2016, 483, 374-384. Characterization of Ocular Iontophoretic Drug Transport of Ionic and Non-ionic Compounds in 1.4 Isolated Rabbit Cornea and Conjunctiva. Biological and Pharmaceutical Bulletin, 2016, 39, 959-968. Self-assembly strategy for the design of soft nanocontainers with controlled properties. Mendeleev 30 1.6 64 Communications, 2016, 26, 457-468. Other Advances in Ocular Drug Delivery., 2016, , 165-185. Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles. 32 13 3.5BioNanoScience, 2016, 6, 276-283. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. 5.2 International Journal of Pharmaceutics, 2016, 511, 359-366. A Divalent PAMAMâ€Based Matrix Metalloproteinase/Carbonic Anhydrase Inhibitor for the Treatment of 34 3.3 17 Dry Eye Syndrome. Chemistry - A European Journal, 2016, 22, 1714-1721. Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery. Biomacromolecules, 5.4 2016, 17, 798-807. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Delivery, 2016, 36 5.7 29 23, 3063-3071. Recent Advances in Topical Ocular Drug Delivery. Journal of Ocular Pharmacology and Therapeutics, 1.4 136 2016, 32, 67-82. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal 38 retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids and Surfaces B: 5.0112 Biointerfaces, 2016, 141, 28-35. Corneal antinociceptive effect of (-)-1±-bisabolol. Pharmaceutical Biology, 2017, 55, 1089-1092.

CITATION REPORT

#	Article	IF	CITATIONS
40	Relevance of Lipid-Based Products in the Management of Dry Eye Disease. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 647-661.	1.4	79
41	Discerning the composition of penetratin for safe penetration from cornea to retina. Acta Biomaterialia, 2017, 63, 123-134.	8.3	22
42	Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomedicine and Pharmacotherapy, 2017, 94, 402-411.	5.6	48
43	A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. International Journal of Pharmaceutics, 2017, 529, 347-356.	5.2	31
44	PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1156-1164.	2.8	48
45	Non-invasive systemic drug delivery through mucosal routes. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 539-551.	2.8	21
46	DNA nanoparticles for ophthalmic drug delivery. Biomaterials, 2018, 157, 98-106.	11.4	69
47	Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin. Drug Delivery and Translational Research, 2018, 8, 132-139.	5.8	14
48	The presence of minocycline in the tear film of normal horses following oral administration and its anticollagenase activity. Veterinary Ophthalmology, 2018, 21, 58-65.	1.0	11
49	Preparation and In Vitro/In Vivo Evaluation of Antihistaminic Ocular Inserts. Pharmaceutical Chemistry Journal, 2018, 52, 615-622.	0.8	2
50	Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. International Journal of Nanomedicine, 2018, Volume 13, 7251-7273.	6.7	74
51	Stimuli sensitive ocular drug delivery systems. , 2018, , 211-270.		10
52	Useful properties of siRNA-coated gold nanoparticles as a mini-nanocarrier platform for intraocular administration. Journal of Drug Delivery Science and Technology, 2018, 47, 411-416.	3.0	4
53	Nanoparticles influence in skin penetration of drugs. , 2018, , 187-248.		7
54	Bio-Based Nanoemulsion Formulations Applicable in Agriculture, Medicine, and Food Industry. Nanotechnology in the Life Sciences, 2019, , 33-84.	0.6	17
55	Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. International Journal of Molecular Sciences, 2019, 20, 5534.	4.1	88
56	Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. International Journal of Biological Macromolecules, 2019, 139, 1252-1262.	7.5	30
57	Effect of iontophoresis on fluoride uptake in enamel with artificial caries lesion. Brazilian Oral Research, 2019, 33, e037.	1.4	4

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
58	Effective InÂVivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide. Molecular Therapy - Nucleic Acids, 2019, 17, 891-906.	5.1	32
59	Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. International Journal of Pharmaceutics, 2019, 570, 118688.	5.2	45
60	Nanoparticles Targeting STATs in Cancer Therapy. Cells, 2019, 8, 1158.	4.1	57
61	Stimulusâ€Responsive Hydrogel for Ophthalmic Drug Delivery. Macromolecular Bioscience, 2019, 19, e1900001.	4.1	42
62	Solubilization and interaction of ciprofloxacin with pluronics and their mixed micelles. New Journal of Chemistry, 2019, 43, 16530-16537.	2.8	23
63	Penetration of Nile red-loaded nanostructured lipid carriers (NLCs) across the porcine cornea. Colloids and Surfaces B: Biointerfaces, 2019, 176, 371-378.	5.0	20
64	Administration Routes for Nano Drugs and Characterization of Nano Drug Loading. , 2019, , 587-625.		11
65	lontophoretic Dexamethasone Phosphate Compared to Topical Prednisolone Acetate 1% for Noninfectious Anterior Segment Uveitis. American Journal of Ophthalmology, 2020, 211, 76-86.	3.3	11
66	Ophthalmic Drug Delivery Using Iontophoresis: Recent Clinical Applications. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 75-87.	1.4	32
67	Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. International Journal of Biological Macromolecules, 2020, 163, 2392-2404.	7.5	70
68	Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Scientific Reports, 2020, 10, 19285.	3.3	37
69	Ex-Vivo Trans-Corneal and Trans-Scleral Diffusion Studies with Ocular Formulations of Glutathione as an Antioxidant Treatment for Ocular Diseases. Pharmaceutics, 2020, 12, 861.	4.5	5
70	Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability. Pharmaceutics, 2020, 12, 702.	4.5	20
71	Development of gold(III) thiosemicarbazonate complex–loaded PLGA nanoparticles: characterization and sustained release studies. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	6
72	The prominence of the dosage form design to treat ocular diseases. International Journal of Pharmaceutics, 2020, 586, 119577.	5.2	24
73	Self-assembled DNA nanoparticles loaded with travoprost for glaucoma-treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102260.	3.3	22
74	Progress on ocular siRNA geneâ€silencing therapy and drug delivery systems. Fundamental and Clinical Pharmacology, 2021, 35, 4-24.	1.9	29
75	HPLC-UV analytical validation of a method for quantification of progesterone in ex vivo trans-corneal and trans-scleral diffusion studies. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113749.	2.8	7

CITATION REPORT

#	Article	IF	CITATIONS
76	Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. , 2021, , 201-232.		31
77	Hydrophilic-hydrophilic mixed micellar system: effect on solubilization of drug. SN Applied Sciences, 2021, 3, 1.	2.9	8
78	Biopolymer-based nanoparticles with tunable mucoadhesivity efficiently deliver therapeutics across the corneal barrier. Materials Science and Engineering C, 2021, 121, 111890.	7.3	10
79	Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomaterialia, 2021, 125, 41-56.	8.3	12
80	Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent. Cellular Physiology and Biochemistry, 2021, 55, 1-14.	1.6	5
81	Prodrugs - Current development and applications in ocular drug delivery. Journal of Drug Delivery Science and Technology, 2021, 66, 102836.	3.0	2
82	Sequential drug release of co-assembled supramolecular hydrogel as synergistic therapy against Staphylococcus aureus endophthalmitis. Chemical Engineering Journal, 2022, 427, 130979.	12.7	14
83	Review on Conventional and Novel Topical Ocular Drug Delivery System. Journal of Pharmacy, 2021, 1, 19-26.	0.5	6
84	Ophthalmic Drug Delivery Systems for the Treatment of Corneal Diseases. , 2016, , 583-592.		1
85	Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes. AAPS PharmSciTech, 2018, 19, 166-175.	3.3	107
86	Recent Advances in Topical Therapeutics for Vitreoretinal Diseases. US Ophthalmic Review, 2015, 8, 60.	0.2	1
87	Nanovesicular Carrier Systems for Ophthalmic Drug Delivery. , 2016, , 231-242.		2
88	Gene editing for the cornea. , 2022, , 81-100.		0
90	Iontophoretic Mediated Intraarticular Delivery of Deformable Liposomes of Diclofenac Sodium. Current Drug Delivery, 2021, 18, 421-432.	1.6	3
91	Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. Journal of Drug Delivery Science and Technology, 2022, 71, 103327.	3.0	2
92	Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective. Pharmaceutics, 2022, 14, 981.	4.5	9
93	Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. International Journal of Pharmaceutics, 2022, 623, 121938.	5.2	9
94	In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. Journal of Molecular Liquids, 2022, 360, 119559.	4.9	12

CITATION REPORT

#	Article	IF	CITATIONS
95	Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. Phytomedicine, 2022, 107, 154465.	5.3	14
96	Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 1477-1507.	3.0	22
97	Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. Journal of Controlled Release, 2022, 352, 861-878.	9.9	21
98	Current perspectives in nanomedicine delivery for targeted ocular therapeutics. Bulletin of Materials Science, 2023, 46, .	1.7	2
99	Thermoâ€Responsive Microemulsions Containing Deep Eutecticâ€Based Antibiotic Formulations for Improved Treatment of Resistant Bacterial Ocular Infections. Advanced Therapeutics, 2023, 6, .	3.2	1
100	Influence of iontophoresis on delivery of NSAID-loaded deformable liposomal dispersions: <i>in vitro</i> and <i>in vivo</i> evaluation. Therapeutic Delivery, 0, , .	2.2	0
101	Application of Hydrogels in the Device of Ophthalmic Iontophoresis: Theory, Developments and Perspectives. Gels, 2023, 9, 519.	4.5	1
102	Ocular immunosuppressive microenvironment and novel drug delivery for control of uveitis. Advanced Drug Delivery Reviews, 2023, 198, 114869.	13.7	3
103	Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics, 2023, 15, 1862.	4.5	3
104	Nanomaterial-based ophthalmic drug delivery. Advanced Drug Delivery Reviews, 2023, 200, 115004.	13.7	6
105	Evaluation of Therapeutic Capability of Emustil Drops against Tear Film Complications under Dry Environmental Conditions in Healthy Individuals. Medicina (Lithuania), 2023, 59, 1298.	2.0	2
106	Application of Advanced Technologies—Nanotechnology, Genomics Technology, and 3D Printing Technology—In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics, 2023, 15, 2289.	4.5	3
107	Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon, 2024, 10, e26616.	3.2	0